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Abstract: The thesis presents a numerical study of magnetocrystalline anisotropies in
dilute ferromagnetic semiconductors and transition metal systems intended to advance the
current understanding of the microscopic origins of this relativistic effect and to contribute
to the development of spintronic devices with new functionalities.

The major part of the work surveys magnetocrystalline anisotropies in (Ga,Mn)As epi-
layers and compares the calculations to available experimental data. Our model is based
on an envelope function description of the valence band holes and a spin representation
for their kinetic-exchange interaction with localised electrons on Mn2+ ions, treated in the
mean-field approximation. For epilayers with growth induced lattice-matching strains we
study in-plane to out-of-plane easy axis reorientations as a function of Mn local-moment
concentration, hole concentration, and temperature. Next we focus on the competition of
in-plane cubic and uniaxial anisotropies. We add an in-plane shear strain to the effective
Hamiltonian in order to capture measured data in bare, unpatterned epilayers, and we
provide microscopic justification for this approach. The model is then extended by an
in-plane uniaxial strain and used to directly describe experiments with magnetisation di-
rection controlled by strains due to postgrowth lithography or an attached piezo-electric
stressor. We also study magnetisation switchings induced electrostatically in a field-effect
transistor. The calculated easy axis directions and anisotropy fields are in semiquantita-
tive agreement with experiment in a wide parameter range.

The second part of this work builds upon the experience gained in modelling magnetic
anisotropies in (Ga,Mn)As and explores analogous spin-orbit coupling induced phenom-
ena in ferromagnetic transition metal alloys. Our description of these systems is based on
the tight-binding approximation with a realistic Slater-Koster parametrisation. We com-
pare the predicted band structures, densities of states and magnetic anisotropy energies
to ab-initio calculations first for elemental metals and then for CoPt and FePt ordered
alloys. Qualitative agreement of ab-initio and tight-binding predictions is observed for
the bimetallic structures. The applied formalism and the corresponding newly developed
code allow for modelling magnetic anisotropies in systems with broken symmetry due
to a finite multilayer structure, elastic strains or applied electric fields. Our work also
provides practical basis for further research in this direction, in particular for studies of
relativistic magnetotransport anisotropies by means of local Green’s function formalism
which is directly compatible with our tight-binding approach.

Keywords: Ferromagnetic semiconductor, transition metals, magnetic anisotropy, Kohn-
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Abstrakt: V této disertačńı práci jsou prezentovány numerické výpočty magnetokrystalic-
kých anisotropíı ve feromagnetických polovodič́ıch a přechodových kovech se zameřeńım
na mikroskopický p̊uvod těchto relativistických jev̊u i na vývoj spintronických součástek
s novou funkcionalitou.

Převážná část práce je věnována výzkumu magnetických anisotropíı v (Ga,Mn)As
epivrstvách a srovnáńı výpočtu s dostupnými experimentálńımi daty. Náš model popisuje
valenčńı d́ıry pomoćı šestipásové obálkové funkce a jejich kinetickou výměnnou inter-
akci s lokalizovanými manganovými momenty započ́ıtává v přibĺıžeńı středńıho pole.
Nejprve studujeme otáčeńı magnetické snadné osy ze směru kolmého k vrstvě do směru
paralelńıho v závislosti na koncentraci Mn iont̊u, koncentraci děr a teplotě v epivrstvách
s elastickým napět́ım zp̊usobeným r̊uznou mř́ıžkovou konstantou substrátu a epivrstvy.
Pak se zaměřujeme na vzájemnou velikost kubické a uniaxiálńı komponenty magnet-
ické anisotropie v rovině vzorku. Do našeho efektivńıho Hamiltoniánu je vloženo uni-
axiálńı napět́ı v rovině vzorku za účelem modelováńı anisotropíı měřených v neupravených
souvislých epivrstvách a zároveň je poskytnuto mikroskopické od̊uvodněńı tohoto
postupu. Model je pak rozš́ı̌ren o uniaxiálńı napět́ı podle libovolného směru v rovině
vzorku a použ́ıván pro popis experiment̊u, kde je směr magnetizace určen napět́ım in-
dukovaným litografickou úpravou vzorku nebo piezo-elekrickým členem. Dále studujeme
přeṕınáńı směru magnetizace v tranzistoru ř́ızeném elektrickým polem. Vypočtené směry
magnetické snadné osy a velikosti anisotropńıch poĺı se shoduj́ı semikvatitativně s experi-
mentem na široké škále parametr̊u.

Druhá část práce stav́ı na zkušenostech źıskaných při studiu magnetických anisotropíı
v (Ga,Mn)As a zkoumá analogické jevy s p̊uvodem ve spin-orbitalńı interkaci ve slitinách
feromagnetických přechodových kov̊u. Náš popis těchto systemů je založen na přibĺıžeńı
těsné vazby s realistickou Slaterovou-Kosterovou parametrizaćı. Vypočtené pásové struk-
tury, hustoty stav̊u a magnetické anisotropńı energie porovnáváme s dostupnými ab-initio
výsledky pro jednoprvkové kovy a pro uspořádané slitiny CoPt a FePt. V př́ıpadě bimeta-
lických struktur pozorujeme kvalitativńı shodu výsledk̊u obou metod. Použitý formalis-
mus a odpov́ıdaj́ıćı nově vyvinutý kód umožňuj́ı modelováńı magnetických anisotropíı
v systémech se symetríı porušenou vrstevnatou strukturou slitiny, elastickým napět́ım
mř́ıžky nebo přiloženým elektrickým polem. Naše práce také poskytuje dobrý základ pro
daľśı výzkum relativistických transportńıch anisotropíı ve formalismu lokálńıch
Greenových funkćı, který je s přibĺıžeńım těsné vazby kompatibilńı.

Kĺıčová slova: Feromagnetické polovodiče, transitivńı kovy, magnetická anisotropie,
Kohn̊uv-Luttinger̊uv Hamiltonián, kinetická výměnná interakce, přibĺıžeńı těsné vazby,
spin-orbitálńı interakce.
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Chapter 1

Introduction

1.1 Magnetic Anisotropies in Spintronics

In this work we study magnetocrystalline anisotropies in dilute moment ferromagnetic
semiconductors and ordered metallic alloys with the intention to advance our under-
standing of the microscopic origins of this relativistic effect and to contribute to the
development of spintronic devices with new functionalities.

Spintronics is a field of research that investigates the spin of the electron as well as
its charge, combining the magnetic and electrical properties of materials, and aiming for
applications in information storage and processing. The first generation spintronic devices
such as hard drive read heads based on the Giant Magneto-Resistance (GMR) or Tunnel
Magneto-Resistance (TMR) effects and Magnetic Random Access Memories (MRAM) are
metallic structures [17]. In MRAMs, the magnetic state of the memory bit is manipulated
by electrical current-induced magnetic field or spin transfer torque. This approach suffers
from high energy dissipation and limited scalability.

One possible solution to these problems is the electric-field control of magnetic proper-
ties which was first demonstrated in the ferromagnetic semiconductor (In,Mn)As [81, 20].
Consequently, we have seen an intense experimental and theoretical exploration of the
magnetic properties of (III,Mn)V ferromagnetic systems and their dependence on the
tuneable material parameters. Rich phenomenology has been discovered including the
sensitivity of the magnetic state to the concentration of magnetic Mn dopants and of
charge carriers, temperature, and lattice matching strains. Large share of the phenomena
is due to the strong spin-orbit coupling (SOC) in the host semiconductors such as GaAs
or InAs which gives rise to magnetic anisotropy of the ground state and transport proper-
ties. The Anisotropic Magneto-resistance (AMR) [7] as well as the Tunnelling Anisotropic
Magneto-resistance (TAMR) [37] have been observed in Dilute Magnetic Semiconductors
(DMSs). Our work focuses primarily on the magnetocrystalline anisotropy in (Ga,Mn)As
which has become an archetypal example of DMSs.

Magnetocrystalline anisotropy is the dependence of the energy of a ferromagnet on
the magnetisation orientation with respect to crystallographic axes. It originates in the
coupling of the spin and orbital degrees of freedom derived from the Dirac equation. In
the (v/c)2 order of the expansion of the Dirac equation beyond the non-relativistic form a
new term arises which captures this SOC. Contrary to the shape anisotropy arising from
the magnetic dipole-dipole interaction, the magnetocrystalline anisotropy is of quantum-
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relativistic origin. The band structure dependence on the magnetisation direction through
the SOC offers the opportunity to control the alignment of the magnetic easy axis by ex-
ternal electric field [19, 89], lattice strain [35, 93, 147, 149], or via temperature dependent
exchange-splitting of the bands also by temperature [110, 109]. Such ability to manipu-
late the magnetisation direction has many potential applications in non-volatile memory
devices. Moreover, the functionality of a spintronic transistor has been demonstrated
in (Ga,Mn)As nanostructure where the Fermi energy is manipulated by magnetisation
reorientation resulting in the Coulomb Blockade Anisotropic Magnetoresistance Effect
(CBAMR) [150]. During the past five years the author of this thesis has contributed
to the theoretical investigation of the dependence of magnetocrystalline anisotropies in
(Ga,Mn)As on doping, temperature, electric fields, and lattice strains. His results are
summarised in papers [89, 59, 149, 101, 130, 155] and in this thesis.

After a decade of research, which has led to discoveries of fundamental physics phe-
nomena, the desired spintronic functionality is still not available at room temperature in
DMSs [87, 144]. There have been attempts recently to take advantage of the experience
with SOC phenomena gained in magnetic semiconductors and to search for analogous
spintronic behaviour in ordered metallic alloys. The key idea is that one type of atom
contributes the magnetic moment and maintains ferromagnetic order above the room
temperature whereas the the other type of atom possesses strong SOC making the band
structure of the compound strongly dependent on the magnetisation direction in analogy
to DMSs. So far, the TAMR effect has been demonstrated in CoPt multilayer [95] or
in Fe/GaAs/Au heterostructure [77] and the CBAMR effect in Co-based metallic nanos-
tructures [8]. The direct electric field control of magnetic anisotropy in materials with
metallic carrier densities is a delicate effect. However, the presence of this effect has been
recently reported in a MgO/Fe/Au multilayer structure [70]. A detailed experimental ex-
ploration and theoretical microscopic understanding of these phenomena is still required.
A complementary strand of this doctoral work is devoted to calculations of the magne-
tocrystalline anisotropy energy (MAE) and the anisotropic density of states (ADOS) in
CoPt and FePt multilayers.

1.2 Overview of the thesis

After mentioning briefly the broader scientific context of the thesis we will now comment
on the main aspects and structure of this doctoral research in more detail. The work
is theoretical and consists of two parts which differ in the applied methods as well as
in studied materials. The first and more extensive part investigates the dependence of
magnetocrystalline anisotropies of (Ga,Mn)As epilayers on Mn doping, hole density, tem-
perature, and strain. The context of our research in the field of DMSs is introduced in
Sec. 1.3. The virtual-crystal k · p approximation for hole states and mean-field treat-
ment of their exchange interaction with Mn d-shell moments allow for efficient numerical
simulations [26, 1, 55]. Our theoretical method is described in more detail in Sec. 2.1.
Special attention is given to mechanisms breaking the cubic symmetry of an ideal zinc-
blende (Ga,Mn)As crystal. Microscopic mechanism which breaks the remaining in-plane
square symmetry in unpatterned epilayers is modelled by introducing an additional uni-
axial in-plane strain in the Hamiltonian. In Subsec. 2.1.2 we have demonstrated the
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correspondence of this effective approach and a generic k · p Hamiltonian with the low-
ered symmetry of the p-orbital states which form the top of the spin-orbit coupled valence
band.

We have systematically explored the reliability of the effective Hamiltonian model in
predicting the magnetocrystalline anisotropies of (Ga,Mn)As epilayer and micro-devices.
Comparison of our results with experiment is not straightforward due to the presence
of unintentional compensating defects in (Ga,Mn)As epilayers. In Sec. 3.1 we take ad-
vantage of the large amount of experimental data on magnetic anisotropy in (Ga,Mn)As
which has accumulated over the past years and test the relevance of our model over a wide
parameter range. We focus on general trends rather than on matching results directly to
an isolated experimental sample. The text of the whole section is an edited version of a
review-like paper [155]. The work presented in Sec. 3.2 has involved close collaboration
with experimental teams listed at the end of this section. It provides a more detailed
description of five combined experimental and theoretical projects focused on the control
of magnetocrystalline anisotropies in (Ga,Mn)As-based nano-devices by electric field [89],
temperature [130], lattice mismatch relaxation due to post-growth lithography [149, 59],
and piezo-electric straining [101]. Results of these projects have been published (or sub-
mitted to Physical Review B in case of [59]). The author of this thesis has contributed
to the joint research by the microscopic numerical simulations and the analysis and in-
terpretation of the experimental results. For this he has made significant extensions to
the pre-existing library of DMS routines, in particular to include systems with general
strain tensors. The author has also linked the DMS library to outputs of elastic theory
simulations of lattice deformation effects in (Ga,Mn)As.

The second part of the thesis is devoted to a study of SOC phenomena in ordered
metallic alloys. The motivation, context, and strategy of this research is briefly intro-
duced in Sec. 1.4. We apply the standard tight-binding formalism using the Slater-Koster
approach and include the atomic SOC term and the ferromagnetic exchange splitting.
Our formalism together with three realistic parametrisations is presented in Sec. 2.2. The
author of the thesis has developed a numerical code implementing the microscopic model,
compared the calculated band structures, densities of states and magnetic anisotropy en-
ergies to ab-initio calculations, and performed internal consistency checks. All results
are presented in Sec. 3.3 and corresponding publications are currently under preparation.
The current version of our model and code represents the first stage of developing a co-
herent description of magnetocrystalline and magneto-transport anisotropies in metallic
multilayers with strong SOC which we intend to complete in future. This is the topic of
UK EPSRC Postdoctoral Fellowship granted to the author of this thesis which starting
date is January 2011.

The following paragraphs introduce the individual institutions forming the closest sci-
entific environment of my reserach: The Department of Spintronics and Nanoelectronics
at the Institute of Physics AS CR, v. v. i., the host of these doctoral studies, has broad
expertise in modelling the band structure, transport and micromagnetic properties of fer-
romagnetic semiconductor materials and devices. The effective Hamiltonian model used
in this doctoral research has one of its origins in this group [1]. Complementary to the
research of ground state properties presented in this thesis, Dr. Karel Výborný has
conducted a parallel research of the transport anisotropies in (Ga,Mn)As building on the
same effective Hamiltonian model [103, 49]. Note that AMR is an important experimental
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means of determining the magnetic state and magnetocrystalline anisotropies of a con-
ducting sample which has been utilised for example in subsection 3.2.4. In the second part
of the doctoral studies when developing a tight-binding code to calculate the electronic
structure of the ordered metallic alloys, the author of this thesis has collaborated closely
with Dr. Jan Mašek from the Department of Condensed Matter Theory of the Institute.

Even though the main expertise of the author of this thesis is in theory, he has enjoyed
numerous interactions with experimentalists resulting in six joint publications. He has
collaborated closely with the experimental group in the Department of Spintronics and
Nanoelectronics, mentioned above, which specialises in the growth of DMS epilayers using
the Molecular Beam Epitaxy (MBE) technique and in the fabrication of semiconductor
nanostructures using electron-beam and optical lithography. Our joint projects have
focused on the dependence of magnetocrystalline anisotropy in (Ga,Mn)As on lattice
strains and temperature [155, 59] and external electric fields [89].

The author has enjoyed the collaboration with Prof. Václav Holý and Lukáš Horák
from the Department of Condensed Matter Physics of the Charles University in Prague.
We have studied magnetic anisotropies in (Ga,Mn)As microbars with lattice mismatch
relaxation determined from high resolution x-ray diffraction measurements [149, 59].

Hitachi Cambridge Laboratory focuses on research into magnetic and spintronic de-
vices for data storage and information processing and has a long track record in the devel-
opment of devices with new functionalities including the demonstration of single electron
memory cells and single electron logic circuits. The joint research with the group has
led to joint publications on magnetocrystalline anisotropy induced by the growth strain
relaxation in a nanometer wide channels [149] and by gating of thin films [89]. The author
is a co-inventor of a new magnetoresistive memory device holding several international
patents: EP2015307, KR20090007201, US2009016098, JP2009021586, CN101345079. The
collaboration has been extended also to Hitachi Advanced Research Laboratory in Japan
which has led to a publication on the temperature dependence of magnetic domain wall
properties in (Ga,Mn)As epilayers [130].

The Experimental Condensed Matter Group at the School of Physics and Astronomy
in at the University of Nottingham has expertise in the study of magnetism and electrical
transport phenomena in DMSs. The collaboration with this group has led to joint papers
on the magnetocrystalline anisotropy controlled by a piezo-electric stressor attached to
the ferromagnetic epilayer [101] and to a detailed systematic study of anisotropy effects
in strain-relaxed (Ga,Mn)As microstructures [59].

1.3 Ferromagnetic semiconductors

(Ga,Mn)As studied in the first part of the thesis is one of the most experimentally ex-
plored III1−xMnxV DMSs. The synergy of ferromagnetic and semiconducting properties
has attracted much attention of both basic and applied research ever since the discovery
of carrier-mediated ferromagnetism in III1−xMnxV [82, 83]. For typical doping levels 1%-
10% of Mn the magnetic dipole interactions and corresponding shape anisotropies are
10-100 times weaker in (Ga,Mn)As than in conventional dense-moment ferromagnets.
Consequently, magnetocrystalline anisotropy plays a decisive role in the process of mag-
netisation reversal. Despite the low saturation magnetisation the magnetic anisotropy
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fields reach ∼ 10-100mT due to the large SOC.

1.3.1 Impurity properties

Before establishing the microscopic model of the doped semiconductor, the properties of
the doping impurities must be considered. The extended x-ray absorption fine structure
studies [118] show that the Mn ions are distributed randomly in (Ga,Mn)As grown by
the Low-Temperature MBE technique. The elements in the (Ga,Mn)As compound have
an atomic structure [Ar]3d104s24p1 for Ga, [Ar]3d54s2 for Mn, and [Ar]3d104s24p3 for As.
It implies that the most stable and, therefore, most common position of Mn in the GaAs
host lattice is on the Ga site where its two 4s-electrons can participate in the crystal
bonding in the same way as the two Ga 4s-electrons. Because of the missing valence
p-electron the MnGa impurity acts as an acceptor which is the key difference as compared
to Mn-doped II-VI DMSs. The binding energy of the acceptor centre Eb = 112.4 meV
inferred from the infra-red (IR) spectroscopy [16, 64] is consistent with the Scanning
Tunnelling Microscope (STM) measurement [151, 152] and ranks Mn among moderately
shallow acceptors in GaAs whose band gap is Eg = 1.52 eV. The moderately low binding
energy and random distribution of impurities allow us to use the effective kinetic-exchange
and the virtual-crystal approximation in our modelling [55].

The weakly bound hole occupies one of the three antibonding sp− d levels with dom-
inant As 4p character. The Electron Paramagnetic Resonance (EPR) and Ferromagnetic
Resonance (FMR) experiments confirmed the presence of the positively ionised MnGa ac-
ceptor centres in (Ga,Mn)As [4, 131, 107]. The S = 5/2 local moment on Mn was detected
through a resonance line centred at Lánde g-factor g = 2 and, in low Mn-density samples,
through a sextet splitting of the line due to the hyperfine interaction with the 55Mn nuclear
spin I = 5/2. In addition, the small energy difference in the hole spin oriented parallel or
antiparallel to the Mn moment ∆ε = 8± 3 meV [64] reveals that the hole does not reside
in the d-shell or form a Zhang-Rice-like singlet but occupies an effective-mass Bohr orbit
[27]. Therefore, it can be classified as a charge-transfer insulator [26] in agreement with
photo emission spectroscopy [85, 84].

Note that the electronic structure is strongly dependent on the Mn concentration as
discussed in Ref. [54, 74]. The hole binding energy of an isolated substitutional Mn im-
purity is produced by the long-range Coulomb potential of the single-acceptor and by the
short-range central cell and p − d kinetic-exchange potentials [9]. At very weak doping,
the Fermi level resides inside a narrow impurity band (assuming some compensation),
separated from the valence band by an energy gap of magnitude close to the impurity
binding energy. In this regime, strong electronic correlations are an essential element of
the physics and a single-particle picture has limited utility. In the metallic state at Mn-
doping larger than 1%, on the other hand, the impurities are sufficiently close together,
and the long-range Coulomb potentials which contribute to the binding energy of an iso-
lated impurity are sufficiently screened, the system is best viewed as an imperfect crystal
with disorder-broadened and shifted host Bloch bands. In this regime, electronic correla-
tions are usually less strong and a single-particle picture often suffices. Our modelling of
magnetocrystalline anisotropies in (Ga,Mn)As is based on the Bloch valence band theory
and has therefore merit on the metal side of the metal-insulator transition (MIT).
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1.3.2 Origin of ferromagnetism and magnetic anisotropy

Ferromagnetism in (III,Mn)V DMSs was first described ten years ago [24, 50, 27, 26, 1].
The direct exchange between the holes near the top of the valence-band and the localised
Mn d-electrons is weak since the top of the GaAs valence band is dominated by 4p-
states more heavily weighted on As than on Ga sites. (MnGa and As belong to different
sublattices.) Therefore, the antiferromagnetic kinetic-exchange whose microscopic origin
is the p− d hybridisation dominates.

Zener [156] first proposed a model of ferromagnetism driven by the kinetic-exchange
coupling of the carriers and the localised spins to explain magnetic behaviour of transition
metal ferromagnets. According to the model, spin polarisation of the localised spins
leads to spin splitting of the bands, which results in the lowering of the carrier energy.
At sufficiently low temperatures, this lowering overcompensates the increase of the free
energy caused by the decrease of entropy, that is associated with the polarisation of
localised spins. However, the Zener model was later abandoned, as neither the itinerant
character of the magnetic electrons nor the quantum (Friedel) oscillations of the electron
spin polarisation around the localised spins were taken into account, and both of these are
now established to be critical ingredients of the theory of magnetic metals. In particular,
the resulting competition between ferromagnetic and antiferromagnetic interactions in
metals leads rather to a spin-glass than to a ferromagnetic ground state. In the case of
(Ga,Mn)As, however, the magnetic moments are strongly localised and dilute and the
coupling between them is mediated by itinerant carriers of comparable or lower density.
Under such conditions, the kinetic-exchange model is well applicable. An important aspect
of our model is that it can take into account the SOC contribution to the carrier-mediated
exchange interaction. Note that in III-V nitrides or II-VI oxides the p−d hybridisation is
strong enough to bind the hole [28] making our model not suitable for these compounds.

We also remark that the extended or weakly localised holes mediate the interaction
between local Mn moments on both sides of the MIT. According to the two-fluid model
[90] of the Anderson-Mott MIT in doped semiconductors, the conversion from itinerant
electrons to singly occupied impurity states occurs gradually as the system crosses the
MIT.The localisation radius decreases rather slowly from infinity at the MIT towards the
Bohr radius deep in the insulator phase so the wave functions retain an extended character
at length scales comparable to the inter-impurity distance even on the insulating side of
the MIT. This is consistent with the experimentally observed onset of ferromagnetism
in strongly insulating (Ga,Mn)As at ∼ 1% Mn-doping while the MIT occurs at higher
doping ∼ 1.5%.

1.3.3 Effective Hamiltonian model

Let us mention the spin density functional theory (SDFT) first as it is an established
tool to study origins of ferromagnetism. As an ab-initio approach it has the advantage
of involving no phenomenological parameters. In metals, the exchange-correlation en-
ergy functional can be successfully approximated by the local spin-density approximation
(LSDA). Unfortunately, in the DMSs with strongly localised magnetic d-electrons the
LSDA leads to underestimation of energy splitting between the occupied and empty d-
states, to an unrealistically large partial density of states (DOS) near the top of the valence
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band, and consequently to an overestimate of the strength of the p−d hybridisation. The
widely used corrections such as the LDA+U improve the resulting DOS but can have to
some extent an uncontrollable effect on the total energy of the system and therefore also
on the magnetocrystalline anisotropy. To the best of our knowledge, ab-initio calcula-
tions of magnetic anisotropies in DMSs have not been published to date, likely also due
to additional difficulties related to the random positions of Mn impurities in the lattice.

Our effective Hamiltonian approach [26, 1] focuses only on the low-energy degrees of
freedom while the core states enter via parameters of this less microscopic model. We
concentrate on the top of the valence band occupied by holes mediating the ferromag-
netism. Moreover, the holes are localised or weakly bound as mentioned earlier so the
k·p envelope function approximation is appropriate. We use the six-band Kohn-Luttinger
(KL) Hamiltonian [60] reflecting the tetrahedral symmetry of the zinc-blende lattice of
the semiconductor host (neglecting the lack of inversion symmetry). The SOC and lattice
strains can be incorporated efficiently within this formalism. We use the established KL
parameters [138] for describing the host electronic structure.

The relatively weak hybridisation Vpd of the host valence band holes and Mn moments
can be incorporated perturbatively using the Shriefer-Wolff transformation [112]. The
Anderson Hamiltonian [5] including the Coulomb correlation integral of the localised
states is transformed to a form where the valence band interacts with the localised d-
states only via a spin-spin term. The kinetic-exchange interaction can be described by a
single parameter:

J0 = 2|Vpd|2
U

εd(εd + U)
, (1.1)

where εd is the single-particle atomic-level energy of the occupied d-state measured from
the top of the valence band, and εd + U is the energy cost of adding the opposite-spin
d-orbital electron. (To better illustrate the physics we wrote the explicit form of Eq. (1.1)
for a case of a single localised orbital.) The k-vector dependence of J0 is neglected since
the valence band states of interest are near the Brillouin zone centre. In the rest of the
thesis we use Jpd = J0Ωu.c. where Ωu.c. is the unit cell volume. The kinetic-exchange
results in an antiferromagnetic coupling of the localised and itinerant spins which can be
understood based on a simple level-repulsion picture as shown in Fig. 1.1

Finally, the long range nature of the carrier mediated magnetism allows us to use the
virtual-crystal mean-field treatment of the Mn local moments. The model ignores disor-
der and spin-wave fluctuations of the magnetic system. Despite these approximations, the
approach has proven useful for describing many thermodynamic and magneto-transport
properties of (Ga,Mn)As samples with metallic conductivities [55], such as the measured
transition temperatures [27, 51, 52, 57], the anomalous Hall effect [56, 53, 29, 121],
anisotropic magneto resistance [56, 49, 29, 121, 104, 103, 102], spin-stiffness [61], fer-
romagnetic domain-wall widths [25, 130], Gilbert damping coefficient [122, 123, 34], and
magneto-optical coefficients [26, 124, 122, 62, 121]. In this thesis we demonstrate the
qualitative and often semi-quantitative reliability of the effective model in predicting the
magnetocrystalline anisotropies of (Ga,Mn)As epilayers and micro-devices.
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Figure 1.1: Schematics of the splitting of the valence-band due to the p− d hybridisation
in the electron picture. For the filled Mn d-shell level deep in the valence band and the
empty d-level in the conduction band, the hybridisation pushes the energy of the spin-
down valence band states up relative to the energy of the spin-up valence band states
resulting in the antiferromagnetic coupling of the localised and itinerant spins.

1.4 Metallic multilayers

Having gained valuable experience with SOC effects in DMSs, one potential route to
achieving the desired spintronic functionalities at room temperature is to exploit analogous
relativistic phenomena in metallic alloys, multilayers or nanostructures. At the same time,
recent progress in fabrication and characterisation of the magnetic nanoparticles and thin
films based on the ordered L10 CoPt and FePt alloys, renewed interest in understanding
the mechanisms contributing to the large magnetocrystalline anisotropy of these materials
[116]. Moreover, TAMR effect has been demonstrated in CoPt multilayer [95]. These
factors have motivated us to start developing a description of magnetocrystalline and
magneto-transport anisotropies in metallic alloys and layered structures with strong SOC.

1.4.1 Origin of magnetic anisotropy

The relevant metallic alloys combine at least two types of atoms where one type con-
tributes the magnetic moment and maintains ferromagnetic order above the room tem-
perature whereas the the other type of atom possesses SOC in analogy to (Ga,Mn)As
where the host semiconductor has strong SOC in the valence band and Mn contributes
the large magnetic moment. In this work we focus on typical magnetic transition metal
elements ferromagnets, iron and cobalt, and on the heavy noble metal platinum. Note
that Pt has SOC two orders of magnitude stronger than Fe or Co. Hybridisation of
states of the magnetic Fe or Co and non-magnetic but strongly spin-orbit coupled Pt can
significantly enhance magnetic anisotropies compared to pure Fe or Co. The ferromag-
netic order is maintained in the alloy even though the Curie temperature is lowered, e.g.,
TC ≈ 800 K in a 100 nm thick annealed CoPt film [99] as compared to TC ≈ 1388 K in
bulk Co.
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1.4.2 Tight-binding model

The k · p method which we use in case of DMSs is not suitable for describing the com-
plex electronic structure of transition metals with many bands crossing the Fermi level.
Moreover, the envelope function approximation is not appropriate for structures whose
properties vary on a length scale comparable to the lattice constant as, e.g., in ultra-thin
films or stacks of alternating few-monolayer films of different materials. For the transition
metal systems we therefore employ the tight-binding scheme which has been previously
used successfully to predict magnetocrystalline anisotropies in transition-metal monolay-
ers [14]. Another advantage of the tight-binding model, as compared to the delocalised-
basis k ·p or ab-initio approaches, is the possibility to combine it in a straightforward way
with the Landauer-Büttiker transport formalism in the framework of one-particle Green’s
functions, taking advantage of the localised basis used in the tight-binding scheme. This
combined approach has proven useful recently for example in the study of spin-dependent
tunnelling in (Ga,Mn)As [106, 105]. Due to its semi-phenomenological nature and the
consideration of short range interactions only, the tight-binding approximation allows
in principle for the description of complicated multilayer structures and for developing
physical understanding of the studied magnetic anisotropy phenomena including their
dependence on lattice strains or external electric fields.

We start with choosing a suitable realistic tight-binding parametrisation, compare
results of the newly developed code to ab-initio calculations and check the internal con-
sistency of our numerical predictions focusing on magnetocrystalline anisotropies. We
restrict this work to cobalt, platinum and iron since their compounds have been stud-
ied both experimentally and theoretically by a relativistic full-potential Linearised Aug-
mented Plain Wave (LAPW) methods [115, 116] providing a valuable benchmark for our
modelling and code.

After comparing all parametrisations on the level of bulk monoatomic crystals, we
calculate the DOS and MAE for CoPt and FePt ordered alloys, both for bulk crystals and
for thin films. We test the numerical convergence of the calculations and then compare
to available ab-initio data. We conclude this part of the work by evaluating local MAE
and ADOS of a thin film which is a quantity directly related to TAMR.
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Chapter 2

Theoretical framework

In this chapter we review briefly the two methods of modelling, electronic structures,
and magnetocrystalline anisotropies in semiconductor and metallic systems with strong
SOC. Section 2.1 presents the key elements of our effective Hamiltonian model includ-
ing its symmetries which are particularly important for the studied magnetic anisotropy.
Section 2.2 presents the standard tight-binding formalism in the Slater-Koster approach,
discusses three realistic parametrisations which we implement and again details the sym-
metry lowering mechanisms.

2.1 Magnetocrystalline anisotropy of (Ga,Mn)As

We use the effective Hamiltonian approach to calculate the magnetocrystalline anisotropy
energy of a system of itinerant carriers exchange coupled to Mn local moments. The k ·p
approximation is well suited for the description of hole states near the top of the valence
band in a (III,Mn)V semiconductor. The strong SOC makes the band structure sensitive
to the direction of the magnetisation. The Hamiltonian reads

H = HKL + Jpd
∑
I

SI · ŝ(r)δ(r−RI) +Hstr. (2.1)

HKL is the six-band Kohn-Luttinger Hamiltonian [68] including the SOC (see Eq. (2.19)).
We use GaAs values for the Luttinger parameters [138]. Hstr is the strain Hamiltonian dis-
cussed in the following subsection. The second term in Eq. (2.1) is the short-range antifer-
romagnetic kinetic-exchange interaction between localised spin SI (S = 5/2) on the Mn2+

ions and the itinerant hole spin ŝ, parametrised by a constant [138] Jpd = 55 meVnm3.

In the virtual-crystal mean-field approximation it becomes JpdNMn〈S〉M̂ · ŝ. The explicit
form of the 6×6 spin matrices ŝ is given in Ref. [1]. M̂ is the magnetisation unit vector
and NMn = 4x/a30 is the concentration of Mn atoms in Ga1−xMnxAs (a0 is the lattice
constant). Note that the Fermi temperature in the studied systems is much higher than
the Curie temperature so the smearing of the Fermi-Dirac distribution function is negli-
gible. Therefore, finite temperature enters our model only in the form of decreasing the
magnitude of magnetisation |M| = SBS(Jpd〈ŝ〉/kBT ), where BS is the Brillouin function
and 〈ŝ〉 is the hole spin-density calculated from the virtual-crystal mean-field form of
Eq. (2.1).
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We recall that the above model description is based on the canonical Schrieffer-Wolf
transformation of the many-body Anderson Hamiltonian. For (Ga,Mn)As the transforma-
tion replaces the microscopic hybridisation of Mn d-orbitals with As and Ga sp-orbitals by
the effective spin-spin kinetic-exchange interaction of L = 0, S = 5/2 local Mn-moments
with host valence band states [55]. Therefore, the local moments in the effective model
carry zero SOC and the magnetocrystalline anisotropy is entirely due to the spin-orbit
coupled valence-band holes. The M̂-dependent total energy density, which determines
the magnetocrystalline anisotropy, is calculated by summing one-particle energies for all
occupied hole states in the valence band,

Etot(M) =
m∑
n=1

∫
En(k,M)f(En(k,M))d3k, (2.2)

where 1 ≤ m ≤ 6 is the number of occupied bands and f(En(k)) is the Fermi distribution
function taken at zero temperature as explained above.

2.1.1 Tetrahedral symmetry of the host semiconductor

The symmetry of the host crystal plays an important role in the derivation of the model
Hamiltonian. The zinc-blende structure has a space group denoted by F43m or T 2

d . Its
point group Td has tetrahedral symmetry.

In a general crystal approximated by a periodic potential V0 the k · p method can be
derived from the one-electron Schrödinger equation(

p2

2m
+ V0

)
|Φnk〉 = εnk|Φnk〉, (2.3)

where we assume the solution in the form of Bloch wave functions |Φnk〉 = eik·r|nk〉.
|nk〉 is the lattice periodic function, m is the free electron mass, n is the band index, and
k lies within the first Brillouin zone. We obtain the equation(

p2

2m
+ V0 +

~
m
k · p

)
|nk〉 =

(
εnk −

~2k2

2m

)
|nk〉, (2.4)

which simplifies in the centre of the Brillouin zone, the Γ point, to:(
p2

2m
+ V0

)
|n0〉 = εn0|n0〉. (2.5)

The solutions |n0〉 form a complete and orthogonal set of basis functions so the ~
m
k · p

term with finite k-vectors can be treated as a perturbation of Eq. (2.5). The larger the
part of the Brillouin zone that should be covered, the more basis states should be used in
the approximation.

At this point we focus on the triply degenerate top of the valence band which has the
Γ4 symmetry [154] in zinc-blende structures. Γ4 (in the Koster notation) is one of the
irreducible representations of the zinc-blende point group at the Γ point and its three wave
functions are typically denoted by |X〉, |Y 〉, and |Z〉. We assume the first-order correction
to the energy εn0, a term linear in k, to vanish since εn0 is an extremum. (The k linear
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term is in general nonzero due to the lack of inversion symmetry; however, it vanishes in
the basis relevant to our model as mentioned later.) The second-order correction involves
summation over all neighbouring energy levels and corresponding states |m0〉. Their
contribution to the series depends on two factors:

• The wave function |m0〉 can couple to |n0〉 only if the matrix element 〈m0|p|n0〉
does not vanish. The operator p has Γ4 symmetry in zinc-blende structures so
according to the matrix theorem [154] (p. 46), the function |m0〉 has to belong to
one of the irreducible representations in the direct sum Γ4 ⊗Γ4 = Γ4 ⊕Γ5 ⊕Γ3 ⊕Γ1

in order to give nonzero product with p|n0〉.

• The relative importance if the coupling depends on the energy separation εn0− εm0.
In addition, bands with energies higher than εn0 tend to decrease the effective mass
of the perturbed band leading eventually to concave dispersions for example in case
of the top of the valence band of zinc-blende structures.

The two lowest conduction bands with energies closest to the valence band are formed by
functions belonging to the Γ1 and Γ4 irreducible representations. Therefore, it is sufficient
to write the second-order correction W of Eq. (2.5) considering the two lowest conduction
bands (denoted by Γc1 and Γc4) in the summation:

Wij =
~2k2

2m
δi,j +

~2

m2

∑
l∈{Γc

1,Γ
c
4}

〈i|k · p|l〉〈l|k · p|j〉
εi − εl

, (2.6)

where the basis functions |i〉 and |j〉 belong to the valence band Γv4 as mentioned above
and share the same energy εi = εn0.

The basis functions are not known and cannot be calculated within our theory but we
can limit the number of unknown Hamiltonian matrix elements using the high symmetry
of the host crystal. As a result of the three-fold rotational symmetries of the zinc-blende
crystal the following holds [154] (p. 103) for the only nonzero momentum operator expec-
tation values relevant to Eq. (2.6):

〈X|py|Γc4(z)〉 = 〈Y |pz|Γc4(x)〉 = 〈Z|px|Γc4(y)〉, (2.7)

〈X|px|Γc1〉 = 〈Y |py|Γc1〉 = 〈Z|pz|Γc1〉, (2.8)

where |X〉, |Y 〉, and |Z〉 belong to Γv4. Due to the reflection symmetry with respect to
the (110) planes it holds also

〈X|py|Γc4(z)〉 = 〈Y |px|Γc4(z)〉. (2.9)

Now we can write the second-order correction to the valence band of the zinc-blende
structure in a matrix form using only three distinct parameters:

W =

 Ak2x +B(k2y + k2z) Ckxky Ckxkz
Ckykx Ak2y +B(k2x + k2z) Ckykz
Ckzkx Ckzky Ak2z +B(k2x + k2y)

 , (2.10)
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where the reference energy εn0 is set to zero, the electron spin is neglected for the moment
and the parameters are constructed as:

A =
~2

2m
+

~2

m2

∑
l∈{Γc

1,Γ
c
4}

|〈X|px|l〉|2

εi − εl
, (2.11)

B =
~2

2m
+

~2

m2

∑
l∈{Γc

1,Γ
c
4}

|〈X|py|l〉|2

εi − εl
, (2.12)

C =
~2

m2

∑
l∈{Γc

1,Γ
c
4}

〈X|px|l〉〈l|py|Y 〉+ 〈X|py|l〉〈l|px|Y 〉
εi − εl

. (2.13)

Note that due to the choice of the basis Γv4 the resulting perturbation has cubic symmetry,
point group Oh, which includes the tetrahedral symmetry of the crystal and the space
inversion symmetry. (In the electron picture when the conduction band is higher in energy
than the valence band, the parameters A, B, and C are negative.)

When incorporating the spin of the electron, we have to consider the coupling of spin
and orbital degrees of freedom which is of relativistic origin. The atomic SOC is given by

Wso =
1

2m2c2
(S ×∇Va) · p =

1

2m2c2r

dVa
dr

S ·L, (2.14)

where S is the electron spin operator, L is the electron orbital angular momentum, Va is
the radial atomic potential neglecting the symmetry of the crystal at this stage, and c is
the speed of light in vacuum. We also remark that the single group (symmetry operations
of spinless wave functions) of the Γ-point with five irreducible representations becomes a
double group with eight irreducible representations after incorporating the electron spin.

Instead of using the group theory to find out the band splitting due to Wso, we can
use the relation of the functions |X〉, |Y 〉, and |Z〉 to the atomic p wave functions corre-
sponding to orbital angular momentum l = 1. The six degenerate states can be chosen as
eigenstates of the z-component of the orbital momentum, Lz|l s ml ms〉 = ~ml|l s ml ms〉
with quantum numbers ml = 1, 0,−1, and the z-component of spin, Sz|l s ml ms〉 =
~ms|l s ml ms〉 with ms = ±1/2. The eigenstates of Wso diagonalise the total angular
momentum operator J = S+L and its component Jz. They can be denoted by |l s; jmj〉
and expressed in terms of the S and L eigenstates:

|l s; j mj〉 =
∑
ml,ms

|l s ml ms〉〈l s ml ms|l s; j mj〉, (2.15)

where 〈l s ml ms|l s; j mj〉 are the Clebsch-Gordan coefficients and the summation runs
through the eigenstates of the Sz and Lz operators. The quantum numbers of J can take
values j = l+s = 3/2 or j = l−s = 1/2. To relate these results back to our Γv4 functions,
we can define (l = 1)-like states in the zinc-blende structure:

|1,−1〉 = (|X〉 − i|Y 〉)/
√
2,

|1, 1〉 = −(|X〉+ i|Y 〉)/
√
2,

|1, 0〉 = |Z〉. (2.16)
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Note that this association of Γv4 with the atomic functions explains the absence of the
first-order correction to energy in our basis. In addition to the selection rules based on
crystal symmetry mentioned above, the matrix element 〈Γ4|p|Γ4〉 vanishes for atomic
functions with definite parity: 〈r|X〉 ∝ xf(r), 〈r|Y 〉 ∝ yf(r), and 〈r|Z〉 ∝ zf(r).

The transformation (2.15) then gives the following functions labelled by the eigenvalues
j and mj of the total angular momentum and its projection:

|3/2, 3/2〉 = − 1√
2

(
|X, ↑〉+ i|Y, ↑〉

)
,

|3/2,−1/2〉 =
1√
6

(
|X, ↑〉 − i|Y, ↑〉

)
+

√
2

3
|Z, ↓〉,

|3/2, 1/2〉 = − 1√
6

(
|X, ↓〉+ i|Y, ↓〉

)
+

√
2

3
|Z, ↑〉,

|3/2,−3/2〉 =
1√
2

(
|X, ↓〉 − i|Y, ↓〉

)
,

|1/2, 1/2〉 =
1√
3

(
|X, ↓〉+ i|Y, ↓〉

)
+

1√
3
|Z, ↑〉,

|1/2,−1/2〉 = − 1√
3

(
|X, ↑〉 − i|Y, ↑〉

)
+

1√
3
|Z, ↓〉. (2.17)

The (j = 3/2)-like and (j = 1/2)-like states are four-fold and two-fold degenerate, re-
spectively. Their energy separation at the Γ point is the so called spin-orbit splitting
∆so =

3
4m2c2r

dVa
dr

. Based on the characters of the double group representations for the E
and S4 symmetry operations we can conclude that the (j = 3/2)-like states belong to the
Γ8 representation and (j = 1/2)-like states to the Γ7 representation [154] (p. 74).

The correction W introduced in Eq. (2.6) combined with Wso, can be written in the
basis of Eq. (2.17) as follows:

HKL =



Hhh −c −b 0 b√
2

c
√
2

−c∗ Hlh 0 b − b∗
√
3√
2

−d
−b∗ 0 Hlh −c d − b

√
3√
2

0 b∗ −c∗ Hhh −c∗
√
2 b∗√

2
b∗√
2

− b
√
3√
2

d∗ −c
√
2 Hso 0

c∗
√
2 −d∗ − b∗

√
3√
2

b√
2

0 Hso


. (2.18)

This form of the effective k · p Hamiltonian in a diamond- or zinc-blende-type structure
is known as the Kohn-Luttinger Hamiltonian [68] which is the fundamental constituent of
our model. The four-band Hamiltonian relevant at the lowest hole densities is highlighted.
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The matrix elements of HKL depend on the Kohn-Luttinger parameters [1]:

Hhh =
~2

2m

(
(γ1 + γ2)(k

2
x + k2y) + (γ1 − 2γ2)k

2
z

)
,

Hlh =
~2

2m

(
(γ1 − γ2)(k

2
x + k2y) + (γ1 + 2γ2)k

2
z

)
,

Hso =
~2

2m

(
γ1(k

2
x + k2y + k2z)

)
+∆so,

b =

√
3~2

m
γ3kz(kx − iky),

c =

√
3~2

2m

(
γ2(k

2
x − k2y)− 2iγ3kxky

)
,

d = −
√
2~2

2m
γ2(2k

2
z − k2x − k2y). (2.19)

Figure 2.1 shows schematically the band structure of GaAs near the Γ point and
provides intuitive explanation of the notation used for the elements of HKL. The band
with smaller(larger) dispersion is referred to as the heavy(light) hole band and labelled
by hh(lh) in Eqs. (2.19); the split-off band (labelled by so) is separated by the SOC.
Instead of working with valence band electrons with negative effective masses, we switch

Conduction band (j = 1/2, mj = ±1/2)

not to scale

Heavy hole band (j = 3/2, mj = ±3/2)
Light hole band (j = 3/2, mj = ±1/2)

Split-off band (j = 1/2, mj = ±1/2)
- k

6
E

Figure 2.1: Schematic overview of the energy dispersions near the Brillouin zone centre (in
the electron picture). The valence bands are solutions of the Kohn-Luttinger Hamiltonian
given in Eq. (2.18). Each band is two-fold degenerate in mj at k = 0.

to the hole picture in Eqs. (2.19) where the valence band effective masses are positive.
Eqs. (2.19) assume positive values of γi which can be expressed in terms of the parameters
of the spin-degenerate Hamiltonian (with A, B, and C in the electron picture):

γ1 = −2m

3~2
(A+ 2B) ,

γ2 = − m

3~2
(A−B) ,

γ3 = − m

3~2
C. (2.20)

The parameters γi are tabulated in Ref. [138]. We have used the values listed in Table A.1.
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2.1.2 Symmetry lowering mechanisms

The magnetocrystalline anisotropy components studied in this work originate in the tetra-
hedral symmetry of the host zinc-blende structure and in additional symmetry breaking
mechanisms. In the first part of this subsection, we describe the most common mecha-
nism, the lattice strain, which is introduced during the growth of the samples on substrates
with slightly different lattice constant or by a particular post-growth treatment of the thin
film. In the second part of this subsection, we mention a symmetry breaking mechanism
assuming an in-plane microscopic potential which does not cause a macroscopic lattice
distortion.

The k · p method provides straightforward means of incorporating elastic strains [26,
11, 21] which we now discuss in more detail. Small deformation of the crystal lattice can
be described by a transformation of coordinates:

r′α = rα +
∑
β

eαβrβ, (2.21)

where eαβ is the strain tensor. According to the theory of elastic medium [48] we can
define six independent stresses: Xx, Yy, Zz, Yz, Zx, Xy, which are forces per unit area, the
capital letters denote their directions, and the subscripts denote the normals to the faces
of the cell at which they are applied. Equal forces are assumed to act on opposite sides
of the cell to maintain equilibrium. We omit stresses Zy, Xz, Yx as we are not interested
in forces producing pure rotations. In elastic bodies there is linear dependence between
the stress and strain components and in case of cubic symmetry we can write:

Xx

Yy
Zz
Yz
Zx
Xy

 =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44




exx
eyy
ezz
eyz
ezx
exy

 , (2.22)

where cij are the elastic moduli, e.g., the off-diagonal element c12 = ∂2U
∂exx∂eyy

= ∂Xx

∂eyy

where U is the elastic energy per unit volume of the body. Focusing on the thin films
grown on thick substrates, we expect zero net force acting perpendicular to the interface:
Zz = c12exx + c12eyy + c11ezz = 0; and equal strain along the main in-plain axes: exx =
eyy ≡ e0. Therefore, we can determine the out-of-plane strain component from the in-
plane components as ezz = −2 c12

c11
e0.

Expressing HKL in the r′ coordinates introduced in Eq. (2.21) leads to extra terms
dependent on the strain that can be treated perturbatively [21]. The derivation of the
strain Hamiltonian starts by expanding the differential operators. Ignoring all terms of
order O(e2) or higher, we can write

∂

∂r′α
=
∑
β

∂rβ
∂r′α

∂

∂rβ
=
∑
β

1

δαβ + eαβ

∂

∂rβ
∼=
∑
β

(δαβ − eαβ)
∂

∂rβ
(2.23)
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and correspondingly

∂2

∂r′2α
∼=

∂2

∂r2α
− 2

∑
β

eαβ
∂2

∂rα∂rβ
, (2.24)

kαp
′
α

∼= kαpα −
∑
β

eαβkαpβ, (2.25)

V0(r
′) ∼= V0(r) +

∑
αβ

eαβ
∂V0(r

′)

∂eαβ
= V0(r) +

∑
αβ

eαβVαβ. (2.26)

Inserting these expansions into Eq. (2.4), we obtain

∑
α

(
p2α
2m

− 1

m

∑
β

pαpβeαβ +
~
m
kαpα −

~
m

∑
β

kαpβeαβ

)
|nk〉 =

=

(
εnk −

~2k2

2m
− V0 −

∑
αβ

eαβVαβ

)
|nk〉. (2.27)

The term combining two small quantities kα and eαβ can be neglected. The remaining
terms due to strain can be treated as a perturbation of Eq. (2.5). In contrast to the
k ·p term where the first-order correction linear in momentum vanishes due to the parity
of functions |X〉, |Y 〉, and |Z〉, here, the first order-correction is quadratic in p so it is
nonzero.

Wstr
ij =

∑
αβ

(
Vαβδi,j −

1

m
〈i|pαpβ|j〉

)
eαβ,

=
∑
αβ

Vαβδi,j − 1

m

∑
l /∈ Γv

4

〈i|pα|l〉〈l|pβ|j〉

 eαβ,

= Vsδi,j −
1

m

∑
αβ

∑
l /∈ Γv

4

〈i|pα|l〉〈l|pβ|j〉eαβ, (2.28)

where we defined the constant Vs ≡
∑

αβ Vαβeαβ and inserted the unity operator
∑

l |l〉〈l|.
The summation over l runs through the complete and orthogonal set of solutions of
Eq. (2.5) at k = 0. The valence band states of Γv4 are left out explicitly as their contribution
is zero, again due to their parity. Note that equations (2.6) and (2.28) have the same form
when eαβ is associated with kαkβ. The summation over neighbouring states in Eq. (2.6)
is restricted to the conduction band owing to the larger energy separation of other bands
but the structure of W shown in Eq. (2.10) is given by the symmetry of the crystal. Based
on the observed formal analogy of the W and Wstr, taking advantage of the tetrahedral
symmetry of our system, we can write the spin-degenerate matrix:

Wstr =

 Asexx +Bs(eyy + ezz) Csexy Csexz
Cseyx Aseyy +Bs(exx + ezz) Cseyz
Csezx Csezy Asezz +Bs(exx + eyy)

 ,
(2.29)
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where we omit the shift of the reference energy εn0 by Vs:

As =
1

m

∑
l /∈Γv

4

|〈X|px|l〉|2, (2.30)

Bs =
1

m

∑
l /∈Γv

4

|〈X|py|l〉|2, (2.31)

Cs =
1

m

∑
l /∈Γv

4

(〈X|px|l〉〈l|py|Y 〉+ 〈X|py|l〉〈l|px|Y 〉) . (2.32)

Although the numerical values of the parameters As, Bs, and Cs are not related to their
counterparts from W in a simple way, the structure of Wstr allows us to write matrix
elements of the six-band strain Hamiltonian Hstr in the basis of total angular momentum
only by making the following replacements in Eq. (2.19):

kαkβ → eαβ (2.33)

− ~2

2m
γ1 → a1, − ~2

2m
γ2 → a2

2
, − ~2

2m
γ3 →

a3

2
√
3
,

where a1, a2, and a3 are the elastic constants. We obtain the elements of Hstr (in the hole
picture):

Hs
hh = −

(
a1 +

a2
2

)
(exx + eyy)− (a1 − a2)ezz

Hs
lh = −

(
a1 −

a2
2

)
(exx + eyy)− (a1 + a2)ezz

Hs
so = −a1(exx + eyy + ezz)

bs = −a3(ezx − iezy)

cs =
a2
2

√
3(eyy − exx) + ia3exy

ds =

√
2

2
a2 (2ezz − (exx + eyy)) . (2.34)

Since the matrix Hstr has the same structure as HKL we will write explicitly only two
particular examples for strain tensors typically occurring in the MBE-grown epilayers.
The lattice matching strain induced by the epitaxial growth breaks the symmetry between
in-plane and out-of-plane cubic axes. Corresponding non-zero components of the strain
tensor read exx = eyy ≡ e0 = − c11

2c12
ezz = (as − a0)/a0 where as and a0 are the lattice

constant of the substrate and the relaxed epilayer, respectively. Typical magnitudes are
e0 ∼ 10−4 − 10−2. The corresponding strain Hamiltonian entering Eq. (2.1) reads (in the
hole picture):

Hstr(e0) = a2e0
c11 + 2c12

c11



0 0 0 0 0 0

0 2 0 0 0
√
2

0 0 2 0 −
√
2 0

0 0 0 0 0 0

0 0 −
√
2 0 1 0

0
√
2 0 0 0 1

 ≡ εshg, (2.35)
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where we introduced the deformation potential εs = a2e0
c11+2c12

c11
and the growth strain

matrix hg.

As we discuss in Subsec. 3.1.4, relaxing the growth strain in microbars in transverse
direction produces a uniaxial symmetry breaking in the plane, described by a combination
of exx 6= eyy and exy strains, depending on the crystal orientation of the microbar [147,
46, 149, 93]. The magnitudes range between zero and the growth strain. Additional in-
plane uniaxial anisotropy effects can be also induced by piezo-stressors [35, 10, 101, 88].
The typical magnitude achieved by commercial stressors [113] at low temperature is of
the order of 10−4. The strain Hamiltonian corresponding to a strain tensor with a single
nonzero component exy reads (in the hole picture):

Hstr(exy) = a3exy



0 −i 0 0 0 i
√
2

i 0 0 0 0 0
0 0 0 −i 0 0

0 0 i 0 i
√
2 0

0 0 0 −i
√
2 0 0

−i
√
2 0 0 0 0 0

 ≡ a3exyhs. (2.36)

An unpatterned bulk (Ga,Mn)As epilayer can also show broken in-plane symmetry,
most frequently between the [110] and [110] directions [109, 110, 142, 146, 145, 39, 126, 133,
94, 36]. For convenience and for direct comparison with effects mentioned in the previous
paragraph we model this “intrinsic” in-plane uniaxial anisotropy by an effective shear
strain eintxy . We fix its sign and magnitude for a given wafer by fitting to the corresponding
measured anisotropy coefficients. To narrow down the number of fitted values for eintxy in
the extensive set of experimental data which we analyse, we assume that eintxy describes
effectively a symmetry-breaking mechanism induced during growth and its value does not
change upon the post-growth treatments, including annealing, hydrogenation, lithography
or piezo-stressing.

We point out that an in-plane strain has not been detected experimentally in the bare
unpatterned (Ga,Mn)As epilayers. It is indeed unlikely to occur as the substrate imposes
the cubic symmetry. The possibility of transfer of the shear strain from the substrate
to the epilayer was ruled out by the following test experiment. A 50 nm (Ga,Mn)As
film was grown on GaAs substrate. An identical film was grown on the opposite side of
the neighbouring part of the same substrate. Both samples developed uniaxial magnetic
anisotropy along a diagonal but the easy axes were orthogonal to each other. If there were
a uniaxial strain in the substrate responsible for the uniaxial anisotropy in the epilayer,
the easy axes in the two samples would be collinear. Nevertheless, we argue below that the
effective modelling via eintxy provides a meaningful description of the “intrinsic” uniaxial
anisotropy.

In the second part of this subsection the original contribution of the author of this
thesis to the modelling is presented. We compare the effective Hamiltonian corresponding
to the eintxy strain with a k ·p Hamiltonian in which, without introducing the macroscopic

lattice distortion, the [110]/[110] symmetry is broken. We recall that the derivation of the
Kohn-Luttinger Hamiltonian involves a summation over the Γ1 and Γ4 states of the two
lowest conduction bands in the second-order correction of Eq. (2.5). The symmetries of
the tetrahedron point group Td narrow down the number of non-vanishing independent
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matrix elements in Eq. (2.6) and determine the structure of the resulting Kohn-Luttinger
Hamiltonian.

If the tetrahedral symmetry of the GaAs lattice is broken the number of independent
matrix elements increases. Let us consider a perturbation to the crystal potential that
removes two of the C2 elements of group Td (rotations by 180◦ about the [100] and [010]
axes). The corresponding potential takes a form V = xyξ, which mixes the Γ1 and Γ4(z)
states of the conduction band considered in the summation in Eq. (2.6) and leaves Γ4(x)
and Γ4(y) states unchanged. (ξ is a fast decreasing radial function.) Such inter-mixing
of surrounding states represents the local symmetry lowering experienced by the valence
band states. The summation over the perturbed states, αΓ1 + βΓ4(z), −βΓ1 + αΓ4(z),
Γ4(x), Γ4(y) in Eq. 2.6 gives rise to extra terms in the Hamiltonian W̃ . (The original form
W is given in Eq. (2.10).) Assuming a weak local potential V , α � β, we can neglect
terms of quadratic and higher-order dependence on V and obtain:

W̃ =

 Ak2x +B(k2z + k2y) + 2Dkxky Ckxky +D(k2x + k2y) Ckxkz +Dkykz
Ckykx +D(k2x + k2y) Ak2y +B(k2z + k2x) + 2Dkxky Ckykz +Dkxkz
Ckzkx +Dkzky Ckzky +Dkzkx Ak2z +B(k2x + k2y)


(2.37)

where

D = ζ〈X|py|Γ4(z)〉〈Γ1|px|X〉, (2.38)

ζ =
~2

m2
αβ

[
1

εv − (εc1 +∆)
− 1

εv − (εc4 −∆)

]
.

εc1 and εc4 are the energies of the conduction band Γ1 and Γ4 states, respectively. The
small energy ∆ is quadratically dependent on the size of the potential V but we include
it to express the shift of the perturbed energy levels.

Elements containing the parameter D change the dependence of the original k · p
Hamiltonian on the k-vector. However, the structure of the W is preserved similarly
to the strain Hamiltonian. The transformation of basis given in Eq. (2.15) results in
a modified six-band Kohn-Luttinger Hamiltonian H̃KL. It has the structure shown in
Eq. (2.18) and its matrix elements are derived from the original ones given in Eq. (2.19)
as follows:

H̃hh = Hhh +
3~2

m
γ4kxky, b̃ = b+

√
3~2

2m
γ4kz(ky − ikx),

H̃lh = Hlh +
~2

m
γ4kxky, c̃ = c− i

√
3~2

2m
γ4(k

2
x + k2y),

H̃so = Hso +
2~2

m
γ4kxky, d̃ = d+

√
2~2

m
γ4kxky, (2.39)

where we add a new parameter γ4 = − 2m
3~2D to the three Kohn-Luttinger parameters

listed in Eq. (2.20).
The correspondence of the new Hamiltonian components induced by the microscopic

potential V = xyξ to the strain Hamiltonian derived earlier in this subsection remains
to be show explicitly. We focus on the in-plane effects and neglect the matrix element b̃
dependent on kz. Then we can write the extension of the Kohn-Luttinger Hamiltonian
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Figure 2.2: Modification of the originally cubic in-plane magnetic anisotropy by adding
a uniaxial anisotropy due to the shear strain exy or due to the local potential V = xyξ.
e0 = −0.3%, p = 3× 1020 cm−3, x = 3%, γ2 and γ4 are the Kohn-Luttinger parameters.

HV = H̃KL −HKL using the matrices hg and hs introduced in Eqs. (2.35) and (2.36):

HV = −
√
3~2

2m
γ4(k

2
x + k2y)hs −

~2

m
γ4kxky (hg − 3I) , (2.40)

where I is a unit matrix. Note that the first term corresponds directly to the effective shear
strain Hamiltonian if we replace the deformation potential a3e

int
xy in Eq. (2.36) with the

factor −
√
3~2
2m

γ4(k
2
x + k2y). The second term corresponds to the growth strain Hamiltonian

if we replace the deformation potential εs in Eq. (2.35) with the factor −~2
m
γ4kxky and

allow the reference energy shift indicated by 3I.

As we know from our analysis presented in the next chapter, the growth strain has
negligible contribution to the in-plane magnetic anisotropy. Hence, we can conclude that
on the level of Hamiltonian matrix structure, the microscopic potential V = xyξ induces
the same modification of the k ·p Hamiltonian as the in-plane strain eintxy and is expected
to induce a similar in-plane uniaxial anisotropy component despite its k dependence. The
microscopic simulations presented in Fig. 2.2 confirm that the in-plane anisotropy energy
profile due to the local potential V can indeed be accurately obtained by the mapping on
the effective shear strain Hamiltonian. (For the particular set of material parameters and
eintxy = 0.01% we considered the new Luttinger parameter γ4 ≈ γ2/100.)

As we discuss in the following section, effective modelling using the strain Hamiltonian
with the constant eintxy term is sufficient to capture semiquantitatively many of the observed
experimental trends. Here we have demonstarted, that the model effectively describes
a microscopic symmetry-breaking mechanism yielding quantitatively the same in-plane
anisotropy energy profiles without the presumption of a macroscopic lattice distortion.
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2.2 Magnetocrystalline anisotropy in metals

We use the Slater-Koster tight-binding approach [125, 41] which is a variant of the Linear
Combination of Atomic Orbitals (LCAO) method implemented using the Bloch’s theorem.
For describing the valence electrons of transition metals the basis functions are written in
the form of Bloch sums,

Φkaα(r) = N−1/2

N−1∑
n=0

eik·(Rn+pa)φaα(r −Rn − pa), (2.41)

where k is the Bloch wave vector, a is the atom index in the unit cell, α is the atomic
orbital quantum number, N is the number of atoms a (unit cells), n is the unit cell index,
Rn is the unit cell vector, and pa is the position vector of the atom a in the unit cell.
The wavefunctions φaα(r − Rn − pa) are centred around the atom a in unit cell n and
are orthonormal, i.e., assumed to be constructed from the atomic orbitals ψaα following
Löwdin’s orthonormalisation procedure:

φaα(r −Rn − pa) = ψaα(r −Rn − pa)−
1

2

∑
m

ψaα(r −Rm − pa)Smn + . . . , (2.42)

where Smn are the overlap integrals,

Smn =

∫
drψ∗

aα(r −Rm − pa)ψaα(r −Rn − pa), (2.43)

and consequently to fulfil:∫
drφ∗

aα(r −Rm − pa)φbβ(r −Rn − pb) = δmnδab. (2.44)

The functions ψcα(r) are eigenstates of a Hamiltonian describing an isolated atom la-
belled c (denoting the chemical identity of the atom or later its position in the unit cell
of a crystal): (

p2

2m
+ V at

c (r)

)
ψcα(r) = Ecαψcα(r) (2.45)

so they are in general not orthogonal to atomic functions of neighbouring atoms in the
crystal. We assume that the bound states ψcα(r) are well localised and that the full
crystal Hamiltonian, H, can be approximated by the atomic Hamiltonian in the vicinity
of each lattice point. The crystal Hamiltonian includes a periodic single-particle potential
first mentioned in Eq. (2.3) which can be written without approximation as

V0(r) =
∑
nc

V at
c (r −Rn − pc), (2.46)

where the indices n and c run through all unit cells and all atoms in a unit cell, respectively.
Our aim is to find eigenstates of the crystal Hamiltonian as linear combinations of

the Bloch sums Φkaα(r) introduced in Eq. (2.41). Therefore we solve the Schrödinger
equation:

HΦk(r) = ε(k)Φk(r), (2.47)
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where Φk(r) =
∑

aαwkaαΦkaα(r) and wkaα are the coefficients to be determined. The cor-
responding matrix elements of the crystal Hamiltonian can be written using the expansion
of Eq. (2.41):

Haα,bβ(k) =
∑
n

eik·(Rn−pa+pb)

∫
drφ∗

aα(r − pa)Hφbβ(r −Rn − pb), (2.48)

where we have used the translation symmetry of the lattice to remove the sum over the
lattice vector Rm. Since the Hamiltonian has the same periodicity as the basis function
Φkaα it is diagonal in the k-vector. The matrix Haα,bβ(k) has a dimension given by the
number of atoms in the unit cell and by the number of valence orbitals considered for
each atom.

If we substitute the crystal potential V (r) introduced in Eq. (2.46) into Eq. (2.48), then
each term of the integral has a contribution from one of three regions: the regions centred
around the two atomic-like wavefunctions φaα and φbβ, and the region centred around the
potential at pc. This leads to a classification of the integrals into four categories:

• If all three locations are on the same atom, this is an on-site integral (terms analo-
gous to potential energy, determining the position of an energy band).

• If the location of the potential is the same as the location of one of the wavefunctions,
while the other wavefunction is at a separate location, this is a two-centre integral
(terms analogous to kinetic energy, corresponding to transition amplitudes between
atoms, determining the width of an energy band).

• If the wavefunctions and the potential are all located at different sites, this is a
three-centre integral.

• The fourth category occurs when the wavefunctions both come from the same site
but the potential is on a different site. This category shares features with both the
two-centre and three-centre integrals but is actually a local environment or crystal
field correction to the on-site terms. We do not consider this type of integral further
in this work.

2.2.1 Slater-Koster approach

Following the Slater-Koster (S-K) approach [125, 92], we now assume that the potentials
Vc(r) are spherically symmetric. Then the wavefunctions φaα and ψaα can be specified by
the usual angular momentum quantum numbers, and the on-site integrals only contribute
to the diagonal elements of the Hamiltonian. We further assume that the three-centre
integrals can be neglected compared to the two-centre integrals. This is not strictly true
but it considerably simplifies the method, and in many cases leads to accurate predictions
of the electronic structure and total energy of a system [92]. In this two-centre approx-
imation the integrals in Eq. (2.48) depend only on the displacement d between the two
atoms, and have the form

Eaα,bβ(d) =

∫
drφ∗

aα(r)H2φbβ(r − d), (2.49)
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where H2 is the two-centre part of the Hamiltonian, i.e., the kinetic energy operator and
a spherically symmetric potential centred on atom a or on atom b. These terms, often
called interatomic matrix elements [41], depend on the orientation of d, the magnitude
of the separation between atoms (d = |d|), and the angular momenta contained in the
quantum numbers α and β. Eq. (2.48) can be rewritten using dn running through all
relevant neighbours of atom a:

Haα,bβ(k) =
∑
n

eik·dnEaα,bβ(dn), (2.50)

In view of modelling transition metals we restrict the atomic orbitals ψa to s, p, and d
angular momenta. After the symmetry considerations worked out by Slater and Koster,
each interatomic matrix element of Eq. (2.49) can be written in terms of 14 parameters
(two-centre integrals referred to as S-K parameters in the following text). We will denote
these as Vαβγ(d), where α and β specify the angular momenta of the orbitals (s, p, d),
and γ = σ, π, δ specifies the component of the angular momentum relative to the direction
d. In the case where the two atoms are identical, four pairs of the S-K parameters are
related by symmetry: Vspσ = −Vpsσ, Vsdσ = Vdsσ, Vpdσ = −Vdpσ, and Vpdπ = −Vdpπ,
giving ten independent parameters. Note that the Hamiltonian matrix elements are short
range: if the wavefunctions φaα(r) and φbβ(r) do not appreciably overlap, then the integral
equation (2.49) will vanish. An example of interatomic matrix elements for s and p orbitals
follows:

Es,s = Vssσ,

Es,x = lVspσ,

Ex,x = l2Vppσ + (1− l2)Vppπ,

Ex,y = lmVppσ − lmVppπ,

Ex,z = lnVppσ − lnVppπ, (2.51)

where l, m, and n are the directional cosines of the displacement d and the indices x, y,
and z denote the cubic harmonics of the p orbital. Remarkably, the expressions (2.51) are
not dependent of the lattice type, only on the mutual displacement of the two atoms. The
same holds of the remaining interatomic matrix elements listed, e.g., by W. A. Harrison
[41] (page 481). Figure 2.3 presents the construction of the interatomic matrix element
Es,x in a diagrammatic way.

In the original work of Slater and Koster the S-K parameters were determined by
fitting to ab-initio band structures at high-symmetry points. The parameters were then
used as interpolation parameters to describe the band structure throughout the Brillouin
zone. We replace the on-site and two-centre integrals Vαβγ(d) by parameters which are
chosen to reproduce the ab-initio single-particle band structure of a standard crystal as
detailed in Subsec. 2.2.3.

The two-centre tight-binding method can be modified to use the atomic orbitals ψaα
which are non-orthogonal. The basis functions Eq. (2.41) are then replaced by the func-
tions

Ψkaα = N−1/2

N−1∑
n=0

eik·(Rn+pa)ψ(r −Rn − pa), (2.52)
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Figure 2.3: Four basic types of interatomic matrix elements of s- and p- bonded systems.
When p orbitals are not oriented simply as shown in the upper diagrams, they may be
decomposed geometrically as vectors. The interatomic matrix element at the bottom right
consists of two contributions that cancel each other out. (Adapted from [41], page 52.)

Consequently, a generalised eigenvalue problem H − ES = 0 has to be solved, involving
the Hamiltonian matrix elements of Eq. (2.48), with the Φaα replaced by the corresponding
Ψaα, and a positively definite overlap matrix

Saα,bβ(k) =
∑
n

eik·(Rn−pa+pb)

∫
drψ∗

aα(r − pa)ψbβ(r −Rn − pb). (2.53)

Since the matrix (2.53) does not include a Hamiltonian term, it can be exactly decomposed
into on-site terms (which form a diagonal matrix if the ψaα are truly atomic-like) and two-
centre overlap terms,

saα,bβ(d) =

∫
drψ∗

aα(r)ψbβ(r − d), (2.54)

which have the same symmetry as the corresponding interatomic matrix element given
in Eq. (2.49) and can be parametrised in the same way by terms denoted as sαβγ(d).
This introduces additional 14 S-K overlap parameters (ten if the atoms are identical) for
systems described in terms of s, p, and d orbitals. If the basis functions which generate
the overlap are normalised, then the parametrisation is required to fulfil

|sαβγ(d)| < 1,d 6= 0 (2.55)

and
sαβγ(0) = δαβ. (2.56)
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The use of the non-orthogonal formalism has two advantages. The most obvious is
that the additional parameters make it easier to fit band structures in a large database. A
less obvious advantage comes from the nature of the Löwdin transformation of the atomic
orbitals ψaα into orthogonal wavefunctions φaα. By necessity the φaα have a longer range
than the atomic wavefunctions. Use of the atomic wavefunctions means that the two-
centre matrix elements in Eqs. (2.49) and (2.54) can have a shorter range, usually only a
few nearest-neighbour shells. Thus the non-orthogonal matrix elements sample only the
local environment of each atom, making the development of transferable S-K parameters
easier.

2.2.2 Finite systems

So far we have described infinite periodic crystals with one or more atoms in the unit
cell. Our objective is to calculate also anisotropies in multilayers and thin films with
periodicity in two directions. Moreover, in very thin films consisting only of a few atomic
layers the energy quantisation due to the confinement in the direction perpendicular to
the film becomes relevant. Our modelling of systems with periodicity only in the x and y
directions is a generalisation of the S-K approach with more atoms per unit cell described
in the previous subsection. We describe each layer as an extra atom (or set of atoms) in the
unit cell and use only two-dimensional reciprocal space with k = (kx, ky). Consequently,
the Hamiltonian matrix in Eq. (2.50) enlarges as the atom indices a and b run through
all atomic sites of the bulk unit cell and through all considered layers.

Figure 2.4 gives an example of a Hamiltonian matrix describing a system of 6 monoatomic
layers with periodic boundary conditions. Each layer has one atom per the 2D unit cell
and there are two types of layer/atom which alternate. There is coupling (hybridisation)
of a given layer with its first and second nearest layer. An example set of numbers of neigh-
bouring atomic sites considered in the sum of the Hamiltonian matrix element Haα,bβ(k)
is given in each block (the neighbours reside in the same layer in case of diagonal blocks
or in a different layer in case of off-diagonal blocks). Note that the Hamiltonian schema
in Fig. 2.4 can describe also a bulk ordered alloy with two different atomic sites in the 3D
unit cell, e.g., to L10 structure in case of fcc lattice, considering nonzero S-K parameters
for the first, second, and third nearest neighbours. (From the numerical point of view,
the Brillouin zones of the bulk and layered systems are different and obtaining identical
electronic structure such as density of states or total energy is a matter of precise integra-
tion in the reciprocal space and of achieving convergence with respected to the number
of atomic layers included in the calculation.)

The desired film of finite thickness, here 6 monoatomic layers, is described by a Hamil-
tonian matrix obtained from the matrix shown in Fig. 2.4 by leaving out the periodic
boundary conditions (the three blocks in the upper right and lower left corners). Note
that the presented formalism allows for modelling of any system consisting of layers shar-
ing the same periodicity in the x and y directions. The stacking of the layers is limited only
by the availability of corresponding S-K parameters which is addressed in the following
subsection.

26



Figure 2.4: An example the block structure of a Hamiltonian matrix (2.50) describing a
system of 6 alternating monoatomic layers of two types with periodic boundary conditions.
Each layer consists of one type of atom (one atom per the 2D unit cell); the two types of
atom/layer are labelled a and b. Each block in the schema represents an 18× 18 matrix
with indices α and β running through the atomic orbitals. The circles represent the on-
site terms which are diagonal in α and β. The squares represent the matrix elements
Haα,bβ(k) with fixed atom index a and b, the colour of a square encodes different sets of
S-K parameters Vαβγ(d) given by the origin of the hybridising orbitals, note that even
square blocks of the same colour can differ numerically as the sum in Haα,bβ(k) considers
different neighbours; the numbers in the upper left corners of the squares correspond to
number of neighbouring atomic sites in the particular layer considered in sum of Eq. (2.50)
in case of an fcc lattice with hybridisation of the 1st, 2nd, and 3rd nearest neighbours.
The dashed edge of a square with layer indices ij represents Hermitian conjugation to
block with layer indices ji. The three blocks in the upper right and lower left corner of
the schema correspond to the periodic boundary conditions - hybridisation of the first
two and last two sites on the diagonal (the top and bottom layers). If we considered more
localised atomic orbitals (hybridisation only to the 1st nearest neighbours) only the violet
off-diagonal blocks would suffice.

2.2.3 Parametrisation

Our goal is to describe the ground state properties of transition-metal systems so our
minimal basis set is restricted to the atomic orbitals s, p, and d as mentioned earlier.
One might think that the on-site and two-centre integrals could be calculated using the
tabulated atomic wave functions and estimated potentials. Parameters resulting in much
better physical predictions are obtained by empirical methods or by fitting the LCAO
band structures to ab-initio calculations.

There are several strategies of parametrising larger groups of standard solids which
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range from very simple and therefore universal ones to extensive and less transferable
parametrisations giving much more accurate predictions. The transferability of the pa-
rameters is crucial to our work as we aim to study systems consisting of different atoms
and crystal structures obtained by epitaxial growth which often do not occur naturally
for a particular metal. Although, our predictions are not expected to reach the quanti-
tative reliability of ab-initio calculations, we aim to predict subtle quantities such as the
anisotropy in density of states in layered multi-element systems. Therefore, starting with
a parametrisation giving very accurate results on the level of elemental solids is desirable.

We start our LCAO study by comparing three different parametrisations. All of them
use the two-centre Slater-Koster approximation which makes the parameters independent
of the lattice structure. The first two follow the Harrison approach [41]. The “Harrison”
parametrisation is the most simple and universal of the three. It considers an orthogonal
basis set. Harrison expressed the two-centre Slater-Koster integrals Vαβγ(d) (using the
muffin-tin orbital and pseudopotential theory [41]) as functions of the distance d, an
effective radius of the d-orbital rd which is characteristic to each transition metal, and
constants ηαβγ which are universal for all elements and lattice structures:

Vαβγ(d) = ηαβγ
~2

md2
,

Vαdγ(d) = ηαdγ
~2r3/2d

md7/2
,

Vddγ(d) = ηddγ
~2r3d
md5

, (2.57)

where α and β run through the orbitals s and p and m is the free electron mass. Values of
ηαβγ are listed in Appendix A.3. (Note that Vspγ(d) scales with 1/d2 ∼ k2 so the parameter
can be understood as the kinetic energy of band electrons.) In case of transition metals,
Harrison uses only the s and d orbitals so there are only two parameters specific to each
element, the d-band width given by rd and the on-site energy of the d-orbitals with respect
to the s-orbitals. The parameters are optimised for summation of the interatomic matrix
elements to the second nearest neighbours.

The “extended Harrison” parametrisation developed by Shi and Papaconstantopou-
los [114] retains much of the universality of Harrison’s parameters and improves signif-
icantly the accuracy of the results such as the band structure and DOS in transition,
alkaline earth, and noble metals. This is accomplished by: (1) Replacing the atomic en-
ergies used as on-site parameters which is the main shortcoming of the Harrison’s tables
by on-site parameters fitted to Augmeted Plain Wave (APW) ab-initio calculations; (2)
Including the p-orbitals into the basis set; (3) Modifying of the sp two-centre integrals,
by introducing a dimensionless parameter γs as follows:

Vαβγ(d) = ηαβγ
γs~2

md2
; (2.58)

(4) Obtaining new prefactors ηαβγ and radii rd by simultaneously fitting the APW energy
bands of 12 transition metals at the equilibrium lattice constants of the structure, which
is the ground state of the particular element, and included interactions of nearest, second-
nearest, and third-nearest neighbours. The new parameters reproduce APW energy bands

28



and DOS remarkably well, not only for the 12 elements originally fitted, but also for the
rest of the transition metals, the alkaline earth and the noble metals as shown in [114].
The Hamiltonian corresponds to an orthogonal basis set as in Harrison, on the other hand,
the on-site and two-centre integrals are exchange-split in case of the ferromagnetic metals.
We neglect this ferromagnetic splitting in case of the interatomic matrix elements in our
modelling and keep it only in the on-site terms.

The “Mehl” parametrisation developed by Mehl and Papaconstantopoulos [92] resides
almost on the opposite side of the spectrum compared to the simple and universal Harrison
parametrisation, yet it retains limited transferability. A large set of free parameters
is chosen to simultaneously fit band structures and total energies obtained by ab-initio
calculations (APW or LAPW) for monoatomic fcc and bcc crystals. Similarly to Harrison,
it offers an analytical form of the two-centre integrals but it uses a nonorthogonal basis
set and the on-site terms change with the local environment:

Enα,nα(0) = aα + bαρ
2/3
n + cαρ

4/3
n + dαρ

2
n, (2.59)

where α runs through the orbitals s, p, and d. ρn is an “embedded-atom-like density”
describing the local environment of a particular atom indexed n.

ρn =
∑
m

e−λ
2dnmF (dnm), (2.60)

where the sum is over all of the atoms m within a range Rc of atom n, dnm = |Rn−Rm| is
the interatomic distance, λ is a fitting parameter (squared to ensure that the contributions
are greatest from the nearest neighbours), and F (d) is a cut-off function F (d) = 1/(1 +
exp((d−Rc)/l+5)). The parameters Rc and l are element specific but their typical values
are Rc = 16.5 a.u. and l = 0.5 a.u. Depending on the structure and lattice constant, this
radius will include 80 to 300 neighboring atoms. The two-centre S-K parameters have the
form

Vαβγ(d) =
(
eαβγ + fαβγd+ gαβγd

2
)
exp(−h2αβγd)F (d). (2.61)

Analogously, the two-centre S-K overlap parameters read

sαβγ(d) =
(
δαβ + pαβγ + qαβγd+ rαβγd

2
)
exp(−s2αβγd)F (d). (2.62)

There are in total 73 parameters (polynomial coefficients) specifying the Slater-Koster
tight-binding scheme for a given paramagnetic monoatomic solid (all coefficients avail-
able at http://cst-www.nrl.navy.mil/bind). In case of ferromagnetic metals, the number
of on-site coefficients doubles. The explicit dependence of the S-K parameters on the
interatomic distance facilitates their transferability to structures with different lattice
constants or distorted geometry. However, the range of good reliability of the predictions
is typically only approx. 0.5 Bohr radii. In our work, we follow the above procedure for
elemental crystals of Fe, Co, and Pt, obtain the on-site and S-K parameters consider-
ing the nonorthogonal basis and approx. 300 nearest neighbours, and calculate the band
structures as well as the magnetic anisotropy energy. The high number of neighbours
and sensitivity to lattice structure makes this parametrisation prohibitively complicated
to use in layered compounds.

Another extensive database of tight-binding parameters was provided by Papaconstan-
topoulos [91]. It comprises parameters for both the two-centre and three-centre integrals
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in the orthogonal and nonorthogonal basis to the third nearest neighbours. We have not
implemented this parametrisation into our modelling since its two-centre part is more
complex (higher number of element-specific parameters) than the more recent and com-
parably accurate “extended Harrison” parametrisation.

We find the S-K parameters coupling two atoms with different chemical identity as a

geometric average of the two elemental S-K parameters: V ab
αβγ =

√
V a
αβγV

b
αβγ . The same

holds for the overlap parameters. The on-site parameters used in our calculations of
bimetallic alloys are optimised to produce band structures in agreement with ab-initio
calculations of monoatomic crystals of the constituents rather than the considered alloy.
Different choice of averaging of the S-K parameters or further optimisation of the on-site
parameters is beyond the initial phase of developing our tight-binding model of composite
systems.

There are tight-binding parameters available for certain binary compounds, e.g., GaAs
by Jancu et al. [47]. However, such parameters suffer from low relevance to systems with
different lattice structure or even layered systems with arbitrary stacking of the atomic
layers. (The Jancu parametrisation for GaAs gives directly the interatomic matrix ele-
ments for orbitals s, p, d, and s∗ rather than the S-K parameters so the explicit dependence
of the Hamiltonian on the interatomic distances is lost.)

2.2.4 Modelling of magnetic anisotropy

Following the same lines as in case of our effective Hamiltonian model we incorporate
the atomic SOC introduced in Eq. (2.14) to make the band structure sensitive to the
magnetisation direction with respect to the crystal geometry. The magnitude of the SOC
depends on the orbital angular momentum of the atomic orbitals and it is tabulated for
elemental metals [76].

The spin-orbit matrix has to be written in the basis of cubic harmonics for which the
S-K parameters are typically tabulated. In analogy to Eq. (2.16), let us relate our basis
of cubic harmonics to the angular momentum eigenstates for the p-orbital:

px =
1√
2

(
Y −1
1 − Y 1

1

)
,

py =
i√
2

(
Y −1
1 + Y 1

1

)
,

pz = Y 0
1 , (2.63)

and for the d-orbital:

dxy =
i√
2

(
Y −2
2 − Y 2

2

)
,

dyz =
i√
2

(
Y −1
2 + Y 1

2

)
,

dxz =
1√
2

(
Y −1
2 − Y 1

2

)
,

dx2−y2 =
1√
2

(
Y −2
2 + Y 2

2

)
,

d3z2−r2 = Y 0
2 , (2.64)
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where Y m
l are the spherical harmonics labelled by the total angular momentum l and

its projection m. The orbital angular momentum matrices Lx, Ly, and Lz are typically
derived in the basis of Y m

l , so we have to consider a transformation L′
i = TLiT

† to obtain
the matrix

HSO
aα,aβ =

λ

~
σ ·L′

αβ (2.65)

in the basis of cubic harmonics indexed by α and β (same notation as in Eq. (2.50)).
λ denotes the SOC magnitude and σ is the vector of Pauli spin matrices. The matrix T
for orbitals p and d reads

Tp =
1√
2

 −1 0 1
i 0 i

0
√
2 0

 , Td = 1√
2


−i 0 0 0 i
0 i 0 i 0
0 −1 0 1 0
1 0 0 0 1

0 0
√
2 0 0

 , (2.66)

where the functions Y m
l are ordered from m = l (first column) to m = −l (last column).

The resulting spin-orbit matrix for the p-orbital reads

HSO
p = λp


0 i 0 0 0 1
−i 0 0 0 0 i
0 0 0 −1 −i 0
0 0 −1 0 −i 0
0 0 i i 0 0
1 −i 0 0 0 0

 . (2.67)

For the d-orbital we obtain

HSO
d = λd



0 0 0 −2i 0 0 1 i 0 0

0 0 −i 0 0 −1 0 0 i i
√
3

0 i 0 0 0 −i 0 0 −1
√
3

2i 0 0 0 0 0 −i 1 0 0

0 0 0 0 0 0 −i
√
3 −

√
3 0 0

0 −1 i 0 0 0 0 0 2i 0

1 0 0 i i
√
3 0 0 i 0 0

−i 0 0 1 −
√
3 0 −i 0 0 0

0 −i −1 0 0 −2i 0 0 0 0

0 −i
√
3

√
3 0 0 0 0 0 0 0


, (2.68)

where the first and second diagonal blocks correspond to spin up and down (Sz = ±1/2),
respectively. The total HSO matrix is added to the on-site Hamiltonian terms, whereas
the interatomic matrix elements remain unchanged.

Ferromagnetic solids can be parametrised by different values of on-site or S-K pa-
rameters for the two spin states as mentioned in the previous subsection. In all three
parametrisations considered in this work the spin quantisation axis is assumed to have
arbitrary orientation (absence of SOC). However, we introduce the SOC to obtain the
magnetocrystalline anisotropy. The alignment of the magnetisation direction with re-
spect to the crystal becomes relevant. We set our coordinate systems in the orbital space
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and in the spin space to coincide and have the z-axis perpendicular to the described
atomic layers. We add a term to our Hamiltonian which depends on the magnetisation
direction in the following way:

Hexch
aα,aβ(m̂) = ∆Eaα,aβm̂ · σ, (2.69)

where ∆Eaα,aβ = Eaα↑,aβ↑ − Eaα↓,aβ↓ (difference of the on-site or interatomic matrix el-
ements for opposite magnetisation directions) and m̂ is the magnetisation unit vector.
Including Hexch(m̂) allows for simultaneous rotation of magnetic moments with constant
magnitudes present on each ferromagnetic atom site. Our exchange splitting is therefore
symmetric around the paramagnetic band energy and independent on the k-vector. This
approximation is not ideal in case of band ferromagnets but we consider it a good starting
point for our simulations. Moreover, we neglect the contribution of the exchange-split S-K
parameters, which would increase the numerical complexity of the calculation and keep
only the on-site energy splitting:

Hexch
aα,aα(m̂) = ∆Eaα,aα

[
mz mx − imy

mx + imy mz

]
. (2.70)

2.2.5 Integration in k-space

The physical quantities of our interest such as the MAE and ADOS are obtained from
the band structure by integration in the reciprocal space. In contrast to (Ga,Mn)As,
the integration has to consider the full Brillouin zone (B.z.). In general, we evaluate
numerically the following integrals:

I(E) =
1

NVB.z.

18N∑
i=1

∫
B.z.

dkfi(k)δ(E − Ei(k)), (2.71)

J(E) =
1

NVB.z.

18N∑
i=1

∫
B.z.

dkfi(k)θ(E − Ei(k)), (2.72)

where the sum is over all eigenstates of the Hamiltonian. We have 18 atomic orbitals in
our basis including spin. N is the number of inequivalent atoms or layers and VB.z. is the
volume of the Brillouin zone, hence, the results are quantified per atom or layer. (δ(E)
selects only states with eigenvalues equal to E and θ(E) selects all states from the lowest
band up to E.) If the scalar function fi(k) is set to unity then I(E) becomes the DOS
and J(EF ) enumerates the occupied states in the ground state with Fermi energy EF . If
fi(k) = Ei(k) then J(EF ) gives the total energy of the ground state. We find MAE as a
difference in total energies obtained for two different magnetisation directions. Note that
our model does not consider any finite temperature effects.

The formalism above allows for straight forward calculation of expectation values
of any operator S(k) which is diagonal in k-vector (or k independent such as the spin
operator) and its matrix elements are known in the basis of cubic harmonics. We can
then set fi(k) = 〈ξi(k)|S(k)|ξi(k)〉, where ξi are the eigenvectors of the tight-binding
Hamiltonian.
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Finally, quantities specific to fractions of the whole system such as spin up/down
density of states or local DOS can be readily evaluated using a projector P onto the basis
states belonging to the chosen spin polarisation or layer:

fi(k) = 〈ξi(k)|PS(k)P†|ξi(k)〉. (2.73)

E.g., a diagonal matrix with Pii = 1 for 1 ≤ i ≤ 9 and Pii = 0 otherwise together with
S(k) = 1 correspond to spin-up-DOS of the first monoatomic layer. ADOS at an interface
of a metal and a tunnel barrier is a ground state property related to the TAMR.

2.3 Shape anisotropy

We conclude this theoretical modelling chapter by briefly discussing the role of shape
anisotropy in microstructures and compare its magnitude to the magnetocrystalline
anisotropy in case of (Ga,Mn)As.

Magnetic shape anisotropy is due to the long range dipolar interaction. Surface diver-
gence of magnetisation M gives rise to demagnetising field HD(M, r). In homogeneously
magnetised bodies of general shape the demagnetising field is a function of magnetisation
magnitude and direction with respect to the sample. In ellipsoidal bodies the function
becomes linear in M and HD(M) is uniform in the body:

HD
i (M) = −

∑
j

NijMj. (2.74)

Tensor Nij is the so called demagnetising factor. In rectangular prisms the linear for-
mula (2.74) is a good approximation and the non-uniform demagnetising factor can be
replaced by its spatial average. For the magnetostatic energy density of a homogeneously
magnetised rectangular prism we get:

ED(M) = −1

2
µ
∑
ij

Nij(a, b, c)MiMj, (2.75)

where we assume a prism extending over the volume −a < x < a, −b < y < b and
−c < z < c in a Cartesian coordinate system. Ref. [2] shows the expression for Nij(a, b, c)
in such prism.

Fig. 2.5 shows the calculated shape anisotropy energy EA = ED(M1)−ED(M2) for a (i)
thin film with a = b > c and with magnetisation out-of-plane or in-plane (M1 = (0, 0,M),
M2 = (M, 0, 0)), and (ii) for a bar with a > b ∼ c and with magnetisation in-plane
(M1 = (0,M, 0), M2 = (M, 0, 0)). In the former case the shape anisotropy favours in-
plane easy axis direction while in the latter case the easy axis tends to align along the
bar.

As a result of the relatively low saturation magnetisation of the DMSs, the in-plane vs.
out-of-plane shape anisotropy EA is only about 1.4 kJ/m3 (0.06 T) for Mn doping x = 5%
and c < a/100. This is in agreement with the limit of infinite two-dimensional sheet, where
the formula for shape anisotropy energy per unit volume simplifies to EA = µ0

2
M2 cos2 θ.

θ is the angle that the saturation magnetisation M subtends to the plane normal. The
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Figure 2.5: Shape anisotropy EA = ED(M1) − ED(M2) of a film of a thickness c and a
long bar of length a and width b as a function of the dimension-less ratio r as defined in
the caption. The curves were obtained using the demagnetising factor approximation of
Ref. [2] for |M| = 0.06T which corresponds to Mn doping of x = 5% at T = 0K.

in-plane anisotropy of a bar is even weaker and decreases with relative widening of the
bar.

In general, the shape anisotropies in the (Ga,Mn)As dilute-moment ferromagnet are
weak compared to the SOC induced magnetocrystalline anisotropies and can be often
neglected. In the dense-moment metal ferromagnet structures the shape anisotropy can
play an important role. Nevertheless in structures containing the strongly spin-orbit
coupled Pt we consider, the magnetocrystalline anisotropy will typically dominate as in
the case of (Ga,Mn)As.
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Chapter 3

Results and analysis

3.1 Overview of theoretical results in (Ga,Mn)As and

comparison to experiments

A large amount of experimental data on magnetic anisotropy in (Ga,Mn)As has accumu-
lated over the past years. Comparison of these results with predictions of the effective
Hamiltonian model is not straightforward due to the presence of unintentional compen-
sating defects in (Ga,Mn)As epilayers. Most importantly, a fraction of Mn is incorporated
in interstitial positions. These impurities tend to form pairs with MnGa acceptors in as-
grown systems with approximately zero net moment of the pair, resulting in an effective
local-moment doping xeff = xs − xi [57]. Here xs and xi are partial concentrations of
substitutional and interstitial Mn, respectively. In as-grown materials, the partial con-
centration xi increases with the total Mn concentration, xtot = xs + xi. For xtot > 1.5%,
dxi/dx ≈ 0.2 [57]. We emphasise that in theory the Mn local-moment doping labelled
as ”x” corresponds to the density of uncompensated local moments, i.e., to xeff in the
notation used above. Mn doping ”x” quoted in experimental works refers typically to
the total nominal Mn doping, i.e., to xtot. When comparing theory and experiment this
distinction has to be considered.

Although interstitial Mn can be removed by low-temperature annealing, xeff will
remain smaller than the total nominal Mn doping. The interstitial Mn impurities are
double donors. Assuming no other sources of charge compensation the hole density is
given by p = (xs − 2xi)4/a

3
0 [57].

The concentration of ferromagnetically ordered Mn local moments and holes is not
accurately controlled during growth or determined post growth [52]. We acknowledge
this uncertainty when comparing available magnetometry results with theory. Throughout
this section we test the relevance of our model over a wide parameter range, focusing on
general trends rather than on matching results directly based on the material parameters
assumed in the experimental papers.

3.1.1 In-plane vs. out-of-plane magnetic easy axis

In this subsection we study the switching between in-plane and perpendicular-to-plane
directions of the magnetic easy axis. (Anisotropies within the growth plain of a sample
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are studied in Subsec. 3.1.2.) Early experiments were suggesting that the in-plane vs.
perpendicular-to-plane easy axis direction is determined exclusively by the sign of the
growth induced strain in the sample. The in-plane easy axis (IEA) develops for compres-
sive growth strain e0 = (as − a0)/a0 < 0. Tensile growth strain, e0 > 0, results in the
perpendicular-to-plane easy axis (PEA). This simple picture was subsequently corrected
by experimental results reported for example in Refs. [109, 111, 134, 135]. Sign changes
in the magnetic anisotropy for the same sign of the growth strain were observed with
varying Mn concentration, hole density, and temperature.

An overview of theoretical easy axis reorientations driven by changes in the material
parameters is given in Fig. 3.1. In the plots we show the difference ∆E between total hole
energy density for the magnetisation lying in-plane (Etot(M||)) and out of plane (Etot(M⊥))
as a function of the hole density and temperature. (Etot(M||) is always the smaller of Etot
for magnetisation along the [100] and the [110] axis.) We include calculations for four
Mn local-moment concentrations to facilitate the comparison with experimental data of
different nominal Mn concentrations and different degree of annealing, which also increases
the number of uncompensated local moments as discussed above. We note that the
calculated magnetocrystalline anisotropies are almost precisely linear in the growth strain
and therefore the boundaries between IEA and PEA in Fig. 3.1 depend only very weakly
on the magnitude of the growth strain, certainly up to the typical experimental values
|e0| < 1%. magnetocrystalline anisotropy diagrams presented in this subsection for a
compressive strain e0 = −0.2% are therefore generic for all typical strains, with the IEA
and PEA switching places for tensile strain.

Solid arrows in Fig. 3.1 mark easy axis behaviour as a function of temperature and
doping that has been observed experimentally. The dashed arrows correspond to the-
oretical anisotropy variations that have not been observed experimentally. At low hole
densities, increasing temperature (marked by arrow (1)) induces a reorientation of the
easy axis from a perpendicular-to-plane to an in-plane direction. With decreasing x this
transition shifts to lower hole densities; at x = 2% the theoretical densities allowing for
such a transition reach unrealistically low values for a ferromagnetic (Ga,Mn)As material
with metallic conduction. Warming up the partially compensated samples (marked by
arrow (2)) has no reorientation effect and the easy axis stays in-plane. There are no
exceptions to this behaviour at different Mn concentrations. Finally, increasing temper-
ature of a very weakly compensated (fully annealed) sample can cause switching of the
theoretical easy direction from in-plane to perpendicular-to-plane (marked by arrow(3)),
with the exception of the low Mn concentrations.

The techniques used to increase the hole density in the experimental works discussed in
this subsection are the postgrowth sample annealing and annealing followed by hydrogen
passivation/depassivation [134]. The latter method yields solely a change in hole density,
whereas the former is associated also with an increase in the effective Mn concentration
and a decrease in the growth strain. The growth strain is caused to a large extent by Mn
atoms in interstitial positions [73], which are removed by the annealing. The simultaneous
increase of hole density and effective Mn concentration due to annealing implies a transfer
between the phase diagrams of Fig. 3.1 accompanying the transitions marked by arrows (4)
- (6). We argue that the remarkable similarity of the four diagrams assures a meaningful
qualitative comparison with the effect of annealing even within a given diagram.

We now discuss individual measurements and compare with theoretical diagrams in
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(a) x = 2% (b) x = 4%

(c) x = 6% (d) x = 8%

Figure 3.1: Anisotropy energy ∆E = E(M||)−E(M⊥) [kJm
−3] calculated for e0 = −0.2%,

exy = 0, and four Mn concentrations. Positive(negative) ∆E corresponds to PEA(IEA).
Arrows mark anisotropy transitions driven by change of temperature or hole density.

Fig. 3.1. Ref. [134] reports experiments in a 50 nm thick (Ga,Mn)As epilayer nominally
doped to x = 6−7% and grown on a GaAs substrate under compressive strain. The sample
is first annealed to lower the number of interstitial Mn, then hydrogenated to passivate
virtually all itinerant holes, and finally depassivated in subsequent steps by annealing.
The hole density was not measured, but for the given Mn doping we expect the density
in the range of p ∼ 1020 − 1021cm−3 after depassivation. The low temperature (T =
4 K) reorientation from PEA to IEA induced by successive depassivations and detected
indirectly by anomalous Hall effect measurement in Ref. [134] matches the transition
marked by arrow (4) in Fig. 3.1(b)-(d).

Magnetic hysteresis loops measured by the Hall resistivity in Ref. [135] reveal easy axis
reorientations induced by annealing or increasing temperature in material with nominal
Mn doping x = 7%. This (Ga,Mn)As epilayer was grown on a (In,Ga)As buffer which
leads to a tensile strain. (Recall that the anisotropy energy ∆E is an odd function of
the growth strain so the IEA and PEA regions have to be interchanged in Fig. 3.1 when
considering tensile strain.) Again, the hole density is not known and can be estimated to
p ∼ 1020 − 1021cm−3. After annealing, the material exhibits perpendicular-to-plane easy
axis at 4 K and no reorientation occurs during heating up to 115 K (TC ≈ 120 − 130 K
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in this material). Such behaviour corresponds to arrow (2) of Fig. 3.1(c) or (d). The as-
grown sample has IEA at 4 K and PEA at 22 K. This easy axis reorientation corresponds
to arrow (1), again considering a tensile strain. The as-grown and annealed samples both
share PEA at elevated temperature. Such a stability of the easy axis while changing the
hole density corresponds to arrow (5). Theoretical anisotropy variations described by
arrows (3) and (6) are not observed in Ref. [135]

Ref. [109] presents measurements in compressively strained (Ga,Mn)As epilayers grown
on a GaAs substrate. The reported nominal Mn concentrations are x = 5.3% and x = 3%
with compressive growth strain e0 = −0.27% and e0 = −0.16%, respectively, as inferred
from x-ray diffraction measurement of the lattice parameter. The higher doped material
was partially annealed for several different annealing times. The hole density was not
measured but likely increases substantially with annealing. The as-grown x = 5.3%
sample at 5 K exhibits PEA, which changes to IEA upon warming up to 22 K. This
anisotropy variation is not observed for samples subject to long annealing times. Such a
result is consistent with Ref. [135] and corresponds to the theoretical predictions marked
by arrows (1) and (2) of Fig. 3.1(b) for increasing temperature of the as-grown and
annealed samples, respectively. Again, the effect of annealing is in good agreement with
anisotropy behaviour predicted for low (high) temperature represented by arrow (4) (arrow
(5)), however, there is no experimental counterpart of transitions marked by arrows (3)
and (6). The sample doped to x = 3% was not annealed and no transition from PEA to
IEA is observed upon warming. The behaviour corresponds to arrow (2) in Fig. 3.1(a)
or (b).

Ref. [108] already reports a successful comparison of measured magnetic anisotropy
and theoretical predictions [26]. Among other samples, it presents a compressively strained
(Ga,Mn)As epilayer with nominal Mn concentration x = 2.3% (inferred from x-ray diffrac-
tion measurement). A superconducting quantum interference device (SQUID) measure-
ment of this as-grown sample shows PEA at 5 K and IEA at 25 K, corresponding to
anisotropy variation marked by arrow (1) in Fig. 3.1(a) (occurring only for a very narrow
hole density interval).

Ref. [67] presents (Ga,Mn)As epilayers with compressive and tensile strain grown on
GaAs and (In,Ga)As buffers, respectively, with nominal Mn concentration x = 3% inferred
from reflection high energy electron diffraction (RHEED) oscillations measured during the
MBE growth. Two of the samples were annealed and magnetic anisotropy was investigated
at 5 K. The tensile strained sample has its easy axis aligned perpendicular to the growth
plane and the compressively strained sample has an in-plane easy axis. This observation
is in good agreement with our theoretical modelling.

We conclude this subsection by discussing magnetic anisotropies in low doped ferro-
magnetic (Ga,Mn)As samples which are in the vicinity and on both sides of the tran-
sition into a degenerate semiconductor. Transport measurements [54] in the epitaxial
(Ga,Mn)As reveal insulating characteristics and the presence of the impurity band for
x . 0.1%. For higher concentrations, 0.5 . x . 1.5%, no clear signatures of activation
from the valence band to the impurity band have been detected in the dc transport, sug-
gesting that the bands have merged, yet the materials remain insulating. When the Mn
doping reaches ≈ 1.5%, low-temperature conductivity of the film increases abruptly by
several orders of magnitude and the system in bulk turns into a degenerate semiconductor.
The onset of ferromagnetism occurs on the insulating side of the transition at x ≈ 1%.
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Magnetocrystalline anisotropy has been measured in an insulating ferromagnetic
(Ga,Mn)As/GaAs sample nominally doped to 1% and in an already metallic sample
doped to 1.5% (Ref. [137]), and in another insulating but ferromagnetic material with
nominal 1.1% doping (Ref. [140]). Note that annealing has only a little effect on mag-
netic properties in these low doped materials. SQUID measurements in the 1% and 1.1%
doped materials reveal PEA for all temperatures below TC . In the 1.5% doped sample, a
transition from PEA to IEA was observed near TC . All these observations are consistent
with our theory results in low doped samples, as shown in Fig. 3.1(a).

Magnetic properties of (Ga,Mn)As epilayers in the vicinity of the metal insulator tran-
sition have not yet been thoroughly investigated. The results discussed above nevertheless
confirm the perception that magnetic interactions are established on much shorter length
scales than the macroscopic scales governing transport properties. Magnetic anisotropy
is then expected to evolve smoothly across the metal-insulator transition, as seen in
the above experimental data, and our theory has therefore a merit for ferromagnetic
(Ga,Mn)As on both sides of the transition. Its quantitative reliability should however not
be overstated in the vicinity and on the insulating side of the transition.

3.1.2 In-plane anisotropy: Competition of cubic and uniaxial
components

As we discussed in the previous subsection, the magnetic easy axis(axes) is in the plane
of (Ga,Mn)As/GaAs films over a wide range of dopings. Experimental works in bare
(Ga,Mn)As epilayers discussed in this subsection show that the in-plane magnetic anisotropy
has cubic and uniaxial components. Typically, the strongest uniaxial term is along the
in-plane diagonal ([110]/[110]) direction. (A weak uniaxial component along the main
crystal axes ([100]/[010]) has also been detected [94, 36].) The theoretical model used so
far to describe the easy axis reorientation between the in-plane and out-of-plane align-
ment, assuming the growth strain, can account only for the cubic in-plane anisotropy
component. In this case we find two easy axes perpendicular to each other either along
the main crystal axes or along the diagonals depending on the Mn concentration and hole
density, as shown in Fig. 3.2. In order to account for the uniaxial component of the
in-plane [110]/[110] anisotropy in bare (Ga,Mn)As epilayers the elastic shear strain exy is
incorporated into our model as discussed in Sec. 2.1. (For brevity we omit the index ”int”
in the following text and reintroduce the index only when additional real in-plane strains
are present due to micro-patterning or attached piezo-stressors.) The superposition of
the two components results in a rich phenomenology of magnetic easy axis alignments as
reviewed in Figs. 3.3 - 3.5.

Fig. 3.3 shows an example with easy axes aligned close to the main crystal axes [100]
and [010] at Mn local-moment concentration x = 5%, hole density p = 3 × 1020cm−3,
and a weak shear strain exy = 0.01%. For a stronger shear strain exy = 0.03% the cubic
anisotropy is no longer dominant and the easy axes “rotate” symmetrically towards the
diagonal [110] direction until they merge for exy & 0.05%. As explained in detail in
Sec. 2.1, the magnitude and sign of the intrinsic shear strain exy enter as free parameters
when modelling in-plane anisotropies of bare epilayers.

The relative strength of uniaxial and cubic anisotropy terms depends also on the
hole density and Mn concentration as shown by Fig. 3.4 and 3.5, respectively. Both
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Figure 3.2: Magnetic anisotropy energy ∆E = Eφ − E[100] as a function of the in-plane
magnetisation orientation M = |M|[cosφ, sinφ, 0] and its dependence on material param-
eters. Magnetic easy axes (marked by arrows) change their direction upon change of hole
density p given in units u ≡ 1020 cm−3 at Mn local-moment concentration x = 5%, shear
strain exy = 0, and zero temperature.
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Figure 3.3: Magnetic anisotropy energy ∆E = Eφ − E[100] as a function of the in-plane
magnetisation orientation M = |M|[cosφ, sinφ, 0] and its dependence on material pa-
rameters. Magnetic easy axes (marked by arrows) change their direction upon change
of magnitude of shear strain exy > 0 at Mn local-moment concentration x = 5%, hole
density p = 3× 1020 cm−3, and zero temperature.

anisotropies are non-monotonous functions of x and p, compared to the linear dependence
of uniaxial anisotropy on the shear strain. We do not show explicitly the effect of increasing
temperature which in the mean-field theory is equivalent to decreasing the effective Mn
concentration while keeping the hole density constant (as explained in Sec. 2.1).
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Figure 3.4: Magnetic anisotropy energy ∆E = Eφ − E[100] as a function of the in-plane
magnetisation orientation M = |M|[cosφ, sinφ, 0] and its dependence on material param-
eters. Magnetic easy axes (marked by arrows) change their direction upon change of hole
density p given in units u ≡ 1020 cm−3, at Mn local-moment concentration x = 3%, shear
strain exy = 0.01%, and zero temperature.
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Figure 3.5: Magnetic anisotropy energy ∆E = Eφ − E[100] as a function of the in-plane
magnetisation orientation M = |M|[cosφ, sinφ, 0] and its dependence on material param-
eters. Magnetic easy axes (marked by arrows) change their direction upon change of Mn
local-moment concentration x at hole density p = 3×1020 cm−3, shear strain exy = 0.01%,
and zero temperature.

We begin the comparison of theory and experiment by analysing experimental stud-
ies of in-plane magnetic anisotropy in bare samples without lithographically or piezo-
electrically induced in-plane uniaxial strain. Experimental results are summarised in
Tab. 3.1. Samples are identified by nominal Mn concentration and hole density or anneal-
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ing as given by the authors. Typically, the hole density is in the range 1020 - 1021cm−3.
All samples are thin (Ga,Mn)As epilayers deposited by MBE on a GaAs substrate. Ac-
cording to our calculations, the compressive growth strain has a negligible effect on the
interplay of cubic and uniaxial in-plane anisotropies.

Tab. 3.1 shows the largest measured projection of the easy axis (axes) on the main
crystal directions ([100], [010], [110], and [110]) in the corresponding sample. (Note that
unlike our theoretical calculations of the full in-plane anisotropy profile, most experiments
listed in Tab. 3.1 report only projections of the magnetisation to the main crystal direc-
tions. Studies using anisotropic magneto-resistance (AMR) to map the easy axis direction
precisely are discussed in Subsec. 3.1.3 and 3.1.4.) Tab. 3.1 includes a column labelled as
EAlT giving the largest easy axis projection at low temperatures (typically 4 K) and a col-
umn labelled as EAhT corresponding to measurements at temperatures close to TC . This
simplified overview of the temperature-dependence of the in-plane anisotropies reflects the
nature of available experimental data. The ferromagnetic resonance (FMR) spectra are
typically provided only at one high and one low temperature. Moreover, available SQUID
data reveal at most one transition between main crystal directions corresponding to the
largest projection of the magnetisation in the whole temperature interval. Sample 25 in
Tab. 3.1 which shows two transitions is the only exception to this trend.

From Tab. 3.1 we infer the following general trend in the experimentally observed in-
plane anisotropies: At low temperatures the in-plane anisotropy is dominated by its cubic
component. In most cases, this leads to two equivalent easy axes aligned close to [100] and
[010] directions. Only in a few samples the cubic anisotropy yields easy axis directions
along the [110]/[110] diagonals at low temperature. The two diagonals are not equivalent,
however, due to the additional uniaxial anisotropy component [126, 40, 86, 140]. At high
temperatures the uniaxial anisotropy dominates giving rise to only one diagonal easy axis.
Finally we note that Refs. [146], and [133] do not identify the correspondence between
the in-plane diagonal easy axis and one of the two non-equivalent crystallographic axes
[110] and [110] (these measurements are marked as ⊗ in Tab. 3.1). This ambiguity does
not affect the comparison with our modelling of unpatterned bare films since the shear
strain exy determining which of the two diagonals is magnetically easier is a free effective
parameter of the theory. Possibility of error in assigning the two non-equivalent diagonal
crystallographic axes is acknowledged by the authors of Ref. [109], where switching roles
of the diagonals makes the results consistent with later works of the group.

Following the strategy for presenting experimental data in Tab. 3.1, we plot in Figs. 3.6
and 3.7 theoretical diagrams indicating crystallographic axes ([100],[110] or [110]) with
the largest projection of magnetisation as a function of the hole density and temperature.
The comparison with experimental results in Tab. 3.1 is facilitated by numbered arrows
added to the diagrams, which correspond to switchings between crystallographic directions
with the largest projection of the easy axis, driven by increasing temperature (horizontal
arrows) and hole density (vertical arrows).

Fig. 3.6 presents diagrams for different Mn concentrations and for exy = 0.01%.
Anisotropy transitions seen in the figures are consistent with majority of the reviewed
experimental works, i.e., the arrows correspond to the experimentally observed transi-
tions and their placement in the diagrams is reasonably close to the relevant experimental
parameters. Fig. 3.6 also demonstrates how the transition from the [100] to the [110]
direction moves to higher temperatures with increasing Mn local-moment concentration.
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No. Ref. x[%] p[∗] EAlT EAhT Fig. Ap AlT AhT

1. [110] 2 ag + ↖ 3.7(a) (1) (2) (3)
2. [110] 2 an + ↖ 3.7(a) (1)

3. [142] 2 3.5 + ↖ 3.7(a) (1)

4. [146] 2 ag + ⊗ 3.7(a) (1)

5. [66] 2 1.1 + ↗ 3.7(a) (1)n

6. [39] 2 4 + ↗ 3.7(a) (1)n

7. [109] 3 ag + ↖ 3.6(a) (1)

8. [145] 3 ag + ↗ 3.6(a) (1)n

9. [40] 4 3.5 + 3.6(a) (2)
10. [40] 4 5 + 3.6(a)

11. [140] 5 ag + ↖ 3.6(b) (2) (5) (6)
12. [140] 5 an ↗ ↗ 3.6(b) (3)

13. [110] 5 ag + ↖ 3.6(b) (2) (4) (6)
14. [110] 5 an + ↗ 3.6(b) (2)n

15. [126] 6 ag + ↖ 3.6(b) (2) (5) (6)
16. [126] 6 an ↗ ↗ 3.6(b) (3)

17. [133] 7 0.75 + ⊗ 3.6(c) (3)
18. [133] 7 2 + ⊗ 3.6(c) (3)
19. [133] 7 8.8 + ⊗ 3.6(c) (4)
20. [133] 7 12 + ⊗ 3.6(c) (4)

21. [40] 7 3.6 + 3.6(c) (6)
22. [40] 7 11 ↗ 3.6(c)

23. [86] 8 ag + ↖ 3.7(b) (1) (3) (4)
24. [86] 8 an ↖ ↖ 3.7(b) (2)

25. [110] 8 an + ↗ 3.6(d) (4)

Table 3.1: Experimental in-plane magnetocrystalline anisotropies at low temperature
EAlT , and high temperature EAhT extracted from SQUID or FMR measurements: largest
easy axis projection along [100] and [010] axes (+), along [110] axis (↖), along [110] axis
(↗), and along one of the [110]/[110] diagonals not distinguished in the experiment (⊗).
Nominal Mn concentrations x reported in experimental studies are rounded down to
percents. Hole density p [∗] is given in units of 1020cm−3. If the hole density is unknown
the as-grown and annealed samples are indicated by “ag” and “an”, respectively. Samples
are ordered according to Mn concentration and hole density (annealed sample follows the
as-grown counterpart when it exists). The last four columns label the experimental data
in a way which facilitates direct comparison with transitions highlighted by arrows in the
theory Figs. 3.6 and 3.7. Numbers in columns Ap, AlT , and AhT point to corresponding
theory transitions marked by horizontal arrows, vertical arrows at low T , and vertical
arrows at high T , respectively. The index n indicates correspondence of the given arrow
to modelling with negative value of exy.
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Fig. 3.7 address samples where the observed transition cannot be modelled by exy =
0.01%. Four of the low doped samples in Refs. [110, 146, 142] are modelled by a weaker
strain, whereas one of the highly doped samples in Ref. [86] is modelled by a stronger
strain.

(a) x = 3% (b) x = 5%

(c) x = 7% (d) x = 9%

Figure 3.6: Theoretical hole density - temperature diagrams of crystal directions with the
largest projection of the magnetic easy axis for exy = 0.01%, e0 = −0.2%, and four Mn
concentrations. Arrows mark anisotropy behaviour driven by change of temperature or
hole density explaining experimentally observed behaviour surveyed in Tab. 3.1.

Now we discuss in detail the theoretical diagrams in Fig. 3.6 and compare to individual
samples from Table 3.1, referred to as T3.1-No. Fig. 3.6(a) maps in-plane magnetic
anisotropy at Mn local-moment concentration x = 3% and shear strain exy = 0.01%.
The easy axis reorientation of the as-grown sample T3.1-7 corresponds to arrow (1) in
Fig. 3.6(a). Arrow (2) in Fig. 3.6(a) highlights the finite range of hole densities for which
the largest projection of the easy-axes stays along the [100] and [010] directions at low
temperature, consistent with the behaviour of the as-grown and annealed samples T3.1-9
and T3.1-10. (Note that hole densities in samples T3.1-9 and T3.1-10 were measured by
the electrochemical capacitance-voltage profiling.) The transition from the largest easy
axis projection along the cube edges to the [110] diagonal observed in as-grown sample
T3.1-8 with increasing temperature has no analogy in Fig. 3.6(a) or Fig. 3.6(a). The FMR
measurement does not indicate switching of the easy axis alignment between the diagonals
at any intermediate temperature. This behaviour can be explained only if the opposite
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sign of the shear strain is used to model the intrinsic symmetry-breaking mechanism.
Then the easy axis transition of T3.1-8 would correspond to arrow (1) in Fig. 3.6(a).

The behaviour of as-grown samples T3.1-11,13,15 corresponds to arrow (2) in Fig. 3.6(b).
The annealed samples T3.1-12,16 exhibit the rarely experimentally observed domination
of uniaxial anisotropy for the whole temperature range. This behaviour is also consis-
tently captured by the theory as highlighted by arrow (3) in Fig. 3.6(b). Sample T3.1-14
has a dominant cubic anisotropy preferring [100]/[010] magnetisation directions at low
temperature and the easy axis aligns closer to the [110] direction at high temperatures.
Similarly to sample T3.1-8, this transition has no analogy in Fig. 3.6(a) or Fig. 3.6(b),
however, it can be explained assuming that the [110]/[110] symmetry-breaking mechanism
has opposite sign in this material and therefore should be modelled by a negative value
of the effective strain exy. Then the easy axis transition of T3.1-14 would correspond to
arrow (2) in Fig. 3.6(b). Another possibility is to assume the same sign of exy as for the
above samples and associate the transition in sample T3.1-14 with arrow (4) in Figs. 3.6(c)
and 3.6(d). Note, however, that the intermediate-temperature anisotropy state with the
largest magnetisation projection along the [110] diagonal seen when following the theory
trend along arrow (4) has not been reported in the experimental study of sample T3.1-
14. Arrows (4)-(6) in Fig. 3.6(b) correspond to measured anisotropy behaviour driven by
increasing hole density in pairs of as-grown and annealed samples T3.1-11,12, T3.1-13,14,
and T3.1-15,16.

At the upper end of the investigated effective Mn concentration interval the theoretical
alignment of magnetic easy axes is mapped by Figs. 3.6(c) and 3.6(d). Samples T3.1-
17 to T3.1-20 nominally doped to x = 7% were all annealed after growth, passivated
by hydrogen plasma, and then gradually depassivated to achieve different hole densities
(measured by high-field Hall effect). Magnetic anisotropies were determined by FMR.
The assignment of the in-plane diagonal directions to the non-equivalent [110] and [110]
crystallographic axes is not specified in this experimental work; recall that this ambiguity
is not crucial for the present discussion. The transition observed in these samples from a
cubic ([100]/[010] easy directions) dominated anisotropy at low temperatures to a uniaxial
behaviour at high temperatures is captured by arrows (3) and (4) in Figs. 3.6(c) and
3.6(d). Importantly, the depassivated higher hole density samples T3.1-19 and T3.1-20
show an additional switching of the easy axis from one to the other diagonal direction at
intermediate temperatures, consistent with the theoretical temperature dependence along
arrow (4). This double transition behaviour was also detected in the annealed sample
T3.1-25, where the temperature dependent magnetisation projections were measured by
SQUID. In this experiment it is identified that the easy axis first rotates towards the
[110] direction at intermediate temperatures and then switches to the [110] direction at
high temperatures, consistent with the behaviour marked by arrow (4) in Figs. 3.6(c) and
3.6(d).

Samples T3.1-21,22 are measured only at low temperature. Easy axis reorientation
from the [100] direction to the [110] direction is driven by an increase in hole density,
which corresponds to arrow (6) in Fig. 3.6(c) or 3.6(d). The hole density was measured
by the electrochemical capacitance-voltage method.

In-plane anisotropies of samples with x ≈ 2% are modelled in Fig. 3.7(a). To obtain the
cubic anisotropy dominated region at low temperatures and a transition to the uniaxial
behaviour at high temperatures, as observed in samples T3.1-1 to T3.1-6, we take for
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(a) x = 2%, exy = 0.005% (b) x = 7%, exy = 0.03%

Figure 3.7: Theoretical hole density - temperature diagrams of crystal directions with
the largest projection of the magnetic easy axis for e0 = −0.2% and two combinations of
x and exy. Arrows mark anisotropy behaviour driven by change of temperature or hole
density explaining experimentally observed behaviour surveyed in Tab. 3.1.

this low Mn doping exy = 0.005%. (The effective strain exy = 0.01% would lead to
easy axis along [110] over the entire temperature range and for exy = 0.001% the cubic
anisotropy region would extend up to very high temperatures.) Arrow (1) in Fig. 3.7(a)
corresponds to easy axis switching from the [100] to the [110] direction in samples T3.1-
1,2,3. Arrows (2) and (3) in Fig. 3.7(a) mark the behaviour of the easy axis driven by
increasing hole density when annealing the sample T3.1-1 to obtain the sample T3.1-2 at
low and high temperature, respectively. Sample T3.1-4 assumes the [110] diagonal always
harder than the [110] diagonal. A transition from cubic to uniaxial dominated anisotropy
is observed upon increasing the temperature. This behaviour corresponds to arrow (1) in
Figs. 3.7(a). (The hole density of sample T3.1-3, p = 3.5× 1020cm−3, was determined by
low-temperature high-field Hall effect measurements, however, it was not measured for
samples T3.1-1,2,4.)

Samples T3.1-5 and T3.1-6 have their easy axis aligned closer to the [100]/[010] direc-
tions at low temperatures and to the [110] direction at higher temperatures, similarly to
sample T3.1-8. The SQUID measurement of magnetisation projections for the whole range
of temperature does not indicate the easy axis alignment close to the [110] direction at
any intermediate temperature. The hole density of the sample T3.1-5, p = 1.1×1020cm−3,
is measured by Hall effect (at room temperature) and its Mn concentration is inferred
from x-ray diffraction measurement of the lattice constant. The hole density of the sam-
ple T3.1-6 is p = 4 × 1020 cm−3 (measured by the electrochemical capacitance-voltage
method at room temperature), and we estimate the Mn concentration from the reported
critical temperature, TC = 62 K, after annealing. The described experimental behaviour
does not correspond to predicted anisotropy transitions for relevant hole densities, Mn
local-moment concentrations, and positive shear strain. The behaviour can be explained,
however, if the opposite sign of the shear strain is used to model the intrinsic symmetry-
breaking mechanism at low Mn concentration. Then the easy axis transition of T3.1-5,6
would correspond to arrow (1) in Fig. 3.7(a).

Finally we comment on the less frequent behaviour observed in the annealed sample
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T3.1-24. While its as-grown counterpart T3.1-23 shows the commonly seen transition from
the cubic dominated anisotropy to the uniaxial anisotropy with increasing temperature,
marked by arrow (1) in Fig. 3.7(b), the annealed material has its easy axis aligned close
to the [110] direction over the entire studied temperature range. Arrow (2) in Fig. 3.7(b)
provides an interpretation of this behaviour if we increase the magnitude of the effective
shear strain. At exy = 0.03% the cubic anisotropy dominated region is already strongly
diminished and for exy = 0.05% it vanishes completely. Arrows (3) and (4) then highlight
within the same diagram the consistent description of the evolution of the experimental
anisotropies, both at low and high temperatures, from the as-grown low hole density
sample T3.1-23 to the annealed high hole density sample T3.1-24.

Figure 3.8: In-plane uniaxial anisotropy as a function hole density at zero temperature,
exy = 0.05%, and e0 = 0 calculated in this work (a) and in Ref. [110] (b). Curves are
labelled by the valence-band spin-splitting parameter BG ≡ JpdNMnS/6 to allow for simple
comparison with Ref. [110]. (BG = 4.98x in meV and in percent, respectively.) Dashed
intervals of the horizontal axis mark regions where a change of temperature (inversely
proportional to BG) can lead to the [110] ↔ [110] easy axis reorientation.

To summarise this subsection, our theoretical modelling provides a consistent over-
all picture of the rich phenomenology of magnetocrystalline anisotropies in unpatterned
(Ga,Mn)As epilayers. Our understanding is limited, however, to only a semiquantita-
tive level, owing to the approximate nature of the mean-field kinetic-exchange model,
ambiguities in experimental material parameters of the studied films, and unknown mi-
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croscopic origin of the in-plane uniaxial symmetry-breaking mechanism. We remark that
the effective shear strain we include to phenomenologically account for the experimental
[110]/[110] uniaxial anisotropy scales with Mn doping (exy ' 0.005x). It brings additional
confidence in this modelling approach as it is most likely the incorporation of Mn which
breaks the cubic symmetry of the lattice. The magnitude of the effective strain parameter
falls into the range 0.005% < exy < 0.05% and the anisotropy behaviour consistent with
most experimental works is modelled with positive sign of exy.

We conclude this subsection by a remark on numerical simulations of the [110] to
[110] easy axis transition performed in Ref. [110]. The physical model employed by the
authors of Ref. [110] is identical to ours, nevertheless, the results of the calculations
do not quantitatively match ours, as illustrated in Fig. 3.8. We have clarified with the
authors of Ref. [110] the numerical origin of the discrepancy. This helpful exercise has
provided an independent confirmation of the accuracy, within the applied physical model,
of the theoretical results presented in this work. (To compare Fig. 3.8 to the original
plot in Ref. [110] use the conversion to units of normalised anisotropy field Hun/M =
2(E[110] − E[110])/(µ0M

2).)

3.1.3 Anisotropy fields

Having analysed the in-plane and out-of-plane anisotropies based on the direction of
easy axes, we turn our attention to the relative strength of the anisotropy components,
i.e., to the anisotropy energies. The components of magnetocrystalline anisotropy can
be described in terms of a simple phenomenological model separating the free energy
density F (M̂) into components of distinct symmetry. Each component is described by
a periodic function with a corresponding coefficient. We find that angular dependencies
of the energies obtained from our microscopic modelling can be approximated accurately
even in the first and second orders of expansion into periodic functions of uniaxial and
cubic symmetry, respectively.

The coefficients can be determined experimentally, e.g., by analysing the FMR spectra
[133, 66, 65, 67], from AMR [22, 89] or by fitting SQUID magnetometry data to an ap-
propriate phenomenological formula for anisotropy energy [142, 86]. In this subsection we
extract the relevant coefficients from the calculated anisotropies, track their dependence
on material parameters and compare theory to experiment on this level.

We start with identifying the types of anisotropy terms considered in our expan-
sion of the anisotropy energy. The cubic anisotropy due to the crystal symmetry of the
zinc-blende structure is described using terms invariant under permutation of the coor-
dinate indices x, y, and z. The independent first-, second- and third-order cubic terms
read: Kc1
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tively, where nx = cosφ sin θ, ny = sinφ sin θ, and nz = cos θ are components of the

magnetisation unit vector M̂ (the angles θ and φ are measured from the [001] and [100]
axis, respectively). See Appendix A.1 for details on the mutual independence of all cubic
terms.

As mentioned in previous subsections, the cubic anisotropy of the host crystal lattice
is accompanied by different types of uniaxial anisotropy. A generic term corresponding
to uniaxial anisotropy along a given unit vector Û depends on the even powers of the dot
product (M̂ · Û). The first- and second-order terms read: Ku1(M̂ · Û)2 and Ku2(M̂ · Û)4.
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The particular cases of uniaxial anisotropy terms and their correspondence to lattice
strains will be described later in this subsection.

Figure 3.9: Lowest-order cubic anisotropy field Hc1 and second-order cubic anisotropy
field Hc2 calculated as functions of hole density p (up to zero compensation p = NMn)
and Mn local-moment concentration x at zero temperature;

Before we present the calculated values of the cubic anisotropy coefficient, we introduce
the so called anisotropy fields, which are often used in literature instead of the energy
coefficients. In this subsection we plot the anisotropy fields in Oersteds (Oe) to make the
comparison with experiment more convenient. The relation of the anisotropy fields Ha to
the energy coefficients Ka reads: Ha = 2Ka/M .

Fig. 3.9 shows Hc1 and Hc2 as functions of hole density p and Mn local-moment
concentration x at zero temperature. Both coefficients oscillate as function of the hole
density p. As discussed in detail in Ref. [1] the anisotropies tend to weaken with increasing
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population of higher bands, which give competing contributions. Consistent with this
trend the amplitude of the oscillations increases with increasing x and decreasing p. The
upper limit of the hole density p = NMn corresponds to no charge compensation (recall,
NMn ≈ 2.21x in 1020cm−3 for x in percent).

Our modelling predicts the extremal magnitude of the second-order cubic term Hc2

a factor of two smaller than the extremal magnitude of the first-order term Hc1. Upon
increasing the hole density the amplitude of oscillations ofHc2 decreases faster than in case
of Hc1. The third-order cubic anisotropy field Hc3 is negligible compared to Hc1 and Hc2

for all studied combinations of the material parameters. To our knowledge, Hc2 and Hc3

have not been resolved experimentally. We emphasise that the second-order cubic term
does not contribute to the anisotropy energy for magnetisation vectors not belonging to
the main crystal plains. The dependence of all three calculated cubic terms on the lattice
strains of typical magnitudes (up to 1%) is negligible.

Now, we focus on classification of distinct uniaxial anisotropy components and their
relation to lattice strains lowering the underlying cubic symmetry of the zinc-blende struc-
ture. We have already mentioned that typically the strongest symmetry-breaking mech-
anism is the growth strain (introduced in Sec. 2.1). It is relevant for the in-plane versus
out-of-plane alignment of the magnetic easy axis. We have also mentioned the in-plane
uniaxial anisotropy between the [110] and the [110] axes. Its origin is not known, however,
we have modelled it using the shear strain which is about a factor of ten weaker than the
typical growth strain.

Some (Ga,Mn)As epilayers [94, 36] also show a very weakly broken symmetry between
the main crystal axes [100] and [010]. We will introduce here a uniaxial strain that
can account for this type of anisotropy; however, our main motivation for introducing
this third strain tensor is to complete an in-plane strain basis. This basis is used in
Subsec. 3.1.4 to describe all types of lattice in-plane strains induced experimentally by
growth and post-growth processing of the (Ga,Mn)As epilayers. Once the strain tensors
and corresponding anisotropy contributions to the free energy are introduced, it will
be shown that the chosen basis has the advantage of collinearity of the strain and of
the resulting anisotropy component. Finally, in this subsection the numerical data and
comparison with experiment will be presented for the bare unpatterned epilayers. The
patterned structures will be discussed in Subsec. 3.1.4.

First, we recall the growth strain introduced in Eq. (2.21). It is usually referred to as
the biaxial pseudomorphic strain as it is due to the lattice mismatch between the substrate
and the epilayer. The doped crystal is forced to certain dimensions by the substrate in
the two in-plane directions whereas it can relax in the perpendicular-to-plane direction,
keeping the requirement of zero net force acting on the crystal: 0 = c12exx+c12eyy+c11ezz.
The corresponding strain tensor

eg =

 e0 0 0
0 e0 0
0 0 −2 c12

c11
e0

 (3.1)

describes an expansion (contraction) along the [100] and [010] axes for positive (negative)
e0 accompanied by a contraction (expansion) along the [001] axis. Parameters c11 and c12
are the elastic moduli. The growth strain enters our model via the strain Hamiltonian
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Hstr (see Eq. (2.1)) and induces a uniaxial anisotropy component, which can be described
in the lowest order by an energy term −K[001]n

2
z = −K[001] cos

2 θ.
The shear strain, first introduced in Subsec. 2.1.2, is represented by a tensor

es =

 0 κ 0
κ 0 0
0 0 0

 . (3.2)

Positive (negative) κ corresponds to turning a square into a diamond with the longer
(shorter) diagonal along the [110] axis. We have used this type of strain as the “intrinsic“
shear strain eintxy to model the difference in energy for magnetisation aligned with the two
in-plane diagonals. It results in uniaxial anisotropy along the diagonals, described in
analogy to the growth strain by a term −K[110](ny−nx)2/2 = −K[110] sin

2(φ−π/4) sin2 θ.
Finally, we write down the third element of the in-plane strain basis,

eu =

 λ 0 0
0 −λ 0
0 0 0

 . (3.3)

Positive (negative) λ corresponds to turning a square into a rectangle where expansion
(contraction) along the [100] axis is accompanied by a contraction (expansion) along the
[010] axis of the same magnitude. Much like in case of the growth strain and the shear
strain, the requirement of zero net force acting on the crystal is kept but this time it
results in ezz = 0. The strain eu induces uniaxial anisotropy along the main crystal axes,
described by a term −K[100]n

2
y = −K[100] sin

2 φ sin2 θ.
Let us remark that strain tensors in Eqs. (3.1)-(3.3) are expressed in Cartesian coor-

dinates fixed to the main crystallographic axes. Strains es and eu for κ = λ are related
by a rotation about the [001] axis by π/4; however, the cubic crystal is not invariant
under such rotation so the two strains induce anisotropies with magnitudes K[100] and
K[110], which are different in general. The growth strain eg, the shear strain es, and the
uniaxial strain eu can be characterised by a single direction of deformation and induce
uniaxial anisotropy components aligned with that particular direction. We found that
higher-order uniaxial terms are small unless we approach experimentally unrealistic large
values of exchange splitting (large x) and hole compensation (low p).

In total, we can write our phenomenological formula approximating accurately the
calculated free-energy density of an originally cubic system subject to three types of
strain as a sum of distinct anisotropy components

F (M̂) = Kc1

(
n2
xn

2
y + n2

xn
2
z + n2

zn
2
y

)
+Kc2

(
n2
xn

2
yn

2
z

)
−

− K[001]n
2
z −

K[110]

2
(ny − nx)

2 −K[100]n
2
y. (3.4)

By definition of the terms, a positive coefficient K[001] prefers perpendicular-to-plane easy
axis (PEA); positiveK[110] andK[100] prefer easy axis lying in-plane (IEA) aligned closer to
[110] and [010] axis, respectively. Note that the anisotropy terms entering the phenomeno-
logical formula follow a sign convention consistent with existing literature [133, 66, 65, 67].

We now provide the microscopic justification for the choice of the elements es and eu of
the in-plane strain basis and corresponding phenomenological uniaxial terms. This will be
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based on symmetries of the Kohn-Luttinger Hamiltonian HKL and the strain Hamiltonian
Hstr as shown in Eqs. (2.19) and (2.34), respectively, which relates the band structure to
a general in-plane strain with the components exx, eyy, and exy.

First let us point out that the basis element eg (the growth strain) is invariant under
rotation about the [001] axis and according to our calculation does not influence the in-
plane direction of the easy axis (in the linear regime of small deformations). We continue
by showing that for es and eu, the strains and the corresponding magnetocrystalline
anisotropy components are indeed collinear and that this collinearity applies only for the
special cases of uniaxial symmetries along the in-plane diagonals or main axes. Let us
assume a rotation of the tensor eu by an arbitrary angle ϕ about the [001] axis,

eu(ϕ) = RT
ϕ

 λ 0 0
0 −λ 0
0 0 0

Rϕ (3.5)

=

 λ cos 2ϕ λ sin 2ϕ 0
λ sin 2ϕ −λ cos 2ϕ 0

0 0 0

 ,

where Rϕ is the rotation matrix and ϕ is measured from the [100] axis. (The same analysis
applies to a rotation of es). The parameters exx = −eyy = λ cos 2ϕ and exy = λ sin 2ϕ
enter the strain Hamiltonian (see Eq. (2.34) in the Appendix) only via the matrix element:

cs =
a2
2

√
3(eyy − exx) + ia3exy

= −λ
[
a2
√
3 cos 2ϕ− ia3 sin 2ϕ

]
, (3.6)

where a2
√
3 6= a3 are strain Luttinger constants. Moreover, the strain component exy

quantifying the shear strain enters only Im(cs), whereas the components exx = −eyy enter
only Re(cs). According to our calculation the imaginary and real part of cs generate
independent uniaxial anisotropy components along the [110] and [100] axis, respectively.
Their combined effect can be understood based on an analogy of the in-plane rotation of
the strain tensor eu and an in-plane rotation of a k-vector.

As mentioned in Sec. 2.1 the Kohn-Luttinger Hamiltonian HKL and the strain Hamil-
tonian Hstr have the same structure. We write here explicitly the matrix component c of
the Hamiltonian HKL analogous to cs as a function of the in-plane angle of the k-vector
k = |k|[cosφ, sinφ, 0]. The element reads:

c =

√
3~2

2m

[
γ2(k

2
x − k2y)− 2i(γ3kxky)

]
=

√
3~2

2m
k2
[
γ2 cos 2φ− iγ3 sin 2φ

]
, (3.7)

where again γ2 6= γ3 are Luttinger constants describing a cubic crystal. For γ2 = γ3 the
HamiltonianHKL has spherical symmetry. Similarly, if a2

√
3 = a3, the strain Hamiltonian

Hstr is spherically symmetric and the contributions of Im(cs) and Re(cs) to the anisotropy
of the system combine in such a way that the resulting uniaxial term is collinear with the
strain eu(ϕ) rotated with respect to the crystallographic axes by an arbitrary in-plane
angle ϕ.
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Clearly, the underlying cubic symmetry of the host crystal causes a non-collinearity
of the uniaxial strain along a general in-plane direction and the corresponding anisotropy
component. Moreover, the misalignment is a function of Mn local-moment concentration,
hole density and temperature. We discuss further this misalignment in more detail in
Subsec. 3.1.4. Here we point out the distinct exception when ϕ is an integer multiple of
π/4 and either the real or the imaginary part of cs vanish rendering the strain Hamiltonian
effectively spherically symmetric. We choose quite naturally the simple forms of eu(ϕ)
with ϕ = 0 and ϕ = π/4 as elements of the in-plane strain basis. For a different choice of
the basis elements than in Eqs. (3.2) and (3.3), setting up the phenomenological formula
would be more complicated.

We can now resume our discussion of the interplay of the cubic and uniaxial anisotropy
components. Adding the uniaxial terms leads to rotation or imbalance of the original
(cubic) easy axes as shown in Sec. 3.1.2 in Fig. 3.2.

Fig. 3.10 shows H[110] = 2K[110]/M and H[100] = 2K[100]/M as functions of hole density
p and Mn local-moment concentration x at zero temperature. Both anisotropy fields
depend on material parameters in a qualitatively very similar manner. Moreover, we
observe similar dependence on the doping parameters also in case of the field H[001] (not
plotted). All the three fields oscillate as functions of hole density. The period of the
oscillation is longer than in case of Hc1. In general, the amplitude of the oscillations
decreases with decreasing Mn local-moment concentration.

The uniaxial fields are linearly dependent on the strain from which they originate,
unless the strains are very large (> 1%). For the shear strain of the value exy = κ ≈ 0.01%,
which is the typical magnitude in our modelling, and zero temperature, the extremal
values of H[110] are an order of magnitude smaller than the extremal values of Hc1 ∼
103 Oe. For typical compressive growth strain e0 ≈ −0.2% of an as-grown 5% Mn doped
epilayer and zero temperature the extremal values of H[001] are of the same order as Hc1.
When the magnitude of the uniaxial strain along [100] axis is set to (exx − eyy)/2 = exy,
or equivalently κ = λ, H[100] is approximately a factor of two smaller than H[110].

To quantify the observed similarity in the calculated dependencies of the uniaxial
anisotropy coefficients on x, p, and strains, we can write approximate relationships,

K[001](x, p, e0) ' q[001](x, p)e0,

K[100](x, p, λ) ' q[100](x, p)λ,

K[110](x, p, κ) ' q[110](x, p)κ. (3.8)

Note, that each anisotropy component depends only on one type of strain, which is due
to the choice of the basis in the strain space (see Eqs. (3.1)-(3.3)). (Such exclusive
dependence of a particular uniaxial anisotropy component on the corresponding strain
is, indeed, obtained also from simulations of systems subject to combinations of all three
types of strain.) The linearity of anisotropy coefficients as functions of lattice strains is
limited to small elastic deformations of the lattice. The approximation cannot be used for
strains greater than 1% as revealed also by calculations in Ref. [26]. Experiment confirms
the linear behaviour in case of the growth strain up to e0 ≈ ±0.3% [22]. Linear dependence
on in-plane uniaxial strains is corroborated by experiments discussed in Subsec. 3.1.4.

In addition to the linearity with respect to strain, we observe universal dependence of
the three uniaxial anisotropy coefficients on hole density and Mn local-moment concen-
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Figure 3.10: Calculated anisotropy fields H[110] and H[100] as functions of hole density
p (up to zero compensation p = NMn) and Mn local-moment concentration x at zero
temperature and e0 = −0.2%. For H[110] the in-plane strains are κ = 0.01% and λ = 0
(exy = 0.01%, exx = eyy = e0), while H[100] is found for κ = 0 and λ = 0.01% (exy = 0,
exx = e0 + 0.01%, eyy = e0 − 0.01%).

tration. It can be expressed using the anisotropy functions:

q[001](x, p) ' q[100](x, p) ' 0.43q[110](x, p). (3.9)

The anisotropy function q[110](x, p) due to shear strain is approximately twice as large as
the anisotropy functions q[100](x, p) and q[001](x, p). A general property of these functions
is that at medium hole densities a relative compression yields a tendency of the easy axis
to align with that direction. On the other hand, for very low and high hole densities, the
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Figure 3.11: Anisotropy field Hc1 as function of hole density (up to zero compensation
p = NMn) at four Mn local-moment concentrations x, zero temperature and growth strain
e0 = −0.2%. (The field Hc1 is not a function of lattice strains.) ”Critical“ hole densities,
where the anisotropy fields change sign, are dependent on Mn local-moment concentration.
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Figure 3.12: Anisotropy fields H[110] and H[100] as function of hole density (up to zero
compensation p = NMn) at four Mn local-moment concentrations x, zero temperature
and growth strain e0 = −0.2%. ”Critical“ hole densities, where the anisotropy fields
change sign, are dependent on Mn local-moment concentration.

magnetisation prefers alignment parallel to the direction of lattice expansion.

We caution that Eqs. (3.8) and (3.9) are included to promote the general understanding
of the anisotropic behaviour of the strained crystal but are not precise. The relative error
of the approximation given by Eq. (3.9) averaged over the x− p space shown in Fig. 3.10
is less than 20%; however, the relative error can be much larger at a given combination
of x and p, where the anisotropy coefficients fall to zero.

To finish the analysis of the theoretical results we include Figs. 3.11 and 3.12 to im-
prove the legibility of the data. The individual curves correspond to cuts through the
three-dimensional plots in Figs. 3.9 and 3.10 at fixed Mn local-moment concentrations.
As already mentioned, the dependence of anisotropy fields on hole density is oscilla-
tory. Note that the critical hole densities, where the sign inversion occurs, shift away
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from the extremal values, i.e., zero hole density and zero compensation p = NMn, with
increasing x.

Neglecting the complexity of the dependence of the band structure on M (whether
changed by doping or temperature), one would expect the cubic anisotropy coefficient Kc1

to be proportional to M4 and uniaxial anisotropy coefficients K[001], K[100], and K[110] to
M2. In Figs. 3.11 and 3.12 we can identify intervals of hole density where any change in Mn
concentration, and therefore in M , does not induce a sign change in the anisotropy fields
and the functional forms of Ka(M) are roughly consistent with the above expectations.
For other hole density intervals, however, the behaviour is highly non-trivial and the
function Ka(M) can even change sign.

We now proceed to the discussion of how the theoretically expected phenomenology
detailed above is reflected in experiments in bare unpatterned (Ga,Mn)As epilayers. The
experimental results [133, 66, 65, 67] are often analysed using the following version of the
phenomenological formula:

F (M̂) = −2πM2 sin2 θ −K2⊥ cos2 θ − 1

2
K4⊥ cos4 θ

−1

2
K4‖

3 + cos 4φ

4
sin4 θ −K2‖ sin

2(φ− π/4) sin2 θ, (3.10)

where angle θ and φ are measured, as above, from the [001] and [100] axis, respectively.
The first term in Eq. (3.10) corresponds to the shape anisotropy described in Sec. 2.3 and
not included in Eq. (3.4). The uniaxial anisotropy coefficients K2⊥ and K2‖ correspond to
the coefficients K[001] and K[110] in the phenomenological formula Eq. (3.4), respectively.
To identify the third and fourth terms in Eq. (3.10) we rewrite those terms as (see also
Eq. A.1),

−1

2
K4‖

(
3 + cos 4φ

4
sin4 θ + cos4 θ

)
− 1

2

(
K4⊥ −K4‖

)
cos4 θ =

= −1

2
K4‖

(
n4
x + n4

y + n4
z

)
− 1

2

(
K4⊥ −K4‖

)
n4
z =

= Kc1

(
n2
xn

2
y + n2

xn
2
z + n2

zn
2
y

)
− 1

2
K[001]2n

4
z + c, (3.11)

where c is an angle-independent constant. From here we see that the coefficient K4‖
corresponds to the lowest-order cubic coefficient Kc1 in Eq. (3.4) and K4⊥−K4‖ ≡ K[001]2

corresponds to the second-order uniaxial anisotropy coefficient Ku2 for Û ‖ [001]. We
point out that omission of the second-order cubic term (and other higher-order terms) can
make the determination of K[001]2 from fitting the data to the phenomenological formula
in Eq. (3.10) unreliable. Moreover, the accurate extraction of the coefficient K[001]2 can be
difficult in samples with large value of the first-order coefficient K[001] [67]. We therefore
only note that K[001]2 extracted from the experiment [133, 66, 65] never dominates the
anisotropy, consistent with our calculations, and do not discuss the coefficient further in
more detail.

The predicted strong dependence of K[001], K[110], and Kc1 on hole density, Mn local-
moment concentration, and temperature is consistently observed in many experimental
papers. We start with experiments where the out-of-plane anisotropy is studied. Mea-
surements focusing mainly on the in-plane anisotropies are discussed at the end of this
subsection and in Subsec. 3.1.4 for patterned or piezo-strained samples.
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The coefficient K[001] is extracted in Ref. [22] using detailed angle-resolved magneto-
transport measurements at 4 K for different growth strains in as-grown and annealed,
180 nm thick samples with identical nominal Mn concentration x ≈ 5%. The growth
strain ranging from e0 = −0.22% (compressive) to e0 = 0.34% (tensile) is achieved by
MBE growth of (Ga,Mn)As on (In,Ga)As/GaAs templates. The observed linear depen-
dence of K[001] on e0 agrees on the large range of e0 with the prediction given in Eq. (3.8).
The calculated and measured gradients are of the same order of magnitude and sign, and
depend on the hole density. The off-set at zero strain in the measured dependence of
K[001] on e0 in Ref. [22] is due to the shape anisotropy.

Ref. [133] presents 50 nm thick, annealed samples with nominal Mn doping x =
7%. All the samples are first passivated by hydrogen and then depassivated for different
times to achieve different hole densities while keeping the growth strain the same. The
FMR spectroscopy is carried out for in-plane and out-of-plane configurations. There is
qualitative agreement of calculation and measurement on the level of the directions of
the easy axes as discussed in the previous subsection. The sign change of the uniaxial
anisotropy fields driven by increase of temperature is observed. The measured coefficients
K[001] and Kc1 are of the same order of magnitude as the calculated ones and K[001] ≈ Kc1

is consistent with the weaker growth strain in annealed samples.

Ref. [65] presents an as-grown, 6 nm thick film nominally doped with Mn to x = 6%,
grown on Ga0.76Al0.24As barrier doped with Be. Increasing the Be doping increases the
hole density without changing the Mn local-moment concentration. The fitting of the
FMR spectra is done using the coefficients K[001] and Kc1 and the g-factor of the Mn. The
anisotropy field corresponding to the coefficient K[001] reaches value as high as ≈ 6000 Oe
at 4 K. Large values of K[001] is consistent with expected large growth strain in a thin
as-grown sample [72, 73]. However, for the measured K[001] our calculations would imply
strain e0 ∼ 1% which is an order of magnitude larger than typical strains in as-grown
x = 6% (Ga,Mn)As materials. Other effects are therefore likely to contribute to K[001]

in this sample. (Confinement effect or inhomogeneities are among the likely candidates.)
The experimental K[001] (Kc1) increases (decreases) with increasing hole density which is
in agreement with our modelling of highly compensated samples.

Observation of qualitatively consistent behaviour of the anisotropies with the theory
but unexpectedly large magnitudes of the anisotropy fields applies also to thick samples
studied by FMR in Refs. [66] and [67]. Temperature dependence of the anisotropy fields is
studied by FMR in Ref. [66] for a low-doped (x ≈ 2%) as-grown 200 nm thick (Ga,Mn)As
film. Only the combined contribution of shape anisotropy and K[001] was resolved. The
easy axis stays in-plane for all studied temperatures which is consistent with predicted
crystalline anisotropy as well as the shape anisotropy dominating at weak growth strains.
The uniaxial in-plane anisotropy is of the predicted magnitude but its sign corresponds
to modelling by the less frequent negative intrinsic shear strain.

Ref. [67] discussed in Subsec. 3.1.1 on the level of easy axis orientation shows, among
other samples, 300 nm thick annealed epilayers with nominal Mn concentration x = 3%
deposited on GaAs and (Ga,In)As substrate under compressive and tensile growth strain,
respectively. The strain is measured by x-ray diffraction; however, the predicted linear
dependence of K[001] on the growth strain (see Eq. (3.8)) cannot be tested due to different
saturation magnetisation and TC in both samples. Both Refs. [67] and [66] report the
coefficient Kc1 in the 300 nm and 200 nm thick samples an order of magnitude larger

57



than the calculated one which can [143] be attributed to sample inhomogeneities in these
thick epilayers. Ref. [67] studies also 120 nm thick, annealed and as-grown epilayers with
x = 8% deposited on GaAs. The coefficient K[001] doubles its value at low temperature on
annealing. Both K[001] and Kc1 in the thinner samples have values of the order predicted
by theory for material with Mn doping x = 8%.

Figure 3.13: Angle ψ of the easy axis with respect to the [110] axis as function of hole
density p (up to zero compensation p = NMn) and Mn local-moment concentration x at
zero temperature, e0 = −0.2%, and κ = 0.01%;

Now we analyse experiments focusing on the in-plane anisotropy where the relevant
anisotropy coefficients are Kc1 and K[110]. Note that the experimental papers discussed
below mostly [142, 130, 89, 101] use the notation with the in-plane magnetisation angle
ψ measured from the [110] axis. To avoid any confusion we write the in-plane form of
Eq. (3.4) using the original anisotropy coefficients and the angle ψ = φ+ π/4,

F (M̂) = −Kc1

4
sin2 2ψ +K[110] sin

2 ψ. (3.12)

To facilitate the comparison with experiment we use the notation of Eq. (3.12) consistently
in the remaining parts of this section.

The magnetic easy axes lie closer to the [100] or [010] direction than to any diagonal
when Kc1 > 0 and

√
2K[110] < Kc1. Negative Kc1 always leads to diagonal easy axes.

We include Fig. 3.13 to elucidate the combined effect of Kc1 and K[110] on the in-plane
direction of the easy axes. The angle ψEA(x, p), plotted as a function of Mn concentration
and hole density at zero temperature minimises the free energy F (M̂). The local minima
at ψ = 0◦ (black) and ψ = 90◦ (white) are formed for negativeKc1. WhenK[110] is positive
(negative), the global minimum is at ψ = 0◦ (ψ = 90◦). The higher energy local minimum
disappears for |Kc1| = |K[110]|. Only one energy minimum forms for |Kc1| < |K[110]| and
for positive (negative) K[110] the easy axis is at ψ = 0◦ (ψ = 90◦). The interface of
black and white regions is an evidence of a discontinuity of the function ψEA(x, p) due
to switching of the sign of K[110] when Kc1 < 0. The grey (coloured online) regions in
Fig. 3.13 correspond to competition of cubic and uniaxial anisotropy when Kc1 > 0 and
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|Kc1| > |K[110]|. Then there are two easy axes at ψEA and 180◦ − ψEA forming “scissors”
closing at the [110] axis. (The darker the colour, the more closed the scissors.)

Figure 3.14: Calculated anisotropy fields Kc1 and K[110] as function of temperature and
magnetisation at two hole densities (given in units u ≡ 1020 cm−3), Mn concentration
x = 2%, strains e0 = −0.2%, κ = 0.005%. Irregular behaviour is observed for the lower
hole density.

To demonstrate the typical scaling of in-plane anisotropy components with temper-
ature, we discuss the 50 nm thick as-grown (Ga,Mn)As epilayer with Mn concentration
x = 2.2% determined by x-ray diffraction and secondary ion mass spectrometry, pre-
sented in Ref. [142]. The anisotropy coefficients K[110] and Kc1 are obtained by fitting
to the M(H) loop with magnetic field along the hard direction. They can be compared
to Fig. 3.14, which shows the calculated anisotropy fields as functions of temperature for
two values from the interval of hole densities corresponding to the as-grown sample. For
p = 2.5 × 1020 cm−3 both the calculated and measured Kc1 is greater than K[110] at low
temperatures but becomes smaller than K[110] at T ≈ TC . The calculated Kc1 is an order
of magnitude smaller than the experimental one, however, there is agreement on the level
of the temperature dependent ratio of Kc1 and K[110]. On the contrary, Fig. 3.14 shows a
non-monotonous dependence of Kc1 on temperature for p = 1.5×1020 cm−3. This singular
behaviour is not measured in Ref. [142] but it is reported in a more systematic study in
Ref. [133].

The temperature dependence of anisotropy coefficients K[110] and Kc1 is studied by
planar Hall effect in Ref. [117]. The mutual behaviour of the two coefficients observed in
the as-grown (Ga,Mn)As epilayer with nominal Mn concentration x ≈ 4% and TC = 62 K
is qualitatively the same as in Ref. [142]. Kc1 becomes smaller than K[110] at T = 26 K
which is in agreement with our modelling. No sign change of Kc1 is reported in this
experimental work. Again, the calculated Kc1 is an order of magnitude smaller than the
experimental one.

Ref. [133] resolves the in-plane coefficients Kc1 and K[110] in four samples with nominal
Mn doping x = 7% and different hole densities. In samples with lower hole densities
the dependence of Kc1 and K[110] is qualitatively consistent with Ref. [142], however,
both coefficients change sign when temperature is increased in samples with higher hole
densities (p ∼ 1021 cm−3, TC = 130 K). Our model predicts such sign change for a short
interval of high hole compensations and a larger interval of low hole compensations as
shown in Fig. 3.11.
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Another type of temperature scaling of Kc1 and K[110] is observed in a 50 nm thick,
annealed sample with nominal Mn doping x = 7% and TC = 165 K [86]. K[110] is
larger than Kc1 on the whole temperature interval (T = 4− 165 K). Both coefficients are
positive, decrease on increasing temperature, and their magnitudes are of the same order
of magnitude as the calculated anisotropies. The stability of sign of K[110] is observed
theoretically for higher “intrinsic” shear strain as discussed in Fig. 3.7(b) in Subsec. 3.1.2.

The temperature dependence of domain-wall properties of a 500 nm, as-grown (Ga,Mn)As
film with Mn doping x = 4% is studied by means of the electron holography in Ref. [130].
The width and angle of the domain walls were determined directly from the high-resolution
images. The ratio of the anisotropy coefficientsK[110]/Kc1 was extracted from these obser-
vations combined with Landau-Lifshitz-Gilbert simulations. The Nèel type domain walls
evolve from near-90◦ walls at low temperatures (T = 10 K) to large-angle [110]-oriented
walls and small-angle [110]-oriented walls at higher temperatures (T = 30 K). The angles
of domain-walls aligned with particular crystallographic directions reveal positions of the
magnetic easy-axes. The “scissors” of the easy-axes (described in discussion of Fig. 3.13)
are closing around the [110] axis on increasing temperature consistent with our modelling.

The domain-wall width is inversely proportional to the effective anisotropy energy
barrier between the bistable states on respective sides of the domain wall: Keff

[110] ≡ Kc1/4−
K[110]/2 ([110]-oriented walls) and Keff

[110]
≡ Kc1/4 + K[110]/2 ([110]-oriented walls). The

width of the [110]-oriented wall in Ref. [130] initially increases with temperature and
then saturates at high temperature while the [110]-oriented wall width keeps increasing
with temperature until it becomes unresolvable. This observation corresponds well to the
theoretical prediction and can be qualitatively understood by considering the approximate
magnetisation scaling ofKc1 ∼M4, K[110] ∼M2, and magnetic stiffness ∼M2. A detailed
description of the study [130] is presented in Subsec. 3.2.5.

Finally, Refs. [89] and [19] present (Ga,Mn)As field-effect transistors (FETs), where
hole depletion/accumulation is achieved by gating induced changes in the in-plane easy
axis alignment. In Ref. [89] the Mn-doped layer is 5 nm thick with Mn doping x = 2.5%
and hole density p ∼ 1×1019−1020cm−3. The direction of magnetic easy-axes was detected
by AMR at T = 4K. The 20% variation in the hole density achieved by applying the gate
voltage from−1 to 3V is determined from variation of the channel resistance near TC . This
value was a starting point for simulations of the depletion at T = 4 K giving hole density
changes ∆p ≈ 5× 1019cm−3. The measured Kc1 is negative and its magnitude decreases
with depletion. The theoretical magnitude (∼ 10 mT) and sign of Kc1 for the relevant
hole density range, as well as the variation of Kc1 with varying hole density, are consistent
with the experiment. Recall that negative Kc1 corresponds to diagonal easy axes captured
by two black/white regions in Fig. 3.13. Samples reported in Refs. [140, 126, 40] and [86]
(see also Subsec. 3.1.2) with diagonal easy axes at low temperatures fall into the right
region with lower hole compensations, whereas the sample in Ref. [89] is a rarely observed
example of diagonal easy axes at high compensation and low temperature corresponding
to the left black/white region in Fig. 3.13.

The magnitude of the K[110] constant measured in Ref. [89] was modeled by assuming
a small strain parameter exy and, in agreement with experiment, it was found that K[110]

is only weakly dependent on the hole density. In Ref. [19], on the other hand, K[110]

changes significantly upon gating. In our modelling, this is explained by the larger Mn
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local-moment density x ≈ 10% in the measured film, as compared to the weakly Mn-
doped (Ga,Mn)As used in Ref. [89]. We point out, however, that the theoretical constant
Kc1 becomes also more sensitive to the variation of the hole density at higher x, which
is not seen in the experimental data in Ref. [19]. This discrepancy can be attributed to
the limited reliability of our theory, describing uniform bulk (Ga,Mn)As, for ultra-thin
films utilised in the FET structures. Applying the gate voltage does not yield uniform
variation in the hole density in the entire film but only affects a ∼ 1 nm thick layer of
(Ga,Mn)As adjacent to the gate. A more detailed description of the study [89] is presented
in Subsec. 3.2.1.

3.1.4 Samples with post-growth controlled strains

In the previous subsection, we discussed three types of lattice strain and calculated cor-
responding types of uniaxial anisotropy components. In the bare, unpatterned epilayers
we could analyse and compare to experiment only anisotropies induced by the growth
strain and by the unknown symmetry-breaking mechanism modelled by the “intrinsic”
shear strain. The calculations including the model shear strain allow us also to estimate
the magnitude of real in-plane lattice strains, controlled post-growth by patterning or
piezo-stressing, that can induce sizable changes of anisotropy. In this subsection we in-
vestigate samples where these post-growth techniques are used to apply additional stress
along any in-plane direction. We will focus primarily on stresses along the main crystal
axes and in-plane diagonals. We will also comment on the procedure for determining
the lattice strain from specific geometrical parameters of the experimental setup. Where
necessary, we distinguish the externally induced strain and the “intrinsic” shear strain,
which models the in-plane symmetry-breaking mechanism already present in the bare
epilayers. Returning to the notation of Sec. 2.1 we denote the latter strain by the symbol
eintxy . For better physical insight and to relate with discussion in previous subsection we
will map the anisotropies on the phenomenological formulae by decomposing the total
strain matrix into the three basis strains (see Eqs. (3.1)-(3.3)). We will then write the
corresponding anisotropy energy terms as in Subsec. 3.1.3, assuming linearity between the
respective basis strains and anisotropy energy components (see Eq. (3.8)). Experiments
will be discussed based on microscopic anisotropy calculations with the total strain tensor
directly included into the Hamiltonian.

We begin this subsection by discussion of the in-plane uniaxial strain induced by post-
growth lithography treatment of Mn-doped epilayers grown under compressive lattice
strain. Narrow bars with their width comparable to the epilayer thickness allow for
anisotropic relaxation of the lattice-matching strain present in the unpatterned film. An
expansion of the crystal lattice along the direction perpendicular to the bar occurs while
the epilayer lattice constant along the bar remains unchanged. Parameters sufficient for
determination of the induced strain are the initial growth strain e0 and the thickness to
width ratio t/w of the bar. In the regime of small deformations the components of the
induced strain are linearly proportional to the growth strain. The strain tensor for a bar
oriented along the [010] axis reads:

er[100] = e0

 −ρ+ 1 0 0
0 1 0
0 0 c12

c11
(ρ− 2)

 , (3.13)
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where the lattice relaxation is quantified by ρ which is a function of t/w and can vary
over the bar cross section. We calculate the distribution of ρ over the cross section of
the bar using Structural Mechanics Module of Comsol (standard finite element partial
differential equation solver, www.comsol.com). Since the macroscopic simulations ignore
the microscopic crystal structure, they apply to bars oriented along any crystallographic
direction. We therefore introduce a coordinate system fixed to the bar: x′ axis lies along
the relaxation direction transverse to the bar, y′ axis along the bar, and z′ axis along
the growth direction. We approximate the bar by an infinite rectangular prism with
translational symmetry along the y′ axis, attached to a thick substrate.

Figure 3.15: Spatial dependence of the strain coefficient ρ due to lattice relaxation in a
narrow bar with t/w = 0.4 and compressive growth strain e0 < 0, simulated values of ρ
are plotted for the cross-section of the bar.

Fig. 3.15 shows the spatial dependence of the function ρ(x′, z′) for a given thickness
to width ratio and compressive growth strain e0 < 0. Only the area of the bar is plotted,
whereas the strain induced in the patterned part of the substrate is not shown. (The
substrate relaxation is not directly related to the microscopic simulation of the anisotropy
energy.) In wide bars (t/w � 1) the relaxation is very non-uniform, whereas narrow bars
(t/w � 1) are fully relaxed. Fig. 3.16 shows still a fairly non-uniform relaxation for
t/w = 0.4 with large relaxation at the edges. We point out in this case that the resulting
anisotropy can be very sensitive to the details of the etching (vertical undercut/overcut
profile).

The non-uniform strain distribution in wider bars can in principle force the system
to break into magnetically distinct regions. However, experiments show rather that the
whole bars behave as one effective magnetic medium. Because of the linearity between the
strain and the anisotropy (see Eq. (3.8)) we can model the mean magnetic anisotropy by
considering the spatial average of er[100] over the bar cross section. The inset of Fig. 3.16
shows the averaged value ρ as a function of the width to thickness ratio. It confirms that
the effect of relaxation can reach magnitudes necessary to generate significant changes in
the magnetic anisotropy. In very narrow bars the induced uniaxial anisotropy can override
the intrinsic anisotropies of the unpatterned epilayer and determine the direction of the
easy axis.

If the bar is aligned with the [100] or [010] crystal axis, the strain er[100] in Eq. (3.13)
with the average relaxation magnitude ρ can be used directly as input parameter of the
microscopic calculation (see Eq. (2.34)). Alternatively, the total strain tensor can be
decomposed into the growth basis strain from Eq. (3.1) and the uniaxial basis strain
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Figure 3.16: Sections of ρ(x′, z′) in Fig. 3.15 at fixed values of z′ (given next to the curves
in relative units) of a thin bar. Inset shows the average strain ρ(t/w) as a function of the
thickness to width ratio.

introduced in Eq. (3.3)

er[100](e0, ρ) = eg(ẽ0) + eu(λ̃), (3.14)

ẽ0 = e0

(
1− ρ

2

)
, (3.15)

λ̃ = −e0
ρ

2
. (3.16)

Their effects on the magnetic anisotropy can be considered separately utilising the results
shown in Subsec. 3.1.3.

Now we discuss the introduction of uniaxial in-plane anisotropies by a piezo-actuator
attached to the sample. In this case, the (Ga,Mn)As film is assumed to follow the deforma-
tion of the stressor. (The substrate is usually thinned to achieve better transmission of the
piezo-strain to the studied epilayer. Macroscopic Comsol simulations predict transmission
of approximately 70% of the piezo-strain in a substrate with thickness to lateral size ratio
t/l ≈ 0.1 and transmission of approximately 90% of the piezo-strain for t/l ≈ 0.02.) The
net effect of the piezo-stressing on normal GaAs epilayers has been investigated experi-
mentally for example in Ref. [113] for a standard PbZrTiO3 (PZT) piezo-actuator. The
induced strain can reach magnitudes ∼ 10−4 at low temperatures, which are sufficient to
induce observable anisotropies in (Ga,Mn)As, as shown in Subsec. 3.1.3. The deformation
is linearly proportional to applied voltage on the transducer and increases with increasing
temperature.

The dependence of uniaxial anisotropies due to additional piezo-strains is analogous to
the behaviour of relaxed microbars, however, the form of the strain tensor induced by the
stressor is typically more complex. Let us first assume a strain tensor with components in
the Cartesian coordinate system fixed to the orientation of the piezo-stressor: x′ axis lies
along the principal elongation direction, z′ axis is perpendicular to plane of the thin film.
We denote the deformation along the x′ axis by σ and the simultaneous deformation along
the y′ axis by σ′. Note that shear strains are typically not considered when describing
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the action of a piezo-stressor. The third parameter describing the strained (Ga,Mn)As
epilayer is the growth strain e0. Our analysis takes into account only structures that can
be parametrised by these three values. The strain tensor in the dashed coordinate system
reads

ep[100] =

 σ + e0 0 0
0 σ′ + e0 0
0 0 − c12

c11
(2e0 + σ + σ′)

 (3.17)

Components of this tensor are considered uniform in the studied epilayer. If the principal
elongation direction of the piezo-stressor is aligned with the [100] crystallographic axis
the strain tensor ep[100] can be used directly as an input of the microscopic simulation.

Similarly to the strain induced by lattice relaxation, ep[100] can be decomposed into the
growth basis strain and the uniaxial basis strain

ep[100](e0, σ, σ
′) = eg(ẽ0) + eu(λ̃), (3.18)

ẽ0 = e0 +
1

2
(σ + σ′), (3.19)

λ̃ =
1

2
(σ − σ′). (3.20)

Again, the results shown in Subsec. 3.1.3 can then be used when analysing the result-
ing magnetocrystalline anisotropies. Recall that eg has a minor effect on the in-plane
anisotropy and can therefore be omitted when discussing in-plane magnetisation transi-
tions.

So far we have described induced strains aligned with the [100] crystal axis. In case
of a lattice relaxation or piezo-stressor aligned at an arbitrary angle ω, the following
transformation of the total strain tensor er[100] or e

p
[100] to the crystallographic coordinate

system applies

er(p)ω = RT
ωe

r(p)
[100]Rω (3.21)

where the rotation matrix reads:

Rω =

 cos(ω − π/4) sin(ω − π/4) 0
− sin(ω − π/4) cos(ω − π/4) 0

0 0 1

 . (3.22)

The angular shift by −π/4 is because we measure the angle ω from the [110] axis. This
convention was introduced in subsection 3.1.3 before Eq. (3.12) and is used consistently
in this subsection for all in-plane angles. The rotated total induced strain can be used
directly as the input strain matrix for the microscopic calculation or it can be decomposed
into all three elements of the in-plane strain basis. In case of the relaxation-induced strain,
we obtain

erω(e0, ρ) = eg(ẽ0) + eu(λ̃) + es(κ̃), (3.23)

ẽ0 = e0

(
1− ρ

2

)
, (3.24)

λ̃ = −e0
ρ

2
sin 2ω, (3.25)

κ̃ = e0
ρ

2
cos 2ω. (3.26)
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In case of the rotated piezo-stressor, the same decomposition follows, however, the effective
strain magnitudes λ̃ and κ̃ depend on different real experimental parameters,

epω(e0, σ, σ
′) = eg(ẽ0) + eu(λ̃) + es(κ̃), (3.27)

ẽ0 = e0 +
(σ + σ′)

2
, (3.28)

λ̃ =
(σ − σ′)

2
sin 2ω, (3.29)

κ̃ = −(σ − σ′)

2
cos 2ω. (3.30)

Considering the linear dependence of the anisotropy coefficients on the corresponding
strain elements (see Eq. (3.8)), we can write the part due to post-growth induced strains
of the phenomenological formula for the free energy as a function of angles ψ and ω,

Fu(M̂) = K[110](ω) sin
2 ψ +K[100](ω) sin

2(ψ + π/4) (3.31)

' q[110]κ̃(ω) sin
2 ψ + q[100]λ̃(ω) sin

2(ψ + π/4),

where we use the notation analogous to Eq. (3.8) in Subsec. 3.1.3. The relation of the
effective parameters λ̃ and κ̃ to the experimental parameters of microbars or stressors ori-
ented along arbitrary crystallographic direction is given by Eqs. (3.25) and (3.26) or (3.29)
and (3.30), respectively. The linearity of the anisotropy constants K[100], K[110], and K[001]

on corresponding strain coefficients and the form of the strain tensors in Eqs. (3.23)
and (3.27) allow us to factor out the ω dependence of Ku’s. Figs. 3.9, 3.10, 3.11,
and 3.12 together with Eqs. (3.23) and (3.27) can therefore be used for analysing magnetic
anisotropies induced by micropatterning or piezo-stressors oriented along any crystallo-
graphic direction.

The full angular dependencies of the anisotropy energy calculated directly from the
total strain tensor included into the Kohn-Luttinger kinetic-exchange Hamiltonian for
several combinations of κ̃ and λ̃ are plotted in Fig. 3.17. Recall that analogous in-plane
angular dependencies of the anisotropy energy were presented in Figs. 3.3-3.5, where only
the competition of the growth strain eg and shear strain es with the cubic anisotropy of
the host lattice was considered.

Fig. 3.17(a) shows four angular dependencies of the anisotropy energy for x = 3% and
p = 3×1020cm−3. The curves are marked by the values of the effective strain components.
The solid curve for weak shear strain κ̃ = 0.01% and no uniaxial strain λ̃ = 0 has two local
minima close to the main crystal axes indicating dominant cubic anisotropy with Kc1 > 0
for the considered x and p. The easy axes are shifted due to the positive shear strain
towards the [110] axis which is the direction of relative lattice compression, consistently
with the discussion in Subsec. 3.1.3 for samples with medium hole densities. Additional
uniaxial strain λ̃ = −0.025% results in only one global minimum easy axis rotating towards
the [100] direction which is again the direction of relative lattice compression.

The dashed curve in Fig. 3.17(a) corresponding to strong shear strain κ̃ = 0.09% and
no uniaxial strain λ̃ = 0 has only one global minimum at the [110] diagonal, indicating
domination of the uniaxial anisotropy over the underlying cubic anisotropy. Addition of
the uniaxial strain λ̃ = −0.025% leads to rotation of the easy axis towards the direction
of relative compression ([100] for λ̃ < 0).
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(a) x = 3%, p = 3× 1020cm−3, ẽ0 = −0.3% when

λ̃ = 0, ẽ0 = −0.275% when λ̃ = −0.025%
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(b) λ̃ = −0.025%, κ̃ = 0.01%, ẽ0 = −0.275%

Figure 3.17: Magnetic anisotropy energy ∆E = Eψ − E[100] as a function of the in-
plane magnetisation orientation M = |M|[cosψ, sinψ, 0] and its dependence on material
parameters. Effects of the shear strain and the uniaxial strain combine linearly (a).
Magnetic easy axes (marked by arrows) change their direction upon change of Mn local-
moment concentration x, and hole density p (in units u ≡ 1020 cm−3) for a fixed uniaxial
and shear strain (b). Both plots assume zero temperature.

Curves plotted in Fig. 3.17(b) differ in the material parameters but share the same
weak shear strain κ̃ = 0.01% and the same uniaxial strain λ̃ = −0.025%. The solid curve
for x = 3% and p = 4 × 1020cm−3 falls into the range of hole densities where the cubic
anisotropy coefficient Kc1 is positive so the easy axes in the absence of in-plane strains
align parallel to the main crystal axes. Adding the uniaxial strain λ̃ yields only one global
minimum along the [100] direction and the shear strain shifts the easy axis towards the
[110] diagonal. Again, for both strains the easy axes tend to align along the direction of
lattice compression for these medium doping parameters.
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The dashed curve in Fig. 3.17(b) for x = 5% and p = 8× 1020cm−3 can be described
by a negative Kc1 corresponding to diagonal easy axes in the unstrained bulk epilayer.
The additional shear strain κ̃ makes the [110] direction the global minimum easy axis.
Note that for these values of x and p the easy axis prefers to align with the direction
of lattice expansion. Consistently, the uniaxial strain λ̃ rotates the easy axis towards
the direction of relative lattice expansion, i.e., towards the [010] axis. Finally, the dash-
dotted curve for x = 5% and high hole density p = 12× 1020cm−3 corresponds to positive
Kc1 and again, when the in-plane strains are included the easy axes prefer the direction
of relative lattice expansion. To summarise the discussion of Figs. 3.17(a) and 3.17(b),
the preferred alignment of the in-plane easy axis with either the lattice contraction or
expansion direction depends on x and p. For a given doping it has always the same sense
for both the shear strain κ̃ and the uniaxial strain λ̃ and is uncorrelated with the sign of
the cubic anisotropy component. These conclusions are independent of the growth strain,
at least for its typical values |e0| < 1%.

Now we analyse experimental studies that control the in-plane strain by means of
post-growth lithography. Refs. [93] and [149] present structures with the shear and uni-
axial strain induced locally by anisotropic relaxation of the compressive growth strain.
Ref. [149] studies an L-shaped channel with arms aligned along the [110] and [110] direc-
tions patterned by lithography in a 25 nm thick (Ga,Mn)As epilayer with nominal Mn
concentration x = 5%. Hole density p = 5× 1020cm−3 was estimated from high-field Hall
measurements. This patterning allows relaxation of the growth lattice-matching strain in
direction perpendicular to the channel. Therefore, the generated uniaxial strains in each
arm of the L-shaped channel have opposite signs. The induced shear strain is added to
(subtracted from) the intrinsic shear strain in the arm fabricated along the [110] ([110])
axis. The magnitude of the induced strain increases with decreasing width of the channel.
A large effect on magnetic easy axes orientation has been observed in a 1 µm wide channel
while only moderate changes have been found in a 4 µm bar. In both cases the easy axes
of the unpatterned epilayer rotated in the direction perpendicular to lattice expansion.
The sense and magnitude of the easy axis reorientations in the relaxed microbars are
consistent with theory prediction for the relevant values of x, p, and microbar geometry.
A more detailed description of the study [149] is presented in Subsec. 3.2.3.

Refs. [147] and [46] show lithographically induced uniaxial anisotropy along the [100]
or [010] axis in arrays of narrow bars. Ref. [147] presents 200 nm wide bars fabricated
in an as-grown 70 nm thick film with Mn concentration x = 2.5% determined by x-
ray diffraction. Ref. [46] reports lattice relaxation in 200 nm wide, 20 nm thick bars
in an as-grown material with nominal Mn concentration x = 4%. In both studies the
unpatterned epilayers have two equivalent easy axes close to main crystal axes. After the
anisotropic relaxation of the growth strain in the nanobars the easy axis corresponding to
the relaxation direction is lost, whereas the other easy axis is maintained. This behaviour
is in agreement with our simulations on the relevant interval of dopings and patterning
induced strains.

Refs. [59] presents two sets of lithographically patterned arrays of (Ga,Mn)As micro-
bars which differ in the thickness to width ratio, Mn doping, hole concentration, and
alignment with the crystallographic axes. The two sets were doped nominally to 5%(7%)
of Mn, annealed(as-grown), the individual microbars are 750 nm(1 µm) wide, and the
(Ga,Mn)As epilayer is 25 nm(200 nm) thick. Structural properties of the (Ga,Mn)As
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microbars were investigated by high-resolution x-ray diffraction measurements. The ex-
perimental data, showing strong strain relaxation effects, are in good agreement with finite
element simulations. SQUID magnetisation measurements were performed to study the
control of magnetic anisotropy in (Ga,Mn)As grown under compressive strain on GaAs
substrate by the lithographically induced strain relaxation of the microbars. The easy axis
can be rotated by the micropatterning by 90◦ at all temperatures below the Curie temper-
ature. There is semiquantitative agreement between experimental data and theoretical
modelling. A more detailed description of the study [59] is presented in Subsec. 3.2.2.

The anisotropies induced in the relaxed structures in Refs. [93, 149, 147] and [46] can
be predicted using the results of Subsec. 3.1.3 directly. Bearing in mind the negligible
effect of the growth strain, the relevant part of the strain tensor describing the relaxation
along the main crystal axes has the form of the uniaxial basis strain eu, as shown in
Eq. (3.14), and corresponds to the anisotropy component with the previously calculated
coefficient K[100]. The relaxation along the diagonals is described by the strain tensor:
er[110](e0, ρ) = es(κ̃) with κ̃ = ±1

2
e0ρ, where we again neglected the contribution from the

growth strain eg. It induces uniaxial anisotropy component quantified by the coefficient
K[110]. Note that the “intrinsic” shear strain eintxy in the modelling is independent of the
externally introduced lattice distortion and needs to be added to the total strain tensor
if the corresponding anisotropy is present in the unpatterned epilayer. As mentioned
before, the simulated rotation of easy axis directions in the relaxed microbars is in good
agreement with the measured behaviour.

The piezo-strain is also applied in most cases along the main crystal axes or diagonals.
In Ref. [35] a PZT piezo-electric actuator is attached to a 30 nm thick (Ga,Mn)As epilayer
grown on a GaAs substrate thinned to 100 µm. The principal elongation direction of the
actuator is aligned with the [110] crystallographic direction. The nominal Mn concentra-
tion of the as-grown epilayer is 4.5%. The relative actuator length change is approximately
4× 10−4 at T = 50 K (measured by a strain gauge) for the full voltage sweep (from -200
to 200 V). Such piezo-strain induces a rotation of the easy axis by ∆ψEA ≈ 65◦. Our
modelling predicts ∆ψEA of the same order for relevant material and strain parameters.
The easy axis rotates towards the [110] ([110]) direction upon contraction (elongation)
along the [110] axis in agreement with the behaviour observed in the relaxed microbars
and with our modelling.

Ref. [10] extends the piezo-stressed (Ga,Mn)As study in Ref. [35] to low temperatures.
Again, PZT piezo-actuator is attached to a Hall bar along the [110] crystallographic
direction. The 30 nm thick, as-grown (Ga,Mn)As epilayer grown on GaAs substrate has
nominal Mn concentration 4.5% and TC = 85 K. A strain gauge measurement shows
almost linear dependence of the piezo-strain in the Hall bar on temperature (in the range
5-50 K). The anisotropy coefficientsK[110] andKc1 are extracted from the angle-dependent
magnetoresistance measurement as a function of temperature for three voltages (-200,
0, and 200 V). At high temperatures the relative elongation of the structure is again
approximately 4 × 10−4 and the corresponding uniaxial anisotropy dominates over the
intrinsic uniaxial anisotropy along the [110] axis. Close to 5 K the action of the piezo-
stressor is negligible so the intrinsic uniaxial anisotropy is stronger than the induced
one, however, the total in-plane anisotropy is dominated by the cubic anisotropy. The
measured and calculated induced anisotropy along the [110] direction are of the same sign
and order of magnitude for the considered temperatures.
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Ref. [88] presents a 15 nm thick, annealed sample doped to x = 8%, subject to piezo-
stressing along the [010] axis. The anisotropy coefficients are extracted from transverse
AMR. The PZT actuator induces relative elongation ranging from 1.1× 10−3 for voltage
200 V to 0.7×10−3 for -200 V, measured by a strain gauge. The difference of the limits is
again approximately 4× 10−4 but all values are shifted towards tensile strain most likely
due to different thermal dilatation in the sample and the actuator. The lattice expansion
along the [010] direction leads to alignment of the easy axis along the [100], in agreement
with our modelling and with the experimental studies discussed in this subsection. The
extracted cubic anisotropy field is roughly a factor of two lower compared to studies of
samples with high hole compensation sharing the value ≈ 1000 Oe at different nominal
Mn concentrations [142, 65, 117]. The low critical temperature TC = 80 K suggests lower
effective Mn concentration in Ref. [88]. Our calculations for lower Mn local-moment
concentration and high hole compensation predict the anisotropy coefficients Kc1 and
K[100] induced by the piezo-strain in correspondence with the measured coefficients.

Figure 3.18: Calculated magnetic anisotropy energy ∆E = Eψ − E[110] as a function of

the in-plane magnetisation angle ψ measured from the [110] axis at T= 5/8TC , e0 = 0,
eintxy = 0.017%, x = 5%, and p = 5 × 1020cm−3. The curves are labelled by σ, the
induced strain along the principal elongation direction of the piezo-stressor tilted by angle
ω = −10◦, and by the corresponding voltage. (The relationship of σ and voltage is inferred
from Ref. [101] to allow for direct comparison with experiment.) The easy axis rotates
smoothly upon sweeping the voltage. For -100 V a shallow local energy minimum forms
due to the underlying cubic anisotropy (marked by arrow).

Finally, we discuss a piezo-strain induced along a general in-plane direction. In
Ref. [101] the principal elongation direction of the PZT piezo-actuator is tilted by an-
gle ω = −10◦ (with respect to the [110] axis). The 25 nm thick, as-grown (Ga,Mn)As
epilayer with nominal Mn concentration x = 6% is grown on a GaAs substrate, which was
thinned before attaching of the stressor to ≈ 150µm. The anisotropies are determined
from SQUID and AMR measurements at 50 K. The uniaxial strain caused by differen-
tial thermal contraction of the sample and the piezo-stressor on cooling (at zero applied
voltage) is of the order 10−4. The uniaxial strains generated at the voltage ±150 V are
σ ≈ ±2× 10−4 and σ′ ≈ −σ/2 at 50 K. The tilt of the piezo-stressor with respect to the
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crystal diagonal results in a complicated interplay of the intrinsic and induced anisotropy.
The easy axis of the bare sample aligns with the [110] axis due to strong intrinsic uniaxial
anisotropy with K[110] > Kc1 > 0. This easy axis rotates to an angle ψEA = 65◦ upon
attaching of the piezo-stressor and cooling to 50 K. Application of +150 V to the stressor
causes the easy axis to rotate further to ψEA = 80◦ while for -150 V the axis rotates in
the opposite direction to ψEA = 30◦. Note that the negative voltage weakens the total
piezo-strain and allows domination of the intrinsic anisotropy with easy axis closer to the
[110] axis.

The hole compensations expected in Ref. [101] are in the range p/NMn = 0.6−0.4 and
the relevant range of effective Mn concentrations is x = 3 − 5%. K[110] measured in the
bare epilayer is modelled by eintxy = 3−2×10−4 (slightly weaker than the strain induced in
the structure at zero piezo-voltage). The in-plane anisotropy energies calculated on this
parameter interval using the total strain tensor (induced and “intrinsic” components) are
in good quantitative agreement with the easy axis orientations measured at the three
piezo-voltages. Fig. 3.18 shows calculated curves for one representative combination of
x, p, and eintxy from the relevant interval, for the fixed tilt of the stressor ω = −10◦, and
for a range of induced strains σ. The curves are marked also by the voltages as we infer
a simple linear relationship between σ and the voltage to facilitate comparison with the
experimental paper.

The anisotropy behaviour shown in Fig. 3.18 can be described as a smooth rotation
of the global energy minimum upon increase of σ rather than the ”scissors” effect shown
in Fig. 3.3 in Subsec. 3.1.2. The total induced strain now contains both components es

and eu as written in Eq. (3.18). The uniaxial basis strain eu present due to the tilt of
the stressor diminishes significantly one of the local minima typically occurring because
of interplay of a positive cubic and a small uniaxial anisotropy component along a crystal
diagonal. The remainder of the weaker local minimum is observed theoretically for σ
corresponding to voltages ≈ −100 V when the es component of the induced strain and
the “intrinsic” shear strain compensate each other. One would expect domination of cubic
anisotropy with two equivalent local minima close to the main crystal axes if the stressor
had purely diagonal alignment. The eu component of the total strain of the tilted stressor
makes the local minimum closer to the [010] axis less pronounced (marked by arrow in
Fig. 3.18).

For completeness, we discuss the free energy phenomenological formula used in Ref. [101]
to describe the in-plane angular dependence of the induced anisotropy. The decomposition
of the total induced strain in Eq. (3.18) into the strain basis introduced in Eqs. (3.1)-
(3.3) is not considered in that work. Instead, the induced anisotropy is described by a
single uniaxial term KΩ sin2(ψ − Ω) added to the phenomenological formula rather than
terms with coefficients K[110] and K[110] from Eq. (3.31). Effectively, this corresponds to a
change of variables from K[110] and K[110] to KΩ and Ω. The angle Ω is measured from the
[110] axis and it rotates the additional uniaxial anisotropy term so that it describes the
effect due to the tilted stressor. One may assume collinearity of the resulting anisotropy
component with the principal elongation direction of the piezo-stressor. However, this
simple situation is observed both theoretically and experimentally only when the stres-
sor is aligned with the main crystal axes or diagonals. The misalignment for arbitrary
orientation of the induced strain is due to the underlying cubic symmetry of the system
incorporated into our microscopic band structure calculation in the form of the band pa-
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rameters γ2, γ3, a2, and a3. It has been explained in Subsec. 3.1.3 that the collinearity of
the in-plane strain and corresponding anisotropy occurs only for the strains es or eu (see
Eqs. (3.2) and (3.3)). For any other stressor orientation, Ω 6= ω, which is reflected on the
level of the anisotropy functions by the inequality, q[100](x, p) 6= q[110](x, p). It expresses
the difference in the effect on magnetic anisotropy between straining the lattice along the
main crystal axis and along the diagonals (see Eq. (3.9) in Subsec. 3.1.3).

The transformation from variables K[110](x, p, ω) and K[110](x, p, ω) to KΩ(x, p, ω) and
Ω(x, p, ω) in the phenomenological formula in Eq. (3.31) for −π/2 < ω < π/2 reads,

Fu(M̂) = K[110](ω) sin
2 ψ +K[100](ω) sin

2(ψ + π/4)

= −KΩ sin2(ψ − Ω), (3.32)

where:

Ω(x, p, ω) =
1

2
arctan

(
−
K[100]

K[110]

)
, (3.33)

KΩ(x, p, ω) = −K[110] cos 2Ω +K[100] sin 2Ω.

Considering the approximate relation q[100] = 0.43q[110] the formulae in above simplify to

Ω(x, p, ω) =
1

2
arctan

(
q[100](x, p) sin 2ω

q[110](x, p) cos 2ω

)
(3.34)

=
1

2
arctan (0.43 tan 2ω) ,

qΩ(x, p, ω) ≡ q[110](x, p) cos 2ω cos 2Ω + 0.43q[110](x, p) sin 2ω sin 2Ω,

where KΩ = qΩ(σ − σ′)/2. The same transformation of variables can be used in case
of strains induced along arbitrary in-plane direction by relaxation in a narrow bar (see
Eqs. (3.25) and (3.26)). Then we would obtain KΩ = −qΩe0ρ/2.

Note that in the representation of Fu(M̂) viaK[110] andK[110] the dependence on ω can
be simply factored out and the dependence on x and p is contained only in the functions
functions q[110] and q[100]. For our general discussion presented in this work it is therefore

the more convenient form than Fu(M̂) expressed via KΩ and Ω.
We conclude that the in-plane alignment of the easy axis in patterned or piezo-stressed

samples can be described on a semi-quantitative level by our modelling similarly to the
bare (Ga,Mn)As epilayers. A more detailed description of the study [101] is presented in
Subsec. 3.2.4.

3.2 Controlling magnetic anisotropy in (Ga,Mn)As -

devices

After providing an overview of our calculated results and their comparison to experimental
data on a broad range of material parameters reported by numerous groups active in the
field, we now present a detailed description of five combined experimental and theoretical
studies in which the author of this thesis directly participated. They focus on the control
of magnetocrystalline anisotropies in (Ga,Mn)As by applied electric field, temperature,
lattice mismatch relaxation due to post-growth lithography, and piezo-straining.
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3.2.1 Field Effect Transistor

This subsection presents joint experimental and theoretical study [89] carried out in col-
laboration with experimentalists from the Department of Spintronics and Nanoelectronics
of the Institute of Physics in Prague and from Hitachi Cambridge Laboratory.

Controlling the magnetisation by low-voltage charge depletion in FETs has been a
formidable challenge due to the typically large carrier concentrations in ferromagnets
compared to semiconductors. Here we demonstrate that this concept is viable in an
all-semiconductor, p-n junction transistor utilising a thin-film ferromagnetic (Ga,Mn)As
channel. We report experimental observation and detailed theoretical analysis of gate-
dependent Curie temperature and magnetoresitance, and persistent magnetisation switch-
ings induced by short electrical pulses of a few volts.

One of the major driving forces in spintronic research is to allow the field to progress
from sensors and memories to logic devices which requires development of three-terminal
spintronic transistors. Ferromagnetic semiconductors such as (Ga,Mn)As are particularly
favourable materials in this research area for their rich phenomenology of magnetoresistive
characteristics and the potential to combine and integrate spintronics with conventional
semiconductor microelectronics [71, 55]. Only a few works have so far reported electrical
gating, via charge depletion, of magnetic properties of (III,Mn)V ferromagnetic semicon-
ductor FETs. Curie temperature and coercive field variations have been demonstrated by
applying tens of Volts on a top-gate FET with an AlOx dielectric separating a metal gate
from an (In,Mn)As or (Ga,Mn)As channel [81, 20, 18]. The difficulty to achieve efficient
depletion in the highly doped ferromagnetic semiconductor films has motivated research
in several alternative routes to the field-control of magnetism in (Ga,Mn)As, including
the electro-mechanical gating by piezo-stressors [101, 88, 35] or fabrication of small island
Coulomb blockade transistors with magnetisation dependent single-electron charging en-
ergy [150]. In this work we discuss an all-semiconductor, epitaxial p-n junction FET
allowing for a large depletion of (Ga,Mn)As thin films at a few Volts. We demonstrate
various gatable magnetic characteristics ranging from the anisotropic magnetoresistance
and the Curie temperature to coercivity and magnetisation switchings induced by short
electrical pulses.

Device Structure and Simulations

The schematic cross-section of the III-V heterostructure used in our study is shown in
Fig. 3.19(a). It is a semiconductor p-n junction FET specially designed to accommodate
ferromagnetism in the p-type region and its efficient depletion by low voltages. From the
top, the structure comprises a 5 nm thick approximately 2.5% Mn-doped GaAs capped
by 2 nm of undoped GaAs to prevent oxidation of the underlying transition metal doped
semiconductor film. These two top layers were grown by low-temperature MBE to avoid
Mn precipitation. The 2.5% doping was chosen to pass the insulator-to-metal transition
threshold which for the moderately deep MnGa acceptor is between 1-2% and to achieve
robust ferromagnetic state with Curie temperature Tc ≈ 30 K, while still minimising the
number of unintentional interstitial-Mn impurities [71, 55, 54]. (The interstitial Mn is
highly mobile at the growth temperature and its diffusion into the p-n junction would
result in detrimental leakage currents.) The Curie temperature measured by SQUID in
an unpatterned piece of the wafer is comparable to maximum Tc’s achieved at the same
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Mn-doping in thicker films, indicating a very good quality of the ultra-thin ferromagnetic
semiconductor epilayer.

Figure 3.19: (a) Schematic of the ferromagnetic p-n junction FET structure and the
Corbino disk geometry of the source and drain contacts. (b) and (c) Numerical simulations
of the hole density profile at -1 V (accumulation) and +3 V (depletion), considering a
2×1019 cm−3 electron doping in the n-GaAs and 5×1019 cm−3 and 1020 cm−3 hole doping
in the p-(Ga,Mn)As.

The n-type gate electrode is formed by a highly Si-doped (2×1019 cm−3) GaAs grown
by high-temperature MBE. The large electron doping is required in order to achieve ap-
preciable and voltage dependent depletion of the ferromagnetic p-region with hole doping
∼ 1020 cm−3. The built-in electrostatic barrier due to the depletion effect at the p-n
junction is further supported by inserting a 10 nm Al0.3Ga0.7As spacer layer with a large
conduction band off-set to the neighboring n-GaAs and a 10 nm AlAs spacer with a large
valence band off-set to the neighboring p-(Ga,Mn)As.

Self-consistent numerical simulations, shown in Fig. 3.19(b), confirm that sizable de-
pletions are achievable by gating the heterostructure with less than 4 Volts. Measurements
discussed below were done at voltages between −1 V (forward bias) to +3 V (reverse bias)
for which the leakage currents between the n-GaAs gate and p-(Ga,Mn)As channel were
more than two orders of magnitude smaller than the channel currents. The (Ga,Mn)As
channel was lithographically patterned in a low-resistance Corbino disk geometry with
the inner contact diameter of 500 µm and the outer diameter of 600 µm.

Voltage control of Curie temperature and magnetoresistance

In Fig. 3.20(a) the measured channel resistances vs. gate-voltage at temperature 4-40 K
are plotted. Both at low temperatures and near Tc a marked increase of the channel
resistance at positive voltages is observed. It is consistent with the depletion of the
(Ga,Mn)As channel as predicted by the simulations in Fig. 3.19(b) and with the vicinity
of the metal-insulator transition which causes the superlinear increase of R with Vg. At
4 K, the increase of R between -1 and +3 V is by more than 100%.

Fig. 3.20(b) shows the voltage-dependence of the Curie temperature in the ferromag-
netic p-n junction. The measurement technique is distinct from previous studies which
relied on approximate extrapolation schemes based on Arrot plot measurements at finite
magnetic fields [81, 18, 128]. Recent observation and interpretation [80] of the peak in
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Figure 3.20: (a) Gate voltage dependence of the p-(Ga,Mn)As channel resistance at tem-
peratures 4-40 K. (b) Temperature derivative of the measured channel resistivity at 0 and
+3 V. The maximum corresponds to Tc. (c) In-plane (H‖) and perpendicular-to-plane
(H⊥) magnetic field sweep measurements of the channel resistance at -1 and +3 V. The
difference between the H‖ and H⊥ sweeps above the reorientation field of ≈ 150 mT corre-
sponds to the out-of-plane AMR. (d) In-plane AMR measured at saturation in a rotating
in-plane field at -1 and +3 V.

the zero-field temperature derivative of the resistance at the Curie point in good quality
(Ga,Mn)As materials has provided the tool for direct transport measurements of Tc in
microdevices without relying on any extrapolation schemes. In Fig. 3.20(b) differentiated
resistivity curves obtained in the device at 0 and +3 V are plotted. The data show a clear
shift of the Curie temperature, i.e., the magnetisation can be turned on and off in parallel
with accumulating and depleting holes in the ferromagnetic semiconductor channel by
biasing the p-n junctions with a few Volts.

Curie temperature variations provide the key physical demonstration of the low-voltage
control of magnetisation. Nevertheless, for most spintronic functionalities it is not required
to destroy the ordered state of spins but only to change their collective orientation. We
therefore focus on effects related to reorientations of the unit vector of the macroscopic
moment. To avoid thermal fluctuations of the magnetisation, all measurements are done
far from the Curie point at 4 K.

Fig. 3.20(c) shows magnetoresistance traces recorded during in-plane and perpendicular-
to-plane sweeps of an external magnetic field, at gate voltages of -1 and +3 V. Apart from
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the negative isotropic magnetoresistance (IMR), the data indicate a remarkably large
anisotropic magnetoresistance (AMR) effect which at saturation reaches ∼ 30%. (Note
that AMR sensors fabricated in transition metal ferromagnets with AMR ratios of a few
per cent [75] marked the dawn of spintronics in the early 1990’s.) The resistance is larger
for the perpendicular-to-plane magnetisation orientation and the size of the effect is en-
hanced by depletion. The electrical response of the system to magnetisation rotations is
both large and tuneable by low gate voltages.

The magnetoresistance traces in Fig. 3.20(c) indicate that the film has a magnetic
anisotropy favouring in-plane magnetisation, which is overcome by an external field of
approximately 150 mT. At weaker magnetic fields, magnetisation switching effects are
confined to the plane of the ferromagnetic film. The qualitative nature of the in-plane
magnetic anisotropy landscape which determines the switching processes can be scanned
in the Corbino microdevice by recording the AMR at a rotating in-plane saturation field.
Unlike in the out-of-plane rotation AMR, contributions depending on the relative angle
between the in-plane magnetisation and current average out over the radial current lines.
The in-plane AMR then depends purely on the angle between magnetisation and crystal-
lographic axes [103]. It reflects therefore the same underlying symmetry breaking crystal
fields as the magnetic anisotropy. The measurements, shown in Fig. 3.20(d), unveil a cu-
bic anisotropy along the [110]/[11̄0] crystal axes and an additional uniaxial term breaking
the symmetry between the [110] and [11̄0] directions. Although the specific responses to
these symmetries can be very different for the AMR and for the magnetic anisotropy, the
presence of the cubic and uniaxial AMR terms and their sensitivity to the gate voltage
observed in Fig. 3.20(d) suggest that the in-plane magnetisation orientation itself can be
switched at weak magnetic fields by the low voltage charge accumulation or depletion.

Persistent magnetisation switching with short voltage pulses

A variable width of hysteretic magnetisation loops measured at different constant gate
voltages, shown in Fig. 3.21(a), is the prerequisite for observing electrically assisted mag-
netisation switchings. Note that electrical measurements of magnetisation reorientations
utilised in Figs. 3.21 and 3.22 are facilitated in the system by the IMR which responds to
abrupt changes of the total magnetic induction upon a 180◦ reversal, and by a combined
effect of the IMR and of the AMR for intermediate switchings by less than 180◦. The
amplitude of the AMR and the IMR contributions are similar in the experiments of this
study. The switchings by short low-voltage pulses are demonstrated in Fig. 3.21(b) and
analysed in detail in Fig. 3.22. The experiments were performed at constant field-sweep
rate of 0.1 mT per second starting from negative saturation field of 1 T. The gate voltage
was set to a base value of -1 V and then after each measurement step spanning 1 second
a 10 ms voltage pulse of a fixed magnitude was applied and then returned to the base
voltage. The technique allows for the demonstration of the magnetic response to short
electric pulses and the persistence of induced reorientations of the magnetisation vector.
It also removes potentially obscuring variations among the resistance traces in regions
away from magnetisation switchings which are caused by different slopes of the negative
IMR at different gate voltages.

Fig. 3.21(b) compares measurement with no pulses (constant -1 V gate voltage) and
data acquired at 0 to +4 V peak voltages. The field was swept along the [11̄0] crystal
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Figure 3.21: (a) Hysteretic field sweep measurements at field angle θ = 90◦ for constant
gate voltages of -1 and +3 V. (b) Up-sweeps of the θ = 90◦ in-plane field at constant -1V
gate voltage, and for measurements with the gate voltage set to a base value of -1 V and
with short additional voltage pulses corresponding to a total peak voltage of 0, +1 , +2,
+3, and +4 V, respectively.

direction (θ = 90◦, where θ is the in-plane field angle measured from the [110] direction).
As argued in detail in Fig. 3.22 and confirmed by SQUID magnetisation measurements
on an unpatterned part of the wafer, [11̄0] is the main magnetic easy axis. The negative
IMR then allows for observation of the drop in R corresponding to a 180◦ reversal from
an antiparallel to a parallel configuration of field and magnetisation and a corresponding
increase of the magnetic induction. As the applied peak voltage increases, the magneti-
sation reversals consistently shift to lower magnetic fields and the magnetisation remains
switched when the peak voltage pulse is turned off.

Theoretical analysis

To discuss the detail phenomenology of these persistent low-voltage induced magnetisation
switchings field-sweep measurements at fixed field angles spanning the whole interval in
5◦ steps are presented in Figs. 3.22(a) and (b). Panels (a) and (b) show colour-maps of
the resistance as a function of the field magnitude and angle for -1 V constant voltage and
for the +3 V peak-voltage measurements, respectively. The main effect observed in these
plots is the overall suppression of the magnitude of the switching fields by depletion.
Additionally, the relative suppression is stronger at θ = 0 than at 90◦, as highlighted
in Fig. 3.22(c). This indicates that both the magnitude and ratio between the uniaxial
and cubic anisotropy fields is modified by the gate voltage. To quantify the depletion
induced modification of the magnetic anisotropy we extracted the anisotropy constants
from fitting the measured θ = 0 and 90◦ switching fields to a single domain anisotropy
energy model, E(θ, φ) = Ku sin

2 φ − Kc sin
2 2φ/4 − MH cos(θ − φ), where H and M

are the magnitudes of the external field and magnetisation, respectively, and φ is the
magnetisation angle. The uniaxial constant Ku is relatively weak compared to the cubic
constant Kc, as shown in Fig. 3.22(d). They both have a negative sign corresponding to
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the magnetic easy directions along the [11̄0] and [110] axes and the most easy direction
along [11̄0]. As shown also apparent from Fig. 3.22(d), the dominant effect of depletion
is in reducing the magnitude of Kc. Fig. 3.22(e) shows how the corresponding anisotropy
energy profiles at H = 0 evolve with depletion.
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Figure 3.22: (a) and (b) Color maps of channel resistance as a function of the in-plane
field angle and magnitude (normalised to H = 0 resistance) for -1V constant voltage and
+3V peak voltage measurements, respectively. (c) Switching fields at field angles θ = 0
has a stronger suppression than at 90◦ as a function of the gate voltage. (d) Uniaxial and
cubic anisotropy constants and (e) corresponding anisotropy energy profiles derived from
the measured θ = 0 and 90◦ switching fields. (f) Microscopic calculations of the cubic
anisotropy constant. Arrows in (d) and (f) highlight the common trend with depletion.

We now discuss the key experimental observations by employing the magnetic
anisotropy theory derived from k · p effective Hamiltonian modelling of hole mediated
ferromagnetism in (Ga,Mn)As described in sections 2.1 and 3.1. Calculations for 2.5%
local moment doping and hole density p ∼ 1 × 1020 cm−3, for which the simulations in
Fig. 3.19(b) predict hole depletions consistent with the measured variations of the chan-
nel resistance at temperatures near Tc, yield Tc ∼ 20 K and dTc/dp ≈ 1 × 10−19 Kcm3.
Both the absolute value of the Curie temperature and the few Kelvin suppression of Tc
at a ∼ 20% hole depletion predicted by the theory are consistent with our p-n junction
simulations and the measured gate-dependent Tc values.

As shown in Fig. 3.22(f), the microscopically calculated Kc constant changes sign at
hole density of approximately 1.5×1020 cm−3. Below this density it favours the [110]/[11̄0]
magnetisation directions, consistent with the experimental data. The typical magnitudes
of Kc of ∼ 10 mT are also consistent with experiment and considering the large gate
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action seen at low temperatures we can also associate, semiquantitatively, the decreasing
magnitude of the experimental Kc at depletion with the behaviour of the theoretical Kc

at low hole densities.
To conclude, this combined experimental and theoretical work demonstrates low-

voltage control of magnetic properties of a p-n junction FET via depletion effect in
the ferromagnetic semiconductor channel. The experiments have shown and theory ex-
plained variable Tc and AMR, and demonstrated magnetisation switchings induced by
short electric field pulses of a few volts. Our concept of the spintronic transistor is
distinct from previously demonstrated high-voltage metal-oxide-semiconductor ferromag-
netic FETs [81, 18, 128] or electro-mechanically gated ferromagnets by piezo-stressors
[58, 63, 12, 13, 101, 88, 35]. It is realised in an all-semiconductor epitaxial structure and
offers a principally much faster operation. In basic physics research, we expect broad util-
ity of our results in studies of carrier-mediated ferromagnetism and in interdisciplinary
fields combining ferromagnetism and SOC effects with localisation and quantum-coherent
transport phenomena [78] controlled by carrier depletion.

3.2.2 Relaxation in arrays of microbars

This subsection presents joint experimental and theoretical study [59]. It was carried out
in collaboration with experimentalists from the Department of Spintronics and Nanoelec-
tronics of the Institute of Physics in Prague, Charles University in Prague, University of
Nottingham, and Hitachi Cambridge Laboratory.

The control of the magnetocrystalline anisotropy in (Ga,Mn)As epilayers has been
achieved by choosing different substrates and therefore different growth induced strain
in the magnetic layer, by varying the growth parameters of the (Ga,Mn)As film, and
by postgrowth annealing [33, 96]. Reversible electrical control of the magnetocrystalline
anisotropy has been demonstrated by utilising piezo-electric stressors [101, 23, 88] or
by electrostatic gating in thin-film (Ga,Mn)As field effect transistor structures [19, 89].
Recently, a local control of the magnetocrystalline anisotropy has been reported, which
provides the possibility for realising non-uniform magnetisation profiles and which can be
utilised, e.g., in studies of current induced magnetisation dynamics phenomena or non-
volatile memory devices [149, 93]. In these studies an efficient method of local strain
control has been used which is based on lithographic patterning that allows for the relax-
ation of the lattice mismatch between the (Ga,Mn)As epilayer and the GaAs substrate
[147, 46, 149, 93, 103]. The modification of the strain distribution can cause strong changes
of the magnetic anisotropy for strains as small as 10−4. The high efficiency and practical
utility of the lithographic pattering control of magnetic anisotropy in (Ga,Mn)As, demon-
strated in the previous works, have motivated a thorough investigation of the phenomenon
which is described in this subsection. The study is based on combined high-resolution
x-ray diffraction and magnetisation measurements and on macroscopic modelling of the
strain relaxation and microscopic calculations of the corresponding magnetic anisotropies.

We investigate two sets of lithographically patterned (Ga,Mn)As microbars which dif-
fer in the thickness to width ratio, Mn doping, and hole concentration. First, the structural
properties are studied by high resolution x-ray diffraction of microbars patterned in the
thicker, higher Mn doped as-grown (Ga,Mn)As material which has a large growth induced
strain. The spatial distribution of the lattice relaxation in the stripe cross-section is de-
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termined by comparing the measured intensity maps to maps simulated using the theory
of elastic deformations and the kinematic scattering theory. The good agreement of the
measurement and simulation shows that the applied model is quantitatively reliable in
predicting the local lattice relaxation in patterned epilayers subject to small lattice mis-
match. This allows us to infer the much weaker lattice relaxation in stripes fabricated in
the thinner and lower Mn concentration (Ga,Mn)As by performing only the elastic theory
simulations.

In the next step, the magnetic properties of the samples are measured by SQUID and
the anisotropy coefficients are extracted. Stronger focus is on stripes fabricated in the
thinner, annealed (Ga,Mn)As epilayer where the SQUID magnetometry data allow for a
reliable extraction of the temperature dependence of the anisotropy coefficients and for
direct comparison with the microscopic model. A linear superposition of the in-plane
uniaxial anisotropies and the presence of a single magnetic domain were assumed when
analysing the SQUID magnetometry data. The rotation of the easy axis by 90◦ caused
by the micropatterning, completely over-writing the underlying material anisotropy at all
studied temperatures, is demonstrated.

Finally, we calculate the anisotropy coefficients for a range of material parameters and
temperatures below TC . The lattice relaxations determined form the x-ray diffraction
measurement and from finite element simulations are the inputs of the microscopic calcu-
lations of the magnetocrystalline anisotropy. The microscopic model we use is described
in sections 2.1 and 3.1.

Samples

Two sets of patterned (Ga,Mn)As epilayers grown on GaAs substrate are studied. The
samples in set A are doped nominally to 5% of Mn, annealed for approximately 75 minutes
at 180◦C, and the epilayer is 25 nm thick. The Curie temperature TC ≈ 120 K corresponds
to optimal annealing of the wafer [57]. The control sample A0 was not patterned. Samples
A[110] and A[110] were patterned into 25 mm2 arrays of stripes at an angle α ≈ 140◦ and
α ≈ 50◦, respectively. Here the angle α is measured from the [100] crystallographic
direction. The unintentional 5◦ misalignment from the crystal diagonals caused by the
microfabrication is accounted for when analysing the data. The stripes are 750 nm wide,
100 µm long, and separated by 450 nm gaps, as measured by Atomic Force Microscope
(AFM). The fabrication was done by electron beam lithography and wet chemical etching
using a solution of phosphoric acid and hydrogen peroxide. The AFM measurements
revealed an etch depth of ≈ 60 nm, and cross-sectional Scanning Electron Microscope
(SEM) imaging confirmed that the wet etching leads to anisotropic stripe cross-sections,
with the A[110] stripes being undercut and the A[110] stripes overcut, as shown in Fig. 3.23.

The samples in set B are doped nominally to 7%, not annealed, the epilayer is 200 nm
thick, and the Curie temperature TC ≈ 85 K. The control sample B0 was not patterned.
Samples B[110] and B[010] were patterned into arrays of 1 µm wide stripes with 1 µm wide

gaps along the [110] and [010] crystallographic directions, respectively. The fabrication
was done by electron beam lithography and dry chemical etching with an etch depth
≈ 700 nm (B[110]) and ≈ 900 nm (B[010]). The sides of the stripes are slightly overcut in
both cases owing to the symmetric dry etching.

With respect to our theoretical modelling of the magnetic anisotropies of the samples,
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Figure 3.23: Cross-sectional scanning electron microscope (SEM) images of the stripes
in set A. (a) Image of sample A[110] showing both the cleaved face and the top surface.
Although difficult to discern, the profile is undercut. The curvature is due to the sample
stage drifting during the exposure of the image. Introduction of coordinates fixed to the
crystallographic axes and dashed coordinates fixed to the stripe geometry: the relaxation
direction perpendicular to the stripes, the x′ axis, is rotated by angle ω−45◦ with respect
to the [100] crystallographic direction, the x axis. The angle ω ≡ α − 45◦ describes the
rotation of x′ with respect to the [110] axis. (b) Image of sample A[110] showing a cut
through the stripes and substrate in the x′ − z′ plane revealing the overcut sides of the
stripes.

we recall that relating the prediction to the measurement based on the material parameters
is not straight forward due to the presence of unintentional compensating defects in the
epilayers. We emphasise that in figures presenting calculated data the Mn concentration
labelled as x corresponds to the density of uncompensated local moments, i.e., to xeff .

Another input parameter of the theoretical modelling is the lattice mismatch which
is different in set A and B as it depends on the partial concentrations of Mn atoms in
substitutional and interstitial positions in the lattice and of other unintentional impurities
[72]. The lattice mismatch is determined by direct x-ray measurement as detailed in the
following section.

Fig. 3.23 introduces the coordinate system fixed to the crystallographic axes: x-axis
along the [100] direction, y-axis along the [010] direction, and z-axis along the [001] direc-
tion which is the frame of reference for the microscopic magnetocrystalline anisotropies.
The dashed coordinate system is fixed to the stripe geometry: x′-axis lies along the re-
laxation direction transverse to the stripe, y′-axis along the stripe, and z′-axis along the
growth direction coinciding with the z-axis. The dashed coordinates are the natural
reference for the macroscopic lattice relaxation simulations. (The same notation as in
subsection 3.1.4 is used.)
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Lattice relaxation

The lattice of thin (Ga,Mn)As films grown epitaxially on GaAs substrates is strained
compressively due to a lattice mismatch e0 = (as − a0)/a0 < 0 where as and a0 are the
lattice constant of the substrate and of the relaxed free-standing (Ga,Mn)As epilayer,
respectively. The narrow stripes allow for anisotropic relaxation of the compressive strain
present in the unpatterned epilayer. An expansion of the crystal lattice along the direction
perpendicular to the bar occurs while the epilayer lattice constant along the bar remains
unchanged. Parameters sufficient for determination of the induced strain are the lattice
mismatch e0 and the shape of the stripe, mainly the thickness to width ratio of the
stripe. In the regime of small deformations the components of the induced strain are
linearly proportional to the lattice mismatch. The strain tensor in the coordinate system
fixed to the stripe is given in Eq. (3.13) where the lattice relaxation is quantified by
ρ(x′, z′) which varies over the stripe cross-section, c12 and c11 are the elastic moduli.
The strain components in this work are expressed with respect to a relaxed free-standing
(Ga,Mn)As epilayer. In this subsection the geometry of the stripes, the size of the lattice
mismatch, and the spatial dependence of the lattice relaxation ρ(x′, z′) are investigated
experimentally and theoretically. The results are used as an input of the microscopic
modelling of the magnetic anisotropies in subsection 3.2.2.

Figure 3.24: The measured (upper left panel) and simulated (upper right panel) reciprocal-
space maps in the symmetric 004 diffraction of sample B[010]. In the bottom row, the
measured (points) and simulated (lines) intensities integrated along the horizontal (left)
and vertical (right) directions are plotted. In the intensity maps, the colour scale is
logarithmic.

Microbars in set B have larger thickness to width ratio than microbars in set A.

81



Therefore the relaxation is expected to be larger in set B. At the same time, the (Ga,Mn)As
epilayer has larger volume in set B, primarily due to a larger number of interstitial Mn
in this higher doped unannealed material. The larger film thickness and larger growth
strain in set B make these materials significantly more favourable for an accurate x-ray
diffraction analysis of the strain profile in the patterned microbars.

The lattice relaxation in samples B[110] and B[110] was measured by high-resolution x-
ray diffraction using the synchrotron source at ESRF Grenoble (beamline ID10B, photon
energy 7.95 keV). For a reliable determination of both in-plane (u′x) and vertical (u′z) com-
ponents of the elastic displacement field the reciprocal-space distribution of the diffracted
intensity around the symmetric 004 and asymmetric 404 reciprocal lattice points was
measured. The asymmetric diffraction was chosen so that the in-plane component of the
corresponding reciprocal lattice vector h was perpendicular to the stripes. The diffracted
radiation was measured by a linear x-ray detector lying in the scattering plane.

Figure 3.25: The measured (upper left panel) and simulated (upper right panel) reciprocal-
space maps in the asymmetric 404 diffraction of sample B[010]. In the bottom row, the
measured (points) and simulated (lines) intensities integrated along the horizontal (left)
and vertical (right) directions are plotted. In the intensity maps, the colour scale is
logarithmic.

Figs. 3.24 and 3.25 present examples of the measured (upper left panels) and simulated
(upper right panels) reciprocal space maps, showing two maxima corresponding to the
reciprocal lattice points of the GaAs substrate and the (Ga,Mn)As layer. The bottom
panels show the measured and simulated integrated intensities for two directions in the
reciprocal space. Since the lateral stripe period was larger than the coherence width of
the primary radiation, different stripes were irradiated incoherently, so that the lateral
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intensity satellites stemming from the lateral stripe periodicity could not be resolved. The
measured intensity distribution is therefore proportional to the intensity scattered from
a single microbar.

We fitted the measured intensity maps to numerical simulations based on the kinematic
scattering theory and the theory of anisotropic elastic medium. We used a finite-element
simulation (implemented in Structural Mechanics Module of Comsol Multiphysics, stan-
dard partial differential equation solver) to obtain the local relaxation distribution ρ(x′, z′)
in the stripes and derived the corresponding reciprocal space map. The angle of the sides
of the stripes and the lattice mismatch e0 of the (Ga,Mn)As and GaAs lattices were
the two fitting parameters. The left column of Figs. 3.24 and 3.25 shows the measured
diffraction maps and projections. The right column shows the simulated results. The
lateral and vertical projections of the measured and simulated intensity maps as well as
the whole maps are used in the fitting. The coordinates q′x and q′z span the reciprocal
space conjugate to the real space with coordinates x′ and z′ fixed to the stripe. They are
measured with respect to the reciprocal lattice point 004 and 404.

Figure 3.26: Finite element calculation of the lattice relaxation, ρ(x′, z′), on the cross-
section perpendicular to the slightly overcut stripes B[110] (upper panel) and B[110] (lower
panel). The cross-section of one stripe and the underlying substrate is plotted. The
relaxation ρ = 1 and ρ = 0 corresponds to a full relaxation of the lattice and to a lattice
under a compressive strain of the unpatterned layer, respectively. Both stripes are close
to full relaxation.

The remarkable agreement of the measured and simulated diffraction maps shows that
our model of the lattice deformations is quantitatively relevant in determining the local
lattice relaxation ρ(x′, z′) in the stripes shown in Fig. 3.26, the lattice mismatch between
the epilayer and the substrate, e0 = −0.38± 0.03% for set B, and the stripe geometry, a
trapezoidal cross-section of the stripe also shown in Fig. 3.26. The largest relaxation is
observed in the corners of the stripes.

The slopes of the sides in set B are few degrees larger than angles typically occurring
when dry etching is used during the patterning process. Note that the x-ray diffraction
reveals only the regions with regular lattice structure whereas the dry etching can leave a
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thin non-uniform amorphous coating on the stripes which leads to the unexpected non-
rectilinear shape of the stripe cross-section resulting from the fitting.

Figure 3.27: Finite element calculation of the lattice relaxation, ρ(x′, z′), on the cross-
section perpendicular to the undercut stripes A[110] (upper panel) and overcut stripes A[110]

(lower panel). The cross-section of one stripe and the underlying substrate is plotted. The
relaxation ρ = 1 and ρ = 0 corresponds to full relaxation of the lattice and to a lattice
under a compressive strain of the unpatterned layer, respectively. All stripes show weaker
net relaxation than the stripes in set B.

In the next step, we use our modelling of the lattice relaxation also for stripes of
set A where the x-ray diffraction would be less accurate due to the small volume of the
epilayer, however, the relaxation mechanism should be of the same nature as in set B.
Fig. 3.27 shows the spatial dependence of the function ρ(x′, z′) for two different geometries
relevant to samples in set A. The shape of the stripe cross-section cannot be determined
from the SEM image of Fig. 3.23 with nanometer accuracy. This uncertainty cannot be
neglected in the undercut stripes A[110]. Therefore, more geometries (slopes of the sides)
were simulated and one representative example is given in the upper panel of Fig. 3.27.
On the other hand, the precise shape of the sides does not play such an important role in
case of the overcut stripes A[110] shown in the lower panel of Fig. 3.27. In all geometries,
the local induced strain is stronger closer to the edges of the stripes.

The comparison of the macroscopic simulations and x-ray diffraction measurements are
done on the level of the full spatial distribution of the relaxation ρ(x′, z′). The magnetic
characteristics, considered in this work in the single domain approximation, are analysed
based on the net lattice relaxation. Here we take advantage of the direct proportionality
of the magnetocrystalline anisotropy to the corresponding strain [22, 155] and calculate
the mean anisotropy from the spatial average of ρ(x′, z′) over the stripe cross-section. We
will denote this average quantity by ρ̂ in the rest of the subsection. (We caution that in
this study ρ̂ is a function of ω, contrary to the approximation used in Subsec. 3.1.4 where
the average relaxation is denoted by ρ.)

The last step in obtaining the input parameters for the microscopic modelling is writing
the net in-plane components of the total strain tensor introduced in Eq. (3.13) in the
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coordinate system fixed to the main crystallographic axes introduced in Fig. 3.23:

exx = e0

(
1− ρ̂

2
− ρ̂

2
sin 2ω

)
, (3.35)

eyy = e0

(
1− ρ̂

2
+
ρ̂

2
sin 2ω

)
,

exy = e0
ρ̂

2
cos 2ω,

where the angle ω is measured from the [110] axis and the angle ω − 45◦ describes the
rotation of the relaxation direction (the dashed coordinates) with respect to the crys-
talline coordinate system. Note that the above strain components coincide with those
in Eq. (3.13) when ω = 45◦, i.e., the relaxation direction is aligned with the [100] axis.
We emphasise that the average relaxation ρ̂ depends on ω. We rotate the elasticity ma-
trix describing the cubic crystal when simulating the lattice relaxation along different
directions.

The strain components exx, eyy, and exy for the stripes in set A are obtained from the
macroscopic simulations and considering e0 ≈ −0.22% [158, 57]. Table 3.2 summarises

e0[%] ρ̂
A[110] −0.22± 0.03 0.184± 0.005

A[110] −0.22± 0.03 0.24± 0.05
B[110] −0.38± 0.03 0.79± 0.01

B[010] −0.38± 0.03 0.99± 0.01

Table 3.2: The lattice mismatch e0 and the lattice relaxation ρ̂ for the patterned samples
as entering the microscopic calculations in subsection 3.2.2. The value of e0 in set B is
determined from the x-ray diffraction experiment, whereas e0 in set A is inferred from the
partial Mn concentrations using the analysis of Refs. [158] and [57].

the parameters determined in this section.

Magnetic anisotropies extracted from experimental data

In-plane magnetic anisotropies in thin (Ga,Mn)As films are often analysed using the lowest
order decomposition of the free energy profile into separate terms of distinct symmetry
[66, 145, 133]. In this study a variant of the phenomenological formula introduced in
Eq. (3.12) is used:

F (ψ) = −Kc

4
sin2 2ψ +Ku sin

2 ψ −KΩ sin2(ψ − Ω). (3.36)

For simplicity, the cubic coefficient is denoted byKc and the “intrinsic” uniaxial coefficient
along the [110] axis by Ku. In analogy to Eq. (3.32), a term quantified by KΩ is added
to describe the uniaxial anisotropy with an extremum at an angle Ω induced by the
relaxation of the lattice mismatch of the doped epilayer and the substrate. The angle Ω is
in general not equal to the angle of the corresponding lattice relaxation ω (see discussion
preceding Eq. (3.32) or [155] for details). Both angles are measured from the [110] axis.
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Remanent magnetisation along the main crystallographic directions was measured by
SQUID for both sets of samples. The obtained values include the magnetocrystalline
anisotropies described in the previous paragraph as well as the shape anisotropy which
always prefers the magnetisation alignment with the longest side of a rectangular prism
such as the stripes [2].

Fig. 3.28 shows that in the control sample A0 the intrinsic uniaxial anisotropy domi-
nates over the cubic anisotropy on a large temperature range and the easy axis along the
[110] diagonal. The ratio of the remanent magnetisation projections to the [110] and [100]
directions below 60 K reveals that the system is almost purely uniaxial. The behaviour
of the anisotropy components at T > 60 K cannot be described within the single domain
approximation. However, the anisotropies of unpatterned samples are relevant to our
microscopic analysis of measurements in the microbars only at the lowest temperatures
where we extract intrinsic anisotropy coefficients and deduce the material parameters as
detailed in subsection 3.2.2.

Figure 3.28: Remanent magnetisation along the main crystallographic directions for sam-
ple A0 (25 nm thick unpatterned epilayer).

Fig. 3.29 shows that the patterning of the sample A[110] strengthens the uniaxial

anisotropy present in the parent wafer. The [110] diagonal becomes the easiest of the
investigated directions at all temperatures and the [110] diagonal becomes the hardest
axis at all temperatures below TC .

Fig. 3.30 shows that in the sample A[110], the two diagonals switch roles and in analogy
with the previous case the easy axis prefers alignment close to the stripe direction, which
is the hard axis over most of the temperature range in the parent wafer. This means that
a rotation of the easy axis by as much as 90◦ is achieved by the post-growth patterning.
Note that the difference of the projection of the remanent magnetisation to the [100] and
[010] directions in the two patterned samples is due to a 5◦ misalignment between the
stripes and the crystal diagonals introduced during the fabrication.

The samples in set B posses stronger cubic anisotropy. Fig. 3.31 shows that in the
control sample B0 the intrinsic uniaxial anisotropy dominates over the cubic anisotropy
only at temperatures above 20 K and the [110] diagonal is easier than the [110] diagonal
at all temperatures below TC .
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Figure 3.29: Remanent magnetisation along the main crystallographic directions for sam-
ple A[110] (750 nm wide stripes along the [110] direction).

Figure 3.30: Remanent magnetisation along the main crystallographic directions for sam-
ple A[110] (750nm wide stripes along the [110] direction).

Fig. 3.32 shows a strengthening of the uniaxial anisotropy along the stripe direction
in the sample B[110], although not large enough to overcome the cubic anisotropy at the
lowest temperatures. The transition from cubic to uniaxial anisotropy occurs at a lower
temperature than in the control sample. The [110] direction is hardened. The main crystal
axes [100] and [010] remain equal due to the more accurate alignment of the stripes with
the crystal diagonal.

Fig. 3.33 shows a differentiation of the [100] and [010] projections in the sample B[010].
The uniaxial anisotropy along the stripe direction now dominates at all temperatures.
The intrinsic anisotropy differentiating the diagonal directions is less pronounced than in
case of B0 as it has to compete also with the induced uniaxial anisotropy.

It can be concluded that the universal effect seen in all patterned (Ga,Mn)As/GaAs
samples is the preference of the easy axis to align parallel to the stripe which is the di-
rection in which the growth induced compressive strain cannot relax, i.e., the direction
of the relative lattice contraction in (Ga,Mn)As. This is reminiscent of the magnetocrys-
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Figure 3.31: Remanent magnetisation along the main crystallographic directions for sam-
ple B0 (200 nm thick unpatterned epilayer).

Figure 3.32: Remanent magnetisation along the main crystallographic directions for sam-
ple B[110] (1 µm wide stripes along the [110] direction).

talline anisotropy of unpatterned (Ga,Mn)As epilayers which typically yields easy-axis
oriented also along the direction of contraction, i.e., in-plane for compressively strained
(Ga,Mn)As epilayers and out-of-plane for (Ga,Mn)As films grown under tensile strain (as
discussed in subsection 3.1.1). We point out that the measured magnitudes of magnetic
anisotropies in the microbars are an order of magnitude larger than the shape anisotropy
contribution for given concentration of magnetic moments and thickness to width ratio.
The microfabrication effects in the (Ga,Mn)As stripes are therefore primarily due to the
SOC induced magnetocrystalline anisotropy.

After investigating the reorientations of the easy axis the magnitude of the individ-
ual anisotropy components is investigated. The hysteresis loops are measured using the
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Figure 3.33: Remanent magnetisation along the main crystallographic directions for sam-
ple B[010] (1 µm wide stripes along the [010] direction).

SQUID magnetometry and fitted to the following equation:

F (ψ)/µ0 = −1

4
MSHc sin

2 2ψ +MSHu sin
2 ψ − (3.37)

−MSHΩ sin2(ψ − Ω)−MSHcos(ψ − φH),

where Ki = µ0MSHi were introduced in Eq. (3.36), MS is the saturation magnetisation,
H is the external magnetic field applied at the angle φH , and the last term is the Zeeman
energy. All angles in Eq. (3.37) are measured from the [110] axis. In case of a gen-
eral alignment of the induced uniaxial strain, the angle Ω of the corresponding uniaxial
anisotropy is an independent fitting parameter. However, in case of the main crystallo-
graphic axes and their small surrounding one can set Ω = ω, i.e., the anisotropy term is
aligned with the corresponding uniaxial strain. An overview of the resulting angles Ω for
the different alignments of stripes in sets A and B is given in Table 3.3.

Kc [kJ/m
3] Ku [kJ/m3] KΩ [kJ/m3] Ω [deg]

A0 0.412 0.404 0.0
A[110] 0.412 0.404 0.83 95

A[110] 0.412 0.404 1.037 5
B0 2.213 0.381 0.0

B[110] 2.213 0.381 0.935 90

B[010] 2.213 0.381 0.696 45

Table 3.3: The anisotropy coefficients obtained by fitting the hysteresis loops at T = 2 K to
Eq. (3.37) and the angular shift of the anisotropy term induced by the lattice relaxation
as introduced in Eq. (3.36). Note that the lattice relaxes perpendicular to the stripe
direction. The error of the anisotropy coefficients is approximately 10−20%, approaching
the upper limit in case of the thick inhomogeneous samples in set B.

When determining the anisotropy coefficients in the stripes the assumption of linear
superposition of the anisotropies present in the unpatterned samples with the anisotropies
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induced by the patterning and lattice relaxation is used: the coefficients Kc and Ku are
obtained first in the control samples and kept fixed when fitting the stripes fabricated
from the same epilayer. The assumption is justified on the qualitative level by the re-
manent magnetisation measurement discussed in the previous subsection which revealed
the persistence of the bulk anisotropies in all patterned samples. Its validity has been
corroborated also by studies of epilayers subject to post-growth piezo straining [101] and
lithographic patterning [149]. Note that this approach is appropriate only when the lat-
tice relaxation direction is very close to the main crystallographic axes or when the angle
Ω is also treated as a fitting paramater (as mentioned in subsection 3.1.4).

Another assumption concerns the magnetisation reorientation mechanism determining
the shape of the hysteresis loops. In case of a dominant uniaxial anisotropy the hysteresis
loops obtained for external fields applied along the hard axis are used in the fitting. In
case of a dominant cubic anisotropy there is no completely hard direction. Nevertheless,
a single domain model is still considered in the fitting.

Figure 3.34: Anisotropy coefficients as functions of temperature obtained by fitting the
hysteresis loops to Eq.(3.36) for the three samples of set A. The uniaxial coefficients KΩ

(denoted by KA for set A) due to the growth strain relaxation in the patterned samples
dominate the total anisotropy.

Anisotropy coefficients for all six samples at the lowest temperature are summarised in
Table 3.3. Recall that these energies include also the contribution of the shape anisotropy
which amounts to ∼ 0.1 kJ/m3 in samples A[110] and A[110] and ∼ 0.3 kJ/m3 in the samples
B[110] and B[010] with the higher thickness to width ratio. Note that the smaller coefficient
K45 leads to the formation of a strongly uniaxial system as shown in Figs. 3.33, whereas
the larger coefficient K90 cannot overcome the cubic anisotropy component, at least at
low temperatures as shown in Fig. 3.32. It is because in case of sample B[010], the induced
anisotropy is added along the [010] axis which was already the easy (together with [100])
direction in the unpatterned epilayer.

For the thinner and more homogeneous epilayers in set A it was possible to extract
the temperature dependence of the anisotropy coefficients from the hysteresis loops up
to T = 60 K as shown in Fig. 3.34. The uniaxial coefficients due to lattice relaxation
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dominate the anisotropy at all temperatures. At low temperatures the relative size of
the induced anisotropies corresponds well to the simulated relaxations ρ̂: Sample A[110]

with overcut sides (weaker relaxation) shows smaller anisotropy than sample A[110] with
undercut sides (stronger relaxation). The cubic anisotropy remains positive for all studied
temperatures T < 60 K which is in good agreement with the remanent magnetisation data
shown in Fig. 3.28. The measurements above 60 K for which, as mentioned above, the
single domain model is not applicable, are not discussed here.

Comparison with theory

In this subsection we build on macroscopic calculations of the lattice relaxation pre-
sented in subsection 3.2.2, perform the microscopic calculations of the magnetic anisotropy
energy, and analyse its correspondence with the experimental results on the level of
anisotropy coefficients. We extract the coefficients by fitting the calculated total ener-
gies to Eq. (3.36) for different magnetisation directions.

The comparison of the experimental and theoretical results involves a number of ma-
terial parameters. The most important inputs of the microscopic calculations are the
concentration of the ferromagnetically ordered Mn local moments (x) and the hole den-
sity (p). Unfortunately, these two parameters cannot be accurately controlled during
the growth or determined post growth [52]. The measured saturation magnetisation, the
conductivity, and the Curie temperature of the control samples provide only estimates of
these input parameters with limited accuracy.

Another independent input parameter of the microscopic simulations is the “intrinsic”
shear strain eintxy ∼ 10−4 (in this study denoted only by ein) which has been used success-
fully to model [110, 155] the in-plane uniaxial anisotropy in the unpatterned samples. We
recall that such modelling for small strains complies well with the assumption that the
“intrinsic” uniaxial anisotropy superposes linearly with anisotropy components induced
by the lattice relaxation, as mentioned in the previous section. The intrinsic shear strain
is added to the off-diagonal element of the total strain tensor written in Eq. (3.35) giving:
exy = ein + e0

ρ̂
2
cos 2ω.

Fig. 3.35 shows the combinations of x, p, and ein for which the calculated intrinsic
Ku and Kc of the control samples A0 and B0 agree with the measured values at zero
temperature. By this we limit the intervals of x, p, and ein values considered in the
modelling of the temperature dependent anisotropy coefficients in all measured samples.
Note, that we have also imposed an upper bound to x given by the nominal Mn doping
in the particular material and a bound to p ensuring a maximum of one hole per Mn ion
and in-plane easy axis (axes). This method allows for predicting the induced anisotropy
coefficients in the microbars without any adjustable parameters in the microscopic model.

Using parameter combinations shown in Fig. 3.35 we calculate the induced uniaxial
anisotropies in the microbars at zero temperature. The left and right vertical axis of
Fig. 3.36 shows the extracted anisotropy coefficients for stripes in sets A and B, respec-
tively. The combinations of x, p, and ein are indexed only by x for simplicity. The
plotted values can be compared to the measured coefficients summarised in Table 3.3.
The relations K95 < K5 and K90 > K45 hold both in theory and in experiment. We
observe a semi-quantitative agreement in samples A[110] and A[110] where the measured
values are roughly a factor of 2 larger than the calculated ones. The ratio of the calcu-
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Figure 3.35: Correspondence of the hole density, p, and the intrinsic shear strain, ein, to
the effective Mn concentration, x, based on the agreement of the calculated Kc and Ku

with the measured values. Samples A and B at zero temperature.

Figure 3.36: Calculated anisotropy coefficients due to the lattice relaxation in the pat-
terned samples A and B at zero temperature for fixed combinations of x and p shown in
Fig. 3.35.

lated coefficients KΩ for samples A[110] and A[110], K95/K5, is in excellent agreement with
experiment (the difference is only 4%). These agreements justify the interpretation of the
measured effects in the microbars based on the strain-relaxation controlled magnetocrys-
talline anisotropy. Note that they also support the assumption of the linear superposition
of individual uniaxial anisotropies terms used in our analysis.

Fig. 3.36 shows also extracted anisotropy coefficients for samples B[110] and B[010].
In this case, the calculated ratio of coefficients extracted for the two stripe alignments,
K90/K45, is approximately 20% larger then the corresponding experimental ratio, i.e., still
in a very good agreement. We note, however, that the absolute values of the measured
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coefficients are about a factor of 10 lower than the calculated ones. A possible source of
this discrepancy is the large value of the experimentally inferred Kc due to inaccurate
subtraction of the paramagnetic and diamagnetic backgrounds from the measured hys-
teresis curves. In general, we also expect that the theoretical modelling is less reliable
in the thicker, as-grown samples B due to stronger disorder and inhomogeneities in the
material.

As a consequence of the almost complete relaxation of the lattice mismatch in the
thicker samples the calculated anisotropy coefficients are larger than the cubic coefficient
at all studied temperatures which is not in agreement with the measured coefficients in
set B at low temperature (see Table 3.3).

Figure 3.37: Calculated cubic a uniaxial intrinsic anisotropy coefficients present in all
samples A as functions of temperature for fixed combinations of x, p, and ein shown in
Fig. 3.35.

We now select six representative combinations of x, p, and ein from the relevant interval
shown in Fig. 3.35, calculate the temperature dependence of all anisotropy coefficients for
each set of parameters, and discuss the comparison with the measured anisotropies. We
recall that in our mean-field modelling at finite temperatures the calculated TC is uniquely
determined by x and p. Note that for the entire interval of relevant x and p determined
from the low-temperature analysis in the previous section, we obtain Curie temperatures
which are in agreement with the experimental values in materials A and B within a factor
of 2. This provides an additional support for the overall consistency of our microscopic
theoretical analysis of the measured data.

Fig. 3.37 shows the calculated intrinsic anisotropy coefficients Kc and Ku of samples
in set A for three fixed parameter combinations. At zero temperature the values coincide
with data in Fig. 3.35. The cubic anisotropy component is stronger than the intrinsic
uniaxial component at lowest temperatures but it quickly becomes weaker as temperature
is increased for all parameter combinations. This temperature dependence is in agreement
with the experimental anisotropies measured below 60 K, as shown in Fig. 3.34. The
comparison cannot be extended to higher temperatures because, as explained above, the
experimental behaviour at these temperatures is not captured by the single domain model.
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Figure 3.38: Calculated anisotropy coefficients due to the lattice relaxation in the pat-
terned samples A as functions of temperature for fixed combinations of x and p shown in
Fig. 3.35 and for the induced strain given in Fig. 3.36.

Fig. 3.38 shows the calculated anisotropy coefficients KΩ of samples A[110] and A[110]

again for the three fixed parameter combinations. The calculated anisotropy compo-
nents decrease monotonously with increasing temperature in agreement with the mea-
sured dependencies presented in Fig. 3.34. The comparison provides additional support
for the interpretation of the experimental data, suggested already by the analysis at
low-temperature, which is based on the strain relaxation induced magnetocrystalline an-
sisotropy effects.

Figure 3.39: Calculated cubic a uniaxial intrinsic anisotropy coefficients present in all
samples B as functions of temperature for fixed combinations of x, p, and ein shown in
Fig. 3.35.

Fig. 3.39 shows the calculated intrinsic anisotropy coefficients Kc and Ku of samples
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in set B again for three fixed parameter combinations. At zero temperature the values
coincide with data in Fig. 3.35. The calculated cubic anisotropy dominates over the
uniaxial anisotropy at low temperatures in agreement with the experiment. The cross-over
in the theory curves to the dominant uniaxial anisotropy occurs at higher temperatures
than TC/3 observed in experiment (see Fig. 3.31); at the upper part of the relevant interval
of Mn concentrations the theoretical crossover occurs at TC/2. We again attribute this
quantitative discrepancy to inhomogeneities and stronger disorder in the thick as-grown
material B.

Figure 3.40: Calculated anisotropy coefficients due to the lattice relaxation in the pat-
terned samples B as functions of temperature for fixed combinations of x and p shown in
Fig. 3.35 and for the induced strain given in Fig. 3.36.

Fig. 3.40 shows the anisotropy coefficients KΩ of samples B[110] and B[010] for the same
fixed parameter combinations as in Fig. 3.39. Again, we observe very similar dependence
of the uniaxial anisotropy coefficients on temperature as in experiment. The monotonous
decrease of the coefficients with growing temperature is in agreement with the measured
remanent magnetisation data in Figs. 3.33 and 3.32. Both induced anisotropy coefficients
are predicted to be larger than the cubic coefficient at all studied temperatures. This
complies with the measured remanence data of sample B[010]. Sample B[110] shows agree-
ment above 20 K. Its behaviour at temperatures below 20 K, is not captured by the theory
data as we have already discussed in the previous subsection.

Summary

Detailed analysis of magnetic anisotropies induced in lithographically patterned
(Ga,Mn)As/GaAs microbar arrays has been performed. Structural properties of the mi-
crobars have been studied by x-ray spectroscopy showing strong strain relaxation trans-
verse to the bar axis. The relaxation induced lattice distortion in stripes with thickness
to width ratio as small as ∼ 0.1 induces additional uniaxial magnetic anisotropy compo-
nents which dominate the magnetic anisotropy of the unpatterned (Ga,Mn)As epilayer,
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as revealed by SQUID magnetisation measurements. The easy axis can be rotated by the
micropatterning by 90◦ at all temperatures below the Curie temperature.

We have carried out systematic macroscopic and microscopic modelling of the struc-
tural and magnetic characteristics of the microbars and analysed in detail the experimental
results. The agreement of the measured and simulated x-ray diffraction maps shows that
the applied elastic theory model is quantitatively reliable in predicting the local lattice
relaxation in patterned epilayers with the growth induced strain. The overall good agree-
ment of the microscopically calculated and measured magnetic anisotropies conclusively
demonstrate that the patterning induced anisotropies are of the magnetocrystalline, SOC
origin.

3.2.3 Relaxation in L-shaped microbars

This subsection presents joint experimental and theoretical study [149] carried out in col-
laboration with experimentalists in Hitachi Cambridge Laboratory and Charles University
in Prague.

We demonstrate that it is possible to tune and control magnetocrystalline anisotropies
in (Ga,Mn)As microchannels by lithographically induced strain relaxation. This result
represents the necessary prerequisite for future highly integrated microdevices fabricated
in the dilute-moment ferromagnets. It also makes possible a range of new studies of
extraordinary magnetotransport and magnetisation dynamics effects in such systems.

Experiment

Fig. 3.41 shows scanning electron micrographs of one of the devices studied. The structure
consists of a macroscopic Van der Pauw device and an L-shaped channel patterned on the
same wafer, the arms of which are Hall-bars aligned along the [110] and [110] directions.
The trench-isolation patterning was done by e-beam lithography and reactive ion etching
in a 25 nm thick Ga0.95Mn0.05As epilayer, which was grown along the [001] crystal axis
on a GaAs substrate. Results for two samples are reported: device A(B) has 4(1) µm
wide, 80(20) µm long Hall bars. Isolated magnetic elements with the dimensions of these
Hall bars and Ms ∼50 mT of the Ga0.95Mn0.05As would have in-plane shape anisotropy
fields below ∼1 mT, which is an order of magnitude lower than the magnetocrystalline
anisotropy fields. In-plane shape anisotropies are further reduced in the devices as they
are defined by narrow (200 nm) trenches with the remaining magnetic epilayer left in
place. The Curie temperature of 100 K was obtained from Arrot plots of anomalous
Hall data. Hole density of 5×1020cm−3 was estimated from high-field Hall measurements.
At this doping the compressive strain in the Ga0.95Mn0.05As epilayer grown on the GaAs
substrate produces a strong magnetocrystalline anisotropy which forces the magnetisation
vector to align parallel with the plane of the magnetic epilayer [26, 1].

Magnetisation orientations in the individual microbars are monitored locally by mea-
suring longitudinal and transverse components of the AMR at in-plane magnetic fields.
The magnetisation rotation experiments at saturation magnetic field measured on de-
vice B and on the macroscopic Van der Pauw device are presented in Figs. 3.42(a) and
(b). (For the detailed discussion of the origins of the AMR and microscopic modelling of
this extraordinary magnetoresistance coefficient in (Ga,Mn)As see Ref. [103].)
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Figure 3.41: (a) Scanning electron micrograph of the L-shaped microdevice B and the
macroscopic Van der Pauw device. (b) Detail of the L-shaped microdevice with the
longitudinal (L) and transverse (T) resistance contacts in the bars and the corner (C)
resistance contacts. Positive hole current in the p-type (Ga,Mn)As is defined to propagate
from the [110]-bar to the [110]-bar.

Figure 3.42: Device B longitudinal (a) and transverse (b) AMRs measured at 4.2 K in
a rotating 4 T in-plane field with the field angle measured from the [110] axis, and bulk
transverse AMR measured in the Van der Pauw device with current lines oriented along
the [010] axis. (∆ρ ≡ ρ − ρ where ρ is the average value over all angles.) In-plane,
fixed-angle field sweep measurements of the longitudinal magnetoresistances of the (c)
[110]-bar and (d) [110]-bar bar of device B. (Same average resistances as in (a) and (b)
are subtracted to obtain ∆R)

Examples of magnetoresistance measurements for external magnetic field sweeps in
which the field angle θ, measured from the [110] axis, is constant are shown in Figs. 3.42(c)
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Figure 3.43: Comparison of the low-filed measurements at 4.2 K of the transverse resis-
tance in the bulk Van de Pauw device (left panel) and of the longitudinal resistance of
the [110] and [110]-bar in device B (right panel).

and (d). The strongly θ-dependent low-filed magnetoresistance is attributed to magneti-
sation rotations. At high fields, the magnetoresistance becomes purely isotropic, i.e., the
differences between resistances for different angles θ become independent of the magni-
tude of the external field. This property and the much smaller magnitude of the isotropic
magnetoresistance compared to the low-field anisotropic magnetoresistance allows for the
use of the high-field measurements in Figs. 3.42(a),(b) for determining the one to one cor-
respondence between a change in the low-field resistance and a change in magnetisation
orientation. Note that the 45◦ phase shift between the longitudinal and transverse AMR
traces (see Figs. 3.42(a),(b)) allows for unambiguous determination of the change in the
magnetisation angle if both resistance components are measured simultaneously.

The fixed-θ magnetoresistance measurements are used to first determine local magnetic
anisotropies in the individual microbars. Values of θ corresponding to easy-axis directions
have the smallest low-field magnetoresistance. For values of θ not corresponding to easy-
axis directions the magnetisation undergoes a (partially) continuous rotation at low fields
resulting in different orientations, and hence different measured resistances, at saturation
and remanence. The technique can be used to determine the easy-axis directions within
±1◦.

sample bulk A [110] A [110] B [110] B [110]
easy-axis angle ±30◦ ±15◦ ±36◦ +7◦,−8◦ +55◦,−63◦

Table 3.4: Easy-axes angles, measured from the [110] crystal direction, determined by
magnetoresistance measurements in the macroscopic Van der Pauw device (bulk) and in
the [110] and [110]-bars of the L-shaped devices A and B.

The effect of microfabrication on the magnetic anisotropy is apparent in Fig. 3.43.
In the bulk, magnetisation angle 30◦ corresponds to an easy-axis while 7◦ and 55◦ are
significantly harder. For device B, 7◦ is an easy-axes in the [110]-bar and 55◦ is an
easy-axis in the [110]-bar. All easy-axes found in devices A and B and in the bulk are
summarised in Tab.3.4. The bulk material has the cubic anisotropy of the underlying
zincblende structure plus an additional uniaxial [110] anisotropy as is typical (Ga,Mn)As
epilayers [110]. This results in two easy-axes tilted by 15◦ from the [100] and [010] cube
edges towards the [110] direction. In the microdevices, the easy-axes are rotated from
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their bulk positions towards the direction of the respective bar and the effect increases
with decreasing bar width.

Theory

Ga0.95Mn0.05As epilayers grown on GaAs substrate are compressively strained in the (001)
plane with the typical value of the lattice mismatch parameter f ≡ |e0| ≈ 0.2 − 0.3%.
The strength of the lattice relaxation in the microbars is obtained from numerical elastic
theory simulations for the realistic sample geometry. (GaAs values of the elastic constants
are considered for the whole wafer including the Ga0.95Mn0.05As epilayer.) Results of such
calculations are illustrated in Fig. 3.44 for the [110]-bar of device B. In panel (a) we show
the strain component along the growth-direction [001]-axis with respect to the lattice
parameter of a fully relaxed cubic GaAs. Since all strain components scale linearly

Figure 3.44: Numerical simulations of lattice parameters in the 1 µm wide [110]-bar of
device B defined by 200 nm wide and 75 nm deep trenches in the 25 nm thick (Ga,Mn)As
film on a GaAs substrate. (a) Strain component along the [001]-axis with respect to
the lattice parameter of a fully relaxed cubic GaAs. (b) Same as (a) for in-plane strain
component e[110] in the direction perpendicular to the bar orientation. (c) and (d) Strain
components e[110] along different cuts through the [001]-[110] plane. The cuts and the cor-
responding e[110]/f curves are highlighted by coloured arrows in (b) and the corresponding
colour coding of curves in (c) and (d).

with f we plot e[001]/f . The figure highlights the growth induced lattice matching strain;
because of the in-plane compression of the (Ga,Mn)As lattice the elastic medium reacts by
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Figure 3.45: (a) Schematics of the easy-axes orientations in the [110] and [110]-bars
of the L-shaped devices A and B. Arrows indicate the direction and strength of the
patterning induced lattice relaxation. (b) Theoretical magnetocrystalline energies as a
function of the in-plane magnetisation angle for zero shear strain (black line), for exy =
0.004, .., 0.02% (red lines) corresponding to lattice extension along [110] axis, and for
exy = −0.004, ..,−0.02% (blue lines) corresponding to lattice extension along [110] axis.
The magnetic easy-axes at exy = 0, 0.02% and -0.02% are highlighted by black, red,
and blue arrows, resp. Lattice deformations breaking the [110]-[110] symmetry of the
microscopic magnetocrystalline energy profile are illustrated by the diamond-like unit
cells extended along [110] axis for the [110]-bar (red diamond) and along the [110] axis
for the [110]-bar (blue diamond).

expanding the lattice parameter in the growth direction, as compared to the fully relaxed
(Ga.Mn)As lattice, i.e., e[001]/f > 1.

Within the plane, the lattice can relax only in the direction perpendicular to the mi-
crobar orientation. The corresponding strain component, calculated again with respect
to the GaAs, is plotted in Fig. 3.44(b) over the entire cross-section of device B and, in
Figs. 3.44(c) and (d), along various cuts through the [001]− [110] plane. While in the cen-
tre of the bar the in-plane relaxation is relatively weak, i.e., the lattice parameter remains
similar to that of the GaAs substrate, the lattice is strongly relaxed near the edges of
the bar. Averaged over the entire cross-section of the (Ga,Mn)As bar we obtain relative
in-plane lattice relaxation of several hundredths of a per cent. The microscopic magne-
tocrystalline energy calculations discussed in the following paragraphs confirm that these
seemingly small lattice distortions can fully account for the observed easy-axis rotations
in the strongly spin-orbit coupled (Ga,Mn)As.

Our microscopic calculations of the magnetisation angle dependent total energies are
based again on the effective Hamiltonian theory described in sections 2.1 and 3.1. (As
in the above macroscopic simulations we assume that the elastic constants in (Ga,Mn)As
have the same values as in GaAs.) Note that the k · p effective Hamiltonian theory
describes accurately the sign and magnitude of the AMR data in Fig. 3.42 [103].

For the modelling of the magnetocrystalline energy of the microbars we assume homo-
geneous strain in the (Ga,Mn)As layer corresponding to the average value of e[110] obtained
in the macroscopic elastic theory simulations. The input parameters of the microscopic
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calculations are the strain components introduced in Eqs. (3.24) and (3.26), with ρ set to
the average value of e[110] and e0 = −f .

In Fig. 3.45(b) we plot calculated magnetocrystalline energies as a function of the
in-plane magnetisation angle for f = 0.3% and exy ranging from zero (no in-plane lattice
relaxation) to typical values expected for the [110]-bar (exy > 0) and for the [110]-bar
(exy < 0). Consistent with the experiment, the minima at [100] and [010] for exy = 0
move towards the[110] direction for lattice expansion along [110] direction (exy > 0) and
towards the [110] direction for lattice expansion along [110] direction (exy < 0). Note that
the asymmetry between experimental easy-axes rotations in the two bars is due to the a
[110]-uniaxial component present already in the bulk material whose microscopic origin
is not known but can be modeled by an intrinsic (not induced by micropatterning) strain
eintxy ∼ +0.01%.

We conclude the the observed easy-axes rotations which depend on the width and crys-
tal orientation of the microchannel can be explained in terms of lattice relaxation induced
changes in the magnetocrystalline anisotropy. (Ga,Mn)As microchannels with locally con-
trolled magnetocrystalline anisotropies and inherently weak dipolar fields represent a new
favourable class of systems for exploring magneto-electronic effects at microscale.

3.2.4 Piezo-electric stressing

This subsection presents joint experimental and theoretical study [101] carried out in
collaboration with University of Nottingham and Hitachi Cambridge Laboratory.

The control of magnetism by electrical means is an important prerequisite for suc-
cessful implementation of spintronics in information processing technologies, and for ad-
vancements in sensor and transducer applications. Multiferroic compounds [100, 42]
or layered structures [58, 148, 139, 30] combining piezoelectric/ferroelectric and mag-
netostrictive/ferromagnetic properties are a promising area of research in this direction.
However, due largely to the complex electronic structure and multidomain switching pro-
cesses giving rise to complicated hysteresis loops, a microscopic theoretical description of
the behaviour of these systems is lacking.

(Ga,Mn)As has many favourable characteristics which can be utilised in a hybrid
ferromagnetic/piezoelectric structure. Spin polarised holes that mediate ferromagnetic
coupling between Mn local moments produce large magnetic stiffness, resulting in a mean-
field like magnetisation and macroscopic single-domain characteristics [55, 142]. At the
same time, magnetocrystalline anisotropies derived from SOC effects in the hole valence
bands are large and sensitive to strains as small as 10−4 [149, 147].

In previous subsections the strain effects in (Ga,Mn)As have been controlled by lat-
tice parameter engineering during growth [26, 1] or through post growth lithography
[147, 46, 149]. In this subsection we demonstrate that the in-plane uniaxial magnetic
anisotropy in (Ga,Mn)As device can be controlled by attaching the epilayer to a piezo-
electric transducer. A technique used previously to produce sizeable strains in non-
magnetic GaAs structures [113] is followed. Microscopic calculations discussed below
describe these effects on an unprecedented level of accuracy compared to rare earth or
metal ferromagnet/piezoelectric devices [148, 139, 30, 58].

The 25 nm thick Ga0.94Mn0.06As epilayer was grown by low-temperature molecular-
beam-epitaxy on GaAs substrate and buffer layers [15]. The material is under compressive
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in-plane strain of ∼ 3 × 10−3 [158] due to the lattice mismatch with the GaAs. From
SQUID magnetometry on the material the magnetic easy axis is in-plane in a direction
determined by competition between biaxial [100]/[010] and uniaxial [11̄0] anisotropies. At
50 K the cubic and uniaxial anisotropy constants determined from hard axis magnetisation
curves are Kc = 85 Jm−3 and Ku = 261 Jm−3 ± 20%.

A (Ga,Mn)As Hall bar, fabricated by optical lithography, and orientated along the
[11̄0] direction, was bonded to the PZT piezo-transducer using a two-component epoxy
after thinning the substrate to 150±10 µm by chemical etching. The stressor was slightly
misaligned so that a positive/negative voltage produces a uniaxial tensile/compressive
strain at ≈ −10◦ to the [11̄0] direction.

The induced strain was measured by strain gauges, aligned along the [11̄0] and [110]
directions, mounted on a second piece of 150 ± 10 µm thick wafer bonded to the piezo-
stressor. Differential thermal contraction of GaAs and PZT on cooling to 50 K produces
a measured in-plane, biaxial tensile strain at zero bias of 10−3 and a uniaxial strain
estimated to be of the order of ∼ 10−4 [38] which could not be accurately measured. At
50 K, the magnitude of the additional uniaxial strain for a piezo-voltage of ±150 V is
approximately 2× 10−4.

The orientation of the in-plane magnetisation of the (Ga,Mn)As Hall bar was deter-
mined from the longitudinal and transverse AMR. To a good approximation (≈ 10%),
these are given by ∆ρxx/ρav = C cos 2φ and ρxy/ρav = C sin 2φ, where φ is the angle
between the magnetisation direction and the Hall bar direction [103]. Fig. 3.46 shows
magnetoresistance measurements at 50 K for external magnetic field sweeps at constant
field angle θ measured from the Hall bar direction. The strongly θ-dependent low-field
magnetoresistance, which saturates at higher field is due to AMR, i.e., to magnetisation ro-
tations. An isotropic θ-independent magnetoresistance contribution was subtracted from
the measured longitudinal resistances. When the external field is close to the magnetic
easy axis, the measured resistances at saturation and remanence should be almost the
same and a significant magnetoresistance due to rotation of the magnetisation can only
be present at very low applied fields. For external fields away from the easy axis, large
magnetoresistances corresponding to large rotations of the magnetisation orientation are
present. This allows for the determination of the easy axis directions within ±5◦.

The effect of the piezo-stressor is clearly apparent in Fig. 3.46. At 50 K, SQUID
measurements show that the magnetic easy axis is oriented along the [11̄0]- direction for
the as-grown (Ga,Mn)As wafer, consistent with |Kc| < |Ku|. The easy axis for the Hall bar
bonded to the stressor rotates to an angle φ = 65◦ upon cooling to 50 K due to a uniaxial
strain induced by anisotropic thermal contraction of the piezo-stressor [38]. Application
of a bias of +150 V to the stressor causes the easy axis to rotate further to φ = 80◦ while
for -150 V it rotates in the opposite sense to φ = 30◦. This directly demonstrates electric
field control of the magnetic anisotropy in the (Ga,Mn)As/PZT hybrid system.

The magnetic anisotropy for our system can be described phenomenologically by an
energy functional E(M̂) = −Kc/4 sin

2 2φ+Ku sin
2 φ+K ′

u sin
2(φ+φ0), where the last term

is due to the misaligned stressor. (In this study K ′
u plays the role of −KΩ in Eq. (3.32).)

We recall that φ0 is in general not equal to the misalignment of the stressor. Considering
Eq. (3.34), the misalignment ω ≈ −10◦ results is Ω ≈ −5◦ or in the notation of this study
φ0 ≈ 5◦.) The observed behaviour is then consistent with the (Ga,Mn)As being in tensile
strain along the axis of the stressor on cool down and applied positive (negative) voltage
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Figure 3.46: The longitudinal resistances, Rxx ((a) and (b)) and the transverse resistances
Rxy ((c) and (d)) as a function of magnetic field for angles close to the easy axes (30◦ at
-150 V and 80◦ at +150 V). The curves close to the easy axes in each case are relatively
flat as a function of field, indicating small rotation of the angle of the magnetisation.
T=50 K.

increasing (decreasing) this strain. Note that the misalignment allows smooth rotation of
a single easy axis in the experimentally accessible voltage range.

We now calculate the expected magnetic anisotropy characteristics of the studied
(Ga,Mn)As/PZT system using the effective Hamiltonian model described in sections 2.1
and 3.1. The magnetocrystalline anisotropy constants are known to be sensitive to the
local moment density and the hole compensation ratio p/NMn. To guarantee that the
comparison between theory and experiment does not suffer from an accidental choice of p
and NMn in the calculations, we consider simultaneously MnGa dopings within an interval
x = 3 − 5% which safely contains the expected value of x in the experimental sample
(NMn = 4x/a3lc, where alc is the lattice parameter). For fixed p and NMn, the cubic term
Kc agrees with the measured 50 K value for p/NMn = 0.6− 0.4 across the whole range of
x = 3 − 5%. This narrow range of p/NMn is in good agreement with the compensation
ratio determined from experiment in the studied as-grown material [52].

The origin of the uniaxial anisotropy term in bare (Ga,Mn)As wafers is not known,
but it can be modelled [110, 149] by introducing a shear strain eintxy along the [11̄0] axis.
For p/NMn = 0.6 − 0.4 we obtain the experimental value of Ku for compressive shear
strain eintxy = 3− 2× 10−4 within the considered range of x’s.

The calculations reproduce the measured 0 V easy axis for a tensile strain of estr =
6−4×10−4, along the stressor axis and the experimental easy axes for±150 V are obtained
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Figure 3.47: (a) The longitudinal AMR from theory calculations with a non saturating
magnetic field of 20 mT rotated in the plane of the film. Inset shows the same for a field
of 40mT. (b) The experimental AMR curves with a field of 40 mT rotated in the plane
of the film. ρav is the ρxx averaged over 360◦ in the low field regime. θ is the angle of the
magnetic field with respect to the Hall bar. T=50 K

by increasing/decreasing the estr strain by 3 − 2 × 10−4. These changes in strain agree
with the measured values for ±150 V, and the 0 V strain due to differential contraction
is of the expected order. The resulting microscopic E(M̂) curves for relevant voltages are
shown in Fig. 3.18.

The magnetoresistance calculated microscopically from the same band structure model
combined with Boltzmann transport theory [103] gives AMR at saturation of the same
sign and comparable magnitude to the experiment if we assume the above compensa-
tion ratios. This allows us to microscopically simulate AMR measurements assuming,
as in previous micromagnetics studies of (Ga,Mn)As [142], the single domain behaviour.
Fig. 3.47(a) shows the results of simulations and Fig. 3.47(b) the experimental data for
the situation where a magnetic field of magnitude smaller than the saturation field is
rotated in the plane of the (Ga,Mn)As epilayer. Both theory and experiment show that
these AMR traces are no longer sinusoidal since the magnetisation does not track the ap-
plied rotating field. Ranges of magnetic field angles θ for which resistance is more slowly
varying correspond to angles close to the easy axis, where the magnetisation vector lags
behind θ. Rotation around the hard axis is more abrupt, and in this region the AMR
can develop hysteretic features whose widths increase with decreasing magnitude of the
rotating field. (To highlight the possibility for the hysteretic behaviour in the single do-
main model we show in Fig. 3.47(a) calculations for 20 mT field with large hysteresis; at
40 mT used in experiment the hysteresis is unresolved in the theory data.) At +150 V
the hard axis is close to the Hall bar axis resulting in sharper minima than maxima in
the corresponding experimental and theoretical AMR traces, while the trend is clearly
opposite for the -150 V bias data, consistent with the easy axis directions obtained from
the field sweep measurements.

Our detailed understanding of the piezo-electric stressing effects on magnetic anisotropy
in (Ga,Mn)As made it possible to demonstrate electrically induced magnetisation switch-
ing. The bias-dependent hysteresis loops which allow for such a reversal process are shown
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Figure 3.48: (a) Low field magnetic hysteresis curve at +150 V. The field is swept from
saturating negative field at 165◦ to the position show by the black arrow. Then (b) the
piezo-voltage is swept inducing a rotation of the angle of the magnetisation, indicated by
the red arrows. Numbered arrows represent the order and direction of the voltage sweeps.
T=30 K.

in Fig. 3.48(a). With the piezo-voltage at +150V, the initial magnetisation state is pre-
pared by sweeping the external magnetic field from negative saturating field at 165◦ to
the position shown by the black arrow. This causes the magnetisation to rotate from 165◦

to 260◦, at B=0 T (i.e. along the easy axis at +150 V), then to 275◦ for the small positive
field of approximately 18 mT (marked by the black arrow). Then, with the external mag-
netic field held constant the piezo-voltage is swept (Fig. 3.48(b)) and the magnetisation
rotates from 275◦ to 25◦ (i.e. close to the easy axis for -150 V) resulting in a change of Rxy

as shown by the red arrows (The few Ohms discrepancy in the initial value of Rxy arises
due to the 2 mT resolution of the magnet). This sequence switches the magnetisation
from the 4th to the 1st quadrant, where it remains for subsequent voltage sweeps. The
magnetisation can be switched back again by reversing the sequence, with the magnetic
field set to the opposite polarity.

3.2.5 Domain wall width and angle

This subsection presents joint experimental and theoretical study [130] carried out in
collaboration with Hitachi Advanced Research Laboratory in Japan and University of
Nottingham.

We investigate magnetic domain walls in an in-plane magnetised (Ga,Mn)As dilute
moment ferromagnetic semiconductor. The high-resolution electron holography technique
used in the experiments provides direct images of domain wall magnetisation profiles.
The experiments are interpreted based on microscopic calculations of the micromagnetic
parameters and Landau-Lifshitz-Gilbert simulations. We find that the competition of
uniaxial and biaxial magnetocrystalline anisotropies in the film is directly reflected in
orientation dependent wall widths, ranging from approximately 40 nm to 120 nm. The
domain walls are of the Néel type and evolve from near-90◦ walls at low-temperatures to
large angle [11̄0]-oriented walls and small angle [110]-oriented walls at higher tempera-
tures.

Magnetic domain walls (DWs) are extensively explored for their potential in integrated
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memory and logic devices [3, 136] and because of the number of open basic physics ques-
tions related to their dynamics in external magnetic and electric fields [132, 157, 6, 32, 127].
DMSs are playing an increasingly important role in this research area [153, 149, 31, 79].
p-type (Ga,Mn)As has a saturation magnetisation (Ms) which is two orders of magnitude
lower than in conventional metal ferromagnets, while the magnetocrystalline anisotropy
energies (K) and spin stiffness (A) are comparable to the metals [1, 26, 61, 25]. The low
Ms is due to the dilute Mn moments while the holes in the spin-orbit coupled valence
bands, mediating the long-range Mn-Mn coupling, produce the large K and A.

Among the immediate implications of these characteristics are weak dipolar stray fields
which would allow for dense integration of (Ga,Mn)As micro-elements without uninten-
tional cross-links, macroscopic-size domains, square hysteresis loops, and mean-field-like
temperature dependent magnetisation [145, 142]. The strong in-plane biaxial and uniax-
ial magnetocrystalline anisotropies [44, 145, 142] and weak dipole fields lead also to the
formation of unique segmented domain structures and spontaneous domain reorganisation
with changing temperature [129]. An outstanding feature of DW dynamics in (Ga,Mn)As
is the orders of magnitude lower critical current for DW switching than observed for
conventional ferromagnets [153, 149].

The basic tool for studying DWs is magnetic structure imaging but here the low satu-
ration moment in (Ga,Mn)As is a problem, greatly reducing the sensitivity of conventional
magneto-optical and scanning Hall probe microscopy techniques. For out-of-plane magne-
tised (Ga,Mn)As films, grown under tensile strain on (In,Ga)As, the resolution achieved
with these techniques is limited to ∼ 1µm [119, 153, 141] and the sensitivity is further
reduced for (Ga,Mn)As layers grown on GaAs under compressive strain with in-plane
magnetisation [145, 97, 98]. Imaging internal DW configurations, which are particularly
intriguing in the in-plane materials, requires ∼ 100− 10 nm resolution and has therefore
remained far beyond the reach of the conventional magnetic microscopy techniques.

We present a detailed study of in-plane DWs in (Ga,Mn)As. Direct images of DWmag-
netisation profiles were obtained and the type and width of the DWs and their dependence
on the wall orientation and temperature were determined. The high sensitivity to in-plane
magnetisation is achieved by employing transmission electron microscopy techniques [43]
based on the Lorentz deflection of transmitted electrons by the in-plane component of
the magnetic induction and on holographic electron phase retrieval. The interpretation
of experiments is based on kinetic-exchange-theory [55] calculations of micromagnetic
parameters and Landau-Lifshitz-Gilbert (LLG) simulations.

A Ga0.96Mn0.04As (500 nm)/GaAs (1 nm)/AlAs (50 nm)/buffer-GaAs (100 nm) mul-
tilayer was deposited on a GaAs(001) substrate using molecular beam epitaxy. Electron
transparent uniform (Ga,Mn)As foils with a wide field of view around 100 µm were pro-
duced by selectively etching away the substrate using the AlAs as a stop layer. The
cubic anisotropy favours magnetisation along the in-plane 〈100〉 crystalline axes, and the
uniaxial anisotropy favours magnetisation along one of the 〈110〉 axes. The in-plane uni-
axial easy axis is labelled as the [11̄0] direction, as this was found to be the easy axis
in layers grown under similar conditions in the same system [110]. SQUID magneti-
sation measurements on an unetched part of the wafer yield the cubic anisotropy con-
stant Kc=1.18(0.32) kJ/m3 and the uniaxial anisotropy constant Ku=0.18(0.11) kJ/m3

at T=10(30) K, and the Curie temperature Tc = 60 K.

Electron holography measurements were performed using a 300 kV transmission elec-
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tron microscope equipped with a cold field-emission electron gun (Hitachi High-Technologies,
HF-3300X). The specimen was located at a special stage in between the condenser and
the weakly-excited objective lens. In this configuration the internal magnetic structures
are expected to be undisturbed by the residual magnetic field, which is estimated to be
smaller than 10−4 T and oriented perpendicular to the specimen. Electron holography
experiments were performed within a near-edge sample region, because of the need for
a reference electron wave travelling through vacuum. The electrostatic phase gradient
associated with slight thickness variations arising from inhomogeneous chemical etching
of the sample near edges was compensated for by subtracting a phase image of the sample
in the high temperature paramagnetic state together with a linear wedge correction. The
sampling resolution of the CCD camera used for image acquisition was 1.6 nm, whilst the
numerical phase reconstruction was performed using a low-pass Fourier mask correspond-
ing to the wavelength of 20 nm for holograms acquired with 5 nm-spacing interference
fringes.

Figure 3.49: Lorentz micrographs (left column) and phase images amplified by a factor
of four (right column) acquired at (a) 30.5 K, (b) 25.4, and (c) 9.8 K, respectively. Three
different types of DWs are observed, marked by white arrows: (i) a wall parallel to [11̄0]
that is near-180◦ type at high temperature and near-90◦ type at low temperature; (ii)
a pair of DW that is near-180◦ head-on type at high temperature and near-90◦ type at
low temperature, and (iii) a near-90◦ type wall parallel to [110] that appeared at low
temperature. The local B directions are denoted by black arrows.

Fig. 3.49 shows the DW phase images (right panels) acquired from a 3µm × 1µm
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corner region of the sample foil at 30.5 K, 25.4 K, and 9.8 K, respectively, together with
a larger area overviews (left panels) obtained by Fresnel mode Lorentz imaging [129].
The phase (φ) is amplified by a factor of 4 for clarity, and its cosine (i.e. cos(4φ)) is
displayed in grey-scale. The magnitude and direction of the magnetic induction B are
determined separately from the relationship between the phase gradient and magnetic
induction, ∂φ/∂r = 2πet/hB(r), where e is the electron charge, t is the film thickness,
and h is the Planck constant. The local B directions are parallel to the tangent of the
equiphase lines, as indicated by black arrows in Fig. 3.49, and the magnitude of B is
inverse proportional to the spacing of the equiphase lines.

The Fresnel-mode Lorentz and holographic phase reconstructed images show consis-
tently the location of several DWs by bright contrast lines in the former case and by
sharply bent equiphase lines in the latter case. The high resolution electron holography
then provides the detailed information on the internal structure of the DWs. As expected
the magnitude of B decreases with increasing temperature. The direction of B rotates
gradually across the wall boundary for all detected DWs implying the Néel type walls in
the studied (Ga,Mn)As film. For the DW denoted as (i) in Fig. 3.49, B rotates from the
near [100]/[010] directions towards the [11̄0] direction with increasing temperature, i.e.,
direct images of a transition from the near-90◦ in-plane DW at low-temperatures to a
near-180◦ wall at higher temperatures are acquired. As discussed below this is a demon-
stration in DW physics of the competition between cubic and uniaxial anisotropies in the
(Ga,Mn)As ferromagnet.

Figure 3.50: Magnitude (|B|) and direction (θ ) of B as a function of temperature (T ).
Only results with subtraction of paramagnetic phase images for thickness variation cor-
rection and further linear-wedge correction are displayed.

Fig. 3.50 summarises the variation of the magnitude of B and the angle θ of B mea-
sured from the [11̄0]-axis as a function of temperature for the left end of the DW (i).
Filled symbols, corresponding to the phase images in Fig. 3.49, include linear wedge cor-
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rection for thickness variation near the sample foil edge along the [11̄0]-direction. For
comparison the uncorrected data which show similar behaviour (only the variation of θ
appears smaller) are plotted. Note that the Lorentz wall contrast observed in the near-
edge regions disappeared at temperatures typically 10 K lower than the far-edge region.
This suggests that the local temperature near the edges of the sample foil was higher than
indicated by the thermal read-out from the liquid helium sample holder, due to restricted
or insufficient heat transfer.

8 K 22 K

Figure 3.51: Phase image amplified by a factor of 4, acquired at 8 K (a) and 22 K (b).
x-differentiated (c) and y-differentiated (d) images of (a). The DW positions are indicated
by white arrows. Projected profile of the phase gradient across the [11̄0]-oriented DW (e)
and [110]-oriented DW (f) along lines indicated by white rectangles.

Phase images in Fig. 3.51(a),(b) show vortex-like DWs which clearly demonstrate the
dependence of the magnetisation rotation angle and width of the DWs on the crystal-
lographic orientation of the wall and temperature. The [110] and [11̄0]-oriented walls
evolve from near-90◦ walls at low-temperatures to a large angle [11̄0]-oriented wall and
a small angle [110]-oriented wall at higher temperatures. The width Wm of the walls is
obtained by differentiating the phase images with respect to the x ([110]) and y ([11̄0])
directions (see Figs. 3(c)-(f)) and by fitting the measured phase gradient profile with a
hyperbolic-tangent function [45]. In particular, the By profile along the x-axis for the
narrow [11̄0]-oriented wall was fitted by By = By0 tanh(2(x−x0)/Wm)+C, where x0, and
C are the central position of the wall and a compensation term for the phase gradient,
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respectively. Wm = 45± 10 nm was obtained for the measurement at 8 K and 54± 17 nm
at 22 K. At 30 K the width is, within the error bar, identical to Wm at 22 K. Analogous
fitting procedure for the [110]-oriented walls yield Wm = 85±15 nm for the measurement
at 8 K and 117± 35 nm at 22 K. At 30 K the [110]-oriented walls have not been resolved.

We now proceed to the theoretical analysis of the measured DW characteristics. On a
qualitative or semiquantitative level, the physics underlying the observed phenomenology
of in-plane DWs in (Ga,Mn)As can be consistently described using the well established
kinetic-exchange model presented in sections 2.1 and 3.1. The SOC in the band states
produces the large magnetocrystalline anisotropies and, together with the mixed heavy-
hole/light-hole character, the large spin stiffness [1, 26, 61, 25].

X X‘

(a) (b)

180°Y

Y‘

[110]-oriented:

W =  56 nm

[110]-oriented:

W =  41 nm

Figure 3.52: (a) Microscopic calculations of Ku/Kc for the whole range of doping pa-
rameters considered; inset shows the effective barrier energies for the two walls and the
specified hole and local moment densities. (b) LLG simulations for the low temperature
micromagnetic parameters of the studied (Ga,Mn)As. Magnetisation orientations in the
individual domains are highlighted by arrows.

Based on previous detailed characterisations [57] of the as-grown (Ga,Mn)As materials
we assumed in our calculations a range of relevant hole densities, p = 3− 4× 1020 cm−3

and Mn local moment dopings, xMn = 3 − 4.5% (NMn = 6 − 10 × 1020 cm−3). The
corresponding mean-field Curie temperatures are between 50 and 100 K, consistent with
experiment. First we inspected the theoretical dependence of in-plane magnetocrystalline
anisotropies on growth-induced lattice-matching strains. We found that typical strains in
as-grown materials have a negligible effect on the in-plane anisotropy energy profiles and,
therefore, releasing the strain during the preparation of the thinned, electron-transparent
(Ga,Mn)As foil should not affect significantly the properties of in-plane DWs. The in-
plane magnetocrystalline anisotropy energy is accurately described by Eq. (3.12) with
the in-plane angle θ measured from the [11̄0] crystal axis. The microscopic origin of the
[110]-uniaxial anisotropy component present in most (Ga,Mn)As materials is not known
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but can be modeled by introducing a shear strain exy ∼ 0.001−0.01%. For the considered
range of hole and local moment densities we obtained theoretical T = 0 values of Kc

between approximately 0.5 and 1.5 kJm−3, consistent with the low-temperature SQUID
measurement of Kc. The theoretical Kc values were found to be independent of exy,
which is the only free parameter in the theory and whose magnitude and sign was fixed to
match the experimental low-temperature Ku/Kc ratio. We then calculated the tempera-
ture dependence of Ku/Kc and the corresponding easy-axis angle θ = 1/2 arccos(Ku/Kc)
(the other easy-axis is placed symmetrically with respect to the [11̄0]-direction.) The
results, shown in Fig. 3.52(a), are fairly universal for all p’s and NMn’s considered in the
calculations and consistent with experimental data in Fig. 3.50.

An order-of-magnitude estimate of the theoretical DW width is given [61] by the
length-scale

√
A/Keff , where Keff is the effective anisotropy energy barrier separating

the bistable states on respective sides of the DW. For NMn ≈ 1021 cm−3, the mean low-
temperature value of Keff ≈ Kc/4 ≈ 0.3 kJm−3 (with 20% variation in the considered
range of hole densities) and the spin-stiffness A ≈ 0.4 pJm−1 (nearly independent of p),
yielding typical DW widthWm ∼ 40 nm, in agreement with experiment. Despite the rela-
tively small Ku/Kc ≈ 0.15 and the corresponding small tilt by ≈ 10◦ of the easy-axis from

the [100]/[010] directions at low temperatures, K
[11̄0]
eff ≈ Kc/4+Ku/2 for the larger-angle,

[11̄0]-oriented DW is already about twice as large as K
[110]
eff ≈ Kc/4−Ku/2 for the smaller-

angle, [110]-oriented DW (see Fig. 3.52(a)), explaining the sizable difference between the
respective experimental DW widths at 8 K. The observed temperature dependence ofWm

can be qualitatively understood by considering the approximate magnetisation scaling of
Kc ∼M4, Ku ∼M2, and A ∼M2 [142, 25]. This implies for the [11̄0]-oriented DW that
Wm initially increases with temperature and then saturates at high T while the [110]-wall
width steadily increases with T , becoming unresolvable at Ku(T )/Kc(T ) ≈ 1/2. (Note
that a more quantitative discussion of the temperature dependence ofWm is also hindered
by the relatively large experimental error bars for this quantity.)

Magnetic dipolar fields play a marginal role in the dilute moment (Ga,Mn)As ferro-
magnets which may explain, together with the < 180◦ wall-angle, the Néel type of the
observed DWs despite their relatively small thickness. We further elaborate on this and on
the above qualitative arguments by performing the LLG simulations using micromagnetic
parameters of the studied (Ga,Mn)As material. These calculations, shown in Fig. 3.52(b)
for T = 8 K, confirm the Néel type of the DWs, the evolution from near-90◦ walls at low-
temperatures to larger angle [11̄0]-oriented walls and smaller angle [110]-oriented walls
at higher temperatures, and the increasing anisotropy of the DW widths with increas-
ing temperature with Wm ranging from 40 to 100 nm. This leads us to the conclusion
that our combined experimental and theoretical work represents an important extension
to our understanding of the micromagnetics of in-plane magnetised (Ga,Mn)As down to
the smallest relevant length-scale, the individual DW width. Since our findings are likely
unaffected by the constraints of the experimental technique on the lateral and vertical
sample dimensions, our approach has a generic utility as a basis for DW studies in dilute
moment ferromagnets.
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3.3 Overview of results in transition metal systems

Now we turn our attention to theoretical results obtained for metallic multilayers using
our tight-binding model. As mentioned in the introduction, this work includes the first
stage of developing a coherent model of crystalline and transport anisotropies in metallic
multilayers. We start with choosing a suitable realistic tight-binding parametrisation,
compare results of the newly developed code to ab-initio calculations and check the inter-
nal consistency of our numerical predictions focusing on magnetocrystalline anisotropies.

In the next stage, which is beyond the scope of this work, we aim to extend our
model to Landauer-Büttiker transport formalism in the framework of equilibrium Green’s
functions for which a tight-binding parametrisation assuming orthogonal basis set and
interactions to the first nearest neighbour would be the most suitable starting point. On
the other hand, to our best knowledge, no standard parametrisation of transition metals
is restricted only to the first nearest neighbours. Therefore, in this section, we use three
standard transferable parametrisations introduced in Subsec. 2.2.3 and analyse the band
structures and MAE which they produce for systems with cobalt, platinum, and iron. We
select these three elements since they possess room temperature ferromagnetism (Co and
Fe) and relatively strong SOC (Pt) and since their compounds have been studied both
experimentally and theoretically by relativistic full-potential LAPW methods [115, 116],
providing a valuable benchmark for our modelling and code.

After comparing all parametrisations on the level of bulk monoatomic crystals, we re-
sort to the extended Harrison parametrisation as the most suitable for multilayer systems
and calculate the DOS and MAE for CoPt and FePt ordered alloys, both for bulk crystals
and for thin films. In addition to comparisons to existing results the convergence of our
numerical calculations is investigated. We conclude this section by evaluating local MAE
and ADOS of a thin film which is a quantity directly related to TAMR, a transport effect
that we aim to study in future.

3.3.1 Bulk elemental metals

In this subsection we compare our tight-binding band structures with LAPW results for
bulk fcc Co and Pt and for bulk bcc Fe. We do not consider the hcp lattice for Co as
our aim is to model the L10 CoPt structure (alternating Co and Pt layers in fcc lattice),
moreover the Mehl parametrisation is only available for fcc and bcc lattices. The com-
parisons are better visualised on paramagnetic states with fewer bands crossing the Fermi
level. Note that the ferromagnetic exchange splitting of the extended Harrison and Mehl
tight-binding parameters is optimised to produce ferromagnetic band structures match-
ing the LAPW results. As explained in subsection 2.2.4 we omit the exchange splitting
of the S-K parameters included in the extended Harrison parametrisation and keep only
exchange-split on-site parameters. Nevertheless, we obtain spin magnetic moments of fcc
Co and bcc Fe which differ from ab-initio results by less than 6% [76]. The band struc-
ture of Pt considers the SOC with λp = 0.05655 Ry and λd = 0.0109 Ry [76] in case of
the tight-binding model. We obtained the LAPW results using the standard WIEN2k
package.

Fig. 3.53 compares LAPW band structures of fcc bulk crystals of Co and Pt with
results obtained using the Harrison, extended Harrison, and Mehl parametrisations. The
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(a) Co, Harrison p. (b) Pt, Harrison p.

(c) Co, ext. Harrison p. (d) Pt, ext. Harrison p.

(e) Co, Mehl p. (d) Pt, Mehl p.

Figure 3.53: Band structures of paramagnetic bulk fcc Co and Pt. The red curves are
obtained by our tight-binding codes using the parameters given below each panel. The
green reference curves obtained by LAPW method are the same in all rows. The lattice
constant is 7.45 a.u. for Pt and 6.45 a.u. for Co. The tight-binding band structures were
shifted in energy to allow for the most accurate comparison to LAPW in the vicinity of
the Fermi energy, 0 Ry. The path through the fcc Brillouin zone connects points of high
symmetry with the standard notation (Bilbao Crystallographic server).
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same trend can be seen for both metals: The Harrison parametrisation considering only
the second nearest neighbours shows the poorest agreement with LAPW. As admitted
by Harrison [41], a good result for the s-like band would require consideration of more
neighbours which is against the nature of his minimalistic but most elegant parametrisa-
tion. The extended Harrison parametrisation considering besides other improvements also
the third nearest neighbours shows much better agreement with the LAPW bands in the
vicinity of the Fermi energy (origin of the vertical axis) but the bottom of the s-like band
remains too low. The best match with LAPW is obtained with the most sophisticated
Mehl parametrisation considering in total over 300 neighbours.

(a) Fe, Harrison p. (b) ext. Harrison p.

(c) Fe, Mehl p., a = 5.42 a.u. (d) Fe, Mehl p., a = 5.00 a.u.

Figure 3.54: Band structures of paramagnetic bulk bcc Fe. The red curves are obtained by
our tight-binding codes using the parameters given below each panel. The green reference
curves obtained by LAPW method are the same in all panels. The lattice constant is
5.42 a.u. in panels (a,b,c) and 5.00 a.u. in panel (d). The tight-binding band structures
were shifted in energy to allow for the most accurate comparison to LAPW in the vicinity
of the Fermi energy, 0 Ry. The path through the bcc Brillouin zone connects points of
high symmetry with the standard notation (Bilbao Crystallographic server).

Fig. 3.54, in analogy to Fig. 3.53, compares the band structures of bcc bulk Fe. The
same trend is seen as in Co and Pt: The Harrison parametrisation shows the poorest
agreement with LAPW, whereas the Mehl parametrisations produces bands almost iden-

114



(a) Co, all three parametrisations

(b) Co, detail of the plot above

Figure 3.55: MAE of bulk fcc Co, E[100] corresponds to total energy with magnetisa-
tion along the [100] crystal axis. The vertical line shows the natural number of valence
electrons. All data obtained by the tight-binding code.

tical to LAPW for the equilibrium lattice constant. Note that the Mehl parameters are
optimised around the equilibrium lattice constant but the method is also quite robust
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against physically relevant variations in a. Panel (d) of Fig. 3.54 shows band structures
obtained for a reduced by nearly 10% and the agreement between Mehl’s parametrisation
and LAPW is still very good (similar to the agreement between extended Harrison and
LAPW for the equilibrium a shown in panel (b) of Fig. 3.54). However, the lattice con-
stant of the L10 FePt alloy studied in the next subsection is approximately by 30% larger
than the equilibrium lattice constant of bulk Fe so it significantly exceeds the range of
reliability suggested by the authors of the Mehl parametrisation.

Figure 3.56: MAE of bulk bcc Fe, E[100] corresponds to total energy with magnetisa-
tion along the [100] crystal axis. The vertical line shows the natural number of valence
electrons. All data obtained by the tight-binding code.

We conclude that the most complex Mehl parametrisation gives band structures which
are in the best agreement with the LAPW calculation in case of all three considered met-
als. Nevertheless, the complexity and lack of transferability of the parametrisation is un-
favourable for investigation of more complicated crystal structures of magnetic multilayers.
The next candidate for our further use is therefore the extended Harrison parametrisation
considering its second best agreement with the LAPW bandstructures.

We continue by a mutual comparison of the parametrisations based on the predicted
MAE for Fe and Co. Even though the SOC in Co and Fe is an order of magnitude smaller
than in Pt, it gives rise to MAE in the bulk cubic crystals which can be evaluated numeri-
cally by our code. Rather than comparing our MAE quantitatively to ab-initio predictions,
which would be numerically very demanding, we test whether all three parametrisations
produce the same anisotropy in elemental crystals for which they were optimised. The fol-
lowing exchange and spin-orbit parameters are used: ∆Es = −0.038 Ry, ∆Ep = 0.016 Ry,
∆Ed = 0.124 Ry [114], λp = 0.002 Ry, λd = 0.005 Ry [76] for Co and ∆Es = −0.034 Ry,
∆Ep = 0.037 Ry, ∆Ed = 0.167 Ry [114], λp = 0.0 Ry, λd = 0.004 Ry [120] for Fe. The
lattice constants are aCo = 6.45 a.u. and aFe = 5.42 a.u. as in the previous calculations.
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Figures 3.55 and 3.56 show the dependence of MAE on the band filling calculated by
our tight-binding code using the three parametrisations. In the broader range of band
filling, both crystals possess comparable anisotropy with magnitudes reaching ∼ 0.1 meV.
Closer to the natural filling, the MAE in Co is an order of magnitude smaller than the
value obtained by ab-initio calculations for hcp Co and than our value of MAE in Fe.
This could be due to different alignment of the magnetisation with the bonds between the
1st nearest neighbours in the fcc lattice. Figures 3.55 and 3.56 show that the extended
Harrison and Mehl parametrisations result in similar overall MAE trends, whereas the
minimalistic Harrison parametrisation gives different results. Given the small values of
MAE in elemental Co or Fe, the similarity we obtained between Mehl and extended
Harrison tight-binding results is encouraging and allows us to proceed with the extended
Harrison parametrisation to the more complex bimetallic structures. We must, however,
also caution that the tight-binding modelling should be regarded only as a qualitative or at
most semi-quantitative tool when investigating the subtle relativistic magnetic anisotropy
phenomena.

3.3.2 Bimetallic multilayers

We have shown that the extended Harrison parametrisation is capable of predicting MAE
in reasonable agreement with the very complex and more accurate Mehl parametrisation.
We take advantage of this fact in this subsection where we focus on the L10 CoPt and FePt
alloys and derived multilayer structures of finite thickness. It would be very complicated
to implement the Mehl parametrisation for such systems due to the high number of
neighbours that it takes into account. Moreover, the unit cell of the CoPt and FePt alloys
is not cubic which may compromise the superiority of the Mehl parametrisation optimised
for bulk cubic crystals.

In the rest of the subsection we present results obtained using the tight-binding model
with the extended Harrison parametrisation (including the exchange splitting) and the
experimental lattice constants: a = 7.19 a.u., c = 7.01 a.u. for CoPt and a = 7.30 a.u.,
c = 7.15 a.u. for FePt [116]. For simplicity, we neglect the SOC in Co and Fe and use
λp = 0.05655 Ry and λd = 0.0109 Ry [76] for Pt as mentioned earlier. The hybridisation
of states belonging to sublattices of the spin-orbit or exchange coupled atoms results in
the dependence of the total energy on magnetisation direction.

At first we compare the DOS and the spin moment in ferromagnetic L10 CoPt alloy
obtained by our tight-binding code to LAPW calculation [69] (see also Ref. [116] for
details of the LAPW calculation in Ref. [69]). Fig. 3.57 shows spin-up and spin-down DOS
calculated for three magnitudes of the exchange splitting. (The SOC is not considered
in this particular comparison.) The first value of the exchange splitting assumed in our
tight-binding calculation is taken from the extended Harrison on-site parameters for bulk
ferromagnetic Co which produce the spin moment of bulk Co in reasonable agreement
with the ab-initio result as mentioned in the previous subsection. This default value of
the exchange splitting, denoted by “Exch” in Fig. 3.57, produces DOS which is in a poor
agreement with the LAPW result. Moreover, it produces a very small spin moment per
unit cell Ms = nup(EF ) − ndown(EF ) = 0.96µB/f.u., where nup(EF ) is the number of
electrons in the spin-up state below the Fermi energy. The spin moment obtained by
LAPW is Ms ≈ 2.2µB/f.u. [116]. These discrepancies might be due to low relevance of
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Figure 3.57: Comparison of the density of spin-up and spin-down states calculated by our
tight-binding code (denoted by TB) and by the LAPW method for L10 CoPt alloy. The
red curves are obtained for exchange splitting given by the extended Harrison parametri-
sation and the green curves for an enlarged magnitude. The vertical line marks the Fermi
energy. (The unit cell contains two atoms.)

the exchange parameters (optimised for a bulk monoatomic crystal) to L10 alloys.

There are six independent exchange parameters entering our tight-binding description
of the CoPt alloy that could be optimised by fitting our spin moment and DOS to the
LAPW results before we would proceed to calculations of the MAE. Instead of such
extensive fitting procedure, which is again beyond the scope of the initial stage of our
study, we test the stability of our modelling with respect to the exchange splitting on Co
atoms. For the sake of simplicity, we multiply all the values ∆Es, ∆Ep, and ∆Ed of the
extended Harrison parametrisation by the same factor αCo. We plot the DOS obtained
for αCo = 2.0 and αCo = 2.4 in Fig. 3.57. The agreement with DOS obtained by LAPW
is better for both values of αCo as compared to the default exchange parameter but no
further improvement seems to be achievable by tuning the factor αCo. Unfortunately,
the corresponding tight-binding prediction of the spin moment (Ms = 1.81µB/f.u. for
αCo = 2.0 and Ms = 2.01µB/f.u. for αCo = 2.4) approaches the LAPW result but
remains smaller by almost 10%.

We perform an analogous test for the L10 FePt alloy for which the spin moment
calculated by our tight-binding code for the default exchange splitting on Fe is onlyMs =
2.86µB/f.u., whereas the LAPW result isMs ≈ 3.3µB/f.u. [116]. We multiply the default
exchange splittings on Fe atoms by the same factor αFe and obtain Ms = 3.12µB/f.u. for
αFe = 1.5 and Ms = 3.35µB/f.u. for αFe = 2.0. In contrast to CoPt, the agreement with
the LAPW spin moment is achieved for a reasonably small modification of the exchange
splitting optimised for bulk monoatomic Fe.
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(a) CoPt, convergence to bulk L10

(b) FePt, convergence to bulk L10

Figure 3.58: MAE = E[110] −E[001] of CoPt and FePt structures: L10 (bulk), L10 treated
as a sequence of l layers with periodic boundary conditions (periodic), and finite set of l
layers (slab). The experimental lattice constants are used in all cases. The vertical line
marks the natural number of valence electrons.

We conclude that the extended Harrison parametrisation is relevant in predicting
the spin-polarised DOS of the L10 alloy with modified values of the exchange splitting.
Quantitative agreement of the tight-binding and LAPW calculations of the DOS and the
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spin moment is not achievable by tuning the exchange parameters on the ferromagnetic
atom of the alloy. However, we have determined a range of exchange parameters where
the overall agreement with LAPW results is improved significantly as compared to the
default exchange splitting. We will continue by testing the stability of our predictions of
MAE within this range.

Before the MAE calculated for L10 alloys is presented, we carry out a check of the
implementation of finite multilayers derived from the bulk L10 structure into our model
and code. (We use only the default set of exchange splitting parameters during this check.)
The formal description of systems with broken periodicity along the z-axis is provided
in Subsec. 2.2.2. Even though our formalism and code are more general, here we only
consider multilayers derived from the L10. In addition to bulk L10 with a 3-dimensional
Brillouin zone, we investigate the same structure treated as a sequence of alternating Pt
and Co (or Fe) layers with periodic boundary conditions and a 2-dimensional Brillouin
zone (for simplicity referred to as periodic). A finite multilayer is obtained by removing
the periodic boundary conditions (for simplicity referred to as slab). Deviations of the
numerical predictions for the periodic system, as compared to the 3D L10 alloy, occur
only due to the difference between discretisations of the k-space in the z-direction and of
the subband indices, respectively, and between dimensions of the Hamiltonian matrices.
The results for bulk and periodic systems should converge to each other with growing
number of k-points and number of layers. On the other hand, the electronic structure
of a slab is physically different from the bulk structure and the convergence is expected
only for properties averaged over the whole multilayer (such as the net MAE) with high
number of monoatomic layers.

Fig. 3.58 demonstrates the convergence of MAE obtained for slab and periodic sys-
tems to the MAE of bulk L10 for band filling in the vicinity of the natural values 9.5
(CoPt) and 9 (FePt). The number l counts the monoatomic layers so the dimension of
the corresponding Hamiltonians is 18 ∗ l (our basis of cubic harmonics has 18 elements
including spin). We use the unit meV/atom which can be understood also as meV/layer
as we consider monoatomic layers, whereas the unit cell comprises two atoms. Note that
good convergence is reached for l = 32 in case of the periodic system. The convergence of
the slab seems slightly slower and prohibitively demanding to track to higher l. The 2D
integration uses nk = 60 (14641 k-points in B.z.) and the 3D integration gives converged
results for nk = 30 (226981 k-points in B.z.). Calculations of all three structures assume
the same lattice constants.

Fig. 3.59 shows the dependence of MAE in a finite CoPt multilayer on the band filling
for different sizes of the unit cell. In addition to the reference experimental unit cell,
we consider also c = (cCo + cPt)/2, a = aPt, and a = aCo. (The only calculations in
this subsection which do not assume the experimental values.) Note that the result is
moderately dependent on the unit cell size but the most important feature which is the
sign of MAE at the Fermi level is not affected by small distortions of the lattice geometry.
The easy axis prefers the perpendicular-to-plane alignment in all three cases.

After investigating the convergence and stability of our results with respect to material
parameters we can present the main results of this section. Fig. 3.60(a) shows the MAE
of CoPt and FePt as a function of the band filling. The considered structures are again:
bulk, periodic, and slab. In case of the bulk material we obtain MAE = 0.5 meV/atom at
the Fermi level both for CoPt and FePt which is in good semiquantitative agreement with
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Figure 3.59: MAE = E[110] − E[001] of CoPt thin film comprising 11 layers (slab) with
different sizes of the unit cell: a is the in-plane lattice const., c is the distance of two
successive layers of the same type. The vertical line marks the natural number of valence
electrons.

the experimental and ab-initio theoretical values [116]. According to another theoretical
study using the full-potential LAPW with LSDA+U [115], MAE of the finite multilayer
comprising 5 Co and 6 Pt layers is approximately a factor of 5 larger than the MAE
of bulk L10 alloy. (To our best knowledge, complementary calculation for FePt is not
available). Although we observe an increase of MAE with lowering the number of layers
(see slab with l = 8 in Fig. 3.60(a)), the factor predicted by LAPW calculation for l = 11
is not reproduced. (Note that the natural band filling for Pt terminated multilayer is
slightly above 9.5 but this plays negligible role in the comparison.) The most important
observation is the alignment of the easy axis perpendicular to the layers which is in
agreement with the experiment on a sizable interval of band fillings.

The results presented in Fig. 3.60(a) are obtained for exchange splitting parameters
optimised for bulk monoatomic Fe or Co crystals. Earlier in this subsection, we have
determined the range of exchange parameters where the agreement of the tight-binding
and LAPW predictions of the spin-polarised DOS and the spin moment in the L10 alloys
is improved as compared to the default exchange parameters. Now we test the stabil-
ity of our predictions of MAE with respect to modifications of the exchange splitting
in the relevant range. Fig. 3.60(b) shows that the MAE at the Fermi energy decreases
with increasing values of the exchange parameters both for CoPt and FePt. The effect
is stronger in case of CoPt but the easy axis remains aligned perpendicular to the lay-
ers. It is encouraging to observe that the qualitative agreement with the LAPW and
experimental results is preserved for the exchange parameters ranging from the default
values to approximately twice the default values. Hence, our tight-binding model predicts
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(a) Bulk, periodic, and slab with default exchange splittings

(b) Periodic (l=32) with multiples of default exchange splittings

Figure 3.60: MAE = E[110] −E[001] of CoPt and FePt structures: L10 (bulk), L10 treated
as a sequence of l layers with periodic boundary conditions (periodic), and finite set of l
layers (slab). The experimental lattice constants are used in all cases. The vertical lines
mark the natural number of valence electrons.

consistently three ground state magnetic properties (Ms, spin-polarised DOS, and MAE)
in qualitative agreement with reference ab-initio results.
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(a) MAE, CoPt slab and L10 as reference

(b) ADOS, CoPt slab and L10 as reference

Figure 3.61: Local MAE = E[110]−E[001] and ADOS = DOS[110]-DOS[001] of CoPt thin film
and bulk L10 as reference. The label “surface” denotes the Pt and Co double-layer at one
end of the multilayer, “middle” denotes the Pt and Co double-layer in the middle of the
structure and “3rd layer” is the double-layer half way in between the previous locations.
The experimental lattice constants are used in all cases. The vertical lines mark the
natural number of valence electrons and the Fermi energy. (The unit cell contains one Co
and one Pt atom as we address the double-layers in contrast to previous plots.)
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As an outlook to the next stage of our modelling we calculate the local MAE and
ADOS to investigate the distribution of these quantities in the finite multilayer. We choose
l = 18 (9 Pt-Co double-layers) as the centre of this structure is already approaching bulk
material so a noticeable contrast of the surface and middle layers is expected. The local
MAE and ADOS are calculated according to Eq. (2.73) as projections onto our basis states
localised on the 1st (surface), 3rd (3rd layer), and 5th (middle) double-layer. We observe
the largest contribution to the MAE on the surface of the multilayer which gradually
decreases and is the smallest in the centre. Similar, yet more oscillatory behaviour is
observed in the case of ADOS. Further study of the dependence of ADOS at the Fermi
level on the material and tight-binding parameters is desirable as the tunnelling transport
properties are directly related to this quantity.
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Chapter 4

Summary

4.1 Effective Hamiltonian model

The objective of the first part of this work was to critically and thoroughly inspect the
efficiency of a widely used effective Hamiltonian model in predicting magnetocrystalline
anisotropies in (Ga,Mn)As. We provided an overview of the calculated anisotropies which
show a rich phenomenology as a function of Mn concentration, hole density, temperature
and lattice strains, and compared our theoretical results to a wide range of experimental
works on the level of the magnetic easy axis direction and on the level of anisotropy fields.
The large amount of analysed results has compensated for the common uncertainty in
sample parameters assumed in experiment and allowed us to make systematic comparisons
between theory and experiment on the level of trends as a function of various tunable
parameters. We find this type of comparison between theory and experiment in diluted
magnetic semiconductors much more meaningful than addressing isolated samples, given
the complexity of these systems and inability of any theoretical approach applied to
date to fully quantitatively describe magnetism in these random-moment semiconducting
ferromagnets.

In Sec. 2.1 we introduced the mean-field model used throughout the study and dis-
cussed the correspondence of the shear strain, modelling the broken in-plane symmetry
measured in most (Ga,Mn)As epilayers, with a microscopic symmetry-breaking mecha-
nism. We also estimated the relative strength of the shape anisotropy in Sec. 2.3.

In Sec. 3.1 we focused on modelling and experiments in bare unpatterned epilayers.
The in-plane and out-of-plane magnetisation alignments were studied. For compressively
strained samples the generally assumed in-plane anisotropy is found to be complemented
by regions of out-of-plane anisotropy at low hole densities and low temperatures. This
observation is corroborated by available experimental data showing in-plane anisotropy
in most of the studied epilayers but also the occurrence of the out-of-plane easy axis in
materials with high hole compensation. At the same time, the model predicts out-of-plane
easy axis for high hole densities at all Mn concentrations which has yet not been observed
experimentally.

Next, the competition of cubic and uniaxial in-plane anisotropy components was in-
vestigated. Wealth of experimentally observed easy axis transitions driven by change of
temperature or hole density finds corresponding simulated behaviour. The following gen-
eral trend is observed in most samples: at low temperatures the easy axes are aligned close
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to the main crystal axes, while at high temperatures there is always diagonal alignment.
This trend is in good agreement with our calculation, however, at low hole densities the
calculated and measured easy axis transitions are more consistent than at higher hole
densities where the measured phenomena match the predictions assuming hole densities
typically a factor of two lower than in the experiment.

We next introduced anisotropy fields corresponding to the crystal symmetry and to
three distinct uniaxial strains. We extracted these anisotropy fields from the calculated
data and found their dependence on material parameters. We observed linear dependence
of the uniaxial anisotropy fields on the corresponding strains. Analysing experiments
which determine the anisotropy fields from FMR, AMR, or SQUID measurements allowed
for detailed comparison of the cubic anisotropy component and two uniaxial anisotropy
components (due to the growth and the [110/[110] symmetry breaking). The measured
and calculated anisotropy fields are of the same order of magnitude (∼ 102 − 103 Oe) in
most samples.

In Subsec. 3.1.4 we investigated structures where the post-growth patterning or piezo-
electric stressing was used to induce additional strains along any in-plane direction. The
interplay of the intrinsic and induced anisotropies was studied. We discussed the proce-
dure for obtaining the strain Hamiltonian from the parameters describing the experimental
setup and a finite element solver was employed to find the inhomogeneous lattice relax-
ation in the patterned epilayers. Induced anisotropies were calculated directly using the
total strain tensor. Alternatively, we also introduced a decomposition of the total strain
matrix for any of the studied materials and device configurations into three basis strains
and their additive effect on the total anisotropy. We found an overall semi-quantitative
agreement of theory and experiment on the level of easy axis reorientations due to induced
strains.

Finally, in Sec. 3.2 we presented five combined experimental and theoretical projects
focused on the control of magnetocrystalline anisotropies in (Ga,Mn)As-based devices by
applied electric field, temperature, lattice mismatch relaxation due to post-growth lithog-
raphy, and piezo-electric straining. In subsection 3.2.1 magnetisation switchings induced
by short electric field pulses of a few volts were demonstrated in an all-semiconductor
epitaxial structure. In subsections 3.2.2 and 3.2.3 we performed a detailed analysis of
magnetic anisotropies induced in lithographically patterned (Ga,Mn)As/GaAs microbars.
Structural properties of the microbars were studied by x-ray spectroscopy showing strong
strain relaxation transverse to the bar axis. The observed easy-axes rotations which de-
pend on the thickness to width ratio and orientation of the microbar with respect to the
crystal can dominate the magnetic anisotropy of the unpatterned (Ga,Mn)As epilayer.
The overall good agreement of the microscopically calculated and measured magnetic
anisotropies conclusively demonstrate that the patterning induced anisotropies are of the
magnetocrystalline, SOC origin. In subsection 3.2.4 the non-volatile switching of the
magnetisation direction in (Ga,Mn)As induced by strain applied with a piezo-electric
transducer was shown. In subsection 3.2.5 magnetic domain walls in an in-plane magne-
tised (Ga,Mn)As epilayer were investigated using a high-resolution electron holography
technique. We found that the competition of uniaxial and biaxial magnetocrystalline
anisotropies in the film is directly reflected in orientation dependent wall width. Both
the width and the orientation of the domain walls evolved with temperature and were
interpreted successfully based on our microscopic calculations.
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The limitations of the theory approach employed in this work have been thoroughly
discussed in Ref. [1]. The model, which treats disorder in the virtual-crystal approximation
and magnetic interactions on the mean-field level is expected to be most reliable at lower
temperatures and in the (Ga,Mn)As materials with metallic conductivity. We have shown
that despite the limitations, the model captures on a semi-quantitative level most of
the rich phenomenology of the magnetocrystalline anisotropies observed in (Ga,Mn)As
epilayers and microdevices over a wide parameter range. We hope that our work will
provide a useful guidance for future studies of magnetic and magnetotransport phenomena
in (Ga,Mn)As based systems in which magnetocrystalline anisotropies play an important
role.

4.2 Tight-binding model

The objective of the second part of this work was to develop a microscopic tight-binding
description of complex metallic multilayer structures with strong SOC and compare the
results to established ab-initio calculations in case of simpler structures such as L10 CoPt
and FePt alloys. We started with choosing a suitable realistic tight-binding parametri-
sation introduced in Subsec. 2.2.3 and analysed band structures and MAE which they
produce in systems with cobalt, platinum and iron. We compared the predictions of our
code to ab-initio calculations for elemental crystals in Subsec. 3.3.1 and for multilayers
and thin films in Subsec. 3.3.2. We checked the internal consistency of our numerical
predictions focusing on magnetocrystalline anisotropies. We conclude that the extended
Harrison parametrisation has proven reasonably reliable in calculations of MAE in L10
CoPt and FePt, the expected convergence of the finite-system properties to bulk properties
was observed with growing number of layers. A more detailed study of the dependence of
local ADOS in CoPt and FePt thin films on the tight-binding and material parameters is
desirable. Our modelling is ready the for incorporation of the equilibrium Green’s function
framework for calculating magneto-transport anisotropies in complex metal structures.
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Appendix A

Used constants

A.1 Cubic anisotropy coefficients

The angular dependence of the magnetocrystalline anisotropy energy can be approxi-
mated by a series of terms of distinct symmetry. In Subsec. 3.1.3 we introduced a simple
phenomenological formula consisting of the low-order terms of the cubic and uniaxial
symmetry. Here we explain the choice of the independent cubic terms.

We write the terms using the components of the magnetisation unit vector M̂ : nx =
cosφ sin θ, ny = sinφ sin θ, nz = cos θ, where our angles θ and φ are measured from
the [001] and [100] axis, respectively. The cubic symmetry requires invariance under
the permutation of the coordinate indices x, y, and z. The simplest term satisfying the
condition is equal to unity: n2

x + n2
y + n2

z = 1. The first-order cubic term can be derived
from its second power:(

n2
x + n2

y + n2
z

)2
= 2
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We obtained two lowest-order cubic terms which are mutually dependent. Therefore it is
enough to choose only one of them. In case of Eq. (3.4) the lowest-order cubic anisotropy
term reads: Kc1
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, where Kc1 is an energy coefficient.
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The two second-order terms and the first-order term are mutually dependent. Again, only
one term describes fully the second-order component of the cubic anisotropy. We choose
Kc2

(
n2
xn

2
yn

2
z

)
to be included into our approximate formula in Eq. (3.4).

The derivation of the independent third-order term can start from the first-order term:(
n2
xn

2
y + n2

xn
2
z + n2

yn
2
z

) (
n2
x + n2

y + n2
z

)2
= 5(n4

xn
2
yn

2
z + n2

xn
4
yn

2
z + n2

xn
2
yn

4
z) + (A.3)

+ 2(n4
xn

4
y + n4

xn
4
z + n4

yn
4
z)

+ n6
xn

2
y + n6

xn
2
z + n2

xn
6
y + n6

yn
2
z + n2

xn
6
z + n2

yn
6
z,

from the second-order term (n4
xn

2
y + n4

xn
2
z + n2

xn
4
y + n4

yn
2
z + n2

xn
4
z + n2

yn
4
z)(n

2
x + n2

y + n2
z),

producing the same three cubic terms as in Eq. (A.3) with different prefactors, or from
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(
n2
x + n2

y + n2
z

)4
, producing an extra third-order term n8

x+n8
y+n8

z. Note that these three
ways of derivation also represent three constrictions relating the resulting four distinct cu-
bic third-order terms to lower-order terms. Therefore we can choose only one independent
third-order term.

This derivation procedure can be continued to higher orders but fitting our microscopic
data to the phenomenological formula yields a negligible magnitude even for the third-
order term coefficient.

A.2 Effective Hamiltonian parameters

γ1 γ2 γ3
6.98 2.06 2.93

a1[eV] a2[eV] a3[eV]
-1.16 -2.0 -4.8

c11[GPa] c12[GPa] c44[GPa]
1221 566 600

∆so[eV] Jpd [eVnm
3] alc[nm]

0.341 0.055 0.565325

Table A.1: Luttinger parameters, strain constants, elastic moduli, spin-orbit splitting,
and the kinetic-exchange constant for (Ga,Mn)As and the lattice constant of bulk GaAs
[138, 55].

Table A.1 lists all material parameters describing (Ga,Mn)As used in our codes im-
plementing the effective Hamiltonian model.

A.3 Tight-binding parameters

Harrison ext. Harrison

ηssσ -1.4 -0.9
ηppσ 3.24 2.19
ηppπ -0.81 -0.03
ηddσ -16.20 -21.22
ηddπ 8.75 12.6
ηddδ 0.0 -2.29
ηspσ 1.84 1.44
ηsdσ -3.16 -3.12
ηpdσ -2.95 -4.26
ηpdπ 1.36 2.08

Table A.2: Constants ηαβγ forming the S-K parameters of the Harrison and extended
Harrison parametrisations.
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Table A.2 lists all universal dimensionless constants ηαβγ introduced in Eq. (2.57) for
the Harrison parametrisation [41] and in Eq. (2.58) for the extended Harrison parametri-
sation [114].

Fe Co Pt

rd [a.u.] 1.5118 1.4362 1.9653
red [a.u.] 1.3814 1.2966 1.8380
γs 0.9392 0.7881 1.0093

Table A.3: The radius of the d-orbital in the Harrison (rd) and extended Harrison (red)
parametrisations and the dimensionless parameter γs in the extended Harrison parametri-
sation.

Table A.3 lists all material specific tight-binding parameters introduced in Eq. (2.57)
for the Harrison parametrisation and in Eq. (2.58) for the extended Harrison parametrisa-
tion [114]. Note that we use average values instead of the spin-split red and γs parameters
in case of Fe and Co.

The extensive set of material specific coefficients forming the Mehl parametrisation is
available at http://cst-www.nrl.navy.mil/bind/index.html.
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[86] K. Olejńık and V. Novák. Private communication.
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Molenkamp, and G. Karczewski. Temperature peculiarities of magnetic anisotropy
in (Ga,Mn)As: The role of the hole concentration. J. Supercond., 16:7, 2003.

[109] M. Sawicki, F. Matsukura, A. Idziaszek, T. Dietl, G. M. Schott, C. Rüster, C. Gould,
G. Karczewski, G. Schmidt, and L. W. Molenkamp. Temperature dependent mag-
netic anisotropy in (Ga,Mn)As layers. Phys. Rev., B 70:245325, 2004.

138



[110] M. Sawicki, K-Y. Wang, K. W. Edmonds, R. P. Campion, C. R. Staddon, N. R. S.
Farley, C. T. Foxon, E. Papis, E. Kaminska, A. Piotrowska, T. Dietl, and B. L.
Gallagher. In-plane uniaxial anisotropy rotations in (Ga,Mn)As thin films. Phys.
Rev., B 71:121302, 2005.

[111] Maciej Sawicki. Magnetic properties of (Ga,Mn)As. J. Magn. Magn. Mater., 300:1,
2006.

[112] J. R. Schrieffer and P. A. Wolff. Relation between the anderson and kondo hamil-
tonians. Phys. Rev., 149:491, 1966.

[113] M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and
S. Manus. Low-temperature, in situ tunable, uniaxial stress measurements in semi-
conductors using a piezoelectric actuator. Appl. Phys. Lett., 83:5235, 2003.

[114] L. Shi and D. A. Papaconstantopoulos. Modifications and extensions to harrison’s
tight-binding theory. Phys. Rev., B 70:205101, 2004.
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