
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

BAKALÁŘSKÁ PRÁCE

David Slabý

Ditchers

Katerda aplikované matematiky

Vedoućı bakalářské práce: RNDr. Bernard Lidický

Studijńı program: Informatika, obecná informatika

2010

Děkuji RNDr. Bernardovi Lidickému za vedeńı této bakalářské práce a za
mnohé užitečné rady. Dále bych rád poděkoval Janu Jeronýmovi Zvánovci
za tvorbu baĺıčk̊u pro Debian, své manželce Alžbětě za tvorbu hezké herńı
grafiky a také všem přátel̊um, kteř́ı byli ochotni projekt testovat a měli
k němu cenné připomı́nky.

Prohlašuji, že jsem svou bakalářskou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım
zveřejňováńım.

V Praze dne 23. května 2010 David Slabý

2

Contents

1 Introduction 6

2 Game 8
2.1 Graphic User Interface . 8

2.1.1 Splash screen . 8
2.1.2 GUI windows . 9
2.1.3 Main window . 9
2.1.4 Graphics settings window 9
2.1.5 Players management window 10
2.1.6 Game creation window 11
2.1.7 Game lobby window 11
2.1.8 Network connection window 12
2.1.9 Server lobby window 13
2.1.10 Credits window . 14

2.2 Gameplay . 14
2.2.1 Maps . 14
2.2.2 Game screen . 15
2.2.3 Map view . 15
2.2.4 Health and energy 16
2.2.5 Robot movement . 17
2.2.6 Weapons . 17
2.2.7 Score . 20
2.2.8 Chatting and logging 20
2.2.9 Spectator mode . 20
2.2.10 Controls . 21

3 Implementation 22
3.1 Settings and data . 22

3.1.1 Global . 22

3

3.1.2 Players . 23
3.1.3 Maps . 23
3.1.4 Robots . 24
3.1.5 Scripts . 25

3.2 Architecture . 25
3.2.1 Main classes . 25
3.2.2 Application progression 25

3.3 Network communication . 27
3.3.1 Paradigms . 28
3.3.2 Synchronization . 28
3.3.3 Communication protocol 29

3.4 Data structures . 31
3.4.1 Hashmap wrapper, hashmap-vector wrapper 31
3.4.2 Map two-layer quadrant tree 32

4 Artificial players 34
4.1 Basics . 34
4.2 Interface . 35

4.2.1 Game settings . 35
4.2.2 Game state . 36
4.2.3 Robots status . 39

4.3 Implemented scripts . 40
4.3.1 Generic . 40
4.3.2 Stupid . 41
4.3.3 Crumbs . 41
4.3.4 Pathfinder . 41

5 Installation 43

6 Corrolary 44
6.1 Comparison to similar projects 44

6.1.1 Tunneler . 44
6.1.2 GM Tunneler . 45
6.1.3 Liero . 45

6.2 Project evaluation . 46
6.3 Future of the project . 46

Bibliography 48

A CD content 49

4

Název práce: Ditchers
Autor: David Slabý
Katedra: Katedra aplikované matematiky
Vedoućı bakalářské práce: RNDr. Bernard Lidický
E-mail vedoućıho: bernard@kam.mff.cuni.cz

Abstrakt: Ćılem této práce je skloubit hratelnost a myšlenku legendárńı hry
Tunneler s možnost́ı programováńı umělé inteligence pro poč́ıtačové hráče.
Psańı skript̊u a jejich použit́ı ve hře je oddělené od hry samotné, aby autorovi
skriptu stačilo pro úspěšné tvořeńı inteligentńıch robot̊u znát kromě skrip-
tovaćıho jazyka pouze několik funkćı rozhrańı. Zároveň je hra dostatečně
atraktivńı i pro běžné hráče, je snadno ovladatelná a oproti Tunnelerovi
obohacena o daľśı možnosti, např́ıklad výběr zbrańı, mapy i typu robota.
Důležitou možnost́ı je také hrańı na lokálńı śıti.

Kĺıčová slova: Tunneler, hra, programovatelná AI

Title: Ditchers
Author: David Slabý
Department: Department of applied mathematics
Supervisor: RNDr. Bernard Lidický
Supervisor’s e-mail address: bernard@kam.mff.cuni.cz

Abstract: The aim of this work is to combine the playability and the idea
of the legendary game Tunneler with the option of programming artificial
intelligence for computer players. Writing scripts and their use in the game
is separated from the game itself, so the author of a script only has to know
the scripting language and a few interface functions to successfully create
an intelligent robot. At the same time the game is sufficiently attractive to
casual players, it is easy to operate and has some additional features, such
as multiple weapons, maps and robot types. Another important feature is
the option of playing over LAN.

Keywords: Tunneler, game, programmable AI

5

Chapter 1

Introduction

In 1991, Geoffrey Silverton had written a split-screen game for two players,
where two underground tanks were put randomly on an island and their only
quest was to find and destroy the opponent by digging tunnels in the soil and
shooting with some kind of a machine gun. This game, named Tunneler[9],
did soon become a famous one and for several following years many players
considered it to be one of the best freeware multiplayer games. In nowadays,
it was replaced by other, more sophisticated games, but the glory of Tunneler
will never be forgotten.

The main goal of Ditchers is to revive the idea of Tunneler. Majority
of current games is famous for its stunning graphics and cool effects while
the basic principles are quite boring. In Tunneler, we find a few unique
features that new games lack. First, the terrain in the game is modifiable;
modern games are often based on vector graphics with immutable objects
that remain still the same (even if hit with a nuclear bomb). Second, a player
has only a limited information about others and it is what makes the game
interesting. Third, the controls and the screen of a player are as simple as
possible.

Ditchers honors these three features, but to attract today’s player, more
has to be added. Many additions are simply using up capabilities of new
processors and graphic cards, for instance hardware accelerated graphics
enables playing on large maps in high resolution at formidable speed. The
new option of toroid maps greatly extends strategic options. New weapons,
some with quite intriguing features, were added. To make it possible for
more than two players to enjoy the game at the same time the option of
network game was implemented.

6

Last but not least, computer players may be present in the game. Actu-
ally, it is even possible to only watch two computer players how they fight
each other. The unique feature of the possibility of artificial players is the
option of writing own scripts of artificial intelligence for these players. There-
fore the Ditchers project may be interesting not only for common players
who used to enjoy Tunneler, but also for advanced computer users capable
of writing intelligence scripts, who might compare abilities of their created
intelligent robots with others.

To sum it up, Ditchers has three basic goals. First, to remind the glory
of Tunneler by creating an up-to-date remake. Second, to amuse common
players of two-dimensional action games. Third, to provide a comfortable
interface for writing scripts of artificial intelligence.

Figure 1.1: Screen-shot of old Tunneler from 1991

7

Chapter 2

Game

The whole project consists of two applications: the first application, ditcher,
manages everything that is required for local game and also works as the
client part in a network game. The second application, ditchs (which is
shortening of Ditchers server), is a very lightweight program that works as
the server for network games and to start the server means simply to launch
this application, with optional parameters -p/--port portnumber to set
server port (default 8421) and -m/--mute, -v/--verbose to set amount of
console output. This chapter describes ditcher.

2.1 Graphic User Interface

To make game settings as comfortable as possible, it was necessary to wrap
the game into some kind of Graphic User Interface (GUI). The intention was
to keep this GUI simple, lightweight and intuitive.

2.1.1 Splash screen

As in many other games, the first graphics that appears after starting the
game is a splash screen. When loading of game settings and data took longer
than a blink of an eye, the need for something to appear immediately after
starting the application emerged; it is definitely more pleasant to watch an
image depicting the game than a blank screen while waiting for the game to
load. The splash screen is always visible at least for one second.

8

2.1.2 GUI windows

The whole GUI consists of several windows and the user can switch between
them using buttons. When the game is loaded, the main window is shown. At
each moment exactly one window is visible. Diagram of switching between
windows is shown in Figure 2.1.

Main

Graphics

PlayersConnect Create game

Server lobby Game lobby

Local game

Network game

Join game
Game

"Back" or "Leave" button

Window switching button

Figure 2.1: Diagram showing switching between windows

2.1.3 Main window

Main window consists of six buttons. First button, ”Local game”, switches to
the window where a local game is created. Second button, ”Network game”,
switches to the window where user can connect to a remote server. Third
button, ”Graphics”, leads to graphics settings. Fourth button, ”Players”,
shows window where local players may be managed. Fifth button, ”Credits”,
shows information about the whole game and its creators and sixth button,
”Quit”, exits the game immediately.

2.1.4 Graphics settings window

In this window it is possible to set graphics resolution and whether the game
should run in full-screen or in windowed mode. The change is performed
immediately. If the resolution is not supported by user’s graphic adapter, it
will switch to windowed mode.

9

2.1.5 Players management window

Figure 2.2: Players management window

In this window the user can add, remove and edit local players. These
players will be then available in the game.

On the left side of the window there is a list of all local players. The
”+” button adds a new player with initial settings to the end of the list.
After clicking on a player, it is possible to delete the player from the list by
clicking the ”-” button or to modify his attributes.

The first attribute is player’s name by which he will be recognized in
games. Any white-spaces typed are discarded.

The second attribute is player’s robot. Robots do not differ in anything
but their picture.

The third attribute decides whether the player is artificial or human.
When set to artificial, fourth attribute is uncovered.

The fourth attribute is a script of artificial intelligence. This script de-
fines how clever and skilled the artificial player will be.

A few examples of available robots:

10

2.1.6 Game creation window

This window enables user to create a game. A game has only two attributes,
its title and the map which it will be played on. When selecting this map,
a small preview may be displayed under the drop-down list. If the map was
never played before, no preview will appear as it is generated when starting
the game.

When the game is set up, pressing the ”Create” button switches to game
lobby window where players may be added. This window is described in
2.1.7.

2.1.7 Game lobby window

Figure 2.3: Game lobby window

In this window players are chosen to play the game and some additional
settings are done. When the game is ready, it can be launched by the ”Start”
button. It is possible to start the game only if at least two players of different
team (or no team) are in the game.

There is a list of local players on the left side of the window. Next to
players’ names there is a little icon informing whether the player is human
or artificial. On the right side there is a list of players currently in the game.

11

Players in the game are highlighted by arrow in the left list. In network
game, local players are highlighted in the right list as well. User can modify
or remove only local players.

A player is added to the game by selecting and pressing the ”Add” but-
ton. If the map has specified number of players and their homes’ positions,
an empty slot has to be selected when adding a player (except the first player
who will be added to the first empty slot). If the map has unlimited number
of players with random homes position, they are always added to the end of
the list.

It is not possible to add more than two human players. If two are added,
they will play in the split-screen mode. These modes are described in 2.2.2. If
no human player is in the game, it will run in the spectator mode (described
in 2.2.9).

Removing a player from the game is done oppositely to adding, by se-
lecting him in the right list and pressing the ”Remove” button.

There is a drop-down list between these lists where it is possible to select
up to eight teams. A team is then assigned to a player by clicking and then
selecting his team from the other drop-down list. Numbers next to players
in the game indicate their team membership.

The last game modifier is the slider below drop-down lists which sets
how many points a team or player needs to win. User (every user, in network
game) can modify this value by dragging the slider or by clicking ”-” and
”+” buttons next to it.

In the network game, there is also a chat box underneath. Users con-
nected to the game can communicate through it by writing messages and
pressing Enter or clicking the ”Send” button. The message then appears
prefixed by the client’s name in the text area.

2.1.8 Network connection window

The purpose of this window is to enable connecting to a server. Client name
is the identifier by which other clients will recognize this user. Address and
port are parameters of the server. Button ”Connect” is used to establish the
connection. If an error occurs, a message window is displayed and then the
user is returned to this window. If the connection is performed successfully,
game switches to the server lobby window described in 2.1.9.

12

2.1.9 Server lobby window

Figure 2.4: Server lobby window

In this window it is possible to communicate with other clients connected
to the server, to connect to a game or to create one.

The server can be left using the ”Leave” button. Next to it, user can
establish a network game with the ”Create” button. It leads to the window
that was described in 2.1.6.

The list of games is on the left. Only games that had not started yet are
visible. After clicking on a game, a preview of map is displayed (under same
conditions as in 2.1.6) and if the game map is equal to a map stored at the
local computer, the ”Join” button appears. Equality of maps is tested by
md5 hash of the map files, it is a precaution to avoid loose of synchronization.
Joining the game using the ”Join” button switches to the game lobby window
that was described in 2.1.7.

On the right side there is list of all connected clients. Underneath there
is a chat box. Clients in the server lobby can communicate through it by
writing messages and pressing Enter or clicking the ”Send” button. The
message then appears in the text area prefixed by client’s name.

13

2.1.10 Credits window

This window contains just a brief information about game version and names
of its creators.

2.2 Gameplay

Figure 2.5: The look of the game with one human player

In this section the game itself is described, its rules, options, features and
controls. When the user clicks the ”Start” button, map is loaded, players
and their robots are created and initialized and the game begins.

2.2.1 Maps

The chosen map determines the character of the game. Small maps that are
easy to survey usually promise a dynamic and action game while large and
maze-like maps are preferred by players who enjoy strategic thinking.

14

Every map consists of two layers. The first layer is a soil and in this layer
the ditching takes place, it is the layer where tunnels are created by robots’
movement and shots explosions. The second layer, called rock, cannot be
destroyed by any kind of weapon and is impassable for both robots and
shots.

There are two topological types of maps: planar maps and toroidal maps.
Planar maps are rectangle-shaped and map boundaries cannot be trespassed
as if everywhere around was rock. Toroidal maps have no boundaries, leaving
the map at one side means appearing on the other side.

Players’ homes may be placed on the map randomly or at specified points.
Maps with random homes’ placement have unlimited slots for players while
maps with some number of defined homes positions have exactly the same
amount of slots for players.

The last option of a map is the type of players’ homes. There are three
types of homes: circular with four exits, circular with two exits and no home
(meaning no walls, it still refills health and energy). Homes are placed into
the map before the game starts and all rock and soil is removed from inside
the home.

2.2.2 Game screen

During a game, screen is divided into sections. If two human players are
present in the game, the game runs in so-called split-screen, meaning that
information for each human player is on one half of screen. Each player’s
view is divided into two parts: map view and status view. In the square
map view all the doing on the visible part of the map is shown while in the
status view there are indicators of health and energy (described in 2.2.4)
and weapons and reloading (described in 2.2.6).

2.2.3 Map view

The map and the game activity are shown in map view and only the activ-
ity performed in visible part of map can be watched. In the center of the
map view there is the controlled robot. Above are tiny health and energy
indicators and below is written the robot’s name in team color. These are
displayed next to any robot which has its center in the map view.

If a network game is being played the size of the map view is set to the
smallest size among all players. This is necessary because having bigger line

15

Figure 2.6: The look of the game in split-screen mode

of sight would mean a great advantage and therefore unfair conditions.

2.2.4 Health and energy

Health (armor, shield, life), with blue indicator and shield icon, expresses
how much damage can the robot take before it is destroyed. It can be de-
creased only by a weapon and restored only in own or teammate’s home.

Energy (power, fuel), with yellow indicator and lightning icon, expresses
how much activity the robot can perform before it dies of energy failure.
It is decreased when robot moves, shoots and slightly even if no action is
performed. It can be even drained by a special kind of weapon. Energy is
quickly refilled in own or teammate’s home. In opponent’s home, it is refilled
as well, but at a lower rate.

16

2.2.5 Robot movement

The old Tunneler has very basic rules for movement. Robots are square-
shaped and movement is possible only in eight basic directions according
to the combination of pressed movement keys. Furthermore, the speed in
oblique directions was higher than in axis directions, because the movement
vector was a simple sum of axis vectors. This can be mathematically de-
scribed as using metrics of absolute value instead of Euclidean metrics.

All these deficiencies are removed in Ditchers. The used metrics is Eu-
clidean, meaning that speed is the same in all directions (in equivalent ter-
rain). Robots can move in 36 different directions because movement keys do
not directly determine movement direction, but Left and Right keys rotate
the robot counter-clockwise and clockwise by 10 degrees and Up and Down
keys move it forward and backward.

Movement speed is determined by the amount of soil and rock in the
way. ’In the way’ means that robot would cover it if he moved in current
direction at sufficient speed. Every robot is approximated by a circle of a
constant radius. Speed is counted in pixels per loop (ppl), but it does not
have to be an integer. If no soil or rock is in the way, the robot moves at
5ppl forward and 3ppl backward. If a rock is in the way, the robot must stop
before it would cover it, so the speed is decreased adequately. If some soil
is in the way, it linearly decreases the speed by up to 4ppl, meaning that
if fully surrounded by soil, robot moves forward at 1ppl and cannot move
backward at all.

If a robot cannot move in the given direction because of obstructing rock,
it tries to ”slide” along it by checking whether it is possible to move in similar
directions. Robot’s orientation remains unchanged after sliding and sliding
speed is decreased adequately according to the difference of the original
and the sliding direction. This feature greatly improves playability because
the player does not have to bother with insignificant obstacles. Sliding is
depicted in Figure 2.7.

After robot’s movement, all soil contained in the circle that approximates
the robot is removed.

2.2.6 Weapons

Weapons may be used for both ditching and destroying enemies. They are
rotated by a special key and there are also keys for selecting a specific kind

17

robot

robot's direction
vector

obstacle

robot's movement
vector

Figure 2.7: Image explaining robot sliding principle

of weapon (more in 2.2.10). Selected weapon is displayed on the bigger icon
in the status view. Shots can be released with another key.

When a shot is released by a robot, it decreases robot’s energy and starts
moving in the direction of the robot at its speed. It moves until it existed for
a predefined time or hit any obstacle – soil, rock or a robot. At the moment
it explodes, ditches a hole into the soil and deals damage to nearby robots.
The robot cannot release a shot if it does not have enough energy.

Weapons differ in several basic attributes and some have special features.
Basic attributes are:

• Energy cost: how much energy is required to use this weapon

• Cadence: how quickly another shot may be fired

• Speed: how fast the shot is

• Time to live: how long does the shot exist before it blows automatically

• Ditch: how big hole the shot creates in the soil after explosion

• Splash: how far the damage spreads

• Damage: how much health it drains from the hit robot

Weapons attributes and features are listed in the table 2.1.

18

Image Weapon Energy Cadency Speed TTL

Machine gun Low Medium Medium High

Rear rocket Medium Slow Low High

Sniper rifle High Very slow Very fast Very high

Flamethrower Low Highest Medium Very low

Grenade Medium Slow Low Low

Land mine High Very slow None Very high

Incrush Very high Very slow Low Low

EMP shockwave High Medium Fast Medium

Recharger Low Highest Fast High

Image Ditch Splash Damage Special feature

Small None Medium

Medium Medium High Moves backward

Tiny None Extreme

None Small Low

Medium Medium High Bounces at least three times

Large Very large Very high Does not move

Inverse None None Creates soil incrush

None Medium Low Drains energy from robot

None None None Refills energy to robot

Table 2.1: Weapons’ attributes and features

19

2.2.7 Score

Every robot has its count of points (frags) and deaths. When a robot A is
destroyed by a shot released by a robot B, the robot A increments its deaths
count and the robot B increments its points count. If a robot is destroyed due
to energy failure or with its own shot, its deaths count is incremented but his
points count is decremented. This way robots may reach negative number
of points. It is a precaution to discourage players from suicide missions.

When a human player’s robot is destroyed, a table containing these
counts of points and deaths is shown in the middle of the map view.

Game ends when a robot (if no teams are in the game) or a team (in the
team game) reaches the predefined number of points. Team’s points is simply
sum of points of all its members’ robots. Deaths counts have no importance.

2.2.8 Chatting and logging

Players have possibility of chatting during the game. There are two types
of chatting, global and team-only, and these types are invoked by different
keys. In split-screen, both players share the global chatting but each can
communicate with his own team separately. Chat messages appear in lines
from the top of the screen.

When a robot is killed, a log message specifying killer, victim and deadly
weapon appears on the screen the same way chat messages do.

2.2.9 Spectator mode

If no human player is added by the user, there is no robot controlled by the
user. It is a special mode of the game called spectator mode which is used
to observe artificial players and/or network players.

In the spectator mode, it is possible to switch between watched robots
by pressing a key and it is also possible to watch two robots simultaneously
in split-screen by pressing another key. These keys are specified in 2.2.10.
Naturally, the spectator may have smaller line of sight than the observed
robot.

Spectator can send global chat messages but he cannot send team-only
messages (as he is not part of any team and knows strategic information
about all robots).

20

2.2.10 Controls

First group of keys used in the game are movement keys that rotate and
move robot both forward and backward in the sense of 2.2.5.

Second group are keys managing weapons and shooting. There is a key
for releasing a shot, switching to next weapon and there are also auxiliary
keys that switch to a specific one of the nine available weapons. They work
as macros – are implemented as pressing the weapon switching key until the
desired weapon is selected.

Third group are keys that manage chatting, one key for global chatting
(G) and one key for team-only chatting (T). After pressing such key it is
not possible to control the robot until the chat message is written and sent
by pressing the Enter button.

The F key switches the game between full-screen and windowed mode
and Esc key exits the game.

List of keys used by a player if he is the only human player:

Movement Fire Next weapon Weapons Chat G/T

Arrows Enter Backspace 123456789 M/N

List of keys used by players in splitscreen mode:

Player Movement Fire Next weapon Weapons Chat G/T

Right Arrows Enter Backspace Special keys* M/N
Left WSAD Tab ”‘” key 123456789 M/C

* Special keys: RightShift, Insert, Delete, Home, PageUp, PageDown, End, ”[”, ”]”

List of keys used by a spectator:

Main / right view Left view Split-screen Chat

Spectator Enter Tab Backspace M

21

Chapter 3

Implementation

The game is implemented in C++[1] using SDL graphics library[8]. I decided
to use SDL because it has a friendly API and supports hardware accelerated
surfaces blitting. There is a number of free libraries for GUI and I decided
to use Guichan[4], which seemed to be exactly the kind of library I needed
– a lightweight portable C++ GUI library designed for games using SDL.

3.1 Settings and data

Game settings and data are stored in XML files and images in directory
hierarchy under /usr/share/games/ditchers directory in case of installed
version or ./data directory in case of compiled-only version. Both versions
also use directory ~/.ditchers. Subdirectories prefixed by the dot or the
underscore are skipped. All settings are loaded into memory during applica-
tion start.

User should feel encouraged to add new robot models, maps and AI
scripts, so the intention is to make it as easy as possible by storing infor-
mation in well-structured XML files. Pictures of weapons are not supposed
to be modified by a casual user, so I’ll just mention that their pictures are
stored in weapons.

3.1.1 Global

In configuration file settings.xml there is information about last used
graphics settings (resolution and fullscreen) and about last used network
settings (client name and server address and port).

22

These settings are written into the file when leaving the GUI window
where they may be changed, the graphics settings window and the connection
window.

Example of settings.xml is in Figure 3.1.

<?xml version="1.0" ?>

<settings>

<network client="racoon" host="localhost" port="8421" />

<graphics width="800" height="600" fullscreen="false" />

</settings>

Figure 3.1: settings.xml

3.1.2 Players

Information about local players is stored in the file players.xml. Each player
has name, robot type according to 3.1.4 and control, which defines player’s
artificiality and has only two allowed values – AI and human. If control is
AI, fourth attribute, AI script set according to 3.1.5, is required.

These settings are written into the file when leaving the Players window
in GUI.

Example of players.xml is in figure 3.2.

<?xml version="1.0" ?>

<players>

<player name="Racoon" robot="mole" control="human" />

<player name="Squirell" robot="tank_yellow" control="human" />

<player name="Joe" robot="spider" control="AI" script="default" />

<player name="Jimbo" robot="ufo" control="AI" script="stupid" />

</players>

Figure 3.2: players.xml

3.1.3 Maps

Maps are stored under directory maps. Each map has its own subdirectory
containing all map data. Each map consists of up to three images of the

23

same size and optionally an XML file. Those three images with file names
base.png, soil.png, rock.png define three layers of the map.

Image base.png is underlying and has no but aesthetical meaning while
soil.png and rock.png define the colors and shape of soil and rock layer.
The part of picture that is supposed to be transparent must be painted with
the magic pink: RGB(255, 0, 255).

The XML file, if present, must have name map.xml. It contains Infor-
mation about map name, identification, author, size and topology. Name
and identification are any strings without spaces, topology is either torus or
plane. Attribute basetype may have one of three values: 4-way, 2-way and
none and defines the shape of players’ homes. Optionally, if attribute blob
is set to false and limit is set to a number, the file may contain also list of
players’ homes (bases). Number of these must equal the limit and this limit
determines number of players slots in a game that uses this map.

In map creation window the name attribute is used to identify the map.
If no such attribute exists, map’s directory name is used.

Example of map.xml is in Figure 3.3.

<?xml version="1.0" ?>

<map name="Zoo" unique="racoon-2-v1.3" topology="torus">

<size width="1200" height="1200" />

<players limit="4" blob="false" basetype="4-way">

<base index="0" x="200" y="200" />

<base index="1" x="200" y="1000" />

<base index="2" x="1000" y="1000" />

<base index="3" x="1000" y="200" />

</players>

</map>

Figure 3.3: map.xml

3.1.4 Robots

Pictures of robots are stored under the directory robots and each robot has
its own subdirectory with one file robot.png. This image is supposed to
have size 23 × 23. Robot’s directory is used to identify it and every player
must have its robot correctly set.

24

3.1.5 Scripts

AI scripts are stored under the directory scripts and each script has its
own subdirectory with file main.lua. Scripts directories are used to identify
it and every artificial player must have its script correctly set.

Scripts of artificial intelligence are described thoroughly in section 4.1.

3.2 Architecture

In this section I will mention some main classes, relations between them and
basic principles how the application works.

3.2.1 Main classes

There are five important classes that wrap global variables and methods:
Gfx, Settings, UserFace, GamePlay and Network. These classes are instan-
tiated during application start-up and there is exactly one instance of each.
Besides these, there are only a few very simple (e.g. arithmetic) global func-
tions.

Names of these classes are quite self-explaining. Gfx contains attributes
related to graphics settings (e.g. screen resolution) and methods working
with images (e.g. for retrieving the color of a specified pixel). Class Settings
provides methods for loading game data and settings and contains data
structures to store these. UserFace is shortening for User Interface and is
dedicated to everything related to GUI. Class GamePlay only cares for play-
ing the game and Network contains only attributes and methods related to
networking.

Relations between main classes are drafted in Figure 3.4.

3.2.2 Application progression

After basic initialization of SDL the splash screen is loaded and shown. While
the user is watching it, main classes initialize and settings are acquired from
files. When it is done, the GUI loop begins.

In this loop there are events handling and GUI displaying performed. If
some settings are changed, they are saved to files immediately. For actions
like connecting to a server or changing game settings according to the net-
work data the Network class is used. UserFace class contains information

25

UserFace

GamePlay

Settings

Gfx

Network

Application
start

Application
exit

Game start Game exit

Passes control

Uses data and methods

Figure 3.4: Main classes and relations between them

about the window currently visible, has a method for displaying a message
box and a method for launching the game.

Once the game is launched, GamePlay class is in charge of the application.
After the game is initialized the game loop begins. This loop has three basic
duties: receiving user or network input, changing game state and displaying
graphics. It also has to keep correct FPS. These tasks are performed in this
order (network tasks are skipped in local game):

• Keyboard input, AI thinking

• Sending information to the server – players’ actions

• Displaying graphics

• Delay to keep 25 FPS

• Input from the server – actions of network players

• Compute next game state

This order was selected to minimize the time spent waiting for network
information to come as there are both graphics displaying and FPS delay

26

between sending and receiving network data. The gameplay and the class
GamePlay are also described in Figure 3.5.

When a user decides to end the game, it returns control to the UserFace

class and GUI loop. When the user clicks the ”Quit” button in the main GUI
window, the loop is left, memory cleaning performed and the application
exited.

GamePlay

init

loop

create players

create quad tree

initialize AI

set players

create map

acquire actions

put graphics

delay

receive actions

compute game state

acquirePlayersActions

check keyboard

run script

send actions

putGraphics

put map layers

put robots

put shots

put status

compute

move shots

robots actions

importPlayers

import from lobby

set attributes

initialize script

createMap

load layers images

create preview

setPlayers

set controls

place homes

receivePlayersActions

wait until all non-local
players have action

related only to artificial players related only to human players only in network gamecolors:

Figure 3.5: Progression of the gameplay

3.3 Network communication

The main decision of the designer of a client-server application concerns
allocation of work between the client part and the server part.

27

3.3.1 Paradigms

There are two basic paradigms: the first is keeping clients very simple only to
acquire input, to send it to a server, to receive results and to display output,
while server computes a new application state. The second is having a simple
server that keeps only the essential data and for the majority of time only
redirects messages while clients do the computation of new state. There are
also many approaches in between these paradigms that lean towards the
former or the latter.

I have chosen to follow strictly the latter paradigm. The server cannot
compute states of all its games – it would put unbearable demands to both
CPU and memory as any number of games may be played simultaneously.
There are also disadvantages I have to cope with.

The main disadvantage (or group of disadvantages) is synchronization.
While clients have all the game data and do not share them with the server,
the synchronization might break down if not all clients have exactly the
same. Synchronization is discussed thoroughly in 3.3.2.

Another disadvantage is cheating – the client application has all the data
about the game and therefore if someone decided to alter its code he would
get a tactical advantage, e.g. knowing location of other robots. I decided to
ignore this with the hope that all players of this game are fair. (To make
it clear, more serious cheating like enhancing weapons or robot’s abilities is
not possible as it would yield synchronization problem immediately.)

3.3.2 Synchronization

To avoid loose of synchronization, md5 hash of maps are compared when
joining a network game – different versions of maps would most probably
yield the OOS (Out Of Synchronization).

Sometimes a random number generator (RNG) may be needed in the
game, e.g. to decide whether the grenade should bounce or explode. While
this decision is made at client’s side, the RNG must be synchronized as well.
This is solved by using own implementation of RNG which yields a perfectly
same progression of numbers according to a seed that is randomly generated
by the server and sent to clients when the game begins. (In a local game, the
seed is generated locally). This seed is required to avoid same progressions
of numbers in every game. AI scripts might need randomization as well, but
the generator is not shared with the game itself.

28

If the network player’s robot type is not found, it is replaced by some
local robot type. As difference of robot types does not affect the gameplay,
it is a sufficient solution. AI script of a player is only required with the
client whose player it is, so there is no concern of synchronization. The only
other synchronization problem could be yielded by a difference in application
versions. It cannot be recognized from the received data because the only
information the server receives about the game state are bit masks of six
main action keys. Therefore, to recognize the OOS, the server receives control
information – coordinates of all players from all clients – every 25 game loops
(one second). If any sync problem occurs, players’ coordinates soon does not
match and in this case the server cancels the game.

3.3.3 Communication protocol

The data between clients and the server are transferred using the TCP pro-
tocol to avoid concerns for session managing and to ensure all the data is
received in the same order as they were sent. Messages are composed using a
special text protocol. No maximal length of message is defined except limi-
tations of TCP protocol and C++ string, because a robust system of escape
characters and network buffers concatenation is used to retrieve the whole
message.

Any communication between the client and the server is initiated by the
client. Message types differ in the way the server responds to messages of
the type. Server may not respond at all (e.g. to synchronization data), may
respond to all clients connected to the game (e.g. to adding of a player), or
to all clients connected to it (e.g. to connection of a client).

A message consists of two command letters and a data part. Command
letters define the type of the message. The first letter puts the message into
one of three domains: server lobby, game lobby or gameplay. The second
command letter specifies the message type in the given domain.

The list of message types by command letters (CL), contents of their
data parts and ways the server responds follows. The first command letter
is s for server lobby, l for game lobby and g for gameplay. Table rows are
grouped by client messages, ”gamecast” means game broadcast.

CL Meaning Data part

Message sn Connected to server name and screen resolution
Broadcast sw List of clients clients’ names and ID
Broadcast sg List of free games games’ names and map attributes

29

Broadcast sn New client new client’s name and ID
Reply si Your ID client’s ID

Message sc Creating a game name and map attributes
Broadcast sa New game game name, ID and map attributes

Message sj Joining a game game’s ID
Reply sj Game joined game’s ID
Reply ll Points limit game’s points limit
Reply lt Teams count game’s teams count
Reply lp Players in game list of players and their attributes

Message sl Game left –
Broadcast sr (Empty game removed) game’s ID

Message sm Server lobby chat chat message
Broadcast sm Server lobby chat chat message

Message – Disconnected from server –
Broadcast sq Client left client’s ID

Message ll Set points limit new limit
Gamecast ll Points limit set new limit

Message lt Set teams count new teams count
Gamecast lt Teams count set new teams count

Message lc Change player’s team player’s ID and team ID
Gamecast lc Player’s team changed player’s ID and team ID

Message l+ Add player player’s name, robot and position
Gamecast l+ Player added player’s attributes, client’s ID

Message l- Remove player player’s ID
Gamecast l- Player removed player’s ID

Message lm Game lobby chat chat message
Gamecast lm Game lobby chat chat message

Message ls Start game –
Gamecast ls Game started RNG seed and game resolution
Broadcast sr Game no longer free game’s ID

Message gc Player’s action timestamp, player’s ID, action
Gamecast gc Player’s action timestamp, player’s ID, action

Message gt Player’s robot’s coords player’s ID, coords
Gamecast gx (Out of sync – game ends) ”Out of sync” message

Message gm In-game chat chat message
Gamecast gm In-game chat chat message

Message gn In-game team chat chat message
Gamecast gn In-game team chat chat message

Message gx Abort game –
Gamecast gx Game aborted ”Aborted by a client” message

30

3.4 Data structures

Besides trivial data structures and structures provided by the C++ Standard
Template Library it was necessary to implement a few more for use in special
situations. One such situation is storing information about games and clients
at both server and client with a low time complexity and other is managing
quick interval queries to the game map.

3.4.1 Hashmap wrapper, hashmap-vector wrapper

Lets discuss the situation we have at the server. Every client and game on
the server and every player in a game receives its own ID which uniquely
identifies it. IDs are assigned incrementally from 1 to a very high number
and then again, skipping used ones. Naturally, we wish to be able to quickly
retrieve any of these by its ID. Therefore using a binary search tree seems
to be a good idea. To encapsulate all operations involving assigning the ID
and freeing it correctly, STL balanced binary search tree map<int, T> is
wrapped into a data structure WrapMap<T>. Lists of games and clients are
implemented this way in both client and server part of application. This and
the following data structure are implemented in the template.hpp file. The
average complexity of STL map is not affected by this wrap.

Table with time complexity of required operations follows. Listing means
iterating over the whole list.

Operation Add Remove Get pointer by ID Listing
Complexity O(log n) O(log n) O(log n) O(n)

The situation with players is even more complicated. Not only that play-
ers receive IDs, but they also may have a specified index in the list of players’
slots and it is useful to be able to access players by this index. For this case
even more sophisticated structure was created: WrapBoth<T> extends the
WrapMap<T> by a STL vector and accessing by index is done using the
vector while accessing by ID is using the WrapMap. This way a good time
complexity is guaranteed for most operations.

Table with time complexity of required operations follows, n is the num-
ber of players in the game. By index and by ID means retrieving the pointer,
listing means iterating over the whole list.

31

Operation Add Remove By index By ID Listing
Complexity O(log n) O(n)/O(log n) * O(1) O(log n) O(n)

* O(n) in case of unlimited players (shrinking vector needs linear time), otherwise O(log n)

3.4.2 Map two-layer quadrant tree

The game map was first kept only as three layers of images and, with con-
stant time for determining a pixel value, this way was sufficient for all re-
quired computations until AI scripts support was implemented. The reason
why the need for a new approach emerged was the difference in artificial and
human perception of the map. While human player recognizes large areas
with or without soil or rock in virtually no time, if an artificial player had to
do the same recognition pixel by pixel, it would need an unbearable amount
of time. Obviously the AI may need this kind of recognitions very often and
for this purpose a quadrant tree is built during the game initialization. It is
implemented in quadtreetemplate.hpp and quadtree.hpp.

In a quad tree, the given rectangular area is recursively divided into
four quadrants until these are homogenous. In our case, homogenous means
that the whole area is filled with rock or with mud or is empty. Every node
of this quad tree has two integer values – soil coverage and rock coverage,
expressed in pixels. In a leaf, these values are either zero or equal to the size
of the given rectangle. In non-leaf nodes, this value is easily computed as
the sum of sub-nodes’ values during backtrack, thus the whole structure can
be built in a single pass. If n is number of pixels in the map, the quadrant
tree can be built with time complexity O(n log n) – there are at most log n
levels of nodes and checking homogenity of a node is linear to its size. This
complexity is not crucial as it is performed only once before the game starts.

While the rock layer is immutable during the game, the soil coverage
must be updated when a robot ditches or a shot explodes, but this does
not demand too much time because these changes are always only minor.
For these purposes, the quad tree structure has a method for updating a
rectangle.

Methods provided by this structure are following:

• Homogenity test: checks whether the given rectangle is homogenous in
following ways: whole empty, soil only, rock only, no rock, no empty.

• Coverage: checks how big part of the given rectangle is covered by
either rock or anything (rock or mud).

32

All these methods have a good time complexity O(log n
√
k) where n is

the number of pixels in the map and k is the longer side of the rectangle.
These methods will be mentioned in Section 4.2.

Figure 3.6: Map represented in the quad tree
Each node refers to a square in the map.

The lighter the square is, the lower is its leaf node in the structure.

33

Chapter 4

Artificial players

In a lot of action or strategic games artificial players (”computers”, bots)
may be present in the game. Sometimes it is even possible to choose between
a number of levels of intelligence, but these intelligences are usually hard-
coded and the user have no option of altering it except for changing the
source code (in case of open source programs). In Ditchers, not only that
artificial intelligence is easily alterable, but the user should feel encouraged
to do so or even to write his own AI script.

4.1 Basics

Among many scripting languages I chose to use Lua[6]. This language is
very easy to learn, has many intriguing features that are especially valuable
in case of AI scripts (associative arrays, coroutines) and also has a very
lightweight interpreter. Lua is used in a number of well known games –
World of Warcraft, SimCity 4, FarCry and more.

AI scripts are saved in the directory scripts and each scripts has its
own subdirectory. The file main.lua must be present in this directory. The
directory may also contain any number of other .lua files and to use them
they must be loaded using the Lua require command which has similar
function as the C preprocessor include command. The require path is set
to the script’s directory. There must be a function main implemented in
main.lua or in any file required by it.

When the game is launched, an interpreter is loaded for every artificial
player and the scripts are initiated. During this game, when players’ input
is demanded by the application the main function is called. The expected

34

result is a bit mask of six main action keys, the same as the one that is sent
to server.

4.2 Interface

Besides easy creation of a script it is necessary to have a good interface
between the gameplay and the script. By good I mean easy to use and
providing the as similar options to a human player has as possible. This may
sometimes be quite a problem due to obvious differences between human and
AI approach and therefore compromises have to be made.

There is a number of interface functions in the application that may
be called by a script. These functions provide information about the game
state – map, robots, shots etc. and usage of these functions is the only way
game information may be retrieved. Lua allows functions to return multiple
results or even unspecified number of results, and this feature is widely used.
Some functions would not return values in case the scripted robot should
not know the requested information. This happens if it refers to a part of
map or another object that is not in sight of the robot.

List of interface functions, divided into several categories, follows. Some
of these functions return quite raw data and there are methods in pre-
implemented scripts that use them so the user does not have to reinvent
the wheel, he might include these methods into his own script.

4.2.1 Game settings

These functions return application or game constants, thus might be used
only once during initialization. The reason why application constants are
retrieved this way is that some of them may change slightly in another
version and a well-written script should adapt without the need of rewriting.

• getradius() – returns integer, integer – radius of a robot and hole
appearing after robot destruction

• getrotcount() – returns integer – number of possible rotational di-
rections

• getmaxgrave() – returns integer – how many loops does a stain last
at the point of destruction and also how long does it take after stain
disappearing before robot respawn

35

• getmaxprotection() – returns integer – how many loops is a robot
invulnerable after respawn

• getweaponscount() – returns integer – number of weapon types

• getshottype(integer index) – returns 9 integers carrying informa-
tion about the indexed shot type:
1 how much energy the shot drains from a firing robot
2 how long does it take to reload after shooting (in game loops)
3 speed (pixels per turn)
4 ditch – how big hole it creates when explodes (radius of hole

in pixels), negative number means creating a terrain instead
of removing

5 splash – distance from the explosion needed to avoid damage
6 damage – how much health it drains from hit robots, negative

number means restoring health
7 energy damage – how much energy it drains from hit robots,

negative number means restoring energy
8 bounce count – number of bounces before exploding
9 live time – how long does the shot exist before automatic

explosion (in game loops)

• getmaxstatus() – returns integer, integer – maximal energy of robot,
maximal health of robot

• getmapinfo() – returns integer, integer, boolean – map width in pix-
els, map height in pixels, whether map is torus

• getsight() – returns integer – number of pixels from view center
(middle of robot) to view border

• getplayerscount() – returns integer – number of players in the game

• getteamscount() – returns integer – number of teams

4.2.2 Game state

These functions return variables that may change during game.

• gettime() – returns integer – number of loops since the start of the
game

36

• gethomes() – returns table of records containing information about
visible homes; each home fills 2 rows of the table with doubles, coor-
dinates of the home

• getdeaths() – returns table of records containing information about
visible death stains; each stain fills 3 rows of the table with two doubles
and an integer, coordinates of the stain and how fresh the stain is
(appears with value returned by getmaxgrave() and goes to zero)

• getshots() – returns table of records containing information about
visible shots; each shot fills 8 rows of the table:
1 boolean whether shot was fired by an enemy
2, 3 double, double coordinates
4 integer speed (pixels per turn)
5 integer angle
6, 7 double, double direction vector (normalized)
8 integer index of shot type

• putchat(boolean teamonly, string message) – returns boolean –
whether the message was sent successfully, function puts a message
to game chat; if no teams are set and teamonly is set, message is not
accepted. Every player has a letter limit for team-only messages; it is
8 at the start of the game, is increased by 1 every loop and decreased
by length of a sent team message.

• getchat() – returns table of records containing information about
chat messages sent from beginning to previous loop; each message fills
3 rows of the table:
1 string message content
2 integer time (in game loops) when the message was sent
3 integer index of the player who sent the message – is -1 if the

message is not to teammates only (the idea is that public
messages don’t contain important data)

• getlog() – returns table of records containing information about log
entries made from beginning to previous loop; each entry fills 4 rows
of the table:
1 integer time (in game loops) when the entry was made
2 integer who killed someone (player index)
3 integer who was killed (player index)
4 integer what weapon was used (shot type index)

37

• getlog(integer timestamp) – as previous, but contains only entries
made at time timestamp (if set too big, changed to time of last loop)

• getlog(integer timestamp1, integer timestamp2) – as previous,
but contains only entries made in interval [timestamp1, timestamp2]

• at(integer x, integer y) – returns integer code of terrain at point
x,y; if map is a torus, x and y does not have to be in the map size
rectangle.
Terrain codes:
nil point not visible, cannot decide
0 free
1 soil
2 rock or not in the map (non-toroid)

• hom(integers x1, y1, x2, y2, integer code) – returns integer in-
formation whether the rectangle is homogenous according to code, re-
turns 1 for true, 0 for false and nil if is not whole visible. If map is a
torus, x1, y1 might be bigger than x2, y2 resp., the rectangle lays over
map edge; in non-toroid maps, such rectangle would be homogenous
(zero surface). Homogenity codes:
0 free only
1 terrain only
2 rock only
3 free or terrain, but no rock
4 terrain or rock, but no free

• cov(integer x1, y1, x2, y2, integer code) – returns integer com-
puting how many pixels of the given rectangle are covered with any-
thing – mud or rock. Returns nil if not whole rectangle is visible.

• covr(integer x1, y1, x2, y2, integer code) – returns double be-
tween 0 and 1 computing what part of the given rectangle is covered
with anything – mud or rock. Returns nil if not whole rectangle is
visible.

• rock(integer x1, y1, x2, y2, integer code) – returns integer com-
puting how many pixels of the given rectangle are covered with rock.
Returns nil if not whole rectangle is visible.

38

• rockr(integer x1, y1, x2, y2, integer code) – returns double
between 0 and 1 computing what part of the given rectangle is covered
with rock. Returns nil if not whole rectangle is visible.

4.2.3 Robots status

These functions return information about scripted robot or other robots

• getmydesignation() – for the scripted robot, returns integer – player
index string – name integer – team index

• getdesignation(integer index) – for the robot specified by index,
returns string – name integer – team index

• getvisible(integer index) – returns boolean – whether indexed
robot is alive and in sight

• getmyinfo() – for the scripted robot, returns:
double, double coordinates
double, double direction vector (correlated to angle)
integer angle in range [0, 360) from 0 = ”up” clockwise
double speed
integer, integer current health and energy
integer returns how long the robot will be protected (after

respawn)
integer returns how long the robot is dead / until respawn
integer returns current weapon’s index
integer returns how long until a new shot may be released

• getinfo(integer index) – for the indexed robot, if it is visible, re-
turns:
double, double coordinates
double, double direction vector (correlated to angle)
integer angle in range [0, 360) from 0 = ”up” clockwise
double speed
integer, integer current health and energy
boolean returns whether the robot is protected (after

respawn)

39

4.3 Implemented scripts

4.3.1 Generic

There are several useful scripts in the _generic directory. It contains the
main function but it does not do any real work, it is not a complete script,
there are only some auxiliary functions. Some, like those for acquiring data
or setting action mask, should be adapted by any script, some other, like
path finding, are rather examples of more sophisticated algorithms. List of
functions grouped by files follows.

• init.lua contains example of initialization part of the script. Initial-
izes application and game constants, scripted robot’s attributes and
a few more useful global variables. Commands are outside any func-
tion thus will be performed during script initialization – upon game
start. Some less essential initialization is done in the acquire.lua and
mask.lua.

• acquire.lua contains functions for acquiring objects in the sight of
the scripted robot– robots, shots, homes, death stains and also chat
and log messages. Global variables set by these functions are initialized
here. These functions may be used in every loop to refresh the sight.

• aux.lua contains some very basic useful mathematical functions like
signum, absolute value and distance of points.

• mask.lua contains functions for comfortable setting of the action mask.

• main.lua contains the example of the main function with necessary
inclusions using the require command. In the main function scripted
robot’s attributes and objects in sight are updated, game time is ac-
quired and the actionmask resetted. After a gap for the intelligence
itself some saving of useful data and returning the action mask is per-
formed.

• path.lua contains non-essential functions making the movement in
the map easier. There are some auxiliary functions like going straightly
from one point to another, but the longest and most important func-
tion is for finding a path from one point to another. This function
uses a special approximative version of Dijkstra algorithm [3]. For this
function, blocks.lua and heap.lua have to be included.

40

• blocks.lua contains functions for approximating the terrain by a grid
of blocks. These blocks are either impassable if containing rock or
passable with a various levels of soil coverage. The visible part around
initial position is checked upon game start and then only a newly
uncovered line at the view border is updated when moving. These
blocks are then used to compute shortest path whenever needed. A
preview how do scripted robots see the map is in Figure 4.1.

• heap.lua implements binary heap data structure. It is required by the
path finding function, but is usable for any other applications as well.

4.3.2 Stupid

This is a very, very simple script. The returned action mask is achieved by
random virtual pressing and releasing of keys. This script is certainly not
recommended for any serious use, it is rather an example to show how little
is required to add a script to the game.

4.3.3 Crumbs

A robot using this script is capable of basic exploring and fighting, but its
path finding method is too simple. It moves in a random direction while it
can and remembers every point of direction change. When it has low energy,
it returns in the manner of visiting those points in reverse order. The Crumbs
title refers to those points in the meaning that the robot drops bread crumbs
on every corner while exploring and returns by picking them.

4.3.4 Pathfinder

This script actively uses the pathfinding script described in 4.3.1. Therefore,
if it knows a sufficiently big part of the map, it can find a path from any
to any place – except for cases when it is not possible or if pathways are
extremely tight (it is a limitation of the algorithm). Though approximated,
the algorithm may need more time than available to find the path; for these
reasons, coroutines are used in the script.

Coroutines allow script to stop executing at a point and reenter at the
same point. This is exactly what we need – searching the path may take
several seconds and it would be very difficult to implement the algorithm
the way it would not need too much time in one loop if we could not use

41

coroutines. There is an unpleasant limitation to Lua coroutines – when inside
a coroutine, interface functions cannot be called. Thus it is wise to realize
it when outlining the script as it is necessary to acquire all required game
data before entering a coroutine.

Using coroutines in the script is quite easy to implement and there are
several examples in the Pathfinder script.

++!!!#######!#!!! .

++!!!!#######!!!! .

+++!!!!######!!! .

++!!!!!!!!!!!!###!!.

!!!!!++!!!!!!!!!!!!!!##!!

!!!!!!+++!!!#######!!!!!!!!

!##!!!!++!!########!!!!!!!!

####!!!!+++!!###########!!.. .

#####!!!+++!!!!!########!!.. ..

######!!+++!!!!!########!!. ...

######!!+++!!######!!#!! ..::

#####!!!+++!!!#####!!!!! ..::+

#####!!!+++!!######!!!!! ..::++

####!!!++!!######!!.. ..::+++

##!!!!!+++++++++++++++++++++++++++++++++++::::::::::::::::::+++++++++!!######!!. ..::++++

!!!!!!++++++++++++++++++++++++++++++++++:::::.............::::+++++++!!!!!!##!!. ..::+++++

!!!!++++++++++++++++++++++++++++++++++:::.../-\..............:::+++++!!!!!!!!!! ...:++++++

!+++++++++++++++++++++++++++++++++++:::.... |O|::++++++++!!!!!! ..::++++++

+++++++++++++++++++++++++++++++++++::... !\-/!!!!!!... ...::++++++++:... ..::+++++++

+++++++++++++++++++++++++++++++++:::... !!!!!!!!!!!!!..... ..::++++++:... ..::++++++++

++++++++++++++++++++++++++++++++::... !!!!!!######!!!!!:... ..:::++::... ..::+++++++++

+++++++++++++++++++++++++++++++::... !!!!!!#########!!!!:::.. ...::::... ..:++++++++++

++++++++++++++++++++++++++++++::.. !!!!!#############!!!+::..::++++++++++

+++++++++++++++++++++++++++++::.. !!!!###############!!!!+::..::+++++++++++

++++++++++++++++++++++++++++::.. !!!#################!!!!+:.. ...::++++++++++++

++++++++++++!!!!!!!++++++++::.. !!!###################!!!+::.. ...::+++++++++++++

!!!!!!!!+++!!!!!!!!++++++++::. !!!!####################!!!+::.. ..::++++++++++++++

!!!!!!!!!!!!!!###!!++++++++::. !!!#####################!!!!+::.... ..:+++++++++++++++

######!!!!!!!####!!!!!+++++::. !!#######################!!!!+:::... ..:+++++++++++++++

########!!!!###!!!!!!!+++++::. !!!########################!!!!++:::.. ..::++++++++++++++

##########!!###!!!##!!+++++::. !!!#########################!!!!+++::.. ..::+++++++++++++

!!!!!!########!!####!!+++++::.. !!###########################!!!!+++::.. ..::++++++++++++

!!!!!!!!!####!!!###!!!+++++::.. !!############################!!!!!++::.. ..::+++++++++++

!!++!!!!!!####!!####!!++++++:.. !!!############################!!!!!!+::.. ..::++++++++++

!!!!!!!!!!!!########!!++++++:.. !!!##############################!!!!!!!:.. ...::++++++++

!!!!!!!!!!!!!!####!!!!++++++::. !!################################!!!!!!!!! ...:::++++++

#!!###!!!!!!!!!!!!!!!!++++++::.. !!!##################################!!!!!!!! ...:::+++++

########!!!+!!!!!!!!+++++++++:.. !!!######################################!!!!!! ...:::+++

#########!!++++++++++++++++++::.. !!!#######################################!!!!!! ..:::++

Figure 4.1: Printout of how the pathfinding script approximates the map

42

Chapter 5

Installation

The application may be compiled and installed on Linux. It requires in-
stalling development versions of the following necessary libraries:

• SDL: libsdl1.2-dev

• SDL image: libsdl-image1.2-dev

• SDL net: libsdl-net1.2-dev

• SDL gfx: libsdl-gfx1.2-dev

• png: libpng12-dev

• guichan: libguichan-dev

• TinyXML: tinyxml-dev

• boost filesystem: libboost-filesystem-dev

• lua5.1: liblua5.1-0-dev

The make and g++ compiler are also needed. After running make in ditcher

and ditchs directories the client and the server are created in respective
directories. The install.sh script does all the work – checks for library
dependencies, compiles the project and installs it.

Furthermore, the game had such a positive response in the community
that Jan Jeroným Zvánovec [5] decided to create Debian packages.

The application has its own homepage [2] with a link to the newest
version available.

43

Chapter 6

Corrolary

6.1 Comparison to similar projects

Here I try to compare Ditchers with the most similar action games I found.

6.1.1 Tunneler

The old and legendary Tunneler was overcame in every way. Ditchers has
better graphics, more game features like choice of weapons, network game
and artificial players.

Figure 6.1: Tunneler

44

6.1.2 GM Tunneler

The GM Tunneler is a remake of the old one, and it very strictly sticks to
the model. Thus, when it comes to evaluation, similar limitations as those of
the old Tunneler are found. Single weapon, only local game, only two players
and no artificial ones. In Ditchers, playability is the one of main goals and
Tunneler was rather an inspiration, and it greatly overcomes GM Tunneler
in many ways.

Figure 6.2: GM Tunneler

6.1.3 Liero

Liero is not really a remake of Tunneler though it is similar in the idea of
digging in the ground. Liero resembles Worms in real time and it has many
nice features – it has a large choice of weapons, it is very action and supports
network game. The artificial intelligence is very weak, though. It rotates
weapons rather randomly and has no sophisticated methods of locating the
opponent. Furthermore, there is no option of programming it.

45

Figure 6.3: Liero

6.2 Project evaluation

The composite goal of the project was to create a playable action game based
on principles of Tunneler with possibility of programming artificial players.
All these tasks were fulfilled: the resemblance to Tunneler is obvious, game
is well-playable (with its multiple weapons, network game and nice graphics)
and scripts for artificial players are quite easy to create.

A somewhat missing feature is a debugging environment for AI scripts.
It would be also fine to enhance the network session control so the game
could be played not only over LAN.

6.3 Future of the project

The project is working fine, the game is playable and AI scripts are well-
programmable, but it certainly does not mean the project is finished – fin-
ished projects are mostly those whose development was abandoned rather
than considered complete. Here is a list of a few ideas that would be nice to
implement to enhance the gameplay or the whole project.

• Images used in the game are quite nice, but they look somewhat sim-
plistic due to lack of animation. It would be cute to animate robots

46

movement and shooting as well as shots and explosions.

• There is no music nor sound effects in the application and the gameplay
would certainly seem more professional and enjoyable if there were
some.

• The ”Capture the flag” game mode, quite usual in action games, would
be great to enable.

• As noted in 6.2, a debugging environment for AI scripting would be
useful.

• If the project becomes even more popular it will be a good motivation
to try offering packages into official repositories.

47

Bibliography

[1] C++ Language reference,
http://www.research.att.com/~bs/C++.html

[2] Ditchers,
http://www.ditchers.sourceforge.net

[3] M. DeLoura: Game Programming Gems Series, 2000.

[4] Guichan,
http://guichan.sourceforge.net/

[5] Debiańı baĺıčky pro kopáčovou hru – Ditchers,
http://web.zvano.net/drupal6/node/11

[6] R. Ierusalimschy, L. H. de Figueiredo, W. Celes: Lua 5.1 Reference
Manual

[7] J. Hall: Programming Linux Games, Linux Journal Press, 2001.

[8] SDL Library,
http://libsdl.org/

[9] Tunneler by Geoffrey Silverton (DOS, 1991),
http://members.chello.at/theodor.lauppert/games/tunneler.htm

48

Appendix A

CD content

There is a CD included in the work. Its content is the following:

• The application itself in the ditchers.tar.gz file, in the ditchers

directory and in Debian packages in the packages directory.

• Documentation generated by doxygen in the doxygen directory.

• Source codes of used libraries in the libs directory.

• This work in the bc directory.

• Last but not least, the file ditcher.ogv, a video from the game.

49

	Introduction
	Game
	Graphic User Interface
	Splash screen
	GUI windows
	Main window
	Graphics settings window
	Players management window
	Game creation window
	Game lobby window
	Network connection window
	Server lobby window
	Credits window

	Gameplay
	Maps
	Game screen
	Map view
	Health and energy
	Robot movement
	Weapons
	Score
	Chatting and logging
	Spectator mode
	Controls

	Implementation
	Settings and data
	Global
	Players
	Maps
	Robots
	Scripts

	Architecture
	Main classes
	Application progression

	Network communication
	Paradigms
	Synchronization
	Communication protocol

	Data structures
	Hashmap wrapper, hashmap-vector wrapper
	Map two-layer quadrant tree

	Artificial players
	Basics
	Interface
	Game settings
	Game state
	Robots status

	Implemented scripts
	Generic
	Stupid
	Crumbs
	Pathfinder

	Installation
	Corrolary
	Comparison to similar projects
	Tunneler
	GM Tunneler
	Liero

	Project evaluation
	Future of the project

	Bibliography
	CD content

