

Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Petr Koupý

Visualization of problems of motion on a graph

Department of Theoretical Computer Science and Mathematical Logic

Supervisor: RNDr. Pavel Surynek, Ph.D.

Study program: Computer Science, Programming

2010

2

I would like to thank my supervisor, Pavel Surynek, not only for giving me an idea on this

thesis but also for his guidance, swift support, suggestions and numerous pieces of advice.

I hereby declare that I wrote the thesis myself using only the referenced sources. I also agree

with lending and publishing of this thesis.

In Prague, May 17, 2010 Petr Koupý

3

Contents

1 Introduction 6

1.1 Tool Overview ... 6

1.2 Tool Purpose .. 7

1.3 Tool Scope ... 7

1.4 Thesis Structure ... 7

2 Design Analysis 8

2.1 Graph Embedding .. 8

2.1.1 Fruchterman-Reingold Method .. 8

2.1.2 Kamada-Kawai Method ... 10

2.1.3 Methods Comparison ... 12

2.2 Problem Variants ... 13

2.2.1 Solution Validation .. 13

2.3 Movement Animation .. 14

2.4 Color Management .. 14

2.5 Chosen Technologies ... 15

2.6 Operating Environment ... 15

2.7 Extensibility ... 16

2.8 User Interface .. 16

2.9 Video Capturing .. 17

3 User's Guide 18

3.1 Opening Input File ... 18

3.2 Environment Description ... 19

3.2.1 Main Menu ... 19

3.2.2 Tool Bar .. 20

3.2.3 Status Bar ... 20

3.2.4 Tabs .. 20

3.2.5 Window Splitting ... 21

3.3 Controls ... 21

3.4 Validating Solution .. 21

3.5 Embedding Graph .. 22

3.6 Settings .. 24

3.7 Coloring Graph Elements .. 24

3.8 Saving Output File ... 25

3.9 Controlling Animation ... 25

3.10 Capturing Media Files .. 26

3.10.1 Images .. 27

4

3.10.2 Video Standards ... 27

3.10.3 Video Settings .. 28

4 Programmer's Documentation 29

4.1 Compilation ... 29

4.1.1 Preparing Environment .. 29

4.1.2 Building Qt ... 30

4.1.3 Building FFmpeg .. 31

4.1.4 Building GraphRec ... 33

4.1.5 Compressing Executable .. 33

4.1.6 Redistributable Package ... 34

4.1.7 Licensing .. 34

4.2 Architecture Overview .. 34

4.3 Graph Primitives .. 36

4.3.1 Entity Class .. 37

4.3.2 Node Class .. 37

4.3.3 Edge Class .. 38

4.4 Passing Common Data ... 38

4.5 Producing Servants .. 39

4.5.1 Parser Interface ... 39

4.5.2 Saver Interface .. 40

4.5.3 Validator Interface .. 40

4.5.4 Layouter Interface .. 41

4.5.5 Recorder Interface .. 41

4.6 GraphView Class ... 42

4.6.1 Error Dialog .. 43

4.6.2 Color Dialog ... 44

4.6.3 Embedding ... 44

4.6.4 Scene Actions ... 45

4.6.5 Animation ... 46

4.6.6 Setup Dialog ... 47

4.6.7 Capture Dialog ... 47

4.6.8 Rendering ... 48

4.6.9 Video Encoding .. 50

4.7 Main Window .. 51

4.7.1 Splitting .. 52

4.7.2 Open Dialog ... 54

4.7.3 Help Dialog .. 55

4.8 Persistent Settings .. 55

5 Conclusion 56

5

Title: Visualization of problems of motion on a graph

Author: Petr Koupý

Department: Department of Theoretical Computer Science and Mathematical Logic

Supervisor: RNDr. Pavel Surynek, Ph.D.

Supervisor's e-mail address: pavel.surynek@mff.cuni.cz

Abstract: A software tool visualizing the movement of entities on a graph is presented in this

thesis. Such model is often used to abstract environment where the given set of entities must

be reordered from an initial to a certain goal configuration in space. Software solvers of these

problems usually produce sub-optimal solutions in the textual form, which is generally hard to

explore by a human. Thus, the visualization tool can be utilized by a researcher when analyz-

ing the quality of such solutions. In order to visualize solutions, the presented tool handles a

set of problems – embedding the graph into a plane, controlling the animation, capturing the

output to images or video files, managing colors and validating movements in the solution.

The thesis provides detailed information about the implementation of the tool including the

choice of suitable algorithms, architecture and technologies.

Keywords: visualization, graph embedding, movement on graph, video capturing

Název práce: Visualization of problems of motion on a graph

Autor: Petr Koupý

Katedra (ústav): Katedra teoretické informatiky a matematické logiky

Vedoucí bakalářské práce: RNDr. Pavel Surynek, Ph.D.

E-mail vedoucího: pavel.surynek@mff.cuni.cz

Abstrakt: Práce popisuje softwarový nástroj pro vizualizaci pohybu entit po grafu. Toto mode-

lové prostředí je často použito jako abstrakce problémů, kde daná množina entit musí být pře-

uspořádána z nějaké počáteční do určitě cílové konfigurace v prostoru. Programy řešící tyto

problémy obvykle používají sub-optimální algoritmy pro vygenerování řešení textového cha-

rakteru, která jsou obecně nevhodná pro prohlížení člověkem. Vizualizační nástroj tedy může

být využit výzkumníkem při analýze kvality takových řešení. Nástroj pro vizualizaci řeší ně-

kolik problémů – kreslení grafu do roviny, ovládání animace, zaznamenávání výstupu do ob-

razových nebo video souborů, správu barev a validaci pohybů. Práce poskytuje detailní in-

formace o implementaci nástroje včetně výběru vhodných algoritmů, architektury a technolo-

gií.

Klíčová slova: vizualizace, kreslení grafu, pohyb po grafu, zaznamenávání videa

6

1 Introduction
Movement of entities on a graph is a basic abstraction for many real-life tasks, as stated in

[17]:

These tasks include rearranging containers in storage yards, coordination of move-

ments of a large group of automated agents, or optimization of dense traffic. However,

this is not the only motivation. ... An example may be data transfer with limited buffers

at communication nodes, a coordination of a group of agents in strategic computer

games, or planning movements in mass scenes in computer-generated imagery.

The environment for these tasks is abstracted as a graph, where vertices represent discrete

positions and edges possible paths between them. Cars, containers or packets are represented

by entities that move among such graph. The problem is then defined by an initial and goal

positions of entities on the graph together with restrictions that must be considered when

planning movements – physical environments for example do not allow two or more entities

to be located in one place at the same time. Solution to this problem consists of a sequence of

entity movements that transforms the initial configuration to the final one while not breaking

any of defined restrictions. This leads to variants of problem, two of which are widely known

as pebble motion on a graph [10] and multi-robot path planning [16]. Notice the problem is

solved in a centralized manner, where entities do not move autonomously. Several existing

algorithms produce solutions to these problems. The currently best algorithm is presented in

[17]. Generally, the shorter the solution is in terms of the number of movements the better.

However, as mentioned in [17] and proved in [15] and [18]:

A natural additional requirement is to produce shortest possible solutions (...). Unfor-

tunately, this requirement makes the problem intractable (namely NP-hard).

Therefore, the solutions produced by any reasonably fast algorithm are expected to contain

various types of redundancies, some of which might be possibly identified and removed by a

certain set of additional algorithms. Because available solvers produce solutions only in a

textual form, which is not suitable for analysis by a human, the process of designing such al-

gorithms would quickly lead to a problem of not knowing the exact visual form of a solution.

Thus, there is a motivation for a visualization tool (Figure 1). This thesis describes the devel-

opment and implementation of such tool.

Figure 1. From a practical motivation over the textual solution to the abstract visualization.

1.1 Tool Overview
GraphRec [11] is a visualization tool oriented on the animation of moving entities on the ge-

neric middle-sized graph containing tens to hundreds of nodes. The tool provides an anima-

tion engine for the entity movement together with features designed to support the observa-

tion of the solution time line. In particular, the graph must be embedded on the screen be-

7

fore the visualization can even occur. Additionally, the tool can capture the animation into

various image or video formats. Any similar tool has not been available up until now. With

the existing graph visualization software (e.g. Graphviz [1]) it is neither possible to represent

entities nor move them among graph nodes. Here is a brief description of how program

works:

1) As an input, user provides the problem solution containing graph definition, initial po-

sitions of entities and the complete list of entity movements.

2) The tool loads the input and calculates positions of nodes to produce a graph layout.

3) User adjusts the colors of nodes and entities.

4) In a similar way as with video recorder, user navigates through the animation with the

possibility to record it.

1.2 Tool Purpose
The purpose of the tool is to act as a visual frontend for the existing text-based applications,

which solve planning problems that can be abstracted as the movement of entities on a graph.

In this way, the tool can be used to analyze solutions of these problems visually – either to

identify various redundancies or simply to compare differently optimized solutions of the

same problem. Since the automatic detection of redundancies with unknown characteristics is

not possible, the initial analysis by a human is essential. Because humans are mainly visual-

oriented, the visualization of the problem seems to be a suitable approach.

The tool can also find inconsistencies in a given solution by verifying its movements against

constraints specified in the definition of the variant of motion problem. Solution validation is

necessary to prevent the corruption of the animation. However, the validation can also be uti-

lized when debugging solving algorithms.

Moreover, the tool is designed for teaching and presentation purposes, where the visualiza-

tion helps people to understand how the presented solving algorithm works. Captured media

files might accompany articles either on a paper or on the web.

1.3 Tool Scope
The tool should not be considered as a graph embedding software. Although the implementa-

tion contains two embedding algorithms to provide decent looking graphs, it is not a main

goal. Program also should not be mistaken with applications that actually solve planning

problems. Core functionality is focused on animation, interactive user interface and produc-

tion of image and video output. In a model situation where there are three types of software

– one for creating a problem definition, one for generating a solution and one for visualization

of the solution – the presented tool is supposed to be the third one. Program is strictly GUI

application not providing any kind of command line interface.

1.4 Thesis Structure
The visualization tool and its motivation are introduced in section 1. Closer look at the prob-

lem of visualization of entity movement on a graph together with the detailed analysis of de-

sign decisions, picked algorithms and chosen technologies is provided in section 2. User's

guide containing user stories and description of the graphical interface is located in section 3.

Programmer's documentation consisting of compilation, architecture analysis and class de-

scription is the content of section 4. Summarization of the thesis and achieved results are pre-

sented in section 5.

8

2 Design Analysis
Visualization tool deals with a diverse set of problems. Not only does it provide support for

the animation, but also resolves various affiliated tasks – from graph embedding to capturing

a video. Before going into detail, there is a list of targeted features:

Input

 User can load multiple files at once.

 User can choose what to load when file contains more than one solution.

 It is possible to validate a solution and review its errors.

GUI

 Tabbed interface where each tab contains one opened solution.

 Support for zooming, scrolling and rotating.

 User can edit properties (location, color) of multiple graph elements at once.

Layout

 Support for the automatic embedding of a graph into 2-dimensional plane.

 It is possible to adjust graph layout manually by selecting and dragging nodes.

Animation

 Controls allowing user to start, step, stop and seek the animation.

 Animation speed is adjustable.

 Moving entities can be visually highlighted.

 It is possible to run parallel animation of more than one solution at once.

Capturing

 Image snapshots can be taken manually or scheduled with adjustable time interval.

 Support for both raster and vector image formats.

 Animation can be captured into popular video formats.

Output

 Solution can be saved together with graph layout, coloring and current view state.

 All opened tabs can be saved into a single file at once.

2.1 Graph Embedding
Before the visualization can even occur, the graphs on which the movement will be animated

have to be embedded on the screen. In order to create universal tool, there is no assumption

about the graph characteristics. Since general graphs are not necessarily planar, the embed-

ding algorithm should at least reduce the amount of crossing edges while maintaining Eucli-

dean distances between nodes proportional to some reasonably chosen metric (e.g. shortest

paths).

GraphRec implements two widely used force-directed planar embedding algorithms described

in [6] and [9]. Both methods are based on the simulation of a certain physical model. Whereas

the model introduced in [6] considers nodes as repulsive particles and edges as contracting

springs, another interpretation where chosen free node is connected by springs to the rest of

anchored nodes is proposed in [9]. Owing to their physical background, force-directed algo-

rithms often produce expected and intuitive layouts.

2.1.1 Fruchterman-Reingold Method

Embedding method discovered in [6] is based on the idea that nodes are repulsive particles

and edges are contracting springs (Figure 2). Considering the repulsive power of nodes, they

9

are all equal. Same stands for edges – all of them

have the same stiffness. The equilibrium of the

springs is set to zero length, so that edges tend to

contract all the time. Algorithm gradually provides

better and better layout for all nodes at each cycle.

Whereas single iteration calculates repulsive powers

among all nodes, attractive powers are calculated

only between adjacent nodes (those connected by =an edge). Utilized force model is elastic,

which allows user to interact with running algorithm. GraphRec uses slightly modified ver-

sion of the algorithm (Algorithm 1).

Algorithm 1. Modified version of Fruchterman-Reingold [6] embedding algorithm.

FRUCHTERMANREINGOLD(𝐺 𝑉, 𝐸 , 𝑑𝑖𝑠𝑝)

 {initial random positions of nodes, target displacement of nodes }

1 forever

 {calculate new positions}

2 for each 𝑣 = 𝑥, 𝑦, 𝑎𝑐𝑐𝑥 , 𝑎𝑐𝑐𝑦 ∈ 𝑉 do

3 𝑣. 𝑎𝑐𝑐𝑥 ← 0 {accumulator for horizontal position change}

4 𝑣. 𝑎𝑐𝑐𝑦 ← 0 {accumulator for vertical position change}

 {accumulate repulsive forces}

5 for each 𝑢 = 𝑥, 𝑦, 𝑎𝑐𝑐𝑥 , 𝑎𝑐𝑐𝑦 ∈ 𝑉 ∖ 𝑣 do

6 let 𝑑𝑥 ← 𝑣. 𝑥 − 𝑢. 𝑥
7 let 𝑑𝑦 ← 𝑣. 𝑦 − 𝑢. 𝑦

8 let 𝑑 ← 𝑑𝑥
2 + 𝑑𝑦

2

9 let 𝑓𝑟 ← 𝑑𝑖𝑠𝑝2 𝑑 {repulsive force multiplier}

10 𝑣. 𝑎𝑐𝑐𝑥 ← 𝑣. 𝑎𝑐𝑐𝑥 + 𝑑𝑥 ∙ 𝑓𝑟 𝑑

11 𝑣. 𝑎𝑐𝑐𝑦 ← 𝑣. 𝑎𝑐𝑐𝑦 + 𝑑𝑦 ∙ 𝑓𝑟 𝑑

 {accumulate attractive forces}

12 for each 𝑒 = 𝑚, 𝑛 ∈ 𝐸𝑣 = 𝑒 ∈ 𝐸 | ∃𝑤 ∈ 𝑉: 𝑒 = 𝑣, 𝑤 ∨ 𝑒 = 𝑤, 𝑣 do

13 let 𝑑𝑥 ← 𝑒.𝑚. 𝑥 − 𝑒. 𝑛. 𝑥
14 let 𝑑𝑦 ← 𝑒.𝑚. 𝑦 − 𝑒. 𝑛. 𝑦

15 let 𝑑 ← 𝑑𝑥
2 + 𝑑𝑦

2

16 let 𝑓𝑎 ← 𝑑 𝑑𝑖𝑠𝑝 {attractive force multiplier}

17 𝑣. 𝑎𝑐𝑐𝑥 ← 𝑣. 𝑎𝑐𝑐𝑥 – 𝐸𝑣 ∙ 𝑑𝑥 ∙ 𝑓𝑎 𝑑

18 𝑣. 𝑎𝑐𝑐𝑦 ← 𝑣. 𝑎𝑐𝑐𝑦 – 𝐸𝑣 ∙ 𝑑𝑦 ∙ 𝑓𝑎 𝑑

 {update positions}

19 let 𝑠𝑡𝑎𝑡𝑖𝑐 ← 0 {counter for nodes with insignificant change}

20 for each 𝑣 = 𝑥, 𝑦, 𝑎𝑐𝑐𝑥 , 𝑎𝑐𝑐𝑦 ∈ 𝑉 do

21 if 𝑣. 𝑎𝑐𝑐𝑥 < 𝜀 ∧ 𝑣. 𝑎𝑐𝑐𝑦 < 𝜀 then

22 𝑠𝑡𝑎𝑡𝑖𝑐 ← 𝑠𝑡𝑎𝑡𝑖𝑐 + 1

23 else

24 𝑣. 𝑥 ← 𝑣. 𝑥 + 𝑣. 𝑎𝑐𝑐𝑥

25 𝑣. 𝑦 ← 𝑣. 𝑦 + 𝑣. 𝑎𝑐𝑐𝑦

26 if 𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉 then

27 break

28 return 𝐺 𝑉, 𝐸

Time complexity of the single iteration is 𝑂 𝑉 2 + 𝐸 . Original algorithm is terminated by

simulated annealing method, which gradually weakens the forces allowing the algorithm to

focus more and more on minor rather than radical changes. Unfortunately, simulated anneal-

ing is not suitable for interactive embedding, because the process can be altered by a user any

Figure 2. Repulsive and attractive forces.

10

time. Therefore, modified algorithm is terminated simply by checking when all vertices are

moved only insignificantly.

Moreover, modified algorithm emphasizes the dependency between an attractive force and the

number of edges that are connected to the vertex. Since the attractive force is additionally

multiplied by the number of connected edges, poorly connected vertices on the outer boun-

dary of the graph are not so much attracted by adjacent nodes. This approach gives better

layout especially in the case of the regular grid, where boundary nodes tend to be dragged to

the center of the graph otherwise. Another difference is that modified algorithm does not cal-

culate some of the squaring and root extractions – algorithm then behaves more dynamically

while a user is dragging some node (graph follows dragged node better). It should be noted

that these modifications were made in the trial and error manner.

2.1.2 Kamada-Kawai Method

Method described in [9] is also based on the simula-

tion of a certain physical system. Target Euclidean

distances between nodes are proportional to their

graph-theoretical distances (shortest paths). This

time, a single iteration improves position of only

one node, which renders the algorithm non-elastic

(it does not react to the alteration by a user). When

calculating position of a chosen node, all other

nodes are considered as solid anchors for springs

that are hooked together in a location of the currently processed node. Springs are either

contractive or repulsive depending on their current stretch. Stiffness and equilibrium of each

spring is different – it is proportional to the shortest path between the two nodes. Algorithm

utilizes several methods and principles from differential calculus, linear algebra, graph theory

and material mechanics. Following explanation is a compact and customized retelling of the

method discovered in [9], which is necessary to understand GraphRec source code.

All-pairs shortest-paths problem can be solved in 𝑂 𝑉 3 by Floyd-Warshall algorithm

(Algorithm 2), which is explained in [4].

Algorithm 2. Floyd-Warshall [4] algorithm for finding all-pairs shorthes-paths.

FLOYDWARSHALL(𝐺(𝑉, 𝐸))

1 let 𝐷 = 𝑑𝑖𝑗 ←

0, 𝑖 = 𝑗

1, 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸

∞, 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑣𝑖 , 𝑣𝑗 ∉ 𝐸

2 for 𝑘 ← 1,… , 𝑉 do

3 for 𝑖 ← 1,… , 𝑉 do

4 for 𝑗 ← 1,… , 𝑉 do

5 𝑑𝑖𝑗 ← min 𝑑𝑖𝑗 , 𝑑𝑖𝑘 + 𝑑𝑘𝑗

6 return 𝐷

Spring counteracts its elongation/contraction by the force 𝐹 𝑥 = 𝐾 𝑥 − 𝑥0 , which is linear-

ly proportional to the deflection 𝑥 from its equilibrium 𝑥0. Accumulated potential energy cor-

responds to the integral of force:

𝐸 𝑥 = 𝐹 𝑥 𝑑𝑥 =
1

2
𝐾 𝑥 − 𝑥0

2

Factor 𝐾 is defined for nodes 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 as 𝑘𝑖𝑗 = 𝐾0 𝑑𝑖𝑗
2 , where 𝐾0 is an arbitrary constant.

Thus, spring is more solid between closer nodes (because of a shorter path). Similarly, equili-

Figure 3. Node moving to the equilibrium.

11

brium length of the spring is defined as 𝑙𝑖𝑗 = 𝑑𝑖𝑠𝑝 ∙ 𝑑𝑖𝑗 , where 𝑑𝑖𝑠𝑝 is an external parameter

specifying the target displacement of nodes. Finally, considering a set of nodes 𝑉 = 𝑛 ,

where 𝑣𝑖 ∈ 𝑉 has Euclidean coordinates 𝑥𝑖 , 𝑦𝑖 , the potential energy of the whole system can

be defined as a sum of potential energies for all springs:

𝐸 𝑥1 , … , 𝑥𝑛 , 𝑦1 , … , 𝑦𝑛 =
1

2
𝑘𝑖𝑗 𝑥𝑖 − 𝑥𝑗

2
+ 𝑦𝑖 − 𝑦𝑗

2
− 𝑙𝑖𝑗

2𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

At each iteration, algorithm chooses such node 𝑣𝑚 that has maximum size of the gradient

vector ∇𝐸𝑚 , where 𝐸𝑚 𝑥𝑚 , 𝑦𝑚 is the function 𝐸 whose variables (apart from 𝑥𝑚 , 𝑦𝑚) are

considered as fixed constants:

∇𝐸𝑚 =
𝜕𝐸

𝜕𝑥𝑚
,
𝜕𝐸

𝜕𝑦𝑚
 , ∇𝐸𝑚 =

𝜕𝐸

𝜕𝑥𝑚

2

+
𝜕𝐸

𝜕𝑦𝑚

2

𝜕𝐸

𝜕𝑥𝑚
= 𝑘𝑚𝑖 𝑥𝑚 − 𝑥𝑖 −

𝑙𝑚𝑖 𝑥𝑚 − 𝑥𝑖

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2

𝑛

𝑖=1

𝜕𝐸

𝜕𝑦𝑚
= 𝑘𝑚𝑖 𝑦𝑚 − 𝑦𝑖 −

𝑙𝑚𝑖 𝑦𝑚 − 𝑦𝑖

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2

𝑛

𝑖=1

Gradient vector is then gradually decreased by moving the chosen node to the local minimum

of 𝐸𝑚 . Newton-Raphson numerical method (Figure 4) approximates the zero of the function

𝑓 𝑥 by iterating through the equation 𝑥𝑛+1 = 𝑥𝑛 − 𝑓 𝑥𝑛 𝑓 ′ 𝑥𝑛 , which can be also ex-

pressed as 𝑓 ′ 𝑥𝑛 ∙ 𝑑𝑥 = −𝑓 𝑥𝑛 , where 𝑑𝑥 = 𝑥𝑛+1 − 𝑥𝑛 . Let us apply this method to ap-

proximate the zero of the gradient vector ∇𝐸𝑚 , which effectively finds the local minimum of

𝐸𝑚 . This includes calculating the Jacobian of ∇𝐸𝑚 :

𝐽∇𝐸𝑚 ∙
𝑑𝑥

𝑑𝑦
 = −∇𝐸𝑚

𝜕2𝐸

𝜕𝑥𝑚
2

𝜕2𝐸

𝜕𝑥𝑚𝜕𝑦𝑚
𝜕2𝐸

𝜕𝑦𝑚𝜕𝑥𝑚

𝜕2𝐸

𝜕𝑦𝑚
2

∙
𝑑𝑥
𝑑𝑦
 =

 −

𝜕𝐸

𝜕𝑥𝑚

−
𝜕𝐸

𝜕𝑦𝑚

𝜕2𝐸

𝜕𝑥𝑚
2

= 𝑘𝑚𝑖 1 −
𝑙𝑚𝑖 𝑦𝑚 − 𝑦𝑖

2

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2 3
2

𝑛

𝑖=1

𝜕2𝐸

𝜕𝑥𝑚𝜕𝑦𝑚
=

𝜕2𝐸

𝜕𝑦𝑚𝜕𝑥𝑚
= 𝑘𝑚𝑖

𝑙𝑚𝑖 𝑥𝑚 − 𝑥𝑖 𝑦𝑚 − 𝑦𝑖

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2 3
2

𝑛

𝑖=1

𝜕2𝐸

𝜕𝑦𝑚
2

= 𝑘𝑚𝑖 1 −
𝑙𝑚𝑖 𝑥𝑚 − 𝑥𝑖

2

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2 3
2

𝑛

𝑖=1

In order to solve the above system of two linear equations, let us use Cramer’s rule:

𝑎 𝑏
𝑐 𝑑

 ∙
𝑥
𝑦 =

𝑒
𝑓

𝑥 =
𝑒𝑑 − 𝑏𝑓

𝑎𝑑 − 𝑏𝑐
, 𝑦 =

𝑎𝑓 − 𝑒𝑐

𝑎𝑑 − 𝑏𝑐

Finally, the pseudo-code for Kamada-Kawai method can be written as in Algorithm 3.

12

Algorithm 3. Kamada-Kawai [9] embedding algorithm.

KAMADAKAWAI(𝐺 𝑉, 𝐸 , 𝑑𝑖𝑠𝑝, 𝐾0)

 {initial random positions of nodes, target displacement of nodes , stiffness factor}

1 let 𝐷 = 𝑑𝑖𝑗 ←FLOYDWARSHALL(𝐺(𝑉, 𝐸)) {shortest paths}

2 let 𝐿 = 𝑙𝑖𝑗 ← 𝑑𝑖𝑠𝑝 ∙ 𝑑𝑖𝑗 {equilibrium lengths}

3 let 𝐾 = 𝑘𝑖𝑗 ← 𝐾0 𝑑𝑖𝑗
2 {stiffness factors of springs}

4 while 𝑚𝑎𝑥𝑖=1
𝑛 ∇𝐸𝑖 > 𝜀 do

5 let ∇𝐸𝑚 ← ∇𝐸𝑗 : ∇𝐸𝑗 = max𝑖=1
𝑛 ∇𝐸𝑖 , 𝑗 = 1,… , 𝑛

6 let 𝑣 ← 𝑣𝑖 ∈ 𝑉: 𝑖 = 𝑚, 𝑖 = 1,… , 𝑛

7 while ∇𝐸𝑚 > 𝜀 do

 {solve the linear system 𝐽∇𝐸𝑚 ∙ 𝑑𝑥
𝑑𝑦
 = −∇𝐸𝑚 }

8 let 𝐽∇𝐸𝑚 ← JACOBIAN(∇𝐸𝑚)

9 let 𝑑𝑥
𝑑𝑦
 ← CRAMER (𝐽∇𝐸𝑚 , −∇𝐸𝑚)

10 𝑣. 𝑥 ← 𝑣. 𝑥 + 𝑑𝑥

11 𝑣. 𝑦 ← 𝑣. 𝑦 + 𝑑𝑦

12 return 𝐺 𝑉, 𝐸

Function 𝐸 is in its local minimum when all of its first

partial derivatives are equal to zero. Algorithm 3 ap-

proximates this target by gradually decreasing great-

est ∇𝐸𝑖 gradient vectors, one at a time, until all of

them have its elements (first partial derivatives) suffi-

ciently close to the zero. Apparently, partial derivative

can be computed in 𝑂 𝑉 . Outer loop calculates 𝑉
gradients each consisting of 2 partial derivatives,

which leads to 𝑂 𝑉 2 . Inner loop calculates 4 deriv-

atives to produce Jacobian and 2 derivatives in order

to update ∇𝐸𝑚 . Since 𝑇 representing the number of

inner loop iterations (Newton-Raphson method) de-

pends un-trivially on the node count, node positions

and graph structure, resulting cost of the inner loop would be 𝑂 𝑇 𝑉 . It should be noted that,

when several conditions hold, Newton-Raphson method is proven in [20] to converge qua-

dratically to the zero of the given function (the number of significant digits doubles after each

iteration). However, convergence rate can be more than quadratic or might even fail when

those condition are not met (e.g. the initial picked value is too far from the actual zero). Thus,

GraphRec puts the upper limit on the number of inner loop executions in order to prevent

lock-ups. This effectively means that the overall cost of the inner loop is only 𝑂 𝑉 . Hence

the complexity of a single iteration of the outer loop is 𝑂 𝑉 2 .

2.1.3 Methods Comparison

Methods can be compared regarding both their speed and qual-

ity of produced layout. As Figure 5 indicates, Kamada-Kawai

method produces visually more appealing layout. In fact, such

result is expected. Whereas Fruchterman-Reingold method

models ideal distances only between adjacent nodes, Kamada-

Kawai takes into account all pairs of nodes. As for execution

speed, Kamada-Kawai needs larger number of iterations to

find equilibrium and is therefore slower despite the lower

complexity of a single iteration.

Figure 4. Newton-Raphson method.

Figure 5. FR (left), KK (right).

13

2.2 Problem Variants
Generally, a problem of motion on a graph is a task to find a sequence of entity movements

that transforms given initial placement of entities into the requested target placement. As de-

scribed in [17], there are two interesting variants of the problem varying in the number of

constraints applied to a single movement. Let us take problem definitions from [17] and [18]

to formalize how the supposed solutions of these problems look like.

Definition 1 (solution of pebble motion on a graph). Let 𝐺 = (𝑉, 𝐸) be an undirected graph.

Let 𝑅 = 𝑟1 , 𝑟2 ,… , 𝑟𝑛 be a set of entities (denoted by constant symbols) such that 𝑅 < 𝑉 .
Any given solution of pebble motion on a graph for a set of entities 𝑅 is a sequence 𝐹𝑅

𝑡 𝑡=0
𝑚 ,

where 𝐹𝑅
𝑡 : 𝑅 → 𝑉 is a uniquely invertible function for every time step 𝑡 ∈ 0,1, … ,𝑚 . Either

𝐹𝑅
𝑡 𝑟 = 𝐹𝑅

𝑡+1 𝑟 or 𝐹𝑅
𝑡 𝑟 , 𝐹𝑅

𝑡+1 𝑟 ∈ 𝐸 must hold for every 𝑟 ∈ 𝑅 and every 𝑡 ∈
 0,1, … ,𝑚 − 1 . A movement of the given entity 𝑟 ∈ 𝑅 at the given time step 𝑡 ∈
 0,1, … ,𝑚 − 1 is allowed if and only if the statement 𝐹𝑅

𝑡 𝑟 ≠ 𝐹𝑅
𝑡+1 𝑟 ⟹ ∀𝑠 ∈ 𝑅: 𝐹𝑅

𝑡 𝑠 ≠
𝐹𝑅
𝑡+1 𝑟 holds. All the movements of the solution must be allowed. □

Definition 2 (solution of multi-robot path planning). Let 𝐺 = (𝑉, 𝐸) be an undirected graph.

Let 𝑅 = 𝑟1 , 𝑟2 ,… , 𝑟𝑛 be a set of entities (denoted by constant symbols) such that 𝑅 < 𝑉 .
Any given solution of multi-robot path planning for a set of entities 𝑅 is a sequence 𝐹𝑅

𝑡 𝑡=0
𝑚 ,

where 𝐹𝑅
𝑡 : 𝑅 → 𝑉 is a uniquely invertible function for every time step 𝑡 ∈ 0,1, … ,𝑚 . Either

𝐹𝑅
𝑡 𝑟 = 𝐹𝑅

𝑡+1 𝑟 or 𝐹𝑅
𝑡 𝑟 , 𝐹𝑅

𝑡+1 𝑟 ∈ 𝐸 must hold for every 𝑟 ∈ 𝑅 and every 𝑡 ∈
 0,1, … ,𝑚 − 1 . A movement of the given entity 𝑟 ∈ 𝑅 at the given time step 𝑡 ∈
 0,1, … ,𝑚 − 1 is allowed if and only if one of the following statements holds:

(i) 𝐹𝑅
𝑡 𝑟 ≠ 𝐹𝑅

𝑡+1 𝑟 ⟹ ∀𝑠 ∈ 𝑅: 𝐹𝑅
𝑡 𝑠 ≠ 𝐹𝑅

𝑡+1 𝑟
(ii) 𝐹𝑅

𝑡 𝑟 ≠ 𝐹𝑅
𝑡+1 𝑟 ⟹ ∃𝑠 ∈ 𝑅: 𝑠 ≠ 𝑟 ∧ 𝐹𝑅

𝑡 𝑠 = 𝐹𝑅
𝑡+1 𝑟 ∧ 𝐹𝑅

𝑡 𝑠 ≠ 𝐹𝑅
𝑡+1 𝑠 , where the

movement of the entity 𝑠 at the time step 𝑡 must be allowed.

All the movements of the solution must be allowed. □

Because every time step in a solution is represented by a uniquely invertible function, it is

ensured that any given node is occupied by a single entity at any given time. The main differ-

ence between the two variants is that multi-robot path planning allows the situation in which

the node is both the source and the target for two simultaneous movements.

2.2.1 Solution Validation

In practice, a solution is a sequence of an arbitrary number of movements. Every move is spe-

cified only by its source node, target node and a time step at which occurs. Notice there is

no information about the entity. Because it is not guaranteed that input data are completely

correct, there is a need for validation. Depending on a character of input data, movements are

validated against either Definition 1 or Definition 2. Process is described in the following list:

1) All moves are sorted by the time step.

2) Moves are split into groups that are characterized by the same time step. Each group is

then filtered. Moves that are discarded meet one of these criteria:

a) The source node is equal to the target node, which effectively results in a loop.

b) There is no edge between the source and the target node.

c) The source node does not contain an entity in the respective time step.

d) There is already different approved move that begins in the same source node

as the currently examined move.

e) There is already different approved move that ends in the same target node as

the currently examined move.

14

f) There is already different approved node that begins in the target node and

ends in the source node of the currently examined move (inverse move).

3) Second pass through every filtered group determines the final valid moves. Moves that

are ultimately approved meet one of these criteria:

a) The source node contains an entity and the target node is empty.

b) (only multi-robot path planning) Both the source node and the target node con-

tain an entity. Recursive search proves that the target node is freed by some

other move occurring in the same time step and that the whole chain of such

moves is terminated by an empty node.

2.3 Movement Animation
The animation of moving entities is the core feature of the application. Since the solution is

built over discrete time steps, these should be possible to play through or even step through in

order to increase controllability of the observation. When examining certain part of the solu-

tion it is also necessary to provide adjustable speed of the animation and the possibility to

jump quickly between various time steps.

Animation of the solution can be controlled in a similar way as playing a movie on a video

recorder. Firstly, user adjusts the animation speed and specifies the starting time step. Then, it

is possible to play or step through the animation time line. GraphRec supports the synchro-

nized animation of more than one solution at once, which is for example useful when compar-

ing differently optimized solutions for the same problem.

2.4 Color Management
The clearness of the animation must be taken into attention as well. It appears that highlight-

ing of moving entities greatly improves the overall perception of where the motion actually

occurs (Figure 6). The demand for user vigilance might be further reduced by distinguishing

between entities that are already in their final positions and that are not.

Figure 6. Moving entities emphasized by highlighted edges.

15

Consequently, the tool enables all graph elements to be assigned with various colors. This is

especially important in scenarios such as observation of the movement of one particular entity

or even group of entities, where color differentiation considerably simplifies their traceabili-

ty.

2.5 Chosen Technologies
From the beginning of the development, GraphRec was intended to be multiplatform open-

source software. In order to achieve these properties, implementation is based on Qt cross-

platform application and GUI framework [12] developed by Nokia Corporation. Since Qt

itself is implemented in C++, the natural choice of a programming language was C++ along

with its standard library. Because Qt framework offers very good data structures and some

advanced abstractions, the usage of C++ standard library was reduced to minimum (e.g. nu-

meric operations).

Not only does Qt serve as a bridge among various platforms, but also heavily simplifies the

design of a GUI application. In particular, GraphRec takes advantage of the signal and slot

mechanism, window layouts, graphical subsystem, support for raster and vector image for-

mats, concurrency, XML
1
 API and regular expressions. The only thing that is not covered by

Qt is video rendering. In order to support capturing of video, GraphRec uses FFmpeg video

library [1], which is both multiplatform and open-source while providing wide range of pop-

ular video encoders.

Program was developed under Qt Creator, which is a multiplatform IDE specially designed

for the development of Qt applications. Both Qt framework and FFmpeg library are licensed

under either GNU GPL
2
 or GNU LGPL

3
. Since these licenses are viral, GraphRec must be

licensed under these or less restrictive licenses. Currently, GraphRec is English-only applica-

tion. However, since Qt provides very good support for localization, every string for GUI is

wrapped in a translation function. This is a good starting point for any possible localization in

the future.

2.6 Operating Environment
Because of chosen technologies, GraphRec can be compiled for Windows, Linux and Mac OS

from the single source code. As will be explained later, it is possible to create compressed

and statically linked binary, which is almost completely self-contained not expecting any

non-standard preinstalled libraries on the host system. Since GraphRec consists of a single

binary file, it can be simply installed and run from anywhere. Depending on the platform,

configuration is stored, independently on the binary location, in registry (Windows) or in conf

files (Linux).

In practice, GraphRec was tested and is distributed under Windows XP SP3 and above or

Ubuntu 8.10 and above. In addition to the requirements of mentioned operating systems, the

minimal environment for GraphRec execution should include a processor with MMX
4
 and

SSE
5
 support, 150MB of free random access memory (when encoding video), colored display,

classic keyboard and a mouse with the roller.

1 eXtensible Markup Language (http://www.w3.org/XML/)
2 GNU General Public License (http://www.gnu.org/licenses/gpl.html) 2 GNU General Public License (http://www.gnu.org/licenses/gpl.html)
3 GNU Lesser General Public License (http://www.gnu.org/licenses/lgpl.html)
4 MultiMedia eXtensions
5 Streaming SIMD Extensions

16

2.7 Extensibility
Because of the intended open-source nature of the application, one of the design principles

was to produce easily extensible and maintainable code. As a prerequisite for such aim, code

was written to be self-explaining, well formatted and easily readable without the need for dis-

tracting comments. A certain subset of Hungarian notation was used for naming conventions.

However, the extensibility must be primarily reflected in the architecture. Opportunities for

extensions are obvious – more input or output file formats, various graph embedding algo-

rithms, different solution validation schemes. All those modules can be divided into groups

that are characterized by the

same functionality and data but

by the different algorithms.

Such situation can be ab-

stracted by the well-known

Strategy pattern described in

[7] and shown in Diagram 1.

Strategy pattern is the main

design principle of the Graph-

Rec architecture.

2.8 User Interface
The design of the graphical user interface was made to be highly flexible, simple and intui-

tive. Since there is a natural requirement to compare solutions among themselves, the possi-

bility to work with arbitrary number of them is essential. GraphRec GUI is built primarily

around this requirement. As a result, GUI is equipped with tabbed interface, where each in-

dependent tab contains a context of the single solution (Figure 7). These tabs can be manipu-

lated in such a way that more of them are visible at the same time. Tabs are completely insu-

lated and orthogonal with the only exception of the video encoding feature, which is exclu-

sively assigned to a single tab at a time.

Diagram 1. Strategy pattern UML scheme.

Figure 7. Extensive usage of tabbed user interface.

17

Following design principles are also reflected in the GUI of Graphrec:

 Main window and dialogs are resizable.

 Window controls adapt to various sizes of their parents.

 Frequently used controls are pinned to the toolbar.

 Dialogs are non-modal if possible.

 It is possible to terminate long operations.

 User interface stays responsive even during extensive calculations.

 User is informed by status messages or progress bars about what is happening.

 When there is more similar objects (e.g. files, nodes, list entries), it must be possible to

work with more of them at once.

2.9 Video Capturing
GraphRec uses concurrency while encoding video. Rendering and encoding is done on differ-

ent threads. Thus, rendering function acts as a producer, who puts video frames into the buffer

of a limited size, and encoding function acts as a consumer, who reads frames from the buffer

and encodes them into an output file. Both threads are synchronized by the two semaphores.

The function for acquiring semaphore normally blocks until resources are available. Since

GraphRec must stay responsive during video encoding, the semaphore acquiring is periodical-

ly requested only for a small amount of time after which the application message queue is

inspected. General scheme for producer-consumer synchronization is described in [1] and in

Algorithm 4.

Algorithm 4. Producer-Consumer [1] synchronization scheme.

SYNCHRONIZE(𝑠𝑖𝑧𝑒, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡)
1 let 𝑏𝑢𝑓𝑓𝑒𝑟 ← ALLOCATEBUFFER(𝑠𝑖𝑧𝑒)

2 let 𝑓𝑟𝑒𝑒 ← CREATESEMAPHORE(𝑠𝑖𝑧𝑒)

3 let 𝑢𝑠𝑒𝑑 ← CREATESEMAPHORE(0)

4 let PRODUCE ← 𝜆(while TRYACQUIRE 𝑓𝑟𝑒𝑒, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 𝐹𝐴𝐿𝑆𝐸 do

5 PROCESSMESSAGES

6 WRITEDATA(𝑏𝑢𝑓𝑓𝑒𝑟)

7 RELEASE(𝑢𝑠𝑒𝑑)

8)

9 let CONSUME ← 𝜆(while TRYACQUIRE 𝑢𝑠𝑒𝑑, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 𝐹𝐴𝐿𝑆𝐸 do

10 PROCESSMESSAGES

11 READDATA(𝑏𝑢𝑓𝑓𝑒𝑟)

12 RELEASE(𝑓𝑟𝑒𝑒)

13)

14 let 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 ← CREATETHREAD(PRODUCE)

15 let 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 ← CREATETHREAD(CONSUME)

16 STARTTHREAD(𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟)

17 STARTTHREAD(𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟)

18 WAITTHREAD(𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟)

19 WAITTHREAD (𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟)

18

3 User's Guide
Guide is organized in the following way. Firstly, the opening of the input file is explained.

Immediately after that, the environment is introduced in the descriptive linear manner. Then,

the description of mouse and keyboard controls follows. Ultimately, there are several user

stories on how to achieve certain goals.

3.1 Opening Input File
Input file contains graph definition, positions of nodes, colors of graph elements and some

additional information. File can be opened either by toolbar button or by File – Open... in the

main menu. This action opens dialog containing two lists (Figure 8). List on the left side must

be first filled with input files before proceeding further. To do that, just click on Add files...

button and choose one or more input files in the standard open dialog. Note that you must

choose appropriate file format. After the files are searched, left list contains one line for each

graph found in the input files. Each line provides some additional information for a given

graph:

 Name – Each graph in the input file should be marked by its ID number. If ID is not

specified, dash is displayed instead.

 Line – Line at which the graph definition starts in the respective file. This can be use-

ful information for the manual revision of large input files.

 Nodes – Number of nodes in the graph.

 Edges – Number of edges in the graph.

 Entities – Number of entities that occupy nodes.

 Timesteps – Number of time steps the solution scenario consists of.

 Movements – Number of entity movements in the whole solution scenario.

 Validator –Shows either the default validator or the one preferred by the input file.

Selected validator will be used for the initial validation. Validator can be changed by

right clicking on the respective line. Note that validator can be also changed later in

the main menu.

List can be sorted by each of these columns. Irrelevant files can be folded in order to save

space. Lines can be multi selected (by mouse dragging or by holding Ctrl/Shift and left mouse

clicking) and then moved to the list on the right side (by >>> button or by double-clicking).

Note that if you select a header containing the file name, all graphs specified by this file will

Figure 8. Open dialog.

19

be moved to the right list. List on the right side serves as a basket for graphs you are willing to

open. Graphs can be moved between the two lists until you are satisfied with the selection. To

confirm dialog just click Open button and wait until selected graphs are loaded.

3.2 Environment Description
Following subsections describes the main application window and its parts.

3.2.1 Main Menu

Menu consists of several sections:

 File menu contains actions related to the file handling.

o Open... shows advanced dialog for choosing input files.

o Save... shows standard save dialog for saving single file.

o Save All... shows save dialog for saving all opened tabs into a single file.

o Exit terminates the application.

 Validation menu contains actions related to the solution validation.

o Validator submenu shows all available validators. Currently selected validator

is ticked.

o Log... shows dialog for error logging and reviewing.

 Layout menu contains actions related to the graph embedding.

o Mode submenu shows a list of embedding modes.

 Manual (continuous) grants the full manual control over the positions

of nodes.

 Manual (discrete) shows the background grid that defines separation

granularity.

 Automatic enables selected layouter and its embedding algorithm.

o Layouter submenu shows all available layouters. Currently selected layouter

is ticked.

o Recalculate move all nodes to the random positions and enables currently se-

lected layouter. Available only in the Automatic mode.

o Snap to Grid aligns positions of all nodes to the closest valid place in the grid.

Available only in the Manual (discrete) mode.

 Animation menu contains actions related to the animation control and capturing. Al-

most all actions in this menu appear in two versions – one for the currently selected

tab and one for all foreground (currently visible) tabs. Following list will describe only

single tab actions.

o Play starts the animation from the currently selected time step.

o Step animates only the currently selected time step and then stops.

o Stop finishes the currently animated time step and then stops animation.

o Seek... shows dialog for the time step selection.

o Reset sets the scenario to its beginning.

o Synchronize All enables or disables time step synchronization between the

tabs when playing animation on more of them at once.

o Snapshot... shows the dialog for capturing images.

o Sequence... shows the dialog for capturing image sequences or videos.

 Setup menu contains actions related to the configuration.

o Colors... shows the dialog for coloring graph elements.

o Options... shows the main configuration dialog.

 Window menu contains actions related to the graphical user interface.

20

o Split Horizontally splits the current tab group horizontally.

o Split Vertically splits current tab vertically.

o Unsplit recursively joins two tab groups on the selected level of the hierarchy.

o Unsplit All removes all splits.

o Toolbar button enables or disables a visibility of the application tool bar.

o Controls button enables or disables a visibility of the additional controls

placed inside the tabs.

 Help menu contains actions related to the documentation and application information.

o Documentation... shows a simple browser containing this guide.

o About... shows the about box containing version, contact and license informa-

tion for GraphRec.

o About Qt... shows about box containing version, contact and license informa-

tion for Qt framework (used by GraphRec).

o About FFmpeg... shows about box containing version, contact and license in-

formation for FFmpeg video library (used by GraphRec).

3.2.2 Tool Bar

Application tool bar contains frequently used actions from the main menu (Figure 9). These

actions are (in order of appearance) Open..., Save..., Manual (continuous), Manual (dis-

crete), Automatic, Play, Step, Stop, Play All, Step All, Stop All, Snapshot..., Sequence....

Note that currently there is no possibility to add or remove actions from the tool bar. Tool bar

can be enabled or disabled by Window – Toolbar in the main menu. It can be also moved

over the screen or docked to arbitrary side of the application window.

3.2.3 Status Bar

Left side of the status bar contains additional information about current activity of the applica-

tion. Messages can indicate idle state, file opening, file saving, validation, error detection,

graph embedding, running animation, video capturing and image saving. Note that some of

these messages can be displayed only for a limited amount of time. Right side of the status bar

shows a label of the currently selected validator.

3.2.4 Tabs

Each opened solution is contained in its exclusive tab. Tab header contains the close button

and ID number of the solution. Context help of each tab contains the name of its source file.

Order of the tabs in one tab group can be changed by mouse dragging. Note that it is not cur-

rently possible to drag and drop the tab from one tab group to another tab group. Tab groups

are described in the next section. Each tab contains a horizontal slider and a spin box, whose

values specify the current time step of the solution scenario. In fact, horizontal slider should

be considered as a time line, similarly as in audio or video players. There are also two vertical

sliders on the left. The upper one is intended for adjusting the speed of the animation. The

lower one specifies the overall displacement of nodes – the value that is used as a hint by the

active layouter.

Figure 9. Application tool bar.

21

3.2.5 Window Splitting

In order to provide a way to work with more tabs at a time, it is possible to split the initial set

of tabs into more groups. The tab group must contain at least two tabs; otherwise, it is not

possible to split it. Splitting can be stacked horizontally (Window – Split Horizontally) or

vertically (Window – Split Vertically). Before splitting, it is necessary to select the tab that

will be the first one in a new group. Consequently, splitting is not possible if you select the

first tab – new tab group would be the same as the current one. After the group is split, you

are free to do further sub splitting, which effectively results in a binary tree hierarchy. Win-

dow space for each tab group can be adjusted by dragging dividers between them. When there

is more than one tab visible, user interface still controls only single tab - the one that has fo-

cus. To switch focus between tabs, you just click anywhere into their window area. Active tab

is always emphasized by the surrounding frame. There is also an inverse operation to split-

ting. Tab groups can be rejoined by Window – Unsplit. Before unsplitting, it is necessary to

give focus to any tab in one of the two tab groups you want to join. Since any of these two tab

groups can be already sub split, it is recursively joined to the bottom of the tree hierarchy. In

order to rejoin all tab groups into a single flat tab group just click on Window – Unsplit All.

3.3 Controls
This section provides the description of mouse and keyboard usage, which is not obvious at

the first sight.

 Mouse

 Move nodes in a graph by clicking on them and dragging them while holding the left

mouse button. Not working while the animation is running.

 Scroll the graph view by clicking anywhere into the free space and then by dragging

the view while holding the left mouse button.

 Zoom the graph view by rolling the mouse wheel.

 Select nodes by holding Ctrl key while clicking on them or while dragging selection

frame over them (left mouse button). In order to move selected group of nodes, Ctrl

key must be held during the operation otherwise nodes will be unselected.

Keyboard

 Scroll the graph view by arrow keys.

 Move the graph by pressing IKJL keys (not allowed in Automatic embedding mode).

 Rotate the graph by pressing AD keys (not allowed in Automatic embedding mode).

 Zoom the graph view by pressing WS keys.

 Randomize positions of nodes by pressing R key.

3.4 Validating Solution
Each solution scenario is validated by the selected validator during a file loading. Validator

checks whether all entity movements are valid and non-conflicting. All incorrect movements

are logged so the animation engine would ignore them. If there are any errors, the notification

will appear in the status bar. GraphRec currently provides two validators:

 Pebble validator for the pebble motion on a graph (Definition 1). The movement is

valid if and only if there is an edge between the source and target node, if there is an

entity in the source node and if the target node is empty in the time step just before

the movement.

22

 Multirobot validator for the multi-robot path planning (Definition 2). The movement

is valid if and only if there is an edge between the source and target node, if there is

an entity in the source node and if the target node is either already empty or freed in

the same time step as the movement occurs. This permits chain movements of mul-

tiple entities.

Validator can be changed by the Validation – Validator menu or by Setup – Options.... Er-

rors can be reviewed in a special dialog accessible through the Validation – Log... menu ac-

tion. Whole log can be saved into a text file. Each line in the error log specifies a single prob-

lem. It consists of the time step specification, movement details and error description. Move-

ment details are logged in the format SN(E1) ---> DN(E2), where SN stands for source node

ID, DN for destination node ID and both E1 and E2 are ID numbers of the entities that occupy

respective nodes before the invalid movement. Note that entity IDs that are less or equal zero

are reserved for empty nodes. Errors can be visually tracked down by clicking on log entries –

corresponding time step is set and affected nodes are highlighted (Figure 10).

3.5 Embedding Graph
Generally, initial positions of the graph nodes are random. However, if the graph is bicon-

nected and the input file specifies its circles, nodes are aligned into lines that correspond to

those circles. In most cases, the initial layout should be further modified. Usually, the first

step to improve layout is to enable automatic layouter, which will iteratively modify the

layout by its embedding algorithm. Layouter can be chosen from the Layout – Layouter

menu or by Setup – Options.... To enable selected layouter, toggle Layout – Mode – Auto-

matic. GraphRec currently provides two layouters:

 Fruchterman-Reingold layouter belongs to the group of force-directed layouters.

Nodes behave as repulsive particles whereas edges behave like springs. Since main

Figure 10. Reviewing error log.

23

principle is based on physical laws, layouter is very well predictable and intuitive.

Layout is elastic and can be influenced by dragging nodes by the mouse during em-

bedding.

 Kamada-Kawai layouter is also force-directed. One at a time, nodes are hooked by

springs to the anchored rest and gradually moved to the equilibrium. Since nodes are

not updated all at once, layouter is less predictable and intuitive. Layout cannot be in-

fluenced during embedding. Generally, Kamada-Kawai is slower but provides slightly

better layout.

Automatic layouters have usually more than one local minimum at which layout is considered

done. If the current local minimum is not good enough, it helps to drag nodes to its desired

positions while the layouter is still enabled. This action will usually result in finding another,

probably better, local minimum. It is also possible to start again with the random layout either

by pressing R key or by clicking Layout – Recalculate. Another way to interact with the

layouter during its work is to adjust the node displacement dynamically by the vertical slider

on the lower left side of the graph view (Figure 11). Sliding the displacement up and down for

a few times may remove little imperfections in the layout, especially in the case of grid

graphs.

After the automatic layout is finished, it is recommended to switch to either Layout – Mode –

Manual (continuous) or Layout – Mode – Manual (discrete) in order to refine the layout

further. At this point, graph will probably need some zooming, scrolling, rotating and node

moving. Whereas a continuous mode gives no restrictions on node positioning, discrete mode

allows only positions defined by its background grid. Granularity of the background grid can

be changed in Setup – Options.... Discrete mode is intended for layouts that need exact or-

thogonality for the esthetic purposes. Before aligning nodes manually to the grid, you may

find useful Layout – Snap to Grid, which aligns all nodes to the closest valid position in the

grid.

Figure 11. Managing graph layout.

24

3.6 Settings
Configuration can be changed in the dialog accessible through Setup – Options... in the main

menu. Note that settings are propagated only to the tab that has focus. If you want to change

settings globally, hit the Save Default button, close/save all tabs and reload them. Explana-

tion of the configuration items follows:

Animation

 Length of a single time step in milliseconds.

 Style of the animation. Whereas Linear animation has the same speed all the time, Ea-

syInOut animation starts slowly, then goes steady and finish slowly again.

Layout

 Layouting mode determines whether the layout will be done automatically or not.

 Layouter shows the list of available layouters.

 Node displacement serves as a hint for layouter. This entry should be used only for

exact value specification. For approximate alteration of the node displacement, it is

better to use vertical slider on the lower left side of the graph view.

 Grid offset defines the granularity of the background grid, which is visible while the

manual discrete mode is enabled.

Validation

 Validator shows the list of available validators.

Visual

 Node description determines what should be displayed on the node surface. Node la-

bels can be either empty or can contain various combinations of entity and node iden-

tification numbers.

 Controls visibility enables or disables sliders and spin box in the graph view.

 Interactive capturing determines whether the user is able to interact (e.g. zooming,

scrolling) with the graph view during video or image sequence capturing. If disabled,

capturing is indicated only by a progress bar and graph view is not rendered in order to

speed up video encoding.

3.7 Coloring Graph Elements
Graph colors can be adjusted in a dialog displayed after clicking on the Setup – Colors...

menu entry (Figure 12). First, choose a type of the graph element you would like to color

from the tabbed panel on the left. Then select one or multiple items from the list. List items

can be multi selected by dragging the mouse or by holding Ctrl/Shift and left mouse clicking.

To select all items hit the Select All button. Since the dialog is not modal, it is also possible to

switch back to the main window and select graph nodes by holding Ctrl together with the left

mouse button while dragging mouse over them – the selection will be propagated into the

color dialog. List can be sorted by any column, which for example makes it easier to select all

items of the same color. After selecting the desired set of items, click on the Set Color button

and choose what color you would like to change. Note that this can be also achieved by the

right mouse click anywhere into selected set of items. After clicking on the appropriate color

type, you can choose exact color in a standard dialog for color picking. Both nodes and enti-

ties have their background and foreground color. Because foreground color is used for labels

displayed on nodes, it should be in the contrast with the background color. Moreover, entities

have another pair of colors used for their final state. Final state of the entity is reached after its

last movement in the solution scenario.

25

Special explanation should be given to the third tab with the Graph label. List in the third tab

is intended for colors that are more general:

 Edge highlight is a color used for the wide line rendered under all moving entities.

This color should be bright with a very strong contrast against the graph background.

 Graph background is a color used for the background of the whole graph view.

 Outlines and edges is a color used for all lines that represent edges and node bounda-

ries. This color should be in very strong contrast with the graph background.

3.8 Saving Output File
Current tab can be saved into the file by clicking on the File – Save... menu entry and choos-

ing appropriate file format. Information that will be saved includes graph definition, solution

scenario, node positions, coloring, current view and chosen validator. If you want to save all

opened tabs into a single file at once just click on the File – Save All... menu entry.

3.9 Controlling Animation
Actions for controlling the animation are all accessible through Animation menu. Frequently

used actions are also pinned to the tool bar. All actions are divided into the two groups – the

first group is intended for controlling the tab that has currently focus (e.g. Play) whereas the

second group controls all foreground tabs (e.g. Play All).

Whole solution scenario consists of several time steps that can be played through (Play/Play

All) or stepped through (Step/Step All). If you want to play the animation from one particular

time step, click on the Seek.../Seek All... menu entry and specify it. Other possibility is either

to adjust the horizontal slider on the top side of the graph view or to enter the exact time step

into the spin box located in the top left corner of the graph view. Animation speed can be dy-

namically adjusted by the vertical slider on the upper left side of the graph view. Animation

can be stopped any time by clicking on the Stop/Stop All button. Just note that the currently

animated time step have to be finished so that if the animation length was set too long, this

might take a while. In order to rewind the whole scenario back to the beginning, set time step

to zero or click Reset/Reset All button.

Running more parallel animations by Play All can be done in two modes by toggling Syn-

chronize All:

 Synchronized animation is suitable for the tabs that have equal animation durations.

Synchronization ensures that the tabs are timed collectively. Note that when synchro-

Figure 12. Adjusting colors of graph elements.

26

nizing tabs with different animation durations, all tabs must wait for the slowest one

every time step.

 Non-synchronized animation is suitable for the tabs that have different animation du-

rations. In this mode, tabs are timed independently. This implies that two parallel ani-

mations with the same duration might get slightly desynchronized after a few time

steps.

3.10 Capturing Media Files
GraphRec provides two ways to capture media files. There is a possibility to take raster and

vector screenshots of the graph view through the Animation – Snapshot... dialog or to cap-

ture image sequences and video through the Animation – Sequence... dialog. Dialog is al-

most the same for both actions. The only difference is that in the sequence mode it is possible

to select video encoder and some additional settings. Dialog items are explained in the follow-

ing list:

 Encoder shows a list of available media encoders. When the encoder is selected, its

settings are shown on the right side of the dialog. Specifics of these encoders are de-

scribed in following sections.

 Width of the resulting image or video (in pixels).

 Height of the resulting image or video (in pixels).

 Start specifies the time step when the capturing begins. (available only in the se-

quence mode)

 Stop specifies the time step when the capturing stops (resulting media will not in-

clude this time step). (available only in sequence mode)

 Interval determines the number of time steps that will be skipped between two cap-

tured images in the sequence mode. For example if the interval is set to 3, only every

fourth time step will be captured. (available only in the sequence mode for non-video

encoders)

 Name of the resulting media file. If the location already contains file with such name,

the specified name will be automatically extended with the numeral in order not to

overwrite any data.

 Path to the destination directory for media files. Be sure there is enough free space

when capturing the video.

If all settings are set, capturing can be started by hitting the Capture button. What happens

next depends on the settings. In the snapshot mode, image is simply saved and notification is

displayed in the status bar. The dialog is not closed and thus ready to take as many images as

needed. Note that in the snapshot mode, the dialog is modal so you are free to interact with

the rest of the application. This is convenient for taking images during the animation. It is

suggested to increase animation length so it would be easier to take the image at the intended

moment.

Sequence mode behaves differently. The dialog is not modal so it is not possible to interact

with the rest of the application. After the Capture button is clicked, the dialog is closed and

the encoding starts running from the specified starting time step until manually stopped or the

stopping time step is reached. If the capturing was set to be interactive in the settings, it is

possible to interact with the graph view during encoding (e.g. zooming, scrolling). Note how-

ever that while capturing interactively, the animation speed depends on the speed of proces-

sor, which means that it does not match real time. If the interactive capturing is disabled, the

27

graph view is not rendered in order to increase performance. In this case, only simple progress

bar informs about the status of the encoding job.

Note: When capturing the sequence with image encoders, images are taken only between time

steps. This means that if the capturing consists of ten time steps, only ten images will be saved

to the destination directory. File names of these images will contain time step number.

Note: Proportions of resulting image or video frame do not necessarily match the visible area

of the graph view. This happens due to the selected resolution that, in most cases, has differ-

ent aspect ratio than the visible area of the graph view. At first, capturing frame is aligned to

the top left corner of the graph view and then either its width or height is increased to match

the output ratio. This ensures that the resulting image will certainly contain intended part of

the graph view while having correct aspect ratio.

3.10.1 Images

GraphRec currently supports encoding to three raster formats (PNG
6
, JPG, BMP) and one

vector format (SVG
7
). Raster formats are included in Raster Image encoder. The only possi-

ble setting for the raster image is to adjust the quality of the output. SVG format is provided

by the SVG Generator encoder. Pay attention to the settings of the resolution and DPI
8
, be-

cause inappropriate values may result in very thin or very wide strokes in the resulting vector

image. To avoid this you should increase the resolution when increasing DPI and vice versa.

3.10.2 Video Standards

This section provides a list of standard settings, which should be accepted by FFmpeg encod-

ers. Encoders, such as H.263 or RV10, are especially strict on the offered settings. On the

contrary, MPEG encoders provide much more freedom in the custom settings selection. Note

also that the visual output provided by GraphRec is less complex and more static in compari-

son with the real life movies. Due to this fact, it is convenient to use lower bitrates than sug-

gested ones in order to save additional space.

 MPEG4

o High Definition, 1280x720x30fps, 1280x720x25fps, 8000 kbps

o Home Theater, 720x480x30fps, 720x576x25fps, 4000 kbps

o Portable, 640x480x30fps, 640x480x25fps, 352x240x30fps, 352x288x25fps,

768kbps

o Handheld, 176x144x15fps, 200 kbps

 MPEG2

o HD 1080p, 1920x1080x30fps, 1920x1080x25fps, 15000 kbps

o HD 720p, 1280x720x30fps, 1280x720x25fps, 9000 kbps

o DVD, 720x480x30fps, 720x576x25fps, 4000 kbps

o SVCD, 480x480x30fps, 480x576x25fps, 2376 kbps

 MPEG1

o VCD, 352x240x30fps, 352x288x25fps, 1150 kbps

 RV10

o Download, 640x480x30fps, 1000 kbps

o Broadband, 560x420x30fps, 650 kbps

o Midband, 320x240x15fps, 300 kbps

6 Portable Network Graphics (http://www.w3.org/TR/PNG/)
7 Scalable Vector Graphics (http://www.w3.org/TR/SVG/)
8 dots per inch

28

o Narrowband, 192x144x8fps, 100 kbps

 FLV1

o Best, 320x240x25fps, 1200 kbps

o Normal, 320x240x25fps, 960 kbps

o Optimal, 352x288x15fps, 780 kbps

o Low, 320x240x15fps, 640 kbps

o Least, 176x144x15fps, 480 kbps

 H.263

o Extended, 176x144x15fps, 240 kbps

o Highest, 176x144x15fps, 104 kbps

o Standard, 176x144x12fps, 64 kbps

o Balanced, 128x96x10fps, 140 kbps

o Smallest, 128x96x10fps, 44 kbps

3.10.3 Video Settings

Currently only two additional parameters are provided by the user interface:

 GOP
9
 is the distance between two I-frames (the images containing full information).

Note that MPEG1/2 standard is constrained by relatively small GOP sizes (18 for

30fps, 15 for 25fps). Other formats should be used with the GOP set between 100 and

300 frames.

 Buffer specifies the size of the internal buffer, which is used by a chosen codec to en-

code frames. Default size is 8MB, which should be enough for all reasonable settings.

However, if you plan to encode a video in extremely high resolutions or bitrates, size

should be increased in order to avoid video corruption.

Note: Advanced settings are currently hidden from the user in order to keep things simple.

These settings are set internally to provide the best quality at reasonable encoding time and

decoding performance. For MPEG4 in particular, this means, that GMC
10

, AIC
11

 and MV4
12

are enabled. General settings for all encoders are also set to higher values (this includes macro

block decision algorithm, motion estimation comparison function and Trellis quantization).

Number of B-frames (bi-directional frames) is set to two frames per GOP for MPEG4 and

MPEG2 (other encoders use their default value).

9 Group of Pictures
10 Global Motion Compensation
11 Advanced Intra Coding
12 four Motion Vectors by macro block

29

4 Programmer's Documentation
Documentation consists of various topics concerning the application architecture. The first

section provides a detailed description of the compilation. Second section contains architec-

ture overview that briefly describes the whole application in a top-down fashion. The over-

view should be read before any other of the following sections, because these are organized

inversely (bottom-up) and thus not providing any hindsight. In each section, it is assumed that

the reader knows information from the previous sections. Documentation is intended to be

read together with the corresponding parts of the source code and the Doxygen [8] generated

call graphs on the included CD-ROM.

Since it is not in the scope of the documentation, it is assumed that programmer understands

specific aspects of Qt programming – mainly the signal/slot mechanism and GUI designing. It

should be only noted here that signal/slot mechanism allows a construction of more flexible

architecture at the cost of some performance (sending a signal is approximately 10 times

slower than the normal function call). Qt GUI designing is built around qmake, which takes

XML document describing the GUI and compiles it into a C++ code. XML description of the

GUI can be done either manually or with the help of QtDesigner. Generated C++ class for the

GUI is then accessible by a special pointer. For those and other relevant topics, please refer to

the Qt documentation [13].

4.1 Compilation
GraphRec is dependent on Qt framework and FFmpeg video library, both of which are large

enough that it is not reasonable to include their source code into the redistributable package.

Once those prerequisites are prepared and configured alongside, GraphRec can be built solely

from the files that are included in the redistributable package. Since both Qt and FFmpeg are

multiplatform projects, it should be possible to perform the compilation on all major plat-

forms. However, testing was done only on Windows and Linux (specifically Windows XP,

Windows Vista, Windows 7, Ubuntu 8.10, Ubuntu 9.04, Ubuntu 9.10, Ubuntu 10.04). Steps

in the following subsections produce the statically linked build of GraphRec compiled by

GNU compilers and compressed by UPX packer [14]. Compilation steps are configured to be

compatible with the processors containing MMX and SSE instruction set extensions, which

are present on the majority of modern processors. More uncommon extensions (e.g. 3DNow!,

SSE2) are disabled. Note that all proposed paths can be changed, however they must not con-

tain any spaces. Because the compilation process is quite complicated to be done manually,

the included CD-ROM contains sub-directory with all required packages together with auto-

mated build script.

4.1.1 Preparing Environment

Windows

 Download following packages from http://sourceforge.net/projects/mingw/files/:

binutils-2.19.1-mingw32-bin.tar.gz

mingwrt-3.15.2-mingw32-dll.tar.gz

mingwrt-3.15.2-mingw32-dev.tar.gz

mingw32-make-3.81-20080326-3.tar.gz

gcc-core-4.4.0-mingw32-bin.tar.gz

gcc-core-4.4.0-mingw32-dll.tar.gz

gcc-c++-4.4.0-mingw32-bin.tar.gz

gcc-c++-4.4.0-mingw32-dll.tar.gz

w32api-3.13-mingw32-dev.tar.gz

http://sourceforge.net/projects/mingw/files/

30

pthreads-w32-2.8.0-mingw32-dll.tar.gz

gmp-4.2.4-mingw32-dll.tar.gz

libiconv-1.13-mingw32-dll-2.tar.gz

mpfr-2.4.1-mingw32-dll.tar.gz

 Unpack all downloaded packages into c:\mingw\ and confirm all overwrite warnings.

Linux

 Make sure you have installed following packages and their dependencies from repositories:

binutils

binutils-static

make

gcc

libgcc

libc6

libc6-dev

libglib

libglib-dev

cpp

g++

libstdc++6

libstdc++6-dev

libfontconfig

libfontconfig-dev

libxrender

libxrender-dev

Although the goal is to create statically linked executable, on Linux it is dangerous to stati-

cally link against system libraries. Thus, the resulting executable will be linked statically

only against Qt and FFmpeg. Since libraries like libc6 or libstdc++6, both of which will

be linked dynamically, are not backwards compatible, it is advised to carry out the build

process with older versions of listed packages. On the other hand, mentioned libraries are

forwards compatible up until now. Therefore, the older the packages will be, the more sys-

tems will be able to run the executable. However, there must be done a trade-off between

the amount of compatible systems and the efficiency of produced code, assuming the new-

er versions of libraries remove bugs and improve performance.

4.1.2 Building Qt

Windows

 Download the following package from http://get.qt.nokia.com/qt/source/:

qt-everywhere-opensource-src-4.6.2.zip

 Unpack the archive into c:\qt\.

Open the file c:\qt\mkspecs\win32-g++\qmake.conf and edit the following line:

QMAKE_LFLAGS = -static -static-libgcc -enable-stdcall-fixup -Wl,-

enable-auto-import -Wl,-enable-runtime-pseudo-reloc

 Execute the following batch script from within c:\qt\:

PATH = %PATH%;c:\mingw\bin\;c:\qt\bin\

configure.exe -nomake tools -nomake examples -nomake demos -nomake

docs -nomake translations -release -opensource -

confirm-license -static -ltcg -fast -no-exceptions -no-

accessibility -stl -no-sql-mysql -no-sql-psql -no-sql-

oci -no-sql-odbc -no-sql-tds -no-sql-db2 -no-sql-sqlite

-no-sql-sqlite2 -no-sql-ibase -no-qt3support -no-opengl

-no-openvg -qt-zlib -no-gif -qt-libpng -no-libmng -no-

libtiff -qt-libjpeg -no-dsp -no-vcproj -no-

incredibuild-xge -plugin-manifests -qmake -process -

rtti -mmx -no-3dnow -sse -no-sse2 -no-openssl -no-dbus

-no-phonon -no-multimedia -no-audio-backend -no-webkit

-no-script -no-scripttools -no-declarative -no-style-

plastique -no-style-cleanlooks -no-style-motif -no-

style-cde -no-native-gestures -no-iwmmxt -no-crt -no-

cetest -no-freetype -no-s60

http://get.qt.nokia.com/qt/source/

31

qmake.exe projects.pro -o Makefile -spec win32-g++

mingw32-make.exe

Linux

 Download the following package from http://get.qt.nokia.com/qt/source/:

 qt-everywhere-opensource-src-4.6.2.tar.gz

 Unpack the archive into /tmp/qt/.

 Execute the following shell script from within /tmp/qt/ with elevated privileges:

#!/bin/sh

./configure -nomake tools -nomake examples -nomake demos -nomake docs

-nomake translations -release -opensource -confirm-

license -static -fast -no-exceptions -no-accessibility -

stl -no-sql-mysql -no-sql-psql -no-sql-oci -no-sql-odbc -

no-sql-tds -no-sql-db2 -no-sql-sqlite -no-sql-sqlite2 -

no-sql-sqlite_symbian -no-sql-ibase -no-qt3support -no-

xmlpatterns -no-multimedia -no-audio-backend -no-phonon -

no-phonon-backend -no-webkit -no-javascript-jit -no-

script -no-scripttools -no-declarative -no-3dnow -no-sse2

-qt-zlib -no-gif -no-libtiff -qt-libpng -no-libmng -qt-

libjpeg -no-openssl -no-nis -no-cups -no-iconv -no-dbus -

no-gtkstyle -no-nas-sound -no-opengl -no-openvg -no-sm -

xshape -xsync -no-xinerama -no-xcursor -no-xfixes -no-

xrandr -xrender -mitshm -fontconfig -no-xinput -no-xkb –

glib

make

make install

4.1.3 Building FFmpeg

Windows

Create the following directories:

c:\msys\

c:\msys\bin\

c:\msys\mingw\

Download the following packages from http://sourceforge.net/projects/mingw/files/:

binutils-2.19.1-mingw32-bin.tar.gz

mingwrt-3.15.2-mingw32-dll.tar.gz

mingwrt-3.15.2-mingw32-dev.tar.gz

gcc-core-3.4.5-20060117-1.tar.gz

gcc-g++-3.4.5-20060117-1.tar.gz

w32api-3.13-mingw32-dev.tar.gz

Unpack downloaded packages into c:\msys\mingw\ and confirm all overwrite warnings.

Download the following packages from http://sourceforge.net/projects/mingw/files/:

 coreutils-5.97-2-msys-1.0.11-bin.tar.lzma

 coreutils-5.97-2-msys-1.0.11-ext.tar.lzma

Unpack the archives into c:\msys\bin\.

Download the following package from http://sourceforge.net/projects/mingw/files/:

 MSYS-1.0.11.exe

Run the installer and set the installation path to c:\msys\. Installation will be automatical-

ly finished by the post-installation batch script, where, upon request, the MinGW path must

be set to c:/msys/mingw (note forward slashes).

http://get.qt.nokia.com/qt/source/
http://sourceforge.net/projects/mingw/files/
http://sourceforge.net/projects/mingw/files/
http://sourceforge.net/projects/mingw/files/

32

Download the following package from http://ffmpeg.org/releases/:

 ffmpeg-0.5.tar.bz2

Unpack the archive into c:\ffmpeg\.

Run the MSYS environment from the Start menu, change the directory to c:/ffmpeg/

(note forward slashes) and execute the following bash script:

#!/bin/sh

./configure --enable-gpl --disable-ffmpeg --disable-ffplay --disable-

ffserver --enable-swscale --disable-vhook --disable-

network --disable-ipv6 --disable-mpegaudio-hp --enable-

memalign-hack --disable-encoders --enable-encoder=flv --

enable-encoder=h263 --enable-encoder=h263p --enable-

encoder=mpeg1video --enable-encoder=mpeg2video --enable-

encoder=mpeg4 --enable-encoder=rv10 --disable-decoders --

disable-muxers --enable-muxer=avi --enable-muxer=flv --

enable-muxer=h263 --enable-muxer=matroska --enable-

muxer=mov --enable-muxer=mp4 --enable-muxer=mpeg1system -

-enable-muxer=mpeg1vcd --enable-muxer=mpeg1video --

enable-muxer=mpeg2dvd --enable-muxer=mpeg2svcd --enable-

muxer=mpeg2video --enable-muxer=rm --enable-muxer=swf --

enable-muxer=tgp --disable-demuxers --disable-parsers --

disable-bsfs --disable-protocol=pipe --disable-devices --

disable-filters --disable-altivec --disable-amd3dnow --

disable-amd3dnowext --disable-mmx2 --disable-ssse3 --

disable-armv5te --disable-armv6 --disable-armv6t2 --

disable-armvfp --disable-iwmmxt --disable-mmi --disable-

neon --disable-vis --disable-debug

make

make install

Copy c:\msys\local\include to c:\qt\include.

Copy c:\msys\local\lib to c:\qt\lib.

Linux

Download the following package from http://ffmpeg.org/releases/:

 ffmpeg-0.5.tar.bz2

 Unpack the archive into /tmp/ffmpeg/.

 Execute the following shell script from within /tmp/ffmpeg/ with elevated privileges:

#!/bin/sh

./configure --enable-gpl --disable-ffmpeg --disable-ffplay --disable-

ffserver --enable-swscale --disable-vhook --disable-

network --disable-ipv6 --disable-mpegaudio-hp --enable-

memalign-hack --disable-encoders --enable-encoder=flv --

enable-encoder=h263 --enable-encoder=h263p --enable-

encoder=mpeg1video --enable-encoder=mpeg2video --enable-

encoder=mpeg4 --enable-encoder=rv10 --disable-decoders --

disable-muxers --enable-muxer=avi --enable-muxer=flv --

enable-muxer=h263 --enable-muxer=matroska --enable-

muxer=mov --enable-muxer=mp4 --enable-muxer=mpeg1system -

-enable-muxer=mpeg1vcd --enable-muxer=mpeg1video --

enable-muxer=mpeg2dvd --enable-muxer=mpeg2svcd --enable-

muxer=mpeg2video --enable-muxer=rm --enable-muxer=swf --

enable-muxer=tgp --disable-demuxers --disable-parsers --

disable-bsfs --disable-protocol=pipe --disable-devices --

disable-filters --disable-altivec --disable-amd3dnow --

disable-amd3dnowext --disable-mmx2 --disable-ssse3 --

http://ffmpeg.org/releases/
http://ffmpeg.org/releases/

33

disable-armv5te --disable-armv6 --disable-armv6t2 --

disable-armvfp --disable-iwmmxt --disable-mmi --disable-

neon --disable-vis --disable-debug

make

make install

4.1.4 Building GraphRec

Windows

 Download the following package from http://koupy.net/download/:

GraphRec-1.0.0-Win32.zip

 Unpack the archive into c:\graphrec\.

 Execute the following batch script from within c:\graphrec\src\:

PATH = %PATH%;c:\mingw\bin\;c:\qt\bin\

qmake.exe GraphRec.pro -spec win32-g++ -r CONFIG+=release

CONFIG+=static QTPLUGIN+=qjpeg DEFINES+=G_GRSTATIC

mingw32-make.exe

 Resulting executable is c:\graphrec\src\release\GraphRec.exe.

Linux

 Download the following package from http://koupy.net/download/:

GraphRec-1.0.0-X11.tgz

 Unpack the archive into /temp/graphrec/.

 Execute the following shell script from within /temp/graphrec/src/:

#!/bin/sh

PATH=/usr/local/Trolltech/Qt-4.6.2/bin:$PATH

export PATH

LD_LIBRARY_PATH=/usr/local/lib

export LD_LIBRARY_PATH

qmake GraphRec.pro -spec linux-g++ -r CONFIG+=release CONFIG+=static

QTPLUGIN+=qjpeg DEFINES+=G_GRSTATIC

make

 Resulting executable is /tmp/graphrec/src/GraphRec.

4.1.5 Compressing Executable

Windows

 Download the following package from http://upx.sourceforge.net/download/:

 upx304w.zip

 Unpack the archive into c:\upx\.

 Copy c:\graphrec\src\release\GraphRec.exe to c:\upx\.

Execute the following batch script from within c:\upx\:

 upx.exe --best --lzma GraphRec.exe

Resulting executable is c:\upx\GraphRec.exe.

Linux

 Download the following package from http://upx.sourceforge.net/download/:

 upx-3.04-i386_linux.tar.bz2

http://koupy.net/download/
http://koupy.net/download/
http://upx.sourceforge.net/download/
http://upx.sourceforge.net/download/

34

 Unpack the archive into /tmp/upx/.

Copy /tmp/graphrec/src/GraphRec to /tmp/upx/.

Execute the following shell script from within /tmp/upx/:

 upx --best --lzma GraphRec

 Resulting executable is /tmp/upx/GraphRec.

4.1.6 Redistributable Package
Package structure:

 bin folder contains the main executable.

 src folder contains sources and resources (images, icons)

 doc folder contains documentation files. Entry point is named index.html.

 samples folder contains input data for testing purposes.

Both packages, for Windows and Linux, contain the application launcher in their top-level

directory. The launcher is a simple batch/shell script that runs the main executable located in

bin directory.

The installer is made by the third-party software called InstallJammer [5]. It is a free, cross-

platform install builder with the high level of configurability. It supports both self-unpacking

installers and archives.

4.1.7 Licensing

Both Qt and FFmpeg are licensed under the dual license – either GNU GPL or GNU LGPL.

GraphRec uses FFmpeg swscale support for the highly optimized conversion between RGB
13

and YUV
14

 images. Since swscale support is GPL-only, GraphRec must be also licensed un-

der the GPL. This implies that redistributable package of GraphRec must contain the com-

plete source code and full text of GNU GPL license. GPL license also demands each source

code file beginning with the license stub. By the viral nature of the GPL license, all changes

and additions to GraphRec must be released under the same or less restrictive license. Con-

cerning the packed executable, UPX is also licensed under GPL. However, as stated on the

project website [14], UPX decompression stub inserted into the compressed executable is not

a subject to the GPL, which means that it is compatible with the arbitrary license.

4.2 Architecture Overview
On the top of the hierarchy, there is a GraphRec class, which in fact represents the functionali-

ty and behavior of the main window and its menu, tool bar and status bar. GraphRec also han-

dles the file opening/saving and manages a collection of GraphView instances. Each Graph-

View stands for one tab that contains a graph. Because GraphRec provides user controls that

are shared by all GraphView instances, there must be a mechanism for sending user input to

the correct GraphView (the one that is foreground and focused). This is flexibly achieved by

the signal/slot mechanism, which allows literally connecting/disconnecting respective Graph-

View to/from GraphRec. GraphView class covers the rest of the application functionality –

validation, embedding, animation and capturing. GraphView also stores the graph representa-

tion and is the owner of almost all dialogs (apart from file handling dialogs that are owned by

13 red (R), green (G), blue (B) color space
14 luminance (Y), chrominance (U and V) color space

35

GraphRec). This implies that each GraphView has its own set of dialogs and thus its own set-

tings. However, configuration of a single GraphView can be saved to the persistent storage

(registry/file) and then it serves as a template for all new instances.

Since GraphView responsibility is very wide, it is distributed onto several other classes and

dialogs. In order to pass data among these classes, there is a common data structure Context.

It serves as a container for several collections containing graph representation, movement

calendar and some settings. Idea is that all those helper classes alter one common Context,

which is then displayed by GraphView. Data collections in the Context are assembled from

classes that represent primitives – Node, Edge and Entity. Graph itself is represented either

by list of Node instances, each of which contains list of connected Edge instances, or by list of

Edge instances, each of which contains its Node pair.

As was said earlier, GraphView utilizes other classes to achieve some tasks. These classes can

be split into two groups – dialogs and servants. Dialog usually exposes part of the Context to

Diagram 2. User interface classes.

Diagram 3. Structure of the underlying model based on the Strategy pattern.

36

the user (e.g. color editing) or provides the interface for an additional functionality (e.g. video

capturing). All dialogs are derived from QDialog class, thereby forming a simple two-level

hierarchy (Diagram 2). Servants are more complicated. Each servant provides specialized

functions that can be called by its owner. Servants form a three-level hierarchy (Diagram 3) –

first level is constituted of Servant interface, which is further inherited by more specialized

second-level interfaces (e.g. Layouter interface for graph embedding). Third level is com-

posed from actual implementations of second-level interfaces (e.g. FruchtermanReingol-

dLayouter using specific algorithm for graph embedding). GraphRec, GraphView and dialogs

are programmed against servant interfaces located in the first and second level. Implementa-

tions on the third level are identified by their name and evidenced in the Factory class. When

the owner wants to construct a servant of a certain type (or even a name), its request is passed

to the Factory, which returns the Servant pointer to the specified servant. Described me-

chanism, also known as Strategy pattern, brings modularity and extensibility into GraphRec

source code. Programmer who wants to implement additional servant (e.g. for layouting)

needs to know only graph primitives, Context and respective servant interface. Rest of the

application is isolated from him/her.

Diagram 4. Data flow through the application.

To provide better understanding of the data flow through the application, example of basic

user story is described in the following paragraph (Diagram 4). Let us say that the user wants

to open, edit and save single solution of multi-robot path planning. He/she invokes OpenDia-

log (owned by the GraphRec) and loads file into it. OpenDialog asks its MultirobotParser

servant to find solutions in the file. After the intended solution is selected and dialog is con-

firmed, solution location is handed to the GraphView, which in turn creates its own Multiro-

botParser servant and asks it to initialize the Context by collecting information from the

provided file location. Immediately afterwards, Context is validated by the MultirobotVa-

lidator servant and finally displayed by the GraphView. Initialized GraphView is then con-

nected to the GraphRec user interface and user can start to do some work. As an example, user

might decide to activate embedding algorithm. In that case, GraphView asks the Fruchterma-

nReingoldLayouter servant to calculate node positions in the Context. User also might not

be satisfied with the graph coloring. Therefore, he/she invokes ColorDialog, in which a color

of any primitive in the Context can be changed. On the other hand, animation and rendering

is handled by GraphView itself. If user decides to save the solution, GraphRec creates Multi-

robotSaver servant and provides it to the respective GraphView, which in turn asks it to save

the Context.

4.3 Graph Primitives
Graph is represented by three primitives – Node, Edge and Entity – all of which are de-

scribed in following subsections. Whereas Entity is essentially only a data container, both

Node and Edge inherits QGraphicsItem and implements its paint event handler. Because paint

handlers are called quite frequently and QGraphicsItem might need some unrelated data to

paint itself (e.g. Node needs the current time step to infer the color), it is reasonable to main-

tain local copies of those data rather than asking for them at each paint event. Propagation of

such information is done via the signal/slot mechanism – thus, to continue the example, when

the time step is changed in the GraphView, it is also changed in all Node instances.

Open Parse Validate Layout Color Animate Save

37

4.3.1 Entity Class

Entity is a simple class containing its identification (m_id), final time step

(m_timestepFinal) and color information. Final time step is the one after which Entity does

not move anymore (stops changing owners). Each Entity stores its normal (m_clBackground,

m_clForeground) and final (m_clBackgroundFinal, m_clForegroundFinal) color set. Node

owning the Entity is colored by the final color set when and after the final time step is

reached. Color set is a pair of colors that are used by the hosting Node for both background

and label. Note that Entity itself is actually not visible in the GraphView – it only provides

information to the hosting Node.

4.3.2 Node Class

Node is a class inherited from the QGraphicsItem. It contains its identification (m_id), refer-

ence to the currently contained Entity (m_entity) and the list of references to connected

Edge instances (m_edges). For purposes of the animation, Node provides shallow copy con-

structor CloneShallow(). Shallow copy is not connected to the graph and is intended only as

a temporary object used for depicting the movement of Entity between two Node instances.

Since Node is one of the visual elements rendered by GraphView, it must be able to paint itself

accordingly to its inner state and contained Entity:

 In case of null reference to Entity, Node is colored by its own color set

(m_clBackground, m_clForeground, m_clBoundary). Otherwise, it is colored by col-

ors provided by the hosted Entity. Node keeps track of the current time step

(m_timestep), which is compared at every paint event with the final time step discov-

ered from the m_entity. This information is needed to determine whether to use final

color set or not.

 Optionally, Node is able to display its identification or even identification of the con-

tained Entity. Possible combinations are listed in NodeDescription enumeration and

saved in m_description variable.

 Node keeps track of its current position. In the case of discrete positioning

(m_discreteDisplacementEnabled), Node snaps itself to the closest allowed location

(m_discreteDisplacementOffset). This functionality is implemented in the event

handler itemChange() for positional changes and in the AlignPoint() function.

Change of the position is reported to the GraphView via NodePositionChanged()

signal.

 At every position change, all Edge instances connected to the Node (m_edges) are re-

quested to update their positions as well (Edge::Adapt()).

When selected or moved by the user, Z coordinate of Node is elevated over the rest of graph

elements displayed by the GraphView. Z coordinate is returned to its original value after the

action is finished. Third level of Z-axis is reserved for normal Node instances, fourth level for

the selected instances and finally fifth level is reserved for the grabbed instance (the one

dragged by a mouse). Note that all three levels are defined above the levels reserved for Edge.

Also, note that there is an automatic sub hierarchy between graphic elements that share the

same Z coordinate. Refer to mousePressEvent() and mouseReleaseEvent().

38

4.3.3 Edge Class

Likewise the Node, Edge is another class inherited from the QGraphicsItem and rendered by

the GraphView. It contains references (m_nodeSource, m_nodeDestination) and positions

(m_ptSource, m_ptDestination) of its two connected Node instances. Positions are stored

for efficiency, since it is assumed that Edge paint event is called more frequently than node

positions are changed. Edge must be able to render itself in a normal and highlighted mode

(m_highlight), which is represented by a different color and increased thickness. Each time

when the Entity, represented by the shallow copy of the hosting Node

(Node::CloneShallow()), is moving along the trajectory depicted by the respective Edge, the

shallow copy of this Edge (Edge::CloneShallow()) is switched to the highlighted mode

(m_highlight) and placed exactly under its prototype on the Z-axis. This approach ensures

that highlighting thick line will be always painted on the background while not overlapping

lines of non-highlighted Edge instances. As was stated in the Node description, shallow copy

is intended only for the mentioned purpose. First level of Z-axis is reserved for the hig-

hlighted Edge instances and the second level is reserved for normal Edge instances. Note that

both levels are defined below the levels reserved for Node.

4.4 Passing Common Data
Context is a class containing common data structures used by GraphView, dialogs and ser-

vants. Each Context is owned by a single GraphView and passed by a reference to other ob-

jects. Note that Context can be extended by additional data entries. However, current data

entries must remain the same, because many classes depend on them. Description of data en-

tries follows:

 Graph is identified by its filePosition in the file of name fileName located in fi-

lePath. For convenience, fileName and filePath are joined in the fileComplete-

Name. Graph can also have a title graphName, which is currently used as a placeholder

for graph ID optionally provided by input file. Both graphName and fileName are ex-

posed to the user – graphName as a tab label and fileName as a tab context help.

 Hashed map nodes maps node identifications to respective Node instances.

 Hashed map entities maps entity identifications to respective Entity instances

 Hashed map edges maps pairs of node identifications to respective Edge instances. It

is intended for the fast lookup of Edge instance when only identifications of its two

nodes are known.

 CalendarEvent is a structure consisting of timestep and move, which is expressed as

a pair of source node identification and destination node identification. CalendarE-

vent also contains two flags – valid determines whether the event was approved by a

validator and reverse determines the movement direction. Thus, if the direction sug-

gested by the input file is evaluated as invalid, validator has an option to approve the

inverse direction instead (if it is valid). All CalendarEvent structures are stored in an

ordered list calendar. List is ordered by timestep values. Since more than one Ca-

lendarEvent can have the same timestep value and Context uses unstable sorting

algorithm, order between events with the same time step is not defined.

 Hashed map timesteps maps each time step to the index of its first occurrence in or-

dered calendar. It is intended for the fast lookup of events belonging to the same time

step.

39

 Frame is a hashed map that maps Node instances to Entity instances. It should be in-

terpreted as definition of locations for all Entity instances at one particular time step.

All Frame maps are stored in the list frames, which is indexed by time steps.

 Color of the GraphView scene is saved in the sceneBackground.

 Information about the currently viewed part of the GraphView scene is saved in sce-

neMatrix and sceneViewCenter. Whereas sceneMatrix stores a transformation ma-

trix for zooming, sceneViewCenter stores a point in the scene that is aligned to the

center of the visible area (viewport). To provide a backwards compatibility with the

alpha version of GraphRec, there is also a sceneAngle, which determines the rotation

of the scene. However, sceneAngle is now obsolete, because rotation is applied on the

graph itself instead of the scene.

 String validatorName stores the name of the last validator that validated Context.

 Flag enabledColoring specifies whether the input file has provided explicit coloring

information or not. If not, enabledColoring is true and serves as a hint stating that

implicit colors should be applied.

 Flag enabledLayouting specifies whether input file has provided explicit positional

information or not. If not, enabledLayouting is true and serves as a hint stating that

embedding should be applied automatically.

 Intended displacement of nodes is stored in a layoutDisplacement variable. It serves

as a hint for layouters. Note that the value is relative and each layouter can interpret it

differently.

4.5 Producing Servants
Servant is an abstract class, which is intended as a basic interface provided by its implemen-

ters. Basic interface includes the function Name() that returns a servant name and the function

Description() that returns its description. Whereas the name serves as a unique identifica-

tion of the servant, description is intended for a usage by the GUI (menu entries, status bar

labels etc.). Each servant must also provide static version of the name function, called Get-

Name(), so that its name can be discovered without the instantiation. Both Name() and Get-

Name() must return the same string.

Classes that implement Servant are catalogued in the Factory class. Servants are grouped

according to their types, which are listed in the ServantType enumeration. Each type corres-

ponds to an abstract class that inherits Servant and specifies some additional functions.

These specialized interfaces are described in the following subsections. When a certain object

needs a servant for some purpose and knows its type and name, it calls CreateServant(),

which is a Factory static function returning the instance of the requested servant. Factory

also provides static function GetServantNames() for discovering all available servants of one

particular type.

4.5.1 Parser Interface
Parser is an abstract class, which inherits Servant and imposes implementation of two func-

tions:

 ParseFile() should search the file for graphs, count statistics for each found one

and insert those data into the table according to provided header. Table is composed

from root and its children, all of them TreeWidgetItem instances. Whereas root only

holds file name and file path (as a tool tip), each child stands for one line in the table.

Idea is that, when displaying more than one analyzed file to the user, each table can be

40

folded into its root. Collected information includes the number of graph elements, so-

lution length, preferred servants and file location. Order of these items in the table row

is specified by parameter header, which is a list of entries from HeaderItem enumera-

tion. Each HeaderItem entry in the list serves as a hint on what information to put in

what table column. Function returns reference to the table root. TreeWidgetItem inhe-

rits QTreeWidgetItem, which serves as a basic element for many of Qt data visualiza-

tion widgets (lists, trees, grids). Only difference between the two is that TreeWidge-

tItem implements differently its compare function for sorting – it has more universal

behavior when comparing various combinations of text and number values.

 ParseGraph() should search the file on the location specified in the context, com-

pletely analyze a graph on this location and insert all data into the context. It is ex-

pected that the function builds nodes, entities, edges, calendar and fills graph-

Name, enabledColoring, enabledLayouting in the context. Optionally it can also

fill validatorName, sceneBackground, sceneMatrix and sceneViewCenter. Note

that calendar should get sorted before leaving the function. While parsing the file, it

is possible to emit some error messages through Error() signal.

Note that the Name() function of the Parser must return a string containing information about

the file suffix in the following format: *.suffix (e.g. MyParser (*.txt)).

4.5.2 Saver Interface
Saver is an abstract class, which inherits Servant and imposes implementation of three func-

tions:

 Open() should open the provided file and accomplish an initialization of the saver. It

is also intended for writing a file header etc.

 Save() should save the provided context into the output file. The structure and

amount of data that are going to be saved is entirely up to the Save() function.

 Close() should safely close the output file (if needed). It is also intended for writing a

file footer etc.

Note that the Name() function of the Saver must return a string containing information about

the file suffix in the following format: *.suffix (e.g. MySaver (*.txt)).

4.5.3 Validator Interface
Validator is an abstract class, which inherits Servant and imposes implementation of two

functions:

 Validate() is responsible for exploring the calendar and building the frames in the

provided context. It should set valid and reverse flags in every CalendarEvent.

While going through the calendar, function should progressively build Frame maps

from valid movements and insert these maps into the frames in the context. Since

frames is the main structure needed for an animation, Validate() is the most respon-

sible function in a matter of what exactly will be animated. While validating the ca-

lendar, it is possible to emit some error messages through Error() signal. Function

should also set a validatorName in the context as a signature.

 GetColor() returns certain color for the every value specified in ColorScheme enu-

meration. An idea behind this function is that all graphs validated by one particular

Validator should be visually distinguishable from the others. Note that this function

serves only as a hint and should be used only if the input file did not specified any ex-

41

plicit coloring of the graph elements. Since Validator interface implements this func-

tion itself, its reimplementation is optional in the implementer.

4.5.4 Layouter Interface

Layouter is an abstract class, which inherits Servant and imposes implementation of a

Layout() function. It alters positions of Node instances contained in the nodes map in the

provided context. Positions are set accordingly to the implemented embedding algorithm.

Since some embedding algorithms are iterative, it is assumed that function will be repeatedly

called by the owner, probably on the timer timeout or on the separate thread. Consequently,

the function must return boolean value specifying whether the layout is finished (true) or not

(false). Non-iterative algorithm, which calculates the layout in a single call, should simply

return true.

4.5.5 Recorder Interface

Recorder is an abstract class, which inherits Servant and imposes implementation of a Get-

SettingsWidget() function. It should prepare and return a QWidget, which contains controls

connected to the custom slots in the implementer. Returned widget is presented to the user as

a part of CaptureDialog. When the user edits any of these controls in the dialog, all changes

are directly sent to the Recorder implementer. This mechanism allows the implementer to

have almost any specific additional settings that are not already covered by the interface func-

tions.

ImageRecorder Interface

ImageRecorder is an abstract class, which inherits Recorder and imposes implementation

of two functions:

 GetPaintDevice() should prepare and return QPaintDevice into which the owner

will render the visual data. Since some Qt classes derived from the QPaintDevice

need various information for their construction, function takes four arguments –

path and name of the target file (for devices that directly saves the data), height

and width of the image (for raster devices).

 SaveImage() should encode the provided device to the target file specified by a

path and name. After the owner renders data to the QPaintDevice obtained by

GetPaintDevice(), it can call SaveImage() passing the device as an argument.

Function is intended for devices that do not save the data directly to the persistent

storage.

Note: Both functions take the target file name as an argument. This name is incomplete

and serves only as a template. Function should search the destination for any name con-

flicts and appropriately edit the provided file name to be unique (e.g. by adding number).

Format suffix must be also appended to the name.

VideoRecorder Interface

VideoRecorder is an abstract class, which inherits Recorder and imposes implementation

of three functions:

 GetFPS() returns the intended frame rate for the video stream.

 Start() function should initialize the encoder and then run a consumer thread,

which will encode QImage instances from the global buffer G_GRVideoBuffer of

the size G_GRVideoBufferSize. Function takes four arguments – path and name of

42

the target file, height and width of the video frame. The name is incomplete and

serves only as a template. Function should search the destination for the name con-

flicts and appropriately edit the provided file name to be unique (e.g. by adding

number). Format suffix must be also appended to the name. Access to the global

buffer is guarded by two semaphores – G_GRVideoFree and G_GRVideoUsed. All

these global variables with G_GR prefix are declared in the main.cpp file and can be

accessed by only one producer and one consumer at a time. Since GraphRec archi-

tecture allows the user to request more than one video encoding job at a time, there

is a danger of having more than one concurrent consumer. It would certainly lead to

the corrupted video. Thus, before doing anything with those global variables,

Start() function have to check whether the G_GRVideoOwner pointer is null and

does not point to some other VideoEncoder implementer. In the case that the poin-

ter is null, it should be initialized by a self-reference of the implementer. This ap-

proach guarantees the exclusive access to the global variables.

 Stop() function should wait until the G_GRVideoBuffer is emptied and then

should safely terminate the consumer thread. After that, the output file should be

ended (probably with some footer or trailer) and closed. Before the function re-

turns, the G_GRVideoOwner pointer has to be set to null.

4.6 GraphView Class
GraphView class inherits QGraphicsView, which is a class for advanced two-dimensional

graphics. GraphView extends its ancestor by a several custom-made functions and by a usage

of additional dialogs, controls and servants. Since GraphView is quite complex class, its de-

scription is divided into several subsections. This introductory section will describe only a

GraphView construction and its connections with other classes.

Usually, it is not very useful to describe class constructor in the documentation. However, in

the case of GraphView constructor, a systematic description supports very well the overall

idea over the low-level application structure and data flow:

1) Arguments passed to the constructor consists of the graph location (file, filePosi-

tion) and servant names (parserName, validatorName, layouterName).

2) QGraphicsScene is created and initialized by calling the inherited setScene() func-

tion. Scene is the core part of every QGraphicsView. For more information about

QGraphicsView, QGraphicsScene and its coordinate system, please refer to the Qt

documentation [13].

3) Context (further accessible through m_context) is created and information about the

graph location (file, filePosition) is stored into it.

4) ErrorDialog (further accessible through m_dialogError) is created.

5) Parser corresponding to the parserName is obtained from th4 Factory and its Er-

ror() signal is connected to the Log() slot in the ErrorDialog.

6) Input file is parsed by the Parser::ParseGraph() on the specified filePosition,

effectively filling almost all information in the m_context.

7) Scene background, scene matrix and viewport central point are set accordingly to the

m_context.

8) Validator that corresponds to the validatorName is obtained from the Factory and

its Error() signal is connected to the Log() slot in the ErrorDialog.

9) Structures in the m_context are validated, which results in the construction of the

m_context->frames. If the input file did not specified any coloring, default colors of

43

the chosen Validator are injected into graph elements in the m_context. Otherwise,

coloring has been already done by a parser.

10) All instances of the QGraphicsItem from the m_context (that is, Node and Edge in-

stances) are added into the scene.

11) Layouter corresponding to the layouterName is obtained from the Factory and

saved into the m_layouter.

12) QTimer for the embedding (further accessible through m_timerLayout) is created and

connected to the on_timerLayout_timeout() handler.

13) If the input file did not specified positioning, layout is firstly randomized by the

LayoutRandomize() and then properly calculated by the m_layouter.

14) All nodes are connected to GraphView signals and slots, which are further utilized to

distribute several parameters into and from the nodes on the user actions or during the

animation. Especially note the NodeMoved() slot, which notifies the GraphView about

layout changes.

15) QTimeLine for the animation (further accessible through m_animationTimeLine) is

created and connected to the AnimateTimeStep() slot.

16) Signal AnimationStepDone() is connected to the AnimateTimeStep() slot.

17) Additional visual controls are created - two QSlider instances (m_sliderTimeStep,

m_sliderDisplacement) and one QSpinBox instance (m_spinBoxTimeStep). Both

controls referring to the time step are connected with each other to reflect the same in-

formation all the time. All three controls are connected to the GraphView slots (Set-

TimeStep() or SetDisplacement()). Note also that their focus is forwarded to the

GraphView (this is very important, because a user expects the GraphView would con-

nect to the GraphRec by clicking anywhere into its area).

18) Widgets created in the previous step are placed onto the GraphView surface.

19) ColorDialog (further accessible through m_dialogColor) is created.

20) Settings are fetched from the persistent storage.

Following list classifies output connections (signals) from the GraphView to other classes.

Connections to the GraphRec (can be fired at once by calling UpdateConnections()):

HasFocus(), ValidatorNameChanged(), LayouterNameChanged(), ValidatorDescrip-

tionChanged(), LayouterDescriptionChanged(), Message(), DiscreteDisplacemen-

tEnabled(), LayoutingEnabled(), NodeLabelsChanged(), LayoutingInProgress(),
AnimationInProgress()

Connections to all Node instances:

TimeStepChanged(), DiscreteDisplacementEnabled(), DiscreteDisplacementOff-
setChanged()

Connections to additional controls:

 TimeStepChanged(), DisplacementChanged(), DurationChanged()

Connections to the GraphView itself:
 AnimationStepDone()

4.6.1 Error Dialog

ErrorDialog is a class, which inherits QDialog and has its GUI part accessible through the

m_ui pointer. Class provides a public Log() slot, which can be used by other classes to post

error messages into the QListWidget (m_ui->listWidgetErrorLog) in the ErrorDialog.

Whenever the user selects some error message (QListWidgetItem), it is compared to the reg-

ular expression m_errorRegExp. If the expression matches, ErrorDialog emits the ErrorSe-

lected() signal, which is connected to the GraphView::SelectEvent() slot. Selected event

44

is then tracked down in the GraphView::m_context. If the event exists, timeline is set to its

time step and corresponding nodes are highlighted. Whole log can be also saved into a simple

text file (on_buttonSave_clicked()). ErrorDialog is non-modal and is constructed in the

GraphView constructor and destroyed in its destructor. During the lifetime of the owner, Er-

rorDialog can be only shown or hidden through GraphView::m_dialogError.

4.6.2 Color Dialog

ColorDialog is a class, which inherits QDialog and has its GUI part accessible through the

m_ui pointer. GUI is represented by a QTabWidget with three tabs, each containing one

QTreeWidget. Order of tabs is inferred from the TabOrder enumeration. Header of the first

tree widget is constructed according to the Node::NodeColorType enumeration. Similarly,

header of the second tree widget corresponds to the Entity::EntityColorType enumeration.

For the fast determination of both color types, column numbers are mapped to the types in the

nodeColorTypes and entityColorTypes maps. Whereas the first and the second tree widget

is intended for listing nodes and entities (both obtained from m_context argument passed to

the constructor), third tree widget contains more general items – namely m_itemBackground,

m_itemBoundary and m_itemHighlight. Column order and their captions can be easily

changed in the constructor.

ColorDialog is designed to be non-modal, effectively allowing the selection of nodes or enti-

ties directly from the GraphView. Whereas GraphView::keyPressEvent() on Ctrl key

enables the nodes selection by a mouse dragging, GraphView::keyReleaseEvent() on Ctrl

key appends all selected nodes to the list and passes it to the ColorDialog::SelectItems()

function, which locates and selects corresponding items in the tree widget (either nodes or

entities, depending on what tree widget is currently visible).

Color changes are done in a flexible but rather complicated way. Every time a dialog tab is

changed, on_tabWidget_currentChanged() calls CreateMenu() function, which constructs

a customized menu for the current tree widget. Menu actions correspond to the tree widget

columns and are connected through a QSignalMapper to the SetColor() slot. Menu is then

embedded into the m_ui->buttonSetColor and serves also as a tree widget context menu

displayed by the ShowContextMenu() function. Whenever user selects one or more items in

the tree widget and hits a certain menu action, SetColor() is called with the column number

obtained from the signal mapper. Color palette is then showed (static function QColorDia-

log::getColor()) and after the user chooses the appropriate color, it is saved for all selected

items into the m_context, each time inferring color type from the nodeColorTypes or enti-

tyColorTypes. Note that m_itemBoundary and m_itemHighlight must be treated in a spe-

cial way, since it affects more than one graph element in the m_context. Another exception is

m_itemBackground, which is connected to the GraphView through the BackgroundColor-

Changed() signal.

ColorDialog is constructed in the GraphView constructor and destroyed in its destructor.

During the lifetime of the owner, ColorDialog can be only shown or hidden through Graph-

View::m_dialogColor. Since it is not possible to change colors elsewhere, ColorDialog

contains actual color information for all graph elements at any time.

4.6.3 Embedding

Mechanism of the automatic continuous embedding is based on the ticking of m_timerLayout

and its handler on_timerLayout_timeout(), which calls repeatedly m_layouter-

>Layout() until the false value is returned informing that the layout is finished. Automatic

45

continuous embedding is enabled by calling the SetLayoutingEnabled(), which sets the

m_context->enabledLayouting variable. By calling SetDisplacement(), it is possible to

change m_context->layoutDisplacement, which is fetched by the Layouter::Layout()

from the m_context. Timer m_timerLayout can be controlled by the LayoutStart() and

LayoutStop() functions. Note that m_timerLayout can be also launched indirectly by mov-

ing any node while the automatic embedding is enabled – it signals the NodeMoved() slot,

which calls LayoutStart().

Discrete embedding is done differently. It can be enabled by calling the SetDiscreteDis-

placementEnabled(), which sets the m_discreteDisplacementEnabled variable. Function

drawBackground() then repeatedly paints the grid consisting of horizontal and vertical lines

on the background of the GraphView scene. The color of the lines is inversed RGB value of

the background color. The offset between lines in the grid can be set by calling the SetDi-

screteDisplacementOffset(), which sets the m_discreteDisplacementOffset. Both

m_discreteDisplacementEnabled and m_discreteDisplacementOffset are sent to all

nodes via DiscreteDisplacementEnabled() and DiscreteDisplacementOffset-

Changed() signals whenever changed. Every node then calls Node::AlignPoint() each

time its position is altered (Node::itemChange()), effectively snapping itself to the closest

intersection of the horizontal and vertical line. All nodes can be snapped to the grid at once by

calling LayoutDiscrete().

It should be noted that node positions are locked during the animation by the LayoutLock()

function, because it would otherwise lead to entities visually missing their destinations. When

both m_context->enabledLayouting and m_discreteDisplacementEnabled are disabled,

nodes can be freely moved by the user. When needed, layout can be randomized by the

LayoutRandomize() function.

4.6.4 Scene Actions

All functions described in this section are usually called from the keyPressEvent() handler.

Graph can be moved by calling the ScrollGraph(), which in fact move every node from the

m_context by calling the Node::moveBy(). Graph movement is only possible when the layou-

ter is not working, because otherwise it might destabilize its algorithm. Note that viewport

scrolling, which is handled by the QGraphicsView itself, is still possible by a mouse drag-

ging even when the embedding is in progress. Zooming is done by the ScaleView(). Pro-

vided scaling factor is first tried on the scene matrix in order to prevent very large/small

zoom, and then applied by calling the scale() function inherited from the QGraphicsView.

ScaleView() is usually called by the whellEvent() handler, which calculates the scaling

factor from the mouse wheel rotation.

The most complicated action is rotation. Its implementation can be found in the Rotate-

Graph() function. It should be noted that alpha version of GraphRec rotated the whole scene.

Since this approach lead to certain inconsistencies with other features, graph is currently ro-

tated by changing positions of its nodes instead. This also implies that Context::sceneAngle

is no longer needed and only kept for backwards compatibility with files created by the alpha

version (such files are now transformed in the GraphView constructor to be compatible with a

new approach). Another limitation, similarly to the scrolling, is that the graph can be rotated

only when the layouter is not working due to the possible destabilization of its algorithm. Dis-

crete positioning is also ignored during the rotation, because it is in conflict with the imple-

mented rotation mechanism. Rotation itself is done in the following way. All nodes are

grouped into the QGraphicsItemGroup and the current cursor position is determined by the

46

QCursor::pos(). Then, QTransform is applied onto the group by virtually moving the

whole group to the cursor position, rotating it here by the given angle and moving it back to

its original position. This ensures that graph is rotated over the cursor position, which is more

flexible than rotation over the fixed viewport center or graph center (which is expensive to

calculate).

4.6.5 Animation

Usually, before the animation is started, user sets the initial time step for the animation by

calling the SetTimeStep(). It simply takes all nodes and updates their entities according to

the m_context->frames. In order to do that, GraphView stores information about the current

time position in the m_calendarPosition and m_timestep – both of which are kept syn-

chronized with the help of m_context->timesteps. Whenever the m_timestep variable is

altered by some function, the function also emits the TimeStepChanged() in order to update

the time step in all nodes, so that nodes know whether they are in the final position or not.

From the hindsight, animation is a sequence of AnimateTimeStep() calls. Every AnimateTi-

meStep() in the sequence either starts the m_animationTimeLine for a visible animation or

emits AnimationStepDone() for the fast skip. Both signals, m_animationTimeLine-

>finished() and AnimationStepDone(), are connected back to the AnimateTimeStep(),

effectively acting as an endless loop. The loop can be controlled by the AnimationStart()

and AnimationStop() functions. AnimationStart() sets the m_animationIsRunning flag,

so that other functions can discover whether the animation is in progress, and calls the Anima-

teTimeStep() to start the loop. AnimationStop() only sets the m_animationStopRequest

flag, which is periodically checked by the AnimateTimeStep(). There is also the function

AnimationStep(), which is only the simple sequence of two calls – AnimationStart() and

AnimationStop(). Considering the animation, there are two embedding problems that de-

serve a special attention. First problem is that the animation assumes static positions of graph

elements – animated movements are precalculated one time step ahead. Thus, embedding

must be paused during the animation, because animated entities would otherwise miss their

possibly moving destinations. Second problem is that the user can change embedding settings

during the animation. In order to react correctly to these situations, AnimationStart() locks

node positions (LayoutLock()) and sets the pair of flags - m_layoutingWasEnabled (auto-

matic continuous embedding mode was enabled at the moment of the animation start) and

m_layoutingWasRunning (layouter was still working at the moment of the animation start).

AnimateTimeStep() itself is quite a large function, which is composed from the several logi-

cal parts (recommended reading order is 3, 4, 1, 2):

1) Processing data structures from the last call. All shallow copies from the

m_nodeBuffer are removed from the scene and destroyed; their entities are inserted

into corresponding destination nodes (also discovered from the m_nodeBuffer). Shal-

low copies from the m_edgeBuffer are also removed from the scene and destroyed.

Finally, animations from the m_animationBuffer are destroyed, leaving all three data

structures empty for the next round.

2) While deciding whether to stop the animation loop, m_animationStopRequest is

checked. If it is true, m_animationIsRunning flag is reset and node positions are un-

locked by the LayoutLock(). Note that there are two situations, in which the layouter

should be immediately launched. First situation occurs when the layouter was running

just right before the animation and automatic embedding is still enabled now (means

that the layouter was interrupted). Second situation occurs when the automatic embed-

ding was not enabled before the animation but is enabled now. Both cases can be in-

47

ferred from the m_context->enabledLayouting, m_layoutingWasEnabled and

m_layoutingWasRunning flags.

3) Preparing data structures for the animation and the next call. Every valid Calen-

darEvent structure with the same time step as the m_timestep is fetched from the

m_context->calendar. Shallow copy of the event source node is inserted into the

scene and its QGraphicsItemAnimation is created, connected to the

m_animationTimeLine and appended to the m_animationBuffer list. Each QGra-

phicsItemAnimation infers its starting and ending point from the position of asso-

ciated source and destination node. Idea is that the m_animationTimeLine acts as a

director, who sets the time in all connected QGraphicsItemAnimation instances,

which, in turn, move their embedded QGraphicsItem along the predefined pathway.

Entity is removed from the source node immediately after the shallow copy is created,

effectively leaving the copy as the sole entity carrier. Both shallow copy and destina-

tion node are always appended as a pair into the m_nodeBuffer. Note that shallow

copy is not connected to any of GraphView signals. Thus, it is safe to increment the

m_timestep even while the entities are not yet in their destinations. Edge between the

event source node and destination node is also shallow copied and the copy is switch-

ed to the highlighted mode. All such edges are appended to the m_edgeBuffer.

4) Emitting signals to continue the animation loop. Depending whether just animating

or capturing (m_recordingEnabled), m_animationTimeLine->start() is called (in-

ternally emitting signals) or AnimationStepDone() is emitted. Signal is emitted also

in the case of empty m_animationBuffer or in the case of the zero duration of the

m_animationLine (inferred from the m_timeoutZero flag), because the animation

would be invisible and only slowing down the process.

4.6.6 Setup Dialog

SetupDialog is a class, which inherits QDialog and has its GUI part accessible through the

m_ui pointer. SetupDialog is implemented in a straightforward way providing the get and

set functions for almost all of its control widgets. Dialog is utilized by the Graph-

View::ShowSetupDialog(), which, at first, inserts GraphView variables into the SetupDia-

log controls, then executes it as a modal dialog and finally fetches its values back to the

GraphView variables. The only interesting thing about the dialog implementation is that

change signals of its control widgets are connected to the ChangeTrigger() slot, which emits

Changed() signal that is connected to the m_ui->buttonDefault enabler. Thus, if the set-

tings are changed and the user hits the just enabled m_ui->buttonDefault, they are saved as

a default global settings for any subsequent GraphView constructor.

4.6.7 Capture Dialog

CaptureDialog can be invoked from the main menu through two different actions that are

connected to the corresponding slots in the GraphView – Snapshot() or Sequence(). Both

slots call GraphView::ShowCaptureDialog() with appropriate CaptureDialog::Mode as a

parameter. ShowCaptureDialog() closes and destroys the existing Graph-

View::m_dialogCapture and constructs the new one. After the dialog is constructed, settings

are injected into it, its signals for accepting and rejecting are connected to the Graph-

View::CaptureDialogHandler() and finally, depending on the passed mode, it is invoked

as a modal (mSequence mode) or non-modal (mSnapshot mode) dialog.

48

CaptureDialog is a class, which inherits QDialog and has its GUI part accessible through

the m_ui pointer. Most of the capture settings provided by the dialog are implemented in a

straightforward get/set way. The only interesting is m_ui->comboBoxRecorder containing the

list of available recorders (discovered from the Factory). Every time a recorder is selected

(on_comboBoxRecorder_currentIndexChanged()), its instance is retrieved from the Facto-

ry and saved into the m_recorder pointer. Recorder interface defines the Record-

er::GetSettingsWidget() function that returns a QWidget, which, upon call, is saved into

the m_widgetRecorder and embedded in the CaptureDialog window. Behavior of the Cap-

tureDialog depends on the Mode passed to the constructor. First of all, each mode has a

specific set of enabled controls. More importantly, whereas mSnapshot mode only allows the

listing of recorders that implement ImageRecorder, mSequence allows all available record-

ers. The behavior of the dialog confirmation handler (on_buttonCapture_clicked()) is also

different – in the mSnapshot mode, it only emits the signal but leaves the dialog opened.

Back in the GraphView, CaptureDialogHandler() is called as a reaction on the Capture-

Dialog confirmation. Depending on whether the dialog was accepted or not, settings are then

fetched from it into the GraphView private variables and the selected recorder is saved to the

GraphView::m_recorder pointer. Further solving of the task is leaved for either Graph-

View::SnapshotHandler() or GraphView::SequenceHandler(), both of which are de-

scribed in the next section.

4.6.8 Rendering

Rendering is covered by the Render() function. For now, let us only say that the function

behaves differently on what GraphView::RenderMode is stored in the m_renderMode variable

– it is either directly saving the image to the persistent storage (rmDirectSave mode) or in-

serting the image into the G_GRVideoBuffer (rmBufferSave mode). Render() function

might be invoked from four places in the source code. These entry points represent four dif-

ferent approaches how the rendering can be handled:

1) SnapshotHandler() sets m_renderMode to rmDirectSave and simply calls the Rend-

er(), which renders and saves a single image.

2) SequenceHandler() infers that m_recorder is ImageRecorder. Thus, m_renderMode

is set to rmDirectSave, because expected result is a sequence of images. Scene is ren-

dered at the every m_captureInterval right between the two corresponding time

steps. Relevant time steps are bounded by the m_captureTimeStepBegin and

m_captureTimeStepEnd. SequenceHandler() further decides depending on the

m_recordingInteractive variable:

a) Non-interactive image sequence capturing is handled directly by the Se-

quenceHandler(). Time steps are cycled through by the SetTimeStep() in

the loop, whose each iteration calls the Render() function. In order to improve

performance and responsiveness of the application, scene is not rendered, only

a simple QProgressDialog is shown (m_dialogProgress) and the application

message loop is emptied during each iteration.

b) Interactive image sequence capturing is handled by the AnimateTimeStep()

function. SequenceHandler() only sets the initial time step, toggles the

m_recordingEnabled flag and calls the AnimationStart(). AnimateTimeS-

tep() will be normally preparing and animating time steps, each time check-

ing for the correct combination of m_recordingEnabled and m_renderMode,

which allows calling the Render().

49

3) SequenceHandler() infers that m_recorder is VideoRecorder. Thus, m_renderMode

is set to rmBufferSave, because the expected result is a video file. Firstly, the frame

rate is retrieved from the m_recorder by calling the VideoRecorder::GetFPS() and

saved into the m_fps variable. Then, m_recorder is started by calling the VideoRe-

corder::Start(), which takes the destination file path (m_captureFilePath,

m_captureFileName) and the resolution (m_captureWidth, m_captureHeight) as ar-

guments. From now on, m_recorder acts as a consumer, who progressively fetches

visual data from the G_GRVideoBuffer and saves it into the file. Producer will be the

Render() function together with the AnimateTimeStep(), which is immediately in-

voked after calling the AnimationStart(). Note that the difference between interac-

tive and non-interactive capturing (m_recordingInteractive) is not as significant as

with the image sequences – it is now handled by the same code in the AnimateTimeS-

tep() and the only difference is the visibilty of the scene and the utilization of the

m_dialogProgress. Rendering in AnimateTimeStep() is done efficiently – after

checking the correct combination of m_recordingEnabled and m_renderMode, nodes

are animated only at the positions required by a video frame rate. Thus, instead of call-

ing m_animationTimeLine->start(), position of every QGraphicsItemAnimation

from the m_animationBuffer is explicitly set in the loop that iterates as many times

as there are frames that fit, according to the m_fps, into the m_animationTimeLine-

>duration(). Note that the position is still inferred from the m_animationTimeLine,

because it might not be linearly dependent on the time. Every loop iteration calls the

Render() and empties the application message loop due to the responsiveness of GUI.

After the loop is finished, AnimationStepDone() signal is emitted. When all time

steps are captured, AnimationStop() function calls the VideoRecorder::Stop()

from the m_recorder in order to safely finish the recording. This approach ensures

that the video is rendered as fast as possible and the quality of output is not dependent

on the processor speed (e.g. dropped frames). However, this also implies that, due to

the processor speed, interactive video capturing is not real time – from the user’s point

of view, it might be either extremely slow or extremely fast, both of which are not

ideal for the interactivity.

Render() function can be described in three steps:

 Preparing QPainter:

o In rmDirectSave mode, painter is constructed from the QPaintDevice, which

is retrieved from the m_recorder by calling the ImageRecord-

er::GetPaintDevice(). Note that, apart from the m_captureWidth and

m_captureHeight, which are quite expectable, the function takes also the

m_captureFilePath and m_captureFileName as arguments, because some

paint devices save data directly to the persistent storage while rendering (e.g.

XML file in the case of the SVG file format).
o In rmBufferSave mode, painter is constructed from the QImage, which itself is

constructed according to the m_captureWidth and m_captureHeight.

 Rendering image. Since viewport of the GraphView might have different aspect ratio

than the one calculated from the m_captureWidth and m_captureHeight, a rectangle

representing the exposed area of the scene must be appropriately extended. At first, the

rectangle is aligned to the top left corner of the viewport and then either its width or

height is increased to match the output ratio. This ensures that the resulting image will

certainly contain intended part of the scene and will have the correct aspect ratio. Fi-

nally, exposed area is rendered by the painter into its embedded device.

50

 Saving QPaintDevice:

o In rmDirectSave mode, device is saved by the ImageRecord-

er::SaveImage(). Note that, this function might actually do nothing since da-

ta might have been already saved by the device itself.
o In rmBufferSave mode, the device, which in fact is a QImage, is saved into the

G_GRVideoBuffer that is guarded by two semaphores – G_GRVideoFree and

G_GRVideoUsed – in a manner of producer/consumer synchronization. Current

buffer position is stored in the m_bufferPosition variable. Note that acquir-

ing the semaphore is regularly interrupted by emptying the application mes-

sage loop due to the responsiveness of GUI.

4.6.9 Video Encoding

Video encoding is implemented in the FFmpegVideoRecoder class, which inherits VideoRe-

corder interface. Class embeds the EncoderThread, which is derived from the QThread and

intended as a consumer for the G_GRVideoBuffer. Moreover, the class is heavily dependent

on API functions of the FFmpeg video library. In order to manage and distribute data in a

uniform way among these API functions and the embedded thread, class defines the structure

Data, which contains all required parameters and FFmpeg data structures. Data structure,

created in the FFmpegVideoRecoder constructor, is accessible through the m_data or Enco-

derThread::m_recdata pointer (since both classes refer to the same data, FFmpegVideoRe-

coder is the owner responsible for the deletion). Following description focuses on how the

encoding is handled in detail. In order to provide a clear explanation, API calls are, in most

cases, not mentioned explicitly. It should be noted that due to the lack of the proper FFmpeg

documentation, API calls are deduced from the output-example.c provided in FFmpeg redi-

stributable package [2].

Let us assume that the Data structure already contains some initialized entries, which have

been set by the user via slots connected to the widget provided to the CaptureDialog:

 Initialization of the Data structure is further done by the Start() function:

a) File suffix and video format are inferred from the m_data->formatString.

Both m_data->format and m_data->context structures are initialized by

FFmpeg API calls. Since FFmpeg guesses the format from a given string, it is

easy to add more video formats if needed.

b) Structure m_data->stream is initialized by calling the CreateStream() func-

tion, which further calls API. Note that the CreateStream() also contains all

codec settings, some of which are currently hard coded.

c) By a series of API calls, OpenVideo() function opens a codec, whose settings

were just set in the CreateStream(). After that, the encoding buffer is allo-

cated (m_data->buffer, m_data->bufferSize). Finally, a pair of AVFrame

structures is initialized by the AllocateFrame() function – whereas the format

of m_data->frameTemp must be compatible with QImage (RGB), m_data-

>frameFinal is intended as a codec input (where the most suitable format is

YUV).

d) Output file is created and opened (Start() takes the path and name as argu-

ments). Format header is written into the file by the API call.

e) Encoding thread is invoked by calling the m_thread->start(), which effec-

tively starts the EncoderThread::run() on the different thread.

 Encoding of images from the G_GRVideoBuffer is done by the EncoderTh-

read::run() function running on the worker thread:

51

a) First of all, relevant data are copied from the EncoderThread::m_recdata in-

to the local variables of the EncoderThread::run() function. Thus, data

(mainly pointers to FFmpeg structures) are now located on the local stack and

one level of indirection is avoided. Note that this is not intended as a protec-

tion against race conditions – FFmpeg structures are still accessible from both

threads becuase only pointers are copied. Moreover, copying is not guarded by

any mutex. None of this is problem, because the worker thread has an exclu-

sive access assuming the current architecture (main thread only prepares those

structures before starting the worker thread – there is no concurrency between

them concerning the shared data).

b) Function enters the infinite loop that is encoding the images from the

G_GRVideoBuffer until the buffer is empty and the EncoderTh-

read::m_terminate flag is toggled. Since anything that is done in the loop

has direct impact on the encoding speed, the loop must be implemented effi-

ciently. At first, every QImage (RGB) is copied from the G_GRVideoBuffer in-

to the local frameTemp (RGB). Note that the copying is the only thing guarded

by semaphores. Thus, the main thread, as a producer, is not slowed down by

waiting on the actual frame encoding.

c) Visual data in the frameTemp are converted from RGB to YUV format and

saved into the frameFinal. Highly optimized algorithm for this conversion is

implemented in the swscale() function provided by the GPL version of

FFmpeg.

d) Image stored in the frameFinal is encoded by a chosen codec and saved into

the output file (both actions done by API calls). Note that the encoding func-

tion utilizes the buffer, whose bufferSize is set to 8MB by default (might be

changed by the user through GUI). If the buffer is too small, recording either

immediately fails or the resulting video will be corrupted.

 Deinitialization and memory deallocation is done by the Stop() function:

a) EncoderThread::SafelyTerminate() is called, which effectively terminates

the worker thread by setting its m_terminate flag.

b) Format trailer is written into the output file by the API call.

c) CloseVideo() and DestroyStream() deletes all allocated FFmpeg structures.

d) Output file is closed.

4.7 Main Window
GraphRec is a class, which inherits QMainWindow and has its GUI part accessible through the

m_ui pointer. Class represents the main application window consisting of the menu bar

(m_ui->menuBar), tool bar (m_ui->toolBar), status bar (m_ui->statusBar) and the central

widget (m_ui->centralWidget or m_ui->gridLayout). Menu bar is composed of several

submenus and actions (QAction). Tool bar provides a subset of frequently used menu actions.

Note that the tool bar is designed by a programmer and cannot be edited by the user at run-

time. During the runtime, it is only possible to turn the tool bar on/off or dock it to various

sides of the window. Status bar contains two labels – one for displaying the application status

(m_labelStatus) and the other for displaying the validator name (m_labelValidator). Sta-

tus bar also allows posting some temporary messages over the labels.

Initially, the central widget is empty and almost all parts of the window and menu are dis-

abled. When user clicks on the File – Open button, function on_actionOpen_triggered() is

called. At first, it invokes OpenDialog, which is later described in its own subsection. How-

52

ever, when the dialog is confirmed by the user, the function searches its acceptedSolutions

(list of OpenDialog::SolutionInfo structures) and process them one after the other. Each

SolutionInfo provides file name, file location and names of the preferred parser, validator

and layouter. The function opens the file and creates a new GraphView by passing it the

opened file and the information from the SolutionInfo. Created GraphView is then added as

a tab into either existing or newly constructed QTabWidget (depending on whether there is

already one). Newly constructed QTabWidget is appended into the m_tabWidgets list and

embedded into the central widget of the window. Function ResetControls() is then called in

order to enable/disable menu actions. When user closes the tab (TabCloseRequested()), its

GraphView is destroyed and the tab is removed from its tab widget. If the tab widget has no

more tabs it is also destroyed and removed from both m_tabWidgets and central widget.

Function ResetControls() is called again.

Previous paragraph hints that each tab widget can contain more than one GraphView instance.

However, it is even more complicated, because the tab widget can be split into more tab wid-

gets. Splitting tab widgets is described in the next subsection. Anyway, since the majority of

menu actions are only handles that further calls functions in the GraphView, it is clear that

there must be some mechanism for delivering these calls to the right GraphView instance.

Note that this mechanism must deliver calls also in the opposite direction (from the Graph-

View to the GraphRec) in order to update labels and certain menu selections. Whole problem

is resolved by the usage of signal/slot mechanism. Many of GraphRec actions or signals are

connected to the GraphView slots and vice versa. Every time the GraphView is changed (it can

be done by either the tab change or the focus change), FocusedGraphViewChanged() is

called. The function disconnects the GraphRec from the m_currentGraphView and then re-

connects it to the GraphView provided in an argument who. After the reconnection is done,

connected GraphView is requested to emit its status by calling its function UpdateConnec-

tions(). In order to make all this working, every GraphView has its HasFocus() signal con-

nected to the GraphRec immediately after the construction.

GraphRec class is also partially responsible for the file saving. When the user clicks on either

File – Save or File – Save All button, the function on_actionSave_triggered() or

on_actionSaveAll_triggered() is called. Both functions invoke the QFileDialog while

filling its file format combo box with names of the Saver servants obtained from the Facto-

ry. After the user chooses the path, name and suffix, the file is opened and the corresponding

saver is built. At first, saver is initialized by the Saver::Open(). Then, it is passed to the Sa-

veContext() function of the currently connected GraphView (or to every GraphView in the

case of the Save All action). In the end, file is terminated by the Saver::Close() and closed.

4.7.1 Splitting

Central area of the main window is represented by the m_ui->centralWidget with the m_ui-

>gridLayout applied on it. In a basic case, there is only one instance of QTabWidget, whose

parent is already mentioned m_ui->gridLayout. Let us assume that the tab widget contains

more than one tab (each tab containing instance of a GraphView) and the currently selected

tab is not the first one (left most). Then, it is possible to split this tab widget by the Split()

function into two tab widgets – first containing tabs up to (not including) the selected tab,

second containing the rest. Original tab widget is then replaced by the instance of QSplitter

(supports a movable boundary between its children) into which those two new instances of

QTabWidget are added. Described process can be repeated on the arbitrary level of the hie-

rarchy represented by a binary tree (Diagram 5), whose inner vertices are instances of the

QSplitter and leafs are instances of the QTabWidget. The tab widget that is going to be split

53

is inferred from the parent pointer of the currently focused tab (m_currentGraphView). Every

split can be done either horizontally or vertically.

There is also inverse operation to the splitting. Unsplit() function takes a QSplitter as an

argument and, by recursively calling itself on the splitter’s children, it returns the QTabWidget

containing all tabs from accessible leafs. If the user unsplits a tab widget by calling the

on_actionUnsplit_triggered(), its parental QSplitter is passed to the Unsplit() func-

tion, effectively merging the focused tab widget with its unambiguous neighbour branch (ver-

tical or horizontal). Resulting tab widget is put on the place where the destroyed parental

splitter originally was. As for the tab closing, if the tab is closed and there are no more tabs in

the tab widget, the widget is destroyed and its parental splitter is replaced by the sibling (ei-

ther QSplitter or QTabWidget). Note that both Split() and Unsplit() are maintaining the

current set of tab widgets in the m_tabWidgets list.

In the situation, when there is more than one tab visible to the user, it is possible to run anima-

tion on all of them at once. As was explained in the animation description, every animation is

independently timed by its own QTimeLine, which behaves similarly to a QTimer. Since time-

rs are not precise on the non-realtime operating system, it is difficult to synchronize more of

them running in parallel. This implies that two parallel animations with the same duration

might get desynchronized after a few time steps. To prevent this from happening, the user can

toggle Animation – Synchronize All action, which modifies behavior of the certain func-

tions. When the synchronization is toggled, on_actionPlayAll_triggered() function adds

all foreground GraphView instances into the m_synchronizedGraphViews and, instead of

calling GraphView::AnimationStart(), it calls GraphView::AnimationStep on all of

them. Since the construction in on_actionOpen_triggered(), every GraphView has its

Stepped() signal connected to the GraphRec::SynchronizeAll() slot. Thus, when any

GraphView finishes an animation of the time step, SynchronizeAll() is called. It evaluates

whether all members of the m_synchronizedGraphViews have already finished their step and

if so, it calls the GraphView::AnimationStep on all of them to continue the animation. Note

that in the case of different animation duration among tabs, synchronization always waits for

the slowest GraphView leaving others stopped for a while. In order to assure consistent beha-

vior with other features, m_synchronizedGraphViews is also managed by other menu actions

related to the animation (mainly removing of some GraphView instances from the list).

QSplitter

QTabWidget QSplitter

QTabWidget

QTabWidget

Diagram 5. Binary tree hierarchy of the tab splitting.

54

4.7.2 Open Dialog

OpenDialog is a class, which inherits QDialog and has its GUI part accessible through the

m_ui pointer. GUI is represented by the two QTreeWidget instances (m_ui->listFound,

m_ui->listChosen) and some buttons. Both tables have its header derived from a header-

Template, a list of HeaderItem values from the Parser interface, specified in the OpenDia-

log constructor. Note that table columns containing important but not interesting information

for the user are hidden by the HideColumn() function.

The handler of Add files button (on_buttonAddFiles_clicked()) invokes QFileDialog

while filling its file format combo box with the names of Parser servants obtained from the

Factory. After the user chooses appropriate format and files to open, corresponding Parser

is built and its ParseFile() function is called for the every selected file. The function call

returns the QTreeWidgetItem acting as a root for multiple other QTreeWidgetItem in-

stances each of which represents one table row showing the statistics for one graph. Since the

headerTemplate is also passed to the ParseFile(), it is ensured that the row item order will

always correspond to the header item order. Before appending the root item to the m_ui-

>listFound, root is passed to the FillMissingInfo(), which fills into its children some

default values that might not be found in the input file (mainly layouter and validator name).

When all items are added into the m_ui->listFound table, user can select arbitrary number of

them and move them to the m_ui->listChosen table or vice versa. Handlers of the mouse

double clicks and handlers of the corresponding buttons (>>>, <<<) utilize the Move() func-

tion. Since the user can select an arbitrary combination of multiple root items (when intending

to open all graphs in the file) or only some of their children, the Move() must very carefully

create, destroy and copy items in both tables. After the user has finished the selection and hits

the Open button, on_buttonOpen_clicked() builds a SolutionInfo structure for every

item in the m_ui->listFound and appends it to the acceptedSolutions list. SolutionInfo

is intended as a hint for the GraphView constructor – where to find a graph (file name, file

position), how to parse it (parser name), how to interpret it (validator name) and how to

embed it (layouter name). Note that the file name is not located in every table item, but only

in the tool tips of root items. Publicly accessible acceptedSolutions list acts as output sto-

rage of the OpenDialog.

There is one tiny feature with quite complicated implementation that should be described.

Since the input file might not specify validators for its graphs, attempt to open larger file with

some default validator might appear to be very slow because of the intensive error logging. In

that case, user would be also forced to change the validator manually in every opened Graph-

View. Assuming the user knows what validator should be used for a given file; there is a pos-

sibility to change it directly in the OpenDialog before the actual opening. User selects mul-

tiple (root or normal) items in the table and by the right mouse button click invokes custom-

ContextMenuRequested(), which is a signal of a QTreeWidget connected to the ShowCon-

textMenu() slot of the OpenDialog. ShowContextMenu() opens the m_contextMenu (QMenu

instance), whose actions correspond to the validator names obtained from the Factory, and

sets the m_senderTreeWidget to remember what QTreeWidget the context menu was re-

quested from. Every menu action is connected through the m_signalMapperValidators

(QSignalMapper instance) to the SetValidator() slot. SetValidator() discovers all se-

lected items in the m_senderTreeWidget table and alters their validator column with a given

validator name.

55

4.7.3 Help Dialog

HelpDialog is a class, which inherits QDialog and has its GUI part accessible through the

m_ui pointer. Class acts as a simple help viewer of the file index.html in the folder

/../doc/ (relatively to the executable). Since it is expected that the help file is encoded in

HTML
15

, the class uses a QTextBrowser (m_ui->textBrowser) for the rendering. HelpDia-

log currently does not support the text searching and indexing. Thus, the help file should con-

tain the table of contents and should be well structured with a usage of hypertext links. Note

that the HelpDialog is non-modal and has no parent (when created by the GraphRec) in order

to be accessible even when other modal dialog is shown.

4.8 Persistent Settings
GraphRec uses Qt multiplatform approach to save settings persistently between user sessions.

QSettings class provides abstraction for the uniform access to the settings, which are saved

in various locations – either the registry on Windows (HKEY_CURRENT_USER\Software\ or

HKEY_LOCAL_MACHINE\Software\ or HKEY_LOCAL_MACHINE\Software\WOW6432node) or the

conf files on Unix ($HOME/.config/ or /etc/xdg/). Because the application name (Graph-

Rec) and domain (koupy.net) is set explicitly in the GraphRec class constructor, it is possible

to work with the settings anywhere in the code without specifying it again. It is sufficient to

make the QSettings instance on the stack and then call its value() function for fetching

entries or setValue() function for saving entries. GraphRec settings are currently located

either in the constructors of GUI classes or in the functions that prepares/deletes modal di-

alogs.

15 HyperText Markup Language (http://www.w3.org/TR/REC-html40/)

56

5 Conclusion
Presented thesis described the implementation of the visualization tool for the entity move-

ment on a graph. Initially, the design phase was inspected including the choice of suitable

algorithms and technologies. Following section introduced a comprehensive guide for users.

The last section explored the application architecture extensively.

Resulting open-source application GraphRec [11] is able to run on multiple platforms, con-

tains flexible GUI and provides various features ranging from the graph embedding to the

video capturing. Because a similar tool is not currently available, the code base was written in

an extensible modular manner to be possibly further reused.

The presented visualization proved itself an effective way for discovering the nature of ex-

pected redundancies in solutions. As stated in [19], acquired knowledge was used to formalize

redundancies and to design methods for their removal.

Although all planned features were successfully implemented, there are still possibilities for

the future development. Currently, the interface between the visualization tool and problem

solvers is represented only by the input and output file formats. It would be possible to wrap a

GUI around the problem solver and to design a common interface to enable the communica-

tion between both components. Such cooperation could lead to the creation of the module for

simulation management providing some advanced statistics. As an example, after the removal

of a certain vertex from a graph, the application could immediately run the simulation and

present an impact of such action.

Another opportunity to extend the application is to implement the parser of the file format

used by some advanced graph embedding application (for example Graphviz [3]), so the

graph layout could be created by a specialized tool. Finally, it would be challenging to rewrite

the animation engine to be scalable to much larger graphs – possibly thousands to millions of

vertices.

57

Bibliography

[1] Andrews, G. R. Producer/Consumer Synchronization. Foundations of Multithreaded,

Parallel, and Distributed Programming, pp. 56-57, Addison Wesley, 1999.

[2] Bellard, F. FFmpeg – a complete, cross-platform solution to record, convert and

stream audio and video. Project web page, http://ffmpeg.org, 2010.

[3] Bilgin, A., Ellson, J., Gansner, E., Hu, Y., Koren, Y., North, S. Graphviz - Graph Vi-

sualization Software. Project web page, http://www.graphviz.org, 2010.

[4] Cormen, T. H., Leiserson, Ch. E., Rivest, R. L. The Floyd–Warshall algorithm. Intro-

duction to Algorithms (1st ed.), pp. 558–565, MIT Press and McGraw-Hill, 1990.

[5] Courtney, D. InstallJammer – a multiplatform GUI installer. Project web page,

http://www.installjammer.com, 2010.

[6] Fruchterman, T. M. J., Reingold, E. M. Graph Drawing by Force-Directed Placement.

Software: Practice and Experience, Volume 21, pp. 1129-1164, John Wiley & Sons,

1991.

[7] Gamma, E., Helm, R., Johnson, R., Vlissides, J. M. Strategy pattern. Design Patterns:

Elements of Reusable Object-Oriented Software, pp. 349–359, Addison-Wesley, 1994.

[8] Heesch, D. Doxygen – source code documentation generator tool. Project web page,

http://www.doxygen.org, 2010.

[9] Kamada, T., Kawai, S. An algorithm for drawing general undirected graphs. Informa-

tion Processing Letters, Volume 31, pp. 7-15, Elsevier, 1989.

[10] Kornhauser, D., Miller, G. L., Spirakis, P. G. Coordinating Pebble Motion on Graphs,

the Diameter of Permutation Groups, and Applications. Proceedings of the 25th An-

nual Symposium on Foundations of Computer Science (FOCS 1984), pp. 241-250,

IEEE Press, 1984.

[11] Koupý, P. GraphRec – a visualization tool for entity movement on graph. Project web

page, http://www.koupy.net/graphrec.php, 2010.

[12] Nokia Corp. Qt – Cross-platform application and UI framework. Project web page,

http://qt.nokia.com, 2010.

[13] Nokia Corp. Qt Online Reference Documentation. Web page, http://qt.nokia.com/doc/,

2010.

[14] Oberhumer, M. F. X. J., Molnar, L., Reiser, J. F. UPX – the Ultimate Packer for eX-

ecutables. Project web page, http://upx.sourceforge.net, 2010.

[15] Ratner, D., Warmuth, M. K. Finding a Shortest Solution for the N×N Extension of the

15-PUZZLE Is Intractable, Proceedings of the 5th National Conference on Artificial

Intelligence (AAAI 1986), pp. 168-172, Morgan Kaufmann Publishers, 1986.

[16] Ryan, M. R. K. Exploiting subgraph structure in multi-robot path planning. Journal of

Artificial Intelligence Research (JAIR), Volume 31, pp. 497-542, AAAI Press, 2008.

[17] Surynek, P. An Application of Pebble Motion on Graphs to Abstract Multi-robot Path

Planning. Proceedings of the 21st International Conference on Tools with Artificial

Intelligence (ICTAI 2009), pp. 151-158, IEEE Press, 2009.

[18] Surynek, P. An Optimization Variant of Multi-Robot Path Planning is Intractable.

Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), ar-

ticle submitted for publication, 2010.

[19] Surynek, P., Koupý, P. Vizualizace jako prostředek k získání znalostí o kvalitě řešení

problémů pohybu po grafu. Proceedings of the Conference Znalosti 2010, pp. 129-

141, Nakladatelství Oeconomica, 2010.

[20] Süli. E., Mayers, D. Relaxation and Newton's Method. An Introduction to Numerical

Analysis, pp. 19-24, Cambridge University Press, 2003.

http://ffmpeg.org/
http://www.graphviz.org/
http://www.installjammer.com/
http://www.doxygen.org/
http://www.koupy.net/graphrec.php
http://qt.nokia.com/
http://qt.nokia.com/doc/
http://upx.sourceforge.net/

58

Appendix A

Included CD-ROM structure

/build/

Automated build process for the Windows platform. All necessary packages are included

on the CD-ROM. Before running the build script, please read the enclosed instruction file.

/doc/

PDF
16

 documents describing GraphRec. Among included is the original specification, sep-

arate user's guide, separate programmer's documentation, conference article [19] and this

thesis. The thesis is also placed in the root directory of the CD-ROM.

/doxy/

Documentation generated automatically by the Doxygen tool. Includes several UML
17

 dia-

grams and call graphs.

/redist/

Redistributable packages of GraphRec for Windows and Linux platform. Both versions are

provided in uncompressed, archived and installer-based package.

16 Portable Document Format (http://www.adobe.com/devnet/pdf/pdf_reference.html)
17 Unified Modeling Language (http://www.omg.org/spec/UML/2.0/)

59

Appendix B

Multirobot File Format

Multirobot was the initial file format supported by GraphRec. It is derived from the output of

the planning software developed by my supervisor. Consequently, some data fields are not

relevant for GraphRec. On the other hand, GraphRec puts some optional extensions to the

original format (e.g. positioning and coloring). GraphRec opens either the original or the ex-

tended format but saves only the extended one. Format specification consists of the grammar

written in EBNF
18

 (with case insensitive terminals) followed by the semantic description and

a short example. Lines that are irrelevant for GraphRec are substituted by the undefined aux-

iliary non-terminal (grammar is thus incomplete).

file = { graph } , '<EOF>' ;

graph = { aux } , [id] ,

 { aux } , vertex block ,

 { aux } , edge block ,

 { aux } , [circle block] ,

 { aux } , [validator block] ,

 { aux } , [color block] ,

 { aux } , [position block] ,

 { aux } , solution block ,

 { aux } , length ,

 { aux } ;

id = 'id:' , uint , nl ;

vertex block = 'V =' , nl , { vertex }, nl ;

vertex = '(' , uint , ':' , uint , ')' ,

 '[' , sint , ':' , sint , ':' , sint '] ' ,

 { uintwh } , nl ;

edge block = 'E =' , nl , { edge }, nl ;

edge= '{' , uint , ',' , uint , '} (' , uint , ')' , nl ;

circle block = 'C =' , nl , { circle }, nl ;

circle = uintwh , '(' , uint , ',' , uint , '): ' , { uintwh } ,

 ' [' , { uintwh } , '] ' , '{' , { uintwh } , '}' , nl ;

validator block = 'MOD =' , nl , ('M:IMMEDIATE' | 'M:TRANSITIVE') , nl ;

color block = 'COL =' , nl , [scene] , [borders] ,

 [highlight] , { color } , nl ;

scene = 'B_SCN:A:' , color value , nl ;

borders = 'P_BRD:A:' , color value , nl ;

highlight = 'P_HLT:A:' , color value , nl ;

color = ('B' | 'P') , '_' , ('EMP' | 'INH' | 'FIN') ,

 ':' , uint , ':' , color value , nl ;

position block = 'POS =' , nl , [matrix] , [angle] ,

 [center] , { position } , nl ;

matrix = ' MATRIX:' , float , ':' , float , ':' , float , ':' ,

 float , ':' , float , ':' , float , nl ;

angle = 'ANGLE:' , float , nl ;

center = 'CENTER:X' , float , ':Y' , float , nl ;

position = uint , ':X' , float , ':Y' , float , nl ;

solution block = 'Solution' , nl , { move } , nl ;

move = uintwh , '---> ' , uintwh , [move extension] ,

 '(' , uint , ')' , nl ;

18 Extended Backus–Naur Form

(http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip)

60

move extension = '[' , sint , ' ---> ' , sint , '] ' ;

length = 'Length:' , uint , nl ;

aux = ? unknown additional information ? , nl ;

nl = new line , { new line } ;

new line = '<LF>' | '<CR>' | '<LF>' , '<CR>' | '<CR>' , '<LF>' ;

numeral = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' ;

uint = numeral , { numeral } ;

uintwh = uint , ' ' ;

sint = ['+'] , uint | '-' , uint ;

float = sint , '.' , uint | sint ;

hnumeral = numeral | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' ;

color value = '#' , hnumeral , hnumeral , hnumeral , hnumeral ,

 hnumeral , hnumeral ;

 (<node_id>:<IGNORED>)[<initial_entity_id>:<IGNORED>:<IGNORED>]

stands for the vertex definition. Entity identifications less or equal zero are reserved

for the empty nodes.

 {<source_node_id>,<destination_node_id>} (<IGNORED>)

stands for the edge definition.

 <circle_id> (<source_node_id>,<destination_node_id>): <whole_circle>

[<new_arc>] {<existing_arc>}

stands for the circle definition. Last three tokens are lists of node identifications. Cir-

cle is created by joining the new arc to the source and destination node, both of which

are joints of an existing arc.

 M:IMMEDIATE selects the validator for pebble motion on a graph.

 M:TRANSITIVE selects the validator for multi-robot path planning.

 B_SCN:A:<color> is a background color for the scene.

 P_BRD:A:<color> is a color for edge strokes and node borders.

 P_HLT:A:<color> is a color for edge highlighting.

 B_EMP:<node_id>:<color> is a background color for an empty node.

 P_EMP:<node_id>:<color> is a foreground color for an empty node.

 B_INH:<entity_id>:<color> is a non-final background color for the entity.

 P_INH:<entity_id>:<color> is a non-final foreground color for the entity.

 B_FIN:<entity_id>:<color> is a final background color for the entity.

 P_FIN:<entity_id>:<color> is a final foreground color for the entity.

 MATRIX:<m11>:<m12>:<m21>:<m22>:<dx>:<dy>

is a transformation matrix of the scene.

 ANGLE:<angle> is a rotation angle of the scene (in degrees). Currently obsolete, be-

cause the scene is no longer rotated – rotation is saved in the node positions instead.

 CENTER:X<x>:Y<y> is a point in the scene aligned to the center of the viewport.

 <node_id>:X<x>:Y<y> is a position of the specified node.

 <source_node_id> ---> <destination_node_id> [<IGNORED> --->

<IGNORED>] (<time_step>)

defines one particular move of an unspecified entity between the two specified nodes

at the specified time step.

61

id:1

V =

(1:0)[1:0:0]

(2:0)[2:0:0]

(3:0)[3:0:0]

E =

{1,2} (0)

{2,3} (0)

{3,1} (0)

MOD =

M:TRANSITIVE

COL =

B_SCN:A:#ffffff

P_BRD:A:#000000

P_HLT:A:#00ffff

B_EMP:1:#ffaa00

B_EMP:2:#ffaa00

B_EMP:3:#ffaa00

P_EMP:1:#000000

P_EMP:2:#000000

P_EMP:3:#000000

B_INH:1:#0000ff

B_INH:2:#ff0000

B_INH:3:#00ff00

P_INH:1:#ffffff

P_INH:2:#ffffff

P_INH:3:#ffffff

B_FIN:1:#00007f

B_FIN:2:#aa0000

B_FIN:3:#005500

P_FIN:1:#ffffff

P_FIN:2:#ffffff

P_FIN:3:#ffffff

POS =

MATRIX:1.68179:0:0:1.68179:0:0

ANGLE:0

CENTER:X-7.13524:Y-35.6762

1:X-18.7568:Y-8.08399

2:X4.0907:Y-71.4452

3:X-62.2215:Y-59.842

Solution

2 ---> 3 [0 ---> 0] (0)

3 ---> 1 [0 ---> 0] (0)

1 ---> 2 [0 ---> 0] (0)

3 ---> 1 [0 ---> 0] (1)

2 ---> 3 [0 ---> 0] (1)

1 ---> 2 [0 ---> 0] (1)

3 ---> 1 [0 ---> 0] (2)

2 ---> 3 [0 ---> 0] (2)

1 ---> 2 [0 ---> 0] (2)

Length:9

62

Appendix C

GraphRec File Format

GraphRec file format is a refined alternative to the Multirobot file format. Format is speci-

fied in XML and is designed against the requirement to provide better locality and encapsula-

tion of the information than the Multirobot format. Format is specified by the semantic de-

scription and a short example. Optional tags or attributes are enclosed in square brackets.

File is composed from the XML header, document type <!DOCTYPE graphrec> and a single

root element <graphrec version="<version_number>"></graphrec>. Root element acts

as a container for one or more <solution [id="<solution_id>"]></solution> defini-

tions, which are further composed from the following elements:

 [<scene [bg="<background_color>"]></scene>] contains the scene definition:
o [<viewport x="<x_position>" y="<y_position>"/>]

specifies a point in the scene aligned to the center of the viewport.
o [<matrix m11="<m11>" m12="<m12>" m21="<m21>" m22="<m22>"

dx="<dx>" dy="<dy>"/>] defines the transformation matrix of the scene.

 <graph></graph> contains the graph definition:
o <entity id="<entity_id>" [bg="<background_color>"]

[bgf="<final_background_color>"] [fg="<foreground_color>"]

[fgf="<final_foreground_color>"]/>

stands for entity definition. Entity identification must be greater than zero.
o <node id="<node_id>" [ent="<initial_entity_id>"]

[x="<x_position>" y="<y_position>"] [bg="<background_color>"]

[fg="<foreground_color>"] [bnd="<boundary_color>"]/>

stands for vertex definition. Entity identification for the empty node is zero.
o <edge n1="<first_node_id>" n2="<second_node_id>"

[ln="<line_color>"] [hgl="<highlight_color>"]/>

stands for the edge definition.

 <scenario [validator="<validator_name>"]></scenario>

contains all movements of the solution:
o <move tms="<time_step>" src="<source_node_id>"

dst="<destination_node_id>"/>

defines one particular move of an unspecified entity between the two specified

nodes at the specified time step.

63

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE graphrec>

<graphrec version="1.0">

 <solution id="1">

 <scene bg="#ffffff">

 <viewport x="-1.18921" y="-29.7302"/>

 <matrix m11="1.68179" m12="0" m21="0"

 m22="1.68179" dx="0" dy="0"/>

 </scene>

 <graph>

 <entity id="1" bg="#0000ff" bgf="#00007f"

 fg="#ffffff" fgf="#ffffff"/>

 <entity id="2" bg="#ff0000" bgf="#aa0000"

 fg="#ffffff" fgf="#ffffff"/>

 <entity id="3" bg="#00ff00" bgf="#005500"

 fg="#ffffff" fgf="#ffffff"/>

 <node id="1" ent="1" x="-18.7568" y="-8.08399"

 bg="#ffaa00" fg="#000000" bnd="#000000"/>

 <node id="2" ent="2" x="4.0907" y="-71.4452"

 bg="#ffaa00" fg="#000000" bnd="#000000"/>

 <node id="3" ent="3" x="-62.2215" y="-59.842"

 bg="#ffaa00" fg="#000000" bnd="#000000"/>

 <edge n1="1" n2="2" ln="#000000" hgl="#00ffff"/>

 <edge n1="2" n2="3" ln="#000000" hgl="#00ffff"/>

 <edge n1="3" n2="1" ln="#000000" hgl="#00ffff"/>

 </graph>

 <scenario validator="Multirobot">

 <move tms="0" src="3" dst="1"/>

 <move tms="0" src="1" dst="2"/>

 <move tms="0" src="2" dst="3"/>

 <move tms="1" src="1" dst="2"/>

 <move tms="1" src="2" dst="3"/>

 <move tms="1" src="3" dst="1"/>

 <move tms="2" src="1" dst="2"/>

 <move tms="2" src="2" dst="3"/>

 <move tms="2" src="3" dst="1"/>

 </scenario>

 </solution>

</graphrec>

	Introduction
	Tool Overview
	Tool Purpose
	Tool Scope
	Thesis Structure

	Design Analysis
	Graph Embedding
	Fruchterman-Reingold Method
	Kamada-Kawai Method
	/Methods Comparison

	Problem Variants
	Solution Validation

	Movement Animation
	Color Management
	Chosen Technologies
	Operating Environment
	Extensibility
	User Interface
	Video Capturing

	User's Guide
	Opening Input File
	Environment Description
	Main Menu
	Tool Bar
	Status Bar
	Tabs
	Window Splitting

	Controls
	Validating Solution
	Embedding Graph
	Settings
	Coloring Graph Elements
	Saving Output File
	Controlling Animation
	Capturing Media Files
	Images
	Video Standards
	Video Settings

	Programmer's Documentation
	Compilation
	Preparing Environment
	Building Qt
	Building FFmpeg
	Building GraphRec
	Compressing Executable
	Redistributable Package
	Licensing

	Architecture Overview
	Graph Primitives
	Entity Class
	Node Class
	Edge Class

	Passing Common Data
	Producing Servants
	Parser Interface
	Saver Interface
	Validator Interface
	Layouter Interface
	Recorder Interface

	GraphView Class
	Error Dialog
	Color Dialog
	Embedding
	Scene Actions
	Animation
	Setup Dialog
	Capture Dialog
	Rendering
	Video Encoding

	Main Window
	Splitting
	Open Dialog
	Help Dialog

	Persistent Settings

	Conclusion

