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Abstrakt: Přesné výpočty vibračních energií a vibračních spekter molekul vyžadují 

započítání anharmonických sil. Ve standardním výpočetním protokolu, jsou velké 

vibrační matice Hamiltoniánu diagonalizovány a spektrální intenzity počítány pro 

jednotlivé přechody odděleně. V této práci navrhujeme alternativní přímé generování 

spektrálních křivek na základě časové propagace náhodné vibrační vlnové funkce 

následované Fourierovou transformací. Nedostatek zdlouhavé a výpočetně náročné 

diagonalizace činí metodu vhodnou pro větší molekuly. Je zvláště vhodná pro velké 

Hamiltoniány, které jsou běžně získány v rámci báze harmonických oscilátorů, a 

algoritmus umožňuje paralelizaci. Na modelu dimeru vody jsou diskutovány základní 

vlastnosti konvergence. Metoda je pak použita na vibrační Ramanovy intenzity 

fenchonu, kde byly získány spektrální profily srovnatelné s výsledky získanými 

klasickými přístupy. 

 

Klíčová slova: vibrační spektra, anharmonické korekce, Ramanova spektroskopie, 

ROA, Fourierova transformační metoda 
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Chapter 1  

Introduction 

 

1.1 Computation of Molecular Vibrational Spectra 

 To understand and interpret the experimental data, and obtain information 

about molecular structure, simulations of vibrational spectra are always necessary. For 

biologically relevant systems, such as, peptides, nucleic acids and others, the 

vibrational spectroscopy provides information on structural and conformational details 

[1]. Most of the early theoretical approaches were based on parameterized force fields 

(FF) [2], but nowadays theoretical spectral analysis is based on precise and fast 

quantum mechanical computations [3]. 

 Typical procedure for obtaining vibrational spectra consists of a 

diagonalization of a vibrational Hamiltonian, which provides the transition energies, 

corresponding to peak positions, and wavefunctions with peak intensities. The 

diagonalization is usually performed by the inverse iteration in memory, or by the 

Davidson methods [4]. However, for larger molecules diagonalization becomes 

compute-demanding. In this work, we propose an alternative generation of the spectral 

curves based on a temporal propagation of a trial vibrational wavefunction followed 

by Fourier transformation. Fourier method is convenient for problems when the lines 

are not needed and the Fourier transformation is faster than the complete 

diagonalization. 

For most applications the harmonic approximation [5], is sufficient and widely 

used for large system, such as peptides and nucleic acids. For better accuracy and 

more advanced applications the anharmonic potential parts need to be included [6,7]. 

In that case the harmonic limit is overcame by advanced computational schemes 

including vibrational configuration interaction (VCI) [8], vibrational self-consistent 

schemes (VSCF) [9], many-body perturbation theory (PT) [6] etc. 
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1.2 Organization of the Thesis 

The thesis begins with the common theoretical introduction to molecular 

vibrations. This chapter explains the basic theory of molecular vibrations and 

vibrational normal mode coordinates, which are essential in this study. Next chapter is 

reserved for quantum mechanics and harmonic approximation for a treatment of 

molecular vibrations. The fourth chapter follows harmonic approximation with the 

expansion to anharmonicity and anharmonic corrections to molecular potential. We 

briefly explain perturbation theory (PT2), vibrational self-consistent field (VSCF) and 

vibrational configuration interaction (VCI) theories.  

The second part is focused on Raman scattering and Raman optical activity 

(ROA). Fifth chapter contains an introduction to Raman scattering, Raman 

spectroscopy, optical selection rules and ROA theory. Also Prague ROA spectrometer 

is briefly described, as well as results from an experiment of fenchone enantiomers 

measured at the Institute of Physics at Charles University under supervision of doc. 

RNDr. Vladimír Baumruk, DrSc.  

Finally, last part deals with Fourier transform method and spectra calculated by 

means of this method. First, the theory of Fourier transform method is explained 

followed by its implementation into Fortran code and adjustment for various 

vibrational spectra. Calculations have been done on water dimer to test convergence 

parameter of the method; also some convergence parameters have been tested on 

fenchone as well. Last, but most important are the results of the calculations using this 

method and combining it with anharmonic approximations. The calculations are done 

for (1S) enantiomer of fenchone and compared with experimental ROA and Raman 

spectra of fenchone shown in chapter 5.5. The calculations have been done at Institute 

of Organic Chemistry and Biochemistry under supervision of doc. RNDr. Petr Bouř, 

CSc. 

Last, but not least, are the discussion and conclusion of the method, its 

advantages for generation of molecular vibrational spectra and possible future tasks. 
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Chapter 2  

Molecular Vibrations 

 

2.1 The Classical Approach to the Vibrational-Rotational 

Problem of a Polyatomic Molecule 

For an interpretation of the infrared and Raman spectra of polyatomic 

molecules we are primarily interested in the vibrational motions. For convenient 

computations, we wish to find a way of separating the overall motion into translations, 

rotations and vibrations. 

Let us consider a molecule as a rigid body consisting of N particles with 

geometry shown on Fig. 2.1. The origin of the moving axes x, y, z is by definition at 

the center of mass of the molecule. Let us denote by rs the position vector of the s-th 

particle (atomic nucleus or electron) with respect to the x, y, z axis system. Then the 

following relationship stands for the coordinates of the s-th particle with respect to the 

transitional and space-fixed axis systems (X, Y, Z): 

1( , , )    s 0 iR R S r      (2.1) 

where S(θ,φ,χ) is the three-dimensional orthogonal transformation matrix known from 

derivation of the Euler angles [see Ref. [5], Appendix A]. Rs is a column matrix of the 

components of the position vector of the s-th particle with respect to X, Y, Z, R0 is the 

column matrix of the position vector of the origin of the x, y, z axis system with 

respect to the X, Y, Z axis system (Fig.2.1). 



9 

 

 

Figure 2.1. The space-fixed axis system X, Y, Z and the molecule-fixed 

axis system x, y, z 

  

A reference configuration of the particles or atomic nuclei of the molecule will 

now be defined by means of N position vectors ai (i=1,2…N) which denote the 

positions of the atomic nuclei with respect to x, y, z axes. It is possible to choose a 

different reference configuration which corresponds to the minimum of the potential 

energy of the molecule in a given electronic state. This configuration is called the 

equilibrium configuration of the atomic nuclei and it can be defined by means of 

 i i ir a d  ,     (2.2) 

where di denotes the vector of the Cartesian displacement of the i-th atomic nucleus 

with respect to the reference configuration (Fig. 2.2). 

X

Y
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Figure 2.2. The equilibrium reference configuration (empty dots) and 

an instantaneous configuration (full dot) of the atomic nuclei of H2O 

 

 

2.2   Eckart Conditions  

 Considering again the set of 3N equations (2.1) for N atomic nuclei one can 

notices that on the left side of the equation are 3N variables Riα (i=1,2…N; α = x, y, z) 

while for a nonlinear rigid molecule there are 3N + 6 variables on the right side of the 

equation [3 coordinates of the center of mass, 3 Euler angles and 3N Cartesian 

displacements diα ]. In order to equalize these numbers of independent variables on 

both side it is necessary to introduce six constraints for 3N variables diα . To achieve 

this we will use Eckart conditions 

1

0
N

i

i

m


 id       (2.3a) 

1

( ) 0
N

i

i

m


  i ia d      (2.3b) 

The first condition Eckart condition (2.3a) specifies that during a molecular 

vibration the center of mass of the molecule must remain unshifted. Eq. (2.3b) is the 

second Eckart condition and means that the vibrational angular momentum is zero. By 

use of these constraints we arrive to the expression of the total kinetic energy as 

2 22 ( ) ( ) 2sT R m m m m        

   

           ω r ω r d ω d d     (2.4) 

y

z

0
a2 d2

r2

O

H1 H2
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 Therefore, the separation of the kinetic energy into pure translational, 

rotational and vibrational terms is possible only if the last term in (2.4), called the 

Coriolis energy, is neglected. However, in comparison to the pure vibrational term the 

Coriolis energy is usually smaller and does need to be considered in the vibrational 

part.  

 

2.3 Normal coordinates 

As a consequence of the Eckart conditions discussed in the previous section, 

the vibrations of the molecule can be treated separately from the rotational and 

translational motions, using conditions (2.3a) and (2.3b). To express the equation of 

motion in more simple and compact form we will use matrix notation in expressing 

the kinetic energy T and the potential energy V of our molecule. 

If we call q a column vector, with components given by the 3n mass-weighted 

Cartesian displacement coordinates i i iq m d  then the kinetic energy becomes 

2T  qq        (2.5) 

For small deviations of the atoms around their equilibrium positions, higher 

terms in expansion of the potential energy in a power series of the displacement 

coordinates can be neglected. 

0

,

1

2
i i ij i j

i i j

V V f q f q q higher order terms     
  

(2.6)

 

Since we are not interested in absolute energy we chose V0 to be zero. Further, since 

the equilibrium configuration is by definition at a minimum, the second term in Eq. 

(2.6) is also zero. From that and by using Eq. (2.6) can be written as 

2V  qFq        (2.7) 

where F is a square 3N x 3N symmetric matrix whose elements are the force constants 

ijf . 

 If the F-matrix was diagonal, the solution of the vibrational problem would be 

very simple; we could simply break it into 3N separate problems and solve the 
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Schrödinger‟s equation for one dimensional harmonic oscillators. Therefore, it is 

desirable to find a better set of coordinates which can preserve the diagonal form of 

the kinetic and makes the potential energy matrix also diagonal. Obviously, the Eckart 

conditions [(2.3a) and (2.3b)] must be satisfied as well. 

 These new coordinates always exist for the potential in the form (2.7) and they 

are called „vibrational normal mode coordinates‟. We define a new column vector Q 

with components given by the 3n normal coordinates Qk which is transformed as 

1Q L q  ,     (2.8) 

where L is an orthogonal transformation matrix from the mass-weighted Cartesian to 

the normal mode coordinates. Furthermore, we can express both Eqs. (2.5) and (2.7) in 

diagonal form as 


2T QEQ        (2.9) 

and 

2V QΛQ       (2.10) 

where E is a unit matrix and Λ is a diagonal matrix whose elements are proportional to 

the squares of the normal mode frequencies  

2 24k kv  .     (2.11) 

One can easily derive that 

-1
LG L = E      (2.12a) 

and 

LFL = Λ ,     (2.12b) 

where G is called the kinematic matrix. Combining (2.12a) and (2.12b) yields 

1 L GFL Λ ,     (2.13) 

which is an eigenvalue equation. Thus the columns of L are eigenvectors and the 

elements of Λ are eigenvalues of the characteristic matrixGF .  
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  If matrices G and F are known for a given molecule, the eigenvalues k  from 

Eq. (2.11) are the solutions of the following secular equation: 

0 GF E .     (2.14) 

The G matrix elements can be calculated easily from the known geometry and 

atomic masses of the molecule. For each given solution of Eq. (2.14), i.e. for each 

normal coordinate Qk, the molecule undergoes a simple motion in which all nuclei 

move in phase with the same frequency νk but with different amplitudes Aik. This kind 

of motion is called normal mode of vibration or simply a normal vibration and the 

frequency associated with it is called a normal or fundamental frequency of vibration. 

The normal mode vibrations can be represented, for example, by arrows at each 

nucleus showing their relative displacements (Fig. 2.3). 

 

 

Figure 2.3. Schematic representation of the normal modes of a non-

linear triatomic molecule 

 

 In some cases two or more roots of the eigenvalue equation may coincide and 

two or more normal vibrations may have the same frequency. These vibrations are 

called degenerate and they are usually related to some symmetry elements in a 

molecule. When two frequencies are degenerated, then there are only two independent 

sets of solutions of Eq. (2.13), but an infinite number of ways in which they can be 

chosen. It is because of the homogeneity of Eq. (2.13).  

This method of determining molecular vibrational frequencies is called the GF matrix 

problem or simply GF method. 
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Chapter 3  

Quantum Mechanical Approach to Molecular System 

 

3.1 The Born-Oppenheimer Approximation 

In the previous chapter we have shown that the classical mechanics approach 

provides a correct description of the vibration of a polyatomic molecule. In 

conjunction with the classical electromagnetic theory it can yields general features of 

the vibrational spectra. It cannot, however, explain many details and fails completely 

in the explanation of the intensities and fine structure of the vibro-rotational bands. 

The quantum-mechanical treatment provides not only a correct explanation of such 

problems, but also provides a consistent picture of electronic, vibrational and 

rotational spectroscopy. 

In quantum mechanics, a polyatomic molecule is described by the complete 

molecular Hamiltonian H. In a stationary state [Eq. (3.1)], a wavefunction ψ and 

energy value E are respectively eigenfunction and eigenvalue of H  

E H =       (3.1) 

where H contains terms depending upon the electronic and nuclear coordinates. We 

want to separate the various contributions to H, so that Eq. (3.1) can be divided into 

two equations and treated separately. 

 The idea of separating the electronic and nuclear motions comes from the large 

difference between the mass of the electron and the mass of the nuclei. Since a nucleus 

is much heavier than an electron, electrons have much larger velocities and move as if 

the position of the nucleus is fixed. The Born-Oppenheimer approximation treats the 

electronic motions by assuming that the positions of the nuclei is fixed in space which 

breaks H into sum of the electronic ( eH ) and nuclear ( nH ) Hamiltonian.  

e nH H H 
  
     (3.2a) 
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2

2
,

22

2
, ,

2

2

n

e

i i j ii i ij i

Z Z e
H

m R R

Z ee
H

m r r r

 

    



 


  




   



 

  




    (3.2b) 

where the  and  indexes count nuclei, and i and  j are reserved for electrons. The 

wavefunction ψ(r, R), where r and R are electronic and nuclear coordinates, becomes 

product of two wavefunctions, the nuclear part n (R), dependent on nuclear 

coordinates, and the electronic one e (r, R), parametric dependent on nuclear 

coordinates. 

( , ) ( , ) ( )e n  r R r R R      (3.3) 

The electronic wave equation [Eq. (3.1) for eH  and e ] yields the electronic energy 

levels, which are important for the electronic spectroscopy. However, we shall limit 

ourselves to the nuclear Hamiltonian. 

 From Chapter 2 we know that if we want to separate the nuclear motions into 

vibrational and rotational motions to a fairly good approximation, we must choose 

such molecular reference system which satisfies both Eckart conditions, i.e. Eq. (2.3a) 

and Eq. (2.3b). Such approximation is possible in quantum mechanics as well. If in 

Eq. (3.2b) we chose a reference system which is located at the center of mass of the 

molecule, we automatically satisfy the first Eckart condition. Accordingly, if we 

consider an axis system which rotates with the molecule and satisfies the second 

Eckart condition, the nuclear Hamiltonian nH  can be written as a sum of rH , 

including the interaction of the angular moments of rotation and vibration, and vH , 

the vibrational Hamiltonian, which satisfies the equation  

v v v vH E   .     (3.4) 

Furthermore, the wavefunction n  can be written as the product of a rotational 

wavefunction r  and a vibrational wavefunction v  and more generally as 

e r v   
.
      (3.5) 
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In some cases, however, the total wavefunction cannot be written as a simple 

product such as Eq. (3.5) because the Hamiltonian contains interaction terms between 

different types of coordinates that cannot be neglected. Then the wavefunction is often 

written as a sum of products of type Eq. (3.5) multiplied by appropriate coefficients 

[10] 

v i ei ri

i

c           (3.6a) 

r i ei vi

i

c           (3.6b) 

e i vi ri

i

c           (3.6c) 

This breaks down the Born-Oppenheimer approximation. For example, the Eq. (3.6a) 

describes a situation in which rotation-electronic interaction causes the breakdown, 

etc. Such interactions are of great importance in the analysis of the rotational levels 

but play relatively minor role in vibrational spectroscopy. Eq. (3.6b) describes a 

situation in which a vibrational-electronic (vibronic) interaction causes the breakdown, 

such as in Renner and Jahn-Teller effects (explored in Ref. [2]). Finally, Eq. (3.6c) 

describes a situation in which a vibro-rotational interaction causes the breakdown, 

which is the case of the most known Coriolis interaction. The Coriolis interaction can 

sometimes produce alterations of the absorptions spectra and must be included in 

calculations of accurate force fields of small molecules. 

 

3.2 The Harmonic Oscillator 

As shown in the previous chapters, among a possible set of coordinates for a 

coordinate system rotating with the molecule and satisfying the Eckart conditions, 

normal coordinates are by far the most convenient ones since each normal coordinate 

is associated with one single mode of vibration. Furthermore, the solution of the wave 

equation expressed in the normal coordinates is rather simple because it can be written 

as the product of 3N – 6 one-dimensional harmonic oscillators. Harmonic oscillator in 

quantum mechanics is a well known problem [11,12]. 
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We briefly recall the one-dimensional harmonic oscillator usage for vibrations. 

The Hamiltonian is 

2 23 6
2

2 2
1

( )
2

N
i

i

i i

Q
Q














H = -  .   (3.7) 

Since the normal coordinates without vibrations/translations represent 3N – 6 

independent variables, the wavefunction ψ of the molecule can be written as a product 

of 3N – 6 independent functions ψi (Qi), and the vibrational energy E as a sum of      

3N – 6 terms Ei. We obtain 3N – 6 independent equations 

22
2

22 2

i i
i i i i

i

Q E
Q

 
 


 




-  ,    (3.8) 

which are the Schrödinger equations for a one-dimensional harmonic oscillator. Thus 

we see that the solution of Eq. (3.4) can be expressed as the product of 3N – 6 

harmonic oscillator wavefunctions and the total vibrational energy as the sum of 

energies of these 3N – 6 oscillators.  

The vibrational energy levels, i.e. the eigenvalues from Eq. (3.8), are 

( ) 1
( )

2

k

v k kE v h                   (3.9) 

where k  is the frequency and kv is the vibrational quantum number. The solutions are 

depicted on Figure. 3.1 for vi =0,1,2,3, together with corresponding wavefunctions   

ψn (x)  and spatial probabilities |ψn (x)|
2
. 

The wavefunction (see Ref. [5,10,12]) is  


2

1/ 2( ) ( )exp
2

iv

Q
Q N H Q  

 
  

 
,    (3.10) 

where  ( )iH Q  are the Hermitian polynomials of degree i, 
24 /kv h   and Nv is a 

normalization constant [5]. 

 This solution of the wave equation expressed in terms of normal coordinates is 

usable with minor modifications also for degenerate vibrations [10].  
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Figure 3.1. Equidistant energy levels wavefunctions ψn (x) and spatial 

probability |ψn (x)|
2
  for a harmonic oscillator. [13] 

 

Total vibrational molecular energy is 

3 6

0

1
( )

2

N

v i i

i

E v h




      (3.11) 

From Eq. (3.11) is apparent that for the lowest energy level, all normal modes have 

zero quantum number. This corresponds to the zero-point energy. Important 

transitions in energy levels are fundamental transitions, overtone transitions and 

combination transitions. In fundamental transition all quantum numbers remain zero 

except one, which becomes equal to unity; while in an overtone transition one 

quantum number changes to higher than unity, i.e. > 1. In combination transition two 

or more quantum numbers are changed. 
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3.3 The Anharmonic Potential 

The potential energy of a molecule is usually written as a Taylor expansion in terms of 

a set of displacement coordinates (Chapter 2) 

0

, , , , , ,

1 1 1
...

2 6 24
i i ij i j ijk i j k ijkl i j k l

i i j i j k i j k l

V V f q f q q f q q q f q q q q         , (3.12) 

where the constants 

2 3 4

, , ,i ij ijk ijkl

i i j i j k i j k l

V V V V
f f f f

q q q q q q q q q q

         
                               

 (3.13) 

are called linear, quadratic, cubic, quartic, etc., force constants and the iq  designate 

suitable set of displacement coordinates. As discussed before (see Chapter 2), the zero 

of the energy scale can always be chosen so that 0V  is zero and, furthermore, since the 

molecule in the equilibrium configuration must be at a minimum of energy, we get 

0i i

i

f q  .     (3.14) 

The value of cubic and quartic forces constants is, even for a small molecule, 

very high, but their contribution to the total energy (3.12) is small for small 

displacements, in compare to the quadratic term. For these reasons they are generally 

neglected in the treatment of polyatomic molecules and the potential energy is 

assumed to be pure quadratic in the displacement coordinates.  In this case the 

potential function is called harmonic (see Chapter 3.2), since it describes harmonic 

vibrations of the nuclei around equilibrium positions.  

If terms higher than the quadratic are retained in (3.12), the potential function 

is called anharmonic, since the equations of motion have in this case different 

solutions which describe anharmonic motions of the nuclei. This correction can be 

quite important for vibrations involving the displacement of light atoms, such as 

hydrogen stretching motions which are of rather large amplitude. 
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3.4 The Anharmonicity 

The harmonic treatment of molecular vibration rests on the assumption of 

infinitesimal displacements of the nuclei from their equilibrium positions. In this 

approximation the solution of the vibrational problem is straightforward and can be 

accomplished with the standard GF method outlined in Chapter 2. However, the 

vibrational spectra of molecular systems show definite deviations from the predictions 

of the harmonic model. The most important are: 

(1) The harmonic model predicts that the vibrational levels associated with a given 

vibrational mode should have a constant spacing, i.e. that overtones 

corresponding to quantum jumps 2,3, .etc  , should occur at frequencies 

which are exactly twice, three times, etc., the frequency of the fundamental 

mode. 

(2) The Teller-Redlich product rule is never exactly satisfied by experimental 

frequencies of isotopic molecules. Differences up to some percent are normally 

observed. 

(3) The selection rules for the harmonic oscillator predict that for small 

displacements of the nuclei, overtones and combination bands should be 

forbidden in the vibrational spectrum. However, in measured spectra such 

bands are often observed. 

In order to interpret these experimental results it is necessary to drop the assumption 

of small displacement of the atoms and to use a more complex model in which terms 

higher than the quadratic are retained in the potential function expansion (3.12).  

The main difficulty associated with the anharmonic model is that it cannot be 

treated just as an extension of the harmonic one. First of all, when terms higher than 

the quadratic are retained in the Taylor expansion of the potential, i.e. Eq. (3.12), the 

Schrödinger equation cannot be solved exactly and approximate methods must be 

used. In the next section we shall present quantum-mechanical treatment of the 

anharmonic oscillator. 
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Chapter 4  

Anharmonic Approximations 

 

4.1 Second-Order Perturbation 

 If the potential function (3.12) is introduced into the Schrödinger equation 

(3.1) an exact solution of the type obtained for the harmonic oscillator [Eq. (3.11)] 

cannot be found. However, one can take advantage of the fact that for small 

displacements of the nuclei the quadratic part of the potential is much larger than the 

cubic and quartic. On this basis the vibrational Hamiltonian can be divided into orders 

of magnitude and perturbation theory can be used to calculate the corrections to the 

vibrational energy due to the certain terms.  

 If we limit ourselves to molecules with non-degenerate vibrations we write the 

potential and the energy in orders of magnitude in the form 

(0) (1) 2 (2)V V V V        (4.1a) 

(1) 2 (2)1
( )

2
i i

i

E hc v E E       , (4.1b) 

where  

(0) 21

2
i i

i

V hc q        (4.2a) 

(1)

ijk i j k

ijk

V hc f q q q       (4.2b) 

(2)

ijkl i j k l

ijkl

V hc f q q q q      (4.2c) 
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and   is a parameter defining the order of magnitude of the various terms. We obtain 

from Rayleigh-Schrödinger perturbation theory treatment [12] that the corrections to 

the energy to first and second order are given by  

First order 
(1) (1)

m

E m V m                                                          (4.3a) 

Second order 

(1) (1)

(2) (2)

0 0
m n m m n

m V n n V m
E m V m

E E

 
  

 
 

   (4.3b) 

 In these expressions m  and n  indicate the complete zero-order vibrational 

wavefunctions corresponding to the vibrational zero-order energies 0

mE  and 0

nE  , 

respectively. According to Chapters 2.3 and 3.2, these functions are the product of   

3N – 6 harmonic oscillator wavefunctions, each depending upon one single normal 

coordinate iQ and defined by one single quantum number i . For the simplicity we 

can express the harmonic oscillator wavefunctions by their quantum number and 

implement it in Eqs. (4.3a) and (4.3b). One can find this in Ref. [5,10].  

 Since the matrix elements of the type 

i i iq       (4.4) 

are always equal to zero [10], we conclude that the first-order correction to the energy, 

i.e. Eq. (4.3a), which involves only diagonal matrix elements of the type (4.4), is equal 

to zero. 

 The second-order correction to the energy, i.e. the Eq. (4.3b), is made of two 

parts.The first part involves the diagonal matrix elements of the second-order 

perturbation terms (2)V  and the second, which is involving off-diagonal matrix 

elements of the first-order perturbation term (1)V . The division by the energy 

difference in Eq. (4.3b) makes the second-order perturbation numerically unstable 

because of random degeneracies (see Chapter 2.3). Simple treatment based on 

separation of the degenerate and non-degenerate states was proposed by Matsunaga at 

al. [14].  

 For Raman scattering, which will be discussed in next chapter, second-order 

perturbation correction has to be used because of the nature of the Raman effect. The 
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interaction of radiation with matter can be discussed in two different ways; 

semiclassical, which considers classical concept of the radiation field and quantum 

mechanics material system; quantum field, which treats both the molecule and the 

radiation field as quantized system. Both treatments are based on time-dependent 

perturbation theory. Since the scattering is two-photon process, it requires second-

order perturbation theory to be fully described.  

 

4.2 Vibrational Self-Consistent Field 

 The Vibrational Self-Consistent Field calculation (VSCF) [9,14] starts with the 

vibrational normal modes of the molecule at the molecular equilibrium geometry (see 

Chapter 2.3). By using Born-Oppenheimer approximation (see Chapter 3.1) we obtain 

a vibrational Schrödinger equation for non-rotating molecule as 

2

1 1 12
1

1
( ,..., ) ( ,..., ) ( ,..., )

2

N

N N N N N N

i i

V Q Q Q Q E Q Q
Q

 
     

 
  (4.5) 

for number of modes N, where Qj is the jth normal coordinate. Equation (4.5) neglects 

vibrational-rotational coupling [15], which in some cases can play an important role, 

even for J = 0 states. 

The harmonic approximation (see Chapter 3.2) is not used, however, the VSCF 

method approximates the total wavefunction by the product of single-mode 

wavefunctions ( )i iQ  for the mode i: 

1

1

( ,..., ) ( )
N

N N i i

i

Q Q Q


  .    (4.6) 

and the potential as a sum of effective potentials ( )i iv Q , 

1

1

( ,..., ) ( )
N

N i i

i

V Q Q v Q


  ,   (4.7) 

which are given by 

1( ) ( ) ( ,..., ) ( )
N N

i i l l N l l

l i l i

v Q Q V Q Q Q 
 

   .  (4.8) 
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The effective potential ( )i iv Q can be interpreted as the potential energy of the ith mode 

interacting with the average field of all other modes.  

By substituting Eq. (4.6) and (4.8) into Eq. (4.5) and integrating over 
l , 

where l ≠ i, one can arrive at a set of single-mode VSCF equations,  

2

2
1

1
( ) ( ) ( )

2

N

i i i i i i i

i i

v Q Q Q
Q

 


 
   

 
  ,                         (4.9) 

where i = 1,...,N. The integral (4.8) depends on ( )l lQ ; therefore, the solving of the 

single-mode vibrational Schrödinger equation must be repeated “self-consistently” 

until the energy values ( i ) stabilize. The total energy of the system is expressed as a 

trace of single-mode energy i : 

1

1 1 1

( 1) ( ) ( ,..., ) ( )
N NN

VSCF

N i i i N i i

i i i

E N Q V Q Q Q  
  

     . (4.10) 

The second term in Eq. (4.10) represents self-interaction correction term due to double 

counting of the off-diagonal interaction potentials in the Hamiltonian. 

As the excited states can be treated only approximately within the VSCF 

scheme two alternative approaches were proposed by Daněček and Bouř [6]. In the 

first approximation, only the ground states wavefunctions ( )i iQ  were used for 

determining the potential from Eq. (4.7) (referred to as gVSCF), while in the second 

approximation (referred as eVSCF) excited states were included in the averaging. The 

gVSCF computation requires only one set of the self-consistent iterations for the 

ground state, while this has to be repeated for each excited state in eVSCF.  

The effect of correlation between different modes as a correction to VSCF can 

be obtained by means of the second-order perturbation theory, known as Møller-

Plesset pertubationing [16] or MP2, that has been known to be reliable and 

computationally less demanding than methods such as the configuration interaction 

(CI). It has been shown that Correlation-corrected VSCF (CC-VSCF) improves the 

accuracy [17]. The perturbation correction to the VSCF is also reliable and can be 

computed with efficiency. The procedure is similar to one showed in previous 
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paragraph, except that for the VSCF wavefunction, the perturbation is defined as a 

difference between the exact (Eq. 3.12) and the VSCF potential (Eq. 4.9), 

1

N

i

i

W V v


                                                    (4.11) 

A second-order correction can be obtained from a standard perturbation calculus as  

2

(2) nm

n

m n n m

W
E

E E




  ,                                              (4.12)  

where nmW n W m . Just as mentioned in previous paragraph, the division by the 

energy difference in Eq. (4.12) makes the PT2 numerically unstable because of 

random degeneracies.  

In a paper by Daněček and Bouř [6] a new modified algorithm was introduced to 

separate degenerate and non-degenerate states, in which instead of term (4.12) they 

introduced a different term for all states as 

 
22(2) 1

4
2

n m n mm nn m n mm nn nm

m n

E E E W W E E W W W


         
  

     (4.13) 

where the + sign holds for n mE E  and – sign for n mE E . In this way the exact 

solutions for two-state (n,m) system includes the degenerate case, while for small 

perturbations, where W → 0, its polynomial expansion is equal to Eq. (4.5) up to the 

second power of W. 

 

4.3 Vibrational Configuration Interaction 

The VCI method, where the wave function is expressed as a sum of the 

harmonic oscillator functions, is probably the most universal and most straightforward 

procedure. Unlike for the VSCF and PT approaches, fundamental and combination 

energy spectral transitions can be obtained at the same time. Although it may become 

impractical for large systems [6], it represents an important benchmark as it is, in 

principle, equivalent to the exact Schrödinger solution. 
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By assuming the wavefunction as a sum of harmonic oscillator functions, a 

solution of the Schrödinger equation is directly obtainable from the Hamiltonian 

diagonalization. This method is clearly limited by the size of the Hamiltonian matrix 

that has to be diagonalized. For that reason, number of the harmonic states (i) that do 

not play a significant role must be restricted. This selection of the states can be done 

by introducing a ratio  

fi

f i

W

E E
 


     (4.14) 

so that only values bigger than given limit for at least some ground state or excited 

state f are concerned for the diagonalization. In addition, the speed of the 

diagonalization, scaled as N
3
, becomes a limiting factor in case of large molecules. 

Thus some selection of the states is always necessary. 
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Chapter 5  

The Raman scattering 

 

5.1 The interaction between the radiation field and a 

molecule 

Raman spectroscopy has proved to be a powerful tool for investigating the 

vibrational structure of molecules in their electronic ground state. We shall see that 

this method is often complementary to infrared spectroscopy. Raman spectroscopy is 

based on the inelastic scattering of light by molecules and was first discovered by 

Chandrasekhara Raman in 1928. 

In the context of photons Raman scattering can be described as a collision of 

photon 0 with a molecule on the initial level Ei, where part of photon‟s energy is 

transferred to the internal energy of the molecule, which is excited to the final level Ef, 

while the scattered photon s  has lower frequency (Figure 5.1a). The energy 

difference i fE E E    may appear as vibrational, rotational or electric energy of the 

molecule. The inelastic scattered radiation is called Stokes radiation.  

If the photon 0  is scattered by an excited molecule and the excitation energy 

is transferred to the scattered photon, which now has a higher energy that the incident 

photon (Figure 5.1b).  This super-elastically scattered radiation is called anti-Stokes 

radiation. If the incident photon 0  is scattered with the same energy, i.e. the same 

frequency, then the radiation is elastic and the scattering is called Rayleigh scattering.  
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Figure 5.1. Level scheme for the generation of (a) Stokes radiation 

and of (b) anti-Stokes radiation. [13] 

 

Thus, the spectrum of scattered light consists of these three types of scattering (Figure 

5.2). 

 

Figure 5.2. Schematic spectrum of elastic Rayleigh scattering and 

Raman scattering with Stokes and anti-Stokes lines. [13] 

 

The classical description of the Raman effect starts with the electric dipole 

moment 

 0μ(E) μ E


     (5.1) 

written as the sum of an eventual permanent moment 0μ  and a field-dependent 

contribution indμ E


, where 


 is the electric polarizability. The dipole moment and 

the polarizability can both depend on the nuclear displacements nq  of the vibrating 

molecule. Just as we did for potential (3.12), we can expand dipole moment and 

polarizability into the Taylor series around equilibrium position as 

a) b) 
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3 6

1 0

( ) (0) ...
N

i
i i n

n n

q q
q


 





 
   

 
     (5.2) 

3 6

1 0

( ) (0) ...
N

ij

ij ij n

n n

q q
q


 





 
   

 
  ,   (5.3) 

where 3N – 6 is the number of normal vibrational modes and (0) , and (0)ij , 

represent dipole moment, and polarizability at the equilibrium position q = 0, 

respectively. 

If we describe the nth normal vibration and electric field amplitude as 

harmonic oscillations around equilibrium position as 

  0 cos( )n n nq t q t      (5.4) 

cos t 0E(t) E       (5.5) 

and insert them into (5.1) we obtain  

 

3 6

0 0

1 0

3 6

0 0

1 0

( ) (0) cos( ) cos

1
cos( ) cos( )

2

i

i

N
i

i i n n ij

n n

N
ij

n n n

n n

t q t E t
q

E q t t
q


    


   









 
   

 

 
    

 





 .   (5.6) 

The first term represent the permanent dipole moment of the molecule. The second 

term is responsible for the infrared spectrum, where the intensities of the transitions 

depend on the derivatives /i nq   [5, 13]. The third term is responsible for the elastic 

Rayleigh scattering, while the last term describes the Raman scattering, where the 

intensities of the Raman lines depend on the derivatives /ij nq  . 

Figure 5.3 demonstrates the dependences /i nq   and /ij nq   on spectral activity 

for the three normal vibrations of the linear CO2 molecule. 
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Figure 5.3. Dependence /i nq   of dipole moment and /ij nq  of 

polarizability on the normal mode vibrations of the molecule CO2. 

 

The change of the dipole moment with the vibrational displacements is only 

nonzero for the bending vibrations 2  and for the asymmetric stretching vibration 3 . 

These normal modes are therefore called infrared active. On the other hand the 

polarizability changes for the symmetric stretching vibration 1 , which is called 

Raman active. This demonstrates the infrared and Raman spectroscopy are 

complementary to each other.  

There are many molecules with vibrational modes that are infrared as well as Raman 

active. This arises from symmetry selection rules related to molecular symmetry. 

 

5.2 Symmetry Selection Rules 

Molecules can be classified according to symmetry elements or operations that 

leave at least one common point unchanged. This classification gives rise to the point 

group representation for the molecule. Very useful information about the point group 

is contained in character tables. 

µ 

µ µ µ 

µ µ 
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For a fundamental transition to occur by absorption of infrared radiation the 

transition moment integral must be nonzero. The transition moment integral is of the 

form: 

0 f

v k v d    ;      ( , , )k x y z   ,   (5.7) 

where 0

v  is the wave function for the initial state involved in the transition (usually 

the ground state), and f

v  is the wave function for the final state involved in the 

transition (the excited state); k  is dipole moment, components (x, y, z).  If any of 

these three integrals is nonzero, then the transition moment integral is nonzero and the 

transition is allowed. We can use symmetry considerations to determine whether the 

transition moment integral is zero or nonzero, and hence whether the transitions is 

allowed or forbidden. For the integral to be nonzero, the integrand must be symmetric, 

i.e. the product within integral (5.7) must be symmetric. The ground state wave 

function, 0

v , belongs to the totally symmetric representation of the point group.  The 

symmetry representation for the excited state wave function, f

v , depends on the 

symmetry of the normal mode vibration to be excited. This leads to a very simple rule 

for the activity of fundamentals in infrared absorption: 

 A fundamental transition will be infrared active (that is, give rise to an absorption 

band) if the normal mode involved belongs to the same irreducible representation as 

any one or several of the Cartesian coordinates. 

For a fundamental transition to occur by Raman scattering of radiation the 

transition moment integral must be nonzero. 

0 f

v ij v d    ;     
2 2 2( , , , , , )ij x y z xy xz yz      (5.8) 

The symmetry representations for the polarizability is the same as that of quadratic 

terms involving the Cartesian coordinates, x
2
, y

2
, z

2
, xy, yz, and xz. The requirement 

that integrals (5.8) be nonzero means that there must be a change in polarizability of 

the molecule when the transition occurs. This leads to a very simple rule for the 

Raman activity of fundamentals: 
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A fundamental transition will be Raman active (that is, give rise to a Raman band) if 

the normal mode involved belongs to the same irreducible representation as quadratic 

term of the Cartesian components of the polarizability tensor of the molecule. 

Figure 5.4. demonstrates the symmetric stretch in carbon dioxide, which is Raman 

active because the polarizability of the molecule changes. You can see when you 

compare the ellipsoid at the equilibrium bond length to the ellipsoid for the extended 

and compressed symmetric motion 

 

Figure 5.4. Demonstration change in polarizability ellipsoid of                  

symmetric stretch of carbon dioxide CO2. 

 

5.3 Raman Optical Activity (ROA) 

 Raman optical activity (ROA) is an extension to the Raman scattering that is 

reliant on the difference in intensity of Raman scattered right- and left-circularly 

polarized light due to molecular chirality. The result of ROA measurement gives two 

spectra – difference spectrum (ROA) and sum spectrum (Raman). ROA is a very weak 

effect as value Δ from Eq. (5.9) is of the order ~10
-3

. The theory was experimentally 

proven by Barron in 1973 [26] but the expansion of this field came during 1990‟s 

mainly because of the usage of multi-channel CCD detectors. 

 In theory, we introduce a quantity Δ called circular intensity difference, which 

is defined as a ratio of ROA and Raman signal 

R L

R L

I I

I I


 


 ,    (5.9) 
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where RI and LI , are the scattered intensities in right-  and left-circularly polarized 

incident light, respectively. For full description of Raman scattering, an electric dipole 

approximation was sufficient enough, but to describe ROA effect we go beyond this 

approximation and include also magnetic dipole and electrical quadrupole terms. 

These contributions can be expressed with a tensor of molecular polarizability   

(electric dipole – electric dipole) and two tensors of optical activity 'G  (electric 

dipole – magnetic dipole) and A  (electric dipole – electric quadrupole). In that 

sense the Eq. (5.9) for isotropic ensemble of chiral molecules measured in ICP 

(incident circular polarization) ROA in backscattering geometry (see Chapter 5.4) 

transformers into 

   

 

2 2'

22

1
48

3

2 45 7

R L

R L

G A
I I

I I c

 

  

 
     

  
 

,   (5.10) 

where   is isotropic invariant of the tensor of polarizability , 

    1/3 1/3 xx yy zz         and  
2

  ,  
2

'G  and  
2

A  are 

anisotropic invariants of the tensor of polarizability and tensors of optical activity, 

    
2

' 1/ 2 3G           and    
2

1/ 2A A      [27]. This 

equation is valid for Rayleigh scattering, but to convert it for Raman scattering one 

must substitute tensors of molecular properties with Raman tensors of vibrational 

transition between ground and excited vibrational states nν and mν. For example,   

is substituted with n m   . 

 

5.4 Experimental arrangement in ROA spectroscopy 

 Typical ROA spectrometer consists of incident laser (mostly argon laser), fast 

imaging spectrograph and cooled CCD detector. In ICP ROA spectrometer (see Fig. 

5.5) incident light is modulated by electro-optical modulator (Pockels cells), which 

switches between right- and left-circularly polarized incident light. In contrast, SCP 

(scattered circular polarization) ROA is based on polarization splitter, which separates 

right and left circularly polarized components of the scattered light. 
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Figure 5.5. Two equivalent ROA experiments: (a) in ICP ROA 

arrangement 
R LI I is measured, where 

RI and 
LI  are intensities of 

scattered non-polarized light from right- and left-circularly polarized 

incident light, respectively. (b) in SCP ROA arrangement 
R LI I  is 

measured, where 
RI and 

LI  are intensities of right- and left-circularly 

polarized components of scattered light, respectively, while incident 

light is linear or unpolarized.  

 

 

Prague ROA spectrometer at the Institute of Physics of the Charles University 

(Fig. 5.6) was inspired by apparatus from L. D. Barron‟s group at University of 

Glasgow. Apparatus uses variant ICP in backscattering geometry with electro-optical 

modulator (EOM), which allows switching between right- and left-circularly polarized 

light. More details about the apparatus can be found in doctoral thesis of J. Kapitán 

[28]. 



35 

 

 

Figure 5.6. Arrangement of ICP ROA spectrometer for backscattering 

geometry built at the Institute of Physics of the Charles University in 

Prague.  

 

5.5 Results  

 At first I was introduced in detail to spectrometer shown on Fig. 5.6. After that 

I did a test measuring on α-pinene with exposure of 0.5s, 250 accumulations and 2 

frames. Then I prepared 1ml of (1S)-(+) and (1R)-(-) fenchone enantiomers into 

centimeter‟s cuvette. Fenchone enantiomers were measured with 0.4s exposure, 300 

accumulations and 4 frames. Their Raman and ROA spectra are pictured on Fig. 5.8. 

Clearly, Raman spectrum of (1S)-(+) enantiomer have a fluorescent background and 

cannot be used for theoretical comparison. For that reason, we used data that were 

measure by M. Kubáňová that were published in her diploma thesis from 2009 [29].  

Fenchone is natural organic compound classified as a monoterpene and a 

katone. It is a colorless oily liquid. Fenchone is a constituent of absinth and the 

essential oil of fennel and it is used as a flavor in foods and in perfumery. It has two 

enantiomers (1S) and (1R) which are shown in Fig. 5.7. 
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Figure 5.7. Fenchone enantiomers‟ structural formulas. (1S)-(+) (left) 

and (1R)-(-) (right) [18]. 

 

 

Figure 5.8. Raw Raman and ROA spectra of fenchone enantiomers 

(1S) and (1R) measured in ICP ROA backscattering geometry with 

0.4s exposure, 300 accumulations and 4 frames. 
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Chapter 6 

Fourier Transform Method 

 

6.1 Introduction 

In standard computational protocols of the vibrational spectra, a large 

vibrational Hamiltonian matrix is diagonalized, and spectral lines are calculated for 

individual transitions separately. For large Hamiltonian matrixes this becomes a 

problem as the lengthy diagonalization of the large matrixes makes the computation 

more demanding. We propose an alternate direct generation of the spectral curves 

based on a temporal propagation of a trial vibrational wavefunction followed by a 

Fourier transformation. The lack of the computer-memory demanding diagonalization 

makes the method suitable for large molecules. Fig. 6.1 demonstrates classical 

approach to molecular vibrational spectra calculation compared with our Fourier 

transform method. 

  

Figure 6.1. Schematic representation of the two ways of simulating vibrational 

spectra: (top) by the usual way discrete energies are found by a Hamiltonian (H) 

diagonalization, the intensities (I) are obtained  from the eigenfunctions  and dipole 

moment , and the spectrum s(E) is created by a convolution with an arbitrary peak 

shape f. (Bottom) within the Fourier method, a spectral function (S) is let to develop in 

time, providing the spectrum in the energy domain.[19] 

 

Hi = Eii Ii = |<G||i>|
2 s(E)=f(Ei)Ii

 

S(t)(H,) s(E) = S(t)e
-iEt/ħ

dt 

(t)S(t)S(t)f(Ei)Ii
 

E E E 

E 

t 
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6.2 Theory 

 Let us have a Hamiltonian H and the stationary Schrödinger equation 

KH K E K . Every time-dependent wavefunction can be written as a sum  

( ) /

1,

( ) Ki E t

K

K N

t d K e 



 
 ,         (6.1)  

and propagated according to Schrödinger‟s time equation )()( tHti   , so that  

2)(
2

1
)()()( dttdtttdtt    .   (6.2) 

At each step we used )()( t
i

H
t 


  , )(2)2()()( 2 dttdtttdtt   , and the 

wavefunction was renormalized.  

 Further, we suppose that it is relatively easy to obtain vibrational ground state. 

The harmonic oscillator wavefunction obtained from the harmonic part of the 

Hamiltonian is usually very close to the true vibrational ground state [5,6]. But also 

the exact ground state can be obtained by the Davidson diagonalization schemes [4] as 

the first eigenvector even from large anharmonic Hamiltonians. The ground state  

wavefunction can be propagated analytically as  

  /
( ) Gi E t

G t G e





,     (6.3)  

where EG is the ground state energy. Additionally, we propagate a random function 


K

K

R

KR d  , and integral 

*
ˆ( ) ( ) ( )R R Gt t t μ μ ,    (6.4) 

 where μ̂  is the dipole moment operator. Furthermore, we get 

*
ˆ( ) KGi tR

R K

K

t d K G e


μ μ .   (6.5) 
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which can be Fourier-transformed as  


 dtet ti

RR

 )()( μμ

    

(6.6) 

                                     
*

ˆ2 ( )R

K KG

K

d K G     μ . 

Than we define an absorption spectrum as 

2

2

2
ˆ ˆ( ) | ( ) | ( )

4
R R KG

K

dN
I K G G K

 
    


  μ μ . μ .       (6.7) 

In the derivation of Eq. (6.7) we used an approximate relation  

)(
2

1
)()( '''''' 


  GKKKGKKG

d
        (6.8) 

valid for approximate "-functions" in a form of Gaussian bands with a bandwidth d,  

)/()(
2)/(   de d

d

 ,     (6.9) 

and replaced the state weights by the average, Nd R

K /1|| 2 . The averaging can be 

realized by propagating M vectors (ideally M ) and averaging the intensities, so 

that we get the absorption index as    

3
1,

1
( ) ( )

9.184 10
R

R M

I
M

  







 .         (6.10) 

  

6.3 Implementation [Ref. 19] 

The algorithm derived above was implemented into Petr Bouř‟s program S4 [20] as 

follows: 

1) Calculate Cartesian derivatives of a dipole (by Gaussian) Rμμ  /C ; if 

required, calculate also second dipole derivatives )/(2
RRμμ CC , by a 

numerical differentiation. 

2) Transform the first (second) derivatives into the normal mode coordinates (Q), 
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using the Cartesian-normal mode transformation matrix S,                
CQ S.μμ   

(
CCQQ S.S.μμ  ). 

3) Construct the vibrational Hamiltonian matrix H in the harmonic oscillator basis 

{i}. In the current work, the Hamiltonian operator was in sense of Eq. (3.12)  

 
      


M

i

M

j

M

k

M

l

lkjiijkl

M

i

M

i

M

j

M

k

kjiijkiii QQQQdQQQcQPH
1 1 1 11 1 1 1

222

24

1

6

1
)(

2

1


                     

(6.7) 

where ii QiP /  , i are the fundamental frequencies. All cubic (cijk) and 

semidiagonal (dijkl, where at least two indices were the same) constants were 

included. The size of the Hamiltonian was controlled by skipping of the lowest-

frequency modes and by considering harmonic states that significantly interact 

with the ground or fundamental (F) vibrations (  | | /i i FV F E E threshold   , 

where V are the last two sums in (6.7)). Only non-zero elements of H are stored in 

a memory. 

4) Calculate the ground eigenvector dG ( ,G i i

i

G d  ) from GGG E dH.d  , 

by a Davidson iteration. 

5) From dG, calculate vector uG, , ,
ˆ(0) | |G i G i j i

j

d  u μ , where 

.QQ.μ.Qμμ QQQ )2/1(ˆ  . 

6) Initialize complex spectrum 0)( μ , set time t = 0 and iteration step k = 0. In 

a set of complex trial vectors dR (R = 1...M), set each component dR,i (i=1...N)  

to a random number within (-0.5...0.5) and normalize, so that |dR| = 1. 

7) Increment time t by dt and obtain 

            new vector 
)()()()1(

)2/1()/(
k

R

k

R

k

R

k

R i d2H.ddd 
  , 

 updated second derivatives dt
k

R

k

R

k

R

k

R /)2(
)1()2()()1( 

 dddd2 , 

 and the dipole ti

GRR et  .udμ )( . 

8) Accumulate dipole spectrum dtte R

ti )()()( μμμ
  . 

9) If  k <kimax, goto 7. 

10) From )(μ , calculate the intensity spectrum according to (6.7) and (6.10). 
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6.4 Modification of the algorithm for other spectra [Ref. 19] 

 Raman spectra can be obtained by replacing the dipole operator 

.QQ.μ.Qμμ QQQ )2/1(ˆ   by molecular polarizability .QQ.α.Qαα QQQ )2/1(ˆ  . 

For the backscattering Raman intensity, for example, we get 

 
 





3..1 3..1

,

*

,,

*

,180, ))()()()(7Re(
)/exp(1

)(
 

 


 RRRRR
kT

K
I αααα . The 

constant K was chosen to one, as absolute intensities are rarely measured; k is the 

Boltzmann constant and T temperature. The exponential factor accounts for scattering 

from excited vibrational levels as derived in the harmonic limit. Note that the 

temperature excitations need not to be considered for absorption or VCD in the 

harmonic limit at all, and they influence is supposedly small also in general. 

 By replacing the dipole operator by the electric dipole-magnetic dipole 

polarizability .QQ.G.QGG QQQ ')2/1(''ˆ   (also referred to as the optical rotation 

tensor), and the electric dipole-electric quadrupole polarizability

.QQ.A.QAA QQQ )2/1(ˆ  , we can calculate Raman optical activity. For example, 

the backscattering incident circular polarized light intensity is equal to  

   
   






3..1 3..1 3..1 3..1

,

*

,,

*

,,

*

,

180,

))()()()()()(3Re(

)/exp(1

8
)(

   

 




RRRRRR

R
kT

K
I

AαG'αG'α
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Chapter 7 

Results 

 

7.1 Integration time optimization 

First we have investigated the sensitivity of the method to the size of the 

integration time step. For this we used a water dimer (Fig. 7.1), as a typical simple 

model used in many theoretical studies. The calculation was done in harmonic 

oscillator approximation as we were focused on testing the method and not on the 

exact frequencies of the vibrations. We did a geometry optimalization for water dimer 

in normal mode coordinates by using Gaussian 03, also we obtained the dipole 

derivatives according to the first step in Implementation (Chapter 6.3) with a help 

from program pmz programmed by Bouř [20] used for numerical differentiations and 

generating Gaussian inputs.  

A lot of small programs programmed by Bouř helped us in our study. MCM95 

- was used for drawing and imaging of the molecule, initial symmetrization and 

generation a Gaussian input file; gar – to extract force field, atomic polar and axial 

tensors and polarizability derivatives from Gaussian 03 archive; gg – to get geometry 

from Gaussian output; new1 – to define internal vibrational and symmetry-adapted 

vibrational coordinates; new2 – to define scaling factors and atomic masses for 

vibrations; new4 – to calculate vibrational frequencies in Cartesian coordinates;  and 

later on for analysis: tabprn - generates XY spectrum from intensities in .TAB files; and 

SC95 – as a optical spectra viewer. All these programs can be found on Petr Bouř‟s 

webpage [20].  

For exact Fourier transformation the peak positions [21] in the -spectrum are 

constant. Previous simulation of the vibrational spectra using classical molecular 

dynamics trajectories revealed a significant dependence of the Fourier-transformed 

frequencies on the integration steps [22].  
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Indeed, as shown in Figure 7.2, where the water dimer bending vibration 

frequency is plotted as a function of the integration time step for the peak at 1553 cm
-1

 

from the absorption spectra of the water dimer. Obviously, larger steps introduce 

errors of over 100 cm
-1

, however, for steps below ~ 0.02 fs the frequency stabilizes. 

Thus we can concur that 0.02 fs is sufficient enough because deviations from the limit 

dt→0 are infinitesimal.   

 

Figure 7.1. A representation of water dimer, which was used as a 

simple model in our study. Often called “theoretical Guinea pig”[23]  

 

This is a relatively small fraction of the period of the corresponding harmonic 

motion, fsT 21/2   . Previous studies [22] showed that for harmonic 

wavefunction propagations, longer integration steps of ~ 0.1 fs could be used. We 

explain the need to use shorter integration steps for the anharmonic case even for 

lower-frequency states by a coupling to the higher-frequency states included in the 

Hamiltonian. 

 

Figure 7.2. The dependence of the water stretching band frequency on 

the integration step, for a water dimer.  
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7.2 Band Width Convergence 

 The consequence of the finite interval of time propagation is that spectral 

peaks are not infinitely sharp but have finite widths. Therefore, it is necessary to 

establish the number of the time propagation steps needed to obtain sufficiently 

narrow bands.  

 The band width is documented in Figure 7.3 for the water dimer, where points 

are fitted with a function of type 1t . The band width dependence on propagation time 

was calculated for the water dimer‟s peak at 1553 cm
-1

 in the absorption spectra. As 

expected [21], it is inversely proportional to the integration time ( 1~  t ). As the 

width converges relatively slowly, the method does not seem to be usable for high-

resolution spectra; in that case many spectral points are additionally needed per 

frequency interval, which would further slow down the computations. Fortunately, for 

typical biomolecular spectra inhomogeneous band broadening is quite large, of the 

order of ~20 cm
-1

, so that the propagation times can be limited accordingly. That 

means that for a 0.02 fs time step (used to achieve a high precision of central 

frequencies, demonstrated in Figure 7.2) about 4000/0.2 = 200000 propagation points 

are needed.  

 

Figure 7.3. The dependence of the water bending band width on the 

total integration time for dt=0.02 fs.  
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7.3 Trial Vector Averaging 

 With a sufficiently small integration time step and long enough integration 

time the procedure yields the correct vibrational frequencies [more discussed in next 

section and Discussion]. However, the spectral intensities resulting from particular 

propagation are different as a consequence of the randomly chosen initial vector R . 

Thus, to obtain a stable spectrum, which is independent on the choice of the initial 

conditions, it is necessary to average several runs with random vectors.  

For such case we used fenchone because of the more complex spectrum in 

comparison with water dimer for better illustration of the convergence of the band 

intensities on the number of the initial vectors R . The convergence of the Raman 

band intensities for low and high frequency area of fenchone spectrum are explored in 

Figure 7.4. For this study we used previously determined parameters for exact spectral 

frequencies and sufficiently narrow bandwidth, i.e. integration time step 0.02 fs and 

total integration time 4000 fs.  

The resultant Raman spectra are demonstrated for M = 1, 5, 10 and 20 random 

vectors. While a randomly selected vector (M = 1) provides exact frequencies of the 

peaks but unrealistic relative intensities, the spectral profile quickly stabilizes. It is 

obvious that the intensities converge with increasing number of random vectors 

averaged. 
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Figure 7.4. The dependence of the Raman spectra of fenchone on the 

number of the random vectors used in the propagation (M=1, 5, 10, 

20). Top: basic wavenumber range (400 – 1600 cm
-1

) 

       Bottom: high wavenumber range (2500 – 3500 cm
-1
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A better overview how does the intensity distribution depend on vector 

averaging is in case of ROA spectrum of fenchone. On Figure 7.5 are plotted ROA 

spectra for a different number of averaged vectors. For this study we used M = 1, 10, 

20 and 50. Higher number of averaged vectors was used mainly because we expected 

more deviation in intensity distribution in comparison with Raman spectra. To 

compare the intensity distributions we also plotted a spectrum calculated by direct 

diagonalization method (called exact in Fig. 7.6). For this calculation we used the 

same propagation step and propagation time as in Figure 7.4. 

The dependence on number of vectors averaged is nicely seen for peak at 

around 1500 cm
-1

 and three peaks around 1300 cm
-1

 in lower frequency area of the 

spectrum (Figure 7.5 upper plot). It is very interesting that for the low frequency part 

of the ROA spectra (wavenumber < 1400 cm
-1

) an average of 20 random vectors is 

sufficiently enough for good intensity distribution (three peaks at around 1300 cm
-1

) . 

But for higher frequencies (wavenumber > 1400 cm
-1

) additional vectors, in this case  

50 vectors, had to be averaged for better intensity distribution. This is clear in case of 

peak at around 1500 cm
-1

 and peaks in anharmonic part of the spectra, at around 3100 

cm
-1

. 

Overall we can conclude that for a higher number of averaged vectors the 

intensity distribution fit nicely with the exact solution (Direct diagonalization). For a 

good approximation, 20 averaged vectors are sufficient and more vectors averaged in 

would generate almost the same spectrum as the Direct diagonalization (Figure 7.5 for 

M = 50).  
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Figure 7.5. The dependence of the ROA spectra of (1S) fenchone on 

the number of the random vectors averaged in the propagation (M=1, 

5, 10, 20) as compared to the exact result obtained by the direct 

diagonalization. Top: basic wavenumber range (400 – 1600 cm
-1

) 

Bottom: high wavenumber range (2500 – 3500 cm
-1

) 
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7.4 Code parallelization 

 Nowadays most of the calculations are done on several processors, for the sake 

of speeding up the calculation. In that fashion we wanted to parallelize our code so 

that the calculation can be done on several processors at ones. The idea is to 

parallelize the code in such way that the propagation of the system for each randomly 

chosen vector is done on separate processor. For example, if we want to average our 

calculation with 20 randomly chosen vectors we can run the calculation on, for 

example, 10 processors, where every processor would propagate 2 randomly chosen 

vectors. In that case we would, theoretically, speed up the calculation by 10 times.  

Theoretically, that means that the calculation speed is proportional to number 

of processors used. On Figure 7.6 the dependence of the acceleration on the number of 

processors used in calculation of fenchone IR spectrum is plotted, where dots 

represent the dependence and diagonal line represents ideal or theoretical dependence. 

It is clear from the Figure that the dependence is not linear. This is because of 

evaluating the system before the propagation takes, in case of fenchone, more time 

than the propagation itself. Also some programming corrections would help to 

approach ideal case closer.  

 

Figure 7.6. The dependence of the acceleration on the number of 

processors (done for fenchone IR spectrum calculation, pgf77-OMP-

linux software environment, 4 Intel E7330/2.40GHz CPUs on 

Supermicro X7QCE motherboard) 
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7.5 Calculation Time Scaling 

 Main goal of this study is to show that the FT method becomes faster than 

Direct diagonalization method and Davidson method for larger Hamiltonian 

dimensions. This dependence is plotted on Figure 7.7. 

Davidson method [4] was developed to solve quantum chemistry problems in 

which the matrices have diagonal elements that are both large and varying in 

magnitude. The eigenvalues and vectors are built from the smallest or the largest value 

iteratively, using a limited number of trial vectors („‟Krylov space‟‟). This method is 

very convenient, for example, for the configuration interaction electron computations, 

when only a limited number of the low energy electronic states (often just the ground 

state) is needed. In our FT method we also use iteration (Davidson) method based on 

the Mitin‟s modification of the algorithm [24] to calculate ground state of our 

molecule (see Section 6.3 Implementation). However, for the vibrational problem it is 

usually not sufficient to find a few largest or smallest eigenvalues, rather a complete 

spectrum is desired. For such a task Davidson method quickly becomes impractical, as 

it can be seen from Figure 7.7, where CPU time rapidly prolongs for bigger 

Hamiltonian dimensions. This prolongation is because each new vector has to be 

normalized to the rest and with high number of vectors it becomes impractical.  

 The Householder transformation and the following complete diagonalization 

routine based on the QR decomposition algorithm provide the fastest in-memory 

procedure for the determination of the eigenvectors and eigenvalues of a real 

symmetric matrix [21]. The direct (Householder) method has a N
 3

 dependence on the 

Hamiltonian dimension and huge memory requirements for bigger Hamiltonians. This 

method is also used by Gaussian program package [25].  

 In Figure 7.7 we can see that the complete Davidson diagonalization is faster 

than the time propagation up to Hamiltonian dimension of N~300 and then the time 

quickly grows to immeasurable values. The direct Householder diagonalization is 

more efficient up to N~5000, which can be somewhat improved by skipping the 

projection of the zero-vibrational modes (rotations and translations) from the force 

field. However, because of the N
 3

 dependence and big memory requirements of the 

direct diagonalization method, the FT method of the propagation in time becomes the 

most usable method for larger Hamiltonians (as it can be seen on Figure 7.7). For this 
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set of FT parameters the condition of the efficiency is for Hamiltonian dimension 

higher than 5000. This fact means that the FT method is more convenient for bigger 

molecules, i.e. proteins, peptides etc. We must mention that this calculation was done 

with 10000 steps of 0.02 fs propagation time and only for one random vector, as it was 

just an illustration of the dependence. This means that the actual boundary between 

efficiency of FT method to direct diagonalization for bigger molecules, as they need 

more random vectors and greater propagation time, is higher, but still FT method 

remains faster. 

 

 

Figure 7.7. Time needed for the Hamiltonian diagonalization (for the 

direct and Davidson methods) and for a FT spectral generation, as a 

function of the Hamiltonian dimension. The Davidson iteration was 

limited to wavenumbers below 2000 cm
-1

, the FT computation was 

done with 10000 steps and one random vector only. 
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7.6 Comparison with Experimental Data 

 In previous five sections we tested FT method to determine the optimum 

parameter set for a good simulation of vibrational molecular spectra. In section 7.1 we 

have shown that in order to have exact frequencies the sufficient integration step is 

0.02 fs. In section 7.2 we have determined that for sufficiently narrow peak we must 

propagate the system for at least 3000 fs, i.e. for a 0.02 fs propagation time step we 

need 150 000 propagation steps. Finally we have determined that for a proper ratio of 

intensities we need to average at least over 20 random vectors. Taking this parameter 

set we calculated the Raman and ROA spectra for (1S)-(+) enantiomer of fenchone.  

The comparison with experimental data is given on Figure 7.8. All the 

calculated frequencies are shifted by 200 cm
-1

, so that the first peak at 600 cm
-1 

suits 

the experimental data. This not a good correction from a theoretical point of view, but 

it is a normal procedure in nowadays calculations of spectra. More about this subject is 

discussed in chapter Discussion. The size of the Hamiltonian matrix is determined by 

states considered, in this case 49584 states. Total time of the calculation was 8 days, 

17 hours and 49 minutes.  

Generally, calculated spectra predicted the shape of the spectra and the ratio of 

the intensities with great efficiency, especially in lower frequency area (harmonic part) 

of the spectra, i.e. for frequencies from 0 to approximately 2000 cm
-1

.  The shape of 

the spectra satisfies the experimental data even for higher frequencies. This is nicely 

seen on ROA spectrum where signs of the peaks suit the experimental data. 

Nevertheless, predicted frequencies in higher frequency area (anharmonic part) of the 

spectra don‟t satisfy the experimental data. The reason for this is obviously use of 

sufficiently not good enough potential. Even though we used harmonic approximation 

(see Section 3.2) with VCI (see Section 4.3) with a 0.002   ratio from Eq. 4.14, the 

spectra did not have precise frequencies in anharmonic part of the spectra. VCI 

correction is a mandatory thing in vibrational calculations mainly for sake of time of 

the spectrum calculation. We used this correction in other calculations, as well, also 

with the same   ratio. We also added an option from program S4 [20] called NQ1, 

which determines how many modes can be excited for a basis state, in this case we 

allowed only 3 states to be excited. But this option did not bring us a significant 

improvement. 



53 

 

 

Wavenumber (cm
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)        Wavenumber (cm
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) 

Figure 7.8. Comparison of the calculated Raman (top) and ROA 

(bottom) spectra using FT method with experimental data for         

(1S)-(+)  fenchone. (Calculation was done in harmonic approximation 

with 150000 steps of 0.02 fs propagation steps and averaged with 20 

random vectors). Experimental data were taken from diploma thesis of 

M. Kubáňová [29]. 
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Having this in mind, our next step was to implement other anharmonic 

corrections, i.e VSCF and PT2 (see Chapter 4), to vibrational potential in order to 

calculate more precise spectrum. Also we wanted to see if the combination of the three 

methods would generate the closest spectra to the exact solution or if other would be 

better. 

First additional anharmonic treatment to VCI we used in previous calculations 

was PT2 method (explained in Chapter 4.1) into our calculation of Raman and ROA 

spectra of (1S)-(+) fenchone. PT2 is implemented in S4 program in three ways. 

Normal PT2 calculation to molecular potential without corrections to degenerated 

states is calculated automatically if it is not switch off in S4.OPT file with option 

NOENA. Degenerations corrected PT2, where energies are calculated using Eq. 4.13, 

is switched on by using option ENA2. A deviation of this method, where only states 

that have big corrections, i.e. bigger that given limit, are considered, is also 

implemented in program S4 by using option ENAS. The limit, for which are the 

certain states left out from PT2 correction, is regulated by option ASL. This certainly 

speeds up the computational time of the PT2 correction. 

For our calculation we used option ENAS with ASL limit of 10 cm
-1

. Figure 

7.9 shows the results from this calculation in comparison with the experimental data 

for Raman (upper spectra) and ROA (lower spectra). For this study we used 150000 

steps of 0.02 fs propagation step. It was then averaged with 20 random vectors. 

Procedure works in such way that firstly calculates perturbation to the molecular 

potential [Eq. 3.12] and then uses this potential for a time propagation of the system. 

Total time of this calculation was 6 days, 10 hours and 13 minutes. The Hamiltonian 

had the same size as in previous calculation, i.e. 49584 states. 

Just as in previous figure 7.8, also in this figure all the calculated frequencies 

are shifted, so that the first peak at 600 cm
-1 

suits the experimental data. Exception is 

that in this case the shift in wavenumber is 150 cm
-1

. This is the first significant 

improvement in comparison to previously calculation without PT2 correction [Figure 

7.8]. Also the peak in high anharmonic part (experimentally around 2950 cm
-1

) shifted 

to lower frequencies, i.e. around 3000 cm
-1

, as well as the peak at 1750 cm
-1 

(experimental data) shifted to lower frequencies (around 1850 cm
-1

). 
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Figure 7.9. Comparison of the experimental data for                      

(1S)-(+) fenchone with calculated Raman (top) and ROA (bottom) 

spectra using FT method with VCI and PT2 corrections (Calculation 

was done with 150000 steps of 0.02 fs propagation steps and 

averaged with 20 random vectors, using method ENAS with ASL limit 

of 10 cm
-1

). Experimental data were taken from diploma thesis of M. 

Kubáňová [29]. 
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 Beside the improvements in the position of the anharmonic peaks in Raman 

spectrum, the ROA spectrum suffered in terms of spectral shape. The calculated 

spectrum somehow less coincides with experimental data, mainly the peak at         

1500 cm
-1

 and strong peak in anharmonic part. Paradoxically they got the reversed 

signs in comparison with previous calculations, where the signs of the peaks were 

calculated correctly.  

 Next additional method to harmonic approximation was VSCF (Chapter 4.2). 

This method is implemented into S4 program through option VSCF. Just as theory 

states, the molecular potential is a sum of individual oscillators (atoms), as in Eq. 4.7, 

and the energies from each oscillator is obtained by solving the Schrödinger equation 

for each oscillator (Eq. 4.9) self-consistently until all energies stabilize. In that way 

program S4 first calculates VSCF energies and then builds the vibrational potential V 

before it starts propagating system in time.  

 Resulting Raman and ROA spectra in comparison with experimental data are 

shown on Figure. 7.10. Total time of this calculation was 7 days, 11 hours and 42 

minutes. Also in this case we used shift of wavenumber, so that the first peak at 600 

cm
-1

 suits the experimental data. For these resultant spectra the shift was also          

150 cm
-1

. Also the propagation time, time step and number of random vectors are the 

same as for previous calculation. As in previously calculated spectra, the shape of the 

Raman spectrum exhibits good correspondence with experimental spectrum. The only 

problem is the positions of the peak at 1750 cm
-1

, which is in this case (1800 cm
-1

) 

better in comparison with calculation with PT2 correction (1850 cm
-1

), and the band in 

anharmonic area. The bad correspondence of calculated ROA spectrum with 

experimental data is still present, exact that in this case the shape of spectrum better 

coincides with experimental data. Still, the band in high frequency area has the 

reversed signs and unsatisfying shape. 
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Figure 7.10. Comparison of the experimental data for (1S)-(+)  

fenchone with calculated Raman (top) and ROA (bottom) spectra 

using FT method with VCI and VSCF corrections. (Calculation was 

done with 150000 steps of 0.02 fs propagation steps and averaged 

with 20 random vectors). Experimental data were taken from diploma 

thesis of M. Kubáňová [29]. 
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Lastly, we wanted to combine all of the anharmonic corrections (Chapter 4) 

with FT method to see if it will somehow improve the calculations. So, in this case we 

turn both VSCF and ENAS options in S4 program. One difference from previous 

calculation with PT2 correction is that we used ASL limit of 20 cm
-1

 for the sake of 

time of the calculation. All the other options such as propagation time, time step and 

number of random vectors remained the same. Also the   ratio for VCI remained the 

same as in previous calculations. 

Results are plotted on Figure 7.11. As expected the total time for this 

calculation was the longest and it took 11 days, 10 hours and 32 minutes. First the 

program calculated the PT2 corrections and then it did VSCF calculation. Main 

difference from previously calculated spectra is the shift in wavenumber. In this case 

we shifted wavenumber scale only for 50 cm
-1

. It is also very interesting that the peaks 

are narrower than in previous results.  Besides that, the calculated Raman spectrum 

has very good correspondence with experimental data, even in the high frequency 

area, where the band approaches exact frequency of the one from experimental data. 

Only imperfection is the peak in 1800 cm
-1

, which does not seem to moved in 

comparison with previous results. Worst it is for ROA spectrum, where we somehow 

seem to have lost the three peaks at around 1250 cm
-1

. Also a big negative peak at 

around 1500 cm
-1

 appeared which does not have any experimental basis. On contrary 

to this, the anharmonic band in this case has the correct signs and is not so far from 

experimental one in terms of the shape.  

 

Methods 
Wavenumber 

shift [cm
-1

] 

Calculation 

time [min] 

VCI 200 12589 

PT2,VCI 150 9253 

VSCF,VCI 150 10782 

VSCF,PT2,VCI 50 16472 
 

 

Table 7.1. Values of wavenumber shift and calculation time for four 

types of combination of methods used for calculation of Raman and 

ROA spectra of (1S)-(+)  fenchone. Calculations were done on one 

processor with 150000 steps of 0.02 fs propagation steps and 

averaged with 20 random vectors. 
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Figure 7.11. Comparison of the experimental data for (1S)-(+)  

fenchone with calculated Raman (top) and ROA (bottom) spectra 

using FT method with VCI, PT2 and VSCF corrections. (Calculation 

was done with 150000 steps of 0.02 fs propagation steps and 

averaged with 20 random vectors, using method ENAS with ASL limit 

of 20 cm
-1

). Experimental data were taken from diploma thesis of M. 

Kubáňová [29]. 
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Discussion and Conclusions 

 In this work we explored a new method for generating vibrational spectra by 

propagating trial wavefunction in time and Fourier transforming it to get the frequency 

spectra. First, we introduced the theory of molecular vibrational analysis, anharmonic 

corrections to the harmonic approximation, and basic Raman and ROA theories. Then 

we demonstrated the Prague ROA spectrometer and showed the data that were 

measured for the fenchone compound. The spectra are plotted in Figure 5.8 and as it 

was mentioned above, this data cannot be used for theoretical comparison as they are 

only measured in harmonic part of vibrations, i.e. < 2000 cm
-1

. For that reason, the 

data used for theoretical comparison were measured by M. Kubáňová and published in 

her diploma thesis in 2009. 

 Afterwards we presented the theory of FT method, how is it implemented into 

S4 program [20], and the modifications of the algorithm for calculation of IR, VCD, 

Raman and ROA spectra. Then we tested our method in terms of propagation time 

optimalization, band width convergence and trial vector averaging. Fig. (7.2) shows 

the effect of peak positioning on propagation time step value. From this we 

determined the appropriate time step of propagation (0.02 fs). Fig. (7.3) demonstrates 

the dependence of total time propagation on band width, from which we concluded 

that the total time of more than 3000 fs is needed for a sufficiently narrow band width. 

As it was mentioned above, the method does not seem to be usable for high-resolution 

spectra. For this case we would need many spectral points per frequency interval, 

which would further slow down the computations. Fig. (7.4) and (7.5) show the 

dependence on number of random vectors used in averaging for Raman (Fig. 7.4) and 

ROA (Fig. 7.5) spectra.  From this we concluded that sufficient amount of vectors 

averaged for Raman spectrum is 20 and for ROA is about 20. Generally, 20 random 

vectors averaged is sufficient for higher part of the spectrum (i.e. > 2000 cm
-1

), but 

more vectors are needed for lower frequency range.  

 After that we test more technical details of the method, as the dependence on 

number of processors for code parallelization (Fig. 7.6) and comparing the total time 

fo the calculation with other methods (Fig. 7.7). As it is clear from Fig. (7.6), the code 

parallelization is not ideal, but sufficient for most cases. Fig. (7.7) is probably the most 

pleasant characteristic of the FT method, as it shows how the method becomes 

efficient in CPU time for big Hamiltonian dimensions in comparison with Direct 
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diagonalization (most common method that is used by Gaussian program pack [25]) 

and Davidson method [4]. This means that for large systems such as proteins, the FT 

method is the fastest one and also accurate as the others; Fig. (7.5) shows the 

comparison with spectrum obtained by the Direct diagonalization. 

Then we wanted to compare the data with experiment. We must also point out 

that all the previous calculations were done in harmonic approximation, as we were 

focused mainly on characteristics of the method and not the exact frequencies of the 

vibrations. When we tried to compare calculated spectra with experimental data we 

came to conclusion that some corrections have to be done. First we added VCI 

(Chapter 4.3) correction with appropriate 0.002   ratio from Eq. (4.14) and also 

when that was not enough, we added an option from program S4, called NQ1. Figure 

7.8 compares calculated spectra for harmonic approximation with above mentioned 

corrections. Also we have shifted the spectrum in wavenumber by 200 cm
-1

 in order to 

do a sort of a “calibration”. The used anharmonic approximation approximates well 

low states (< 2000 cm
-1

), but shifts higher states towards higher energies so that 

calculated difference is greater than the actual one. It is clear that by using other 

anharmonic corrections (PT2 and VSCF) the frequencies shift to lower values and we 

only used 150 cm
-1

 for VCI + PT2 (Fig. 7.9)  and VCI + VSCF (Fig. 7.10) and only 50 

cm
-1

 for the combination of all three anharmonic corrections (Fig. 7.11). Even though 

these corrections improved frequency positions; we lost the good match in shape of 

the ROA spectrum as it is shown in for Fig. (7.8). Besides, for VCI + PT2 the 

calculated band profile in anharmonic part of the ROA spectrum had the reverse signs. 

Improvement came with VSCF and for the combination of all three methods          

(Fig. 7.11) the band has almost the exact frequency and relative intensities. Just as 

mentioned above, for a better relative intensity in this part of the spectra, we would 

need to average over more random vectors in order to have better intensities of the 

peaks in high frequency band. Also in future studies of fenchone compound, it would 

be better to use smaller propagation time, as the peaks in Fig. (7.11) are narrower than 

the experimental ones. Also adding NQ1 option in calculation would improve the 

spectrum, as most of the experimental data are measured for the specimen that is 

mostly in ground state. This can increase the time of the calculation as the total time of 

that calculation (Fig. 7.8) was 8 days, 17 hours and 49 minutes. It was still greater than 

for the VCI + PT2 and VCI + VSCF, which took 6 days, 10 hours and 13 minutes, 

resp. 7 days, 11 hours and 42 minutes. As expected the total time for the calculation 
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with all three anharmonic corrections was the longest and it took 11 days, 10 hours 

and 32 minutes. Comparison of both calculation time and wavenumber shift for 

different methods, is shown on Table 7.1. 

In future studies it would be good to look at larger systems with much higher 

number of atoms and to compare the calculation time with the calculation times from 

other methods, mainly with the direct diagonalization. In this way, we can implement 

all the corrections needed while not increasing total calculation time. From Fig. (7.7), 

we see that the FT method becomes the most efficient one for large systems, i.e. for 

approximately more than 1000 atoms. 
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