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Chapter 1

Introduction

Spatial point processes are used to model random data sets consisting of positions in a two—
or three— or k- dimensional region (point patterns). For more then 30 years spatial point
processes have been a major area of research in spatial statistics, sce. e.g. [40], [12], [47] and
[30]. They have many applications in such different fields as astronomy, ecology, forestry,
image analysis, medicine and epidemiology.

In the thesis we consider three different problems from modelling and statistics of finite
inhomogeneous, stationary, and finally spatial-temporal point processes.

The most well known point process model is the Poisson point process with no interac-
tion between the points. Many point patterns show dependence in form of inhibition or
clustering (interaction), and in addition a trend in the intensity of the points (inhomo-
geneity) is often observed. The important class of Markov point processes is very useful
in describing interaction [30]. However, statistical tools developed for Markov point pro-
cesses models have mainly concerned homogeneous models. Four model classes allowing
both for inhomogeneity and interaction were suggested and intensively studied in recent
vears. The models are all based on a homogeneous Markov point process model which is
modified in order to introduce a trend. This can be done by introducing a non-constant
first-order interaction term [48|, [36], by applying a location dependent thinning [2] or by
transformation of the homogeneous Markov point process [25], [35].

It turns out that the local geometry of each of these three types of inhomogeneous
processes depends on the local intensity of the inhomogeneous process. For example, a
transformed point process most often exhibits local anisotropy, depending on local inten-
sity. However when concerning such important point patterns like cells in plant or animal
tissues, where both the size and the cell number depend on the distance to the boundary
of an organ, plant communities, where number density is governed by environmental con-
ditions and the plants form similar patterns but with varying scale, or modern materials
designed with structural inhomogeneity of particles of the same shape and locally varying
size, we see that the local geometry (interaction structure) does not change with the lo-
cation /intensity . Thus all three above mentioned models are inappropriate in such cases.
Therefore the fourth alternative model class based on local scaling of the homogeneous
template Markov point process has been suggested by Hahn et.al. in [18]. These processes
have the property that locally they look like a scaled version of the template process. The
local geometry is thus preserved.
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Nevertheless statistical properties of this new and very realistic model still needed to
be investigated. This is done in the first and largest part of the thesis.

The problem of the inference in locally scaled models is that the standard maximum
likelihood estimation is infeasible (which is not an exception in complex point process
models) thus an alternative method must be found. We propose a two-step procedure
which uses a specific way of factorization of the likelihood. Thus we first estimate the
scaling function by maximizing only the Poisson part of the likelihood (i.e. disregarding the
interaction). Afterwards we estimate the interaction parameters of the template process
with the scaling function assumed to be known and equal to the estimated value. The
same two-step procedure can be applied to the maximum pseudolikelihood estimation. For
the most feasible parametric case, when the scaling functions form an exponential family,
explicit estimation equations for the first step are derived and conditions for existence
and uniqueness of the estimate are formulated. Moreover it is shown that the first-step
estimates of the scaling function are approximate moment estimates in the original model.
Nevertheless because of the essential nonlinearity of the locally scaled point process model
it is very hard to deduce further theoretic results. That is why a simulation study was
carried out in order to further study the properties of the derived estimators. The results
are very encouraging and especially they confirm the important fact that the value of
the first-step estimate of the scaling function does not depend on the actual value of the
interaction parameters of the template.

After having estimated the parameters of the model the next task is the validation of
the model. Since the standard methods and statistics used for this purpose for other point
process models are ineffective or even undefined for the locally scaled model, two of the
classical methods are modified to suit the locally scaled model. Finally all of the developed
methods are applied to the analysis of a real data set — a vegetation point pattern from
the Australian desert.

In the second part of the thesis we move our attention from finite point processes to
stationary point processes (i.e. point processes defined on whole R* and invariant under
translation) and from a specific model to a specific quantity o* defined for (almost) any
simple stationary point process. o denotes the asymptotic variance and it is indeed
defined as (normalized) asymptotic variance

o2 = lim |W,| IE(,A\” = A%

n—oo
of the standard point process intensity estimator

~ o(W,)

C— —| I/Vn .

Here {W,,} is a sequence of sets (observation windows) growing to R* and satisfying some
regularity conditions and A is the intensity of the point process ®.

The quantity o2 is important because it is used for the construction of the confidence
intervals for the intensity of the stationary point process and also as a normalizing term in
goodness-of-fit tests for the K-function (or second moment measure) of stationary point
processes (see e.g. [20]).



The asymptotic variance is estimated by a kernel type estimator. A whole class of
them was defined in [21]. There was also shown their asymptotic unbiasedness and weak
consistency. However neither their asymptotic optimality nor their behaviour on middle
size windows was investigated in detail. This is done in the second part of the thesis.

The asymptotic behaviour of the estimators a2 of ¢ can be classified in dependence
on the behaviour of the so called second reduced factorial cumulant measure '}f,f()f If ‘7?(«331
has finite support it is possible to relax the conditions from the original theorem from [20]
and get a new theorem about the asymptotic unbiasedness and weak consistency of 2.
As a corollary of the proof we get the mean squared error (MSE) optimal bandwidth for
this finite case and also for the two other cases when h,(,'f)j(]Rk \ B(o, R))| decays exponen-
tially or faster then exponentially as R — oc.

Moreover for the case of isotropic stationary simple processes we suggest a new estimator
of 0% which has smaller variability then the general estimator. We show its asymptotic
unbiasedness and weak consistency and derive its MSE-optimal bandwidths in dependence
on '}521

Since the estimators of the quantity o are very much influenced by correlations among
the points of the point process we usually need quite large samples for the asymptotic
results to be applicable. To investigate how large is quite large in our case an extensive
simulation study is carried out. The behaviour of the estimators of 02 with different kernels
and different ranges of bandwidths is observed on observation windows of different sizes
for several point processes including the reference stationary Poisson point process as well
as different cluster and regular processes.

The third part of the thesis deals with temporal and spatial-temporal Cox (or more
generally doubly stochastic) point processes. A Cox process ® can be regarded as a mixture
of Poisson processes with different intensities — first a random mechanism generates the
(driving) intensity measure A and then conditionally on this A, ® is a Poisson process with
the intensity measure A. We suppose that A has a density with respect to the Lebesgue
measure and denote it by A. We consider the problem of filtration the problem of
estimating the unknown intensity function A after having observed the point process .

The problem of filtration is a classical problem and was studied by many authors e.g.
[44], [14], [45], [28], [10], etc. Our situation is specific in that respect that we suppose the
driving intensity function A depends on the realization of an Ornstein-Uhlenbeck type
stochastic process X.

Since we have a natural ordering on the time axis and usually we also get the data
step by step as the time grows, not all at once, the analysis of the temporal and spatial-
temporal processes is different from the general spatial case. Thus we do not derive an
explicit formula for the estimator of A or X on [0, (), but we derive a differential equation
for the estimate of A(¢) or X (¢).

In the temporal case we proceed like in [45] and first find the characteristic form of the
differential generator of X. Using this we derive a differential equation for the conditional
distribution P[X (t) | (® |j0,9)] of X.

In the spatial-temporal case we have to use a different method formulated in [14]. First
we derive a differential rule for a special stochastic process which is constructed from both
X and ® and using this rule we derive a differential equation for the conditional mean



E[X(t) | (P (04 x=+)]. Both the results are obtained not only for Cox processes but for
the larger class of doubly stochastic analyvtic point processes (which is a generalization of
Cox processes).

The organization of the thesis is as follows. Chapter 2 contains basic notation and
several classical notions from geometry, measure and probability theory, as well as an
introduction into Lévy processes and the Ornstein-Uhlenbeck type processes derived from
them. Chapter 3 gives an overview of the theory of point processes including some basic
information from statistics of point processes.

Chapter 4 deals with the development of statistical inference for the recently defined
point process model — for the locally scaled point processes. The main results about
the two-step estimation procedure are given in Theorem 4.2 (the factorization of the
pseudolikelihood), Theorem 4.3 and 4.4 (the estimation equations for the scaling function
and the existence and uniqueness conditions for the estimate in the exponential family
case). The whole Chapter 4 comes from a joint work with Eva B. Vedel Jensen and
Ute Hahn [38].

In Chapter 5 are investigated estimators of the asymptotic variance of stationary point
processes. The main results are Theorem 5.5. about asymptotic unbiasedness and weak
consistency of the estimator o2 in case of 'y,,(_jgl with finite support and Lemma 5.7 which
gives the MSE-optimal bandwidths for 2 in dependence on the behaviour of “!}(-i()i- Corre-
sponding results for the newly defined isotropic estimator are given in Theorem 5.9 and
Corollary 5.10. The chapter is closed with an extensive simulation study. Chapter 5 was
motivated by a joint work with Lothar Heinrich [22].

The last Chapter 6 deals with the problem of filtration in temporal and spatial-temporal
Cox processes driven by Ornstein-Uhlenbeck type processes thus extending the results
of [45] and [14]. While in those papers the cases of Brownian diffusions and Poisson
driven Markov processes were considered, our solution covers also the case where the
background driving Lévy process is a jump process with infinite activity (but finite vari-
ation). Theorem 6.3 gives the differential equation for the conditional distribution of the
driving process X in the temporal case. In Theorem 6.10 is derived the differential equa-
tion for the conditional mean value of the driving process X in the spatial-temporal case.
Part of the results in Chapter 6 was presented in [8].

The results of this work are part of the grants GACR 201/03/0946 and MSM 0021620839.



Chapter 2

Basic notation and preliminaries

2.1 Euclidean space and measures

Let R* denote the k-dimensional Euclidean space with the Euclidean metric

lz —yll = V(&1 — 9)2 + - - + (@ — yr)%,

= (r1,...,2;) €E R* y = (y1,...,y) € R¥ and Ry = { € R : = > 0} the set of
positive numbers. For a set A € R* we shall denote A = R¥ \ A the complement of A,
int A the interior and dA the boundary of the set A.

The closed ball with center x € R* and of radius » > 0 is denoted by

B(z,r)={y e R*: |y —z| < r}.

Let o = (0,...,0) € R* be the origin.

Further for «, v € R* the scalar product is denoted by (u,v) and the vector product by
U X .

Let (E, &) be a measurable space. Under a signed measure we understand a o-additive
set function p : £ — R U {oo} satistying p(()) = 0. There exists a set B € £ such that
(AN B) > 0and u(A\ B) <0 for every A € &, see [27] (Theorem 2.8). The pair (B, B)
is called a Hahn decomposition for . Define a measure 4™ and a finite measure g~ by

put(A)=pu(ANB) and p (A)=—p(A\B), A€CE.

The decomposition (called the Jordan decomposition) of ¢ = ™ — p~ into a positive
variation ™ and a negative variation p~ is independent of the choice of the Hahn de-
| = pt 4+ po is the total variation of the signed measure

composition. The measure

fL.
By 0, we denote the Dirac delta measure

T 1 if x € [{1.,
%2(4) = { 0 if x & A.

We also use the notation 1,(x) = 9,(A) for the indicator function of the set A.
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Definition 2.1 (diffuse measure) A measure p on (FE.€) is called diffuse if it has no
atoms, i.e. p({r})=0forall r e F.

Definition 2.2 (measure image) For a measure p on a measurable space (E,&) and
a measurable mapping [ : (£, &) — (£.€) let the image of the measure p under the
mapping f be a measure pf~' on a measurable space (£.&) defined by pf~'(A) =

u(f~1(A)) for A € €. |

If 1 is a measure on (£, &) and v is a measure on (£, ), the symbol p x v denotes
the product measure on the product space (£ x E,€ © E), where £ ® € is the product
o-algebra.

Let the Borel o-algebra on the space £ be denoted by B(E) or simply by B when it is
clear on which space it is defined.
Definition 2.3 (support of a measure) For a measure g on a topological space E with
Borel o-algebra B, we define the support by

Supp pt = m{f* closed : pu(E\ F) = 0}.

The k-dimensional Lebesgue measure of a Borel set 13 in R* will be denoted by |B)|.
The volume of the unit ball B(o, 1) in R¥ is

k/2

(1+k/2)

Wi = | Ble, 1)] = =

Definition 2.4 (Hausdorff measure) Let d € {0,...,k} be fixed. The Hausdorff d-
dimensional measure H? in R* is defined as

diam ;| @

. : 7

'Hd(;l) — lim inf E @y | — ] .
d—04 ACU;G;,diam G;<8 2

i

where diam (7; denotes the diameter of (-; and the infimum is taken over all at most
countable coverings of A with (any) sets of diameters less or equal to 9.

The d-dimensional Hausdorff measure is sometimes also called the d-dimensional volume
measure. For its basic properties we refer to [13]. In particular, H°(B) is the cardinality
(number of points) of B and H*(B) is the k-dimensional Lebesgue measure of a Borel set

B.

2.2 Probability theory and statistics

A measurable mapping X from a probability space (€2, A, P) to a measurable space (£, )
is called a random element of £. The distribution of X is the image of P under X . Equality

in distribution (i.e. equality of distributions) of two random elements will be denoted by
D
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By EX we denote the expectation of X. If #(X) (s(X) resp.) is some statistic of X
and 7 (o resp.) some parameter of the distribution of X then #(X') is called an unbiased
tH(X)

estimator of 7 if E(¢t(X)) = 7. v 1s called a ratio-unbiased estimator of Z if both ¢ and

s are unbiased estimators of 7 and & respectively.

The sequence of estimators {(,,(X)},en of 7 is called asymptotically unbiased if
lim, ... E(t,(X)) = 7. The sequence of estimators is strongly consistent if £,(X)
converges to 7 with probability 1. It is weakly consistent if 7,(X) converges to 7 in

distribution.

For X a random variable or vector taking values in R*, & > 1 we denote by v its
characteristic function
Y(v) = E[e* ™)), v e R

Definition 2.5 (probability kernel) Let (5,8) and (7,7) be two measurable spaces. A
mapping g : S x 7 — Ry is called a (probability) kernel from S to 7 if

(i) the function pusB = p (B | s) is S-measurable in s € S for fixed 13 € T,

(ii) the function usB = (B | s) is a (probability) measure in B € 7 for fixed s € S.

An R¢%valued stochastic process X = {X({)};»0 is a family of R? valued random vari-
ables X ({,w) with parameter ( € [0, 00), defined on a probability space (€2, A, P).

Definition 2.6 (stochastically continuous process) A stochastic process X = { X (#)}i>0
is stochastically continuous (continuous in probability) if for any ¢ € [0,00) and € > 0

P[|| X (t+s) — X(t)|| > ¢ — 0 as s — 0.

We will call history {F({),t > 0} a collection of sub-o-algebras of A which is non-
decreasing (i.e. F(t) C F(u),t < u). A stochastic process {X(¢),t > 0} is called adapted
to a history F (1) if each random variable X (¢) is F({)-measurable.

Definition 2.7 (martingale) Let X = {X(?)};>0 be a stochastic process and denote
{F(t) = 0{X(s);s < t},t > 0} the history of X. If E[X(¢) | F(s)] = X(s) a.s. for any
s < t, then X is a martingale.

We will need in the sequel the notion of an exponential family of probability distributions
and some facts concerning parameter estimation in this case. For proofs and details we
refer the reader to the classical book [5].

Definition 2.8 (exponential family) Let {Pp} be a family of probability distributions on
a common measurable space (2, A) parametrized by 0 € © C R Suppose moreover that
all the distributions have densities (with respect to some common non-zero measure i)

of the form
fo(z) = a(@)b(x)e @ 7@ g eq, (2.1)



where 7(2) = {7 (x),...74(x)} is a vector of some real-valued statistics of x, a some
vector function of the parameter 0, b a non-negative function of x and a(f) the norma-
lizing constant. If d is the minimal integer for which the representation (2.1) is possible
then {Py} is called the d-dimensional exponential family of distributions and (2.1) is the
minimal representation.

If () = 0 in (2.1) then we have the canonical representation and the function 7 1is
called the canonical statistics, £ the canonical parameter and

{0 e RY: / fo(x) < 00}, (2.2)

is called the canonical parameter space. Let us morcover denote by (" the common support
of {Pp} and by S the convex support (i.e. the closed convex hull of ().

Definition 2.9 (regular exponential family) If © is open and equal to the set defined
by (2.2) for the family {Py} with the canonical representation

fo(x) = a(B) b(x)e!® ™) e L1,

then the exponential family {Py} is called regular.

The maximum likelihood estimation in exponential families amounts to the moment
estimation since the normal equations are then

Ti(y) = Eoi, i=1,...d,

where y € €2 is the observation and [E, the mean value with respect to PPy. For regular
exponential families we have a well known theorem about existence and uniqueness of the
maximum likelihood estimate

Theorem 2.1 [/5] Corollary 9.6] Suppose {Pp} is reqular. The mazimum likelihood esti-
mate exists if and only if T € int S, and then it is unique. Furthermore, the maximum
likelihood estimator 0 is the one-to-one mapping of int S onto int © whose inverse is m,
where m(0) = Eq7.

Sometimes the family of probability distributions {Py,} with parameters 6 and ¢ is
not an exponential family, but it is exponential in ¢ conditionally on v fixed. Then ¥
are called nuisance parameters. The estimation in such case is usually done on a grid of
Y values, for each of the values maximizing the profile likelihood (exponential) and then
maximizing over the grid.

2.3 Lévy processes and processes of Ornstein-Uhlenbeck
type

In this section we review the basic definitions and properties of the Lévy processes and
the Ornstein-Uhlenbeck type processes derived from them. The general theory about Lévy
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processes was driven from [42] and [43], and the theory about Ornstein-Uhlenbeck type
processes derived from Lévy processes and some more specialized results were taken from

[7] and [9].

Definition 2.10 (Lévy process) Let Z = {Z({)},>0 be a stochastic process taking values
in RY whose realizations are right continuous with limits from the left almost surely (rcll).
Suppose that Z is stochastically continuous with stationary and independent increments
and Z(0) =0 a.s. Then Z is called a Lévy process.

[f the increments have Gaussian distribution then we get the well known Brownian
motion with continuous sample paths.

Definition 2.11 (cumulant transform) Let X be a random variable taking values in R?.
The cumulant transform C'{- { X'} of X is defined by

Clvt X} = log E[e"™"], v € RY.

A very convenient property holds for the cumulant transform of any Lévy process.

Theorem 2.2 [[43] Theorems 1.1 and 1.3] Let Z = {Z(l)};>0 be a Lévy process taking
values in RY. Then for the cumulant transform of Z holds

CloiZ@t)} =tC{v i Z(1)}, for any t > 0,v € R, (2.3)

and Z(1) has the Lévy-Khintchin representation

ClviZ(1)} =1i{a, v)— %(’U, Av) + / ((33(1-',3'-) —1—i(v, 2y 1{|jz|| < l}) u(dr), (2.4)

. Rd

where A is a symmetric nonnegative-definite d x d matriz, a € RY, and p is a measure on
R satisfying u({0}) = 0 and

/ (lz]|* A 1) u(dz) < oo
Rd
The triplet (a, A, ) is unique.

Definition 2.12 (generating triplet, Lévv measure) We call the triplet (a, A, i) from the
previous theorem the generating triplet, u is called the Lévy measure of the process Z(t).

Each Lévy process can be decomposed into a deterministic, a Brownian diffusion and a
pure jump part as the following theorem shows (it is a special case of Theorem 1.4 from

[43]).
Theorem 2.3 Let Z(t) be a Lévy process defined on a probability space (2, F,P) ta-

king values in R? with the generating triplet (a, A, p). For any G € B((0,00) x R?) let
J7(G) = Jz(G,w) be the number of jumps at time s with height Z(s,w) — Z(s—,w) such

13



that (s, Z(s,w) — Z(s_,w)) € .. Then J;z((') has Poisson distribution with mean i(G).

Gy v s (i are disjoint, then J,(Gh), .. ... J7((,) are independent. We can define, a.s.,
ZHt,w) = lim/ {xJz(d(s,x),w) — xa(d(s,z))} (2.5)
0 J 0t x{e<lxl|<1)

+/ vz (d(s, 1), w),
O {llel>1)

where the convergence on the right-hand side is uniform in t in any finite interval a.s.
The process {Z'(t)} is a Lévy process with the generating triplet (0,0, pu). Let

Zg(f._w') — Z(l.,ub.) == Zl(/.d.’.).

Then { Z*(t)} is a Lévy process continuous in time a.s. with the generating triplet (a, A,0).
The processes {Z*(t)} and {Z*(t)} are independent.

It follows from the theorem, that every Lévy process can be represented as
Z(t) = Z(t) + R(t) such that Z(t) is a process with finite number of jumps and R(¢)
is a mean-zero square integrable martingale and Var(R({)) — 0 as ¢ — 0 (see [9] Propo-
sition 3.7).

The properties of .J; in Theorem 2.3 show that it is a Poisson random measure on
R, xR? with intensity measure fi(ds, dz) = dsp(da). Thus for a deterministic measurable
function f on [0,¢] x R? the integral with respect to .Jz

/ f S ’i/) ]/ (-L‘-" (llj Z [ 73 Un
Rd

n,tn €[0,t]

is a stochastic process with jumps y, € R? at times ¢,,, where Jz =3 _ 01, yu)-

We will consider the case A = 0 only. Then p(R?) < oo leads to a pure jump process with
finitely many jumps on each finite time interval while when (R%) = oo the jump times
form a countable dense set in R, . Neverthless, even when 1((R?) = oo the trajectories of
Z have finite variation if and only if

[ llutaz) < . 26)
lz[|<1
In the sequel we will always assume A = 0 and (2.6) for the process Z(t). When

a= jhx”s] zp(dr),
Clvi Z(t)} = z‘/ (X ® — 1)u(dz), (2.7)

Z(t) = /R d /0 e dp(d(s, 7). (2.8)

is a pure jump process with finite variation. If moreover p(RY) < oo then Z(t) is a
compound Poisson process, i.e. it has only finite number of jumps in any bounded interval
and piecewise constant trajectories.

and
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In Chapter 6 we will use Lévy and Ornstein-Uhlenbeck type processes as nonnegative
intensities for Cox processes. That is why we will suppose in the rest that our Lévy process
is of type (2.7) - i.e. with zero drift and zero Gaussian variance, and its Lévy measure is
concentrated on R¢. Thus the characteristic function of Z(¢) can be written as

E [6?““‘7"“})} = exp [/ ('™ — 1) u(dx) |, (2.9)

2 d
R

where (1 is the Lévy measure of Z(1).

Now we can introduce the Ornstein-Uhlenbeck type (OU type) processes. Suppose first
that d =1.

Definition 2.13 (process of Ornstein-Uhlenbeck type, background driving Lévy process)
Let Z(t) be a one-dimensional Lévy process, v > 0 and consider the stochastic differential
equation for X (¢), £ >0

dX(t) = —yX()dt +dZ(~t). (2.10)

The stationary solution of (2.10) is called a process of Ornstein-Uhlenbeck type (OU type
process). Z(t) is called the background driving Lévy process (BDLP) for X ().

To be able to specify the conditions under which (2.10) has a desired solution we need
one more definition.

Definition 2.14 (self-decomposable distribution) A random variable Y with characte-
ristic function ¢ has a self-decomposable distribution if for all ¢ € (0, 1) there exists a
characteristic function . such that

P(v) = ¥(cv)Ye(v) for all v € R.

Theorem 2.4 /[7] Theorem 1] Let ¢ be the characteristic function of a random variable
X. If X is self-decomposable then there is a stationary stochastic process X(t) and a Lévy

process Z(t) such that X (t) 2 X and

t
X(t) =eX(0) +/ e =947 (ys), (2.11)

0

for all v > 0, thus X(t) satisfies (2.10).

The process (2.11) is a unique stochastically continuous Markov process and it has a
modification with right-continuous realizations with left limits. We will always work with
this rell modification of X ().

We can also start with the BDLP Z(t) — there exists a sufficient condition on Z(t) for
the existence of a stationary solution of the equation (2.10). For the general case see e.g.
[26] Theorem 3.6.6. Here we discuss the case of purely jump Z(¢) with some more details.



Lemma 2.5 [/7/ Lemma 1] Let Z(t) be a Lévy process specified by (2.9) and assume that
for its Lévy measure holds

/ log(r)pu(dr) < oc. (2.12)
J1

Then there exists a unique solution of the equation (2.10) and X (t) can be written as (2.11).
For the cumulant transform of X (t) holds

CCEX@) = [ Clemct Zas (2.13)
J ()

If we moreover suppose that p has a differentiable density w and we define a function u
by
~
u(x) / w(vae)do, (2.14)
1

then u is the Lévy density (density of the Lévy measure) of the marginal distribution of
the process X (t) and w can be computed from u by

w(z) = —u(x) — zu'(x), (2.15)
where u'(x) denotes the derwative of u.

For d > 1 let Z(t) be the d-dimensional Lévy process with characteristic function given
by (2.9) and suppose for simplicity that p has the density w with respect to d-dimensional
Lebesgue measure and denote by w;(x;) the ith marginal of w, i.e.

w;i(x;) = / w(z)dxy ... .dr; (dziy, ... dxg.
R

If each w; satisfies condition (2.12) then we may (on account of Lemma 2.5) define the
stationary processes X;(t¢) by

ot
Xi(t) = e " X;(0) + / e 1947, (vs).
0
The vector process X (t) = (Xy(t),...,X4(¢)) is then the solution of the vector stochastic
differential equation
dX(t) = —yX(t) + dZ(~t), (2.16)

where v > 0, and it is a vector OU type process.

Let us end this section with two typical examples of QU type processes. Nevertheless
to be able to verify the self-decomposability we will need the following lemma

Lemma 2.6 [[9] Proposition 15.3] A distribution on R is self-decomposable if and only
if it 1s infinately divisible (i.e. for its characteristic function v and any n € N there exists
some characteristic function v, such that vy = (1,)") and its Lévy measure jt has a density
w(z) = X with k positive function, increasing on (—o00,0) and decreasing on (0,00).

]| 7
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Example 2.1 The gamma OU process X (¢) has marginal probability density ['(a, v),
a>0,rv>0

Bl = ) B heeR (2.17)
The Lévy density of the gamma distribution is
1 — L ~ ;s
Az} = = e =%, = 0,
T

and obviously satisfies Lemma 2.6.
Now using the equation (2.15) from Lemma 2.5 we can evaluate

w(z) = ave™, x>0, wlE) =0, =<
[]

Example 2.2 The inverse Gaussian (IG) OU type process X (/) has the marginal proba-
bility density

PLE) = e g3 em3( T T, 0 =020, >0

and the Lévy density
1
rZL(T) - — O - : mr 2 O-

V2r

Also here the condition of Lemma 2.6 is satisfied.
Using Lemima 2.5 we can compute the Lévy density of the corresponding Lévy process

kdl..».'l

1 .

(—-I— # = 0.

\-._./
-~
L

|
b3

1 0
V2 2
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Chapter 3

Point processes

This chapter contains a summary of basic definitions and theorems concerning point
processes. The theory is driven from the books [10], [47] and [30]. Some basic facts about
the statistical inference and standard estimation of basic characteristics of point processes
are also given — the details can be found in [47], [32] and [30] if not stated otherwise.

3.1 Point processes

Let (X, 0) be a locally compact complete separable metric space. We denote by B(AX')
and By(X') the family of Borel subsets and bounded Borel subsets. Sometimes when it
does not lead to a confusion we omit the space X’ and write shortly B or By. In all the
applications we will have either X = R* the k-dimensional Euclidean space or X ¢ R¥.
Definition 3.1 (locally finite measure) A measure j on (X, B(AX)) is called locally finite
if u(B) < oo for each B € B,. The space of locally finite measures will be denoted by
M = M(X). Let 9 = IM(AX) be the smallest o-algebra on M which makes the mappings
it +— p(B) measurable for all B € B. Further, denote by N' = N (X) the set of locally
finite counting measures

N={upeM:uB)e NU{0, o}, Be B},
and the o-algebra on it by O

N={MNN:MeMm}.

Definition 3.2 (random measure) A measurable mapping ¥ : (2, A, P) — (M,9MN) is
called a random measure. Its distribution P ¥ ! will be denoted by Py.

Definition 3.3 (point process, simple point process) A point process is defined as a
measurable mapping ® : (2, 4, P) — (N, N). It has the distribution Pg = PP . A point
process ® is called simple if P(® € N*) =1, where

N*={peN:p({z}) <1 forall z € X}.
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Point process is a random measure such that the support of its realization is almost
surely a locally finite set. Let F¢(&") be the measurable space of locally finite subsets of
X (Fis is the smallest o-algebra which makes the maps 7 +— HY(n N B) measurable for all
B € B). Concerning the simple point processes o € N* there is an isomorphism

Z:p—suppy (3:1)

(see [50] Theorem 3.1.2). Thus a simple point process can be as well regarded as a random
locally finite subset of A". In the following we will identify a simple point process with its
support and will not distinguish between » € & and ®({r}) = 1.

Important characteristics of random measures and point processes are the moment and
cumulant measures.

Definition 3.4 (intensity measure, intensity function) For a random measure W a Borel
measure A on X

AL) =EB¥() = / () Py(dv)

J M
is called the intensity measure of W.
For a random measure on R? such that its intensity measure A is absolutely continuous
with respect to the Lebesgue measure the derivative

dA(+)
d|-|

Alx) = (1),

is called the intensity function.

Definition 3.5 (d-th order moment measure) The d-th order moment measure of a ran-
dom measure V¥ is defined as

p() = EP() = / ¥e(-) Py(dy),
J M
where ¢ = ¢ x -+ x 1. Hence, u¥ is the measure on the product space (X9, B(X)%).
Specially ! = A.

Definition 3.6 (d-th order factorial moment measure) Denote by X! = {(z,,..., 24) €
Xz, # x; fori # j} the set of d-tuples of distinct points from X. The d-th order
factorial moment measure of W is defined by the relation

a@() =Evl(.) = / U_’_;[d](.) Py (de)),
M
where 9 = 4% .4 is the restriction of the product measure ¢ to the space X!,
Obviously o) = () = A.

As the name suggests the (factorial) moment measures are connected to the (factorial)
moments of the random variables ¥(B), B € B. It holds

' Y(BY =E¥(B)Y, BebB,
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and when @ is a simple point process, also
a (B =E®(B)(®(B) -1)---(®(B) -d+1), BeB (3.2)
Thus for the variance of ®(B) we have the formula

Var®(B) = u'?(B x B) — A(B)? =a®(B x B)+ A(B) — A(B)?>, BeB. (3.3)

Definition 3.7 (d-th order (factorial) cumulant measure) The d-th order cumulant
measure is given by

Y By x -+ x By) = Z( 1)1 (j—1)! Z prﬂ(”r i1 X X Biyosiry), (3.4)

TEPJ, 4 =
where By,..., By € B and T € P;4 is the partition of the set {1,..., d} into j sets
S1(T),...,S;(T). When we I(‘})l(l((‘ in the equation the moment measures (ST

by the factorla,l moment measures a7 4T we get the d-th order factorial cumulant
measure v

The first order (factorial) cumulant measure again coincides with the intensity measure.
The second order (factorial) cumulant measure is also called the (factorial) covariance
measure:

v (Ax B) = u®(Ax B)— A(A)A(B) = EV%(A x B) - E¥(A)EY(B),
YD (Ax B) =a®(Ax B)—AAA(B) = E®P(A x B) — EV(A)EY(B),
where A, B € B. We can also express the variance of ®(B) using the factorial cumulant

measure

Var &(B) = v (B x B) + A(B). (3.5)

Let us now concern integrals of functions on A with respect to the random measures
and their expression using moment measures.

Definition 3.8 (Campbell measure) Let ¥ be a random measure on X" with intensity
measure A. The Campbell measure (' associated to W is a measure on X x M defined by

[ sewcdeu@) = [ [ feidnpd)
J X x M JmJx
where f is an arbitrary non-negative measurable function on X' x M.

Theorem 3.1 (Campbell theorem) Let ¥ be a random measure on X with locally finite

intensity A. Then
/f:r)\IJ (dx) / /f P(dx)Py —/ f(z)A(dzx),

where f is an arbitrary non-negative measurable function on X.
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Corollary 3.2 Let ® be a simple point process with locally finite d-th order moment
measure. For an arbitrary nonnegative measurable function f on X@ it holds

ri F{fe"b ‘rd
and
£
E Z | & — Ea) = [(xy,...,. rq) o' (dz, dry)
Tl,...,Lq€EP J Xl

where > indicates that the sum is taken over d-tuples of distinct points.

From the Campbell theorem we see that the Campbell measure is absolutely conti-
nuous with respect to the intensity A and this enables the definition of Palm kernels and
distributions.

Theorem 3.3 //10] Proposition 12.1.1V] Let ¥ be a random measure on X with locally
finite intensity measure A. Then there exists a probability kernel (Palm kernel) x — P,
from (X, B) to M such that

/M /1 f(x, )(dx)Py (dy) = /1 ./M F(z, )P, (dy)A(dz),

where f 1s an arbitrary non-negative measurable function on X x M.

Definition 3.9 (Palm distribution) The distribution P, from Theorem 3.3 is called the
Palm distribution of the random measure ¥ at the point z.

For a point process ® the Palm distribution can be interpreted as the conditional di-
stribution of the point process under the condition that ® has a point in x.

Since for the support of the Campbell measure €' of a point process ® it holds supp C' C
{(z,0) € X xN : p({z}) > 1} we can define the reduced Campbell measure and reduced
Palm distributions.

Definition 3.10 (reduced Campbell measure) Let ® be a point process on X with in-
. | . .
tensity measure A. The reduced Campbell measure C" associated to ® is a measure on

X x N defined by

| t@ocae) = [ [ ree-s)e@Pude)
X XN N Jx
where f is an arbitrary non-negative measurable function on X x N.

Definition 3.11 (reduced Palm distribution) Let ® be a point process on X'. Then we
5 i 2 . | :
can define the reduced Palm distribution P, of ® by

/' f(so*)ﬂ”if(dso)=/' [+ 0:)P.(dp).
M M
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Under a simple condition (which essentially precludes situations where the behaviour of
the point process inside a set B is deterministically controlled by the behaviour outside
B) the reduced Campbell measure (" can be disintegrated also with respect to Py and
we obtain the Papangelou kernel.

Lemma 3.4 Let ® be a point process with distribution Pgy and suppose that for every
B € By holds
P®(B) =0|®|p| >0 a.s. (3.6)

Then for every B € By the measure C*'(B x -) is absolutely continuous with respect to Pe.
Theorem 3.5 [[10] Proposition 14.2.111] Let ® be a simple point process on X with locally
finite intensity and satisfying condition (3.0) for every B € By. Then there erists a kernel
A from (M(X), M(X),Py) to X such that X(-|p) is a locally finite measure for Py almost
all p and

/ [ o)C'(d(z, ¢)) = ] | / £, ) M(dz])Po(dy).
A xN N JAX

holds for an arbitrary non-negative measurable function f on X x N .

Definition 3.12 (Papangelou conditional intensity) The kernel A from Theorem 3.5 is
called the Papangelou kernel or the (Papangelou) conditional intensity of the point process

.

In the following we will call the Papangelou conditional intensity also the density A(x|¢)
of the kernel A(dx|p) with respect to a background measure on (X, B) (Lebesgue measure
in the case X = R¥).

For temporal point procesess, i.e. point processes defined on X' = R_ it is possible to
define a completely different notion of conditional intensity.

Definition 3.13 Let {F(#),t > 0} be a history, ® an F(t)-adapted temporal point pro-
cess. If @ is a simple point process, we will call a compensator the unique non-decreasing
righ-continuous F(t)-adapted process Y such that ®([0,¢]) — Y (¢) is a martingal (see

23] for the existence and uniqueness of Y'). Suppose now that there exists an integrable
F(t)-adapted process A\* taking values in R, with

/ N(O)dt = Y (), ueR,.
Ji<u

Then A* is called F-conditional intensity of .

It moreover holds

(0 — tim EL200.1 + ) — 2(0.)IF(0)

u—0 U

for each ¢ a.s. (see [10]).
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Let us end this section with the definition of stochastic counting integral. Let ® be
a simple point process on R, x R¥ {F(t) — o(Plipxzr)} a history of ® and g(t,r) a
vector-valued F(t)-adapted process. whose sample functions are a.s. continuous in 7 and
left continuous in ¢. The stochastic counting integral with respect to @ is defined as

&([0.t)x RY)

l .
/ / g(s,r)P(ds, dr) = Z g(t,,r,), (3.7)
JO JRK

i=1

where (4;,r;) are the points of ®.

3.2 Stationary point processes on R"

In this section we consider the case X' = R*. Let us denote by £, the translation
t:y—(x+y), x,y€ R*

and for D C N let Dt be defined as {wt,' : v € D}.

Definition 3.14 (stationary point process) A point process ® on R is called (strictly)
stationary if its distribution is invariant under translations, i.e.

Po(Dt; 1) = Po(D), forany D e N, x € R*.

The moment measures ;1'% of a stationary point process ® are invariant under diagonal
shifts, 1.e.
d | | (d
(B +2) % x (Bg+xz)) = Y (B x - x By),

for any B;,...By € By and x € RF. For the intensity measure it implies that A is
translation invariant and if it is also locally finite then it must be a multiple of the k-
dimensional Lebesgue measure.

Lemma 3.6 If the stationary point process ® on R* has a locally finite intensity measure
A then there exists a finite constant A > 0 such that A(-) = X| - |.

Definition 3.15 (intensity of stationary point process) The constant A from the previous
lemma is called the intensity of the stationary point process ®.

When we observe a realization of a stationary simple point process ® on a set W (called
usually the observation window) its intensity is usually estimated by
O(W)

From the Theorem 3.1 follows that A is an unbiased estimator.

The higher order measures (@, (@ 44 4@ of a stationary point process can be disin-
tegrated with respect to A|- | and corresponding reduced moment measures are obtained.

23



We will give the definition tor the reduced factorial cumulant measure which will be used
frequently in Chapter 5. The other reduced measures are defined analogously.
Definition 3.16 (reduced factorial cumulant measure) The reduced d-th order factorial

. . . 1) o\ d—
cumulant measure is a unique signed measure 5 (- ) on (R¥)4"! such that

= X / / f(l 1T+ (4 e E 1+ Ydi ) A:':'.Z}(}f((lf/] ..... ([yd— 1 ) d.l'.
J Rk, (Rk}u‘--l

for any nonnegative measurable function [ on R*.

For the Palm (thus also the reduced Palm) distribution of the stationary point process
holds

P.(Dt;') = Py(D), for any D e N, r ¢ R

Moreover
P

a8 = [ PP = [ (BB e).
B N

2 . - . . .
for any B € By. Thus af,;l,(!?) is the mean number of points in \{o} under the Palm
distribution. In the statistical literature on point processes the A -function is used instead.

Definition 3.17 (A -function of a stationary point process) Let o be a stationary point
process on R¥ with locally finite second moment measure. The A'-function is a function
defined on By by

A(B) = [ p(BPY(de).
N

Definition 3.18 (isotropic point process) A point process ® on R* is called isotropic if
its distribution is invariant under rotations.

For the special class of isotropic stationary point processes a'?) is characterized by
K(r) = K(B(o,r)) when we know it for all values r > 0.

Definition 3.19 (pair-correlation function) Let ® be an isotropic stationary point process
with locally finite second moment measure. The pair-correlation function is defined by

dK(r) s
o(r) = 2 J(kwprt™),
s
where wy is the volume of B(o,r).
The quantity AK (B(o,r)) is the mean number of points of ® within a sphere of radius
r centered in a "typical” point of the process which is not itself counted.

The standard estimator of the K-function for a stationary (anisotropic) point process
® on R* observed on a window W is computed from

i
o 1(z — y)lw(z)1w(y) :

z,yePd
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which is valid for any I3 € By such that W 1 (W — )| is positive for all = € B. It is an
unbiased estimator of the quantity A*A(/3)).
In case of the stationarv isotropic point process ® on R¥ we can use the unbiased

estimator of A?A (r) given by (see [39]. [37])
s = Lyl < L)L (y)
r - 3 A ”H.(’J_y‘l‘](" W gy, for 0<r<st,  (3.10)
r,yed
where

r* = sup{r : |[W\"| > 0} and Wi =lee W:0(B(z,r) NW # 0},

and

|0B(z, || — y||)| _ _

klz,y) = ' T for z#yeW, =yl <r. 3.11

(z,y) OB [z — ) N W 7Y lx = yl| (3.11)

For the special case k = 2 is k(x.y) = 27 /a(r.y) where a(r, y) is the sum of all angles
of the arcs in W of a circle with center o and radius r = ||r — y||.

3.3 Examples of point processes

Poisson process

Poisson point process is the fundamental point process. It is also called a completely
random process since it exhibits no interaction among the points of the process.

Definition 3.20 (Poisson point process) Let A € M(AX). A point process Il on X is
called the Poisson point process with intensity measure A if it satisfies the following two
conditions

(i) the random variables I1(3,), ..., II([3,) are independent for each n € N and pairwise
disjoint By, ..., B, € B satisfying A(B;) < oo fori=1,...,n,

(ii) the random variable II(B) has a Poisson distribution with parameter A(B) for all
B € B such that A(B) < cc.

For a given A there exists a unique Poisson process with intensity measure A. The
process is simple if and only if A is diffuse. In R* the Poisson point process is stationary
if and only if A = A| -|. Also the factorial and cumulant measures of the Poisson point
process have simple form:

Proposition 3.7 The d-th order factorial moment measure and d-th order factorial cu-
mulant measure of the Poisson point process with intensity measure A satisfy

G = A% A9 =0 forany deN, d>2.



In the following we will usually denote the Poisson point process by II and by Il;, we
will denote the unit rate Poisson process 1.e. Poisson process with intensity measure equal
to the Lebesgue measure.

Cox process

Cox processes belong to the class of doubly stochastic point processes — they are derived
from Poisson point process by making the intensity measure A randomn.

Definition 3.21 (Cox point process) Let A be a random measure on X with distribution
Q on (M,9) and P, be the distribution of the Poisson point process with intensity
measure A. Then a point process ¢ with distribution

Qo) = /Pﬁ(wum.

is called a Cox process (or a doublv stochastic Poisson process) with drivineg measure A.
' O

The Cox process is simple if QQ is concentrated on the set of diffuse locally finite measures
and it is stationary if the driving measure A is.

Proposition 3.8 The factorial moment measures of a Cox process ¢ coimncide with the
moment measures of its driving measure A

o) = EAW@.

In particular, E®(-) = EA(-) (i.e. the intensity measure of ® coincides with the intensity
measure of A) and Var ®(-) = EA(-) + Var A(+).

The ratio \E‘r@;{;g) indicates the strength of the dispersion (irregularity) of the point

process. For a Poisson point process it is equal to 1. We see from the preceding proposition
. s 70 y ot - = g e cien Yar ®(B)
that the Cox process is overdispersed relative to the Poisson point process since ES(B) =

1. The equality holds only for A deterministic i.e. when ® is a Poisson process again.

The Cox processes represent a class of more flexible models that the Poisson point
process however still feasible thanks to the simplicity of the formulas for the moment
neasures.

In the case X = R for the F(t)-adapted Poisson process the F(1)-conditional intensity
(Definition 3.13) equals to the non-random intensity function (A* = A). For the Cox
process A* depends on the exact form of the history. If the history contains the full
information on both the point process and the driving intensity A then A* = A\ (random,

cf. [29]).

Cluster processes

Cluster processes represent another frequently used class of point process models —
they are derived by replacing the points of a parent point process by clusters of daughter
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points. In the special case when the individual clusters have Poisson distribution, cluster
processes can be also regarded as Cox processes.

Definition 3.22 (cluster point process) Let @, be a point process on X and ¢, r € X,
finite point processes (i.c. a point process with almost surely finite realizations). Then

(I)(') — / K..:'(')(I);J((l-r)
J X

is a cluster point process on X',

Suppose now X = R¥. If we apply homogencous independent clustering to a Poisson
process we get Nevinan-Scott processes.

Definition 3.23 (Nevman-Scott point process) The Nevman-Scott process is a cluster
process such that ®, is a stationary Poisson point process on R* and (¢_,(,, 2 € R¥) are
independent identically distributed. independent of &,

Under the conditions of the definition the Neyman-Scott process is also stationary and
in case the scattering distribution ¢, is isotropic so is .

If we denote the distribution of the number of points in the respective cluster ¢, by
{Pn}, and the mean number of danghter points in a cluster by @ = >~ np,, and the
intensity of the parent Poisson process by A,, then the intensity of the cluster process is

A — (T'/\;,.

In the isotropic case the A-function satisfics

S R | | |
K(r) = wpr® + =" an'ﬁ('ﬁ — 1)F(r) for r > 0. (3.12)

=2
where F is the distribution function of the distance between two random points from the
same cluster.
Definition 3.24 (Matérn cluster process) Let @ be a Neyman-Scott process such that

(t_2Co, & € RY) are Poisson point processes with the intensity measure

L\ -N B(o, )], >0, r>0.

[ B(o,7)]
The point process ® is called the Matérn cluster process.

Definition 3.25 (Thomas cluster process) Let @ be a Neyman-Scott process such that
(1_pCo, x € RY) are Poisson point processes with the intensity function

. fnly), t >0, yeR",

where fy denotes the density of a symmetric normal distribution. The point process ® is
called the Matérn cluster process.
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Both Matérn cluster process and Thomas cluster process have the mean number of
points in the cluster equal to yo and the intensity

A = 1N

Hard-core processes

A hard-core point process is a point process in which any pair of points is forbidden to
be closer than a hard-core distance h. Here we describe two hard-core processes suggested
by B. Matérn which can be obtained by dependent thinning of a stationary Poisson point
process. Thinned point processes are a special kind of cluster processes where the clusters
arc either o, or 0 (empty cluster — zero random measure a.s.).

Definition 3.26 (Matérn type I hard-core process) Let it > 0 be given. The Matérn hard-
core process type I is a cluster process derived from a stationary Poisson point process @,
on R* with clusters

- if ¢, h)\ {x}) =0,
TN 0, if @, )\ {}) > 0.

ry . . ’ o N . k
I'he intensity of the Matérn type I hard-core process is A; = A\, ¢ wh™,

Definition 3.27 (Matérn type II hard-core process) Let i > 0, @, be a stationary
Poisson point process on R¥ and {{/(2), r € R*} independent random variables uniformly
distributed over the interval (0, 1). The clusters ¢, are defined by

- {o if ®,({y € Bz, h)\ {z}: Uly) < U(x)}) =0,

Ca 0, otherwise.

Then the corresponding cluster process is called Matérn type I1 hard-core point process.
The intensity of the Matérn hard-core type I process is
. P )
/\” s (1 _ e Apwih )/Ld}‘-hk,

and its pair correlation function in R? (which is the special case we will use in the sequel)
1s

0 if h<r,
2G-(h)(1—exp(=Apmr2 ) =272 (1—exp(=ApyGr(h))) ¢ - _ > ; ‘
g(h) = o I;E-‘zc:f-(;z)()c);r(h)r—gn-?),\'-lf( B ifr < h <2, (3.13)
| it b > 2r;
where G,.(h) = 2r?(m —arccos(4:) +=3 Vdr? — h?)

Examples of realizations of cluster and Matérn type II processes can be found in the
Section 5.7.
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3.4 Finite point processes

Definition 3.28 (finite point process) Let ® be a point process on A" which takes values

almost surely in N7 (X))  the set of {inite measures from AN (X’). Then it is measurable
with respect to M* = {N NN7 : N € M} and we call it a finite point process.

A very frequent situation when finite point processes appear is the case X € By(RF).
since any locally finite measure is finite on a bounded set in R¥. This choice of X is often
preferred to the other possibility X' = R* especially when we want to define and estimate
point process models with different sorts of interpoint interactions or inhomogeneities.

Let us denote by X'# the set of all finite point configurations in X" and the finite point
configurations by bold small letters x,y,z. ete. In the sequel we will work with simple
finite point processes and thus we will use the convention based on the isomorphism (3.1).
In the notation instead of the measure o = 1(x) we will use its support suppyg = X
and instead of N7 (X) N N*(X) we will use XY#. Because of this convention and also
to distinguish the finite case from the general one we will denote the simple finite point
processes on X by ordinary capital letters X, Y, Z, etc., instead of ®.

The big advantage of simple {inite point processes is that we can work directly with the
density [ of the point process. Usually the density is defined with respect to a PPoisson
point process II with finite diffuse intensity measure A on A",

Px(X e F) = / J(x)Pr(dx) (3.14)
.
= Z OXP(;:'\(X)) / cis / L ®1s 5+« 520 € F| Fildies, - s B} ) ALy < doy )
n=0 ' & ik

for £ € M#* N N*. The unit rate Poisson point process II; is used in the case when
X € By(R*).

For example the density with respect to I, of a Poisson point process on X € By(R*)
with intensity measure A absolutely continuous with respect to the Lebesgue measure
(denoting by A(-) the corresponding density of A) is

f(x) = exp(|X| = A(X)) | [ M=). (3.15)

rex

In case of finite point processes we can express the Papangelou conditional intensity
(Definition 12) easily using the density of the point process.

Theorem 3.9 //30] Theorem 1.6] Let X be a finite point process specified by the density
f(x) with respect to the Poisson point process with diffuse finite intensity measure A. Then
X has Papangelou conditional intensity

Az | x) = f(xfijxgx}) for z¢x, xe X7, (3.16)
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Note that the assumption of the theorem implies that X is a simple point process.

For a Poisson point process with intensity function A it holds. A(r | x) = A(r). Heuris-
tically A(rr | x)da can be interpreted as the conditional probability of X' having a point
in an infinitesimal region containing @ of size dr given the rest of XN is x. Thus X is
attractive (has attractive interactions between points) if

Alr | x) < A |y) whenever x C y
and repulsive if the opposite inequality holds.

Sometimes we know the density f up to a normalizing constant i.c. we know some f*(x)
which is equal to €' f(x) for some (" > 0 (we will denote this by f o f* ), and then it is
useful to have conditions which ensure the integrability of f*. 1.c. that the point process
specified by f* is well defined.

Definition 3.29 (local and Ruelle stability, hereditarity) Let /2 & — [0, o¢) be a function
satisfving fl h(x)dr < oo. A function f: X#* — [0, 0¢) is hereditary if

fix) >0 = [fly) >0, forall ycC x, xe X#,
is locally stable if )
f(xUx) < h(x) f(x), for any x € A7,
and it is Ruelle stable if
fx) <a][h(x)  forany xex*
rex
and some a > ().

Local stability implies Ruelle stability and hereditarity. Ruelle stability implies integra-
bility of f with respect to I1; on X

3.5 Markov point processes

Markov point process are finite point processes which exhibit (attractive or repulsive)
interactions among the points of the process. As the name suggests they also have some
sort, of spatial Markov property that facilitates the analysis and estimation of the process.

Let ~ be a reflexive and symmetric relation on X'. We say that 2 and y are neighbours
if x ~ y and define the neighbourhood 0A of a subset of X' by

JA={zx € X :x ~ a for some a € A}.

Definition 3.30 (Markov point process) Let X be a complete separable metric space,
A(-) a finite, non-atomic Borel measure on X' and Py the distribution of a Poisson point
process on X with intensity measure A.

Let X be a point process on X specified by its density f with respect to Py;. Then X is
a Markov point process with respect to a symmetric, reflexive relation ~ on X if for all
x € X7 such that f(x) > 0 holds
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(1) f(y)>0forall y C x.

(11) for all r € A", fi}'-(—if—i—' depends only on & and d({r} U x).

Theorem 3.10 [/30] Theorem 2.1] Let X be a Markov point process with density f(-) on
X, and consider a Borel set A € B(X'). Then the conditional distribution of X N A given
X N AC depends only on X restricted to the neighbourhood

AA)NA = {re X\A:r~afor someae A}

Another very convenient. property of Markov point processes is the possibility of facto-
rization of the density function [(x) into a product over the subconfigurations of x.

Definition 3.31 (clique, interaction function) The set x ¢ A" is called a clique if ©r ~ y
holds for all pairs {x,y} C x. The function p : X* — [0,) is called an interaction
function if p(y) = 1 whenever y is not a clique.

The Hammersley-Clifford theorem (originates from [41]) provides the basic characteri-

zation of Markov point processes

Theorem 3.11 [/32] Theorem 6.1] A point process density f: X% — [0,00) is Markov
with respect to the neighbourhood relation ~ if and only of there is an interaction function
© such that

fx) =] ely), xca*

Then for f(x) >0
Mz | x) =] ey U {z}).

yx

Examples of Markov point processes

Poisson point process with intensity function A(z) can be regarded as a Markov point
process with interaction function (compare with equation (3.15))

= exp(|X|— | Aa)dr),
A0) = ep(X]~ [ Mo)da)
e({r}) = Max),

w(x) = 1, otherwise.

So called distance-interaction point processes have density

fx) =[] e(D(y)),

yCx
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where D(y) — y if y is an empty set or a simeleton, otherwise
D(y)={H"((u.v)) {u.v} < y.u# v}

denotes the set of all pairwise distances of points iy, and w0 is the line segment
connecting the points ¢ and ¢ Of course the mtegrabihity of the density must be checked
tor the mdividual choices of .

The oldest and easiest example of a distance-imteraction process is the Strauss process

introduced in 19

Definition 3.32 (Strauss point process) Let X o B(2%) and X be the point process

with the density
f(x) —u“ 3 ” T (3.17)
TEX i X |y - It
where 3. R > 0.5 € 0.1 are parameters and a - 0is the normalizing constant. Then X

Is called the Strauss point process.

We will usually write the density of the Strauss point process in a shorter form
Jilae)) = iy SR XD (3.18)

where by n(x) we denote the number of points in x and by s(x) the number of R-close
pairs in X. The restriction on 5 s needed tor the density to he integrable and the process
to be well defined. and it implies that the Strauss process is an inhibitive process. Special
cases are for 7 — 1 the Poisson process and for 5~ — 0 the hard-core process here all
the points have distance at least i from each other. See the example in Figure 3.1

An example of a Markov point process with interaction function not defined by distances
between the points is the area-interaction process introduced in [
Definition 3.33 (arca-interaction point process) Let By(RN)., R. 4.~ >0 and .\ let
be the point process with the density

f(x) oc 3%~ HR(x)) x € X¥ (3.19)

where Ug(x) = U, B, I?) is the union of balls with centers in points of x and radins
It > 0. Then X is called the area-interaction point process.

The point patterns of the area-interaction process are slightly clustered for 4 > 1 (see
the example in Figure 3.1) and regular (i.e. showing inhibition) for v < 1. The case 7 = 1
is again a Poisson point process. Generalization of the area-interaction process are shot
HOISC Processes.

Definition 3.34 (shot noise process) Let X ¢ Bo(RY), 1. 3.~ > 0 and let p be a function
defined on non-negative integers Ny with p(0) — 0. The point process X with the density

. ' Ak ;
j(x) X J_:;n{xJ..‘r Jak P(Cx(u))H !dul. xc X%,

where
Chalw) = Z 1(u € B(x,R)).

LIEX
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Figure 3.1: Left part: example of Strauss point process. Right part: example of area interaction

process with 4 > 1.

is called a shot noise point process.

The interaction functions of the shot noise process are

rﬂ(.\’] = .')". .-nl__\-’}- ”(y) _ I
Ay) =700 ay) > 1,
where
niy) T
m(y) = H* m/f(.f/.h’) ;( ,‘V)( LYty
yey —

If there exists €' > 0 such that

< ('m for all n € Ny,

pn)

then the density of the shot noise process is integrable and the process is well defined (for

proof see [31]).

In the case of finite point processes we are not able to define stationarity, but still we
need some notion describing the homogencity property of the point process - i.e. that the
point pattern does not show essential differences in different parts of & (like the point
patterns in the Figure 3.1).

Definition 3.35 (homogencous point process) Let X be a finite point process on X' C R*
specified by the density [ with respect to the unit rate Poisson point process. Then we
will call X homogencous if there exists a function /7 on RY which is translation invariant
on R* (i.c. F(t,(x))) = F(x) for any x € (R¥)# and y ¢ R¥) and f = FF on X.

The definition of homogeneous Markov point processes can be extended to processes
defined on R*, to so called Gibbs point process (see [32]). However we will not need this
notion in our work.

All the examples defined above are homogenecous. Inhomogencous Markov point pro-

cesses are still not used very often for modelling of real situations. A good review and
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comparison of different wavs of introducing inhomogeneity ito a homogencous Markov

point process model can be found in 25

Let us end this section with a brief comment about estimation of the model parameters.
This is usually done using the maximum likelihood estimation. However in all but the
simplest cases this cannot be done explicitly and computation intensive Monte Carlo
Markov chain (MCMC) methods for the approximate maximum likelihood estimation
are used (see (32, [30. [15). A computationally less demanding alternative in the case of
AMarkov poiut processes is the estimation using maximization of so called pseudolikelihood.

Definition 3.36 (pscudolikelihood) Let a finite simple point process X have density fj
(0 € RP parameter) with respect to the Poisson point process with intensity measure jir.
The pseudolikelihood function 27.(0: x) based on a realization x of N observed in the
window W C X is defined by

PL(O.x) = exp (

/i,\u[u X) — It;:(du)) [I No(r | x\{r}) .
"

W Tt X

where

Ao | x) fo(x U {u}) .U g X,

Jo(x)

is the Papangelou conditional intensity associated with fp.

For increasing size of the observation window and under quite restrictive assumptions
strong consistencey (i.e. convergence with probability one) and asvmptotic normality of the
maximum likelihood estimates tor homogencous NMarkov point processes can be shown for
some of the models. However there are still many open guestions in this field. For details
we refer the reader to [32). More asvinptotic results are available for the pseudolikelihood
estimates for homogencous Markov point processes with finite range of interaction and
exponential family type densities. Under some assumptions the pseudolikelihood estimates
are also strongly consistent and asvmptotically normal, but they are not asvmptotically
efficient (see again [32]).
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Chapter 4

Statistics for locally scaled point
processes

4.1 Introduction

In recent vears models for inhomogencons spatial point processes have been studied quite
intensively. There are several possibilities how to introdnce inhomogeneity into the mo-
dels - non-constant first order term. independent thinning or transformation of the point
process, see [43]. |2], [25].

The present paper deals with statistical analvsis for inhomogeneous point processes that
are obtained by local scaling a recently suggested new class of inhomogeneous point
processes with interactions ([18]). In these point processes, local geometry is constant, that
is. subregions of the inhomogeneous process with different intensity appear to be scaled
versions of the same homogeneous process. This property is characteristic of locally scaled
point processes and it is not present in the other models for inhomogencons point processes
(sce discussion in [18]).

Such patterns occur for example in vegetation of dry arcas, as shown in Figure 4.1
Where water or other resources are short. plants grow sparsely and keep larger distances
between individuals than in regions with better supply. Naturally there is no preference
for a direction. and therefore the vegetation pattern is locally isotropic. Local scaling of
an isotropic template process vields locally isotropic patterns in contrast to the transfor-
mation of an isotropic template process (|34]).

Similar locally scaled structures are found in arrangements of solid bodies with constant
shape but location dependent size. such as the sinter filter discussed in [18] or in sponges
with constant porosity but small pore size close to the surface and large pore size in the
interior.

Locally scaled point processes are derived from a homogeneous template process which
describes the interaction between points and is responsible for the local geometry of the
resulting pattern. We will put the major focus on Markov template processes. Inhomo-
geneity is introduced through a location dependent function that gives the local scale.
Fitting a model to a given pattern thus consists of finding the parameters inherited from
the template and choosing an appropriate scaling function.
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Figure 4.1: Left part: Map of 171 individuals of a Scholtzia aff. ivolucrata in Australian bush
on a 220 x 220 m square. Right part: Two rectangular subregions with different intensity were

rescaled such that thev have the same number of individuals by unit area. Data from [1],

This can be achieved by several methods using likelihood or psendolikelihood. simulta-
neous or two-step estimation. All the methods are discussed in the sequel and the re-
sults are supported by a simulation studyv. ‘Thereafter we introduce two model validation
methods suitable for locally scaled point processes and all the developed statistical tools
are applied to the analvsis of the vegetation point pattern from Figure 4.1

4.2 Locally scaled point processes

In this section. we introduce the locally scaled point processes and discuss some of their
basic propertics. More details about locally scaled point processes can be found in 18],
At first we need several definitions,
Definition 4.1 (scale invariant function) Let g(x: ") be a real-valued measurable func-
tion defined on (R*)# | depending on a set p* (it ™) of measures on (RF, B(RY)).
The function g is called scale invariant if for all x ¢ (R*)# and all ¢ > 0
glex:ipg) = g(xi ™),
where p2 = (pul, .. .. pl") and gi. is a measure scaled from g with a factor e, e p(A) =

p(c=tA), for all A € B(RF).

Definition 4.2 (locally scaled volume measures) Let ¢ bhe a positive Borel measurable
function on R*. Then the locally scaled d-dimensional Hausdorff (volume) measure H¢ is
defined by

Hf(.-'\) — /(-(u)_de((l“)-
J A

for all A € B(R¥).

Let H* = (H-.., H*) be the set of d-dimensional Hausdorff measures H¢ in R,
d=0,1,.... k. Then the classical homogencous point processes have densities which are
scale-invariant with respect to H*.
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Let BY denote the set of all full-dimensional (i.e. H¥(.Y) > 0) bounded subsets of R¥.
Let X be a finite point process, defined on a X ¢ BY and suppose that X has a density
fx with respect to the restriction of the unit rate Poisson point process I1; to X

N will serve as a li‘lllplsllv Process. 11 order to conustruct a ltl(';l“.\‘ scaled version of X

with scaling function ¢ : B¥ + E.. we replace the d-dimensional volume measures H¢

in RY with their locally scaled versions HE In what follows, we assume that the scaling
function ¢ 1s bounded from below and from above, 1.c.

U< ¢ elin) <0 u ¢ RY, (4.1)

Definition 4.3 (locally scaled point process) Let X' be a homogeneous point process on
X with density fy with respect to I1, of the form

f(x) x g(x:H*): x & X7 . (4.2)
where ¢ is scale invariant. Let ¢ be a positive Borel measurable function on B¥ and let TI,
be the Poisson point process with the locally scaled volume measure H* as the intensity
measure. Let X’ be an arbitrary full-dimensional bounded subset of B* and suppose that
g(-:H") 1s integrable on (X”)7 with respect to 1,0 A locally scaled point process X, on
X" with template X is defined by the following density with respect to 11,

o 1 /* ol #H
Sy (%) x g(x:HY). %€ (X",
where the upper index '/ denotes that the density is taken with respect to I1,.

Note that the density of X', with respect to 1l is

.r‘.\f(x)exp( /lf-(u) . 1|‘H"*‘M~))Hr-(.r) x fx), xe(X')*,  (4.3)
J X

FEX
which follows from the formula (3.15) for the density of 1. with respect to 115,

Let us show here several examples of the locally scaled point processes to make the
rather technical definition more telligible.
Example 4.3 According to the Definition 3.32 the Strauss process .\ with intensity para-
meter [ > (), interaction parameter 4 € [0, 1] and interaction distance i > 0 is given by

the density
[x(x) o Brx¥)stx) x € XT,

where n(x) is the number of points in x and s(x) is the number of R-close pairs. The
density is of the form (4.2) with

: AHO(x) 7., o M ([uw])<R
gx; H*) = B ¥ y&tuwpx { sy

where the superscript # in the summation indicates that « and o are different. This
function is scale-invariant. The locally scaled Strauss process X, has density with respect
to 11, of the form

- ;:;J(X) x Il.jn(x),}s,{x} 1 X € ({1}!)#
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where

BAX) = l: I{H‘:{ u, v|) - H}.

fu,rpax

Figure 1.2 shows locally scaled Strauss processes on X — [0, 177 with scaling function of
t he expounential form

i — !
l ¢ Huy |

Colt) \’ T (& . {1 (H|.H'_:1* 1 € K. (11)

for four different values of the inhomogeneity parameter 4 ¢ {0.25. 0.5, 1. 1.5}. The nor-

. : [ _e 20 : : _
malisation \;l o cnsures that the four pomnt patterns have approximately the same

number of points (see Section 4.4.2 for details).
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Figure 4.2: Simulation of the locally scaled Strauss processes on [0, 17 with the exponential
scaling function (4.4) for 0 ¢ {0.25, 0.5, 1, 1.5} (from left to right) and the template parameters
B =250, & =:0.3 and R ="00D%:

L

Example 4.4 According to the Definition 3.33 the area-interaction point process with
intensity paramcter /4 > 0, interaction parameter 5 > 0 and interaction distance H > 0 is
given by the density |

() ¢ FERy RN x € X¥,
where Ug(x) = [, B(x. R) is the union of balls with centers in x and radius 2. The
density is again of the form (-1.2) with scale invariant

. .40 2 g : Ry y o] )<
gl H*) = {7 Ry~ HilUsextveda i (pal)<h))

The locally scaled area-interaction process has density with respect to Il. of the form

[x (%) o gr00y~HelemGD 0 x ¢ (X)#

where U.p = U, e, Be(x, R) and B.(x,R) = {v € X : H\([v,x]) < R} is the scaled
ball. Figure 4.3 shows locally scaled arca-interaction processes with the same scaling
function (4.4) as in the Example 4.3. The value of the interaction parameter v was chosen
so that v ™ & 0.1 which causes the point patterns being visibly clustered.

L]
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Fiocure 4.3: Simulation of the locally scaled arca-interaction processes on (0. 112 with the ex-
. . | .

ponential scaling function (£.1) for 0 < {0.25, 0.5, 1, 1.3} (from left to right) and the template
parameters ;3 = 1807 = 6.7-10%" and R = 0.1.

The Strauss process and the area-interaction process are examples of point processes
from two large classes of homogenecous template processes. viz. the distance-mmteraction
processes and the shot noise weighted processes. For these two classes, it has been shown
in [18] that the Papangelou conditional intensities Ay (@ x) of the locally scaled process
.\',, and /\'\-(.I' ' x) of the It‘lll])]elll' process X, I'l‘H])c-t'li\'(‘I}'. H;llih‘['_\'

A | %) = 5 (= | =) (1.5)

if the scaling function ¢ is constant and equal to ¢, i a scaled neighbourhood of r. It
was explained in Section 3.1 that if we let dr bhe an infinitesimal region around o and
H}"((l._l‘) the A-dimensional volume (Lebesgue measure) of de. then Mo | x)H*(dr) can
be interpreted as the conditional probability of finding a point from the process in dr
given the configuration elsewhere is x. Since the right-hand side of (1.5) 1s the conditional
intensity of a globally scaled template process with scaling factor ¢, 1t is expected that
the locally scaled process appears as a scaled version of the template process if the scaling
function is slowly varving compared to the interaction radius. The development of further
formal reasoning, supporting this statement, scems to be very hard.

It is also of interest to studyv the unconditional intensity function A.(r), r € A" of
the locally scaled process. Let us suppose that the template process X is homogencous
with intensity Ay (X may, for instance, be defined on a torus with periodic boundary
conditions, see i.e. [35]). Then

Aelar) = c(r) '{",\l,. T E X . (4.6)

holds if the template process is Poisson or the scaling function is constant. Also, (4.06)
holds for any locally scaled distance-interaction process in R'.

Theorem 4.1 Let X be a homogeneous distance-interaction process on an interval
I =la,b], a <bof R" with periodic boundary conditions and let X, be its locally scaled
version derived using the scaling function ¢. Then it holds

Xe(z) =¢lz)™ ' Xy, € X,

where Ny is the intensity of the template process X and A (r) s the intensity of the locally
scaled process X..
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Proof. The distance-interaction process X has the density

Fyx) x 3™ ll __‘({'Hlt‘u.e'i) tu. v} Cy.u#uv}).

where 2 is the interaction function and —» dicates that y should have at least two

-

elements. The density of Xois then

[x. (%) x [If'(.r']_: A L ll SHH e e]) s A{uv} C© you # v})

yCux

Let us consider the transformation & of I onto I defined by

h YY) = / clu) 'du.

Then hois 1-1 differentiable because ¢ is bounded from above and from below. and the
density of X, can be rewritten as

where Jh~! is the Jacobian of the inverse transformation to h.

It follows that X, is distributed as A(.X). In particular. for A e B([I).

En(X.NA)=En(XnNh L)) = / Apdx = /t'(u)i,\[.(lu,
JhoW(A) J A

or

X)) = e{u) "N
(]

The equality (4.6) is expected to hold approximately if the scaling function is slowly
varying, compared to the interaction radius.

For statistical inference of locally scaled models, we will distinguish two cases. In fully
parametric models, both the scaling function ¢ and the homogencous template process X
are specified by a set of parameters. In semiparametric models only the template process
is parametrically specified.

In the following. the parameters of the template process are denoted by v, and 0 is
the parameter of the scaling function (i.e. inhomogeneity parameter) in fully parametric
models. The parameter space of a fully parametric model is © x W, while, in semiparametric
models, the scaling function can be any function in the space C* of measurable positive
functions, satisfving the regularity condition (4.1).

A particularly attractive parametric form of the scaling function is the exponential form

Ealt) = (l(())('m‘ﬂ“]). ue RE (4.7)
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~

where # € © Z R o) © %, and 7(u) © = A locally scaled model with an exponential
scaling function is called an exponentially scaled model. Note that if 7(u) = w. then scaled
distances can be calculated explicitly. Using the coarea formula (24 Corollary 2.4) we

get

Jlu, e

t
! (1t 1nl)
= / r — ufl () Ol dl =
S

4.3 Simultaneous maximum (pseudo)likelihood esti-
mation of scaling function and template para-

meters

Equation (4.3) implies that in a fully parametric model. the likelihood factorizes as
L8, v xX) = Folt:x) x 1400, y:x), (-1.8)

where Ly is the likelihood of an inhomogencous Poisson point process 11, with intensity

. \ v((") . . " . .
Hicasure Hf.. and Ly(8, y;x) [y (xi¢) is the density of the scaled process X, with
respect to I1,.. Recall that the scaling function is parametrized by 0. 1.e. ¢ cp.

Maximum likelihood estimation is most feasible i exponential families. since it amounts
to moment estimation there. Most popular homogencous Markov point process models
arc partially exponential, and the set ¢ splits into two components — the nuisance para-
meters and the remaining parameters. that form exponential family parameters given
the nuisance parameters. Since the likelihood i Markov point processes is known only
up to the normalizing constant. one has to resort to MCNC methods for MLE. see e.g.
32| or [15]. Whilst moment estimation in these models can be done relatively precisely
with affordable effort, estimation of the normalizing constant entails numerical pitfalls
and should be avoided as much as possible. This snggests that MLE should be done on
a grid of nuisance parameters. since given this component, the remaining parameters are
exponential family parameters. In locally scaled processes. the inhomogeneity parameter
also acts as a nuisance paraimeter.

Usually, the point process X, is observed in a sampling window W C X' In such cases.

a conditional likelihood may be used, based on the conditional density of X, 1 W given
X, MW= xyue where xype 1s a finite subset of W Since

Fx (-] Xwe) o fx. (- Uxye) ,

it follows from (4.3) that (4.8) still holds for the conditional likelihoods. This result is
mainly of interest for locally scaled Markov point processes.
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A less computationally demanding procedure then the maximum likelihood estimation
is based on the psendolikelihood function (Detimtion 3.36). see |3 and references therein.
The following theorem shows that the same factorization like (4.8) holds also for the
pseudolikelihood.

Theorem 4.2 Let PlLy-(0.0:x) be the pseudolikelihood function  for the density
,f',\',ﬂ( ciu) with respect to the unit rate Powsson pomt process and let PlLy- (6. v0:x) be

the pseudolibelthood for the density f'\'_“l( o) with respect to the Poisson pomnt process

with itensity measure My . both of the processes observed on a window W . Then
. — A o) 4
Ao (u | x) = colu)™" ,\:,_l__ (0 X). ud¢ x. (4.9)

(a) gl

where /\(}.L. and ,\(;I, are the conditional intensitie s associated uath f_\-.ﬂ and f\fl" . respec-
L e

tively. Moreover the following factorization of the pseudolikelthood holds

P[,H (U f_'IX) I,U(HZX ) = l’l.“_!(().{,'Z %) . (ll“)

Proof. Because the scaling function ¢ is bounded from above and from below . the intensity
measure H* is obviously diffuse and finite on X ¢ BX The first part of the assertion is
then a direct consequence of Theorem 3.9 and equation (1.3).

“"’J(xl;{ })

(cn)

Ix,, (x)
exp (— .I:l.{('(u — H*duw) [« () .‘)“L‘f\- (x U {u})
exp ( _]:‘._h'(u] k1 HR(du)) [\ c(x) "‘f\
fx, (xU{u})

IS k(o)
('ﬁ( ”} {f (x) f"(;( H] /\(;“:‘ (H ‘ X)
SNy

(ca) \
/\m, (u | x)

The proof of (4.10) can be constructed as follows. From (1.3). we get

Py (8,1 X)
(u | x) lJHk(_dH)) H Mo | x\{z})

(‘.\:1)(/ ;
W rexr

— exp( - [cp(u) ™ — 1/H*(du)) H colr) "

a4 rexny

% exp(/ A (| x) = 1ep(u) *HE(du)) H i | %\ {z})
W

rexf W

= Lo(0;x) X PLw1(0,7;x) .
U

Since the values of the scaled int(‘m(-ti(m statistics (e.¢. s.,(x) in the Strauss model)

and subsequently the values of /\ (u | x) depend on the inhomogeneity parameter 0,
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the latter is a nuisance parameter also in the pseudolikelihood estimation. This means we
llil\'l‘ to t‘\';l]lleﬂt' 1’]11‘ 1}1'()“11' ])."\(‘Il({lllikl‘lillllllll oIl i *._tl‘itl nf IllliH;lll(‘l' ]l;ll‘;llllt‘T('I'H HiIllil:lI']_\' to
the maximum hkelihood approach. However. this is much less computational intensive in
maximum pseudolikelihood estimation than in maximum likehhood estimation. since P L,
can be calculated directly without having to estimate an unknown normalizing constant
by simulation as it i1s the case with /.,

]

4.4 Two step maximum likelihood estimation of sca-
ling parameters prior to template parameters

The structural similarity of the full likelihood in locally scaled models and the full like-
lihood in transformation models for point processes suggests that partial likelihood infe-
rence as in the paper 35 will be successful also for locally scaled models. [35 estimated
the inhomogeneity parameters by maximizing the Poisson part L, of the likelihood only,
assuiing no interaction in the model in this phase of the estimation. They chose an ex-
poucntial model for the inhomogencity function. since this largely simplhifies caleulations.

Below, this approach is followed for the locally scaled models. In Section 4.4 1. we find
the maximum likelihood estimate 6, of # on the basis of L, and. in Section 4.4.2. 1t 1s
shown that #, can be regarded as an approximate moment estimator. kEstimation of the
template parameters is considered in Section -1.1.3.

4.4.1 Estimation of scaling parameters, using the Poisson like-
lihood
We suppose that the scaling function is of the form

c(u) = e\ TN u e RY . (4.11)

where 0 € © C RY. o ¢ R, and 7 is an R%valued measurable function. In addition to
the inhomogeneity parameter 0. the scaling function contains a global scaling parameter
a. For the moment. these two parameters vary in a product set © < R,

Then, the Poisson part of the likelihood of the process X, observed in a set 17, is

LU(_Q' a:x N ‘I) = exp (_ / (” L-‘, k@.7(u)) I)H;“((IHJ) H (“ k(‘ ,Q-{-(J.r{,r})) ‘ (_112]
J W

rexNiy

The log-likelihood becomes

@, a;xNW) = / 1 H" (du) — / o ke O T ok (dy) —
Jw Jw
kn(xOW)lna+ Y (<k (0, 7(2))) .
rexnNW
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Assume that n(x W) > 0and ()] ¢ 7 is uniformly bounded in v € W and 0 € 6.

Then by differentiating we get o + 1 equations
k-] _ . k . . Y =]
ha ™" ‘/v MUl M (du ) An(x " H)a
1

a / hr (u)e~ 0wl pk e du) F Y wle) d= K d.
J U -T‘H'

Dividing the last d equations by the first equation we get the vector equation

f(x )

st Rl o) . 1.13
nx iy (4.13)
where t(x M ) =) 2 sewnin ) and
['“ (u)e *@ H“ulu]
R = = te— . (c O (4.14)

.Iﬁ"' 0.7 () K ( t]u]

Thus we estimate 6 independently of a (the estimate 6, of # does not depend on the
estimate of the constant o) and furthermore the estimate depends only on the statistic
Hx W) /n(x W) It turns out that we get exactly the same estimate of @ if we impose
a normalization condition on ¢y, (As we shall see i Section 4.4.2. (4.15) appears to be a
very natural condition.)

Theorem 4.3 Let XN be a locally scaled point process with the erponential scaling func-
tion (4.11) parametrized by 0 Suppose N s obscreed on the window W and mpose on cg

the following normalizing condition
| ‘ ke gk P . .
/ coll i) "N H () = H*(W7) . (4.15)
JIW

Then the marimum Lkelihood estimate O of O based on the Poisson Likelihood (4.12) s
T'hen th v Likelihood estimate Oy of 01 / the P Likelthood (4.12

the solution of the equation (4.1.7) and
1/k
a=a(f) = [/ e MOTuR R i) /'Hk(\i')} . (4.16)
JW

Proof. (4.16) follows directly from the condition (1.15) and under (1.16) the Poisson
likelihood (4.12) takes the form

Lo(0: x N W) = ‘\[)( () Fe= RO 7(u) I)H"'(du)) X
W
% H (ﬂ( ) f\ —R{()T )
rexnW

= L M n(xM’)
= (n(f)) mp( h <9. (s H')>)) .
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Taking the logarithm and ditferentiating with respect to €. we again get the vector equa-
tion (4.13). []

The existence and uniqueness of a solution #, to (4.13) have been studied in [35] in a
closely related set up. The same tvpe of arguments apphes here. Using (141.16). 1t 1s seen

that _
( ”‘I]_\- B & \ ; -,
{};lk(“-“ k(0. 7)) g (—)} (4.17)

|

is an exponential family of densities on W, with respect to HY and with the canonical
parameter —A0. If the family is regular, then the function m o (L 14) is a bijection of
{ k0 :0¢c O} onint S where S is the convex support of the family, ¢f. Section 2.2, Thus
we get the following theorem.

Theorem 4.4 Let N be a homogencous template process de fined on X ¢ BY and X, a
locally scaled point process on W ¢ BY dericed from N by the erponential scaling func-
tion (4.11) and suppose n(N,.) > 0 almost surcly. Suppose that the densities (4.17) con-
stitute a reqular crponentral fannly and denote by S the conver support of the famaly.

Then the function m gieen by (4.14) 15 a byection of & { kO :0 € O} on mt S. For

Lx T W) n(xOW) € ant S, there erists a uneque solution 0, of (447}

For the special case 7(u) — « we can solve the estimation equation ((1.13) explicitly.,
Example 4.5 Let 7(u) — «w and W — (0.1 ¥ Then, © — R*

col ) n(ﬁ)t'(“'”i .

1/k
K k0,

a(6) 1] '——-A"-;)-——
1 I

!

and m(0) = (m,(0). ..., m(0)) where

] =% = ke % |
i, (0) FOl ki) 7= Lo i ks

4.4.2 Statistical properties of @U

The estimator 0 is the maxinnun likelihood estimator of 0 if the template process is
Poisson. It is also possible to give theoretical support to the use of 0y for general template
processes. as shown below.



Theorem 4.5 Suppose that the intensity function of the locally scaled process X, satisfies
No.col ) = calu) ™ Ao o W, (4.18)

Then.

-

::“”L I_f(_\',“ H"

. i)
EaeittlXe, NI

Proof. Using the Campbell theorem (Theorem 3.1) for X\ we have

Eg.. \ hie) = Eh(r).N,, (dr) / hir)\a, (e VHN(dr)
Ja

L
TEN 3
Thus we get
._'1:(} ‘-‘.’(‘\"'r' i) EH_; X 7 ) Dag- () / r(.r )1y (.f'].\,;l,_ (.!')'Hk[(l.f')
1€ X, JA
= M / (. )ep(.r) A‘lu HE (dr) Atie / r(.a1)eg(r) “"Hk((l.r}.
3 Ju
In particular,
Eo.on(X., "W = .--\m-/ cola) HE(dw) (4.19)
J U
The result now follows directly, L]

If (4.18) holds. 8, can thus be regarded as a moment estimator.

As mentioned in Section 1.2, the equation (L 18) holds if the template process is ho-
mogeneous and the scaling function is constant. NMore interestingly, (4.18) holds for a not
necessarily constant scaling function for distance-interaction processes in B'. remind the
Theorem 4.1 . Generally, equation (4.18) is expected to hold approximately if the scaling
function varies slowly compared to the interaction radius.

4.4.3 Estimation of the template parameters

Having estimated the scaling parameter ¢/ we can proceed by the estimation of the template
process parameters. We will here concentrate on the case where the pseudolikelihood
P Ly 16y, ¢:x) from the decomposition (4.10) is used. In the following we discuss the
practical implementation of this method for the locally scaled models. We consider general
parametric scaling functions.

(o)

Recall that the pseudolikelihood P Ly (0, v x) for the density f”'(-:¢') with respect

0

to the Poisson point process with intensity measure Hﬁ'ﬁ. based on observation in a window
W  R*, is defined as follows

PLyw1(0,1;x) = exp ( / I)\Lf'ﬁ‘)('rf | x) — I]Hfﬁ((li!)) H /\g;f_,}(.r | x\{z}). (4.20)
Jw

rexNW
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In the second step of the two-step estimation procedure we fix the scaling parameter 0 to
0y and maximize P Ly (0. cox) expl HY (W) as a function of ¢+, This can be done in

a wav similar to the procedure used i the homogencous case. of. 3.

We partition W into a finite number of cells €7, cach containing one dummy point wu,,
i 1.....0. The union of the dummy points and the points of the observed pattern
is denoted {u, @) 1.0, neh. Farthermore let ¢ be the unique cell containing u,.
7=10. ... m. with dummy point u,,,. Then we approximate the itegral in the pseudo-

likelihood by

T

/’_,\l“ (u K)'Hﬁ' (,(lu"l'itzxﬂ_\‘” (u; | x\{u,})w,
JI

LT f, Lt {111

where

H*(C i) 1 1 |
w, = _— : ; — (4.21)
(11, l‘ (1 + n(xMCy;)) {1 4 nx ('HJ,)I

2
<

Uu
Hereo n(x 01 C7,;)) is the total number of the observed points in the cell 7).

HE(( W) | cg (U ,m)‘ approximates HjL (€' ,)) af the cells €7, are suthiciently small.

such that the scaling function ¢ is np]nu\mmh v constant in 1)) [Let us denote

A o (u, | x\{u,})

'Jlr-f.'

by A,. j = L.....m. The pseudolikelihood can then be approximated as a weighted like-
lihood of independent Poisson variables y, with means A, and weights -,

log( P Ly 1 (0. 17 X) exp HE (W) = L(q,lnu 5 — Ry, | (4.22)

l
h=—I{ EX}. J=1,-.., m . (1.23)

u,
.
When the conditional intensity A is of exponential family form. (1.22) can casily be

O,

maximized. using standard software for generalized linear models.

4.5 Simulation study

Since it is very hard to deduce further theoretic results for the two-step estimation pro-
cedure proposed in Section 4.4, a simulation study was carried out in order to further
investigate the properties of the derived estimators.

The simulation experiment concerns the exponentially scaled Strauss point process with
the scaling function

1 (4.24)




observed on the unit square W 0.1 © We used four different values of the inhomogeneity
parameter ¢ < {0.25.0.5. 1. 1.5}, Note that # 1.5 represents quite strong inhomogeneity,
compare with Fieure 4.2

For the template Strauss process we fixed the interaction radius R to 0.05 and used a
dense set of ~-values i {“-“1.(1.”:’. . (lll} For 3. we used the two values of 250 and
100 to mvestigate the mtluence of the total intensity,

For each combination of the parameters. 1000 point patterns were generated using
MONC and the distribution of ¢, was approximated by the empirical distribution from
the 1000 realisations.

All figures relating to the simulation results are collected at the end of this chapter.

In Figure 4.9. the empirical mean values of the statistic _'!';‘;—] are plotted. Full drawn lines
correspond to .3 250, the dashed ones to 7 100, In each plot the mean value of the
statistic under the Poisson model (i.e. m(#)) is indicated by the dashed horizontal line.
We can see that apart from the fluctuations caused by the approximation with empirical
average over realisations the mean of ,!,";);]. is constant and equal to m(0) independently of
the parameters of the template process.,

[n Figure 4.10. the estimated standard deviations of ”[—1-’] are plotted. We get a very shght
dependence on the interaction parameter 5 and as expected big difference in variance for
different values of 4. Both effects can be explamed by the mean number of observed points

(x)

which strongly influences the stability of the ratio statistic S

Next we study the distribution of ¢,,. Since the function m defined by ((1.14) is concave
and % was found to be approximately unbiased. ¢, tends to overestimate . This can
be seen in Figure 1.11 for ¢ — 1.5 and 1. however the relative bias is not larger than
1% and again it does not depend on the interaction parameter 5. The 959 envelopes
for ¢, are also shown in Figure 111 and for reasonably high number of observed points
(L.e. 3 = 250) the inhomogeneity is reliably detected by 6. Notice for example that for
0 = 1. 95% of the estimates (), falls into the interval [0.75. 1.25] and even for 0 — 0.25
an inhomogeneity often hardly recognizable from the realizations, 957 of the 0, estimates
are larger that zero. ﬁ

For sake of completeness the plots of the empirical standard deviation of 6, are provided

x)

. - p i e . - e {
in Figure 4.12. Similar conclusions as for the statistic ”(?—) can be made here. Moreover

i i ; ; ; ; :
since % is approximately unbiased and independent of 4 and m can be approximated

closely by a linear function on the intervals given by the 95% envelopes for 6, we can
expect that the variance of ¢4, can be approximated by

. ~ I : H(Xe) -
Varg ,.(0y) = ——— Varg,,. — 1. i
o4 \0n) m'(#)> Vars, u(_\,‘)) ihed)

In Figure 4.13 both the standard deviations of the estimate of 6, (full drawn line) and the
approximation using the statistic }J%}] (circles) are plotted and we see that the approxi-

mation is very precise.
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I:ij..',lll'(‘ 4.4: Comparison of the intensities Ko N, W) (estimated by averages over 200
realizations) on the unit square W for the exponentially scaled Strauss point process X, with
different @ € {0.25.0.5. 1. 1.3} (dashed. cham-dotted, full and dotted carves) and the intensity of
the template processes X\ HY (W) (crosses) in dependence on the template parameter 5. Results
arc showed for two different values of the template parameter 3 — 100 and 250 and the same
R = 0.05 for all the processes. Since the differences among all the four curves and the crosses

arc hardly distinguishable. we got a perfect agreement with equation (4.26).

Note that since the scaling function has been normalized as in (1.15). ((L18) implies
that
) = M0 (1.26)

Eg.n(.\

ty

i.c. the mean number of points in W does not depend on the inhomogeneity parameter
0. Since (4.18) does not hold exactly for the Strauss process. we investigated whether
(4.26) holds approximately. using the simulated data. The approximation is excellent in
this example, cf. Figure 4.4

Let us next study the estimation of the template parameters. The density of the Strauss
process is of exponential familv form with one nuisance parameter /- the interaction
radius (see Example 1.3). Thus ¢ = (3.~. ) and

It){..’, ’\J - ]Uf_{.'f .- -‘*',-(”JZX)IU}.!; ol

where
Se(u;:x) = Z I{Hf.([u_f._r]) < R} .
rex\{u,}
To find the estimate of ¢ we have to compute and compare the profile pseudolikelihood

Pl.ll"lfl{) = 11ax PI*H'.I(UU- 3, %, It X)

sy

on a grid of values of 2. We let 3, and v, be the values of 3 and 4 at which
PLw.(0, -, R:x)
is maximal (the subscript R indicates the dependence on R).
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Figure 1.5: Profile pseudolikelihood estimation of the template parameters 4.~ R of a simulated
exponentially scaled Strauss process on 0,17 without any border correction. The first picture
shows the data x. In the three graphs. the profile pscudolikelihood and the corresponding esti-
mates .-fH and 5y are plotted as functions of K. The final estimates R — 0.0508, .4 — 283, ~ — (.23

arc indicated by the dotted lines. The true values are & 0.05. 3 250, ~  0.25.

In Figures 4.5 and 1.6 we illustrate the procedure on a simulated exponentially sealed
Strauss point pattern with the scaling function (1.2-1) and parameters

'y

=1, 3=250. v =025 R=005 W = [0, 1]

The parameter 6 has heen {ixed to the correct valie and a regular grid of 100 > 100 dummy
points was used.

In the plots presented in Figures 1.5 and 1.6, the profile pseudolikelihood and the
estinates ,5’;,, and A5 are plotted as functions of the nuisance parameter K. The jaggedness
of the plots is due to the discontinuity of the imterpoint distance function s, as a function
of R. In Figure 4.5 we used no border correction (the psendolikelihood (4.20) with x
replaced by x 11 W) while in Figure 1.6 we used a border correction of H! = 0.05 (the
psedolikelihood (4.20) with W replaced by an irregular observation window W = {u €
W H (u.0W) > 0.05}. where dW denotes the boundary of W),

The obtained estimates of ¢ are in good agreement with the true values, especially the
estimate of the interaction radius is very precise. It is also important that the estimates
with and without border correction do not differ substantially (which is probably caused
by the sufficiently large number of observed points in W7).

The results concerning pseudolikelihood estimation were confirmed in repeated simula-
tion experiments.
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Figure 1.6: Profile pseudolikelihood estimation of the template parameters 4, ~, B ol a simulated
exponentially scaled Strauss process on W — |0, lll"} with border correction 'Hf = 0.05. The first
picture shows the same data used in Figure 1.5, The full arcles are the data points used for
the estimation. The three graphs are constructed as in Figure 1.5, The obtained estimates are
R = 0.0508. .3 = 282, 4 — 0.22. The true values are £ 0.05. .4 250, ~ — 0.25.

4.6 Two step inference where scaling function is esti-
mated using other (non ML) methods

Going one step further, one could also estimate ¢ i some other way from the local intensity
Nalnil) = 18 Aok | Xo) .
u € X, of the locallv scaled process X, using the approximate relation
I~ —'1'- 07
/\((“') ‘\-—{({!] /\“ . ('l._l)

where A\ is the intensity of the template process. In order to estimate the scaling function.,
we could use an estimate A.(a) of the local intensity, and set

I/k

eli) = [( '/\,.(u)}

where (' = 1/ is some constant that can be arbitrarily fixed. For convenience. one may
choose (' = 1. _

If. in a parametric setting, A.(u) is the maximum likelihood estimator of the intensity of
an inhomogeneous PPoisson process, then ¢(u) is the same partial MLE as the one based on
Ly. On the other hand. A\.(u) can also be estimated nonparametrically, for example, using
kernel methods or Voronoi tessellations (see e.g. [2]). Or it can be estimated parametrically
by other methods than maximum likelihood, e.g. regression methods.



4.7 Model validation

Since the two-step estimation procedure. sugeested in Section 4.4, can only be justified
theoretically in special cases. 1t is particularly important to develop effective procedures for
model validation. This is the topic of the present section For non-Poisson point processes
only little is known about the theoretical distribution of characteristics that can be used
for model validation. Therefore tests are usnallv simulation based

[ the case of homogencous point processes, the probably most popular tests are based
on second order summary statistics such as Riplev's A -function, see ez 12] and 32). In
12| the definition of the A-function and other second order characteristics are extended to a
certain tyvpe of inhomogencous point processes, so called second order intensity reweighted
stationary processes. This class of processes comprises inhomogenecons processes obtained
by independent thinning. but does not include locally scaled processes (apart from the
Poisson process).

In [17] is considered another so-called (07 statistic for tests against the Poisson process
hypotheses. which simply spoken amounts to a coodness-of-fit test for the frequency dis-
tribution of number of neighbours i an r~neichbourhood. In this section we investigate
how A-functions and Q--statistics can be adapted to locally scaled inhomogeneous point

ProCesses.

4.7.1 The K -function

Let us remind here the Definition 3.17 which tells us that the A-function for a stationary
point process X is defined as the expected number of points in X'\ {o}. given o € X' in
a ball of radius r around o. divided by the intensity A, of X

ho(r) g'r'”( A /\)’{: " )\ {_‘l }_) |

(In the case of finite processes with interaction. we assume that the domain of X is large
enough that X 11 /3(o. r) is virtually free of boundary effects.) By the Campbell theorem.
a ratio-unbiased estimator of Ay(r) 1s given by

]T'l-,(l.1'. 7 3 ”( Z L lr,y]) < r},
()

rexny’ uix {;

where x is an observed point pattern from the stationary point process X, If instead a
locally scaled point pattern x is observed. we suggest to use a locally scaled analogue of

Ko(W, r), viz.

Ko(W.r) = \“”(xm > > UH(eyh <1} (4.28)

rex/ W 3).-£ x {;

Note that Kg(W. r) is ratio-unbiased for Ky(r) if ¢ is constant. Furthermore, Ag(W. r)
is ratio-unbiased also for processes in R!.



Theorem 4.6 l\-m W.r) s ratwo-unbiased _f-u'!' (e it rul -w'ulmq fmu‘fmn.s' and dwstance in-

teraction point processes defined on oan antereval 1 oof R}

Proof. In &' a locally scaled distance-interaction process X, has the same distribution
as h(.N) where his a 1-1 differentiable transformation of 7 onto [ with (h ') = ¢ ' (see
Theorem 1.1). Therefore, we have
2D SO H ey < )
: L) . .

et
re XN W X\

| ff \‘_: \ﬂ L{H (b ) h Ny < o))
rht N YOW yeh( N r)

o B e Aglyr . R .
=E( ) Y YH'(wew) <))

re Nich YW )y ye N ot}
Accordingly, the ratio-unbiasedness of A, follows from the ratio-unbiasedness of Ay, [

Generally, Ay is expected to be (approximately) ratio-unbiased if r 1s small such that
¢ varies little in the scaled neighbourhood. Inany case. one should nse simulations of the
scaled null hypothesis model. not only of the template, for model validation,

A further simplification is accomplished by applving H'(lr.oyl) = 2/(c(r) + e(y)) x
H'([r.y]). which was introduced for distance-interaction processes in (180, The corre-
sponding statistic

e | — —y |
Ky(W.r) ) L L H{H ([, g]) < 3(ele) + e(y))r} . (4.29)
I

Aon(x

rexNW yox {r

1s particularly useful if ¢ is estimated nonparametricallv, because it requires evaluation of
¢ only in the data points.

In practical situations. both Ay and ¢ have to be estimated from the data. As discussed
in the preceeding sections. the estimation of ¢ cannot be separated from the estimation
of A\g. Since the template is unique only up to a constant scale factor which determines
Ag. the scaling function ¢ is unique only up to a constant as well,

We suggest to normalize ¢ such that HY(W) — H¥(W). see (1.15). Thus, we set
Do = n(x N W)/HEW).

since

En(X.NW) //\,n(.."}r}“[k(rl.r)x / Noc(x) ¥ HE(Ar) = Mo HN(W).
JW

J W

(94 |
e



4.7.2 The ()? statistic

The Q°-statistic proposed in A7) s (in the simplest case) based on the numbers M, (W r)
of points in W with 7 r-close neighbours, 0.1.....¢ For a homogenecous Poisson
point  process. the expectation g and the covartance matrix Y of the vector
M = (.UU..\II ...... U,!)‘ can be calculated (see _[T ). A e range tll'lll'lull'llt'_\' argii-
ment is used to show that the statistic

]

Q"= (M ) % MM )

-

(squared Mahalanobis distance) is asvmptotically \-distributed for increasing size of the
observation window W By simulation experiments. 17 showed that Q7 discriminates
well between patterns from a mixed cluster and regular point process and the Poisson
Process.

Since goand Yocan also be calculated for an mhomogencous Poisson point process, it
would be possible to use the same Q7 -statistic also for tests of mhomogeneous Poisson
processes. However. the expected number of neighbours i a ball of radius » around a
point 1 would depend on the local mtensity Nr). Henee, mhomogeneity imtroduces much
extra variation to 1/ which would largely cut down the diagnostie value of -

This effect can be avoided by adjusting 7 1o the local intensity. We propose to replace the
Fuclidean neighbour distance by the locally scaled neighbour distance. Inan inhomoge-
ncous Poisson point process with mtensity \ () () “\.,. the number of r-scaled-close
neighbours of a point . is Poisson distributed with parameter N\gHY (B, (). Since

Hf( B.Ca. )
H*(B(x,r))
the distribution of r-scaled-close neighbours does hardlv depend on the location for small
r. and is close to the distribution of r-close netehbonr naumber in the homogeneons case.

The local scaling analogue of 1/, 1s

Meianom (W) x V{13 (ne) i\ far}) =} . (4.30)

e
Since calculation of pand X is feasible only for the Poisson point process with slowly
varying scaling function. we suggest to do simulation tests. This would allow to test
any hypothesis. While any distance between observed and expected neighbour number
distribution can be used. we still recommend to use the statisties Q7. however to replace
i and Y with estimates obtained by simmlation. Note that the simulations for estimating
it and ¥ are not to be reused for the test.

4.8 Data analysis

The map shown in Figure 4.1 was recorded in Aunstralian heath. This vegetation is sub-
jected to regular fires, the study arca having been last hurnt ten vears before the collection
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of the data [1]. The species under study. Scholtzia aff. involucrata. is long lived and re-
generates from root stock after fire vielding danghter plants that stand close together.
Furthermore, seed germinates after fire. with voung plants coming up within a distance
of at most 2m of the parent plant. However. only verv few seedlings survive the dry sum-
mer. These facts explain the slight clusterine observable in the point pattern of plant
locations. The heterogeneous imtensity is likely to be due to soil mosaic, affecting mostly
the seedlings that are vVerv sensitive to shortage of water.

We therefore need to model attractive interaction among the plants. The exponentially
scaled area-interaction model appears to be a cood candidate because the area of a location
dependent neighbourhood around each plant enters explicitly into the model density.

We used the two-step fitting procedure. For convenicnce we rescaled the data to the unit
square W = [0._ 1]2. As the pattern exhibits obvious inhon eencity in the vertical direction
but appears quite homogencous in the horizontal dircetion we used an exponential scaling
function of the form

_— 20
I’fl 'l ¢ s

(T(II)LVTt‘ 2 = {1y, ie) € RE (4.31)

Based on Ly(0;:x N W) we obtained the following estimate of ¢
0y — 1.0839.

with a(fp) = 0.6391, see (4.16).

Secondly, we maximized the pseudolikelihood 7Ly (6. v: x) with (;l_. fixed. The density
of the area-interaction process is of an exponential family form with one nuisance para-
meter /2 — the interaction radius. Like for the Strauss process. ¢+~ (4.4, 1) and for the
estimation we use the same weights as in (1.21) and

10g /\j = logf— Hf((’;-.h'(“JZX)_) log ~ .
Usgr(usx) = {yeW:Ho(ly,u]) < BH(ly. x\{w;}]) > R}

We used a grid of 100 x 100 dummy points which were equidistant in the horizontal
direction and H! -—equidistant in the vertical direction (actually this means that the
(]

0
dummy points were Hcén equidistant in both directions  compare with (4.31) ).

We maximized the profile pseudolikelihood on a grid of R-values. The main problem
is the computation of the scaled volumes H:(Uep(u;:x)) for all the points u;, j =
1,....m. This can be done only approximately. To approximate these scaled volumes
with a reasonable precision it is necessary to compute the scaled distances from the points
183 = L5504 ,m} to each point in a very fine grid of points in W. This job is computa-
tionally quite demanding. -

The approximate profile pseudolikelihood 2Ly (0y, v:x) was computed with border
correction H! = 0.05. This degree of border correction was chosen as a compromise
between minimizing the bias caused by missing unobserved poinis and not excluding too
many observed points from the estimation (with the chosen border correction one fourth
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Figure 4.7: Pseudolikelihood estimation of the template parameters 3,7, R of the exponentially
scaled area-interaction process for the plant data from Figure 4.1 rescaled to [0, 1]* with border
correction ‘H. = 0.05. The graphs show the profile pseudolikelihood and the corresponding
estimates g and Ar as functions of R. The last graph of 3”_7”?2 shows the strength of the
attractive interaction. The resulting estimates are R = 0.085, 3= 184, 4 = 3.99 - 10%.

of the points was not used in the estimation). The profile pseudolikelihood and estimates
of the parameters as functions of R are plotted in Figure 4.7. Note that the curves are
smoother than in the case of the Strauss process because now the interaction function is
continuous as a function of K. We obtained the following values

~

R =0.085, B =184, 7 = 3.99 - 10%, 377F* = (.25. (4.32)

The value of ?y“’”‘qg is included because it gives a better impression of the strength of the
interaction, since this is actually the term which appears in the template density. The fit
indicates a slightly clustered point pattern as we expected.

For model validation we used the A()(Vi r) and Q2 statistics from Section 4.7. Figure 4.8

shows the locally scaled estimate K (VV r) with W = {fueW : Hl(u, ,OW) > 0. 05} (full-

drawn line) together with the empirical mean and 95% envelopes for K. (W r) calculated
from 399 simulations under the fitted exponentially scaled area-interaction model (dashed

lines). The locally scaled estimate Ko(W,r) for the plant data lies inside the envelopes of
the fitted area-interaction model.

Next we tested the locally scaled Poisson hypothesis (Hy: the observed point pattern is
a realization of a locally scaled Poisson process) on the plant data. We used the

Qé — (Ai{jnhom = ,Z.LP)T E;_)l (A[mhom _ “P)

statistic with 7 = 0.05 and Minhom = (Moinhoms -« - - » Meinhom) defined by (4.30). The sub-
script P indicates that in the formula for ? we use as p and Y the mean ip and the
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Figure 4.8: The estimate Ky for the plant data (full drawn line) and mean and 95% envelopes
for K¢ for the exponentially scaled area-interaction model (dashed lines).

covariance matrix Yp of M. for the fitted locally scaled Poisson model with ¢ = 50.
The values of up and ¥p were estimated from 8000 simulated realizations of the fitted
locally scaled Poisson model.

The sim}}lation test (using 399 realizations of the hypothesis locally scaled Poisson model
with 6 = 6) gives the p-value of 0.05. Thus the plant data is not very well described by
the Poisson model.

Then we used the Q% statistic (i.e. the mean value s and covariance matrix Y, of
Miyhom are computed for the fitted exponentially scaled area-interaction model) for testing
of the fitted locally scaled area-interaction model (Hy: the observed point pattern is a
realization of a locally scaled area-interaction point process). The test gave the p-value of
0.106, thus like with the K -function we do not reject the the locally scaled area-interaction
model.
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Figure 4.10: Empirical standard deviations of the canonical statistic %L’% for the indicated 3
and 0 values, as a function of the interaction parameter 5. Full drawn lines correspond to the

inhomogeneity parameter ¢ = 0.5.
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Figure 4.11: Empirical mean values and 95% envelopes for the estimator 0y for four different
values of the inhomogeneity parameter 6 (values are indicated in the plots) and for template
parameter 3 = 250 (full drawn lines, resp. dashed lines for envelopes) and 3 = 100 (dashed lines,
resp. dolled lines for envelopes), as a function of the template parameter . The central lines in

the envelope plots are the empirical means again.
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parameter 0 = 0.5.
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In this case 3 was 250.
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Chapter 5

Estimators of asymptotic variance of
stationary point processes

5.1 Introduction

This chapter is devoted to the examination of asvmptotic and middle-sample properties
of estimators of a quantity o called the asymptotic variance.

Asymptotic variance ¢ is defined for simple stationary point processes with intensity
A > 0 and it is indeed the asymptotic variance of the standard intensity estimator A
defined by (3.8). Thus let throughout this chapter ® denote a simple stationary point
process on R* with intensity 0 < A < oo. The asymptotic variance is defined by

—~

]E(/\n o /\)A) (51)

o? = lim |W,
TL— 00
where {W,,} is a sequence of sets (observation windows) growing to RF and satisfving some
regularity conditions (to be defined later), and Xn are corresponding intensity estimators
(3.8) computed for W,,.

The quantity o is used for constructing the confidence intervals for the intensity of the
stationary point process and also as a normalizing term in goodness-of-fit tests for the
K-function (or second moment measure) of stationary point processes (see e.g. 20] ).

A class of kernel type estimators of o is defined e.g. in [21] and their asymptotic un-
hiasedness and weak consistency is shown. However there are different choices of possible
kernels or bandwidths for the estimators and neither their asymptotic optimality nor their
behaviour on middle size windows was investigated in detail. We will concentrate on these
two questions in the present chapter. Moreover in Section 5.5 we will define and analyze
a new estimator which can be used for the class of isotropic stationary point processes.

5.2 Preliminaries

At first let us remind the relation between the dth-order factorial moment measure a'd)
and the dth-order factorial cumulant measure 74 defined in Definition 3.7. Equation (3.4)
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states the recursive definition for anv d. We eive here the explicit equations for the first
three nontrivial factorial cumulant measures because we will need them in the sequel:

Y3(B; x By) = a@(B; x By) —a"(B,)a"(B,), (5.2)

YI(Bi x By x By) = a® (B, x By x Bs) — aM(B))a® (B, x Bs) (5.3)
'_G-m(ne)?w(nl x B3) — aM(B3)7? (B x Ba)

Y(Byx By x Byx By) = a“W(By x B, x By x By) (5.4)

-—n“)(b’ ) “w, x By x By) — a (b’ Y3 (B x By x By)
W (B33 (B x By x By) — oMY (B)Y3(By x By x B3)
)(lel?)n (B3 x By) —v2(B; x B3)a'®(By x By)
(B x By)a® (B, x By).
For the stationary point process ® moreover the reduced factorial moment measures and
reduced factorial cumulant measures (Definition 3.16) are defined. We will often use the

expression for the asymptotic variance using the second order reduced factorial cumulant
measure (for general proof of the equation see [19)])

0 = A(1 4+ ~72L(RM). (5.

(|
o
S

In the sequel we will also need the following lemma.

Lemma 5.1 Let ® be a stationary simple point process with intensity \. Let [ be a
nonnegative symmetric (i.e. f(z,y) = [(y,x) for any x.y € R¥) measurable function on
R¥ x R*. Then

£
E ) flz,y)=AX / f(@,2 + y)hrea(dy) dz + X’ / fx,y)dady,  (5.6)
R RrE JRE RE J R
and
o
Var Z flzy) = 2/\/ f(z,z+y)*y (dy)(lr (5.7)
x,y €D RY JRE

+2)\2/ f(z,y)*dyda

RF JRE

+4/\/ / flr,z+y)f(x+y,x+u)y fd(dy du)da
Rk JRE JRE

+—L)\2/ / fle, ) 2f(y,y+u)+ fly,x 1—11)]7 (du)dydr
Rk JRE JRE

+ 423 / / f(x,y) f(y, u)dudydr
Rk JRk Rk

" /\/ / / flz,z+y)f(z+u,z+ ?J)’yf.fgj(d? , du, dv)dr
Rk JRE JRF JRK .

4 X2 / /na /R i flx,y)f(y+u,y+ v)’?f.gé(d-u, dv)dydx
Jrrk JRE JRE JRE
(5.8)

62



TR / / / / f@9)f(x + .y + v)ro(du)yy y(dv)dyde
JRE Jrk Sk SRk
+4)\° /Rx /‘k [k /; flx.y)f(x + u,v)y f.i},(du)(lt‘dyd.t‘.

Proof. From Corollary 3.2 and equation (5.2) we have

EY f@y) = [ [ fega®idndy

= / [z, y)y"?(de, dy) + / [(x, y)A(dx)A(dy),
RF JRK Rr JRK

al(loc)l using stationarity of ® and the definition of the reduced factorial cumulant measure
Yrea WE get equation (5.6).

From Corollary 3.2, equations (5.2) — (5.4) and the following observation

7 ’ # #
(Z f(z, .9)) =4 Z [(z,y)* +4 Z [(Croy) [y, u) + Z (a,y) [ (u,v),

z,yed x,yed x,y,ucd ry,u,ved

we get subsequently

2 2

Varif(:rjy) (Zf . J) (IE Y s z;)

z,Yyed ryed r,ycd

/ /f (z,y) a d.l dy) +4/ / /f(w,y)f(g,'zf)(r'“)(cl.z'.dy.du)

R* Rk

+/ / / /f(aj,y)f(u.a v) [am(d.-r,dy,d-uj(lv)—afw(cl.'?_'., (ly)au’((lu,d-v)]
Rk JRk JRE

/ /f z,y) (Y2 (dz, dy) + \* dz dy]
Rk

—|—4/ / /f(x:y)f(y,fu) [ﬂ,'(:‘)(cl;r,cly,(lu)
RF J R

+ 2\7 2>(dy,du dr + Ay (dz, du) dy + A\° da dy du|

Equation (5.7) follows from the definition of the reduced factorial cumulant measures. []

In the rest of this chapter we will also use two symbols 0 and O for comparing the
magnitudes of two (deterministic) sequences {a,}, {c,} as n — oo.

a, = o(c,) will denote limy, .o &= =0,

and a, = O(c,) means for us that for some k, K" >0

< limsup |—| < K.

n—00

k < liminf |—

n—oo

C‘.’ !

Cn
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9.3 The estimator

In order to be able to define a good estimator of 02 and to study its asymptotic be-
haviour we will need the following assumptions on the sequence of observation windows
(or sampling regions), kernels, bandwidths and the process @:

(AO) The sampling regions are W, — [—1,1]%, W, =nW,n > 1.

(A1) The kernel function w : R¥ — R! is bounded. svmmetric. non-negative, with support
in W, and limyy o w(t) = w(0) = 1.

(A2) Put wy(t) = w(t/(b,n)) and

Wp = / wy (t)dt = (b,,n)k/ w(t)dt = (b,n)*w,
J Rk J Rk

where {b,} is a sequence of positive numbers such that b, < b, =1 and b, | 0.

(A3) For the bandwidth b,n it holds b, n — oc.

(A4) The second order reduced factorial cumulant measure “{ }f is of bounded variation,

l.e.

Cy = / 7\ (da)| < oo.
EA

(A5) The reduced factorial cumulant measures ’)-,(.:)d, i = 3,4 arc of bounded variation,
2 (3) i\ . T &) 7dfe s ;
ie, C3 = f(R,‘.)g 1Vreqg(d(z,¥))| < 00 and Cy = f(E,\.}g 17eq(d(z, 9, 2))| < oo, and
the sequence {b, } satisfies bZn — 0.

Note that the assumptions (A4) and (A5) imply that a® and a'¥ are bounded on By.
The estimators G2 are defined as follows

52 wn(y — &) 1w, (2) 1w, (y) (W) \’ :
- — Wp : 5.9
5= 2 Wl T (5.9)

r,yed

For sake of completeness let us show here the proof of relation (5.5) under our assump-

tions.

Lemma 5.2 Under assumptions (A0) and (A4) it holds o* = (1 + 7-_}_2(]1@’*)),

Proof. Using (3.5) and the definition of '}f?(,i)i we get subsequently

|\W. HE(X X = ]E((I)(an) — AW, |)? Var((I)(W’n)) '}"(2)(”’2: x Wy) + A(Wy)
Vi n 7 - l” n[ ’H";;l|

1
P - _) Y (dz2)dz + A
'M/v Ln /]Rk [14'; ,77 f( )

— 3)| @) )
= Yreg(dz) + 1} .
( IWn\ !
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; , . Wan(W,, —2 . o o2
Finally because | |:1 = l converges monotonically to 1 for each = and '}j,{,}, has finite
total variation we get (5.5) from monotone convergence theorem. []

9.4 Asymptotic results and optimal estimators of the
asymptotic variance

The following two propositions are proved in [21].

Theorem 5.3 Under the assumptions (A0) (A}). the sequence of estimators {52} is
asymptotically unbiased for o>

Theorem 5.4 Under assumptions (A0) (A3) and (A5) it holds

E|72 — 0% — 0 as n — oo. (5.10)

Thus the estimators {77} are db\lllpt()tl(dll\ unbiased and weakly consistent. However
the speed of the convergence a2 — ¢* depends on the shape of the chosen kernel w and on
{b,}. We want to find an asymptotically optimal form of {b,} with respect to the mean
squared error

A2 2 ~2\2
ﬂjbf_‘.((fn) _ -[E(O- i (J-”) ~

Using the decomposition of MSE into the variance and the squared bias
N QR A2 ~2 ~2 212
MSE(ao: )= Var(o; )+ (Ea;, —o°)*,

we will show in the following that
2

MSE(G2) =0 (/ (wyn(x) — 1)’)*},331,((1:1')) + OY) + O((B2n)*) + O(n™%).
Rk

Thus the optimal bandwidth depends on the behaviour of the integral in the first term

which depends on the particular shape of w and 7”,3,

To be able to do a more detailed analysis of the MSE asymptotics we will assume a
special form of w namely

w(z) =1(je] <1), @ eR"

w is then equal to wy the volume of the A-dimensional unit ball. (We will see from the
simulation study, that besides being suitable for a theoretical analysis this kernel also
oives the best results on the middle-size ol)sorvfttl()n windows.) Further we distinguish

three different types of the tail behaviour of ’}rc , decaying exponentially, decaying more

quickly than exponentially and fy?.,u)j with bounded support.

2 :
Let us start with the last case of supp (’),fezf) € By because this enables us to relax the

conditions for the consistency a little bit — we do not need the condition b, n — oo.
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Theorem 5.5 Suppose rhur for the stationary point pm:m ® hold (A0)-(A2), (A4) and
(A5) and the measure ~ hus bounded support in RY. Suppose moreover that

(AG) supp ( ,Ld) C Blo, L), L = lim inf b, n, LER™,

n—00

15 satisfied. Then for w(x) = 1(||x|| < 1) the sequence of estimators {72} is asymptotically
unbiased for o* and

Elg2 —o%> - 0 as n — Q.

The MSE-asymptotically optimal bandwidth is

2K

& ,
b, = o for ¢ = inf{e rsupp (_'*,-_f,;)f) C B(o,c)}.

Proof. To show the asymptotic unbiasedness let us first decompose 7> as

(I)(L{rn) a ?l'n('U - ?l‘)lﬂ' (J")]-H' (U) 9 -
'- IS )2 5.11
A (Z (W, —2) Wy —g)| 311

r,yed

) O(W,,) ’
n A" = =i -
o ( ( W) )

Corollary 3.2, Lemma 5.1 and (3.2) imply

1” z)lyw, (i‘ +y)
= A+ A d
! ~/W‘ /P;" H n o ﬂ (H # r — -‘./)“)?(d(( l/)( L

H‘n(y — 111 ( )111 ( ) 5
+)\? / / dzdy — w,A°

(A(M LYo 4 -“’(M@,, x W,) + A(W,))

Q)
S

E

S ¥
|

—[—wn)\“

|Wn\ .

"1y, (2)1lw, (2t y)
— /\‘|" /\/ Wp\Y (/ n.v = da dq)
o 2O T = g %) e
! _ " 1w (2)1w, (z+ 2) .
4 Wy (2 o . Iz | dz — w,\?
o [ ) ([, iR 0 e

Wn 7
“TW B (W) + A)

Ired
= A+ A W (1 )’)’(2) (dy) — ——(bn ) w + 22
" b n\Y ) Vred\ Q! (2??,)}‘

Thus together with equation (5.5) we have

| A% : ,_
52 —ofl = [ () - 0o - (%) w(A+/\v§.e;<Wn>)} (5.12)
R
. bn k )
< A /k(fw,z(y)1)7§§3;(dy)|+(~2—) w(A + ACy). (5.13)
R
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When w(z) = 1(||z|| < 1) and nb, > L we get from assumption (A6)
Ez: — o = O(b%), (5.14)

which converges to 0 as n — ~.

To show that Var(a2) — 0 let us introduce a new decomposition of 72

> # . |
—~) Z : ; N (1) ‘1 % - {” k .
. Z Wl Wi
', yed r, ye e

(5.15)

15(0,nb,) (T — ) 1w, ()1, (y) | Ly, () 1w, (y)
. : and fo(r,y) = — :
’(Mu '_ f) M (H n U)‘ ‘” n.‘-

Jilzm; y) =

Note that we have already used our form of w(r) — 1(|lx|| < 1

Using the formula Var(®(W,,)) = A(W,,) +7@(W,, x W) < AW, |(1 + ('), we have

Var(73) = O <|Hl |) = O(n™"). (5.16)

From Lemma 5.1 we get

k\2
Var(Tp) < (W(;/b“z ) (2ACo| Wi + 203\ W,u |2 + 4X| W, |Cs + 4X2|W,[23C,  (5.17)

+ AN WP + AW |Cy + 402 | Wy |Cs + 2X°|[W, [2CF 4 4X° W, |°Co)

, 2k
- of5E)-oms

Since (1 — b,)W, C W,, N (W,, — 2) for z € b, W,, 2 B(o,nb,)

1 . | o
@) € G @l @lsean @ —y)  for bo<1. (5.18)

Using this inequality it follows from Lemma 5.1

_ 1

— (1-bn ‘)‘MHQ
+ 4X23|Wo| (n b)) *WCs + AN} | W, |(m b ) w? + AW, | Cy
+ AN W, (n b)) *WCs + 202 W, | (n by, ) w5
+ A3 W, |(n b ) * w2 Cs)

— O~ + ObF) + O(n*b2F).

Var(7}) (2ACo|Wa| + 202 | Wl (1 b)) ¥w + AN W, | (5.19)

Under assumptions (A2) and (A5) all Var(7;),7 € {1,2,3} converge to 0 as n — oo.
Thus E|52 — 02> — 0.

67



Combining estimates (5.14). (5.16). (5.17) and (5.19) with assumption (A6) we get

;’\15’]:‘(33) = O(bf;) O %) + O*n*) for byn > ",

T

which is minimal for (b,n)* = Voud &

As the corollary of the proof of Theorem 5.5 we get the upper bound for the MSE(52)
for the processes satisfying the assumptions (AQ) (A5) as well.

Corollary 5.6 Let ® be a stationary point process satisfying assumptions (A4) and (A5)
and let also the assumptions (A0) (A2) be satisfied. Then

Ired\

MSE(G;) =0 (/ (wn(x) — 1)~‘”(d-r>>» +Oh) + O((bin)*) + O(n™%).  (5.20)
J RF

Now it is easy to find the asymptotically MSE-optimal bandwidth for the kernel
w(z) = 1(]|x|| < 1) for processes with exponentially and more quickly than exponen-

tially decaying %8231-

Lemma 5.7 Suppose that the assumptions (A0) — (A3) and (A5) are fulfilled and let
wiz) = 1|zl £ 1) If

|7‘£é(Rk\ B(o,R))| = O(R™) as R — o0 for some ¢ > () (5.21)

then
MSE(3?) = O((b,n)~%*) + O((b2n)*), n — oo,
and the asymptotically MSE-optimal bandwidth s

142,
b, =cn 22 for some constant ¢ > 0.

If
]’y?(,i‘)i(]Rk\ B(o, R))| = of R_Lk) as R — o0 for all ¢ >0, (5.22)
the asymptotically MSE-optimal bandwidth has the form
bt — h(n)
n

for some function h satisfying h(n) — oo and h(n) = o(n®) for all ¢ >0 as n — 0.

Proof. The first assertion follows immediately from substitution into (5.20) for R = nb,,.
The second assertion follows from the first assertion and the condition (A3). O

In the special case of an isotropic point process ® conditions (5.21) and (5.22) can be
checked using the pair correlation function g.
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Lemma 9.8 Let ® be a stationary isotropic point process with the pair correlation func-
tion g(r),r € RT.
(3) Ifg(r) = 1+ O(r %) a5 r — for some ¢ > 0. then the condition (5.21) is fulfilled.
(1) If g(r) = 1 + O(r®exp(—pr?)) as r — ~ for some a, 3.p > 0, then the condition
(5.22) is fulfilled.

Proof. Using definitions of the A-function and the pair correlation function ¢ for an
1sotropic process we can write

12(B(o,R)) = a2(B(o, R)) — AB(o. R)| = AK(R) — A|B(o, R)|

/. red

AR I
= )\/ g(rYkwir®tdr ,\/ 1 kwyr®dr,
0 (

. ]

where wy is the volume of the A-dimensional unit ball.
Thus

72 (RF\B(o, R)) = A / alr) — Dkwyr®™'dr,
JR

and in case (i)

[ (RE\B(o, R))| = A /R O R gt dr = OGN dr = O(R™)

satisfies condition (5.21).

In case (ii) using integration by parts in the third equality we get

|’y?{iEf(Rk\B(o,R))| = )\/ O(r® exp(—pr’) kwpr*'dr = / O(rF " exp(—pr?))dr

J R J R

= O(RF*F exp(—pR°)) + 0( ._ O>r* e oxp(—p r"j))(h)

J R
= O(RMFexp(—pRY)) = o (R~ F) for all ¢ > 0,

and the condition (5.22) is fulfilled. O

5.5 New estimator - for stationary isotropic point
processes

If we rewrite the estimator 3;“1 with the kernel w(x) = 1(||z|| < 1) in the following way

o OWa) i W) b (D) 1w(y) ( <I>(l1f'n)>2 _—
Wl (W —2) 0 (Wa — ) "\ Wal )
we can see that the middle term
3~ Lz —yll < o)y (@)1, 1) o591
|(M’/n o ‘E) M (‘/V,,, - y)l

r,ye P
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s equal to the standard rigid motion-invariant estimate (3.9) of N2A (13(0.nb,)).

Ihis suggests that we may improve the estimator 2 using the facts that are known
about different ratio-unbiased estimators of the A-function. For stationary isotropic pro-
cesses usually the estimator (3.10) is used. Because in our case

nb, <n <radius(W,).

5 . } - = - -. ‘. -
and W, is convex we have W\ — | . and

—— :?é o - r - . .
NK(r) = Z Llz — vl < {‘),ln”(l M. () k(. y), for 0<r<n, (5.25)
r,yed ‘ "l
where
OB(z. ||z —
9B, ||z — y|)) for x#yeW,, |l[x—y| <n (5.26)

k(z,y) =
®Y) = 8B, [z — o) N W

The isotropic estimator (5.25) is believed to have similar properties like the rigid motion-
invariant estimator (5.24) for n b, small in comparison with the size of the window W,,.

For n b, large it should have smaller variance then the rigid motion invariant estimator

(see [46]).

Inspired by (5.25) for isotropic processes ¢ we can define a new estimator of o

i 1(|lz — y|| < nb,)lw. (2)1w dW I\

z,ye e
where k(z,y) is defined by (5.26) for x # y and A(x,x) = 1.
=

Note that the isotropic estimator 2 cannot be written in the form (5.9) because the
function k(x,y) depends also on the window W,.

Since all W,, = n[—1, 1]* it holds
k(z,y) < 2F forall z,y,e W,, ||z —y| <n. (5.28)

In the special case of k = 2 we can compute

- > ( (n - :1;1) PR (n — |:r-2})
(z,y) = 27— (arccos | ——r arccos [ ————
| |z —yll Iz —yll

{5 (e (=) e (5531)3)
<+ mm § = | arccos| ——— | + areeos | ————— :
- |z — yl| |z — y|

where = = (21, 22), ¥y = (Y1, %2) € Wy, and |z — y|| < n.

Theorem 5.9 Let ® be a stationary isotropic point process on R¥. Under the assumptions
(A0) - (A4), the sequence of estimators {a2} is asymptotically unbiased for o* and if (A5)
or (A6) is fulfilled it moreover holds

Elg2 —~o’]> = 0 as n— oo. (5.29)
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Proof. Analogous to the proof of Theorem 5.5. For the proof of unbiasedness we use the
fact

0 Z 1(||z — yll < nb) Ly, (2)1y, (v)

W k(a,y) = MK (B(o,nb,))

x,ye P
5 o
= M2 (B(o,nby,)) + X*|B(o,nb,)|,
thus equation (5.12) holds and from (A4) we have the asvmptotic unbiasedness of G2

Also the proof of L, convergence (5.29) is the same, only instead of the bound (5.18)
we use the bound

ok

=
Wl
that we get from (5.28). L]

.fl (111 y) ]-H'” (J')lu}, (U)l B(o.nby, )}(‘F - U)

It is easy to see that the MSE-asymptotically optimal bandwidths for the isotropic esti-
mator &, are the same as for the estimator &2 with cvlinder weight function

w(z) = 1(|lz]| < 1).

Corollary 5.10 Let ® be a stationary isotropic point process on R* and suppose that the
assumptions (AQ) — (A3) are fulfilled.
If (A6) holds then the MSE-asymptotically optimal bandwidth for a2 is

*

bt = (—, for ¢ = inf{c : supp ('\(_2_' ) € B(o,c)}.
n
If (A5) holds and
I/2(RF\ B(o,R))| = O(R™*) as R — o0 for some € > 0 (5.30)

then the MSE-asymptotically optimal bandwidth for a2 is

12 .
b, =cn 22 for some constant ¢ > 0.

If (A5) holds and

%2 (R¥\ B(o, R))| = o(R™*) as R— oo for all e >0, (5.31)
then the MSE-asymptotically optimal bandwidth for &;. has the form
b — h(n)
n

for some function h satisfying h(n) — oo and h(n) = o(nf) for all ¢ >0 as n — oo.

The advantage of &> is that the correction weights k(z,y) are larger than 1 not for all
z,y far from each other but only when they are near the boundary of the observa,tlon
window. On the other hand 2 should have approximately the same bias as g2 with the

cylinder kernel.
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2.6 Behaviour of the estimators on middle-size win-
dows in R* — simulation study

Returning once again to the decomposition (5.23) we can see that the middle term is
responsible for the main part of the variability of the estimator 2. especially when the
value of b, is near to 1 because then the correction weights

”,‘rnl ) |
- KLVT! o I) M (UH o g)‘ - (1 o bn ):2

for (r __u)G[——nb,,.nb,,jk. (D.32)

can acquire much larger values than 1. For small windows the estimator can even have
negative values.
In the following we want to study the behaviour of the estimator on middle-size windows
(in R?) by which we mean at least 60 observed points in the window and b, at most 1/v/2.
The variability of the middle term depends also on the form of the chosen kernel function
w. For functions like
w(z) = max(1 — ||z||*,0), (5.33)

(let us call it the half-ball kernel) or
w(z) = max(1 — ||z||,0), (5.34)

(the cone kernel), the larger correction weights (5.32) are balanced by smaller values of
the kernel function for larger values of  —y. On the other hand for these kernel functions
the estimate 2 can be biased more easily than for

w(xr) = 1(||z] < 1),

(the cylinder kernel), because the bias is determined by

/A('ur.”(:r) — 1)’}?(,331((1;1').
-

To see how the estimators of ¢ behave on middle-size windows for different specific
stationary point processes we made a simulation study for processes in R?. We simulated
the processes on windows of 3 different sizes, namely on

Ws = [—5,5]?, Wi =[-10,10]°, Wa = [-20,20]°

and from 100 realizations of the same point process we computed the squared bias, the
variance and the MSE for the four estimators:

— o2 with the cone kernel,
52 with the half-ball kernel,
52 with the cylinder kernel

. . - =g .«.,2
— the isotropic estimator ;.
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For each of the estimators we used a scale of bandwidth values
I !).” & []_3 Hh” € H-} n bn € [10|

on windows W5, Wi, and Wy, respectively.

The procedure was done for 6 different point processes fulfilling condition (A5), all
of them were isotropic and five of them had intensity A = 1 (i.c. the mean number
of observed points was 100, 400 and 1600 respectively) the last process had a slightly
smaller intensity. In Section.7 there are examples of realizations of the processes on each
of the three windows. The following processes were used :

1. Poisson point process with intensity A = 1.
(2) _ 2
Here v,.; =0 and 0% = .

2. Matérn cluster point process with intensity A = 1. mean number of points in the cluster
1 =95 and radius r = 1/2.

’y?(ﬂgc)t has bounded support and it holds

1et(RA\B(0,2r)) = 1eh(R:\B(o, 1)) = 0,
and from the formula (3.12) for the A-function we get

K(R) = |B(o, R)| + , for R > 2r.

Thus together we can derive

0% = AL+ 77e(R%) = M1+ (aep — Al I)R ))
= )\(1+/\(1%£n(h(3(0, R)) — |B(o, t)]))) = A(1 + p) = 6.

3. Matérn cluster point process with intensity A = 1, mean number of points in the cluster
1 =5 and radius r = 1.

Thus in comparison with the preceding point process we have less compact clusters

of points.
V2 (RN\B(0,2)) =0, o°=6.

4. Thomas cluster point process with intensity A = 1, mean number of points in the
cluster ,u = 5 and variance v = 1/2.

Here '}7 od ) does not have bounded support and from (3. 12) we have

lim (K (R) — |B(o, R)|) =

R—oo

That means we get the same asymptotic variance as for the Matérn cluster process

o® = M1+ p) =16,
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5. Thomas cluster point process with intensity A I, mean number of points in the
cluster 4 = 5 and variance v — 1.
~ (2)

r'rt d

Again this process has less compact clusters than the preceding point process.
does not have bounded support and the asvinptotic variance o2 = 6.

6. Matérn type II hard-core point process with r — 1/2 and Ag =1
I'he intensity of the process is A\ = (1 — exp( —A,r?)) /(7r® ) and we see from (3.13)

that the pair correlation function g = 1 for 2 > 2. Thus 4 ‘“”, has bounded support

e

and using the formula A'(R) = .I;:{ g(x)kwpa® 'da we have
A= 0.693.
2 (Blo.2r)) = —0.494,
2 (R*\B(o,2r)) = 0,
o° = 0.350.

The resulting graphs can be found in Section 5.7. There are shown the empirical MSE,
variance and squared bias of the estimators as functions of the bandwidth 7 b,,.

To be able to compare the behaviour of the estimators for the different processes we
used in the graphs the relative MSE

rel MSE = MSE(52)/(0%)?,

relative squared bias and relative variance.

From the figures we can see good performance of the estimators for Poisson point
process since there is no problem with the bias in this case. For Matern II point process
. . 2 . - o~ .
we get similar results because supp (7.-;) C B(0,1) thus the estimates 62 and 72 with
the cylinder kernel are unbiased even for nb, = 1 and the variability of the estimators is
smaller because of the regularity of the point pattern.

We get a different picture with the cluster processes, since diam(supp (’)‘f_ﬁ)},)) here is

bigger or even infinite and bias is a problem. The smallest value of MSE we get in all cases
for 52 with cylinder kernel and for the isotropic estimator o2 with a suitable bandwidth.
These two estimators behave almost identically on Wy and Wy for smaller values of
nb,, for larger values (larger than the MSE-optimal bandwidth) of the bandwidth the
isotropic estimator o> has smaller variance. The bias variance trade-off in dependence on
the bandwidth can be seen well for the cluster processes and it is also evident that the
two other estimators &2 with the cylinder and cone kernel are not good.

Looking at the optimal obtained values of rel MSE for cluster processes on W5 and Wi
which are between 0.05 and 0.15 we can see nevertheless that it is impossible to estimate
72 well by such sizes of the observation window. The estimators behave reasonably well
only for I:vig windows like Wyo (which means approximately 1600 observed points in this

case).
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5.7 Figures

In the following figures are shown the results of the simulation study on the asymptotic
variance of stationary point processes.

However to get a better idea about the different point processes used in the simulation
study, examples of realizations of the five nontrivial processes (i.c. excluding the Poisson
point process) are shown on the first page. The processes are shown on windows of all
three sizes to be able to observe the behaviour of the point processes on different scales
(note that in each case it is actually only one realization simulated on Wy, and then the
central area is magnified).

Each row of the figures corresponds to one type of point process which is indicated
(included the value of the distinguishing parameter. if needed) above the three figures.
The figures in each row are from left to right realizations of the corresponding point
process on W5, Wy, and Woy,. The number of observed points is given in the parentheses
after the indication of the point process.

On the subsequent four pages are shown the graphs of the relative MSE (y-axis)
rel MSE = MSE(53)/(0?)?,

of the different estimators of the asymptotic variance o° as functions of the value of
the bandwidth n b, (z-axis). The value of the empirical relative MSE (full-drawn line)

is moreover decomposed into the relative squared bias (E(a2) — 0%)?/(0%)? (dotted line)
9 2\2

and the relative variance Var(a;)/(0°)” (dashed line) part. Thus the development of the

bias variance trade-off can be observed easily.

[

The different estimators are distinguished by colours:

black lines - o2 with the cylinder kernel

red lines o o2 with the half-ball kernel
green lines - o2 with the cone kernel
blue lines o 52 (isotropic estimator)

In all figures the type of the point process and the size of the observation window
are indicated in the upper margin. First all graphs for W5 = [—5,5]* are shown then
Wi = [-10,10)* and W, = [—20,20]*. Moreover for the window Wy = [—20,20]* are
shown the more detailed graphs for the shorter range of nb, € [1, 3].
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Chapter 6

Filtration problem for Cox processes
driven by Ornstein-Uhlenbeck type
processes

6.1 Introduction

In this chapter we consider the problem of filtration for temporal and spatial-temporal
Cox point processes driven by OU type processes.

Let ® be a Cox point process on R, or R, x R and suppose that the random measure
A which is driving the Cox process (recall the Definition 3.21) is absolutely continuous
with respect to the Lebesgue measure on R, or R, x R* respectively, and let us denote
the corresponding (random) density function by A. We will call A the driving intensity of
the Cox process. The problem of filtration is to estimate the unknown driving intensity A
after having observed the random point process ® on the interval [0,¢) or on [0,¢) x R*
respectively.

The filtration problem is a classical problem which was studied by many authors (c.f.
[44], [14], [45], [28], [10], etc.). We will concentrate on the situation, when the driving
intensity depends on the realization of an OU type stochastic process X'. We will adopt
two different attitudes to the temporal and spatial-temporal case.

In the temporal case we derive a differential equation for the conditional distribution
PIX(t) | (P |jpp)] of X using the characteristic form of the differential generator, thus
extending the results of [45]. In the spatial-temporal case we will work with a larger class
of doubly stochastic analytic point processes defined in 14]. For such processes driven by
an OU type stochastic process X we will derive a differential equation for the conditional
mean E[X (1) | (© |[0,t)xli{"‘)]- Because under some minimal assumptions on the driving
intensity A the Cox processes belong to the class of analytic doubly stochastic point
pro(:(?ssg‘s, we get the result also for the spatial-temporal OU Cox processes.
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6.2 Filtration problem for temporal Cox processes

. 1 - N PN ) * . . + . . v .
Let ® be a Cox process on R, with the driving intensity A. We will make the following
assumptions on \

(L1) {X(#)}i0 is an R? valued stochastic process and the driving intensity of ® has the
form

XCOE) = ANE.X(E)),

where A : Ry x R — R, is a positive function

(L2) It holds
E(A(t, X (1)) < o, for all ( € R,.

Definition 6.1 (counting process of ®) Let & be a simple point process on R, . Let us
define the counting process { N(t)},.o of ® by

N(t) = ®([0,¢]). teR,.
It is a nondecreasing rcll random process.

In the filtration problem our task is to find the MSE optimal estimator \ of AL, X (L))
given {N(s),0 < s < t}, i.e. the random function A that minimizes

E[AG X(2)) = A* | N(s),0 < s <] = E[JAt, X(£)) = AP | (® [0))-

The solution is the conditional expectation of the driving intensity

—

Nt = E[AE X (1) | N(s), 0< s < 1. (6.1)

Thus our problem reduces to the evaluation of (6.1).

To shorten the notation we will denote by hat all the conditional characteristics given
the sample path of N, i.e.

E[.]=E[ | N(s), 0< s < t].

For example for the conditional characteristic function of X' () we write

o~

‘Zf;‘t(v) — IE [E’i(b" A(!))}

Definition 6.2 (characteristic form of the differential generator) Suppose X (t) is a
Markov process and there exists a nonnegative function g,(v, X (¢)) with finite mean such

that for all At > 0 it holds
L[ [60:4X0) — 1] X(0)]| < v, X(©). (6.2)
where AX (t) = X (t + At) — X(2).
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The characteristic form for the differential generator of X (1) is defined as

|H

. ] —
U (v | X(¢)) = lim g [etimaatr _ q | .\'(f)‘ . (6.3)

At]0 N\t

i

if the right hand side exists.
In [45] the following theorem is proved.

Theorem 6.1 [[45] Theorem 7.4.2] Suppose (L1) and (L2) are satisfied for the R*-valued
driving process { X (1 ) }es0 which is Markov stochastically continuous and suppose that the
driving intensity N((, X (1)) is left continuous. Then the following differential equation
holds for the conditional characteristic function of X (1)

-~

dyy(v) = B [0 (o | X(1)] dt (6.4)

+B [ X0 (2, X (1) X(r))]il)m_\'(r) A(1)dt),
A(t

Q,.[)(.‘,,) . E(,é(e'..\'{ll).\.

Inverse Fourier transform of (6.4) leads to a differential equation for the conditional
distribution of X (¢) given {N(s), 0 < s < (}. This equation can be principally solved
numerically, cf.[45]. The desired estimate of the driving intensity f\(r) 1s obtained by
evaluating the expectation of \(f, X (¢)) with respect to this distribution. Our aim is not
the numerical solution but the extension of the class of models for the theoretical study
of the filtration problem.

6.3 Filtration problem for temporal OU Cox process

Let us now return to the filtration problem for a Cox point process ® driven by an OU type
vector process X (t). Firstly we derive the characteristic form of the differential operator

for such X ().

Lemma 6.2 Let X (t) be an OU type d-dimensional process given as a solution of (2.16)
with v > 0 and with the background driving Lévy process Z(t) satisfying equation (2.9). If
X (t) has finite mean then the characteristic form for the differential generator for X(t)

18

U,(v | X(t)) = —iy (v, X(¢)) + 'y/ (eX* 2 — 1) u(dz). (6.5)

Rd
Proof. For the Markov process X () holds (2.11)

t+u
X(t+u) = X (t) + / eI (),
t
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thus for At > 0

4+ AL
AX(t) = X(t+ At) — X(t) X)) e ™ - 1) 4 / e~ WHBI=8)q 7 (~g).
J

where the first term on the right is for a fixed value of X (/) nonrandom O(/At) and it
follows

. . ' | S ESPAY | X |
= —yi(v, X(1)) + gm E]E {exp (3’ <z'. / g T ""“'(lZ('ﬂ.w)>) - l.\'(!)} ,
) J

if the limit on the right hand side exists.
Denote Z; the o-algebra generated by {Z(7s).s <t} and v'z(;) the characteristic func-
tion of Z(1). Then

(+ A4t .
E |exp (i<v. / r"“+“*-*’(1Z(-;,.q)>) - 1.\'(/)]
J 1

i t+AL
= [E [exp (i <r'. / g AEHa '”tlZ(j..n:)>) —_ 13,1
I :
- Al
= E |exp (i <U, / g T ‘”(lZ('}.w)>) — 1}
j Jo

Al
= xR (/ log(f'zu)(fﬂw'”“))(N“:H)) - 1.
0

In the second equality we used the fact that Z({) has independent increments. As the inte-

grand is a continuous function of v and (Af—s), the integral [UU log(vrz(1) (e A=3)0))d(75)
is also O(At) and it follows that for X'(¢) with finite mean the condition (6.2) is fulfilled.

From continuity of log(¢'z(1)) we get further

1 e o o 1
EH}JE ((?Xp (/ log(¢71y(e” ’(m“’v))d(’}s)) - 1) (6.7)
- 0
1 JAV " |
—'Eﬂzzaii/m log(v21)(€ " I0))d(7s) = 7 log(¥yn(v).
Jo

Combining (6.6) and (6.7) and substituting for ¢, we get the assertion of the lemma.
]

Now we are ready to derive the differential equation for the probability density of X ().

Theorem 6.3 Under the assumptions of Theorem 6.1 and Lemma 6.2 let the Lévy measu-
re 1 have density w with respect to the Lebesgue measure. If 1(RY) < oo the conditional

probability density of X(t) given {N(s),0 < s < t}, satisfies

dpe(z) = 7 (f}}(;r:)(l — p(RY) + ( * w)(x) + <J dpi(2) >> dt (6.8)

dx

4@@%*@ﬂ—§m)&”@Nmﬁﬁmmy
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where py x w denotes the convolution of py and w.
Generally (also for j((RY) = o) it holds

~ . ~ Ip,(r
dpi(z) = A (l' 1((_', “log(ezy)) + pe(a) + <1 ”);(jr)>) d/ (6.9)
7l

+pi(r) (,\(f..r) | R(r)) ﬁ (d.\‘(r) X(f)df) .

o =1 9. ] y -
where F~Y denotes the inverse Fourier transform.

Proof. From (6.5) and Theorem 6.1 it follows

(1‘&(‘0) = E {{K"' ALt) ('} / (e"" " — V)u(dr) — iq (. X(/)})] dt (6.10)
4R {e“*'- X(0) (,\(z“\'(z)) - ,‘i(z))} 1 (d.\'(r) - fi(z)dz) |
TZO(U) —- E [6,;'(;'..\'([1))} '

The inverse Fourier transform F'~' gives

dpi(z) = ~F! (I@[(*e(“”\'“))] / eHv®) u'(.r')({.:') v (R py (1)
Rd
4y F1 (1@{—5 (v, X(t))e"® -"“”}) t

#91a) (Ae.2) - 30) £ (v - ).

Now using the fact that the Fourier transform of a convolution yields a product of Fourier
transforms and the equality

- ) P I (x N ,
F (]E[—?' (v, X(t)) ef(t'-A(f))]) - <1 (;if;(rl)> + pe(x), (6.11)

which we got using integration by parts, we get the desired equation (6.8).
Alternatively, when we cannot divide the first term in (6.10) the inverse Fourier trans-
form gives

dp(x) = v F (@[ o, } log(wz) )) dt + v F! (fEE[—? (v, X (1)) e XU))}) At

1 =
4P ( ) = (dN(t) - A(t)dt) ,
pi(z )
and once again using (6.11) we get equation (6.9). ]

In the following examples we demonstrate both situations from the Theorem 6.3 for
d =,



Example 6.6 In the Example 2.1 we considered the gamma OU process X (t). We got
the density w of the Lévy measure 0 of Z(1)

WE) = are™ . >0 wle) =0, = <.

n.\ l
/ t_..—in—f_uﬁ.rd-r o .
. “ fl f(/

holds for a > 0, we get from Lemma 6.2

Since

kD;({.’ |

X(8)) = 11 ( S 1) — vy XN (1). (6.12)

@ (!

When we check finiteness of the Lévy measure of Z(1) we see

/ ave”dxr = v < o0,
R

and we can use Theorem 6.3 and by plugging (6.12) in the equation (6.9) we get for the
gamma OU type process

() = —vy([Fi(2) — (PrxE)(x))dt (6.13)
d) ﬂ ~ y\ 1 , ~
+=y (p;( ) + 2 P )) dt + p () (,\(/..:') — ,\([)) = ((l‘\/(f) - ;\(!)(l!) .
dx A1)
where &, is the density of the exponential distribution with parameter a. L]

Example 6.7 In the Example 2.2 we considered the inverse Gaussian OU type process
X(1). We got the Lévy density of the Lévy measure p of Z(1)

@ == S (247 = F, 220
Wz) =——= =1 —F%) =& F, r > 0.

Vo 2 A& .
Here we can see that [, w(z)dr = oo and thus equation (6.9) from Theorem 6.3 applies
and we have to use dnectl} the characteristic functions of X (/) and Z(1) and inverse
Fourier transform. ]

6.4 Spatial-temporal doubly stochastic analytic point
processes

Spatial-temporal point processes can be defined in several ways([10]). We follow the ap-
proach of [14] based on the notion of the analytic point process and an alternative def-
inition of the conditional intensity (which was defined in Section 3 using the martingale
approach). Further doubly stochastic spatial-temporal point processes are defined and the

problem of filtration is studied.
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A spatial-temporal point process is a point process ¢ defined on X' = [0, ~c) x R*. In this
section we will identify (€. F) = (A M). with & being the identity map from (2. F.P)
to N* (i.e. @ is simple) and

Ed([0,1) x RY) < o for anv > 0. (6.14)

The symbol N(t), t > 0 will now denote the random variable equal to P[0, 1) x R*).
N(0) = 0.

Since we have a natural ordering on the time axis it is possible to use an attitude different
from the general spatial point process case. We identifyv the realizations ®(w).w € 2 as

D(w) = {(t1,r1), (ta.ra).... }.

where 0 < t; < t, .. are the times of events and r; € R their locations. For j = 1.2, ...
let U = {(t1,r ) t2,72); -« 5 (t;.7;)} and F; C F be the o—algebra generated by U
Further let F;, = {‘D o.xzk ) © M be the o—algebra generated by the past of the

process up to time ¢, Fy = {0, Q}.

Definition 6.3 (analytic point process) A spatial-temporal point process @ is analvtic if
the following conditions hold:

a) P(N(t) < oo) =1 for all ¢ > 0 finite.

b) The measure P;(Q) = IP’(FJ c Q), Q € B(R**MJ) is absolutely continuous w.r.t.
Lebesgue measure on RF+1J 7 — 1 2

¢) The conditional distribution
[“}_}.1({ If}):P(IJ"FI < ‘ ,|.}"1 ..... /J,‘,'f'J').,
7=0,1,2,... satisfies F;;,(t | F;) < 1 for all {inite { a.s.

According to the condition b) of Definition 6.3 there is a density f;[(f1,71)... .. (L3; 5]
of the first 7 points of ®. The conditional density

filtr | Fo) = filt,r),

fim(t,m), o (g mg), (Gr)]
f.H—l( I F) ! f_-;[(tlarl)u - a‘Et‘j;}T_j)] v s 11

enables to define

0, o <t < f
g;(t,r3w) = Ffaaltr | Fill jf Jun Tri1(8,4 || Fy)dgds]™

Definition 6.4 (conditional intensity) The conditional intensity of an analytic spatial-
temporal point process is defined by

A*(t,r) = gne (L, T).
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Under the condition

o SR o (4
E (/ / /\'(u.z')(lz'(iu‘ < ¢ (6.15)

for any B € B(R*) and 0 < 1 < u < ~ it holds a.s. (cf. (3.7))

E[®([t,u) x B) | /] = E {/ A (u. v)dedu .7:,} .
Jit JB

t

Also, the likelihood of a realization of the process observed up to time £ is expressed by
means of the conditional intensity as

= 'n'
Li(w) = II;-\'z(f},\*(/,-.'!‘,](‘.\;]) { / / D%l (172 z‘)(lf'(luJ ;
JO JREkK

assuming the product to be equal to 1 if V(1) = 0.

Lemma 6.4 Suppose that for the intensity A of a spatial-temporal Poisson point process
IT holds (6.14) and that A is absolutely continuous with respect to the Lebesque measure
on Ry x R*. Then 11 is analytic and its conditional mtensity is equal to the intensity
function \* = \.

Proof. Condition a) from the Definition 6.3 follows from (6.14). b) and ¢) from the

absolute continuity of A with respect to the Lebesgue measure on X'. \* — X follows from

(6.15) and the definition of the Poisson point process. []
Now we proceed to the doubly stochastic processes.

Let (2*, S, P*) be another probability space and
P:Q"x Fw—[0,1]

a probability kernel such that for each w* € Q" P(w",.) is the distribution of a spatial-
temporal point process, denoted ®*.

Definition 6.5 (doubly stochastic point process) A doubly stochastic (spatial-temporal)
point process is a process with distribution (A) = P'/(A x Q%) A € F, where

P'(A x S) —j P(w*, A)P*(dw*), S € S.
i

If for each w* € Q* P(w*,.) is the distribution of a Poisson point process on &X', the doubly
stochastic process with distribution I is a Cox process.

This is a natural notion of a Cox process in our setting of the product probability space
() x Q*, c.f. Definition 3.21 on a simple space.
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Theorem 6.5 [[14] Theorem 3] Let ® be a doubly stochastic spatial-temporal point process
such that ®* is analytic for cach «* € O° and th corresponding conditional mtensities
A, w,w* ) are Jomtly measurable in the arquments t.r.o and »* and

o X
/ {/ / A's.q; ,L‘.VL"J(lquJ P(de x du*) < 0. (6.16)
Ox0- LJo Jad

Then (i) ® is analytic,
(11) the conditional intensity \* (1. r: «) of the point process ® s

AL, riw) = E'AY (L riw . L™ F x Sol,
where Sy = {0, Q*} is the trivial o—algebra and B’ the crpectation w.r.t. 1.
Combining the theorem with Lemma 6.4 a direct consequence for the Cox processes is
l I

Corollary 6.6 Let ® be a Cox process on X satisfying (6.14), such that its driving mea-
sure A(w*) is absolutely continuous with respect to the Lebesque measure on X a.s. Then
® 15 an analytic doubly stochastic point process.

The likelihood of a general doubly stochastic process is equal to

Lilw) = \: X( ) exp [ / / (u, v dmluJ.

6.5 Filtration for spatial-temporal doubly stochastic
analytic processes driven by OU type processes

In the above setting used for doubly stochastic spatial-temporal point processes, the
filtration problem means doing inference about the value of the unobserved w* if we
observe the realization {({1,71),...,({n@). "n@ )} of @ in [0,1) x R*. We can express the
conditional probability

(5

Jw)=P Qx5 |FxS)ww'), SES,

using the likelihood of ®.
Theorem 6.7 [[14] Theorem 5] For a doubly stochastic process ® satisfying the conditions
of Theorem 6.5 it holds for all S € S and t € [0, 00)

1
)(w) = L;(w)

P*(S

/ Ly(w, w*) P* (dw*),
S

r o la ' w * Y Irel ;oK
P a.s. on F. Here Li(w,w*) are likelihoods for ®* given w*.
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Corollary 6.8 [[14]] Let ® be a doubly stochastic analytic point process satisfying condi-

teons of Theorem 6.5 and suppose that the conditional intensiticos \* (t, ryw,x™) areleft con-

tinuous in t and continuous in r. For an (Fi xS)- uu’u;m d spatial-temporal vector random

fieldY (t,m;w,w*) defined on [0, oc) x R¥ x QO xQ* denote Y (. 1) = E/[Y (. r:w. )| Fi xSp).

It holds | |
Y(t.r) = E* (Y (t.r)exp(&(t))).

where E* is the mean value with respect to 1> and

/ / /\* 8. ; — \ (L. ; (lf(l‘- / / g - (l’((IH (I!) (617)
RA \

Now we have at our disposal all we need to approach the problem of filtration for doubly
stochastic point processes driven by OU type temporal stochastic processes. Thus in the
rest of this chapter we suppose that the probability space (Q*.S. P*) corresponds to the
probability space of an OU tvpe process { \'(/)}

-~

We are interested in the filtered estimate N () — R[N (1.w.2")|F x Sy|. To be able
to derive the differential equation for X we need the It6 differential formula for a special
type of vector process. Stochastic integral with respect to the Poisson random measure is
understood in the sense of [9], Subsection 8.1.4.

Lemma 6.9 Let ® be a doubly stochastic point process from Theorem 6.5. Let for the
vector process ((t) = (C'(1),...,C™(1)) hold

d((t;w,w*) = a(t;w,w*)dt + CdZ(yt;w,w™) + / M, ryw,w™)P((dt, dr); w,w"), (6.18)

ik
U

where a, 0 are random m-dimensional vectors, C' is an m x d matrix of real numbers, and
{Z(t)} is a d-dimensional Lévy process with the characterisiic function given by (2.9).
We assume that o, 0 have sample paths which are left continuous in  and continuous in
r and are (F, x S;)-adapted, where S; = 0{Z(s):s < (} C S. Let ) be a C'"'(R™) scalar
function. Then n satisfies the following stochastic differential equation a.s.

) | _
dn(¢() = <a(t>, ‘;)—Z(t)>dr+ ﬂ ((G(t-) +8(t,1) = n(G(t-)) B(dr. dr)

+/ (n(¢(t-) +Cy) — (n(¢(t-)))) Jz(d~t,dy), (6.19)
J R
where ((t_) = lim{(s) and Jz is a Poisson random measure satisfying (2.8).

sTt

Proof. We need to show that

)
n(¢(t)) — n(c( /ﬂ< | ;Z’ )>dr (6.20)

)+ 0(t,r)) —n(C(t2))) (de, dr)

o[ [
/R ((C(t=) + Cy) — ((C(L-)))) Jz(dnt, dy),



holds a.s.

Let us first suppose that the Leévy process Z has finite Lévy measure pu. ie. {Z(¢)} has
only finite number of jumps on every interval [0./) a.s. Then we can proceed like in the
classical proof of the It6 formula in [16]. cf. 11 We consider a sequence of partitions
Ty =ATij:::., Tj+1,4} of the interval [0.4) defined for j € N by

For any such partition we can write

J

J
n((C() = n(C(0)) = > n(C(Tis1)) = (C(7y) = D 0(C(7y) + ACT)) = 0(E(7))),
= =

!

where
Ag(Ti,j) - C(Ti+l,J) o Q(Ta._;) = -/\-1.*.‘; 1 /\]))-‘,J i /\/)r.‘;-

and

Ti+1.)
Ar’lz“j = / a(s:w,w")ds,
T

1.7

Al))zj = ('/ -- (IZ('}-"-'IUL'..A.‘*).
AD,;; = / - / oL, r:w,w” YO((dt, dr); w, w*).
.3 J IRk

Let us write n((¢(¢)) —n(¢(0)) =>_4, +2_p, +2_p, where

J
Doa, = 2 1my) + ALmy)) = nl(7iy) + ABy; + ADy),
’ i=1
J
D g, = 2Ty + DB+ ADiy) = n(C(ig) + ADy),
’ i=1
J
Dy, = 2 mC(mg) + ADy) = n(l(,)
’ i=1

From the mean-value theorem we have
: t o
jlilix.l\ E T /{; <(r(f). I(/)> dt. (6.21)

Because ® is an analytic doubly stochastic point process it has only finite number of
points in [0,¢) x R* thus f(; fur d®(dt, dr) has only finite number of jumps. The same

ot t
c / B s = C / / vz (d(v8, 1))
0 0 JR4
91
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w;l;fon the Lévy measure y of Z is finite on R?. Morcover the jumps of ¢ and J, arise at
3

diterent times. Thus for big cnough m(w, ") there is at most one jump of ¢ and .J, in
each [7; ;, 74, ;) for any j > m(w.x") and

$([0,0) x R* ;)

Dopy = 2 Sy + 0t — n(Slmy))

(=1
’u 1“ d Jz( tiu].rll s

ZB,j = Z (¢ Tq.) )¢ 'f/q ) 1 Q Tq. ¥

q=1

Here (L1,77), ("/fq.yq) are the occurrence points of ¢, .J,. respectively and the intervals
[Tf,jan—i—],j) and [Tq‘J-. Tg+15) are the elements of the partition containing, the points . [,
respectively. From the continuity of 7 and the existence of loft limits for ¢ it follows

D([0,0) xR¥ 50,0°)

Bm =D w8 ()

=1

i p
= / / ((CUL=) +0(Lor)) — n(c(t2))) P(dil, dr) (6.22)
Jo JRrk

ln’ 1] Jpa Jz(vs,dy)#0]ds

Jim } 0= Z (Gl ) + Cyg) — (<l )

— // n(Ct_)+Cy)— (m(C(t)))) Jz(dyt. dy). (6.23)
R4

almost surely. By combining (6.21), (6.23) and (6.22) we get (6.20).

For general Lévy processes {Z(t)} we know from the remark behind Theorem 2.3 that
every Lévy process can be decomposed as Z(t) = Z(t) + R‘(t), where Z*(t) is a Lévy
process with finite number of jumps in any bounded interval and R({) is a mean-zero
square integrable martingale with Var(R({)) — 0 as ¢ — (. Denote by ¢ the process
defined by (6.18) but with the Lévy process {Z({)} instead of {Z(()}.

Suppose that 7 and its first derivative is bounded by a constant K. Then

((n(¢(t-) + Cy) — (n(C(t-)))| < KCy
thus the right hand side of (6.20) is finite since Z(f) = [0 Jwa yJ2(d(y. s)) is. Moreover
n(¢(1)) = n( M) < A“-’(R‘(z-))?

Thus

lim 7(¢*(¢)) = n(¢(?)),
in £2(P). But the equation (6.20) holds for (¢ and taking the limits on both sides we get
the equality (6.20) also for Z(t).
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| A general Lévy process tulfilling the assumptions of Lemma 6.9 is of finite variation thus
it we define the sets Ay = {(w, ) : C(s:w.w™) < M for all s < t}. then Ay — (Q x27)
as M — oo. But 7 is bounded with bounded first derivatives on .1y, and (6.20) holds
on Ay, Thus taking limit M/ — ~ the validity of (6.20) follows for any ¢ satisfving the
assumptions of the theorem. 1

Now we are ready to derive the differential equation for the posterior mean X of X (/).

Theorem 6.10 Let ® be a doubly stochastic point process from Theorem 6.5 driven by
an QU type d-dimensional process X(t) given by (2.10) with v~ > 0 and with the Lévy
process Z(t) satisfying equation (2.9). Suppose that the conditional intensities N*(t.r) are
left continuous in t and continuous in r. Then the conditional mean N () satisfies

-~ -

d)?(t) = -«,;-‘?(t)clt / (TE[.\'({.-),\*(L:-)] N (¢t A (¢, r))drdt (6.24)

JRd

o~ -~

+/ (IE[.\'(I‘_)/\*(f.r")] — X[t )A*(t. 7)) d(dt, dr) + dZ(~1),
J Rk

,‘:“(t.r)

Proof. Let ((t) = [X(1),&(1)] be a vector process with (d + 1) components. Combining
(2.16) and (6.17) we get the stochastic differential equation for ¢

B —~X(1) 0 dZ(~1)
d¢(t) = ( —jﬁ@k(/\* B X"‘)d'l" )d{ { ( Ir* l(_Jgf\\-}rD((l!,(l!') ) L ( () ) '

Fori=1,...,dlet
ni(C(L)) = Xi(t) exp(&(1)).

Then 7; are continuously differentiable functions and we have

. eft) § =

on; A
v 0 7 #i.d+1
O n  j=d+1

Thus we can use Lemma 6.9 for ¢ and each 7; with
a(t) = [—yX(1), / (A" — X“)(lr}.
Rk
A\t
o(t,r) {(), ...,0,log 7} :

/\*
il
C: (0)‘

where 1 is d x d identity matrix and 0 is 1 x d matrix of zeros. Using the equalities

I

n(C(t2) + Cy) — ((C(t2))) = (X(8) +y)ett ) — X (et ) = yetlt ),

93



and

M(C(t=) + 8(t,7)) — mi(C(t)) = Xy(¢_ ) P85 _ X (¢ )ef) = p (C(¢ ))<\T-_ 1).

we obtain

-

dni(C(t)) = —vX;()ef)dt — ni(C(t n/ (A — \) drdf (6.25)

(A" — ,f‘) } d(dt x dr) + /

+n:(C(L-)) / 7

w :';.L

yetW.J,(d~t x dy).

o 4

~

Now from Lemma 6.8 we have X, (t) = E*(n;(<(t))) and from Fubini's theorem

dX;(t) = E*(dn({(2))).

Therefore taking expectations on both sides of (6.25) and writing

E* [/ yet W, (dyt x d'U)J = E* [f‘ﬂ”/ yJz(dryt ‘I.’/)] dZ(~1).
Rd R4

we obtain the equation (6.24). L]

Corollary 6.11 Let ¢ be a spatial-temporal Cox process from Corollary 6.6 driven by an
QU type d-dimensional process X (t) from the Theorem 6.10. Suppose that the conditional
intensities X*(t,r) are left continuous in t and continuous in r. Then the conditional mean

X (t) satisfies equation (6.24).
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