
Language Modeling for Speech Recognition of 

Czech 
by 

Pavel Krbec 

Submitted to the Institute of Fonnal and Applied Linguistics ~t the 
Faculty of Mathematics and Physics, Charles University, Prague 

in part i al fulfillment of the requirements for the degree of 

Doctor of Philosophy 

at the 

CHARLES UNIVERSITY IN PRAGUE 

March 2005 

© Pavel Krbec, MMV. All rights reserved. 

Author ............................................................. . 
Institute of Formal and Applied Linguistics at the Faculty of 

Mathematics and Physics, Charles University, Prague 
March, 2005 

Certified by ......................................................... . 
Doc. RNDr. Jan Hajič, Dr. 

Associate Professor 
Thesis Supervisor 

Accepted by ........................................................ . 
Prof. PhDr. Jarmila Panevová, DrSc. 

Chairman, Department Committee on Graduate Students 



I certify that this doctoral thesis is all my work, and that I used only the cited 

literature. The thesis is freely available for all who can use it. 

Prague, March 11, 2005 

3 . 



Language Modeling for Speech Recognition of Czech 

by 

Pavel Krbec 

Subrnitted to the Institute of Forrnal and Applied Linguistics at the Faculty of 

Abstract 

Mathematics and Physics, Charles University, Prague -
on March, 2005, in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy 

In this thesis, I have designed and implernented a new language model for speerh 
recognition. 

The innovative part of the language model is the integration of the HMM-tagger 
component designed by myself. The HMM tagger can be used as a stand-a.lone 
disambiguation tool and, when combined with the hand written rules, it is currently 
the best disarnbiguation tool for Czech language in terrns of error rate. 
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racy of the novel language model outperforms other state--of---the--·-art Czech language 
models. 

Thesis Supervisor: Doc. RNDr. Jan Hajič, Dr. 
Title: Associate Professor 

5 . 



Acknow ledgments 

I would like to thank to my advisor Jan Hajič~ for his scientific guidance and for 

persuading me to start the PhD study in the field of statistical linguistics. 

I was fortunate enough to work with Prof. Frederick Jelinek and some of the best 

professionals in the area of speech recognition in the Center for Language and_Speech 

Processing (CLSP) in Baltimore. I found excellent friends and colleagues in Asela 

Gunawardana (in his case also a great rugby teanunate), Ciprian Chelba, Diinitra 

Vergyri, Vaibhava Goel and Peng Xu during my stay at CLSP. It was also there where 

I have realized what I would like to accornplish in the field of speech recognition. I 

would also like to express my gratitude to my Czech colleagues Pavel Ircing, Petr 

Podveský, Pavel Kvetoň, Nino Peterek, Martin Črnejrek and Jan Cuřín who have 

been always willing to share and exchange idea.s on rny research topic. Special credit 

goes to all my colleagues at IBM Research and in particular to the embedded speech 

recognition group, which is the best research team I could have ever joined. 

Finally I would like to thank to my wife Anna. Without her support and moti­

vating encouragement the thesis would never be finished. 

7 



Contents 

1 Introduction 17 

1.1 History of Speech Recognition 17 

1.2 Speech Recognition Today 18 

1.3 Motivation for Speech Recognition of Czech 19 

2 Hidden Markov Model 21 

2.1 Introduction . 21 

2.2 Hidden Markov Model 21 

2.2.1 Definition 21 

2.2.2 Evaluation Problem . 23 

2.2.3 Decoding Problem 24 

2.2.4 Training Problem 25 

2.2.5 N ull Transitions . 26 

3 Speech Recognition Engine 27 

3.1 Overview ......... . 27 

3.2 A Mathematical Formulation 28 

3.3 Components of a Speech Recognition Engine 29 

3.3.1 Acoustic Processor 29 

3.3.2 Acoustic Model 30 

3.3.3 Language Model 31 

3.3.4 The Hypothesis Search . 32 

3.4 Measuring the Quality of the Speech Recognizer 34 

9 



4 Language Modeling 

4.1 Introduction to Language Modeling 

4.2 Language Modeling and Natural Language 

4.3 The Traditional N-Gram Approach 

4.3.1 Data Sparseness Problem . . . 

4.3.2 Data Sparseness and Czech 

4.4 Good-Turing Estimate and Katz Backoff Model 

4.4.1 Good-Turing Estimate 

4.4.2 Katz Smoothing . . . . . 

37 

37 

38 

39 

40 

41 

43 

43 

43 

4.5 Combination of a Hidden Tag Model and a Traditional N-Gram Model 45 

5 HMM tagger 

5.1 Introduction .. 

5.2 The Problem of Tagging 

5.3 Probabilistic Formulation . 

5.3.1 Maximum Likelihood Training .. 

5.3.2 Linear Smoothing . 

5.3.3 Bucketing . . . . . 

5.4 Tagging of Inflective Languages 

5.4.1 Tagging Czech ...... . 

5.4.2 Tagging Experiment for Czech .. 

5.4.3 Further Improvements to the Czech HMM Tagging 

6 Speech Recognition Experiment U sing the Combination of a Hidden 

Tag Model and a Traditional Word Based N-Gram Model 

6.1 Acoustic Data . . 

6.2 Acoustic Features . 

6.3 Lattice Rescoring 

6.4 Baseline System . . 

6.4.1 Scaling Factors 

6.5 Beating the N-Grams . . 

10 

.... 

51 

51 

51 

52 

53 

55 

58 

59 

59 

60 

62 

65 

65 

66 

66 

66 

67 

69 



6.5.l Discussion of the Results 

7 Conclusion 

A Tables 

A. l Positional Tags: Quick Reference 

B Examples of Recognized Sentences 

11 . 

69 

73 

75 

75 

85 



12 



List of Figures 

3-1 Noisy channel rnodel of speech recognition as described in (34] . . . . 28 

3-2 Bigram language rnodel when the dictionary consists of three words only 32 

4-1 Vocabulary self-coverage for the Czech National Corpus . . . . . . . . 41 

5-1 Linear smoothing section of an HMM corresponding to transition prob-

abilities in the tagger . . . . . . . . . . . . . . . . . . . . . . . . . 57 

6-1 Impact of the scaling factor for an n-grarn based language n1odel . 68 
, , v 

6-2 Lattice corresponding to a sentence "GENERALNI REDITEL POD-
v, v , , , 

NIKU JIRI OLIVA TO POVAZUJE ZA VYHODNE ZHODNOCENI 
v , 

FINANCNICH REZERV." . . . . . . . . 

6-3 Accuracy as a function of ÍLM and Ítag 

13 

71 

72 



14 



List of Tables 

4.1 The a1nount of n-grarns needed for a. vocabulary of 62,000 words . . . 40 

5.1 Example smoothing coefficients for the probability P(t1. I t1-1, ti·-·'2).mwoth 59 

5.2 Czech Morphology and the Positional Tags . . . . . . . . . . . . . . . 60 

5.3 Evaluation of the HMM tagger on the Prague Dependency Treebank, 

5-fold cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

5.4 Evaluation of the combined tagger on the Prague Dependency 'I'ree-

bank, 5-fold cross validation . . . . . . . . . . . . . . . . . . . . 63 

6.1 Finding the optimum scaling factor on the set of held-out data . 69 

6.2 Test data experiments 

A.l Part of Speech . .. . . 

A.2 Detailed Part of Speech . 

A.3 Gender . 

A.4 Number 

A.5 Case ... 

A.6 Possgender . . 

A.7 Possnumber 

A.8 Person 

A.9 Tense .. 

A.10 Grade 

A.11 Negation . 

A.12 Vaice .... 

.. 

.. 

15 

. . 

70 

75 

80 

81 

81 

81 

82 

82 

82 

82 

82 

83 

83 



A.13 Reservel 

A.14 Reserve2 . 

A.15 Var ...... . 

16 

83 

83 

83 



Chapter 1 

Introduction 

Automatic speech recognition (ASR) is a process when a speech recognizer transcribes 

speech into text. The recognizer is usually based on a finite vocabulary which restricts 

the set of words to be transcribed. The terrn "automatic" rneans that the actual 

process of transcribing is done without any human aid. 

1.1 History of Speech Recognition 

The first machine to recognize human speech was a celluloid dog, the "Radio Rex". 

The simple electromechanical toy from 1920 was capable of jumping, when iťs name 

was spoken. 

In 1952, as government funding research began to gain momentum, Bell Labora­

tories developed an automatic speech recognition system that successfully identified 

the digits 0-9 spoken to it over the telephone. The struggle to create a robust speech 

recognizer continued through sixties with no immediate success [47]. The main prob­

lem of these early systems was that they were able to recognize discrete speech only1, 

not continuous speech. 

In 1969 John Pierce2 of Bell Laboratories made the statement that automatic 

speech recognition will not be a reality for several decades because it requires artificial 

1Speech, where words are separated by longer pauses than usual, to make the recognition easier. 
2 John Pierce's satellite research was awarded with the Draper Prize, one of engineering's top 

honors, in 1995. 
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intelligence. Only few years later the "Hidden Markov Modeling (HMM)" approach to 

speech recognition was invented by Lenny Baum of Princeton U ni versi ty and shared 

with several ARPA (Advanced Research Projects Agency) contractors including IBM. 

The real breakthrough came in 1971 when DARPA (Defense Advanced Research 

Projects Agency) established the Speech Understanding Research (SUR) program to 

develop a computer system that could understand continuous speech. This was the 

largest speech recognition project ever. 

In 1984 IBM demonstrated the worlďs first 5000-word vocabulary speech recogni­

tion system, achieving 95% accuracy. Running on three, six-foot-tall array processors 

and a 4341 mainframe, with a user interface running on an Apollo computer, this 

system could take discrete (word-at-a-time) dictation from a speaker trained to the 

system. The same company introduced the first dictation system, called IBM Speech 

Server Series. 

As the available memory size and CPU power increased, first commercial appli­

cations appeared in the middle of nineties of the 20th century. It was IBM again 

which introduced Via Vaice speech recognition software as part of the operating sys­

tem OS/2 in 1996. In 1997 Dragon introduced product called "Naturaly Speaking", 

the first continuous speech recognition package available. 

1.2 Speech Recognition Today 

There are three main areas of application, each requiring a different approach to 

speech recognition technology. 

The first one is the embedded speech recognition. For certain devices the tradi­

tional input via keyboard is impossible. The limiting factor can be the size of the 

<levice or the way the <levice is operated. Hardware resources are usually limited and 

it is common that the FPU (fioating point unit) is not present. Embedded speech 

recognition is, based on the current marketing studies, the most promising field for 

speech recognition in the near future. Target devices are smart-phones, hand-held 

computers, navigation systems, or medical devices requiring hands free operation. 
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Automotive industry belongs also to the einbeclded group. 

The second area where the need of speech recognit1on was quickly discovered 

is the customer support call centers. The telephony applications usually combine 

speech recognition and speech synthesis into the IVR (Intentctive Voice Response) 

systems. These "people-·free" systerns are useful and cost effective for the coinpanies 

that employ them. The hardware platforrn for telephony applications is usually a 

cluster of servers or a supercornputer capable of handling several sessions a.t the sarne 

time. 

The last and from the scientific point of view the rnost interesting area is the 

large vocabulary continuous speech recognition (LVCSR). The fan1ous aut hor of the 

cryptographic software PGP Phil Zimmermann discusses the rnoral aspects of run­

ning speech recognition software on all phone calls [57] and analyzing the calls for 

subversive traffic. Fortunately the target application of rnost LVCSR systerns is rnuch 

less Orwellian. This thesis deals with problems directly related to LVCSR systerns. 

1.3 Motivation for Speech Recognition of Czech 

Current state-of-the-art technology in speech processing allows to build real time 

speech recognition systems with vocabularies containing tens of thousands words. 

The HMM approach, as used in all modern recognizers, has permitted us to irnprove 

the error rates significantly over the last decade by simply collecting rnore training 

data. Further research in acoustic modeling has led to new adaptation techniques. lt 

was both supervised and unsupervised acoustic adaptation, that allowed to build true 

speaker-independent systems [22]. As discussed in section 1.1 the speech recognition 

effort started in the United States and it was American English which was in the 

spotlight in the early stages. 

The scientific community started to investigate other languages and rnodifications 

of recognizers were introduced, which delivered good accuracy results for those new 

languages. By introducing the pitch into the acoustic model, for example, the HMM 

framework started to work well for Chinese. It is not the acoustic of the language 
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which makes the recognition hard. It is the complexity of the language which makes 

recognition more challenging. 

The extra complexity of a given language when compared to English can be at­

tributed to two major aspects. It is the free word order which makes things compli­

cated - English on the other si de has very strict word ordering. The other f actor is 

the size of the vocabulary. The size of the vocabulary not only slows down the speed 

of a recognizer, it also introduces a much harder problem - the data sparseness as 

discussed in chapter 4. 

Czech is a language where both of the above mentioned aspects are combined. It 

is highly inftectional and thus the vocabulary size for ~chieving reasonable vocabulary 

coverage (the percentage of words in the running text that belong to the vocabulary) 

needs to be extremely high. The free word order can be demonstrated on the sentence 

"Pavel má tlusté vepřové rád." 3 This sentence can not be easily said in any other 

word order in English. In Czech nearly all the 120 permutations are possible. We 

will discuss in chapter 4 the proposed solutions to both free word order and data 

sparseness. Our intention is to introduce a method that will solve both these aspects 

for Czech. In case we succeed, the same method can be adopted to other inflective 

languages. 

3Pavel likes fat pork. 
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Chapter 2 

Hidden Markov Model 

2.1 Introduction 

The work in this thesis is based on the concept of hidden Markov rnodel (HMM). This 

concept is used in many different contexts, other than speech recognition only. We 

will apply it to the acoustic and language modeling, to the search in the recognizer, 

and to the tagger. 

2.2 Hidden Markov Model 

2.2.1 Definition 

A hidden Markov model is defined by the output observation alphabet 

(2.1) 

by the set of states representing the state space O (for our purpose St denotes state 

at time t) 

n = {1, 2, ... , N}, (2.2) 

and by the transition probability matrix 
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(2.3) 

where aij is the probability of taking a transition from state i to state j, i.e., P(st = 

j I St-l =i). The definition further requires the output probability matrix B 

(2.4) 

where bi(k) is the probability of emitting symbol ok when state i is entered. Let 

X = X1 , X2 , ... , Xt, ... be the observed output of the HMM. The state sequence 

S = s1 , s2 , ... , St, ... is hidden, and bi (k) can be rewritten as: 

(2.5) 

We need to further define the initial state probability distribution 7r = { 7ri} where 

1ri = P(so =i) 1 <i< N. (2.6) 

Since aij, bi(k) and 7ri are all probabilities, they must satisfy the following constrains: 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The specification of an HMM thus includes two constants N and M, representing 

the total number of states and the size of observation alphabets, observation alphabet 

O, and three matrices of probabilities A, B, 7r. For the sake of simplicity we will use 

the f ollowing notation 

4> =(A, B, 7r), (2.11) 
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to indicate the whole parameter set of an H~IM. 

In the first---order hidden l\1arkov rnodel which we are using, there are two a.ssun1p­

tions. The first is the Markov assumption for the Markov chain: 

(2.12) 

and the second is the output independence assumption: 

(2.13) 

These assumptions might look as drastically sirnplifying the cornplex nature of the 

model. However, in practice, they make evaluation, decoding, and training foasible. 

2.2.2 Evaluation Problem 

Given the HMM model <I> and a sequence of observations X= X 1 , X 2 , ... , XT, what 

is the probability P(X I <I>), i.e. what is the probability that the observations were 

generated by the model? 

The intuitive way of computing P(X I <I>) is to first enumerate all possible state 

sequences S of the corresponding length T that generate observation sequence X, and 

then to sum all the probabilities. This is expressed formally as 

P(X I <I>) = L P(S I <I>)P(X I s, <I>). (2.14) 
allS 

By applying the Markov assumption 2.12 for one particular state sequence S = 

{ s1 , s2 , ... , ST}, where s1 is the initial state, we can express 

(2.15) 

Similarly by applying the output-independent assumption 2.13 we rewrite the term 

P(X I S, <I>) as 

(2.16) 
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By substituting equations 2.15 and 2.16 into 2.14 we get 

P(X I~)= E P(S I <I>)P(X I s, <I>)= E 1í's1bs1 (X1)as1s2bs2(X2) ... a8T-18Tb8T(Xr). 
allS ~lS 

(2.17) 

The naive evaluation of Eq. 2.17 requires enumeration of O(NT) possible state 

sequences. Fortunately there exists a much more efficient algorithm known as for­

ward algorithm, which is capable of computing Eq. 2.17 in O(N2T). The detailed 

description of the algorithm can be found in (31] and (34]. 

2.2.3 Decoding Problem 

The forward algorithm, as discussed in 2.2.2, computes the probability that an HMM 

generates an observation sequence by summing up the probabilities of all possible 

paths. The downside of this is that it does not provide the corresponding hidden 

state sequence. In many applications, as we will show in this thesis, it is desirable 

to find such a path. As a matter of fact, finding the best state sequence is the Holy 

Grail in searching in speech recognition. Mathematically speaking we are looking for 

the state sequence S = { s1 , s2 , ... , sr} that maximizes P(S, X I ~). 

With this formulation we can use a formal technique based on dynamic program­

ming, known as Viterbi algorithm (54]. The algorithm can be broken to three main 

parts. The first part is the initialization 2.18 of the accumulated probability V and 

the backtracking information B for each nade in the first timeframe: 

B1(i) =O, (2.18) 

The second part of the algorithm is the induction step, where we update the 

accumulated scores V corresponding to the equation 2.19: 

(2.19) 

Similar update has to happen for the backtracking history according to equation 2.20 
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for every nade: 

Bt (j) = arg rnax [Vi-1 (i)aij], 
1 $i~N 

2 < t: < T i < i, j < N (2.20) 

The la.st part of the algorithrn is the termination. The best score and the correspoucl­

ing backtracking information can be accessed a.s 

BestScore = max [Vr(i)] 
1$i$N 

BestPathrr = arg m. ax [B,1{i)] 
l~i~N 

(2.21) 

The individua! nodes forming the best hidden sequence in the backtracking history 

can be accessed as 

BestPatht = Bt+1 (BestPatht+1) (2.22) 

where BestPath1 , BestPath2 , ... , BestPathr are the nodes we were after. 

This was the theory of the Viterbi search with cornplexity O(N2T). The full 

Viterbi search is unfortunately still unfeasible for the purpose of LVCSR as the arnount 

of the HMM nodes in the speech recognizer is simply too big. Techniques such as 

pruning which allow faster computation are introduced in section 3.3.4. The imple­

mentation of the Viterbi search as used in the HMM tagger is discussed in chapter 

5. 

2.2.4 Training Problem 

The last and, unfortunately, also the most difficult problem remaining is how to 

estimate the model parameters cf> = (A, B, 7r) given some training data. To train an 

HMM from M training data sequences is equivalent to finding the HMM pararneter 

vector cf> that maximizes the joint probability 

M 

TI P(Xi I cf>). (2.23) 
i=l 

In f act this is so hard that there is no known analytical met hod that maximizes 

the joint probability of the training data in a closed form. 
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N evertheless, the situation is not yet critical as there is an iterative Baum-Welch 

algorithm [56], also known as the forward-backward algorithm. The good property 

of the algorithm is that it guarantees a monotonie likelihood improvement on each 

iteration. The unfortunate property is that it converges to a local (not global) max­

imum. More about the algorithm, together with the proof of convergence, can be 

found in [34]. 

2.2.5 Null Transitions 

In practice, and that will be also our case later, it is convenient to introduce a null 

transition in some parts of the HMM network. It allows us to traverse the HMM 

without consuming any observation symbol Xi. 

To incorporate the null transition (null are) into the introduced framework we will 

need to modify the Viterbi algorithm, provided that no loops of empty transitions 

exist. If we denote the null transition between states i and j as aij, the null transitions 

need to satisfy the modified constraints 2.8: 

N 

Eaij + a~i = 1 
j=l 

Vi (2.24) 

The modification of the Viterbi induction step 2.19 will become 

vt(j) =max[ max [vt-1(i)aij] bj(Xt); max [vt(i)a~3·J], l~i~N l~i~N 
2<t<T l<i,j<N 

(2.25) 

Equation 2.25 appears to have an infinite recursion in it. In reality it uses the value 

of the same time vt (i), provided that i is already computed. This can be achieved 

(see [34]), as the empty transitions do not forma loop. 
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Chapter 3 

Speech Recognition Engine 

3 .1 Overvie-w 

The speech recognition engine1 which is discussed bere is ba.sed on the statistical 

approach. The fundamental idea is the so-·-called noisy-·-channel rnodel [8] as illustrated 

by figure 3-1. The speaker in this model consists of two parts. The source of the 

communication is in the speaker's mind. The speaker has to translate his or her 

thoughts into the word sequence W that will be pronounced by the vocal apparatus 

(speech producer). 

The speech recognizer is also decomposed into two parts in this model. The 

acoustic waveform (speech) is processed by the acoustic processor. The output of 

the acoustic processor is a sequence of acoustic observations A. The purpose of the 

last component (linguistic decoder) is to find the most probable sequence of words 

W given the input A. In the ideal case we will see the original sequence W on the 

output again. 

1 speech recognizer and speech recognition engine ha ve both the same meaning in this thesis 
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--------------------~------------ -------------~-------------------
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A 
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I 
I 
I 
I 
I Acoustic Channel 
I I 

~-----------------------------------· 

Figure 3-1: Noisy channel model of speech recognition as described in [34] 

3.2 A Mathematical Formulatiori 

Our approach is statistical, so probabilities will be used in the definition of the prob­

lem. Let 

(3.1) 

be a sequence of acoustic syrnbols which correspond to the utterance spoken. The 

index of the individua! symbol thus corresponds to the time. In a similar way let 

(3.2) 

denote a sequence of n words where each word belongs to a vocabulary V. The term 

P(W I A) denotes the probability that words W were spoken, given that the acoustic 

symbols A were observed. The task of the recognizer is to find the best sequence of 

words W that satisfy 

W = arg maxP(W I A). 
w 

(3.3) 

We shall note that by using this formula we accept the fact that one error is 

equally had as many. This formula does not guarantee the best word error rate [23]. 

We will keep ignoring this fact for the rest of the thesis and rewrite the formula 3.3 

by using Bayes formula as 
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A P(Hl)P(A I lll) 
w = arg rrwcP(W I A)= arg n~~ P(A} ' (3.4) 

where P(W) is the probability that the words iv will be spoken. P(A I lV) is the 

probability that when the speaker says W, the acoustic syn1bols A will be observed. 

P(A) is the probability that A will be observed. Since we have only one A (we are 

given one utterance only), we can ignore the terrn P(A). For the sake of finding thr' 

best phrase W the forrnula 3.4 gets reduced to 

W = arg rnax P(W)P(A I iv). 
w 

(3.5) 

3.3 Components of a Speech Recognition Engine 

Based on figure 3-1 and formula 3.5 we can divide the recognizer into four basic 

components. 

• Acoustic processor ( acoustic front end). 

• Acoustic model that computes the term P(A I W). 

• Language model that computes the probability P(W). 

• The hypothesis search. 

The language model is what we are after in this thesis and so language modeling 

will be discussed in detail in chapter 4. It still is desirable that the reader gets a brief 

description of the individual components of the recognition engine. 

3.3.1 Acoustic Processor 

As we can see on figure 3-1 the recognizer gets the input in the forrn of an acoustic 

waveforrn (this is what sound and speech is). Thus we need a front end capable of 

transforrning the analog waveform into the digital syrnbols ai. To achieve this, the 
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Acoustic Processor includes a microphone, a means of sampling the electrical output 

of the microphone and an algorithm for the acoustic features extractions. 

It is known that satisfying speech recognition results are impossible to obtain 

without at least good acoustic processor, but the front end design belongs to the field 

of DSP ( digital signal processing) and is beyond the scope of this thesis. Further 

reading on DSP can be found in [45] or [44]. 

3.3.2 Acoustic Model 

The acoustic model is responsible for computing the probability P(A I W). The 

amount of all possible pairs W and A is too large ( the direct access to this pre­

computed value is unfeasible) so we need a stochastical model. We shall note that 

the whole process of modeling P(A I W) takes into the account the way the speaker 

pronounces the different words W, the acoustic environment (such as background 

noise) and the acoustic processing as done by the acoustic processor. The acoustic 

models as used today are usually based on hidden Markov models (HMM). The 

alternatives such as dynamic time warping and neural networks are possible but were 

not used in the thesis. 

In the speech recognition experiments which are discussed later in this thesis the 

hidden Markov model unit states correspond to a triphone (phone in the given left or 

right context). It is assumed that each acoustic observation ai has been generated by 

such unit. To put things into the perspective, the acoustic observations ai correspond 

to the observations Xi (to follow the notation in chapter 2.2). The acoustic obser­

vations generated by the acoustic processor are multidimensional, and so it remains 

to be clarified how to generalize the HMMs to the case where the output symbols Xi 

are substituted by the vectors of real numbers. In most LVCSR systems the output 

probability bi(x) is defined using multivariate Gaussian mixture density functions as 

M 

bi(x) = E CjkN(x, µjk, Eik), (3.6) 
k=l 

where N(x, µjk, Ejk) denotes a single Gaussian density function with mean vector µjk 
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and covariance matrix Ejk for state j. AJ denotes the number of Gaussian 1nixture 

density functions, and Cjk is the weight of the k-th rnixture cornponent satisfying: 

Af 

L Cjk = 1. (3.7) 
k=1 

The single Gaussian density function is defined as 

. 1 1( )'~-1( ) N(x 11 • ~. ) = e· -2 X-p, "'--' X-JL 

, "Jk' Ll3k j(27r)nJEI . . ( :J.8) 

where n is dimension of the observation vector x. 

3.3.3 Language Model 

Language model (LM) is a probabilistic model which allows us to cornpute the prob­

ability P(W) for any word sequence W as needed by the equation 3.5. In the formal 

language theory approach (e.g. [17]), the term P(W) can be regarded as 1 or O, 

depending on whether the word sequence W has been accepted by the grarnmar of 

the language or not. This binary behavior is not practical for us. One reason why we 

want always assign some nonzero probability is that the spoken language which we 

still want to recognize is often ungrammatical. 

The main help of the language model to the recognizer is that it discriminates 

the unlikely word sequences. The language model shall be able to assign a higher 

probability to the word string I have read Stendhal's Red and Black. [51] then to 

the alternative word sequence with the same acoustic I have red Stendhal's Read and 

Black. This behavior will not only make the recognizer more accurate, it will also 

allow us to constrain the search space by ignoring the non-promising hypothesis. 

Using the Bayes rule we can rewrite the term P(W) as 

P(W) 

n 

= IJP(wi I w1, ... ,wi-1) (3.9) 
i=l 
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P{W3IW1) 

P{W1IW2) 

P(W1IW3) 

Figure 3-2:. Bigram language model when the dictionary consists of three words only 

where P(wi I w 1 , ... ,wi_1) is the probability that wi will follow, given that the words 

w 1 , ... , wi-l were spoken previously. We will continue in the detailed approaches to 

language modeling in chapter 4. A new proposed language model has been designed 

and tested for Czech language as described in section 4.5. 

3.3.4 The Hypothesis Search 

We know already, or at least we have the vague idea, how to compute probabilities 

P(W) and P(A I W) from the equation 3.5. We pointed out the connection of the 

acoustic model and HMMs in section 3.3.2. The chapter 4 and section 4.5 explain 

how to incorporate the discussed language models into the framework of HMMs. For 

the moment we can approximate the equation 3.9 as follows: 

n n 

P( Wi, W2, · · · , Wn) = II P( Wi I Wi, · · · , Wi-1) ~ II P( Wi I Wi-1) · (3.10) 
i=l i=l 

This approximation is called the bigram model and we immediately see that this 

approximation satisfies the Markov assumption 2.12. 

What follows is that we create a word level bigram network as shown on figure 
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3-2. Each word in this network can be decornposed to the corre„-;ponding phones ba ... ~ed 

on its baseform2 . Each phone is substituted with the corresponding triphone based 

on its context (ie, k ae t---+ (silence····k+ae) (k ·ae+t) (ac t+t"Jilence). The individua} 

triphones can be further decornposed to son1e fixed nmnber of H!vliv1 Htates (three 

states for each triphone in our case). 

By doing this we have created a huge Hiv1M. The transition probabilities A are 

both the bigram probabilities on the word boundaries and the prol)abilities learned 

from the forward-backward training 2.2.4 in the intra word context. The output 

probabilities B are cornputed by the acoustic n1odel. We shall note that the figure 

3-2 is a drastically simplified version of the full network used for the decoding ( we did 

not complicate the diagram by introducing the corresponding initial and final states 

orby incorporating the optional silences between the words). 

The Viterbi search as described in 2.2.3 will reveal a sequence of the individua! 

HMM states forming the best scoring path. The states, we have found, reprcsent the 

triphones. This means that we also know which phones and words W correspond to 

this best path. The often forgotten fact is that the words which we have found by 

performing the Viterbi search are not necessary the words maximizing the equation 

3.5. To find the real maximizing sequence we need to surn up all the paths that 

correspond to the given word sequence. This is unfeasible in the world of LVCSR3 . 

Fortunately for us, it is rare that the maximizing word sequence differs from the word 

sequence corresponding to the best path. 

As we are usually interested in the word sequence only, we can modify the back­

tracking mechanism of the Viterbi search, so that only the word to word transitions 

will be stored in formula 2.20. The speed of Viterbi algorithm can be further improved 

by introducing pruning schemes. The usual approach is to modify the equation 2.19 

so that we evaluate just the top Q candidates, where Q is fixed. A similar pruning 

scheme takes into the account just the states which are inside a given beam compared 

to the best scoring state. 

2Each word in the vocabulary is presented with a phonetic baseform (ie, cat I k ae t). 
3It is feasible for the isolated word recognition. 
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More sophisticated pruning methods, e.g. fast match in [41], can increase the 

search speed dramatically. We shall note that Viterbi search is not the only option. 

There are other algorithms, such as A*, [36] being used in some recognizers [7]. 

3.4 Measuring the Quality of the Speech Recog-

• n1zer 

The purpose of this thesis is to introduce a new language model which will improve 

the quality of speech recognition for inflective languages, namely for Czech. We have 

to clearly state what we mean by the word improve. Our target is to improve the 

measure called accuracy (Acc) which is defined as 

N-1-D-S 
Acc = N · 100%, (3.11) 

where Nis the total number of words in the correct sentence W. In the experiments 

we use hand annotated data for testing the speech recognizer, so we know the correct 

sequence W. The terms I, D, and S denote the numbers of insertions, deletions 

and substitutions respectively. To compute the numbers of I, D, and S we need to 

align a recognized word string W against the correct word string W. This alignment 

computation is also known as the maximum substring matching problem, which can 

be easily handled by the dynamic programming algorithm. 

The alternative approach is to use a measure called word error rate (WER) defined 

as 

WER = 100- Acc. (3.12) 

In some special application we might not consider insertions as errors and this measure 

is in that case called correctness. For the purpose of dictation, however, insertions 

are as bad as deletions. 

The final measure worth mentioning is the sentence error rate (SER), which indi­

ca~es the percentage of sentences whose transcriptions have not matched in an exact 
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rnanner those of reference. 

Let us investigate a real output of the speech recognizer co1npared to the correct 

script of the utterance following the notion introduced in section 3.2. 

lV: ZÁPLAVY POSTIHLY DESÍTKY OBCÍ OPĚT VĚTŠÍCH !v1ĚST 

W: ZÁPLAVY POSTIHLY DESÍTKY OBCÍ A PĚT VĚTŠÍCH iv'IĚS1'4 

We can see that the recognizer made an error by substituting words ''OPF2T''ř> and 

"PĚT" 6 and by deleting the word "A" 7 . The accuracy of this recognized utterance is 

thus Acc = s-0; 1- 1 · 100 = 753 

The accuracy is an accepted rneasure in rnost of the speech recognition contests, 

but it can be sometimes wrong to measure the quality of the speech recognition in 

terms of accuracy only. There are speech enabled systerns (such as a bank account 

voice control), where sacrificing few percent points of the accuracy can be accepted 

if the confidence of the recognized utterance is not high enough. It is the quality of 

the rejection mechanism [25) which has a high irnportance in this case. The various 

methods of the confidence score are described in [49]. 

4Floods have stroked tens of villages and five larger cities. 
5again 
6five 
7and 
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Chapter 4 

Language Modeling 

4.1 Introduction to Language Modeling 

We have shown that the language model is an important part of the speech recog­

nizer in chapter 3.3. It is important to note that in sorne of the speech recognition 

applications the language model is not needed at all [10]. These are rnainly the "com­

mand and control" types of applications where the equivalent of a language model is a 

grammar written in some formalism as for exarnple "Java Speech Grarnmar Format" 

( JSGF) [5]. In case that we are interested in LVCSR systerns we simply cannot ignore 

the language model. 

Let us demonstrate the effect of the language model on the following utterance: 

..... , ..... , , , 
W: NEBEZPECNY POZAR VLAKU S EXPLOZIVNIM PROPANEM NADALE 

ZUŘÍ NA SEVERU NORSKA1 

This sentence was decoded by using the language model presented in section 4.5 as 

,,.., ..... , ..... , , , , ..... , 
W: NEBEZPECNY POZAR S EXKLUZIVNIM PANEM NADALE ZURI NA SEVERU 

NORSKA 

Finally the same sentence with no language model at all. 

,,.., ..... , ..... , , , , 
W: NEBEZPECNY V UZ VLAK UST EXPLOZI NIM TR O PANEM NADALE 

..... , , 
ZURI NA SEVERU NORSKA D 

1 In northern N orway a train containing explosi ve propane gas continues to burn. 
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By carefully examining the output of the recognizer when no language model has 

been used we can see that the recognizer has a strong tendency to model the acoustic 

evidence with short words (TR O PANEM versus PROPANEM). Using the language 

model has led to much better result, but we have to pay for the fact that we use a 

limited vocabulary and thus we did not have some words (EXPLOZIVNÍM) in the 

vocabulary. Examples of the recognized utterances are included in the attachment B. 

4.2 Language Modeling and Natural Language 

As we have covered in section 3.3.3, the language model probability P(W) can be 

decomposed as 

P(W) 

n 

=TI P(wi I w1, ... ,wi-1) (4.1) 
i=l 

In the formula 4.1 we accept the fact the choice of wi depends only on the history 

w1, ... , Wi-l· The models based on the formula 4.1, where the length of history is 

fixed, can be modeled by means of the Markov models. This can be achieved by 

grouping the word histories into equivalence classes so that the probability of a given 

word depends on the preceding state ( class) only. The practical demonstration of 

this approach is shown in section 5.3. But is this really how we speak? Do we really 

create a sentence by producing the first word and based on this word we continue to 

the second word and so on? 

Noam Chomsky shows in (17] that English is not a finite state language. This 

is his argument: because English contains constructions that are not regular then 

English is not regular. This is demonstrated on the reversal language defined as wwR 

( where w consists of a or b )2
. 

As stated, the argument is fallacious, as we can consider the regular language 

2This language generates sentences aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, ... 
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(a I b)*. This language contains the language unvll (in the 1neaning that all sentences 

generated by wwR can be generated also by (a I b)*. 

However, the proof that English3 is not a finite state language ca.u be done t~or­

rectly [50], and so we ha ve to accept the f act that the 1noch 1 

P(W) = P(w1,U'2, ... ,wN) 
N 

~ IJP('Wi I 'Wi-n+1, ... ,'Wi.-1) 
i=l 

(4.2) 

with fixed history of length ri is not good enough for modeling the language properly. 

We will ignore this fact and use a variant of approximation 4.2, as any rneans which 

lead to a better accuracy of the speech recognizer are acceptable for us. 

The formula is not the only one used in the world of language rnodeling. The 

most common alternative approach is the use of probabilistic context free granunars 

(PCFG). In the PCFG, we have to address the similar problerns a.s we did for Hrv1Ms in 

chapter 2. The probability of the sequence W = w 1 , w2 , ... , Wn in PCFG is cornputed 

as P(S => W I G), where S is the starting symbol of the grarnrnar and G the 

probabilistic grammar. The sign => denotes the derivation sequence of one or more 

steps using the rules of grammar G. 

The problem of using PCFG [31] is that the rules of the grammar and the search 

for the best derivation are hard to incorporate into the recognizer. The best state····mof..··· 

the-art result of using the PCFG in a speech recognizer (structured language model) 

is described in [15]. The structured language modeling (SLM) shows a full 1.0% 

absolute improvement (13.7% to 12.7%) in WER [16] over the baseline trigram model 

for the WSJ DARPA93 HUBl test setup. 

4.3 The Traditional N-Grarn Approach 

The n-gram approach is based on formula 4.2. The value of n in this formula denotes 

the order of the n-gram. We use the terms unigrams, bigrams and trigrams for values 

3The same can be done for Czech. 
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N-gram model Parameters to be estimated 
unigram 62000 

bigram 3.844 X 109 

trigram 2.383 X 1014 

fourgram 1.478 X 1019 

Table 4.1: The amount of n-grams needed for a vocabulary of 62,000 words 

n = 1, n = 2 and n = 3 respectively. The individual probabilities of n-grams will be 

estimated by using the relative frequencies in the training data as follows: 

(4.3) 

where N denotes the count of the corresponding word n-:-tuples in the training data. 

The bigram and trigram models are the most common language models to be found 

in the LVCSR systems today. 

One of the first decision we have to do in the n-gram language modeling is the 

choice of the corresponding n. We use a fixed vocabulary of words in the speech 

recognizer and so we can examine how many parameters each of the n-gram models 

needs to estimate (see tahle 4.1). The amount of bigrams is huge already, and there is 

no chance at all that we will have enough data to see all the possible trigrams. In fact 

the vast majority of trigrams will never occur in the language as it forms absolutely 

ungrammatical constructions. The fact that there will be plenty of unseen n-grams 

is called "data sparseness pro blem" . 

4.3.1 Data Sparseness Problem 

Data sparseness poses problem for nearly all statistical methods. We have illustrated 

in the table 4.1 that the amount of the traning data will be never sufficient for the 

trigram model4 . There was an experiment performed in 1970 at IBM Research, where 

a corpora of patent descriptions has been divided into a training and test data. It 

was discovered that 23% of the trigrams appearing in the test set never occurred in 

4 "There is no data like more data" (Bob Mercer at Arden House, 1985) 

40 



100...---------...----- ·--,--··---·-·--
_______________ „_. 

90 

600......_ __ o..._.s ___ .....__ _ ___._, s __ __.__,-:-S ___ _,3 

Vocabulaiy 1ize 11 1 o' 

Figure 4-1: Vocabulary self-coverage for the Czech National Corpus 

the training. This means that a speech recognizer operating according to forrnula 4.3 

will have a guaranteed error rate at least 23%. 

It is thus necessary to introduce sorne rnechanisrn which will "smooth" the trigram 

frequencies. We will show two ways how to srnooth the language rnodel. For the n­

gram based model in the speech recognizer we have used the Katz backoff rnodel in 

section 4.4. The HMM tagger uses a linear interpolation smoothing rnethod described 

in section 5.3.2. 

4.3.2 Data Sparseness and Czech 

The problem of data sparseness is common across all languages as the nurnbers in 

tahle 4.1 depend on the size of vocabulary only. It is the size of the vocabulary needed 

which can make the data sparseness even more troublesome. Let us exarnine figure 4-

1, which shows the vocabulary coverage for the Czech National Corpus. The striking 

observation is that for a vocabulary of 60,000 words we get coverage of only 88.3%. 

This means that the recognizer for the unrestricted domain (the Czech National 

Corpus is a balanced representative corpus of contemporary written Czech) will have 

WER at least 11.73. The same size of vocabulary for British English (British National 

Corpus [12]), will guarantee us the coverage of nearly 99% [55] [32]. 

The low coverage we observe for the Czech dictionary is dueto the fact that Czech 
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is richly inflected language. In the ca.se of nouns the corresponding case, number and 

gender are usually distinguished by a different ending. For verbs we distinguish 

three persons in both singular and plural. The form of the verb is again usually 

distinguished by a different ending. The quick guide to Czech morphology [27] is 

described by positional tags (see tahle 5.2 and appendix A.l). 

The data sparseness in Czech is not caused by the rich infiectional nature of the 

language only. The other phenomenon is the free word order. There is no strict 

order (as for English) for constituents such as subject, object, possessor, etc. The 

aspect which makes the language with a free word order understandable is the use of 

agreement (noun and it's adjectival attribute must agree in gender, case and number 

for example). We will show later in our experiments, that by using a language model 

which includes the morphological information, we gain in accuracy. Our idea is that 

by enriching the language model by the morphological tags (see chapter 5) we will be 

able to solve two problems at once. 

1. There are not so many tags as words in the Czech morphology. This will make 

easier to collect reliable statistics. 

2. Let us consider two different words occurring in the test data in different con­

texts: "thajskou" 5 and "československou" 6 . These two adjectives share the same 

morphological category, which can be specified by the tag AAFS7----1A----. 

To translate this tag into a human readable form; the both words are adjec­

tives, feminine, singular and the case is instrumental. Now the training data 

for the language model stand from the Czech Republic and thus contain many 

occurrences of the word "československou" . That is not the case for the word 

"thajskou" (Czech newspapers do not tend to write about Thailand so often). 

By using the enriched language model, we will be able to share at least the fact 

that for these two words we expect a similar morphological context. 

5Thai 
6 Czechoslovakian 
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4.4 Good-Turing Estimate and Katz Backoff Model 

We will discuss the Katz s1noothing rnodel in this section since it wa.s used a.s t he 

smoothing n1echanisrn for the word ba.5ed n-gran1 language model in our experiments. 

An alternative srnoothing method has been used for the HrvHv1 tagger and is described 

in section 5.3.2. 

4.4.1 Good-Turing Estimate 

The Good-Turing estimate is a s1noothing technique to deal with infrequent n-gran1s. 

lt is usually not used by itself for the task of n-gram srnoothing beca.use it does not 

include the combination of higher order models with lower order rnodels (a.s necessary 

for good performance). However, it is used as the main mechanisrn in several rnore 

complex smoothing techniques. 

The Good-Turing estimate states that for any n-grarn that occurs r tirnes, we 

should pretend that it occurs r* times as follows: 

* ( + l) nr+l r = r --
nr 

( 4.4) 

where nr denotes the number of n-grams that occur exactly r times in the training 

data. However we are interested in a probability and thus we need to convert the r* 

count to a probability. We normalize for an n-gram g, that occurs r tirnes 

r* 
P(g) = N (4.5) 

where N = E~o nrr* is equal to the number of samples in the training data (24] 

(as we can rewrite N = E~o nrr* = E~0 (r + l)nr+I = E~o nrr). The formula 4.5 

is usually referred to as Good-Turing probability estimate. 

4.4.2 Katz Smoothing 

Katz smoothing further extends the idea of Good-Turing estimate 4.5 by incorpo­

rating the combination of higher-order models with lower-order models. We will 
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demonstrate the principal features of the Katz s1noothing on a bigram example. Katz 

smoothing [35] is using the Good-Turing estimate for nonzero counts in the following 

way: 

(4.6) 

where dr is the discount ratio. We discount according to the ratio for r > O and 

that leaves some quantity (the counts subtracted from the nonzero counts) to be 

distributed among the zero-count bigrams according to the next lower-order distribu­

tion (unigrams in our case). The value of a(wi_1) compensates the total amount of 

counts in the data and its value is computed so that the smoothed bigram satisfies 

the probability constraint: 

where the P* ( wi lwi-1) is computed from the altered counts, that is: 

P*( I ) C*(wi-1, wi) 
Wi Wi-1 = -------

Ewx C*(wi-1,Wx) 
(4.8) 

In the implementation as proposed by Katz in [35] dr = 1 for reliable counts r > k, 

where k is a constant chosen empirically. The discount ratios for the less reliable 

counts (r <k) are derived from the Good-Turing estimate so that: 

1. The discounts coefficients dr are proportional to the discount coefficients defined 

by the Good-Turing estimate. 

2. The total number of counts discounted in the global bigram distribution is 

equal to the total number of counts that should be assigned to bigrams with 

zero counts according to the Good-Turing estimate. 

These two constrains can be formally written as 

r* 
dr=µ-, 

r 
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where r E { 1 ... k} and µ is a constant. 'The Good-1\iring L~timate prediets that the 

total rnass assigned to bigrams with zero counts is n0 ni = n 1, and thus t he second 
no 

constraint corresponds to: 

The unique solution is given by 

k 

E nr(l - dr)r = 1l1. 

r=l 

r• _ (k+l)nJ.~+1 
d _ r n1 

r - l _ (k+l)_nk-f i · 

Tit 

(4.10) 

(4 .11) 

Katz smoothing for the higher-order n-grarn 1nodels is defined in a similar way. 'rhe 

Katz n-gram model of order n is defined by the rneans of the (n - 1) gran1 model. The 

recursive procedure ends up with unigran1 model which is the maximum likelihood 

model. To sum the whole procedure up we have 

C(wi-1,wi) 
C(Wi-d 

d C(wi-1,wi) 
r C(wi-d 

if r >k 

if k> r >O ( 4.12) 

4.5 Combination of a Hidden Tag Model and a 

Traditional N-Grarn Model 

To the best of aur knowledge, the first introduction of the tagger as a speech recog­

nition language model component was in (11] without improving results over the 

baseline bigram model. The idea has been further explored in [34] where the author 

proposes the interpolation with a trigram model based on formula 4.13. 

( 4.13) 
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where g(wi) is the tagging function. The importance of formula (4.13) for languages 

with the data sparseness problem is that the new component Q can have enough 

evidence to give us reliable statistics about the word sequence W as the size of the 

tag set tends to be much smaller then the size of the word vocabulary itself. 

The problem with approach ( 4.13) is that the tagging function g( wi) depends on 

all words of the utterance (supposing that the tagging component is performed by 

an HMM tagger as described in chapter 5). The standard solution is to replace the 

probability Q by a new probability Q*: 

Q*(wilw1, ... , Wi-1)...:.. L Q(wilt1, t2)T(g(wi-2) = t2, g(wi-1) = t1 I wi, ... , Wi-1 ), 

tih 
( 4.14) 

where r(g(wi-2) = t2,g(wi-1) =ti I W1, ... ,Wi-1) is the corresponding forward 

probability of the HMM with states corresponding to pairs of tags (t1 , t 2) based on 

a transition probability Pt(ti I ti-2, ti-1) and the output probability Po(wi I ti-1, ti)· 

The probabilities of the HMM tagger are discussed in detail in section 5.3, the forward 

algorithm is described in section 2.2.2. We <lid not use this proposed solution as the 

computation of the Q* during the decoding tends to be unfortunate due to several 

practical reasons: 

• The whole computation of P(W) in the n-gram model is done in the logarithmic 

domain (so that we do not have to deal with the underflow problems when 

multiplying the probabilities). The logarithmic domain allows us not to use the 

multiplication in the decoder at all. The forward algorithm requires adding the 

probabilities and thus we have to simulate the required sum in the logarithmic 

domain. 

• In our setup (see [37]) we are using the morphological analyzer [27] so that for 

every input word only the list of possible tags is considered. The nature of how 

Q* gets computed will thus prefer hypothesis where the list of the plausible tags 

is bigger. We do not believe that this is the desired behavior and this might be 

one of the reasons why using the formula 4.14 <lid not bring any major success. 
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Our solution is based on maxirnizing the probability of the sequence of tag-word 

pairs instead of maximizing the sequence of words only. One of the consequenees of 

this approach is that we do not use the forward probabilities at all. \Ve can cmnpute 

the best sequence by using the Viterbi algoritlun describen in section 2.2.3. It is 

important to note that having both the n-gran1 rnodel and the tag 1nodel Viterbi 

based, the decoding step gets rnuch straightforward then compared to formula 4.13. 

By using this proposed approach the new Q(Hl, T) function becomes: 

(4.15) 

where Pt and P0 are the corresponding transition and output probabilities distribu­

tions (see formulas 5.14 and 5.15) of the HMM-tagger, and ti, ti_ 1, ti-2 are the tagH 

corresponding to words wi, wi_ 1, wi_ 2 . Instead of using the forrnula 4.13 we introduce 

the cost function 

( 4.16) 

where the scaling factor Ítag needs to be optimized for the best accuracy a.s shown in 

section 6.5. 

One advantage of the approach 4.16 is that for each decoded utterance we get 

both the words and the corresponding morphological category for each word. Let us 

demonstrate the effect of the proposed approach on the following utterance: 

W: TÍM PADL PRVNÍ ITALSKÝ KABINET. 7 

This utterance has been incorrectly recognized by the traditional n-gram model as 

W: TÍM PADLA 8 PRVNÍ ITALSKÝ 9 KABINET. 10 

The acoustic difference between the two candidate words padla and padl is very small 

in the given context. Thus it must be the language rnodel which will play the main 

7 As a consequence of this the first Italian government has collapsed. 
8collapsed /verb feminine 
9Italian / adjective masculine 

10 government / noun masculine 
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role in recognizing the word padl in ·this example. By using the standard trigram 

model we can quantify the difference between the two hypotheses as 

P(PADLA I (s), TÍM )P(PRVNÍ I TÍM, PADLA)P(ITALSKÝ I PADLA, PRVNÍ) 

( 4.17) 

versus 

, , , , , 
P(PADL I (s), TIM )P(PRVNI I TIM, PADL)P(ITALSKY I PADL, PRVNI) 

( 4.18) 

The only "suspicious" trigram in the incorrect hypothesis has the probability ?(ITALSKÝ 
, 

PADLA, PRVNI). This trigram has been unseen in the training data. That was also 
, , 

the case for the alternative trigram P(ITALSKY I PADL, PRVNI). The language 

model has thus used the backoff bigram probabilities in both cases. The unfortunate 

outcome is that the training data had more evidence for the wrong alternative 4.17. 

The language model based on 4.16 recognized the utterance correctly and assigned 

the following morphological categories (see table 5.2 and appendix A.l). 

, , 
(TIM, PDZS7----------) (PADL, VpYS---XR-AA--1) (PRVNI, CrIS1----------) 

(ITALSKÝ, AAIS1----1A----) (KABINET, NNIS1-----A----). 

The correct recognition has occurred due to the fact that we use probability Q**. By 

using it we get a low probability for the above mentioned "suspicious" trigram 

Q**((ITALSKÝ, AAIS1----1A----) I PADLA, PRVNÍ)= 

= Pt(AAIS1----1A---- I VpQW---XR-AA--1, CrIS1----------) x 

X P0 (ITALSKÝ I Cr IS 1----------, AAIS1----1A----) ( 4.19) 

but we get a higher probability for the correct alternative 

Q**((ITALSKÝ, AAIS1----1A----) I PADL, PRVNÍ)= 

= Pt(AAIS1----1A---- I VpYS---XR-AA--1,CrIS1----------) x 

xP0 (ITALSKÝ I CrIS1----------, AAIS1----1A----) (4.20) 
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The critical inforn1ation helping us in this case is the probability /~. \Ve ha.ve the evi­

dence of seeing verb n1asculine followed by numeral 1na,"culine inanirnate and followed 

by adjective masculine inanin1ate in the training data. On the other side WP have no 

evidence at all of seeing verb fernininc followed by mnneral IJ.1asculine inanimatcl and 

followed by adjective rnasculine inani1nate. 
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Chapter 5 

HMM tagger 

5.1 Introduction 

The task of a tagger is to assign part of speech (POS) tags to words reflecting their 

morphological category. But often, words can belong to different rnorphological cat­

egories in different contexts. For instance, the word forrn "obchod" 1 can have two 

readings: in the sentence "Náš soused otevřel nový obchod." 2 word forrn "obchod" is 

a noun in a fourth case singular, but in the sentence "Ten obchod rná již zavřeno.'':J 

it is a noun in first case singular. 

A POS-tagger should determine all possible readings for all the words, and assign 

the right reading given the context. It will be aur goal to design and implernent a 

tagger which will be suitable for the use in speech recognition in this chapter. 

5.2 The Problem of Tagging 

Let us suppose that the language (Czech in aur case) has defined a set of tags attached 

to word forms. Let us a have a sentence W 

1shop 
20ur neighbor has opened a new shop. 
3The shop is closed already. 

'·: 

(5.1) 
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and a sequence of tags T of the same length 

T = t 1 , t2, . . . , tn (5.2) 

where Vw and Vr are vocabularies of all word forms and tags respectively._ We will 

call the pair (W, T) an alignment. The word wi has been assigned the tag ti in this 

alignment. 

We assume that the tags have some linguistic meaning in the language, so that 

among all the possible alignments for the sentence W there is one correct from the 

grammatical point of view. This assumption is needed for the training and the eval­

uation of the tagger. As we can see in section 4.5 the tagger will be p'erfectly able 

to find some alignment even when the correct alignment does not exist4
. A tagging 

function is a function g 

g: W ~ T = g(W), (5.3) 

that selects a sequence of tags given a word sequence W, and thus it also defines the 

alignment. 

The standard measure used to compare taggers is accuracy at word level, telling us 

percentage of words correctly tagged. To make a proper judgment about the quality 

of the given tagger we must use the same tag set Vr for all the taggers we compare. 

5.3 Probabilistic Forrnulation 

It is our intention to use the tagger as a component for a statistical language model f0r 

a speech recognizer. It is thus natural that the method of computing the alignment 

(W, T) will be presented in the framework of HMMs [9] [18] as introduced in chapter 

2.2. Other methods used for part of speech tagging are described in [30]. 

The HMM tagger is based on the model of text production. We pretend that 

people do not think in words, instead they think in the morphological classes (tags). 

The written text W we see is hiding the original sequence T which is what the author 

4N-gram models do not guarantee grammatical sentences. 
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had originally on his or her rnind. 

This idea which stays behind the Hl\1M tagger is sornehow fantastic and unrealis­

tic, but it is derived frorn the noisy channel approach as used in speech recognition. 

where it is known to work. We will de1nonstrate that it works for the tagging problem 

as well. 

We will start with a similar equation as in the problem of speech reeognition as 

described in 3.3. 

Ť = arg m.pxP(T I W) (5.4) 

The term T denotes the recognized tag sequence. We will rewrite forrnula 5.4 

P(T)P(W IT) T = arg maxP(T I W) = arg rnax-·--·--
T T P(W) 

(5.5) 

The word sequence W is only one and we can thus ignore the P(W). We end up with 

the well known formula of HMM tagging. 

Ť = arg maxP(T)P(W IT). 
T 

(5.6) 

The problems which are left is how to estimate probabilities P(T) and P(W I T) and 

how to find the tagging function g(w). 

5.3.1 Maximum Likelihood Training 

We have shown in chapter 2.2 that there is an algorithm which will estimate P(T) 

and P(W I T) by requiring no hand-tagged text. This has been tried with different 

initialization schemes (38] of the forward backward algorithm. Unfortunately, regard­

less ·how much data was used, the automatic determination of the model parameter 

vector <I> always led to worse tagging results then the approach we describe in this 

section. 

We will describe a method which will estimate the probabilities P(T) and P(W I 
T). The HMM tagger, we are designing will use the following formulas 

53 



P(T) = P(t1, t2, ... , tn) 

= P(ti)P(t2 I ti)P(t3 I ti, t2) ... P(tn I ti, t2, · · · 'tn-i) 
n n 

= II P( ti I ti' ... 'ti-i) ~ II P(ti I ti-i, ti-2) (5. 7) 
i=i i=i 

and by using the same approximation for the probability P(WIT) we get 

n 

P(WIT) ~II P(wi I ti, ti-1). (5.8) 
i=l 

First we need to fit these probabilities into the HMM theory as ·described in 

chapter 2.2. The output. observation alphabet O corresponds to the dictionary of 

all words Vw. The observed sequence X= Xi, X2, .•• , Xn corresponds to the words 

W=W1,W2, ... ,Wn. 

The hidden states have to correspond to the individual tags ti, but at the same 

time we have to follow the assumptions 2.12 and 2.13. This correspondence can be 

achieved by defining the state space n as 

O= {1, 2, ... , Vi}, (5.9) 

where each state corresponds to some pair of tags (tx, ty). The correspondace is thus 

achieved as aij is the probability of taking a transition from state i to state j, i.e., 

(5.10) 

The same approach is used for expressing the bi(k) output probability of emitting 

symbol wk when state i is entered. 

(5.11) 

Maximum likelihood estimation (MLE) is a straightforward training method if we 

have some large corpora of tagged text available. The tagged text comes from the 
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human annotator who hand-crafted the correct alignrnent ( lV, J'). According to t he 

MLE, the probability P(ti I ti-l, ti_2 ) is co1nputed as 

(5.12) 

and a similar estimate for the probability P('wi I ti, ti·-· 1) 

( 5.13) 

where the term N(ti-2, ti-1, ti) states how rnany tin1es the sequence ti_.2, t1 .... 1, ti has 

appeared in the alignment and, similarly, N(ti_ 1, ti, iiJi) 1neans how 1nany thnes the 

word Wi appears with a tag ti and the word Wi-l with tag ti-l in the align1nent. 

We can immediately see the main drawback of the MLE approach. Estiinates 

5.12 and 5.13 will assign a probability of zero to any sequence tags tx, ty, tz that did 

not occur in the training data. The same problem occurs for unseen words. We can 

have several hundreds of tags in the tag set, so the chance to see all the possible 

combination is close to zero. What is even worse, we cannot even hope that we will 

see all the words from our dictionary Vw in the training. 

We have to introduce a method which will allow us some work around of the 

unseen events, otherwise the Viterbi search algorithrn 2.2.3, which we hope to use, 

will never find an alignment with probability better than zero for some sentences. 

5.3.2 Linear Smoothing 

We have introduced the problem of unseen events in the training data. Linear smooth­

ing is a simple and effective answer to this problem. Instead of using the relative 

frequencies from the MLE estimates 5.12 and 5.13 directly, we define a smoothed 

probability P(ti I ti-1, ti-2) 

= A3PMLE(ti I ti-1, ti-2) + A2PMLE(ti I ti-1) + 
1 

+A1PMLE(ti) + Ao IVTI (5.14) 
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where L:~=O Ai = 1 and O < Aj < 1. For the probability P(WIT) we define the 

smoothed alternative as 

(5.15) 

where {o + {2 + {3 = 1 and O < {j < 1. 

The unigram term riPMLE(wi) can be omitted from formula 5.15 as the output 

probability for the HMM depends on the current state. When word Wi happens to 

be unseen in the training, term ro 1Jwl will not allow the zero probability problem to 

occur in the test data. 

Our goal is to find the optimum parameters Aj and 'Yi· To achieve that, we will 

not use the whole hand annotated data for computing probabilities PMLE· The part 

which has not been used is called held-out data and will serve us to find the set 

of smoothing coefficients A and 'Y which maximize the probability of emitting the 

held-out data by our interpolate model. 

We will demonstrate two different approaches how to find the optimum smoothing 

coefficients for the set of Ai. 

We have shown that the term P(ti I ti-1' ti_2) can be regarded as an HMM. We 

will use this fact by incorporating the ,,\ coefficients to it as shown on figure 5-1. 

By examining the figure we see four null transitions (see 2.2.5) outgoing from 

the leftmost state sA(t1, t2) into states so(ti, t2), s1(t1, t2), s2(ti, t2) and s3(ti, t2). 

These transitions are taken with probabilities ,,\0 , Ai, A2 and ,,\3 respectively. Out of 

each of the four states lead IVrl transitions. By taking any of these transitions and 

entering the corresponding state sA(t2, tgi) we observe tgi. The transitions from states 

so(t1, t2), si(ti, t2), s2(t1, t2) and s3(ti, t2) are taken with probabilities 
1

JT
1

, PMLE(tgi), 

PMLE(tgi I t2) and PMLE(tgi I ti, t2), respectively. 

The figure 5-1 shows us just a small part of the overall HMM network. We must 

realize that the PM LE probabilities are known and the only thing we need to estimate 

are the ,,\i probabilities. The other simplifying fact is that dueto the formula 5.14 the 

Ai coefficients will have the same value regardless of the actual combination ti, t2, tgi. 
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known P11Le 

•~(~,tgJ 

Figure 5-1: Linear smoothing section of an HMM corresponding to transition proba­
bilities in the tagger 

The forward backward algorithm frorn section 2.2.4 is thus feasible for cornputing the 

srnoothing pararneters. 

The alternative way to cornpute the set of ;\i pararneters has been introduced in 

(48] and this is also the algorithm which the implernentation of the HMM tagger uses 

for the experiments in this thesis. 

We define logprob LP as 

(5.16) 

where N H is the length of the held-out data. LP can be viewed as the average of the 

appearance of the quantity log(P(ti I ti-1, ti-2)smooth) in the heldout data. The idea 

is to rninimize the term LP by computing the corresponding scaling pararneters ;\. 

Derived from the EM algorithm in [ 48], the iterative algorithm for computing the set 

of ,\0 ••• AK looks as follows: 

1. Initialization step. Set AJ = K~l for j = O, ... , K 
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2. Expected counts computation. 

(5.17) 

3. Iterative update for Aj· 

(5.18) 

4. If I ;x; - A;+1
1 < E print the set of ,\; else r = r + 1 and continue with step 2. 

By computing the smoothing parameters values we have solved the problem of 

zero probability. We have one set of Aj which guarantees non-zero probability even 

for a sequence which contains an unseen tag. 

5.3.3 Bucketing 

It is the perfect moment to realize that the values Aj ( once computed) are fixed and 

independent of the individual counts N(tx-2, tx-1, tx) and N(tx-2, tx-1). But it is 

obvious that PMLE(tx I tx-1, tx-2) will be more reliable if the estimate of PMLE was 

based on a larger count N(tx_ 2 , tx-1). This can be achieved by introducing a method 

called bucketing. 

Our goal is to have multiple sets of ,\~, where b denotes the corresponding bucket 

Bb(i,j). Each bucket is defined by an interval which it covers. The size of the interval 

is computed in such a way that each bucket contains approximately the same amount 

of trigrams from the training data. Given a history h we compute an index v(h). 

v(h) - N(h) 
- lt : N(h, t) > OI (5.19) 

The corresponding bucket Bb(i,j) for the index v(h) has to satisfy i< v(h) < j. 

The tahle 5.1 shows an example of ,\~ coefficients as computed for the Czech HMM 

tagger. 

Linear smoothing is not the only way of smoothing. An extensive overview of 

smoothing methods used in language modeling can be found in [32]. 
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-.... --
interval A:i A2 A1 Ao 

Bucket 1 (least reliable histories) -------·-
(O; 1.000) 0.0367 0.8077 

Bucket 2 --·-
( 1.000; 1.481) 0.1825 0.6750 

__ „_.,_.„_„_„,_„ __ .,._ ~ ... -_.„.„„„_,_ .... ,, • .,.., ... -·.··-

0. l 548 0.0006 
'"'" ... ,,,.„._ .... _ •. _„ __ „,_. __ .,.„ --.,.,~--···---'~""''""_,_..„.„„-„ ..• , ••.• 

\).1421 0.0001 
Bucket 3 ( 1.481; 1.840) 

·-·--· 
0.2555 0.6161 0.1279 0.0002 

Bucket 4 
„ .„„ 

( 1.840; 2.160) 0.3257 0.5531 
- ..... - .. „ ........ - .• --... ,„._„.... -„„.._,._ .... ~ .. „„„„„~ •. „ ...... „.„„.,,„,,_._„ 

0.1206 0.0004 
Bucket 35 (most reliable histories) (51.84; 79.00) 0.8634 0.1255 0.0109 0.0000 

----

Tahle 5.1: Example smoothing coefficients for the probability P( ti I ti--1, ti ····'2 ).mwot11 

5.4 Tagging of Inflective Languages 

Inflective languages pose a specific problem in tagging due to two phenornena: highly 

inflective nature (causing sparse data problern in any statistically ba.sed systern such 

as language model in chapter 4), and free word order ( causing fixed-context systerns, 

such as n-gram HMMs, to be even less adequate than for English). T'he average tagset 

contains about 1,000 - 2,000 distinct tags; the size of the set of possible and plausible 

tags can reach several thousands. There have been attempts at solving this problem 

for some of the highly inflective European languages, such as (20], (21] for Slovenian, 

or (28], [30] for Czech and (26] for five Central and Eastern European languages. 

So far no system has reached - in the absolute terms - a performance comparable 

to English tagging (such as (46]), which stands above 97%. 

5.4.1 Tagging Czech 

Thanks to the Prague Dependency Treebank [2] project we can use about 1.8 million 

hand annotated tokens of Czech for training and testing. The HMM tagger uses the 

Czech morphological processor [27] to disambiguate only among those tags which are 

morphologically plausible. 

The meaning of the Czech tags we are using is explained in table 5.2. The detailed 

explanation of the individual positions can be found in the appendix A.l. 
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No. Name Description 
1 POS Part of Speech 
2 SUBPOS Detailed Part of Speech 
3 GENDER Gen der 
4 NUMBER Number 
5 CASE Case 
6 POSSGENDER Possessor's Gender 
7 POSSNUMBER Possessor's N umber 
8 PERSON Person 
9 TEN SE Ten se 

10 GRADE Degree of comparison 
11 NEGATION Negation 
12 VO I CE Voice 
13 RESERVEl Unused 
14 RESERVE2 Unused 
15 VAR Variant, Style, Register, Special Usage 

Tahle 5.2: Czech Morphology and the Positional Tags 

5.4.2 Tagging Experiment for Czech 

It is our target to design a tagger which will allow us to improve the error rates 

for the task of speech recognition. The language where we will demonstrate this is 

Czech and so we are interested in the performance of the Czech tagger itself. The 

best taggers for Czech (which use the same tagset) are reported to have the accuracy 

bellow ninety five percent [30]. 

To demonstrate the diffi.culties of tagging Czech let us investigate the following 

example. To follow the definitions of section 5.2 we have a sequence W for which the 

annotater created the following aJignment (W, T). 

(Pak, Db-------------) (zasedal, VpYS---XR-AA---) 

(dětský, AAIS1----1A----) (tribunál, NNIS1-----A----).5 

This sentence was passed to the morphological processor. The output contains for 

every word all the tags which are morphologically plausible. 

(Pak, Db-------------, NNNP2-----A----) 

5Then the children tribuna! held the session. 
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(zasedal, VpYS---XR-AA---) 

(dětský, AAFP1----1A---6, AAFP4----1A---6, AAFP5----1A---6. 

AAFS2----1A---6,AAFS3----1A---6, AAFS6----1A---6, AAIP1----1A---6, 

AAIP4----1A---6,AAIP5----1A---6,AAIS1----1A----,AAIS4----1A----, 

AAIS5----1A----,AAMP1----1A---6, AAMP4----1A---6, AAMP5----1A---6. 

AAMS1----1A----, AAMS5----1A----,AANP1----1A---6,AANP4----1A---6. 

AANP5----1A---6 AANS1----1A---6 AANS4----1A---6 AANS5----1A---6) ' , ' 

(tribunál, NNIS1-----A----, NNIS4-----A-·---). 

The first thing we realize is that the adjective dětský is highly ambiguous. We 

are not sure if it is singular or plural ( fourth position), we don 't evcn know if the 

gender is neuter, feminine or masculine(third position). The case (fifth position) can 

be nominative, genitive, dative, accusative or vocative. Smne of the variants, ék'> for 

example AAFS3----1A---6, can be used in spoken Czech only (position fifteen). But 

we must remind the reader that the morphological processor does not use any context 

information. What we see here are all plausible tags for the given word. 

When examining the whole noun phrase dětský tribunál any Czech speaker will 

make the assumption that the gender and case shall be the same for both the adjective 

and the noun in this noun phrase. 

Let us examinate what has happened in the next step, when the HMM tagger 

performed the Viterbi search for the best corresponding tag sequence. 

(Pak, Db-------------) (zasedal, VpYS---XR-AA---) (dětský, AAIS4----1A----) 

(tribunál, NNIS4-----A----). 

The alignment created by the statistical tagger follows the natural feeling that 

the gender and case should be same for the noun and adjective in the noun phrase. 

However the alignment is not correct as the case of the noun phrase dětský tri­

bunál is not accusative but nominative. This example characterizes one of the most 

common errors done by the HMM-tagger which is the substitution of accusative and 

nominative. 
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Accuracy smoothing w /o bucketing Accuracy {bucketing) 
Exp 1 95.23% 95.34% 

Exp 2 94.95% 95.13% 
Exp 3 95.04% 95.19% 
Exp 4 94.77% 95.04% 
Exp 5 94.86% 95.11% 

Average 94.97% 95.16% 

Table 5.3: Evaluation of the HMM tagger on the Prague Dependency Treebank, 5-fold 
cross validation 

The HMM tagger described in this chapter has achieved results shown in table 

5.3. It has produced only the best tag sequence for every sentence (although the 

N-best decoding is also possible) therefore accuracy is reported only. Five-fold cross­

validation has been performed on a total data size 1489983 of tokens (heldout data 

excluded), divided up to five datasets of roughly the same size. The source of the 

data is the Prague Dependency Treebank [2], where the distribution [1] of the tagger 

can be also found. 

5.4.3 Further Improvements to the Czech HMM Tagging 

We have strictly followed the principles of the HMM framework till now. The tagger 

was allowed to work with the left context only and so we succeeded with preparing it 

for the speech recognition experiment in section 4.5. However, there are applications 

in the field of computational linguistics [19] where the limitation to the left context is 

not needed (such as machine translation, parsing, or offi.ine transcription). In these 

cases any method leading to better accuracy is acceptable. 

In [29] the author of this thesis together with his colleagues introduced the serial 

combination of a rule-based component and a statistical HMM tagger. We shall note 

that the rule-based component has more than a context free power, which makes it 

impossible to use in the speech recognizer based on the HMM approach. The task 

for the manual rule component (which follows immediately after the morphological 

processor) is to keep the recall very close to 100%, with the task of improving precision 

as much as possible. The data flow in the serial combination can be described as 

62 



- --·---·-.„ .... „ ... _,,,,. ... „.„ ..... „.-······-·"·-··~-""'''""''--"-~"'"''' ___ „,_„.„.„ .•. „„„ .•.. „,.„, ... ,„ •.• „.,„„.„ ... „„„. 

Accuracy (bucketing) Aécuracy co 
Exp 1 95.343 95.53% 
Exp 2 95.13% 95.36'1<) 
Exp 3 95.193 95.4 lo/t) 
Exp 4 95.043 95.287<) 
Exp 5 95.113 95:-34<y() 

Average 95.163 95.383) 
-· 

mbined Relative improvence 
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Tahle 5.4: Evaluation of the combined tagger on the Prague Dependency 'l'reebank~ 
5-fold cross validation 

follows: 

1. The morphological analyzer is run on the test data set. Every input tokem 

receives a list of possihle tags based on an extensive Czech morphological dic-

tionary. 

2. The manual rule component is run on the output of the rnorphology. The rules 

eliminate some tags which cannot form gramrnatical sentences in Czech. 

3. The HMM tagger is run on the output of the rule component, using only the 

remaining tags at every input token. The output is one best only; i.e., the 

tagger outputs exactly one tag per input token. 

This combination (using exactly the same HMM tagger as described in this chap­

ter) obtained 4.58% relative error reduction and become the best tagging tool for the 

Czech language. These improvements beat even the pure statistical classifier com­

bination [30], which obtained 33 relative improvement only. The detailed results of 

the serial comhination of a rule-hased component and a statistical HMM tagger are 

to he found in tahle 5.4. 
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Chapter 6 

Speech Recognition Experiment 

U sing the Cornbination of a Hidden 

Tag Model and a Traditional Word 

Based N-Grarn Model 

6.1 Acoustic Data 

Our acoustic corpus consists of 26 hours of clean speech of broadcast radio and TV 

news. Weather forecast, traffic announcements and sport news were excluded from 

the corpus. The following radio and TV stations are included in the corpus: ČTl, 

Nova, Prima, Radiožurnál, Praha, Vltava and Frekvence 1. 

The channel has been sampled at 22.05 kHz with 16-bit resolution. 22 hours were 

used for acoustic modeling, the remaining four hours were used as the test set. The 

corpus was collected at the University of West Bohemia (42], which allows to directly 

compare the results of the proposed language model with the top scoring model in 

(33]. 

For the purpose of our experiment we ha ve divided the available data ( which 

were not included in the training) into two parts. Heldout data consists of 400 
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utterances and will be used for finding the best scaling factors. Test data contains 

2500 utterances. 

6.2 Acoustic Features 

The acoustic features are Mel-Frequency Cepstral coefficients [43]. Each acoustic 

feature vector consists of twelve cepstral coefficients plus energy and their delta and 

delta-delta coefficients. Cepstral mean subtraction was applied to all feature vectors 

on a per utterance basis [56]. 

6.3 Lattice Rescoring 

Obviously, it is very expensive to implement a large-vocabulary n-gram search (where 

n > 2) given the complexity of the search space. It becomes necessary to perform a 

multiple-pass search strategy, in which the first-pass search uses less detailed language 

model (bigrams in aur case) to generate the word lattice, and then a second pass 

detailed search can use complex models on a much smaller search space. 

The lattice is an oriented acyclic graph representing the output of the speech 

recognizer and i~ composed by word hypotheses. Each word hypothesis in the lattice 

is associated with a score and an explicit time interval (see figure 6-2). The lattice 

rescoring mechanism is a widely accepted method for the evaluation of the language 

models and it is supported by the main speech recognition toolkits [52] [56]. 

6.4 Baseline Systeni 

In order to see how much improvement the integration of the tagger component will 

bring us, we decided to implement the best baseline we can achieve using traditional 

LM techniques. It is still impossible to run a full trigram decoder on word forms for 

Czech due to its vocabulary size. Thus we took a bigram decoder (using the AT&T 

tools [40][39]) and created lattices with it. The lattices have been transformed to 
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trigram lattices and rescored with a trigram language model. The trigram model ha ... "i 

been trained on a collection of Lidové Noviny (Czech daily newspape1 I containing 

approximately 33 million words and it uses the Katz discounting 1nethod. 1'lw eollec­

tion of Lidové Noviny [4) is a part of data collected by the Institute of Cz<~ch National 

Corpus[3). 

Our bigram back-off language rnodel used in the decoder and the trigram modd 

used for lattices rescoring has been built with a vocabulary of 62k n1ost frequent 

tokens. The outof-vocabulary rate of the transcriptions of the test data is 8.17</f). 

We utilized [52] to estimate the corresponding back-off paran1eters of the language 

model as explained in section 4.4. The oracle accuracy of the held-out data lattices 

is 87.76%. 

6.4.1 Scaling Factors 

From our preceding experiments we learned that the correct setting of the scaling 

factors makes a significant difference on the WER. The scaling factors con1pensate the 

differences of the language and acoustic model. The fundamental equation of speech 

recognition 3.5 will actually lead to very unsatisfying results in the terms of accuracy. 

This happens due to the fact that the acoustic model assigns the probability to the 

acoustic observation ai every 10 or 15 milliseconds, in other words each utterance will 

be assigned hundreds of probabilities by the acoustic model. The language model on 

the other side will assign only eight to ten probabilities P(W) (as this is the average 

length of the sentence). The other feature we have to compensate for, is the inability 

of the acoustic model to consider strong correlation of adjacent acoustic observations 

ai. The solution offered by [6] is to weight the acoustic model by a number f Ac smaller 

then one. Other works (such as (53]) introduce another enhancement of the equation 

3.5, the "word insertion penalty". 

The word insertion penalty is based on the assumption that the length of the 

sentence IWI follows an exponential distribution. Using these two schemes we end up 
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Figure 6-1: Impact of the scaling factor for an n-gram based language model 

with 

W = arg max(logP(W) + ÍAclogP(AIW) + f1plWI) w 
(6.1) 

We decided to use the equivalent approach and weight the language model with 

a factor f LM· Based on the preceding experiments [14] we have also found that 

introducing the word insertion penalty does not get us any gain in the accuracy as 

long as we use the optimum scaling factors for the language model (see figure 6-1). 

On a set of held-out data ( 400 lattices) we found the optimal scaling factors (see table 

6-1) for the baseline trigram LM and the acoustic model. The scaling factor fLM is 

optimized for achieving the best accuracy on the held-out data with the following 

formula: 

W = arg max(fLM log P(W) +log P(AIW)) 
w (6.2) 

The baseline trigram system uses the scaling factor 15 as shown in Table 6.1. The 

Accuracy of the baseline system on the test data is 71.90%. 

68 



I f LM J Accuracy l 
11 70.35</() 
12 70.88% 
13 71.339{~ 

14 71.51 % 
15 72.04 o/c) 
16 71.59<;{) 

"-

Table 6.1: Finding the optimum scaling factor on the set of held-out data 

6.5 Beating the N-Grams 

The formula 4.16 gives us a hint how to cornbine the tagger cornponent with the 

trigram language model. For practical reasons we decided to use a slightly difforent 

approach similar to the way we tuned our baseline. Our goal is to find the optimurn 

scaling factors f LM and Ítag on the same set of the held-out data as used for the 

baseline tuning. The formula 6.2 now becornes: 

W = arg max(f LM log P(W) + Ítag log Q** +log P(AIW)) (6.3) 
w 

The effect of tuning the parameters f LM and Ítag can be seen in figure 6-3. 

Our task is to find the optimum scaling parameters Ítag and f LM on the set of 

held-out data in a similar way as we have done for the n-gram baseline. We can see 

from the figure 6-3 that the introduction of the tagger component Q** leads to the 

accuracy improvement. The maximum accuracy gain point occurs with the scaling 

factors ÍLM = 10 and Ítag = 5. The accuracy of this best setup is 72.973 on the 

held-out data. The results are summarized in tahle 6.2. 

6.5.1 Discussion of the Results 

We managed to beat the trigram baseline by 1.213 absolute. That corresponds to 

a relative improvement of 4.33 in the WER. We have also succeeded in improving 

the accuracy for Czech presented in [32], where the author uses the same data set 

for testing and the same vocabulary. What is even more important, we introduced a 
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I Accuracy I Language model used 
70.24% bigram model 
69.31% trigram model ÍLM = 10 
71.90% trigram model ÍLM = 15 (baseline) 
72.73% best class based model introduced in [32] 
73.11% combination f LM = 10 , Ítag = 5 
87.69% oracle accuracy 

Tahle 6.2: Test data experiments 

new language model which is a combination of a traditional trigram language model 

and an HMM tagger. We achieved a promising improvement in accuracy compared 

to the baseline trigram model. 

There still remains place for further improvernent. The oracle1 accuracy 87.9% 

of the lattices we have used still allows investigating new approaches in language 

modeling. 

One of the advantages of the language model presented in this thesis is that it can 

be combined with the rnorpheme based approach as we have introduced in [14][13] 

and as it was further explored in [32]. 

1The best error which can be achieved using the test data lattices. 
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I 
, , ..... 

Figure 6-2: Lattice corresponding to a sentence "GENERALNI REDITEL PODNIKU 
JIŘÍ OLIVA TO POVAŽUJE ZA VÝHODNÉ ZHODNOCENÍ FINANČNÍCH REZ-
ERV." 
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Chapter 7 

Conclusion 

We have described the speech recognition systern for Czech using the HM!\1 frarne­

work. We have paid special attention to the language model cmnponent and we have 

shown some of the diffi.culties the designer of the LVCSR systern has to face when 

working with inflective languages such as Czech. 

We have created a trigram language model which served as a baseline. We ha.ve 

shown the weaknesses of this word based n-gram model and presented a solution to 

these weaknesses. We have proposed to create a language model using the underlying 

morphological information. We had the theory that the use of the morphological 

information will lead to more reliable statistics of the language model. 

To incorporate the morphology into the language model properly, it was required 

to develop a robust statistical tagger for Czech. We have presented an implernentation 

of an HMM tagger for Czech language. This tagger (when combined with a hand-·· 

written rule component) is the top disambiguation tool for the Czech language with 

the error rate less than five percent. 

By combining the HMM based tagger with the word trigram model we have ob­

tained significant reduction in the word error rate. We believe that the approach 

of combining the word n-gram based models with HMM taggers will lead to better 

accuracy in other inflective languages as well. The advantage of our solution is that 

we solely use the Viterbi left to right decoding approach and thus it is theoretically 

possible to use our language model in a single pass decoder approach as required by 
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an LVSCR systern with close-to-zero latency. 

The speech recognition experiment has shown that there is a lot of space for further 

research in the area of language modeling. The oracle accuracy is still far from our 

best result and so we have to ask (together with the reader) which algorithms will 

allow us to narrow this · gap. Is the Holy Grail of language modeling in the more 

complex methods such as SLM? The author of this thesis believes that the odyssey 

of achieving better error rates can be in the long run solved by the quantity of the 

training data. To quote Eric Brill1 : "More data is more important than better 

algorithms". By stating that we do not have to stop investigating more complex 

language modeling techniques immediately ( there are situations when we simply do 

not have enough data), but the brute farce approach to statistical language modeling 

must be considered as an alternative even for highly inflective languages such as 

Czech. 

1 Eric Brill is a head of the Text Mining, Search and Navigation Group, Microsoft Research 
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Appendix A 

Tab les 

A.1 Positional Tags: Quick Reference 

-
Value Description 
A Adjective 
c Numera! 

·-
D Ad verb 
I Interj ection 

„----·----·-·-·-·-""-·-·-·---·--"''°N''""""'-'''"""'-'""'"'""''"""''''"""-''"''"''"'''"' "''""'''"""'' '"""'"'''""""''"'"''""""' ""'"'''"''""''""''"""""'"'' .„ .. ,„.„ •..• 

J Conjunction 
N Noun 
p Pronoun 

----v Verb 
R Preposition 

-·---------„-...... ---„--„ ...... „ .•• -.„._.„ •.• 

T Particle 
X Unknown, Not Determined, U nclassifiable 
z Punctuation (also u sed for the Sentence Boundary token) 

Tahle A.l: Part of Speech 

Value Description 

! Abbreviation used as an adverb (now obsolete) 

# Sentence boundary (for the virtual word ###) 

* Word krát (lit.: times ) (POS: C, numera!) 

' 
Conjunction subordinate (incl. aby, kdyby in all forms) 

75 



Abbreviation used as an adjective (now obsolete) 

O Preposition with attached -ň (pronoun něj, lit. him ); proň, naň, 

... (POS: P, pronoun) 

1 Relative possessive pronoun jehož, jejíž, ... (lit. whose in subordinate 

relative clause) 

2 Hyphen (always as a separate token) 

3 Abbreviation used as a numeral (now obsolete) 

4 Relative/interrogative pronoun with adjectival declension of both types 

(sajt and hard) (jaký, který, čí, ... , lit. what, which, whose, ... ) 

5 The pronoun he in forms requested after any preposition (with prefix n-: 

něj, něho, ... , lit. him in various cases) 

6 Refiexive pronoun se in long forms (sebe, sobě, sebou, lit. myself / 

yourself / herself / himself in various cases; se is personless) 

7 Refiexive pronouns se (CASE = 4), si (CASE = 3), plus the same two 

forms with contracted -s: ses, sis ( distinguished by PERSON = 2; also 

number is singular only) 

8 Possessi ve refiexive pronoun svůj (lit. my / your /her / his when the 

possessor is the subject of the sentence) 

9 Relative pronoun jenž, již, ... after a preposition (n-: něhož, niž, ... , lit. 

who) 

--

? 

@ 

A 

B 

c 

Punctuation ( except for the virtual sentence boundary word ###, which 

uses the SUBPOS #) 

Abbreviation used as a noun (now obsolete) 

Number written using digits (POS: C, numeral) 

Numeral kolik (lit. how many /how much) 

Unrecognized word form (POS: X, unknown) 

Adjective, general 

Verb, present or future form 

Adjective, nominal (short, participial) form rád, schopen, ... 
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r----r-------------------------------·--····-„-·-··----„.„ ........ _._„._„_.,_ ........ --.. „.„ ... „.„ .... „.„.„., .. _,„„ •. „_. 
D Pronoun, demonstrative (ten, onen, ... lit. thi ... i;;, that, that ... ovf'1·· therY', 

... ) 
r----r------------------··--------····---·---·----···--·-···-···--"'"'"""'-···-···"·"""'"'''"'"•"•••••""'"'""'"'"""''"''""""""'"-"'"" 

E Relative pronoun což ( corresponding to English which m subordinate 

clauses referring to a part of the preceding text) 

F Preposition, part of; never appears isolated, always in a phrase (udiledi~ 

(na), vzhledem (k), ... , lit. regardlť~.ss, b(~cause of ) 
--· ---··--------·-------„--------·-„"--···-··-„-·-·""''"'' „ ••.. „.„.„„.„ •. „-.„-~ 

G Adjective derived fron1 present transgressive fonn of a verb 

H Persona! pronoun, clitical (short) forrn (n1ě, 1ni, ti, mu, ... ); these forrns 

are used in the second position in a clause (lit. me, you, her, hirn), even 

though some of them (mě) rnight be regularly used anywhere as well 
-------·-·----1 

I Interjections (POS: I) 
i-----+-----------·----·-·-„··--···-·-""'"'""' „ .. „ ...• „ ......... „ ....• „„ •..... „.„. 

J Relative pronoun jenž, již, ... not after a preposition (lit. who, wlunn ) 
.-----;--------------------------·---·---„„----·---

K Relative/interrogative pronoun kdo (lit. who), incl. forn1s with affixes 

-ž and -s ( affixes are distinguished by the category VAR (for -ž) and 

PERSON (for -s)) 

L Pronoun, indefinite všechen, sám (lit. all, alone) 

M Adjective derived from verbal past transgressive form 

N Noun (general) 
1------+-------------------------·····-·--·-„·-···-----·-·--·----··-··"""'"----···---···-"'-"'"""'""''-"'-···"""'"''""""'"''•"""-'•····· 

O Pronoun svůj, nesvůj, tentam alone (lit. own self, not-in-mood, gone ) 

P Persona! pronoun já, ty, on (lit. I, you, he) (incl. forms with the enclitic 

-s, e.g. tys, lit. you 're ) ; gender position is used for third person to 

distinguish on/ona/ono (lit. he/she/it ), and number for all three persons 

Q Pronoun relative/interrogative co, copak, cožpak (lit. what, isn't-it-true­

that) 

R Preposition (general, without vocalization) 
1------+-------------------------------·~·-··-----------~ 

s Pronoun possessive můj, tvůj, jeho (lit. my, your, his ); gender position 

used for third person to distinguish jeho, její, jeho (lit. his, her, its ) , 

and number for all three pronouns 

T Particle (POS: T, particle) 
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U Adjective possessive (with the masculine ending - ův as well as feminine 

-in) 

V Preposition (with vocalization -e or -u): (ve, pode, ku, ... , lit. in, under, 

to) 

W Pronoun negative (nic, nikdo, nijaký, žádný, ... , lit. nothing, nobody, 

not-worth-mentioning, no/none ) 

X (temporary) Word form recognized, but tag is missing in dictionary due 

to delays in ( asynchronous) dictionary creation 

y 

z 

a 

Pronoun relative/interrogative co as an enclitic (after a preposition) (oč, 

nač, zač, lit. about what , on/onto what , after/for what ) 

Pronoun indefinite (nějaký, některý, číkoli, cosi, ... , lit. some , some , 

anybody's , something ) 

Conjunction ( connecting main clauses, not subordinate) 

Numeral, indefinite (mnoho, málo, tolik, několik, kdovíkolik, ... , lit. 

much/many , little/few , that much/many , some (number oj) , who­

knows-how-much/many ) 

b Adverb (without a possibility to form negation and degrees of compari­

son, e.g. pozadu, naplocho, ... , lit. behind, fiatly ); i.e. both the NEGA­

TION as well as the GRADE attributes in the same tag are marked by 

- (Not applicable) 

c Conditional (of the verb být (lit. to be ) only) (by, bych, bys, bychom, 

byste, lit. would ) 

d Numeral, generic with adjectival declension ( dvojí, desaterý, ... , lit. 

two-kinds/. . . , ten-. . . ) 

e Verb, transgressive present (endings -e/-ě, -íc, -íce) 

f Verb, infinitive 

g Adverb (forming negation (NEGATION set to A/N) and degrees of com­

parison GRADE set to 1/2/3 (comparative/superlative), e.g. velký, za\­

jí\-ma\-vý, ... , lit. big , interesting 
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h Numeral, generic; only jedny and nejedny (lit. on<.~-k-ind/sort-of , not­

only-one-kind/sort-of ) 

i Verb, imperative forrn 

J N urneral, generic greater than or equal to 4 used as a syntartie noun 

(čtvero, desatero, ... , lit. four-kinds/sorts-of , ten-. . . ) 

k Nurneral, generic greater than or equal to 4 used a .. 'i a syntactic adjective, 

short form (čtvery, ... , lit. four-kirulcs/'wrts-of ) 

1 Nurneral, cardinal jeden, dva, tři, č.tyři, pťU, ... (lit. one , tuw , thn>c 

, Jour , half ) ; also sto and tisíc (lit. hundr<~d , thousand ) if noun 

declension is not used 
i----~---------------------·----„·---·---····„--·--·· 

rn Verb, past transgressive; also archaic present transgressive of perfoctive 

verbs (ex.: udělav, lit. {he-)having-done ; arch. also udčHaje (VAR= 4), 

lit. {he-)having-done ) 
i-------T-------------------------------···-···"·-„·-····„-···· 

n Nurneral, cardinal greater than or equal to 5 

o N umeral, multiplicative indefinite (-krát, lit. ( tirnes ) : rnnohokrát, to­

likrát, ... , lit. many times , that rnany tirnes ) 

p Verb, past participle, active (including forms with the enclitic -s, lit. 're 

(are ) ) 

q Verb, past participle, active, with the enclitic -i, lit. (perhaps) -could­

you-imagine-that? or but-because- (both archaic) 

r Numeral, ordinal (adjective declension without degrees of comparison) 

s Verb, past participle, passive (including forrns with the enclitic -s, lit. 're 

(are ) ) 

t Verb, present or future tense, with the enclitic -t, lit. (perhaps) -could­

you-imagine-that? or but-because- (both archaic) 

u Numera!, interrogative kolikrát, lit. how many times'? 

v Numera!, multiplicative, definite (-krát, lit. times : pětkrát, ... , lit. five 

times ) 
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w Numeral, indefinite, adjectival declension (nejeden, tolikátý, ... , lit. not-

only-one , so-many-times-repeated ) 

X Abbreviation, part of speech unknown/indeterminable (now obsolete) 

y Numeral, fraction ending at -ina (POS: C, numeral); used as a noun 

(pětina, lit. one-fifth ) 

z Numeral, interrogative kolikátý, lit. what ( at-what-position-place-in-a-

sequence ) 

} Numeral, written using Roman numerals (XIV) 

rv Abbreviation used as a verb (now obsolete) 

Tahle A.2: Detailed Part of Speech 
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Value Description -" 

Not applicable --
F Feminine 
H Feminine or Neuter 

--, .• ,,.,, ___ ,,_, __ „„.„.„„. __ , ..• ,„ ••.••• •.•• „ .• „„„.„ •. 

I Masculine inanirr1ate 
-

M Masculine animate 
·--··---·-··-----"···-···············-·······""'"" „„ •.• , ....•...• „,,„„ .. „,.„ ...•.. „ .. ,., ••....• """i 

N Neuter ·-

Q Feminine ( with singular on ly) or Neuter ( wit} 
with participles and norninal forms of adjectivc 

T Masculine inanimate Ďr Ferr1inine (pluri1l only);--
and nominal forms of adjectives 

X Any of the basic f our genders 
··---·-· 

y Masculine ( either animate or inanimate) 
z Not fenimine (i.e., Masculine anirnate/inanirn ate . c)ř-N euterT;--··<>ii"Iy .. „ •. rč>r-···· 

(some) pronoun forms and certain nurnerals ··-_______ ,, .. ,„-„.-... „„ .• ,_J 

Table A.3: Gender 

_,„-..... - .... ---· 
Value Description 

---·---··„··--·-„--··-"""'""""'"'"-'""'"''-"''"'""'"''"""""""'-"''"•"''''' .„„ ••... „ •••• „ ••• „„.,_, •.•.•. „„.„„ .... „.„.„„ 

- Not applicable __ ... _ 
D Du al .„ ... _. __ , __ 

p Plura! 
·-s Singular 

w Singular for feminine gender, plural with neuter; can on ly appear 111 

participle or nominal adjective form with gender value Q 
X Any 

Table A.4: Number 

Value Description 
- Not applicable 
1 Nominative 
2 Genitive 
3 Dative 
4 Accusative 
5 Vocative 
6 Locative 
7 Instrument al 
X Any 

Tahle A.5: Case 
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Value Description 
- Not applicahle 
F Feminine possessor 
M Masculine animate possessor ( adjectives only) 
X Any gender 
z Not feminine (hoth masculine or neuter) 

Tahle A.6: Possgender 

Value Description 
- Not applicable 
p Plural (possessor) 
s Singular (possessor) 

Tahle A.7: Possnumher 

Value Description 
- Not applicahle 
1 lst person 
2 2nd person 
3 3rd person 
X Any person 

Tahle A.8: Person 

Value Description 
- Not applicable 
F Fu ture 
H Past or Present 
p Present 
R Past 
X Any (Past, Present, or Future) 

Tahle A.9: Tense 

Value Description 
- Not applicable 
1 Positive 
2 Comparative 
3 Superlative 

Tahle A.10: Grade 
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r-=-::--::---r---------·-··-------·-
Val ue Description 
- Not applic~abl(~·--·-·--·· 

A A ffi r111a ti ve-(r1oTlu~gatč;J)·-
N Negated ______ _.____ ... __________ _ 

Table A .11: N egation 

Value Description 
---,··-· 

- Not applicable 
.„~--„--„-

A Active 
p Pa.."sive 

Table A.12: Voice 

Value Description 
- Not applicable 

Table A.13: Reservel 

Value Description 
- Not applicable 

Table A.14: Reserve2 

Value Description 
- Not applicable (basic variant, standard contemporary style; also used 

for standard forms allowed for use in writing by the Czech Standard 
Orthography Rules despite being marked there as colloquial) 

1 Variant, second most used (les s fre-quent ) , -still št.andarcI·-------·-----·--·--····-·-·····-·-·--······ 

2 Variant, rarely used, bookish, or archaic 
3 Very archaic, also archaic + colloquial 
4 Very archaic or bookish, but standard at the time 

5 Colloquial, but ( almost) tolerated even in public 
----------- . --

6 Colloquial (standard in spoken Czech) 

7 Colloquial (standard in spoken Czech), less frequent variant 

8 Abbreviations 

9 Special uses, e.g. personal pronouns after prepositions etc. 

Tahle A.15: Var 
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Appendix B 

Examples of Recognized Sentences 

This appendix contains the sample output of the speech recognizer using the best 

performing language model as described in section 6.5. Sentences which were rnisrec­

ognized are included only. W and W denotes the correct sentence and the recognized 

utterance respectively. 

W: OHLASY SHRNUJE NAŠE BRATISLAVSKÁ ZPRAVODAJKA RENATA HAVRA-
, 

NOVA. 

W: OHLASY SHRNUJE NAŠE BRATISLAVSKÁ ZPRAVODAJKA VRÁNOVÁ. 

W: SHROMÁŽDĚNÍ DOPORUČILO TOTIŽ SVÉMU VÝBORU MINISTRŮ ABY ZA­

HÁJIL OKAMŽITOU PROCEDURU POZASTAVENÍ ČLENSTVÍ RUSKA KVŮLI 

ČEČENSKU. 

W: SHROMÁŽDĚNÍ DOPORUČILO TOTIŽ SVÉMU VÝBORU MINISTRŮ ABY ZA­

HÁJÍ OKAMŽITOU PROCEDURU POZASTAVENÍ ČLENSTVÍ RUSKA KVŮLI 

ČEČENSKU. 

... , .., ... , o ... , 

W: PODLE IVANOVA CINI ALE VETSINA EVROPSKYCH POSLANOU CASTA BEZ-

PRECEDENTNÍ ROZHODNUTÍ NA ZÁKLADĚ JEDNOSTRANNÝCH INFOR­

MACÍ POCHÁZEJÍCÍCH OD ČEČENSKÝCH TERORISTŮ. 

W: PODLE IVANOV A ČINÍ ALE VĚTŠINA EVROPSKÝCH POSLANCŮ ČEST A 

BEZPRECEDENTNÍROZHODNUTÍNAZÁKLADĚJEDNOSTRANNÝCHINFOR-
, , , , .., ... , o 

MACI POCHAZEJICICH OD CECENSKYCH TERORISTU. 
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, , , .., , , 
W: RUSKA PARLAMENTNI DELEGACE KTERA VCERA OPUSTILA JEDNANI SHRO-

MÁŽDĚNÍ RADY PO TÉ CO BYLA ZBAVENA HLASOVACÍHO PRÁVA SE MÁ 

VRÁTIT DO MOSKVY DNES VEČER. 

"" , , , .., , , 
W: RUSKA PARLAMENTNI DELEGACE KTERE VCERA OPUSTILA JEDNANI SHRO-

,.., .., , , , , , 
MAZDENI RADY POTE CO BYL ZBAVEN HLASOVACIM PRAVEM SE MA 

, .., 

VRATIT DO MOSKVY DNES VECER. 

W: SPISOVATEL JOSEF ŠKVORECKÝ PŘILETĚL Z KANADY DO PRAHY ABY SE 
, .., , .., , 

ZUCASTNIL AKCE NAZVANE NONSTOP CTENI. 

W: SPISOVATEL JOSEF ŠKVORECKÝ PŘILETĚL Z KANADY DO PRAHY ABY SE 
, .., , , .., , 

ZUCASTNI AKCE NAZVANE NONSTOP CTENI. 

W: DVAASEDMDESÁTIHODINOVÝ MARATON PŘEDČÍTÁNÍ UKÁZEK Z JEHO LITE­

RÁRNÍ TVORBY ZAČNE V KOSTELE SVATÉHO SALV ÁTORA V NEDĚLI V 

ŠESTNÁCT HODIN. 

"" , , , , .., ..,, , , , 
W: NASILI SETIN HODINOVY MARATON PRI SCITANI UKAZEK Z JEHO LITE-

, , .., , , .., 
RARNI TVORBY JICH ZACNE V KOSTELE SVATEHO SALVATORA V NEDELI 

V ŠESTNÁCT HODIN. 

W: DOZVĚDĚT JESTLI BUDEME PRO CESTY DO KANADY I NADÁLE POTŘE-
, 

BOVAT VIZA. 

A ""' y , .._., 

W: Z VEDET JESTLI BUDEME PRO CESTY DO KANADY I NADALE POTREBOVAT 
, 

VIZA. 

W: PRÁVĚ DNES SE TOTIŽ CHYSTÁ MINISTERSTVO ZAHRANIČÍ ZVEŘEJNIT 

PO DALŠÍCH JEDNÁNÍCH NEJNOVĚJŠÍ STANOVISKO KANADY. 

"" , .., .., , .., , .., 

W: PRA VE DNES SE TOTIZ CHYST A MINISTERSTVO ZAHRANICI ZVEREJNIT O 
.., , , , .., .., , 

DALSICH JEDNANICH NEJNOVEJSI STANOVISKO KANADY. 

W: TO PŘITOM ŠÉF DIPLOMACIE JAN KAVAN ZNÁ UŽ DVA DNY A ZATÍM HO 

TAJIL. 

"" .., .., , , ..... , , 
W: PRITOM SEF DIPLOMACIE JAN KAVAN ZNA UZ DVA DNY A ZATIM UTAJENI. 
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W: ROBERT MIKOLÁŠ SHRNUJE JAK SE CELÁ ZÁLEŽITOST S VÍZY DO 'l'ř:'l'() 

SEVEROAMERICKÉ ZEMĚ VYVÍJELA. 

W: ROBERT MIKOLÁŠ SHRNUJE JAK SE CELÁ ZÁLEžrrosT z VÝZVY DO Tl~rro 
SEVEROAMERICKÉ ZIMNÍ JEHO. 

W: TŘINÁCTÉHO BŘEZNA DEVATENÁCT SET DEVADESÁT ŠEST DC)ŠLO ~.fEZI 

KANADOU A ČESKOU REPUBLIKOU K VÝ~1ĚNĚ NÓT RUŠÍCÍCH VÍZOVOU 

POVINNOST MEZI OBĚMA ZEMĚMI A TATO DOHODA VSTOUPILA V PLA'f­

NOST O NĚKOLIK DNÍ POZDĚJI PRVNÍHO RESPEKTIVE Z KANADSKÉ Srl'RA­

NY DRUHÉHO DUBNA. 

W: TŘINÁCTÉHO BŘEZNA DEVATENÁCT SET DEVADESÁT ŠEST DOŠLO MEZI 

KANADOU A ČESKOU REPUBLIKOU K VÝMĚNĚ NOC V KOŠICÍCH VÝZVOU 

POVINNOST MEZI OBĚMA ZEMĚMI A TATO DOHODA VSTOUPILA V PLAT­

NOST O NĚKOLIK DNÍ POZDĚJI PRVNÍHO RESPEKTUJE Z KANADSKÉ STR.A-
, 

NY DRUHEHO DUBNA. 

W: VRAŤME SE ALE DO OBDOBÍ ROZVOJE STYKU MEZI KANADOU A ČESKOU 
.,,,,, ...., , , .,,, 

REPUBLIKOU JAK UZ JSEM REKL VIZOV A POVINNOST' BYLA ZRUSENA V 
, ... 

ROCE DEVADESAT SEST. 

W: VRAŤME SE ALE DO OBDOBÍ ROZVOJ STYKŮ MEZI KANADOU A ČESKOU 
.., , ... 

REPUBLIKOU V USA REKL VYZVA POVINNOST BYLO ZRUSENO ROCE DE-
, .., 

VADESAT SEST. 

o ... , , .., , .., o .., ... , o 

W: DUVODEM BYL VZESTUP ZADOSTI CESKYCH OBCANU PREDEVSIM ROMU 
.., , , .., , 

O AZYL V KANADE KTERY PRAVE V ROCE DEVADESAT SEDM DRAMA-

TICKY STOUPL. 

W: DŮVODEM BYL VZESTUP ŽÁDOSTI ČESKÝCH OBČANŮ PŘEDEVŠÍM ROMŮ 

O AZYL V KANADĚ KTERÝ PRÁVĚ V ROCE DEVADESÁT SEDM DRAMA­

TICKY STOUPLA. 

W: KDYŽ SI PRO PŘÍKLAD SROVNÁME ROK DEVATENÁCT SET DEVADESÁT 

PĚT KDY KANADU POŽÁDALO O AZYL JEN DEVĚTADVACET OBČANŮ 
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... , , ... , 
CESKE REPUBLIKY V ROCE DEVADESAT SEDM TO UZ BYLO DVANACT 

SET OSMDESÁT PĚT ŽADATELŮ TEDY ZA DEVĚT MĚSÍCŮ TOHO ROKU. 

W: KDYŽ SI NAPŘÍKLAD SROVNÁME ROK DOTACE DEVADESÁT PĚT KDY KA-
..., , ..., ..., o ..,, , 

NADU POZADALO O AZYL JEN DEVET SET OBCANU CESKE REPUBLIKY „ ... , , 
V ROCE DEVADESAT SEDM TO BYLO TO UZ BYLO DVANACT OSMDESAT 

..., ..., o ..,, """ I O 

PET ZADATELU TEDY ZA DEVET MESICU TOHOTO ROKU. 

W: KANADA SE STALA CÍLEM MNOHA LIDÍ I PROTO ŽE TAMNÍ ÚŘADY HRADILY 
..,, o ..., ..., , , ..,, , ..., 

ZADATELUM AZ DO KONECNEHO ROZHODNUTI VSECHNY NAKLADY VCET-
... , , , ... .., , 

NE UBYTOV ANI STRAVY A ZDRAVOTNIHO POJISTENI. 

W: KANADA SE STALA CÍLEM MNOHA LIDÍ PROTOŽE TAMNÍ ÚŘADY ZTRATILI 

ŽADATELŮM AŽ DO KONEČNÉHO ROZHODNUTÍ VŠECHNY NÁKLADY VČET-
... , , , ... .., , 

NE UBYTOV ANI STRAVY A ZDRAVOTNIHO POJISTENI. 

W: TATO SKUTEČNOST TAK VEDLA ČESKÉ PŘEDSTAVITELE K TOMU ŽE PO-
... , , ... ... , , 
ZADALI KANADSKE CINITELE ABY PREZKOUMALI SVE ROZHODNUTI ZEJ-

, , , ... , ... , 
MENA PAK PREZIDENT VACLAV HAVEL KTERY SE BEREM SVE LONSKE 

NÁVŠTĚVY KANADY DOHODL S PREMIÉREM JEANEM CRÉTIENEM NA 
... , , o o , , , , 

PREZKOUMANI DUVODU VEDOUCICH K OBNOVENI VIZOVE POVINNOSTI 
.., ... , 

PRO OBCANY CESKE REPUBLIKY. 

W: TATO SKUTEČNOST VEDLA ČESKÉ PŘEDSTAVITELE K TOMU ŽE POŽÁDALI 
, ... .., , , , 

KANADSKE CINITELE ABY PREZKOUMAT I SVE ROZHODNUTI ZEJMENA 
, , ... , ... , , .., .., 

PREZIDENT VACLAV HAVEL KTERY SE BEHEM SVE LONSKE NAVSTEVY 
, .., ... , , 

KANADY DOHODU S PREMIEREM JEANEM TED JEN NA PREZKOUMANI 
o o , , , , ... .., 

DUVODU VEDOUCICH K VEDENI VIZOVE POVINNOSTI PRO OBCANY CES-
, 

KE REPUBLIKY. 
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