We have studied two different systems of compounds, YPd_2Al_3 and $Ce_nT_mIn_{3n+2m}$. Polycrystalline YPd_2Al_3 , a new member of the $REPd_2Al_3$ system, was prepared by arc melting. The X-ray diffraction confirmed that YPd_2Al_3 crystallizes in the hexagonal $PrNi_2Al_3$ -type structure as the other $REPd_2Al_3$ compounds. Magnetization, AC susceptibility, specific heat and resistivity measurements revealed superconductivity below $T_s \approx 2.2$ K. The second part of the work was focused on studies of Ce_2PdIn_8 and Pd-doped Ce_nRhIn_{3n+2} . Single crystals of $Ce_2Rh_{1-x}Pd_xIn_8$ with x=0,0.10,0.15,0.30,0.45,0.85,1 and $CeRh_{1-x}Pd_xIn_5$ with x=0,0.1,0.25 were prepared by solution growth method. The quality of crystals was confirmed by microprobe analysis and X-ray diffraction. The effect of Pd doping on magnetism of $Ce_nRh_{1-x}Pd_xIn_{3n+2}$ was studied by specific heat, magnetization and resistivity measurements. The Pd doping gradually suppresses the Néel temperature in both systems, however the effect is stronger in $Ce_2Rh_{1-x}Pd_xIn_8$. Temperature dependence of resistivity of $CeRh_{0.75}Pd_{0.25}In_5$ was studied in pressure up to 2.2 GPa. Similar to $CeRhIn_5$, the antiferromagnetism is gradually suppressed by the applied pressure, while superconductivity is induced and coexists with antiferromagnetism.