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Abstract

In this thesis, I have designed and implemented a new language model for speech
recognition.

The innovative part of the language model is the integration of the HMM-tagger
component designed by myself. The HMM tagger can be used as a stand-alone
disambiguation tool and, when combined with the hand written rules, it is currently
the best disambiguation tool for Czech language in terms of error rate.

I have performed a speech recognition experiment on a highly inflectional language
(Czech) where I tested the proposed language model. I have shown that the accu-
racy of the novel language model outperforms other state-of-the-art Czech language
models.
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Chapter 1

Introduction

Automatic speech recognition (ASR) is a process when a speech recognizer transcribes
speech into text. The recognizer is usually based on a finite vocabulary which restricts
the set of words to be transcribed. The term “automatic” means that the actual

process of transcribing is done without any human aid.

1.1 History of Speech Recognition

The first machine to recognize human speech was a celluloid dog, the “Radio Rex”.
The simple electromechanical toy from 1920 was capable of jumping, when it’s name
was spoken.

In 1952, as government funding research began to gain momentum, Bell Labora-
tories developed an automatic speech recognition system that successfully identified
the digits 0-9 spoken to it over the telephone. The struggle to create a robust speech
recognizer continued through sixties with no immediate success [47]. The main prob-
lem of these early systems was that they were able to recognize discrete speech only?,
not continuous speech.

In 1969 John Pierce? of Bell Laboratories made the statement that automatic

speech recognition will not be a reality for several decades because it requires artificial

1Speech, where words are separated by longer pauses than usual, to make the recognition easier.
2John Pierce’s satellite research was awarded with the Draper Prize, one of engineering’s top
honors, in 1995.
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intelligence. Only few years later the “Hidden Markov Modeling (HMM)” approach to
speech recognition was invented by Lenny Baum of Princeton University and shared
with several ARPA (Advanced Research Projects Agency) contractors including IBM.

The real breakthrough came in 1971 when DARPA (Defense Advanced Research
Projects Agency) established the Speech Understanding Research (SUR) program to
develop a computer system that could understand continuous speech. This was the
largest speech recognition project ever.

In 1984 IBM demonstrated the world’s first 5000-word vocabulary speech recogni-
tion system, achieving 95% accuracy. Running on three, six-foot-tall array processors
and a 4341 mainframe, with a user interface running on an Apollo computer, this
system could take discrete (word—at—a—time) dictation from a speaker trained to the
system. The same company introduced the first dictation system, called IBM Speech
Server Series.

As the available memory size and CPU power increased, first commercial appli-
cations appeared in the middle of nineties of the 20th century. It was IBM again
which introduced ViaVoice speech recognition software as part of the operating sys-
tem OS/2 in 1996. In 1997 Dragon introduced product called “Naturaly Speaking”,

the first continuous speech recognition package available.

1.2 Speech Recognition Today

There are three main areas of application, each requiring a different approach to
speech recognition technology.

The first one is the embedded speech recognition. For certain devices the tradi-
tional input via keyboard is impossible. The limiting factor can be the size of the
device or the way the device is operated. Hardware resources are usually limited and
it is common that the FPU (floating point unit) is not present. Embedded speech
recognition is, based on the current marketing studies, the most promising field for
speech recognition in the near future. Target devices are smart-phones, hand-held

computers, navigation systems, or medical devices requiring hands free operation.

18



Automotive industry belongs also to the embedded group.

The second area where the need of speech recognitinon was quickly discovered
is the customer support call centers. The telephony applications usually combine
speech recognition and speech synthesis into the IVR (Interactive Voice Response)
systems. These “people—free” systems are useful and cost effective for the companies
that employ them. The hardware platform for telephony applications is usually a
cluster of servers or a supercomputer capable of handling several sessions at the same
time.

The last and from the scientific point of view the most interesting area is the
large vocabulary continuous speech recognition (LVCSR). The famous author of the
cryptographic software PGP Phil Zimmermann discusses the moral aspects of run-
ning speech recognition software on all phone calls [57] and analyzing the calls for
subversive traffic. Fortunately the target application of most LVCSR systemns is much

less Orwellian. This thesis deals with problems directly related to LVCSR systems.

1.3 Motivation for Speech Recognition of Czech

Current state-of-the-art technology in speech processing allows to build real time
speech recognition systems with vocabularies containing tens of thousands words.
The HMM approach, as used in all modern recognizers, has permitted us to improve
the error rates significantly over the last decade by simply collecting more training
data. Further research in acoustic modeling has led to new adaptation techniques. It
was both supervised and unsupervised acoustic adaptation, that allowed to build true
speaker-independent systems [22]. As discussed in section 1.1 the speech recognition
effort started in the United States and it was American English which was in the
spotlight in the early stages.

The scientific community started to investigate other languages and modifications
of recognizers were introduced, which delivered good accuracy results for those new
languages. By introducing the pitch into the acoustic model, for example, the HMM

framework started to work well for Chinese. It is not the acoustic of the language
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which makes the recognition hard. It is the complexity of the language which makes
recognition more challenging.

The extra complexity of a given language when compared to English can be at-
tributed to two major aspects. It is the free word order which makes things compli-
cated - English on the other side has very strict word ordering. The other factor is
the size of the vocabulary. The size of the vocabulary not only slows down the speed
of a recognizer, it also introduces a much harder problem — the data sparseness as
discussed in chapter 4.

Czech is a language where both of the above mentioned aspects are combined. It
is highly inflectional and thus the vocabulary size for achieving reasonable vocabulary
coverage (the percentage of words in the running text that belong to the vocabulary)
needs to be extremely high. The free word order can be demonstrated on the sentence
“Pavel m4 tlusté vepiové rad.”3 This sentence can not be easily said in any other
word order in English. In Czech nearly all the 120 permutations are possible. We
will discuss in chapter 4 the proposed solutions to both free word order and data
sparseness. Our intention is to introduce a method that will solve both these aspects
for Czech. In case we succeed, the same method can be adopted to other inflective

languages.

3Pavel likes fat pork.
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Chapter 2

Hidden Markov Model

2.1 Introduction

The work in this thesis is based on the concept of hidden Markov model (HMM). This
concept is used in many different contexts, other than speech recognition only. We
will apply it to the acoustic and language modeling, to the search in the recognizer,

and to the tagger.

2.2 Hidden Markov Model

2.2.1 Definition

A hidden Markov model is defined by the output observation alphabet
0= {01,02,...,0M}, (21)

by the set of states representing the state space €2 (for our purpose s; denotes state

at time t)

and by the transition probability matrix
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A= {aij}, (23)

where a;; is the probability of taking a transition from state ¢ to state j, i.e., P(s; =

j | 8$t—1 = i). The definition further requires the output probability matrix B

B = {b(k)}, (2.4

where b;(k) is the probability of emitting symbol o, when state ¢ is entered. Let
X = X,X,,...,X;,... be the observed output of the HMM. The state sequence

S = s1,89,...,8t,...1s hidden, and b;(k) can be rewritten as:

bz(k) = P(Xt = Og | St = Z) (25)
We need to further define the initial state probability distribution 7= = {m;} where

7 = P(sg = 1) 1<i<N. (2.6)

Since a;j, bi(k) and 7; are all probabilities, they must satisfy the following constrains:

Qi > Oa b%(k) > 07 T > 0 Vi,j, k (27)
N
Y ay =1 (2.8)
j=1
M
> bi(k) =1 (2.9)
k=1

i m; = 1 (2.10)

The specification of an HMM thus includes two constants N and M, representing
the total number of states and the size of observation alphabets, observation alphabet
O, and three matrices of probabilities 4, B, 7. For the sake of simplicity we will use

the following notation

& = (A, B, 1), (2.11)
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to indicate the whole parameter set of an HMM.
In the first—order hidden Markov model which we are using, there are two assump-

tions. The first is the Markov assumption for the Markov chain:
P(s; | s1,82,...,81-1) = P(s¢ | $t-1), (2.]2)
and the second is the output independence assumption:
P(X;| X1, Xa,..., Xt-1,81,82,- .., 8) = P(Xy | $1). (2.13)

These assumptions might look as drastically simplifying the complex nature of the

model. However, in practice, they make evaluation, decoding, and training feasible.

2.2.2 Evaluation Problem

Given the HMM model ® and a sequence of observations X = X;, X, ..., Xp, what
is the probability P(X | @), i.e. what is the probability that the observations were
generated by the model?

The intuitive way of computing P(X | @) is to first enumerate all possible state
sequences S of the corresponding length T that generate observation sequence X, and

then to sum all the probabilities. This is expressed formally as

P(X | ®) = %P(S | ®)P(X | S, ®). (2.14)

By applying the Markov assumption 2.12 for one particular state sequence S =

{s1, 82,...,87}, where s; is the initial state, we can express

P(S | ®) = s,0s,85 -+ - Csp_y 57 (2.15)

Similarly by applying the output-independent assumption 2.13 we rewrite the term
P(X|S,®) as
P(X | S,®) = bs, (X1)bs,(X2) ... bsp(X71). (2.16)
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By substituting equations 2.15 and 2.16 into 2.14 we get

X l q) Z P(S | Q) X | S’ Q)) = Zﬂ'slbsl (Xl)a‘slszbsz(X2) e 'aST—xsTbST(XT)'
a allS
ls (2'17)

The naive evaluation of Eq. 2.17 requires enumeration of O(N7T) possible state
sequences. Fortunately there exists a much more efficient algorithm known as for-
ward algorithm, which is capable of computing Eq. 2.17 in O(N?T). The detailed
description of the algorithm can be found in [31] and [34].

2.2.3 Decoding Problem

The forward algorithm, as discussed in 2.2.2, computes the probability that an HMM
generates an observation sequence by summing up the probabilities of all possible
paths. The downside of this is that it does not provide the corresponding hidden
state sequence. In many applications, as we will show in this thesis, it is desirable
to find such a path. As a matter of fact, finding the best state sequence is the Holy
Grail in searching in speech recognition. Mathematically speaking we are looking for
the state sequence S = {s1, 8o, .. ., $7} that maximizes P(S, X | ®).

With this formulation we can use a formal technique based on dynamic program-
ming, known as Viterbi algorithm [54]. The algorithm can be broken to three main
parts. The first part is the initialization 2.18 of the accumulated probability V' and

the backtracking information B for each node in the first timeframe:

Vi(i) = wb(X1), By(3)=0, 1<i<N (2.18)

The second part of the algorithm is the induction step, where we update the

accumulated scores V' corresponding to the equation 2.19:

V;(j)—fg%(v[w 1()azj]bj(Xt)a 2<t<T 1L4,j<N (2.19)

Similar update has to happen for the backtracking history according to equation 2.20
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for every node:

B;(j) = arg max {Vt_l(z’)a,-j], 2<t<T 1<i,j<N (2.20)

1<i<N
The last part of the algorithm is the termination. The best score and the correspond-
ing backtracking information can be accessed as

BestScore = max [Vr(i)] Best Pathy = arg max [B,(z)] (2.21)

1<i<N

The individual nodes forming the best hidden sequence in the backtracking history

can be accessed as

BestPath; = By, (BestPathg) (2.22)

where BestPath,, BestPaths, ..., BestPathr are the nodes we were after.

This was the theory of the Viterbi search with complexity O(N?T). The full
Viterbi search is unfortunately still unfeasible for the purpose of LVCSR as the amount
of the HMM nodes in the speech recognizer is simply too big. Techniques such as
pruning which allow faster computation are introduced in section 3.3.4. The imple-

mentation of the Viterbi search as used in the HMM tagger is discussed in chapter

5.

2.2.4 Training Problem

The last and, unfortunately, also the most difficult problem remaining is how to
estimate the model parameters ® = (A, B, 7) given some training data. To train an
HMM from M training data sequences is equivalent to finding the HMM parameter

vector @ that maximizes the joint probability
M
[1P(X: | ®) (2.23)

i=1

In fact this is so hard that there is no known analytical method that maximizes

the joint probability of the training data in a closed form.
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Nevertheless, the situation is not yet critical as there is an iterative Baum-Welch
algorithm [56], also known as the forward-backward algorithm. The good property
of the algorithm is that it guarantees a monotonic likelihood improvement on each
iteration. The unfortunate property is that it converges to a local (not global) max-
imum. More about the algorithm, together with the proof of convergence, can be

found in [34].

2.2.5 Null Transitions

In practice, and that will be also our case later, it is convenient to introduce a null
transition in some parts of the HMM network. It allows us to traverse the HMM
without consuming any observation symbol X;.

To incorporate the null transition (null arc) into the introduced framework we will
need to modify the Viterbi algorithm, provided that no loops of empty transitions
exist. If we denote the null transition between states i and j as af;, the null transitions

need to satisfy the modified constraints 2.8:

N
Yag+a;=1 Vi (2.24)
j=1

The modification of the Viterbi induction step 2.19 will become

Vi(j) = max [@% [v;_l(z')a,-j] bi(Xe) 5 max [v;(z')ang, 2<t<T 1<i,j<N
(2.25)

Equation 2.25 appears to have an infinite recursion in it. In reality it uses the value

of the same time V;(i), provided that i is already computed. This can be achieved

(see [34]), as the empty transitions do not form a loop.

26



Chapter 3

Speech Recognition Engine

3.1 Overview

The speech recognition engine! which is discussed here is based on the statistical
approach. The fundamental idea is the so—called noisy-channel model [8] as illustrated
by figure 3-1. The speaker in this model consists of two parts. The source of the
communication is in the speaker’s mind. The speaker has to translate his or her
thoughts into the word sequence W that will be pronounced by the vocal apparatus

(speech producer).

The speech recognizer is also decomposed into two parts in this model. The
acoustic waveform (speech) is processed by the acoustic processor. The output of
the acoustic processor is a sequence of acoustic observations A. The purpose of the
last component (linguistic decoder) is to find the most probable sequence of words
W given the input A. In the ideal case we will see the original sequence W on the

output again.

lspeech recognizer and speech recognition engine have both the same meaning in this thesis
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'Speech Recognizer

—— e - = - L L

Figure 3-1: Noisy channel model of speech recognition as described in [34]

3.2 A Mathematical Formulation

Our approach is statistical, so probabilities will be used in the definition of the prob-
lem. Let

A=ayay,...,ar (3.1)

be a sequence of acoustic symbols which correspond to the utterance spoken. The

index of the individual symbol thus corresponds to the time. In a similar way let
W = wy,wq,...,wy, w; €V (3.2)

denote a sequence of n words where each word belongs to a vocabulary V. The term
P(W | A) denotes the probability that words W were spoken, given that the acoustic
symbols A were observed. The task of the recognizer is to find the best sequence of

words W that satisfy

W = arg max P(W | A). (3.3)

We shall note that by using this formula we accept the fact that one error is
equally bad as many. This formula does not guarantee the best word error rate [23].
We will keep ignoring this fact for the rest of the thesis and rewrite the formula 3.3

by using Bayes formula as
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i PW)P(A|W

PA) (3.4)

where P(W) is the probability that the words W will be spoken. P(A | W) is the
probability that when the speaker says W, the acoustic symbols A will be observed.
P(A) is the probability that A will be observed. Since we have only one A (we are
given one utterance only), we can ignore the term P(A). For the sake of finding the

best phrase W the formula 3.4 gets reduced to

A

W = arg max P(W)P(A|W). (3.5)

3.3 Components of a Speech Recognition Engine

Based on figure 3-1 and formula 3.5 we can divide the recognizer into four basic

components.
e Acoustic processor (acoustic front end).
e Acoustic model that computes the term P(A | W).
e Language model that computes the probability P(W).
e The hypothesis search.

The language model is what we are after in this thesis and so language modeling
will be discussed in detail in chapter 4. It still is desirable that the reader gets a brief

description of the individual components of the recognition engine.

3.3.1 Acoustic Processor

As we can see on figure 3-1 the recognizer gets the input in the form of an acoustic
waveform (this is what sound and speech is). Thus we need a front end capable of

transforming the analog waveform into the digital symbols a;. To achieve this, the
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Acoustic Processor includes a microphone, a means of sampling the electrical output
of the microphone and an algorithm for the acoustic features extractions.

It is known that satisfying speech recognition results are impossible to obtain
without at least good acoustic processor, but the front end design belongs to the field
of DSP (digital signal processing) and is beyond the scope of this thesis. Further
reading on DSP can be found in [45] or [44].

3.3.2 Acoustic Model

The acoustic model is responsible for computing the probability P(A | W). The
amount of all possible pairs W and A is too large (the direct access to this pre-
computed value is unfeasible) so we need a stochastical model. We shall note that
the whole process of modeling P(A | W) takes into the account the way the speaker
pronounces the different words W, the acoustic environment (such as background
noise) and the acoustic processing as done by the acoustic processor. The acoustic
models as used today are usually based on hidden Markov models (HMM). The
alternatives such as dynamic time warping and neural networks are possible but were
not used in the thesis.

In the speech recognition experiments which are discussed later in this thesis the
hidden Markov model unit states correspond to a triphone (phone in the given left or
right context). It is assumed that each acoustic observation a; has been generated by
such unit. To put things into the perspective, the acoustic observations a; correspond
to the observations X; (to follow the notation in chapter 2.2). The acoustic obser-
vations generated by the acoustic processor are multidimensional, and so it remains
to be clarified how to generalize the HMMs to the case where the output symbols X
are substituted by the vectors of real numbers. In most LVCSR systems the output

probability b;(x) is defined using multivariate Gaussian mixture density functions as

M
bj(x) = 3 cikN(X, ke, i), (3.6)

k=1
where N(x, ujx, X;x) denotes a single Gaussian density function with mean vector p;y

30



and covariance matrix X ;i for state j. M denotes the number of Gaussian mixture

density functions, and cji is the weight of the k-th mixture component satisfying:

M
E Cijk = 1. (37)
k=1

The single Gaussian density function is defined as

]. 1 1y —1
N(%, ik, D) = —— e~ 3-W BT xp0) (3.8)
e (2m)"||

where n is dimension of the observation vector x.

3.3.3 Language Model

Language model (LM) is a probabilistic model which allows us to compute the prob-
ability P(W) for any word sequence W as needed by the equation 3.5. In the formal
language theory approach (e.g. [17]), the term P(W) can be regarded as 1 or 0,
depending on whether the word sequence W has been accepted by the grammar of
the language or not. This binary behavior is not practical for us. One reason why we
want always assign some nonzero probability is that the spoken language which we
still want to recognize is often ungrammatical.

The main help of the language model to the recognizer is that it discriminates
the unlikely word sequences. The language model shall be able to assign a higher
probability to the word string I have read Stendhal’s Red and Black. [51] then to
the alternative word sequence with the same acoustic I have red Stendhal’s Read and
Black. This behavior will not only make the recognizer more accurate, it will also
allow us to constrain the search space by ignoring the non—-promising hypothesis.

Using the Bayes rule we can rewrite the term P(W) as

P(W) = P(wy,ws,...,w,)

= P(w1)P(wz | w1)P(ws | wi,w2) ... P(wy | w1, we,. .., Wn-1)
= HP(wi | wi, ..., wi1) (3.9)
i=1
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P(W,|W,)

P(W,|W,)

P(W,|W,)
P(W;|W,)

P(W,[W5)

P(W,|W,)

Figure 3-2: Bigram language model when the dictionary consists of three words only

where P(w; | wy, ..., w;—1) is the probability that w; will follow, given that the words
ws, ..., w;_1 were spoken previously. We will continue in the detailed approaches to
language modeling in chapter 4. A new proposed language model has been designed

and tested for Czech language as described in section 4.5.

3.3.4 The Hypothesis Search

We know already, or at least we have the vague idea, how to compute probabilities
P(W) and P(A | W) from the equation 3.5. We pointed out the connection of the
acoustic model and HMMs in section 3.3.2. The chapter 4 and section 4.5 explain
how to incorporate the discussed language models into the framework of HMMs. For

the moment we can approximate the equation 3.9 as follows:
n n
P(wy,wy,...,wp) = [[ Plw; | wr, ..., wi—1) H (w; | wi—1) (3.10)
] i

This approximation is called the bigram model and we immediately see that this

approximation satisfies the Markov assumption 2.12.

What follows is that we create a word level bigram network as shown on figure
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3-2. Each word in this network can be decomposed to the corresponding phones based
on its baseform?. Each phone is substituted with the corresponding triphone based
on its context (ie, k ae t— (silence-k+ae) (k-ae+t) (ae t+silence). The individual
triphones can be further decomposed to some fixed number of HMM states (three

states for each triphone in our case).

By doing this we have created a huge HMM. The transition probabilities A are
both the bigram probabilities on the word boundaries and the probabilities learned
from the forward-backward training 2.2.4 in the intra word context. The output
probabilities B are computed by the acoustic model. We shall note that the figure
3-2 is a drastically simplified version of the full network used for the decoding (we did
not complicate the diagram by introducing the corresponding initial and final states

or by incorporating the optional silences between the words).

The Viterbi search as described in 2.2.3 will reveal a sequence of the individual
HMM states forming the best scoring path. The states, we have found, represent the
triphones. This means that we also know which phones and words W correspond to
this best path. The often forgotten fact is that the words which we have found by
performing the Viterbi search are not necessary the words maximizing the equation
3.5. To find the real maximizing sequence we need to sum up all the paths that
correspond to the given word sequence. This is unfeasible in the world of LVCSR3.
Fortunately for us, it is rare that the maximizing word sequence differs from the word

sequence corresponding to the best path.

As we are usually interested in the word sequence only, we can modify the back-
tracking mechanism of the Viterbi search, so that only the word to word transitions
will be stored in formula 2.20. The speed of Viterbi algorithm can be further improved
by introducing pruning schemes. The usual approach is to modify the equation 2.19
so that we evaluate just the top Q candidates, where Q is fixed. A similar pruning
scheme takes into the account just the states which are inside a given beam compared

to the best scoring state.

2Each word in the vocabulary is presented with a phonetic baseform (ie, cat | k ae t).
31t is feasible for the isolated word recognition.

33



More sophisticated pruning methods, e.g. fast match in [41], can increase the
search speed dramatically. We shall note that Viterbi search is not the only option.

There are other algorithms, such as A*, [36] being used in some recognizers [7].

3.4 Measuring the Quality of the Speech Recog-

nizer

The purpose of this thesis is to introduce a new language model which will improve
the quality of speech recognition for inflective languages, namely for Czech. We have
to clearly state what we mean by the word improve. Our target is to improve the

measure called accuracy (Acc) which is defined as

Acc = N'IJ_VD—S . 100%, (3.11)

where N is the total number of words in the correct sentence W. In the experiments
we use hand annotated data for testing the speech recognizer, so we know the correct
sequence W. The terms I, D, and S denote the numbers of insertions, deletions
and substitutions respectively. To compute the numbers of I, D, and S we need to
align a recognized word string 1% against the correct word string W. This alignment
computation is also known as the maximum substring matching problem, which can
be easily handled by the dynamic programming algorithm.

The alternative approach is to use a measure called word error rate (WER) defined

as

WER =100 — Acc. (3.12)

In some special application we might not consider insertions as errors and this measure
is in that case called correctness. For the purpose of dictation, however, insertions

are as bad as deletions.

The final measure worth mentioning is the sentence error rate (SER), which indi-

cates the percentage of sentences whose transcriptions have not matched in an exact
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manner those of reference.
Let us investigate a real output of the speech recognizer compared to the correct

script of the utterance following the notion introduced in section 3.2.
W: ZAPLAVY POSTIHLY DESITKY OBCI OPET VETSICH MEST
W: ZAPLAVY POSTIHLY DESITKY OBCI A PET VETSICH MEST*

We can see that the recognizer made an error by substituting words “OPET"® and
“PET”% and by deleting the word “A”7. The accuracy of this recognized utterance is
thus Ace = 8&21=1 . 100 = 75%

The accuracy is an accepted measure in most of the speech recognition contests,
but it can be sometimes wrong to measure the quality of the speech recognition in
terms of accuracy only. There are speech enabled systems (such as a bank account
voice control), where sacrificing few percent points of the accuracy can be accepted
if the confidence of the recognized utterance is not high enough. It is the quality of
the rejection mechanism [25] which has a high importance in this case. The various

methods of the confidence score are described in [49].

“Floods have stroked tens of villages and five larger cities.
Sagain

6five

Tand
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Chapter 4

Language Modeling

4.1 Introduction to Language Modeling

We have shown that the language model is an important part of the speech recog-
nizer in chapter 3.3. It is important to note that in some of the speech recognition
applications the language model is not needed at all [10]. These are mainly the “com-
mand and control” types of applications where the equivalent of a language model is a
grammar written in some formalism as for example “Java Speech Grammar Format”
(JSGF)[5]. In case that we are interested in LVCSR systems we simply cannot ignore
the language model.

Let us demonstrate the effect of the language model on the following utterance:

W: NEBEZPECNY POZAR VLAKU S EXPLOZIVNIM PROPANEM NADALE
ZURI NA SEVERU NORSKA!

This sentence was decoded by using the language model presented in section 4.5 as

W: NEBEZPECNY POZAR S EXKLUZIVNIM PANEM NADALE ZURI NA SEVERU
NORSKA

Finally the same sentence with no language model at all.

W: NEBEZPECNY V UZ VLAK UST EXPLOZI NIM TR O PANEM NADALE
ZURI NA SEVERU NORSKA D

In northern Norway a train containing explosive propane gas continues to burn.
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By carefully examining the output of the recognizer when no language model has
been used we can see that the recognizer has a strong tendency to model the acoustic
evidence with short words (TR O PANEM versus PROPANEM). Using the language
model has led to much better result, but we have to pay for the fact that we use a

limited vocabulary and thus we did not have some words (EXPLOZI VNIM ) in the

vocabulary. Examples of the recognized utterances are included in the attachment B.

4.2 Language Modeling and Natural Language

As we have covered in section 3.3.3, the language model probability P(W) can be

decomposed as

I

P(W) P(wlawZa . ,wn)
P(w

1)P(wy | w1) P(ws | wy,wa) ... P(wn | w1, w2, . ., Wn-1)

fI (w; | wy, ..., wi—1) (4.1)

In the formula 4.1 we accept the fact the choice of w; depends only on the history
wy,...,wj—1. The models based on the formula 4.1, where the length of history is
fixed, can be modeled by means of the Markov models. This can be achieved by
grouping the word histories into equivalence classes so that the probability of a given
word depends on the preceding state (class) only. The practical demonstration of
this approach is shown in section 5.3. But is this really how we speak? Do we really
create a sentence by producing the first word and based on this word we continue to
the second word and so on?

Noam Chomsky shows in [17] that English is not a finite state language. This
is his argument: because English contains constructions that are not regular then
R

English is not regular. This is demonstrated on the reversal language defined as ww

(where w consists of a or b)2.

As stated, the argument is fallacious, as we can consider the regular language

2This language generates sentences aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, . ..
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(a ] b)*. This language contains the language ww?® (in the meaning that all sentences

R

generated by ww™ can be generated also by (a | b)*.

However, the proof that English? is not a finite state language can be done cor-

rectly [50], and so we have to accept the fact that the modc!

P(W) = P(w;,wy,...,wy)

N
~ H P(w; | Wi—pt1, ... Wiy) (4.2)
=1

-,

with fixed history of length n is not good enough for modeling the language properly.
We will ignore this fact and use a variant of approximation 4.2, as any means which
lead to a better accuracy of the speech recognizer are acceptable for us.

The formula is not the only one used in the world of language modeling. The
most common alternative approach is the use of probabilistic context- free grammars
(PCFQG). In the PCFG, we have to address the similar problems as we did for HMMs in
chapter 2. The probability of the sequence W = w;, ws, . .., w, in PCFG is computed
as P(S = W | G), where S is the starting symbol of the grammar and G the
probabilistic grammar. The sign = denotes the derivation sequence of one or more
steps using the rules of grammar G.

The problem of using PCFG [31] is that the rules of the grammar and the search
for the best derivation are hard to incorporate into the recognizer. The best state—of-
the—art result of using the PCFG in a speech recognizer (structured language model)
is described in [15]. The structured language modeling (SLM) shows a full 1.0%
absolute improvement (13.7% to 12.7%) in WER [16] over the baseline trigram model
for the WSJ DARPA93 HUBI test setup.

4.3 The Traditional N-Gram Approach

'The n-gram approach is based on formula 4.2. The value of n in this formula denotes

the order of the n-gram. We use the terms unigrams, bigrams and trigrams for values

3The same can be done for Czech.
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N-gram model | Parameters to be estimated
unigram 62000
bigram 3.844 x 10°
trigram 2.383 x 104
fourgram 1.478 x 10%°

Table 4.1: The amount of n-grams needed for a vocabulary of 62,000 words

n=1,n =2 and n = 3 respectively. The individual probabilities of n-grams will be

estimated by using the relative frequencies in the training data as follows:
N(Wi—pi1, .., Wiz, W;)

P(wi ‘ Wi—n+1, - - - ')wi—l) = N('U)'_n+1 . w’i——l) (43)

where N denotes the count of the corresponding word n-tuples in the training data.
The bigram and trigram models are the most common language models to be found
in the LVCSR systems today.

One of the first decision we have to do in the n-gram language modeling is the
choice of the corresponding n. We use a fixed vocabulary of words in the speech
recognizer and so we can examine how many parameters each of the n-gram models
needs to estimate (see table 4.1). The amount of bigrams is huge already, and there is
no chance at all that we will have enough data to see all the possible trigrams. In fact
the vast majority of trigrams will never occur in the language as it forms absolutely
ungrammatical constructions. The fact that there will be plenty of unseen n-grams

is called “data sparseness problem”.

4.3.1 Data Sparseness Problem

Data sparseness poses problem for nearly all statistical methods. We have illustrated
in the table 4.1 that the amount of the traning data will be never sufficient for the
trigram model®. There was an experiment performed in 1970 at IBM Research, where
a corpora of patent descriptions has been divided into a training and test data. It

was discovered that 23% of the trigrams appearing in the test set never occurred in

4“There is no data like more data” (Bob Mercer at Arden House, 1985)
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Figure 4-1: Vocabulary self-coverage for the Czech National Corpus

the training. This means that a speech recognizer operating according to formula 4.3
will have a guaranteed error rate at least 23%.

It is thus necessary to introduce some mechanism which will “smooth” the trigram
frequencies. We will show two ways how to smooth the language model. For the n-
gram based model in the speech recognizer we have used the Katz backoff model in
section 4.4. The HMM tagger uses a linear interpolation smoothing method described

in section 5.3.2.

4.3.2 Data Sparseness and Czech

The problem of data sparseness is common across all languages as the numbers in
table 4.1 depend on the size of vocabulary only. It is the size of the vocabulary needed
which can make the data sparseness even more troublesome. Let us examine figure 4-
1, which shows the vocabulary coverage for the Czech National Corpus. The striking
observation is that for a vocabulary of 60,000 words we get coverage of only 88.3%.
This means that the recognizer for the unrestricted domain (the Czech National
Corpus is a balanced representative corpus of contemporary written Czech) will have
WER at least 11.7%. The same size of vocabulary for British English (British National
Corpus [12]), will guarantee us the coverage of nearly 99% [55] [32].

The low coverage we observe for the Czech dictionary is due to the fact that Czech
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is richly inflected language. In the case of nouns the corresponding case, number and
gender are usually distinguished by a different ending. For verbs we distinguish
three persons in both singular and plural. The form of the verb is again usually
distinguished by a different ending. The quick guide to Czech morphology [27] is
described by positional tags (see table 5.2 and appendix A.1).

The data sparseness in Czech is not caused by the rich inflectional nature of the
language only. The other phenomenon is the free word order. There is no strict
order (as for English) for constituents such as subject, object, possessor, etc. The
aspect which makes the language with a free word order understandable is the use of
agreement (noun and it’s adjectival attribute must agree in gender, case and number
for example). We will show later in our experiments, that by using a language model
which includes the morphological information, we gain in accuracy. Our idea is that
by enriching the language model by the morphological tags (see chapter 5) we will be

able to solve two problems at once.

1. There are not so many tags as words in the Czech morphology. This will make

easier to collect reliable statistics.

2. Let us consider two different words occurring in the test data in different con-
texts: “thajskou”® and “teskoslovenskou”®. These two adjectives share the same
morphological category, which can be specified by the tag AAFS7----1A-—--.
To translate this tag into a human readable form; the both words are adjec-
tives, feminine, singular and the case is instrumental. Now the training data
for the language model stand from the Czech Republic and thus contain many
occurrences of the word “Ceskoslovenskou”. That is not the case for the word
“thajskou” (Czech newspapers do not tend to write about Thailand so often).
By using the enriched language model, we will be able to share at least the fact

that for these two words we expect a similar morphological context.

5Thai
6Czechoslovakian
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4.4 Good-Turing Estimate and Katz Backoff Model

We will discuss the Katz smoothing model in this section since it was used as the
smoothing mechanism for the word based n-gram language model in our experiments.
An alternative smoothing method has been used for the HMM tagger and is described

in section 5.3.2.

4.4.1 Good-Turing Estimate

The Good-Turing estimate is a smoothing technique to deal with infrequent n-grams.
It is usually not used by itself for the task of n-gram smoothing because it does not
include the combination of higher order models with lower order models (as necessary
for good performance). However, it is used as the main mechanism in several more
complex smoothing techniques.

The Good-Turing estimate states that for any n-gram that occurs r times, we

should pretend that it occurs 7* times as follows:

r = (r+ 1)-7-1;“ (4.4)

where n, denotes the number of n-grams that occur exactly 7 times in the training
data. However we are interested in a probability and thus we need to convert the r*

count to a probability. We normalize for an n-gram g, that occurs r times

P(9) =« (4.5)

where N = Y% ,n,r* is equal to the number of samples in the training data [24]
(as we can rewrite N = Y22 n,r* = 12X 0(r 4+ )ney = >oogn,r). The formula 4.5

is usually referred to as Good-Turing probability estimate.

4.4.2 Katz Smoothing

Katz smoothing further extends the idea of Good-Turing estimate 4.5 by incorpo-

rating the combination of higher-order models with lower-order models. We will

43



demonstrate the principal features of the Katz smoothing on a bigram example. Katz
smoothing [35] is using the Good-Turing estimate for nonzero counts in the following

way:

d.r ifr>0
C*(wi_l,wi) = (46)
a(w;—1)P(w;) ifr=0

where d, is the discount ratio. We discount according to the ratio for » > 0 and
that leaves some quantity (the counts subtracted from the nonzero counts) to be
distributed among the zero-count bigrams according to the next lower-order distribu-
tion (unigrams in our case). The value of a(w;-;) compensates the total amount of
counts in the data and its value is computed so that the smoothed bigram satisfies

the probability constraint:

1- Ewi:C(wi_l,w¢)>0 P*(wilwi—l) _ 1- Zw;:C’(wi_l,wi)>0 P*(w'ilwi—l)

a(w;—1) = = 4.7
( 1) Zw¢:0(w¢_1,wi)=0 P(w'b) 1 - Zw¢:C(w¢_1,w¢)>0 P(w’b) ( )

where the P*(w;|w;—1) is computed from the altered counts, that is:
P*(ws|w;—1) = Clwy, w) (4.8)

B Ewm C* (wi—h w:z:)

In the implementation as proposed by Katz in [35] d, = 1 for reliable counts r > k,
where k is a constant chosen empirically. The discount ratios for the less reliable

counts (r < k) are derived from the Good-Turing estimate so that:

1. The discounts coefficients d, are proportional to the discount coefficients defined

by the Good-Turing estimate.

2. The total number of counts discounted in the global bigram distribution is
equal to the total number of counts that should be assigned to bigrams with

zero counts according to the Good-Turing estimate.

These two constrains can be formally written as

*

r
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where r € {1...k} and p is a constant. The Good-Turing estimate predicts that the
total mass assigned to bigrams with zero counts is nol "1 = n;, and thus the second

constraint corresponds to:

Zn, (1—d.)r =mn,. (4.10)
The unique solution is given by
r (k+Dngy .
. n ;
d, = - (k+‘1)£'l¢_1_1. : (4.11)
ni

Katz smoothing for the higher-order n-gram models is defined in a similar way. The
Katz n-gram model of order n is defined by the means of the (n— 1) gram model. The
recursive procedure ends up with unigram model which is the maximum likelihood

model. To sum the whole procedure up we have

( Clwj—y,wy) .
ey ifr>k
PKatz(w,-_l,w,-) = 4 dr—(:%lﬁu—)zl if k >r>0 (412)
a(wi_l)P(wi) ifr=20

]_Zuq >0 PKatz(wilwi-1)

where d, is defined by formula 4.11 and a(w;-,) = = Pla)
‘ wiir>0 t

4.5 Combination of a Hidden Tag Model and a
Traditional N-Gram Model

To the best of our knowledge, the first introduction of the tagger as a speech recog-
nition language model component was in [11] without improving results over the
baseline bigram model. The idea has been further explored in [34] where the author

proposes the interpolation with a trigram model based on formula 4.13.

P(W) = AP(wi|wi-2, wi-1) + (1 — A)Q(wi|g(wi-2), g(wi-1)), (4.13)
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where g(w;) is the tagging function. The importance of formula (4.13) for languages
with the data sparseness problem is that the new component Q can have enough
evidence to give us reliable statistics about the word sequence W as the size of the
tag set tends to be much smaller then the size of the word vocabulary itself.

The problem with approach (4.13) is that the tagging function g(w;) depends on
all words of the utterance (supposing that the tagging component is performed by
an HMM tagger as described in chapter 5). The standard solution is to replace the
probability ) by a new probability Q*:

Q (wilwn,. .-, wit) = Y Quilts, )T 9(wi-2) = ta, g(wit) = ta |y, . ,w,._l),

e (4.14)
where T(g('wi_z) = tg, g(wi—1) = t1 | wl,...,wi_l) is the corresponding forward
probability of the HMM with states corresponding to pairs of tags (t1,t2) based on
a transition probability Pi(¢; | ti—2, t;—1) and the output probability P,(w; | ti—1, ).
The probabilities of the HMM tagger are discussed in detail in section 5.3, the forward
algorithm is described in section 2.2.2. We did not use this proposed solution as the
computation of the @Q* during the decoding tends to be unfortunate due to several

practical reasons:

e The whole computation of P(W) in the n-gram model is done in the logarithmic
domain (so that we do not have to deal with the underflow problems when
multiplying the probabilities). The logarithmic domain allows us not to use the
multiplication in the decoder at all. The forward algorithm requires adding the
probabilities and thus we have to simulate the required sum in the logarithmic

domain.

o In our setup (see [37]) we are using the morphological analyzer [27] so that for
every input word only the list of possible tags is considered. The nature of how
Q* gets computed will thus prefer hypothesis where the list of the plausible tags
is bigger. We do not believe that this is the desired behavior and this might be

one of the reasons why using the formula 4.14 did not bring any major success.
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Our solution is based on maximizing the probability of the sequence of tag-word
pairs instead of maximizing the sequence of words only. One of the consequences of
this approach is that we do not use the forward probabilities at all. We can compute
the best sequence by using the Viterbi algorithm describea in section 2.2.3. It is
important to note that having both the n-gram model and the tag model Viterbi
based, the decoding step gets much straightforward then compared to formula 4.13.

By using this proposed approach the new Q(W,T) function becomes:
Q" (wi, tilwy, ..., wi—1) = Py(tilticy, tima) Powilts, tiy), (4.15)

where P, and P, are the corresponding transition and output probabilities distribu-
tions (see formulas 5.14 and 5.15) of the HMM-tagger, and t;, ¢;_, t;_» are the tags
corresponding to words w;, w;_1, w;—2. Instead of using the formula 4.13 we introduce

the cost function
Cost(W) = log(P(win,-_.g,wi__l)) + ftaglog(Q**(wi, tilwy, ... ,wi_l)), (4.16)

where the scaling factor f;,, needs to be optimized for the best accuracy as shown in
section 6.5.

One advantage of the approach 4.16 is that for each decoded utterance we get
both the words and the corresponding morphological category for each word. Let us

demonstrate the effect of the proposed approach on the following utterance:
W: TIM PADL PRVNI ITALSKY KABINET. ’
This utterance has been incorrectly recognized by the traditional n-gram model as

W: TIM PADLA & PRVNI ITALSKY ? KABINET. 10

The acoustic difference between the two candidate words padla and padl is very small

in the given context. Thus it must be the language model which will play the main

"As a consequence of this the first Italian government has collapsed.
8collapsed / verb feminine

SItalian / adjective masculine

0government / noun masculine
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role in recognizing the word pad! in this example. By using the standard trigram

model we can quantify the difference between the two hypotheses as

P(PADLA | (s), TIM )P(PRVNI | TIM, PADLA) PITALSKY | PADLA, PRVNT)
(4.17)

VErsus

P(PADL | (s), TIM )P(PRVNI | TIM, PADL) P(ITALSKY | PADL, PRVNI)
(4.18)
The only “suspicious” trigram in the incorrect hypothesis has the probability P (ITALSKY
PADLA, PRVNf). This trigram has been unseen in the training data. That was also
the case for the alternative trigram P(ITALSKY | PADL, PRVNI). The language
model has thus used the backoff bigram probabilities in both cases. The unfortunate
outcome is that the training data had more evidence for the wrong alternative 4.17.
The language model based on 4.16 recognized the utterance correctly and assigned

the following morphological categories (see table 5.2 and appendix A.1).

(TIM, PDZST--=-==—-=- ) (PADL, VpYS---XR-AA--1) (PRVNI, Cr1isi------—--- )
(ITALSKY, AATIS1----1A--—-) (KABINET, NNIS1----- A-—--).

The correct recognition has occurred due to the fact that we use probability @**. By

using it we get a low probability for the above mentioned “suspicious” trigram

Q™ ((ITALSKY, AATS1----1A----) | PADLA, PRVNI) =
= P,(AAIS1----1A---- | VpQW---XR-AA--1,CrIS1--------—- ) X
x P,(ITALSKY | CrIS§1----------  AAIS1-—--1A----) (4.19)

but we get a higher probability for the correct alternative

Q**((ITALSKY, AAIS1----1A----) | PADL, PRVNI) =
= P,(AAIS1----1A--—- | VpYS—--XR-AA--1,CrIS1-------—-—- ) %

x P,(ITALSKY | CrISi---------- ,AATS1--—-1A~---) (4.20)



The critical information helping us in this case is the probability . We have the evi-
dence of seeing verb masculine followed by numeral masculine inanimate and followed
by adjective masculine inanimate in the training data. On the other side we have no
evidence at all of seeing verb feminine followed by numeral masculine inanimate and

followed by adjective masculine inanimate.
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Chapter 5

HMM tagger

5.1 Introduction

The task of a tagger is to assign part of speech (POS) tags to words reflecting their
morphological category. But often, words can belong to different morphological cat-
egories in different contexts. For instance, the word form “obchod”! can have two
readings: in the sentence “N43 soused oteviel novy obchod.”? word form “obchod” is
a noun in a fourth case singular, but in the sentence “I'en obchod ma4 jiz zavieno.”3
it is a noun in first case singular.

A POS-tagger should determine all possible readings for all the words, and assign

the right reading given the context. It will be our goal to design and implement a

tagger which will be suitable for the use in speech recognition in this chapter.

5.2 The Problem of Tagging

Let us suppose that the language (Czech in our case) has defined a set of tags attached

to word forms. Let us a have a sentence W

W =wq,wa, ..., wy w; € Vi (5.1)

lshop
2Qur neighbor has opened a new shop.
3The shop is closed already.
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and a sequence of tags T of the same length
T =t,ty....t, t €V, (5.2)

where Viy and Vi are vocabularies of all word forms and tags respectively. We will
call the pair (W, T) ah alignment. The word w; has been assigned the tag ¢; in this
alignment.

We assume that the tags have some linguistic meaning in the language, so that
among all the possible alignments for the sentence W there is one correct from the
grammatical point of view. This assumption is needed for the training and the eval-
uation of the tagger. As we can see in section 4.5 the tagger will be perfectly able
to find some alignment even when the correct alignment does not exist*. A tagging

function is a function g

g: W =T =g(W), (5.3)

that selects a sequence of tags given a word sequence W, and thus it also defines the
alignment.

The standard measure used to compare taggers is accuracy at word level, telling us
percentage of words correctly tagged. To make a proper judgment about the quality

of the given tagger we must use the same tag set Vp for all the taggers we compare.

5.3 Probabilistic Formulation

It is our intention to use the tagger as a component for a statistical language model for
a speech recognizer. It is thus natural that the method of computing the alignment
(W, T) will be presented in the framework of HMMs [9] [18] as introduced in chapter
2.2. Other methods used for part of speech tagging are described in [30].

The HMM tagger is based on the model of text production. We pretend that
people do not think in words, instead they think in the morphological classes (tags).

The written text W we see is hiding the original sequence T which is what the author

4N-gram models do not guarantee grammatical sentences.
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had originally on his or her mind.

This idea which stays behind the HMM tagger is somehow fantastic and unrealis-
tic, but it is derived from the noisy channel approach as used in speech recognition,
where it is known to work. We will demonstrate that it works for the tagging problem

as well.

We will start with a similar equation as in the problem of speech recognition as
p “

described in 3.3.

T = arg max P(T | W) (5.4)

The term 1" denotes the recognized tag sequence. We will rewrite formula 5.4

P(T)PW |T)
P(W)

T = arg max P(T |W) = arg max

The word sequence W is only one and we can thus ignore the P(W). We end up with

the well known formula of HMM tagging.

A

T = arg max PITYPW|T). (5.6)

The problems which are left is how to estimate probabilities P(T) and P(W

T) and
how to find the tagging function g(w).

5.3.1 Maximum Likelihood Training

We have shown in chapter 2.2 that there is an algorithm which will estimate P(T)
and P(W | T) by requiring no hand-tagged text. This has been tried with different
initialization schemes [38] of the forward backward algorithm. Unfortunately, regard-
less how much data was used, the automatic determination of the model parameter
vector ® always led to worse tagging results then the approach we describe in this
section.

We will describe a method which will estimate the probabilities P(T") and P(W |
T). The HMM tagger, we are designing will use the following formulas
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I

P(T) (t1,t2, ..., tn)
(t

P
P(t)P(t2 | t1)P(t3 | tl,tz) P(t, | t1,t2,. .., tn-1)
H t Itl"' HPt |tz 1az2) ‘ (57)

i=1

and by using the same approximation for the probability P(W|T') we get

First we need to fit these probabilities into the HMM theory as described in
chapter 2.2. The output observation alphabet O corresponds to the dictionary of
all words Viy. The observed sequence X = Xi, X, ..., X, corresponds to the words
W =W,Ws,...,W,.

The hidden states have to correspond to the individual tags t;, but at the same
time we have to follow the assumptions 2.12 and 2.13. This correspondence can be

achieved by defining the state space 2 as
Q=1{1,2,...,V3}, (5.9)

where each state corresponds to some pair of tags (¢;,t,). The correspondace is thus

achieved as a;; is the probability of taking a transition from state i to state j, i.e.,
Gij = P(Stime = § = (tarty) | Stime—1 =1 = (t},1.)) = P(ts | t;,t.) (5.10)

The same approach is used for expressing the b;(k) output probability of emitting

symbol wy when state ¢ is entered.

bz(k) = P(wk | Stime = 1 = <twaty>) = P(wz | tzaty) (511)

Maximum likelihood estimation (MLE) is a straightforward training method if we

have some large corpora of tagged text available. The tagged text comes from the
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human annotator who hand-crafted the correct alignment (W, T'). According to the

MLE, the probability P(t; | ti—1,ti—2) is computed as

N(ti-2,tic1, ti)

P(t; | tio1, tisg) = 5.12

(b [, tia) N(tiza, tiy) (5:12)
and a similar estimate for the probability P(w; | t;, t;-))
Nt 1t w.

Pluwy [ i tiy) = bt o ) (513

N(ti-1,t:)

where the term N(t;_s,t;_1,t;) states how many times the sequence t;_y,t;i-1,t; has
appeared in the alignment and, similarly, N(¢;_;,t;, w;) means how many times the
word w; appears with a tag t; and the word w;_; with tag ¢;,_, in the alignment.

We can immediately see the main drawback of the MLE approach. Estimates
5.12 and 5.13 will assign a probability of zero to any sequence tags tz, t,,t, that did
not occur in the training data. The same problem occurs for unseen words. We can
have several hundreds of tags in the tag set, so the chance to see all the possible
combination is close to zero. What is even worse, we cannot even hope that we will
see all the words from our dictionary Viy in the training.

We have to introduce a method which will allow us some work around of the
unseen events, otherwise the Viterbi search algorithm 2.2.3, which we hope to use,

will never find an alignment with probability better than zero for some sentences.

5.3.2 Linear Smoothing

We have introduced the problem of unseen events in the training data. Linear smooth-
ing is a simple and effective answer to this problem. Instead of using the relative

frequencies from the MLE estimates 5.12 and 5.13 directly, we define a smoothed
probability P(ti l ti—l,ti—2)

P(t; | tic1,tiz2)smooth = AsPumre(ti | tio1,tic2) + Ao Pyre(ts | ticq) +
1

Wi (5.14)

+M Pure(ts) + Xo
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where 3 (), = 1and 0 < A\; < 1. For the probability P(W|T) we define the

smoothed alternative as
1
P(w; | i, ti—1) smooth = VaPure(w; | ti tio1) + YoPure(w; | t:) + ’YOW (5.15)

where o+ 72+ =1and 0 <vy; < 1.

The unigram term 7, Pyre(w;) can be omitted from formula 5.15 as the output
probability for the HMM depends on the current state. When word w; happens to
be unseen in the training, term ’VOI'V%V—I will not allow the zero probability problem to

occur in the test data.

Our goal is to find the optimum parameters A; and ;. To achieve that, we will
not use the whole hand annotated data for computing probabilities Pypg. The part
which has not been used is called held-out data and will serve us to find the set
of smoothing coefficients A and v which maximize the probability of emitting the

held-out data by our interpolate model.

We will demonstrate two different approaches how to find the optimum smoothing

coefficients for the set of A;.

We have shown that the term P(¢; | ¢;—1,t;—2) can be regarded as an HMM. We

will use this fact by incorporating the A coefficients to it as shown on figure 5-1.

By examining the figure we see four null transitions (see 2.2.5) outgoing from
the leftmost state sy(¢1,t2) into states so(t1,t2), si(t1,t2), sa(t1,t2) and s3(ty,ts).
These transitions are taken with probabilities Ao, A1, Ay and A3 respectively. Out of
each of the four states lead |Vr| transitions. By taking any of these transitions and
entering the corresponding state sy (t2, tg;) we observe tg;. The transitions from states
So(t1,t2), s1(t1,t2), S2(t1,t2) and s3(t1, t2) are taken with probabilities T‘%TT’ Pryre(tg:),
Pyre(tg: | t2) and Pyre(tg; | t1,t2), respectively.

The figure 5-1 shows us just a small part of the overall HMM network. We must
realize that the Pyspr probabilities are known and the only thing we need to estimate
are the )\; probabilities. The other simplifying fact is that due to the formula 5.14 the

A coefficients will have the same value regardless of the actual combination ¢, ¢,, tg;.
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Figure 5-1: Linear smoothing section of an HMM corresponding to transition proba-
bilities in the tagger

The forward backward algorithm from section 2.2.4 is thus feasible for computing the

smoothing parameters.

The alternative way to compute the set of A; parameters has been introduced in
[48] and this is also the algorithm which the implementation of the HMM tagger uses

for the experiments in this thesis.

We define logprob LP as

Zlog (i | ti-1, tim2) smooth) (5.16)

where Ny is the length of the held—out data. LP can be viewed as the average of the
appearance of the quantity log(P(t; | ti—1,ti—2)smootr) in the heldout data. The idea
is to minimize the term LP by computing the corresponding scaling parameters .
Derived from the EM algorithm in [48], the iterative algorithm for computing the set

of \g ...k looks as follows:

1. Initialization step. Set A} = ziy 1 for ij=0,...,K
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2. Expected counts computation.

2 X Pyrp(ti | tio1, ti- 2)

(5.17)
Z t |ti 1, tie 2)smooth
3. Iterative update for J;.
ATH = KC () (5.18)
j=0 C(A7)

4. If |\T — A7*!| < e print the set of X! else 7 = 7 + 1 and continue with step 2.

By computing the smoothing parameters values we have solved the problem of
zero probability. We have one set of A; which guarantees non-zero probability even

for a sequence which contains an unseen tag.

5.3.3 Bucketing

It is the perfect moment to realize that the values \; (once computed) are fixed and
independent of the individual counts N(t;_s,tz—1,t;) and N(tz—o,t,—1). But it is
obvious that Pypg(ty | tz—1,tz—2) Will be more reliable if the estimate of Py g was
based on a larger count N(t;_s,t,—1). This can be achieved by introducing a method
called bucketing.

Our goal is to have multiple sets of )\?, where b denotes the corresponding bucket
B®(i, 7). Each bucket is defined by an interval which it covers. The size of the interval
is computed in such a way that each bucket contains approximately the same amount

of trigrams from the training data. Given a history h we compute an index v(h).

N(h)
|t : N(h,t) > 0|

v(h) = (5.19)

The corresponding bucket B®(i,j) for the index v(h) has to satisfy i < v(h) < j.
The table 5.1 shows an example of )\3’- coeflicients as computed for the Czech HMM
tagger.

Linear smoothing is not the only way of smoothing. An extensive overview of

smoothing methods used in language modeling can be found in [32].
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interval A3 Ay A Ao
Bucket 1 (least reliable histories) | (0; 1.000) 0.0367 | 0.8077 | 0.1548 | 0.0006
Bucket 2 (1.000;1.481) | 0.1825 | 0.6750 \.1421 | 0.0001
Bucket 3 (1.481; 1.840) | 0.2555 | 0.6161 | 0.1279 | 0.0002
Bucket 4 (1.840;2.160) | 0.3257 | 0.5531 | 0.1206 | 0.0004
Bucket 35 (most reliable histories) | (51.84;79.00) | 0.8634 | 0.1255 | 0.0109 | 0.0000

Table 5.1: Example smoothing coefficients for the probability P(t; | ti-1.ti-2)smooth

5.4 Tagging of Inflective Languages

Inflective languages pose a specific problem in tagging due to two phenomena: highly
inflective nature (causing sparse data problem in any statistically based system such
as language model in chapter 4), and free word order (causing fixed-context systems,
such as n-gram HMMs, to be even less adequate than for English). The average tagset
contains about 1,000 - 2,000 distinct tags; the size of the set of possible and plausible
tags can reach several thousands. There have been attempts at solving this problem
for some of the highly inflective European languages, such as [20], [21] for Slovenian,

or [28], [30] for Czech and [26] for five Central and Eastern European languages.

So far no system has reached - in the absolute terms - a performance comparable

to English tagging (such as [46]), which stands above 97%.

5.4.1 Tagging Czech

Thanks to the Prague Dependency Treebank [2] project we can use about 1.8 million
hand annotated tokens of Czech for training and testing. The HMM tagger uses the

Czech morphological processor [27] to disambiguate only among those tags which are

morphologically plausible.

The meaning of the Czech tags we are using is explained in table 5.2. The detailed

explanation of the individual positions can be found in the appendix A.1.
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No. | Name Description
1| POS Part of Speech
2 | SUBPOS Detailed Part of Speech
3 | GENDER Gender
4 | NUMBER Number
5 | CASE Case
6 | POSSGENDER | Possessor’s Gender
7 | POSSNUMBER | Possessor’s Number
8 | PERSON Person
9 | TENSE Tense
10 | GRADE Degree of comparison
11 | NEGATION Negation
12 | VOICE Voice
13 | RESERVE1 Unused
14 | RESERVE2 Unused
15 | VAR Variant, Style, Register, Special Usage

Table 5.2: Czech Morphology and the Positional Tags

5.4.2 Tagging Experiment for Czech

It is our target to design a tagger which will allow us to improve the error rates
for the task of speech recognition. The language where we will demonstrate this is
Czech and so we are interested in the performance of the Czech tagger itself. The
best taggers for Czech (which use the same tagset) are reported to have the accuracy
bellow ninety five percent [30].

To demonstrate the difficulties of tagging Czech let us investigate the following
example. To follow the definitions of section 5.2 we have a sequence W for which the

annotater created the following alignment (W, T).

(Pak, Db=====m==m—mmm ) (zasedal, VpYS---XR-AA---)
(détsky, AAIS1----1A----) (tribundl, NNIS1----- A----).5

This sentence was passed to the morphological processor. The output contains for

every word all the tags which are morphologically plausible.

5Then the children tribunal held the session.
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(2asedal, VpYS---XR-AA---)

(détsky, AAFP1----1A---6, AAFP4----1A---6, AAFP5----1A---6.
AAFS2----1A---6, AAFS3----1A---6, AAFS6----1A---6, AAIP1----1A---6,
AATP4----1A---6, AAIP5----1A---6, AAIS1----1A----, AAIS4----1A----,
AAIS5----1A----, AAMP1----1A---6, AAMP4----1A---6, AAMP5----1A---6,
AAMS1----1A----, AAMS5----1A----, AANP1----1A---6, AANP4----1A---6,
AANPS----1A---6, AANS1----1A---6, AANS4----1A---6, AANS5----1A-~--6)
(tribundl, NNIS1----- A----, NNIS4----- A----).

The first thing we realize is that the adjective détski is highly ambiguous. We
are not sure if it is singular or plural (fourth position), we don’t even know if the
gender is neuter, feminine or masculine(third position). The case (fifth position) can
be nominative, genitive, dative, accusative or vocative. Some of the variants, as for
example AAFS3----1A---6, can be used in spoken Czech only (position fifteen). But
we must remind the reader that the morphological processor does not use any context
information. What we see here are all plausible tags for the given word.

When examining the whole noun phrase détsky tribundl any Czech speaker will
make the assumption that the gender and case shall be the same for both the adjective
and the noun in this noun phrase.

Let us examinate what has happened in the next step, when the HMM tagger

performed the Viterbi search for the best corresponding tag sequence.

(Pak, Db=-====—-=-=—-~ ) (zasedal, VpYS---XR-AA---) (détsky, AAIS4----1A----)
(tribundl, NNIS4-----A----).

The alignment created by the statistical tagger follows the natural feeling that
the gender and case should be same for the noun and adjective in the noun phrase.
However the alignment is not correct as the case of the noun phrase détsky tri-
bundl is not accusative but nominative. This example characterizes one of the most

common errors done by the HMM-tagger which is the substitution of accusative and

nominative.
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Accuracy smoothing w/o bucketing | Accuracy (bucketing)
Exp 1 95.23% 95.34%
Exp 2 94.95% 95.13%
Exp 3 95.04% 05.19%
Exp 4 94.77% 95.04%
Exp 5 94.86% 95.11%
Average | 94.97% 95.16%

Table 5.3: Evaluation of the HMM tagger on the Prague Dependency Treebank, 5-fold
cross validation

The HMM tagger described in this chapter has achieved results shown in table
5.3. It has produced only the best tag sequence for every sentence (although the
N-best decoding is also possible) therefore accuracy is reported only. Five-fold cross-
validation has been perforined on a total data size 1489983 of tokens (heldout data
excluded), divided up to five datasets of roughly the same size. The source of the
data is the Prague Dependency Treebank [2], where the distribution [1] of the tagger

can be also found.

5.4.3 Further Improvements to the Czech HMM Tagging

We have strictly followed the principles of the HMM framework till now. The tagger
was allowed to work with the left context only and so we succeeded with preparing it
for the speech recognition experiment in section 4.5. However, there are applications
in the field of computational linguistics [19] where the limitation to the left context is
not needed (such as machine translation, parsing, or offline transcription). In these
cases any method leading to better accuracy is acceptable.

In [29] the author of this thesis together with his colleagues introduced the serial
combination of a rule-based component and a statistical HMM tagger. We shall note
that the rule-based component has more than a context free power, which makes it
impossible to use in the speech recognizer based on the HMM approach. The task
for the manual rule component (which follows immediately after the morphological
processor) is to keep the recall very close to 100%, with the task of improving precision

as much as possible. The data flow in the serial combination can be described as
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Accuracy (bucketing) | Accuracy combined | Relative improvence
Exp 1 95.34% 95.53% 4.08%
Exp 2 95.13% 95.36% v 72%
Exp 3 95.19% 95.41% 4.57%
Exp 4 95.04% 95.28% 4.84%
Exp 5 95.11% 95.34% 4.70%
Average 95.16% 95.38% 4.58%

Table 5.4: Evaluation of the combined tagger on the Prague Dependency Treebank,
5-fold cross validation

follows:

1. The morphological analyzer is run on the test data set. Every input token
receives a list of possible tags based on an extensive Czech morphological dic-

tionary.

9. The manual rule component is run on the output of the morphology. The rules

eliminate some tags which cannot form grammatical sentences in Cuzech.

3. The HMM tagger is run on the output of the rule component, using only the
remaining tags at every input token. The output is one best only; i.e., the

tagger outputs exactly one tag per input token.

This combination (using exactly the same HMM tagger as described in this chap-
ter) obtained 4.58% relative error reduction and become the best tagging tool for the
Czech language. These improvements beat even the pure statistical classifier com-
bination [30], which obtained 3% relative improvement only. The detailed results of

the serial combination of a rule-based component and a statistical HMM tagger are

to be found in table 5.4.
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Chapter 6

Speech Recognition Experiment
Using the Combination of a Hidden
Tag Model and a Traditional Word
Based N-Gram Model

6.1 Acoustic Data

Our acoustic corpus consists of 26 hours of clean speech of broadcast radio and TV
news. Weather forecast, traffic announcements and sport news were excluded from
the corpus. The following radio and TV stations are included in the corpus: CT1,

Nova, Prima, Radiozurndl, Praha, Vltava and Frekvence 1.

The channel has been sampled at 22.05 kHz with 16-bit resolution. 22 hours were
used for acoustic modeling, the remaining four hours were used as the test set. The
corpus was collected at the University of West Bohemia [42], which allows to directly
compare the results of the proposed language model with the top scoring model in
[33].

For the purpose of our experiment we have divided the available data (which

were not included in the training) into two parts. Heldout data consists of 400
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utterances and will be used for finding the best scaling factors. Test data contains

2500 utterances.

6.2 Acoustic Features

The acoustic features are Mel-Frequency Cepstral coefficients [43]. Each acoustic
feature vector consists of twelve cepstral coefficients plus energy and their delta and
delta—delta coefficients. Cepstral mean subtraction was applied to all feature vectors

on a per utterance basis [56].

6.3 Lattice Rescoring

Obviously, it is very expensive to implement a large-vocabulary n-gram search (where
n > 2) given the complexity of the search space. It becomes necessary to perform a
multiple-pass search strategy, in which the first-pass search uses less detailed language
model (bigrams in our case) to generate the word lattice, and then a second pass
detailed search can use complex models on a much smaller search space.

The lattice is an oriented acyclic graph representing the output of the speech
recognizer and is composed by word hypotheses. Each word hypothesis in the lattice
is associated with a score and an explicit time interval (see figure 6-2). The lattice
rescoring mechanism is a widely accepted method for the evaluation of the language

models and it is supported by the main speech recognition toolkits [52][56].

6.4 Baseline System

In order to see how much improvement the integration of the tagger component will
bring us, we decided to implement the best baseline we can achieve using traditional
LM techniques. It is still impossible to run a full trigram decoder on word forms for
Czech due to its vocabulary size. Thus we took a bigram decoder (using the AT&T
tools [40][39]) and created lattices with it. The lattices have been transformed to
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trigram lattices and rescored with a trigram language model. The trigram model has
been trained on a collection of Lidové Noviny (Czech daily newspaper) containing
approximately 33 million words and it uses the Katz discounting method. The collec-
tion of Lidové Noviny [4] is a part of data collected by the Institute of Czech National

Corpus|3].

Our bigram‘ back-off language model used in the decoder and the trigram model
used for lattices rescoring has been built with a vocabulary of 62k most frequent
tokens. The outof-vocabulary rate of the transcriptions of the test data is 8.17%.
We utilized [52] to estimate the corresponding back-off parameters of the language
model as explained in section 4.4. The oracle accuracy of the held-out data lattices

is 87.76%.

6.4.1 Scaling Factors

From our preceding experiments we learned that the correct setting of the scaling
factors makes a significant difference on the WER. The scaling factors compensate the
differences of the language and acoustic model. The fundamental equation of speech
recognition 3.5 will actually lead to very unsatisfying results in the terms of accuracy.
This happens due to the fact that the acoustic model assigns the probability to the
acoustic observation a; every 10 or 15 milliseconds, in other words each utterance will
be assigned hundreds of probabilities by the acoustic model. The language model on
the other side will assign only eight to ten probabilities P(W) (as this is the average
length of the sentence). The other feature we have to compensate for, is the inability
of the acoustic model to consider strong correlation of adjacent acoustic observations
a;. The solution offered by [6] is to weight the acoustic model by a number fa. smaller
then one. Other works (such as [53]) introduce another enhancement of the equation

3.5, the “word insertion penalty”.

The word insertion penalty is based on the assumption that the length of the

sentence |W| follows an exponential distribution. Using these two schemes we end up
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Figure 6-1: Impact of the scaling factor for an n-gram based language model

with
W = arg muz}x(log P(W) + faclog P(AIW) + fip|W]) (6.1)

We decided to use the equivalent approach and weight the language model with
a factor frp. Based on the preceding experiments [14] we have also found that
introducing the word insertion penalty does not get us any gain in the accuracy as
long as we use the optimum scaling factors for the language model (see figure 6-1).
On a set of held-out data (400 lattices) we found the optimal scaling factors (see table
6-1) for the baseline trigram LM and the acoustic model. The scaling factor fras is
optimized for achieving the best accuracy on the held-out data with the following

formula:

A

W = arg mvg»x(fLM log P(W) + log P(A|W)) (6.2)

The baseline trigram system uses the scaling factor 15 as shown in Table 6.1. The

Accuracy of the baseline system on the test data is 71.90%.
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fum | Accuracy
11 70.35%
12 70.88%
13 71.33%
14 71.51%
15 72.04%
16 71.59%

Table 6.1: Finding the optimum scaling factor on the set of held-out data
6.5 Beating the N-Grams

The formula 4.16 gives us a hint how to combine the tagger component with the
trigram language model. For practical reasons we decided to use a slightly different
approach similar to the way we tuned our baseline. Our goal is to find the optimum
scaling factors fry and fi,y on the same set of the held-out data as used for the

baseline tuning. The formula 6.2 now becomes:

A

W = arg m“a;x(fLM log P(W) + fiqq log Q™ + log P(A|W)) (6.3)

The effect of tuning the parameters frar and fio4 can be seen in figure 6-3.

Our task is to find the optimum scaling parameters fi,q and frp on the set of
held-out data in a similar way as we have done for the n-gram baseline. We can see
from the figure 6-3 that the introduction of the tagger component Q** leads to the
accuracy improvement. The maximum accuracy gain point occurs with the scaling
factors frar = 10 and fiy = 5. The accuracy of this best setup is 72.97% on the

held-out data. The results are summarized in table 6.2.

6.5.1 Discussion of the Results

We managed to beat the trigram baseline by 1.21% absolute. That corresponds to
a relative improvement of 4.3% in the WER. We have also succeeded in improving
the accuracy for Czech presented in [32], where the author uses the same data set

for testing and the same vocabulary. What is even more important, we introduced a
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Accuracy | Language model used

70.24% bigram model

69.31% trigram model frp = 10

71.90% trigram model frp = 15 (baseline)
72.73% best class based model introduced in [32]
73.11% combination fry =10, fiag =5

87.69% | oracle accuracy

Table 6.2: Test data experiments

new language model which is a combination of a traditional trigram language model
and an HMM tagger. We achieved a promising improvement in accuracy compared
to the baseline trigram model.

There still remains place for further improvement. The oracle! accuracy 87.9%
of the lattices we have used still allows investigating new approaches in language
modeling.

One of the advantages of the language model presented in this thesis is that it can
be combined with the morpheme based approach as we have introduced in [14][13]

and as it was further explored in [32].

1The best error which can be achieved using the test data lattices.
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F1gure 6-2: Lattice correspondmg to a sentence “GENERALNI REDITEL PODNIKU
JIRE OLIVA TO POVAZUJE ZA VYHODNE ZHODNOCENI FINANCNICH REZ-

ERV.
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Figure 6-3: Accuracy as a function of fra and fiqg
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Chapter 7

Conclusion

We have described the speech recognition system for Czech using the HMM frame-
work. We have paid special attention to the language model component and we have
shown some of the difficulties the designer of the LVCSR system has to face when
working with inflective languages such as Czech.

We have created a trigram language model which served as a baseline. We have
shown the weaknesses of this word based n-gram model and presented a solution to
these weaknesses. We have proposed to create a language model using the underlying
morphological information. We had the theory that the use of the morphological
information will lead to more reliable statistics of the language model.

To incorporate the morphology into the language model properly, it was required
to develop a robust statistical tagger for Czech. We have presented an implementation
of an HMM tagger for Czech language. This tagger (when combined with a hand-
written rule component) is the top disambiguation tool for the Czech language with
the error rate less than five percent.

By combining the HMM based tagger with the word trigram model we have ob-
tained significant reduction in the word error rate. We believe that the approach
of c;ombining the word n-gram based models with HMM taggers will lead to better
accuracy in other inflective languages as well. The advantage of our solution is that
we solely use the Viterbi left to right decoding approach and thus it is theoretically

possible to use our language model in a single pass decoder approach as required by
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an LVSCR system with close-to—zero latency.

The speech recognition experiment has shown that there is a lot of space for further
research in the area of language modeling. The oracle accuracy is still far from our
best result and so we have to ask (together with the reader) which algorithms will
allow us to narrow this gap. Is the Holy Grail of language modeling in the more
complex methods such as SLM? The author of this thesis believes that the odyssey
of achieving better error rates can be in the long run solved by the quantity of the
training data. To quote Eric Brill': “More data is more important than better
algorithms”. By stating that we do not have to stop investigating more complex
language modeling techniques immediately (there are situations when we simply do
not have enough data), but the brute force approach to statistical language modeling

must be considered as an alternative even for highly inflective languages such as

Czech.

1Eric Brill is a head of the Text Mining, Search and Navigation Group, Microsoft Research
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Appendix A

Tables

A.1 Positional Tags: Quick Reference

5
=
®

Description

Adjective

Numeral

Adverb

Interjection
Conjunction

Noun

Pronoun

Verb

Preposition

Particle

Unknown, Not Determined, Unclassifiable

N| < H B <D 2| <O Q>

Punctuation (also used for the Sentence Boundary token)

Table A.1: Part of Speech

Value | Description

! Abbreviation used as an adverb (now obsolete)

# Sentence boundary (for the virtual word ###)

*

Word krét (lit.: times ) (POS: C, numeral)

Conjunction subordinate (incl. aby, kdyby in all forms)
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Abbreviation used as an adjective (now obsolete)

0 Preposition with attached -fi (pronoun ngj, lit. hiém ); proii, naf,
... (POS: P, pronoun)

1 Relative possessive pronoun jehoz, jejiz, ... (lit. whose in subordinate
relative clause)

2 Hyphen (always as a separate token)

3 Abbreviation used as a numeral (now obsolete)

4 Relative/interrogative pronoun with adjectival declension of both types
(soft and hard) (jaky, ktery, &, ..., lit. what, which, whose, ...)

5 The pronoun he in forms requested after any preposition (with prefix n-:
n&j, ného, ..., lit. him in various cases)

6 Reflexive pronoun se in long forms (sebe, sobg, sebou, lit. myself /
yourself | herself / himself in various cases; se is personless)

7 Reflexive pronouns se (CASE = 4), si (CASE = 3), plus the same two
forms with contracted -s: ses, sis (distinguished by PERSON = 2; also
number is singular only)

8 Possessive reflexive pronoun svij (lit. my /your /her [his when the
possessor is the subject of the sentence)

9 Relative pronoun jenz, jiz, ...after a preposition (n-: néhoz, niz, ..., lit.
who )

Punctuation (except for the virtual sentence boundary word ###, which
uses the SUBPOS #)

; Abbreviation used as a noun (now obsolete)

= Number written using digits (POS: C, numeral)

? Numeral kolik (lit. how many /how much )

Q Unrecognized word form (POS: X, unknown)

A Adjective, general

B Verb, present or future form

C Adjective, nominal (short, participial) form rad, schopen, ...
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Pronoun, demonstrative (ten, onen, ...lit. this, that, that ... over there,

)

E Relative pronoun coz (corresponding to English which in subordinate
clauses referring to a part of the preceding text)

F Preposition, part of; neverapp(ars isoiated, ‘a]ways in a phrasc (nchlede
(na), vzhledem (k), ..., lit. regardless, because of )

G Adjective derived from present transgressive form of a verb

H Personal pronoun, clitical (short) form (me, mi, ti, mu, ...); these forms
are used in the second position in a clause (lit. me, you, her, him), even
though some of them (mé) might be regularly used anywhere as well ]

I Interjections (POS: T) |

J Relative pronoun jenz, jiz, notdfteraprepobltlon(ht u)ho, %uh,om )

K Relative/interrogative pronoun kdo (lit. who), incl. forms with affixes
-z and -s (affixes are distinguished by the category VAR (for -z) and
PERSON (for -s))

L Pronoun, indefinite véechen, sam (lit. all, alone)

M Adjective derived from verbal past transgressive form

N Noun (general)

O Pronoun svij, nesvij, tentam alone (lit. own self, not-in-mood, gone )

P Personal pronoun j4, ty, on (lit. I, you, he) (incl. forms with the enclitic
-s, e.g. tys, lit. you’re ); gender position is used for third person to
distinguish on/ona/ono (lit. he/she/it ), and number for all three persons

Q Pronoun relative/interrogative co, copak, cozpak (lit. what, isn’t-it-true-
that )

R Preposition (general, without vocalization)

S Pronoun possessive muj, tvij, jeho (lit. my, your, his ); gender position
used for third person to distinguish jeho, jeji, jeho (lit. his, her, its ),
and number for all three pronouns

T Particle (POS: T, particle)

7



Adjective possessive (with the masculine ending - Qv as well as feminine

-in)
Preposition (with vocalization -e or -u): (ve, pode, ku, ..., lit. in, under,
to)
Pronoun negative (nic, nikdo, nijaky, zadny, ..., lit. nothing, nobody,

not-worth-mentioning, no/none )

(temporary) Word form recognized, but tag is missing in dictionary due

to delays in (asynchronous) dictionary creation

Pronoun relative/interrogative co as an enclitic (after a preposition) (o€,

nag, za¢, lit. about what , on/onto what , after/for what )

Pronoun indefinite (n&jaky, néktery, ¢ikoli, cosi, ..., lit. some , some ,

anybody’s , something )

Conjunction (connecting main clauses, not subordinate)

Numeral, indefinite (mnoho, mélo, tolik, nékolik, kdovikolik, ..., lit.
much/many , little/few , that much/many , some (number of) , who-

knows-how-much/many )

Adverb (without a possibility to form negation and degrees of compari-
son, e.g. pozadu, naplocho, ..., lit. behind, flatly ); i.e. both the NEGA-
TION as well as the GRADE attributes in the same tag are marked by
- (Not applicable)

Conditional (of the verb byt (lit. to be ) only) (by, bych, bys, bychom,
byste, lit. would )

Numeral, generic with adjectival declension ( dvoji, desatery, ..., lit.

two-kinds/. .. , ten-... )

Verb, transgressive present (endings -e/-&, -ic, -ice)

Verb, infinitive

Adverb (forming negation (NEGATION set to A/N) and degrees of com-
parison GRADE set to 1/2/3 (comparative/superlative), e.g. velky, za\-
ji\-ma\-vy, ..., lit. big , interesting
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Numeral, generic; only jedny and nejedny (lit. one-kind/sort-of . not-

only-one-kind/sort-of )

Verb, imperative form

Numeral, generic greater than or equal to 4 used as a syntactic noun

(Ctvero, desatero, ..., lit. four-kinds/sorts-of , ten-... )

Numeral, generic greater than or equal to 4 used as a syntactic adjective,

short form (Gtvery, ..., lit. four-kinds/sorts-of )

Numeral, cardinal jeden, dva, tii, ¢tyfi, pul, ... (lit. one , two , three
, four , half ); also sto and tisic (lit. hundred , thousand ) if noun

declension is not used

Verb, past transgressive; also archaic present transgressive of perfective
verbs (ex.: udélav, lit. (he-)having-done ; arch. also udélaje (VAR = 4),

lit. (he-)having-done )

Numeral, cardinal greater than or equal to 5

Numeral, multiplicative indefinite (-krdt, lit. (times ): mnohokrat, to-

likrat, ..., lit. many times , that many times )

Verb, past participle, active (including forms with the enclitic -s, lit. ’re

(are ))

Verb, past participle, active, with the enclitic -t, lit. (perhaps) -could-

you-imagine-that? or but-because- (both archaic)

Numeral, ordinal (adjective declension without degrees of comparison)

Verb, past participle, passive (including forms with the enclitic -s, lit. re

(are ))

Verb, present or future tense, with the enclitic -f, lit. (perhaps) -could-

you-imagine-that? or but-because- (both archaic)

Numeral, interrogative kolikrat, lit. how many times?

Numeral, multiplicative, definite (-krét, lit. times : pétkrat, ..., lit. five

times )
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Numeral, indefinite, adjectival declension (nejeden, tolikaty, ..., lit. not-

only-one , so-many-times-repeated )

Abbreviation, part of speech unknown/indeterminable (now obsolete)

Numeral, fraction ending at -ina (POS: C, numeral); used as a noun

(pétina, lit. ome-fifth )

Numeral, interrogative kolikaty, lit. what (at-what-position-place-in-a-

sequence )

Numeral, written using Roman numerals (XIV)

Abbreviation used as a verb (now obsolete)

Table A.2: Detailed Part of Speech
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Value | Description

- Not applicable

F Feminine

H Feminine or Neuter

I Masculine inanimate

M Masculine animate

N Neuter

Q Feminine (with singular only) or Neuter (with plural only); used only
with participles and nominal forms of adjectives

T Masculine inanimate or Feminine (plural only) used only with participles
and nominal forms of adjectives

X Any of the basic four genders

Y Masculine (either animate or inanimate)

Z Not fenimine (i.e., Masculine animate/inanimate or Neuter); only for
(some) pronoun forms and certain numerals

Table A.3: Gender

Value | Description

- Not applicable

D Dual

P Plural

S Singular

W Singular for feminine gender, plural with neuter; can only appear in
participle or nominal adjective form with gender value Q

X Any

Table A.4: Number

Value | Description
Not applicable
Nominative
Genitive
Dative
Accusative
Vocative
Locative
Instrumental
Any

PO O WO N ) !

Table A.5: Case
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Description

Not applicable

Feminine possessor

Masculine animate possessor (adjectives only)

Any gender

Not feminine (both masculine or neuter)

Table A.6: Possgender

Value | Description

- Not applicable

P Plural (possessor)
S Singular (possessor)

Table A.7: Possnumber

Value | Description
Not applicable
1st person
2nd person
3rd person
Any person

;x"oowr—a'

Table A.8: Person

Value | Description

Not applicable

Future

Past or Present

Past

F
H
P Present
R
X

Any (Past, Present, or Future)

Table A.9: Tense

Value | Description
- Not applicable
1 Positive

2 Comparative

3 Superlative

Table A.10: Grade
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Value | Description

- Not applicable

A Affirmative (not negated)
N Negated

Table A.11: Negation

Value | Description

- Not applicable
A Active |
P Passive

Table A.12: Voice

Value | Description
- Not applicable

Table A.13: Reservel

Value | Description
- Not applicable

Table A.14: Reserve2

Value

Description

Not applicable (basic variant, standard contemporary style; also used
for standard forms allowed for use in writing by the Czech Standard
Orthography Rules despite being marked there as colloquial)

Variant, second most used (less frequent ), still standard

Variant, rarely used, bookish, or archaic

Very archaic, also archaic + colloquial

Very archaic or bookish, but standard at the time

Colloquial, but (almost) tolerated even in public

Colloquial (standard in spoken Czech)

Colloquial (standard in spoken Czech), less frequent variant

Abbreviations

O 00| N[O UY x| WD —

Special uses, e.g. personal pronouns after prepositions etc.

Table A.15: Var
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Appendix B

Examples of Recognized Sentences

This appendix contains the sample output of the speech recognizer using the best
performing language model as described in section 6.5. Sentences which were misrec-
ognized are included only. W and W denotes the correct sentence and the recognized

utterance respectively.

W: OHLASY SHRNUJE NASE BRATISLAVSKA ZPRAVODAJKA RENATA HAVRA-
NOVA.

W: OHLASY SHRNUJE NASE BRATISLAVSKA ZPRAVODAJKA VRANOVA.

W: SHROMAZDEN DOPORUCILO TOTIZ SVEMU VYBORU MINISTRU ABY ZA-
HAJIL OKAMZITOU PROCEDURU POZASTAVENI CLENSTVI RUSKA KVULI
CECENSKU.

W: SHROMAZDENT DOPORUCILO TOTIZ SVEMU VYBORU MINISTRU ABY ZA-
HAJI OKAMZITOU PROCEDURU POZASTAVENI CLENSTVI RUSKA KVULI

CECENSKU.

W: PODLE IVANOVA CINI ALE VETSINA EVROPSKYCH POSLANCU CASTA BEZ-
PRECEDENTNI ROZHODNUTI NA ZAKLADE JEDNOSTRANNYCH INFOR-
MAcCT POCHAZEJICICH OD CECENSKYCH TERORISTU.

W: PODLE IVANOV A CINf ALE VETSINA EVROPSKYCH POSLANCU CEST A
BEZPRECEDENTNI ROZHODNUTI NA ZAKLADE JEDNOSTRANNYCH INFOR-
MACE POCHAZEJICICH OD CECENSKYCH TERORISTU.

85



: RUSKA PARLAMENTNI DELEGACE KTERA VCERA OPUSTILA JEDNANI SHRO-
MAZDENI RADY PO TE CO BYLA ZBAVENA HLASOVACIHO PRAVA SE MA
VRATIT DO MOSKVY DNES VECER.

: RUSKA PARLAMENTNI DELEGACE KTERE VCERA OPUSTILA JEDNANI SHRO-
MAZDENI RADY POTE CO BYL ZBAVEN HLASOVACIM PRAVEM SE MA
VRATIT DO MOSKVY DNES VECER.

: SPISOVATEL JOSEF SKVORECKY PRILETEL Z KANADY DO PRAHY ABY SE
ZUCGASTNIL AKCE NAZVANE NONSTOP CTEN].

: SPISOVATEL JOSEF SKVORECKY PRILETEL Z KANADY DO PRAHY ABY SE
ZUCASTNI AKCE NAZVANE NONSTOP CTENI.

: DVAASEDMDESATIHODINOVY MARATON PREDCITANI UKAZEK Z JEHO LITE-
RARNI TVORBY ZACNE V KOSTELE SVATEHO SALVATORA V NEDELI V
SESTNACT HODIN.

: NASILI SETIN HODINOVY MARATON PRI SCITANI UKAZEK Z JEHO LITE-
RARNI TVORBY JICH ZACNE V KOSTELE SVATEHO SALVATORA V NEDELI
V SESTNACT HODIN.

: DOZVEDET JESTLI BUDEME PRO CESTY DO KANADY I NADALE POTRE-
BOVAT ViZA.

: Z VEDET JESTLI BUDEME PRO CESTY DO KANADY INADALE POTREBOVAT
VIZA.

: PRAVE DNES SE TOTIZ CHYSTA MINISTERSTVO ZAHRANICI ZVEREJNIT
PO DALSICH JEDNANICH NEJNOVEJSI STANOVISKO KANADY.

: PRAVE DNES SE TOTIZ CHYSTA MINISTERSTVO ZAHRANICT ZVEREJINIT O
DALSICH JEDNANICH NEJNOVEJST STANOVISKO KANADY.

: TO PRITOM SEF DIPLOMACIE JAN KAVAN ZNA UZ DVA DNY A ZATIM HO
TAJIL.

: PRITOM SEF DIPLOMACIE JAN KAVAN ZNA UZ DVA DNY A ZATTM UTAJENT.
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: ROBERT MIKOLAS SHRNUJE JAK SE CELA ZALEZITOST S ViZY DO TETO
SEVEROAMERICKE ZEME VYVIJELA.

: ROBERT MIKOLAS SHRNUJE JAK SE CELA ZALEZITOST Z VYZVY DO TETO
SEVEROAMERICKE ZIMNI JEHO.

: TRINACTEHO BREZNA DEVATENACT SET DEVADESAT SEST DOSLO MEZI
KANADOU A CESKOU REPUBLIKOU K VYMENE NOT RUSICICH VIZOVOU
POVINNOST MEZI OBEMA ZEMEMI A TATO DOHODA VSTQUPILA V PLAT-
NOST O NEKOLIK DNi POZDEJI PRVNIHO RESPEKTIVE Z KANADSKE STRA-
NY DRUHEHO DUBNA.

: TRINACTEHO BREZNA DEVATENACT SET DEVADESAT SEST DOSLO MEZI
KANADOU A CESKOU REPUBLIKOU K VYMENE NOC V KOSICICH VYZVOU
POVINNOST MEZI OBEMA ZEMEMI A TATO DOHODA VSTOUPILA V PLAT-
NOST O NEKOLIK DNI POZDEJI PRVNIHO RESPEKTUJE Z KANADSKE STRA-
NY DRUHEHO DUBNA.

: VRATME SE ALE DO OBDOBI ROZVOJE STYKU MEZI KANADOU A CESKOU
REPUBLIKOU JAK UZ JSEM REKL VIiZOVA POVINNOST BYLA ZRUSENA V
ROCE DEVADESAT SEST.

: VRATME SE ALE DO OBDOBI ROZVOJ STYKU MEZI KANADOU A CESKOU
REPUBLIKOU V USA REKL VYZVA POVINNOST BYLO ZRUSENO ROCE DE-

VADESAT SEST.

. DUVODEM BYL VZESTUP ZADOSTI CESKYCH OBCANU PREDEVSIM ROMU
O AZYL V KANADE KTERY PRAVE V ROCE DEVADESAT SEDM DRAMA-
TICKY STOUPL.

. DUVODEM BYL VZESTUP ZADOSTI CESKYCH OBCANU PREDEVSIM ROMU
O AZYL V KANADE KTERY PRAVE V ROCE DEVADESAT SEDM DRAMA-
TICKY STOUPLA.

. KDYZ SI PRO PRIKLAD SROVNAME ROK DEVATENACT SET DEVADESAT
PET KDY KANADU POZADALO O AZYL JEN DEVETADVACET OBCANU
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CESKE REPUBLIKY V ROCE DEVADESAT SEDM TO UZ BYLO DVANACT
SET OSMDESAT PET ZADATELU TEDY ZA DEVET MESICU TOHO ROKU.

W: KDYZ SI NAPRIKLAD SROVNAME ROK DOTACE DEVADESAT PET KDY KA-
NADU POZADALO O AZYL JEN DEVET SET OBCANU CESKE REPUBLIKY
V ROCE DEVADESAT SEDM TO BYLO TO UZ BYLO DVANACT OSMDESAT
PET ZADATELU TEDY ZA DEVET MESICU TOHOTO ROKU.

W: KANADA SE STALA CfLEM MNOHA LIDf I PROTO ZE TAMNI URADY HRADILY
7ZADATELUM AZ DO KONECNEHO ROZHODNUTI VSECHNY NAKLADY VCET-
NE UBYTOVANI STRAVY A ZDRAVOTNIHO POJISTENI.

W: KANADA SE STALA CILEM MNOHA LIDf PROTOZE TAMNI URADY ZTRATILI
7ZADATELUM AZ DO KONECNEHO ROZHODNUTI VSECHNY NAKLADY VCET-
NE UBYTOVANI STRAVY A ZDRAVOTNIHO POJISTENT.

W: TATO SKUTECNOST TAK VEDLA CESKE PREDSTAVITELE K TOMU ZE PO-
ZADALI KANADSKE CINITELE ABY PREZKOUMALI SVE ROZHODNUTI ZEJ-
MENA PAK PREZIDENT VACLAV HAVEL KTERY SE BEHEM SVE LONSKE
NAVSTEVY KANADY DOHODL S PREMIEREM JEANEM CRETIENEM NA
PREZKOUMANI DUVODU VEDOUCICH K OBNOVENI VIZOVE POVINNOSTI
PRO OBCANY CESKE REPUBLIKY.

W: TATO SKUTECNOST VEDLA CESKE PREDSTAVITELE K TOMU ZE POZADALI
KANADSKE CINITELE ABY PREZKOUMAT I SVE ROZHODNUTI ZEJMENA
PREZIDENT VACLAV HAVEL KTERY SE BEHEM SVE LONSKE NAVSTEVY
KANADY DOHODU S PREMIEREM JEANEM TED JEN NA PREZKOUMANI
DUVODU VEDOUCICH K VEDEN{ VIZOVE POVINNOSTI PRO OBCANY CES-
KE REPUBLIKY.
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