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Kĺıčová slova: tekutina, tok, viskozita, teplota, tlak

Title: Flows of fluids with pressure and temperature dependent viscosity in the
channel
Author: Adam Janečka
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Chapter 1

Flows of heat-conducting
incompressible fluids

We will study flows of heat-conducting, homogeneous, isotropic, incompressible
fluids with viscosity depending on the pressure and temperature. Mathematical
description of the problem requires knowledge of the balance equations (for mass,
linear momentum and energy), constitutive equations (for the Cauchy stress and
the heat flux) and boundary conditions. Let us briefly comment all these three
key components of the mathematical approach.

1.1 Balance equations

We shall assume that the fluid occupies a open connected set Ω ⊂ R3 with the
boundary ∂Ω. Motion of such a fluid is well described through the velocity field
v = (v1, v2, v3) : (0,∞)×Ω→ R3, the density ρ : (0,∞)×Ω→ R+, the pressure
p : (0,∞)× Ω→ R+ and the internal energy e : (0,∞)× Ω→ R+.

Let us recall the standard notation. For any scalar field ϕ, any vector field
(e.g. velocity) v and any tensor field S we have

ϕ,t :=
∂ϕ

∂t
, (∇ϕ)i =

∂ϕ

∂xi
, (∇v)ij =

∂vi
∂xj

,

div v =
∑
i

∂vi
∂xi

, (div S)i =
∑
j

∂Sij
∂xj

.
(1.1)

We shall describe the behavior of the fluid through the balance equations
expressed in their Eulerian form. The balance of mass is in the form

ρ,t + div(ρv) = 0. (1.2)

Balance of linear momentum is a generalization of Newton’s second law in
classical mechanics

ρ (v,t + [∇v]v) = div TT + ρb, (1.3)

where T denotes the Cauchy stress tensor and b denotes the specific body force.
In the absence of internal couples (moments per unit volume), the balance of

angular momentum implies that the Cauchy stress is symmetric, i.e.,

T = TT. (1.4)
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The balance of energy is given by

ρ (E,t +∇E · v) = div(Tv − q) + ρb · v, (1.5)

where E = |v|2
2

+ e is the sum of kinetic energy and internal energy and q is the
heat flux. By subtracting the scalar product of (1.3) and v from (1.5) we obtain
the the balance of internal energy in the form

ρ (e,t +∇e · v) = T · ∇v − div q. (1.6)

The constraint of incompressibility in fluid mechanics is usually in the form

div v = tr D = 0, (1.7)

where D is the symmetric part of the velocity gradient, i.e., D = 1
2
(∇v+∇vT) [5].

We will suppose even stronger condition, namely ρ = ρ∗, where ρ∗ ∈ (0,+∞),
which ensures the validity of (1.2).

If we identify T := T
ρ∗

and q := q
ρ∗

, we can re-write the system of balance
equations as:

div v = 0, (1.8)

v,t + div(v ⊗ v) = div T + b, (1.9)

e,t + div(ev) = T ·D− div q. (1.10)

More details concerning balance equations can be found, for example, in [1].

1.2 Constitutive equations

The constitutive equation for internal energy is specified by simple temperature
dependent model

e(θ) = cV θ, (1.11)

where θ is temperature and cV is the heat capacity at a constant volume [6].
The heat flux q is related to the variation of temperature through the fluid [4].

The relevant constitutive equation takes the form

q = q∗(p, θ,D(v),∇θ) = −k(p, θ, |D(v)|2)∇θ, (1.12)

where k denotes the thermal conductivity and we will assume it to be constant.
Relation (1.12) is called the Fourier’s law.

It has been know since the time of Newton, that T and ∇v are related [3].
This relationship changes with the variation of θ. A general algebraic relation
describing this fact can be written as

g(θ,T,∇v) = 0, (1.13)

where g is isotropic tensor function of the second order. From the principle of
material frame-indifference follows that (1.13) must satisfy, for all orthogonal
tensors Q,

g(θ,QTQT,Q∇vQT) = Qg(θ,T,∇v)QT. (1.14)
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From (1.14) follows that we may use only the symmetric part of the velocity
gradient. Using the representation theorems for isotropic functions of the form
(1.14) we obtain

α0I + α1T + α2D + α3T
2 + α4D

2 + α5(TD + DT)

+ α6(T2D + DT2) + α7(TD2 + D2T) + α8(T2D2 + D2T2) = 0 (1.15)

where the material moduli αi, i = 0, . . . , 8, depend on

θ, tr T, tr D, tr T2, tr D2, tr T3, tr D3,

tr(TD), tr(T2D), tr(D2T), tr(T2D2).

To obtain a more specific subclass of fluids we shall first consider αi, i = 3 . . . 8,
to be zero. Thus (1.15) simplifies to

α0I + α1T + α2D = 0. (1.16)

If we take the trace of the previous equation and satisfy the incompressibility
constraint, we conclude that

3α0 + α1 tr T = 0 (1.17)

or

α0 = −tr T

3
α1 (1.18)

and we define the pressure (the mean normal stress) as p := −1
3

tr T. By substi-
tuting the relation for p into (1.16) we obtain

T = −pI +
α2

α1

D. (1.19)

By defining viscosity as µ(θ, p, |D|2) := 1
2
α2

α1
we finally get the Cauchy stress tensor

of the form
T = −pI + 2µ(θ, p, |D|2)D, tr D = 0, (1.20)

where we define the deviatoric (or viscous) part of the stress tensor

S := 2µ(θ, p, |D|2)D. (1.21)

Our subclass subsumes several fluids including the following fluids we shall
study later:

1. Navier-Stokes fluid and its generalizations

S = 2µ(θ, p)D(v) (1.22)

Navier-Stokes fluid is the one with constant viscosity.

2. Power-law fluid

S = 2µ(θ, p)|D(v)|r−2D(v), 1 < r < +∞ (1.23)
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3. Generalized power-law fluid

S = 2µ(θ, p)
(
κ+ |D(v)|2

) r−2
2 D(v), 1 < r < +∞, κ ∈ R. (1.24)

All the above mentioned models can be generalized as

S = 2µ(θ, p)β(|D|2)D. (1.25)

Studying the power-law fluid or the generalized power-law fluid, we will focus
on two important values of r, r =

{
3
2
, 4

3

}
. The value r = 4

3
is used in glacier

dynamics for models based on Glen’s flow law [6].
We shall consider the viscosity to be dependent either on pressure or tempe-

rature. We will study two pressure dependent viscosity models

µ(p) = αpγ, (1.26)

µ(p) = µ0eαp, (1.27)

where α is a constant, and the following three temperature dependent viscosity
models:

1. Constant viscosity model
µ(θ) = µ0, (1.28)

2. Reynolds’ model
µ(θ) = µ0 exp(−mθ), (1.29)

3. Vogel’s model

µ(θ) = µ0 exp

(
a

b+ θ

)
, (1.30)

where µ0, m, a and b are constants.
Using the mentioned constitutive equations (1.11), (1.12) and (1.20), the sy-

stem of balance equations can be written as:

div v = 0, (1.31)

v,t + div(v ⊗ v) = −∇p+ div S + b, (1.32)

cV θ,t + cV div(θv) = S ·D + k∆θ, (1.33)

where ∆ denotes the Laplace operator.

1.3 Boundary conditions

We assume that the boundary ∂Ω is not permeable

v · n = 0 on [0,∞)× ∂Ω, (1.34)

where n is the unit outer normal to the boundary. For the velocity field we will
consider the Navier’s slip boundary condition

λv · t + (1− λ)Sn · t = 0 on [0,∞)× ∂Ω, (1.35)
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where t is any tangent vector at the boundary, i.e., t · n = 0 and the parameter
λ meets λ ∈ [0, 1] including two limiting cases. If λ = 0, (1.35) reduces to slip
boundary condition. On the contrary, λ = 1 means no slip boundary condition [2].

Concerning the temperature, we prescribe the temperature values on the
boundary

θ|∂Ω = θ0 on [0,∞)× ∂Ω. (1.36)

For fluids with pressure-dependent viscosity, we need to prescribe the pressure
in some point

p(x) = p0 at any x ∈ Ω. (1.37)

In the specific case of plane Poiseuille flow, when the flow is driven by a pressure
potential we need to specify the driving force. This can be done by fixing the
pressure gradient along the main flow direction (e.g., x-direction) at some point
x ∈ Ω

∂p

∂x
= C0, (1.38)

where C0 < 0 is a constant (a datum of the problem).
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Chapter 2

Problem geometry

2.1 Plane flow

We will study steady fully developed flow of an incompressible fluid between two
infinite parallel plates located in y = ±h of an orthogonal Cartesian coordinate
system (see figure 2.1). We will seek the velocity field of the form

v = u(y)ex, (2.1)

which means that (1.7) is automatically satisfied. It follows from (2.1) that

∇v =

0 u′ 0
0 0 0
0 0 0

 , D(v) =
1

2

 0 u′ 0
u′ 0 0
0 0 0

 , |D(v)| = 1√
2
|u′|, (2.2)

where the prime symbol denotes the coordinate derivative, i.e., u′ := du
dy

. In

order to eliminate (from aesthetic reasons) the factor 1√
2

in case of the power-law
fluid and the generalized power-law fluid, we redefine the generalized viscosity as
µ := (

√
2)r−2µ. From now on, we will use these rescaled viscosities. From our

assumptions, it also immediately follows that

v,t + div(v ⊗ v) = 0, (2.3)

so that (1.32) reduces to
∇p = div S + b. (2.4)

In most cases, we will also neglect external body forces, i.e., b = 0, so that we
can assume

∂p

∂z
= 0, (2.5)

which implies that p is independent of z, i.e., p = p(x, y).
Furthermore, we shall assume the temperature to satisfy

θ = θ(y), (2.6)

meaning that
e,t + div(ev) = 0. (2.7)

Thus (1.33) simplifies to
S12u

′ + kθ′′ = 0, (2.8)

or, using (1.25), to
µ(θ, p)β(|u′|2)[u′]2 + kθ′′ = 0, (2.9)
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Figure 2.1: Flow between two plates

2.2 Boundary conditions

In our geometry, the tangent vector and the outer normal on the boundary take
the form

t = (1, 0, 0), n = (0,±1, 0), (2.10)

where +1 holds at the upper plate and −1 at the lower one. The choice of velocity
field of the form (2.1) automatically satisfies the permeability constaint (1.34).

We will deal with the two following types of flow with boundary conditions
derived from (1.35):

1. Plane Poiseuille flow with boundary conditions

λ1u(−h)− (1− λ1)µ(θ, p)β(|u′|)u′(−h) = 0 at the lower plate (2.11)

λ2u(h) + (1− λ2)µ(θ, p)β(|u′|)u′(h) = 0 at the upper plate, (2.12)

where 0 ≤ λ1 ≤ λ2 ≤ 1.

2. Plane Couette flow when the upper plate moves with a prescribed velocity
(V, 0, 0). The velocity has to satisfy (2.11) at the lower plate and

λ2(u(h)− V ) + (1− λ2)µ(θ, p)β(|u′|)u′(h) = 0 at the upper plate. (2.13)

The prescribed temperatures at the lower and the upper plate are

θ1 = θ(−h), θ2 = θ(h). (2.14)

2.3 Non-dimensional equations

We shall introduce the following variables and parameter

ȳ =
y

h
, ū =

u

V
, µ̄ =

µ

µ0

, T =
θ − θ1

θ2 − θ1

, Γ =
µ0V

2

k(θ2 − θ1)
, (2.15)

where V is the characteristic velocity. In case of plane Couette flow, V corre-
sponds to the velocity of the upper plate. Concerning the plane Poiseuille flow,
V is given by

V = − h2

2µ0

dp

dx
, (2.16)
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which is the velocity for plane Poiseuille flow for Navier-Stokes fluid. In case of the
power-law fluid and the generalized power-law fluid, we redefine the parameter Γ
as Γ := [ h

V
]r−2Γ.

Then, (2.9) in its the non-dimensional form is

T ′′ + Γµ̄(T, p̄)β(|ū′|2)[ū′]2 = 0 (2.17)

subject to the boundary conditions

T (−1) = 0, T (1) = 1. (2.18)

We can also re-write the temperature dependent viscosity models:

1. Constant viscosity model
µ(T ) = 1, (2.19)

2. Reynolds’ model
µ(T ) = exp(−MT ), (2.20)

where M = m(θ2 − θ1),

3. Vogel’s model
µ(T ) = exp[θ(T )− θ(0)], (2.21)

where θ = A
B+T

, A = a
θ2−θ1 and B = (b+θ1)

(θ2−θ1)
[7].

We shall also introduce the non-dimensional form of (2.4). The equation is
already divided by the pressure ρ∗ as mentioned in section 1.1. Thus we have

∇
(
p

ρ∗

)
= div

(
µ

ρ∗
β(|D|2)D

)
+ b. (2.22)

If we assume b of the form b = (0,−g, 0) and use (2.15) we obtain

∇̄
(

p

ρ∗V 2

)
= div

(
µ0

ρ∗V L
µ̄(T, p̄)β(|D̄|2)D̄

)
+
Lg

V 2
b̄, (2.23)

where L is the characteristic linear dimension. By defining an analogue of the
Reynolds number

Re =
ρ∗V L

µ0

, (2.24)

and the Froude number

Fr =
V√
Lg
, (2.25)

we finally obtain the sought non-dimensional form

∇̄p̄ = div

(
1

Re
µ̄β(|D̄|2)D̄

)
+

1

Fr2 b̄. (2.26)

In the following, we will omit the bars above the non-dimensional variables.
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Chapter 3

Solutions of selected problems

3.1 Pressure-dependent viscosities

We will consider the flow of a fluid modelled by (1.22) and seek the pressure field
in the form p(x, y) = F (x)G(y). Considering the plane Poiseuille flow and on
neglecting the body forces, only trivial solutions exist for viscosity of the form
(1.26) and for γ 6= 1 . For viscosity of the form (1.27), solution is not possible [3].

In the following, some of the results and methods are adpoted from [3].

(i) µ(p) = αpγ

If γ = 1 and we assume u′(y) > 0 on (−1, 0), from (2.4) follows

∂p

∂x
= α

∂p

∂y
u′ + αpu′′, (3.1a)

∂p

∂y
= α

∂p

∂x
u′, (3.1b)

which is equivalent to

∂p

∂x
(1− α2[u′]2) = αpu′′, (3.2a)

∂p

∂y
(1− α2[u′]2) = α2pu′u′′. (3.2b)

The first equation can be written as

∂

∂x
ln|p(x, y)| = ∂

∂y

(
ln

∣∣∣∣1 + αu′

1− αu′

∣∣∣∣1/2
)

=: C1(y), (3.3)

which implies that
p(x, y) = C2(y)eC1(y)x, (3.4)

where C2 is either non-negative or non-positive. Substituting (3.4) into (3.2b)
leads to

C ′2(y) + C2(y)C ′1(y)x = αu′(y)C2(y)C1(y), (3.5)

which implies that C1(y) ≡ C0 = const., ∀y ∈ (−1, 0). Denoting C3(y) by L(y)
we then have

p(x, y) = ±L(y)eC0x, L ≥ 0, (3.6)
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and
1 + αu′

1− αu′
= ±Me2C0y, M > 0. (3.7)

Thus

u′(y) =
1

α

Me2C0y − 1

Me2C0y + 1
, M ∈ R. (3.8)

We assume that λ1 = λ2, so we consider the problem to be symmetric. Hence,
we require that u′(0) = 0 which leads to M = 1. So that

u′(y) =
1

α

e2C0y − 1

e2C0y + 1
=

1

α

sinhC0y

coshC0y
, C0 < 0, (3.9)

and the constant C0 is related to the pressure gradient along the x-direction. By
integrating and satisfying the boundary condition for λ1 = λ2 = 1 we can find
the explicit formula

u(y) =
1

αC0

ln

(
coshC0y

coshC0

)
. (3.10)

Different boundary conditions (λ1, λ2 6= 1) were also tried but led to a sulution
which did not fulfilled assumption (2.1) (due to the form of p).

In figure 3.1, there are shown the velocity profiles for certain values C0. The
profiles are scaled so that ∫ 1

−1

u(y) dy = 1. (3.11)

Pressure decline in the middle of the channel is depicted in figure 3.2.
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Figure 3.1: Poiseuille flow - velocity profiles for different values of C0 (α = 1)

(ii) µ(p) = eαp

Since the solution for plane Poiseuille flow does not exist, we will study the plane
Couette flow with an external body force, e.g., gravity, in the form of

b = (0,−g, 0). (3.12)
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Figure 3.2: Poiseuille flow - pressure along the channel for different values of C0

(L = 1)

In [3] is shown that p has to be in the form of

p(x, y) = R(x) + S(y) (3.13)

and, in addition, R(x) has to be a constant function. Thus viscosity is in the
form of

µ(p) = µ(S(y)) = CeαS(y), (3.14)

where C = const. Then, it immediately follows from (2.4) that

0 = αµ(S)S ′u′ + µ(S)u′′, (3.15a)

S ′ = −g. (3.15b)

From the second equation, we obtain the form of pressure in the channel

p = −gy +D, (3.16)

D being a constant. By substituting the second equation into the first, we obtain
a ordinary differential equation of the second order

µ(S) (u′′ − αgu′) = 0. (3.17)

By solving it and satisfying the boundary conditions (2.11) and (2.13) we get the
solution

u(y) = C1

(
eαgy − e−αg

αg
+

1− λ1

λ1

)
, (3.18)

where

C1 = V

/(
2 sinhαg

αg
+

1− λ1

λ1

+
1− λ2

λ2

)
, (3.19)

and λ1, λ2 6= 0. The velocity profiles for certain values of λ1, λ2, V and g (with
α = 1) are depicted in figures 3.3, 3.4 and 3.5.
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Figure 3.4: Couette flow - velocity profiles for different values of V (g = 5,
λ1 = λ2 = 1)
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Figure 3.5: Couette flow - velocity profiles for different values of V (g = 1,
λ1 = 0.2, λ2 = 0.6)
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3.2 Temperature-dependent viscosities

In this section, we shall study the plane Poisseuille flow with no-slip boundary
conditions at the plates

u(±h) = 0, (3.20)

i.e., λ1 = λ2 = 1. The external body forces will be neglected and all the velocity
profiles will be scaled according to (3.11).

Firstly, we focused on the generalized Navier-Stokes fluid (1.22). We were
not able to find the analytical solutions, therefore, we had to solve the problems
numerically.

Reynolds’ viscosity model represents oils well [7]. The velocity profiles in the
absence of viscous heating, i.e., Γ = 0, are shown in figure 3.6 and the temperature
distributions with Γ = 10 are depicted in figure 3.7.

In figures 3.8-3.9 are displayed solutions for the Vogel’s model which describes
lubricating oils [7]. Again, the velocity profiles are in the absence of viscous
heating and the temperature distributions are with Γ = 10.

The constant viscosity model describing the behaviour of the Navier-Stokes
fluid is a special subclass of both Reynolds’ and Vogel’s models with M = 0 and
A = B = 0 respectively.
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Figure 3.6: Generalized Navier-Stokes fluid with Reynolds’ viscosity model - ve-
locity profiles for different values of M (Γ = 0)

For the power-law fluid model (1.23), we were not able to find neither the
analytical nor the numerical solution (using the standard ODE BVP solvers) for
any but the constant viscosity model which can be solved analyticaly as

u(y) =

{
−Lr(−y)

r
r−1 + Lr on (−1, 0),

−Lry
r

r−1 + Lr on (0, 1),
(3.21)

where

Lr =
r − 1

r

(
−C0

µ

) 1
r−1

. (3.22)
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The velocity profiles for different values of r are depicted in figure 3.10. More
details concerning the power-law fluids with constant viscosity can be found in [2].
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Figure 3.7: Generalized Navier-Stokes fluid with Reynolds’ viscosity model - tem-
perature distributions for different values of M (Γ = 10)
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Figure 3.8: Generalized Navier-Stokes fluid with Vogel’s viscosity model - velocity
profiles for different values of A and B (Γ = 0)
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Figure 3.9: Generalized Navier-Stokes fluid with Vogel’s viscosity model - tem-
perature distributions for different values of M (Γ = 10)
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Figure 3.10: Power-law fluid with constant viscosity model - velocity profiles for
different values of r
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Concerning the generalized power-law fluids (1.24), with some effort, we were
able to find the numerical solution but only for some parameters’ values. The ve-
locity profiles and the temperature distributions for Reynolds’ and Vogel’s model
are displayed in figures 3.11-3.15. The temperature distributions are not men-
tioned for Vogel’s model because we were not able to obtain the solution with
viscous heating, i.e., Γ > 0.

Once again, the constant viscosity model is a special subclass of, e.g., Reynolds’
model with M = 0.
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Figure 3.11: Generalized power-law fluid with Reynolds’ viscosity model - velocity
profiles for different values of M (r = 3

2
, Γ = 0, κ = 1)
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Figure 3.12: Generalized power-law fluid with Reynolds’ viscosity model - velocity
profiles for different values of M (r = 4

3
, Γ = 0, κ = 1)
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Figure 3.13: Generalized power-law fluid with Reynolds’ viscosity model - tem-
perature distributions for different values of κ (r = 3

2
, M = 0, Γ = 10)
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Figure 3.14: Generalized power-law fluid with Reynolds’ viscosity model - tem-
perature distributions for different values of κ (r = 4

3
, M = 0, Γ = 10)
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Figure 3.15: Generalized power-law fluid with Vogel’s viscosity model - velocity
profiles for different values of r (κ = 1, Γ = 0, A = 47.5, B = 6.25)
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Chapter 4

Concluding remarks

In chapter 3, we have summed up so far known results. To date, the mechanic (the
pressure and the symmetric part of the velocity gradient) and the temperature
effects were studied separately and in our work, we try to combine both of these
effects even with respect to different boundary conditions.

The flow between two parallel plates was chosen as a simple problem geometry
in which we can easily compare the mechanic and the temperature effects.

From the qualitative point of view, it is obvious that the temperature gradient
shifts the maximum of the velocity profile towards the warmer plate. This effect
cannot be achieved by a pure mechanic model.

We were not able to obtain the numerical solution directly in case of the power-
law fluid and the generalized power-law fluid (solution only for some parameters’
values). These problems would need a deeper analysis.

In the future, we can further study the fluids with pressure and temperature
dependent viscosities. We could also try to optimize the flow by setting up the
temperature at the channel plates.
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[2] Hron J., Le Roux C., Málek J., Rajagopal K. R.: Flows of Incompressible
Fluids subject to Navier’s slip on the boundary, Comput. Math. Appl. 56
(2008), 2128–2143.
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