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Název práce: Vztahy mezi prostory funkćı
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1. Introduction

Suppose that X and Y are normed linear spaces. We say that X is embedded into Y , denoted
X →֒ Y , if X ⊆ Y and the identity operator from X to Y is continuous, i.e.

‖f‖Y ≤ C‖f‖X , f ∈ X,

for some constant C independent of f .
Furthermore, X is compactly embedded into Y , denoted X →֒→֒ Y , if X ⊆ Y and the identity

operator from X to Y is compact, equivalently, if for every sequence (fn)
∞
n=1 bounded in X, we

can find its subsequence convergent in Y .
Compact embeddings play an important role when functional-analytic methods are applied

to finding solutions of partial differential equations. However, it is often quite complicated to
establish the compactness of an embedding. In this text, we define some other type of embedding,
called an almost-compact embedding, which is generally weaker then a compact embedding but
in some cases it could be useful for establishing compact embeddings.

Suppose that X and Y are Banach function spaces (in the sense described in the following
section) over a measure space (R,µ). We say that X is almost-compactly embedded into Y and

write X
∗→֒ Y if for every sequence (En)

∞
n=1 of µ-measurable subsets of R satisfying En → ∅

µ-a.e., we have

lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y = 0.

We first prove an equivalence between an almost-compact embedding to certain type of almost-
everywhere convergence. An important corollary of this result shows that an almost-compact em-
bedding combined with a bounded Sobolev embedding leads immediately to a compact Sobolev
embedding. This result in some sense justifies the label “almost compact embedding”. This is
done in Section 3. In Section 4 we study the product operator and find its intimate relation
to the almost-compact embedding. An important and useful necessary condition for almost-
compact embeddings expressed in terms of fundamental functions is established in Section 5. In
Section 6, we study almost-compact embeddings between certain special function spaces, called
Lorentz and Marcinkiewicz endpoint spaces. We present a complete characterization of all possi-
ble mutual embeddings for such spaces. Compactness of an embedding between function spaces
is intimately related to the subspace of functions having absolutely continuous norms of a given
Banach function space. In the final section, we study inclusions of endpoint spaces into such
subspaces.

2. Preliminaries

In this chapter we shall fix the notation and recall some basic facts from the theory of Banach
function spaces and rearrangement-invariant spaces. We shall not prove the well-known results;
our standard general reference is [2].

Let (R,µ) be a totally σ-finite measure space. Denote by M+ the set of all µ-measurable
functions on R with values in [0,∞]. A mapping ρ : M+ → [0,∞] is called a Banach function
norm if, for all f , g, fn, (n = 1, 2, . . . ), in M+, for all constants a ≥ 0, and for all µ-measurable
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subsets E of R, the following properties hold:

ρ(f) = 0 ⇔ f = 0 µ− a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),(P1)

0 ≤ g ≤ f µ− a.e. ⇒ ρ(g) ≤ ρ(f),(P2)

0 ≤ fn ↑ f µ− a.e.⇒ ρ(fn) ↑ ρ(f),(P3)

µ(E) <∞ ⇒ ρ(χE) <∞,(P4)

µ(E) <∞ ⇒
∫

E
f dµ ≤ CEρ(f)(P5)

for some constant CE, 0 < CE <∞, depending on E and ρ but independent of f .
Denote by M the set of all µ-measurable real-valued functions on R. The collection X = X(ρ)

of all functions f ∈ M for which ρ(|f |) <∞ is called a Banach function space. For every f ∈ M,
we define

‖f‖X = ρ(|f |).
LetX be a Banach function space. The Fatou lemma says that whenever (fn)

∞
n=1 is a sequence

in X such that fn → f µ-a.e. and lim infn→∞ ‖fn‖X <∞, then f ∈ X and

‖f‖X ≤ lim inf
n→∞

‖fn‖X .

Given a Banach function space X, the associate space X ′ is a Banach function space consisting
of all functions g ∈ M such that fg is integrable for every f ∈ X. The norm on X ′ is given by

‖g‖X′ = sup

{
∫

R
|fg| dµ : f ∈ X, ‖f‖X ≤ 1

}

.

Then X ′′ = (X ′)′ = X. Moreover, for every f , g in M, we have the Hölder inequality
∫

R
|fg| dµ ≤ ‖f‖X‖g‖X′ .

If X and Y are Banach function spaces over the same measure space, then X →֒ Y is equivalent
to Y ′ →֒ X ′. Furthermore, X →֒ Y holds if and only if X ⊆ Y (see [2, Chapter 1, Theorem
1.8]).

Let (En)
∞
n=1 be a sequence of µ-measurable subsets of R. We write En → ∅ µ-a.e. if the

characteristic functions χEn converge to 0 pointwise µ-a.e. Moreover, if the sequence (En)
∞
n=1 is

nonincreasing, we write En ↓ ∅ µ-a.e.
A function f in a Banach function function space X is said to have an absolutely continuous

norm in X if ‖fχEn‖ → 0 for every sequence (En)
∞
n=1 satisfying En → ∅ µ-a.e. The set of all

functions in X of absolutely continuous norm is denoted by Xa.
Suppose that f ∈ M. The nonincreasing rearrangement of f is the function f∗ defined on

[0,∞) by

f∗(t) = inf {λ : µ {x ∈ R : |f(x)| > λ} ≤ t}, t ≥ 0.

Furthermore, f∗∗ denotes the maximal function of f∗, defined by

f∗∗(t) =
1

t

∫ t

0
f∗(s) ds, t > 0.

A Banach function space X is said to be a rearrangement-invariant space if ‖f‖X = ‖g‖X holds
whenever f , g belong to X and f∗ = g∗.

Now suppose that (R,µ) is a nonatomic σ-finite measure space and that X is a rearrangement-
invariant Banach function space over (R,µ). Then there is a (not necessarily unique) rearrangement-
invariant Banach function space X̄ over [0, µ(R)) such that

‖f‖X = ‖f∗‖X̄ , f ∈ X.
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The space X̄ is called the representation space of X.
Because (R,µ) is nonatomic, the range of µ consists of the interval [0, µ(R)]. Thus, for every

t ∈ [0, µ(R)] (if µ(R) < ∞), or t ∈ [0,∞) (if µ(R) = ∞), we can find a set Et with µ(Et) = t.
Let

ϕX(t) = ‖χEt‖X .
The function ϕX so defined is called the fundamental function of X. Then ϕX is nonnegative and
nondecreasing, ϕX(t) = 0 if and only if t = 0, ϕX(t)/t is nonincreasing. A function satisfying
these properties is said to be quasiconcave.

Let X ′ be the associate space of X. Then

(2.1) ϕX(t)ϕX′(t) = t

holds for each finite value of t in the range of µ.
Let ϕ be a quasiconcave function on (0, µ(R)). The Marcienkiewicz endpoint space Mϕ =

Mϕ(R,µ) consists of all functions f in M for which the functional

‖f‖Mϕ = sup
t∈(0,µ(R))

{f∗∗(t)ϕ(t)}

is finite.
For every quasiconcave function ϕ, we define its least nondecreasing concave majorant ϕ0 as

a pointwise infimum of all nondecreasing concave majorants of ϕ. Then

1

2
ϕ0 ≤ ϕ ≤ ϕ0.

As a consequence of this, we get that every rearrangement-invariant space X over (R,µ) can
be equivalently renormed with a rearrangement-invariant norm in such a way that the resulting
fundamental function is concave.

Denote a = µ(R). Let ψ be a positive nondecreasing concave function on (0, a). The Lorentz
endpoint space Λψ = Λψ(R,µ) consists of all f ∈ M for which

‖f‖Λψ =

∫ a

0
f∗(s) dψ(s) = ‖f‖L∞ψ(0+) +

∫ a

0
f∗(s)ψ′(s) ds

is finite.
It is not hard to show that both the spaces Λϕ and Mϕ have fundamental function ϕ.
If X is a rearrangement-invariant Banach function space with a concave fundamental function

ϕ, then
Λϕ →֒ X →֒Mϕ.

An important example of rearrangement-invariant spaces are the Lebesgue spaces Lp =
Lp(R,µ), (1 ≤ p ≤ ∞), consisting of all f ∈ M, for which

‖f‖Lp =

{

(∫

R |f |p dµ
)1/p

, 1 ≤ p <∞;

ess supR |f |, p = ∞;

is finite.
Let φ : [0,∞) → [0,∞) be a nondecreasing and left-continuous function with φ(0) = 0,

φ(s) > 0 for s > 0. Then the function Φ defined by

Φ(t) =

∫ t

0
φ(s) ds, t ≥ 0,

is said to be a Young’s function. In particular, every Young’s function is convex.
Let Φ be a Young’s function. The Orlicz space LΦ = LΦ(R,µ) is the rearrangement-invariant

Banach function space consisting of all f ∈ M, for which

‖f‖LΦ = inf{k−1 :

∫

R
Φ(k|f(x)|) dx ≤ 1}
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is finite.
Suppose that d ∈ N and Ω is a nonempty open subset of R

d. Let λ denote the Lebesgue
measure on Ω. For a Banach function space X over (Ω, λ), the Sobolev space W 1X consists of
all real-valued weakly-differentiable functions f in X such that |∇f | ∈ X.

3. Almost-compact embeddings and convergence

We first observe that, in the definition of an almost-compact embedding, the sequence (En)
can be taken nonincreasing.

Theorem 3.1. Let X and Y be Banach function spaces over a totally σ-finite measure space

(R,µ). Then X
∗→֒ Y if and only if

lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y = 0

holds for every sequence (En)
∞
n=1 satisfying En ↓ ∅ µ-a.e.

This is a well-known fact which follows by replacing (En) by
(

⋃

k≥nEk

)

. We omit the proof.

We start with an easy observation about almost-compact embedings for associate spaces.

Theorem 3.2. Let X and Y be Banach function spaces over a totally σ-finite measure space

(R,µ). Then X
∗→֒ Y if and only if Y ′ ∗→֒ X ′.

Proof. Suppose that X
∗→֒ Y . Let (En)

∞
n=1 be an arbitrary sequence of sets in R satisfying

En ↓ ∅ µ-a.e. Using the definition of the associate norm and the fact that Y ′′ = Y , we get

lim
n→∞

sup
‖g‖Y ′≤1

‖gχEn‖X′ = lim
n→∞

sup
‖g‖Y ′≤1

(

sup
‖f‖X≤1

∫

R
|fgχEn |dµ

)

= lim
n→∞

sup
‖f‖X≤1

(

sup
‖g‖Y ′≤1

∫

R
|fgχEn |dµ

)

= lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y ′′ = lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y = 0,

i.e. Y ′ ∗→֒ X ′, as required.

It remains to show that Y ′ ∗→֒ X ′ implies X
∗→֒ Y . From the first part of the proof we get

Y ′ ∗→֒ X ′ implies X ′′ ∗→֒ Y ′′. Because every Banach function space coincides with its second
associate space, we get the result. �

The following theorem provides a characterization of X
∗→֒ Y in terms of convergence µ-a.e.

Theorem 3.3. Let X and Y be Banach function spaces over a totally σ-finite measure space

(R,µ). Then X
∗→֒ Y if and only if for every sequence (fn)

∞
n=1 of µ-measurable functions on R

satisfying ‖fn‖X ≤ 1 and fn → 0 µ-a.e., it holds ‖fn‖Y → 0.

Proof. Suppose that X
∗→֒ Y . First, we will construct a µ-measurable function g such that g > 0

on R and ‖g‖Y <∞. Let (Rn)
∞
n=1 be a sequence of sets of finite measure satisfying Rn ↑ R. For

every positive integer n, consider a function gn given by

gn =
1

2n
· 1

1 + ‖χRn‖Y
· χRn .

Let us also define a function g by g =
∑∞

n=1 gn. We have

‖gn‖Y =
1

2n
· 1

1 + ‖χRn‖Y
· ‖χRn‖Y <

1

2n
.
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Thus

‖g‖Y = lim
n→∞

∥

∥

∥

∥

∥

n
∑

k=1

gk

∥

∥

∥

∥

∥

Y

≤ lim
n→∞

n
∑

k=1

‖gk‖Y ≤
∞
∑

k=1

1

2k
= 1.

Because, obviously, g > 0 on R, g has the required properties.
Let (fn)

∞
n=1 be a sequence of µ-measurable functions on R satisfying ‖fn‖X ≤ 1 and fn → 0

µ-a.e. Choose ε > 0 arbitrarily. Let En = {x ∈ R : |fn(x)| ≥ εg(x)}. Because fn → 0 µ-a.e. and
εg > 0 on R, for µ-a.e. x ∈ R we have that x ∈ En holds only for finitely many positive integers
n. This implies En → ∅ µ-a.e.

Observe that

‖fn‖Y = ‖fnχEn + fnχEcn‖Y ≤ ‖fnχEn‖Y + ‖fnχEcn‖Y .
The assumptions X

∗→֒ Y and ‖fn‖X ≤ 1 give

lim
n→∞

‖fnχEn‖Y ≤ lim
n→∞

sup
‖h‖X≤1

‖hχEn‖Y = 0.

Moreover,

‖fnχEcn‖Y ≤ ‖εg‖Y = ε‖g‖Y ≤ ε.

Altogether, we have

lim sup
n→∞

‖fn‖Y ≤ ε,

which holds for every ε > 0. So, limn→∞ ‖fn‖Y = 0.
Conversely, suppose that for every sequence (fn)

∞
n=1 of µ-measurable functions on R satisfying

‖fn‖X ≤ 1 and fn → 0 µ-a.e., it holds ‖fn‖Y → 0. Let (En)
∞
n=1 be a sequence of subsets of R

satisfying En → ∅ µ-a.e. Then we can find a sequence of functions (fn)
∞
n=1 such that ‖fn‖X ≤ 1

and

‖fnχEn‖Y +
1

n
> sup

‖f‖X≤1
‖fχEn‖Y .

Because En → ∅ µ-a.e., we have fnχEn → 0 µ-a.e. Due to the assumption, ‖fnχEn‖Y → 0.
Thus

lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y ≤ lim
n→∞

(

‖fnχEn‖Y +
1

n

)

= 0.

�

In the following two theorems we will show that an almost compact embedding is in general
stronger then a regular embedding but weaker then a compact one.

Theorem 3.4. Suppose that (R,µ) is a totally σ-finite measure space and X and Y are Banach

function spaces over (R,µ) satisfying X
∗→֒ Y . Then X →֒ Y .

Proof. Let (fn)
∞
n=1 be a sequence in X such that ‖fn − f‖X → 0 for some f ∈ X. To get a

contradiction, assume that ‖fn−f‖Y 6→ 0. Then we can find ε > 0 and a subsequence (gk)
∞
k=1 of

(fn)
∞
n=1 satisfying ‖gk − f‖Y ≥ ε for every k ∈ N. Because gk → f in X, there is a subsequence

(hl)
∞
l=1 of (gk)

∞
k=1 such that hl → f µ-a.e. Using that X

∗→֒ Y , by Theorem 3.3 we obtain
‖hl − f‖Y → 0, which gives a contradiction. So, X →֒ Y . �

Theorem 3.5. Suppose that (R,µ) is a totally σ-finite measure space and X and Y are Banach

function spaces over (R,µ) satisfying X →֒→֒ Y . Then X
∗→֒ Y .

Proof. Let (fn)
∞
n=1 be a sequence in X such that ‖fn‖X ≤ 1 for every n ∈ N and fn → 0

µ-a.e. To get a contradiction, assume that ‖fn‖Y 6→ 0. Then there is ε > 0 and a subsequence
(gk)

∞
k=1 of (fn)

∞
n=1 satisfying ‖gk‖Y ≥ ε for every k ∈ N. Because (gk)

∞
k=1 is bounded in X and

X →֒→֒ Y , we can find a subsequence (hl)
∞
l=1 of (gk)

∞
k=1 such that (hl)

∞
l=1 is convergent in Y .
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But hl → 0 µ-a.e., so the limit must be 0. So, ‖hl‖Y → 0, which contradicts the assumption.

Thus, X
∗→֒ Y . �

The following theorem shows, in fact, that in the cases that might be of a possible interest, a
Banach function space cannot be almost-compactly embedded into itself.

Theorem 3.6. We say that a totally σ-finite measure space (R,µ) has the property (∗) if there
exists a sequence (En)

∞
n=1 of µ-measurable subsets of R such that En ↓ ∅ µ-a.e. and µ(En) > 0

for every n ∈ N.
(i) Assume that the measure space (R,µ) has the property (∗). Let X be a Banach function

space over (R,µ). Then X 6 ∗→֒ X.
(ii) Conversely, assume that (R,µ) does not have this property. Then all Banach function

spaces over (R,µ) coincide, and, moreover, X
∗→֒ X holds for each Banach function space X.

Proof. We start with proving the assertion (ii). We first observe that in the definition of
an almost-compact embedding, it is enough to consider only those sequences En ↓ ∅ µ-a.e.,
for which µ(En) > 0 (n = 1, 2, . . . ). Indeed, for Banach function spaces X and Y , the condition

lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y = 0

trivially holds if µ(En) = 0 for some n ∈ N (then µ(Em) = 0 for every m ≥ n, thus also
fχEm = 0 µ-a.e. and ‖fχEm‖Y = 0 whenever m ≥ n and f ∈ X).

Assume that (R,µ) does not have the property (∗). Then for every pair of Banach function

spaces X and Y , we have X
∗→֒ Y and also Y

∗→֒ X. So, by Theorem 3.4, X →֒ Y and Y →֒ X,

i.e. X and Y coincide and X
∗→֒ X. This shows (ii).

As for the statement (i), suppose that (R,µ) has the property (∗). To get a contradiction,

assume that X
∗→֒ X holds for some Banach function space X. Let (En)

∞
n=1 be the sequence

of subsets of R satisfying µ(En) > 0 for every n ∈ N and En ↓ ∅ µ-a.e. Consider a sequence
(fn)

∞
n=1 of functions in X defined by fn = 1

‖χEn‖X
χEn . Then, for every n ∈ N, we have

sup
‖f‖X≤1

‖fχEn‖X ≥ ‖fn‖X = 1,

which contradicts the assumption X
∗→֒ X. �

The condition from Theorem 3.3 is often used as a crucial step in proofs of compact em-
beddings, for example of Sobolev spaces (cf. [4, Section 9] or [3]). For that matter, so is the
almost-compactness, hence their equivalence is very reasonable. Let us now present a result that
illustrates the importance of almost-compact embeddings.

Theorem 3.7. Let d ∈ N and let Ω be a nonempty open subset of R
d. Suppose that X, Y , Z

are Banach function spaces over (Ω, λ), where λ denotes the n-dimensional Lebesgue measure.

Moreover, assume that W 1X →֒ Y and Y
∗→֒ Z. Then W 1X →֒→֒ Z.

Proof. Whenever x ∈ Ω, we can find a ball Bx centered in x such that Bx ⊆ Ω. For x ∈ Ω,
consider also a ball B̃x with center x and with radius equal to one half of the radius of Bx.
Then the set {B̃x : x ∈ Ω} forms an open covering of Ω. Because Ω is separable, we can find

a sequence (xn)
∞
n=1 of points in Ω such that {B̃n = B̃xn : n ∈ N} covers Ω. Furthermore, we

denote Bn = Bxn (n = 1, 2, . . . ).
Let (gk)

∞
k=1 be a bounded sequence in W 1X = W 1X(Ω). By induction, for every n ∈ N

we will find a subsequence (gnk )∞k=1 of the sequence (gn−1
k )∞k=1 (here we formally put g0

k = gk)

converging µ-a.e. on B̃n. Then, the diagonal sequence (gnn)∞n=1 will converge µ-a.e. to some

function g on the entire Ω (because {B̃n : n ∈ N} forms a covering of Ω).
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Fix n ∈ N and suppose that we already know the sequence (gn−1
k )∞k=1. Then (gn−1

k )∞k=1 is

bounded in W 1X(Bn) and (by property (P5) of Banach function spaces) also in W 1,1(Bn).
Consider a function ψ defined on Rd by

ψ(x) =

{

exp(− 1
1−|x|2 ), |x| < 1;

0, |x| ≥ 1.

Denote by ψn the function satisfying ψn(x) = ψ((x− xn)/rn) for x ∈ R
d (rn denotes the radius

of B̃n). Then ψn is a C∞-function on R
d and ψn(x) 6= 0 if and only if x ∈ B̃n. Define a sequence

(unk)
∞
k=1 by unk(x) = gn−1

k (x)ψn(x), x ∈ Bn. The sequence (unk)
∞
k=1 is bounded in W 1,1

0 (Bn), so

we can extend it by 0 out of Bn and consider (unk)
∞
k=1 to be bounded in W 1,1(Rd). Thus, there is

a subsequence (unkl)
∞
l=1 which converges µ-a.e. to some function un (see [4, Lemma 9.2]). We will

denote by (gnk )∞k=1 the sequence (gn−1
kl

)∞l=1. Because ψn(x) 6= 0 for x ∈ B̃n, we have gnk → un/ψn

µ-a.e. on B̃n, as required.
By the assumption, (gnn)∞n=1 is bounded in Y . Hence, by the Fatou lemma,

‖g‖Y ≤ lim inf
n→∞

‖gnn‖Y <∞,

so g ∈ Y . By assumption Y
∗→֒ Z and by Theorem 3.3, ‖gnn − g‖Z → 0, i.e. gnn → g in Z. Thus,

W 1X →֒→֒ Z. �

4. The product operator

In the first half of this section we observe that the fact that a rearrangement-invariant Banach
function space does not coincide with either of L1, L∞, can be characterized by its fundamental
function and also by the almost-compact embedding. We shall finish the section with a charac-
terization of an almost-compact embedding by some properties of a certain product operator.

Definition 4.1. Suppose that (R,µ) is a measure space. Then we define the product operator
P : M×M → M by

P (f, g) = f · g.
Theorem 4.2. Let (R,µ) be a nonatomic measure space satisfying 0 < µ(R) < ∞ and let X
be a rearrangement-invariant Banach function space over (R,µ). Denote by ϕ the fundamental
function of X. Then the following statements are equivalent:
(i) X 6= L1;
(ii) limt→0+

t
ϕ(t) = 0;

(iii) X
∗→֒ L1.

Proof. (i) ⇒ (ii) Suppose X 6= L1. Then there exists a function f ∈ L1 \X. We may suppose
that f is nonnegative (otherwise we may consider the function |f | which is nonnegative and
belongs to L1 \ X) and ‖f‖L1 = 1. (Because f does not belong to X it cannot be equal to
0 µ-a.e., so it has a positive norm in L1. If this norm is different from 1 we may consider
the function ‖f‖−1

L1 f instead of f .) Let (un)
∞
n=1 be a sequence of nonnegative nontrivial simple

functions satisfying un ↑ f . Then un ∈ X for every n ∈ N, ‖un‖X ↑ ∞ and ‖un‖L1 ≤ ‖f‖L1 = 1.
Thus

lim
n→∞

‖un‖X
‖un‖L1

≥ lim
n→∞

‖un‖X = ∞.

Choose K > 0 arbitrarily. Then we can find n ∈ N such that ‖un‖X ≥ K‖un‖L1 . Suppose

un =
k
∑

i=1

aiχAi ,
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where Ai are pairwise disjoint subsets of R and ai are different positive constants. By the
triangle inequality, we have

‖un‖X ≤
k
∑

i=1

ai‖χAi‖X ,

moreover

‖un‖L1 =

k
∑

i=1

ai‖χAi‖L1 .

Now we use ‖un‖X ≥ K‖un‖L1 to get the following inequality

k
∑

i=1

ai‖χAi‖X ≥ K

k
∑

i=1

ai‖χAi‖L1 .

There must exist i ∈ {1, 2, . . . , k} such that ai‖χAi‖X ≥ Kai‖χAi‖L1 , i.e.
‖χAi‖X
‖χAi‖L1

≥ K. Denote

by t the measure of Ai. It holds ϕ(t) = ‖χAi‖X and t = ‖χAi‖L1 . So, for an arbitrary K > 0

we have found t > 0 such that ϕ(t)
t ≥ K. Together with the fact that ϕ(t)

t is nonincreasing, it

implies limt→0+

ϕ(t)
t = ∞, in other words limt→0+

t
ϕ(t) = 0.

(ii) ⇒ (iii) Fix an arbitrary sequence (En)
∞
n=1 of subsets of R with En ↓ ∅ µ-a.e. Moreover,

suppose that µ(En) > 0 for every n ∈ N (in the proof of Theorem 3.6, we observed that it is
enough to consider only sequences of this type). We will show that for every n ∈ N

(4.1) sup
‖f‖X≤1

‖fχEn‖L1
≤ µ(En)

ϕ(µ(En))
.

Indeed, using the Hölder inequality and (2.1), we get

‖fχEn‖L1
=

∫

R
|fχEn | dµ ≤ ‖f‖X‖χEn‖X′ =

µ(En)

ϕ(µ(En))
‖f‖X

for every n ∈ N and f ∈ X, which implies (4.1). Because µ(R) < ∞ and E1 ⊇ E2 ⊇ . . . , it
holds that µ(En) → µ(

⋂∞
n=1En) = 0. Thus, by (ii),

lim
n→∞

sup
‖f‖X≤1

‖fχEn‖L1
≤ lim

n→∞

µ(En)

ϕ(µ(En))
= 0.

So we have proved that X
∗→֒ L1.

(iii) ⇒ (i) It follows from Theorem 3.6 that L1 ∗→֒ L1 cannot be true. �

Near the other endpoint space, L∞, we have an analogous result.

Theorem 4.3. Let (R,µ) be a nonatomic measure space satisfying 0 < µ(R) < ∞ and let X
be a rearrangement-invariant Banach function space over (R,µ). Denote by ϕ the fundamental
function of X. Then the following statements are equivalent:
(i) X 6= L∞;
(ii) limt→0+

ϕ(t) = 0;

(iii) L∞ ∗→֒ X.

Proof. Denote by ψ the fundamental function of the associate space X ′. Then ψ(t) = t
ϕ(t)

for every t ∈ (0, µ(R)]. This gives limt→0+
ϕ(t) = 0 if and only if limt→0+

t
ψ(t) = 0. Because

(L∞)′ = L1 we have X 6= L∞ if and only if X ′ 6= L1 and (by Theorem 3.2) L∞ ∗→֒ X if and only

if X ′ ∗→֒ L1. The assertion thus follows from Theorem 4.2. �
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Lemma 4.4. Suppose that (R,µ) is a nonatomic measure space with 0 < µ(R) <∞ and X and
Y are Banach function spaces over (R,µ). Then the following two statements are equivalent:

X
∗→֒ Y ;(i)

lim
t→0+

sup
‖f‖X≤1

sup
µ(E)≤t

‖fχE‖Y = 0.(ii)

Proof. (i) ⇒ (ii) Consider a function H defined by

H(t) = sup
‖f‖X≤1

sup
µ(E)≤t

‖fχE‖Y , t ∈ (0, µ(R)].

Clearly, H is nondecreasing on (0, µ(R)]. Thus, it will be enough to prove

(4.2) lim
n→∞

sup
‖f‖X≤1

sup
µ(E)≤an

‖fχE‖Y = 0

for some sequence (an)
∞
n=1 satisfying an ↓ 0. We will choose the sequence an = 1/n2. Observe

that
∑∞

n=1 an < ∞. For every n ∈ N we can find fn ∈ X, En ⊆ R such that ‖fn‖X ≤ 1,
µ(En) ≤ an and

(4.3) sup
‖f‖X≤1

sup
µ(E)≤an

‖fχE‖Y < ‖fnχEn‖Y +
1

n
.

Denote Fn =
⋃∞
k=nEk. Then F1 ⊇ F2 ⊇ . . . and

µ(
∞
⋂

n=1

Fn) = lim
n→∞

µ(Fn) ≤ lim
n→∞

∞
∑

k=n

µ(Ek) = lim
n→∞

∞
∑

k=n

ak = 0.

This implies Fn ↓ ∅ µ-a.e. Because En ⊆ Fn for every n ∈ N and X
∗→֒ Y , we have

lim
n→∞

‖fnχEn‖Y ≤ lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y ≤ lim
n→∞

sup
‖f‖X≤1

‖fχFn‖Y = 0.

Using the inequality (4.3), we obtain (4.2).
(ii) ⇒ (i) Choose an arbitrary sequence (En)

∞
n=1 of subsets of R such that En ↓ ∅ µ-a.e.

Because µ(R) <∞ we have

lim
n→∞

µ(En) = µ(

∞
⋂

n=1

En) = 0.

Thus

lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y ≤ lim
n→∞

sup
‖f‖X≤1

sup
µ(E)=µ(En)

‖fχE‖Y = 0,

so X
∗→֒ Y . �

The following simple but useful lemma shows that the set inclusion P (X × Y ) ⊆ Z already
implies the norm boundedness P : X × Y → Z. Both the result and the proof are modeled
upon [2, Chapter 1, Theorem 1.8].

Lemma 4.5. Let X, Y , Z be Banach function spaces over a measure space (R,µ). Suppose
that P (X × Y ) ⊆ Z. Then there exists K > 0 such that

(4.4) ‖fg‖Z ≤ K‖f‖X‖g‖Y ,
whenever f ∈ X, g ∈ Y .
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Proof. Suppose that (4.4) fails. Then for every n ∈ N we can find f̃n ∈ X, g̃n ∈ Y such that

‖f̃ng̃n‖Z > n5‖f̃n‖X‖g̃n‖Y .
In particular, we have ‖f̃ng̃n‖Z > 0, so f̃ng̃n 6= 0, and thus ‖f̃n‖X > 0, ‖g̃n‖Y > 0. Dividing the

previous inequality by ‖f̃n‖X‖g̃n‖Y , we get
∥

∥

∥

∥

∥

|f̃n|
‖f̃n‖X

|g̃n|
‖g̃n‖Y

∥

∥

∥

∥

∥

Z

=

∥

∥

∥

∥

∥

f̃n

‖f̃n‖X
g̃n

‖g̃n‖Y

∥

∥

∥

∥

∥

Z

> n5.

Denote fn = |f̃n|

‖f̃n‖X
, gn = |g̃n|

‖g̃n‖Y
. Then fn ≥ 0, gn ≥ 0, ‖fn‖X = ‖gn‖Y = 1, ‖fngn‖Z > n5.

Consider the functions

f =
∞
∑

n=1

fn
n2
, g =

∞
∑

n=1

gn
n2
.

We have

‖f‖X = lim
n→∞

∥

∥

∥

∥

∥

n
∑

k=1

fk
k2

∥

∥

∥

∥

∥

X

≤ lim
n→∞

n
∑

k=1

‖fk‖X
k2

=

∞
∑

k=1

1

k2
<∞,

so f ∈ X. Analogously we obtain g ∈ Y . Moreover, 0 ≤ fn
n2 ≤ f and 0 ≤ gn

n2 ≤ g for every n ∈ N.
Multiplying these two inequalities, we get

0 ≤ fngn
n4

≤ fg,

which gives

‖fg‖Z ≥ ‖fngn‖Z
n4

> n

for every n ∈ N. This means ‖fg‖Z = ∞, i.e. fg /∈ Z, which contradicts the assumption
P (X × Y ) ⊆ Z. �

The following theorem is the main result of this section.

Theorem 4.6. Suppose that (R,µ) is a nonatomic measure space with 0 < µ(R) < ∞ and X
and Y are Banach function spaces over (R,µ). Then the following two conditions are equivalent.

(i) X
∗→֒ Y ;

(ii) there exists a rearrangement-invariant Banach function space Z over (R,µ) such that Z 6= L1

and P (X × Y ′) ⊆ Z.

Proof. (i) ⇒ (ii) We will find a quasiconcave function ϕ such that limt→0+

t
ϕ(t) = 0 and ‖fg‖Mϕ ≤

‖f‖X‖g‖Y ′ , whenever f ∈ X, g ∈ Y ′. Once this is done, Mϕ will be a rearrangement-invariant
Banach function space different from L1 (Theorem 4.2) satisfying P : X × Y ′ → Mϕ, so the
proof will be complete.

Let f ∈ X, g ∈ Y ′. Let us recall that

‖fg‖Mϕ = sup
t∈(0,µ(R))

ϕ(t)

t

∫ t

0
(fg)∗(s) ds.

Fix t ∈ (0, µ(R)). Then (see e.g. [2, Chapter 2, Lemma 2.5]) there exists Et ⊆ R with µ(Et) = t
such that

∫ t

0
(fg)∗(s) ds =

∫

Et

|fg| dµ.

Due to Hölder inequality,
∫

Et

|fg| dµ ≤ ‖fχEt‖Y ‖g‖Y ′ ,
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and because
∥

∥

∥

∥

f

‖f‖X
χEt

∥

∥

∥

∥

Y

≤ sup
‖h‖X≤1

sup
µ(E)≤t

‖hχE‖Y ,

we also get
‖fχEt‖Y ‖g‖Y ′ ≤ ‖f‖X‖g‖Y ′ sup

‖h‖X≤1
sup

µ(E)≤t
‖hχE‖Y .

Define the function H by
H(t) = sup

‖h‖X≤1
sup

µ(E)≤t
‖hχE‖Y ,

t ∈ (0, µ(R)). Because X
∗→֒ Y , we have in particular X →֒ Y , so there exists a constant C > 0

such that ‖h‖Y ≤ C‖h‖X for every h ∈ X. Using that ‖hχE‖Y ≤ ‖h‖Y holds for every h ∈ Y (in
particular, for h ∈ X) and E ⊆ R, we observe that the function H is bounded by the constant
C. Moreover, due to Lemma 4.4, limt→0+

H(t) = 0. Our goal is to find a function ψ such that
ψ is a nondecreasing concave majorant of H and limt→0+

ψ(t) = 0.
First, observe that the constant function C is a nondecreasing concave majorant of H. Now

consider all nondecreasing concave majorants of H and denote by ψ its pointwise infimum. Then
ψ is itself a nondecreasing concave majorant of H, so it remains to prove that limt→0+

ψ(t) = 0.

Choose ε ∈ (0, 2C). Because limt→0+
H(t) = 0, there exists δ̃ > 0 such that H(t) < ε

2 for

t ∈ (0, δ̃). From this it follows that the function F (t) = ε/2 + t(C − ε/2)/δ̃ is a nondecreasing
concave majorant of H, so ψ(t) ≤ F (t) on (0, µ(R)). But we can find δ > 0 (namely, δ =

εδ̃/(2C−ε)) such that F (t) < ε for t ∈ (0, δ), therefore ψ(t) < ε on (0, δ), which gives the result.
Now we are in a position to define the function ϕ. So, put ϕ(t) = t

ψ(t) , t ∈ (0, µ(R)). Then ϕ

is quasiconcave and limt→0+

t
ϕ(t) = limt→0+

ψ(t) = 0. Moreover, for f ∈ X, g ∈ Y ′ we have

‖fg‖Mϕ = sup
t∈(0,µ(R))

ϕ(t)

t

∫ t

0
(fg)∗(s) ds ≤ ‖f‖X‖g‖Y ′ sup

t∈(0,µ(R))

ϕ(t)

t
H(t)

≤ ‖f‖X‖g‖Y ′ sup
t∈(0,µ(R))

ϕ(t)

t
ψ(t) = ‖f‖X‖g‖Y ′ ,

which completes the proof.
(ii) ⇒ (i) Choose an arbitrary sequence (En)

∞
n=1 of subsets of R satisfying En ↓ ∅ µ-a.e. We

have

sup
‖f‖X≤1

‖fχEn‖Y = sup
‖f‖X≤1

sup
‖g‖Y ′≤1

∫

R
|fgχEn | dµ.

Due to Lemma 4.5, there exists a constant K > 0 such that ‖fg‖Z ≤ K‖f‖X‖g‖Y ′ for every
f ∈ X, g ∈ Y ′. Thus, if ‖f‖X ≤ 1 and ‖g‖Y ′ ≤ 1 then ‖fg‖Z ≤ K, which implies

sup
‖f‖X≤1

sup
‖g‖Y ′≤1

∫

R
|fgχEn | dµ ≤ sup

‖h‖Z≤K

∫

R
|hχEn | dµ = sup

‖h‖Z≤K
K

∫

R

∣

∣

∣

∣

h

K
χEn

∣

∣

∣

∣

dµ

= K sup
‖h‖Z≤1

∫

R
|hχEn | dµ.

According to Theorem 4.2, Z
∗→֒ L1, so

lim
n→∞

sup
‖f‖X≤1

‖fχEn‖Y ≤ K lim
n→∞

sup
‖h‖Z≤1

∫

R
|hχEn | dµ = 0,

i.e. X
∗→֒ Y . �

Our next example illustrates that the restriction to rearrangement-invariant spaces in Theo-
rem 4.6 is indispensable.
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Example 4.7. Suppose that (R,µ) is a nonatomic measure space with 0 < µ(R) < ∞ and X
and Y are Banach function spaces over (R,µ). We will show that if a Banach function space
Z 6= L1 is not rearrangement-invariant, then the condition P (X × Y ′) ⊆ Z does not necessarily

imply X
∗→֒ Y . To do this, it is enough to find a Banach function space Z 6= L1 such that it

does not hold Z
∗→֒ L1 (recall that this is impossible if Z is rearrangement-invariant). Having

such a space Z, we set X = Z, Y = L1, so Y ′ = L∞. Suppose that f ∈ Z, g ∈ L∞. There must
exist a positive constant K such that |g| ≤ K a.e. Then ‖fg‖Z ≤ K‖f‖Z < ∞, so fg ∈ Z.

Thus, we have P (X × Y ′) = P (Z × L∞) ⊆ Z 6= L1, but X
∗→֒ Y is not true, as required.

Consider the measure space ((0, 1), λ). For a measurable function f , define

‖f‖Z = ‖fχ(0, 1
2
)‖L∞ + ‖fχ[ 1

2
,1)‖L1 .

Using the facts that L∞((0, 1
2), λ) and L1([12 , 1), λ) are Banach function spaces, it is easy to see

that Z is a Banach function space as well. We have Z 6= L1, because the function f(t) = 1/
√
t

belongs to L1 but not to Z. Set En = (1 − 1/n, 1) and fn = nχEn (n ∈ N). Then En ↓ ∅ and,
‖fn‖Z = 1 for n > 1. Thus

sup
‖f‖Z≤1

‖fχEn‖L1 ≥ ‖fnχEn‖L1 = 1, (n > 1)

so Z
∗→֒ L1 does not hold.

5. Almost-compact embeddings and the fundamental function

In this section we shall present an important necessary condition for an almost-compact
embedding between two rearrangement-invariant spaces in terms of their fundamental functions.

Lemma 5.1. Suppose that (R,µ) is a nonatomic measure space satisfying 0 < µ(R) < ∞ and
let X and Y be rearrangement-invariant Banach function spaces over (R,µ). Let S denote the
set of nonnegative nonzero simple functions on R. Then the following conditions are equivalent.

X
∗→֒ Y ;(i)

lim
t→0+

sup
‖f‖X≤1

‖f∗χ[0,t)‖Ȳ = 0;(ii)

lim
t→0+

sup
u∈S

‖u∗χ[0,t)‖Ȳ
‖u∗χ[0,t)‖X̄

= 0.(iii)

Proof. (i) ⇔ (ii) Due to Lemma 4.4, X
∗→֒ Y is equivalent to

lim
t→0+

sup
‖f‖X≤1

sup
µ(E)≤t

‖fχE‖Y = 0.

Thus it is sufficient to show that, for every f ∈ X and for every t ∈ (0, µ(R)),

sup
µ(E)≤t

‖fχE‖Y = ‖f∗χ[0,t)‖Ȳ .

Fix f ∈ X and t ∈ (0, µ(R)). Whenever E is a measurable subset of R with µ(E) ≤ t, we have

‖fχE‖Y = ‖(fχE)∗‖Ȳ = ‖(fχE)∗χ[0,t)‖Ȳ ≤ ‖f∗χ[0,t)‖Ȳ ,
and therefore

sup
µ(E)≤t

‖fχE‖Y ≤ ‖f∗χ[0,t)‖Ȳ .
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For f ∈ X and t ∈ (0, µ(R)), we can find a measurable set F ⊆ R with µ(F ) = t such that
f∗χ[0,t) = (fχF )∗ (this follows from the proof of [2, Chapter 2, Lemma 2.5]). Thus, we can write

sup
µ(E)≤t

‖fχE‖Y = sup
µ(E)≤t

‖(fχE)∗‖Ȳ ≥ ‖(fχF )∗‖Ȳ = ‖f∗χ[0,t)‖Ȳ ,

which gives the reverse inequality.
(ii) ⇔ (iii) We will show that for every t ∈ (0, µ(R))

sup
‖f‖X≤1

‖f∗χ[0,t)‖Ȳ = sup
u∈S

‖u∗χ[0,t)‖Ȳ
‖u∗χ[0,t)‖X̄

,

which is obviously enough for the proof.
Suppose that f ∈ X, ‖f‖X ≤ 1. Then we have

f∗χ[0,t) ≤
f∗

‖f‖X
χ[0,t) =

(

f

‖f‖X

)∗

χ[0,t),

which gives

‖f∗χ[0,t)‖Ȳ ≤
∥

∥

∥

∥

(

f

‖f‖X

)∗

χ[0,t)

∥

∥

∥

∥

Ȳ

≤ sup
‖g‖X=1

‖g∗χ[0,t)‖Ȳ ,

so

sup
‖f‖X≤1

‖f∗χ[0,t)‖Ȳ ≤ sup
‖f‖X=1

‖f∗χ[0,t)‖Ȳ .

The reverse inequality is obvious, thus

sup
‖f‖X≤1

‖f∗χ[0,t)‖Ȳ = sup
‖f‖X=1

‖f∗χ[0,t)‖Ȳ .

Furthermore,

sup
‖f‖X=1

‖f∗χ[0,t)‖Ȳ = sup
06=f∈X

∥

∥

∥

∥

(

f

‖f‖X

)∗

χ[0,t)

∥

∥

∥

∥

Ȳ

= sup
06=f∈X

‖f∗χ[0,t)‖Ȳ
‖f‖X

= sup
06=f∈X

‖f∗χ[0,t)‖Ȳ
‖f∗‖X̄

.

We need to show that

sup
06=f∈X

‖f∗χ[0,t)‖Ȳ
‖f∗‖X̄

= sup
06=f∈X

‖f∗χ[0,t)‖Ȳ
‖f∗χ[0,t)‖X̄

.

Because ‖f∗‖X̄ ≥ ‖f∗χ[0,t)‖X̄ , it must be

sup
06=f∈X

‖f∗χ[0,t)‖Ȳ
‖f∗‖X̄

≤ sup
06=f∈X

‖f∗χ[0,t)‖Ȳ
‖f∗χ[0,t)‖X̄

.

On the other hand, whenever f ∈ X, f 6= 0, we can find a measurable set F such that µ(F ) = t
and f∗χ[0,t) = (fχF )∗ = (fχF )∗χ[0,t). Then

‖f∗χ[0,t)‖Ȳ
‖f∗χ[0,t)‖X̄

=
‖(fχF )∗χ[0,t)‖Ȳ
‖(fχF )∗‖X̄

≤ sup
06=g∈X

‖g∗χ[0,t)‖Ȳ
‖g∗‖X̄

,

which gives the reverse inequality.
Finally, we observe that the supremum can be taken over the (smaller) set S instead of X\{0}.

Indeed, for every f ∈ X, f 6= 0, we can find a sequence (un)
∞
n=1 with un ∈ S, (n ∈ N), and

un ↑ |f |. This implies u∗nχ[0,t) ↑ f∗χ[0,t), and thus

lim
n→∞

‖u∗nχ[0,t)‖Ȳ
‖u∗nχ[0,t)‖X̄

=
‖f∗χ[0,t)‖Ȳ
‖f∗χ[0,t)‖X̄

,

which gives the result. �

Now we are in a position to state and prove our main result of this section.
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Theorem 5.2. If (R,µ) is a nonatomic measure space satisfying 0 < µ(R) < ∞ and X and Y

are rearrangement-invariant Banach function spaces over (R,µ) such that X
∗→֒ Y , then

lim
t→0+

ϕY (t)

ϕX(t)
= 0,

where ϕX , ϕY are fundamental functions of X, Y respectively.

Proof. The function f = 1 on R belongs to S defined in the Lemma 5.1. Thus, for t ∈ (0, µ(R)],

ϕY (t)

ϕX(t)
=

‖f∗χ[0,t)‖Y
‖f∗χ[0,t)‖X

≤ sup
u∈S

‖u∗χ[0,t)‖Y
‖u∗χ[0,t)‖X

.

According to the lemma, we have

lim
t→0+

ϕY (t)

ϕX(t)
= 0.

�

Corollary 5.3. Let (R,µ) be a nonatomic measure space satisfying 0 < µ(R) <∞ and let ϕ be

a positive nondecreasing concave function on (0, µ(R)). Then it does not hold that Λϕ
∗→֒Mϕ.

Proof. Λϕ and Mϕ have the same fundamental function ϕ so the necessary condition for almost
compact embedding from Theorem 5.2 cannot hold. �

Our next example shows that the necessary condition from Theorem 5.2 is not sufficient for
an almost-compact embedding.

Example 5.4. Suppose that X, Y are rearrangement-invariant Banach function spaces with

fundamental functions ϕX , ϕY , respectively. We will show that the condition limt→0+

ϕY (t)
ϕX(t) = 0

does not imply X →֒ Y . In particular, it does not imply X
∗→֒ Y .

Let p ∈ (1,∞). Denote by p′ the conjugate index satisfying 1
p + 1

p′ = 1. We will consider for

X the Marcinkiewicz space Lp,∞ and for Y the Lorentz-Zygmund space Lp,1;−1 over ((0, 1), λ),
consisting of all measurable functions f such that

‖f‖p,∞ = sup
t∈(0,1)

f∗(t)t
1

p <∞

and

‖f‖p,1;−1 =

∫ 1

0

f∗(s)s
1

p
−1

e− log s
ds =

∫ 1

0

f∗(s)

s
1

p′ (e− log s)
ds <∞,

respectively. We note that the functionals ‖·‖p,∞ and ‖·‖p,1;−1 are equivalent to rearrangement-
invariant Banach function norms.

Then it follows from [1, Theorem 9.3] that Lp,∞ 6 →֒ Lp,1;−1. Moreover, if we denote by ϕ
the fundamental function of Lp,∞ and by ψ the fundamental function of Lp,1;−1, then, for every
t ∈ (0, 1), we have

ϕ(t) = sup
s∈(0,1)

χ(0,t)(s)s
1

p = t
1

p ,

while

ψ(t) =

∫ t

0

1

s
1

p′ (e− log s)
ds.

Because

lim
t→0+

ϕ(t) = lim
t→0+

ψ(t) = 0,
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we can use the L’Hospital rule to get

lim
t→0+

ψ(t)

ϕ(t)
= lim

t→0+

ψ′(t)

ϕ′(t)
= lim

t→0+

p

e− log t
= 0.

Example 5.5. Let (R,µ) be a nonatomic measure space such that µ(R) = 1. Recall that for
every Young’s function Φ and every f ∈ LΦ = LΦ(R,µ), we have

‖f‖LΦ = inf{k−1 :

∫

R
Φ(k|f(x)|) dx ≤ 1} = inf{k−1 :

∫ 1

0
Φ(kf∗(x)) dx ≤ 1} = ‖f∗‖L̄Φ .

Moreover, for f ∈ LΦ, t ∈ (0, 1) and λ > 0, we have ‖f∗χ[0,t)‖L̄Φ ≤ 1/λ if and only if
∫ t
0 Φ(λf∗(x)) dx ≤ 1.

Suppose that A, B are Young’s functions. We will consider Orlicz spaces LA = LA(R,µ),

LB = LB(R,µ). Our goal is to show that LA
∗→֒ LB if and only if for every λ > 0,

(5.1) lim
t→∞

B(λt)

A(t)
= 0.

Note that a necessary and sufficient condition for LA →֒ LB to be true is that there exists C > 0
such that B(t) ≤ A(Ct) for every t > 0, while LA →֒→֒ LB never holds because L∞ 6 →֒→֒ L1.

It follows from the proof of Lemma 5.1 that the condition LA
∗→֒ LB is equivalent to

lim
t→0+

sup
06=f∈LA

‖f∗χ[0,t)‖L̄B
‖f∗χ[0,t)‖L̄A

= 0.

Furthermore, for t ∈ (0, 1), we have

sup
06=f∈LA

‖f∗χ[0,t)‖L̄B
‖f∗χ[0,t)‖L̄A

= sup{‖f∗χ[0,t)‖L̄B : ‖f∗χ[0,t)‖L̄A = 1}

= sup{‖f∗χ[0,t)‖L̄B : ‖f∗χ[0,t)‖L̄A ≤ 1}.

So, LA
∗→֒ LB holds if and only if for every λ > 0 there exists δ > 0 such that the condition

∫ δ
0 A(f∗(x)) dx ≤ 1 implies

∫ δ
0 B(λf∗(x)) dx ≤ 1 (we are using the fact that the expression

sup{‖f∗χ[0,t)‖L̄B : ‖f∗χ[0,t)‖L̄A ≤ 1} increases with t).

Assume that LA
∗→֒ LB . We claim that, for every λ > 0, there is t0 > 0 such that B(λt) ≤ A(t)

for t ≥ t0. Suppose that this is not true. Then we can find λ > 0 and a sequence tn → ∞
satisfying B(λtn) > A(tn) for every n ∈ N. For this λ > 0, choose δ > 0 as above. Because
limt→∞A(t) = ∞, there is m ∈ N such that 1/A(tm) < δ. Denote δ0 = 1/A(tm). Since (R,µ)
is nonatomic, we can find a set F ⊆ R with µ(F ) = δ0. The function f = tmχF satisfies
∫ δ
0 A(f∗(x)) dx = δ0A(tm) = 1 but

∫ δ
0 B(λf∗(x)) dx = δ0B(λtm) > δ0A(tm) = 1, which gives a

contradiction.
Because B is convex and B(0) = 0, we have for every k ∈ N and t ∈ [0,∞)

B(t) = B

(

1

k
· kt+

k − 1

k
· 0
)

≤ 1

k
· B(kt) +

k − 1

k
·B(0) =

1

k
· B(kt).

Fix λ > 0. Then for every k ∈ N there is tk > 0 such that B(kλt) ≤ A(t), t ≥ tk. Thus

B(λt)

A(t)
≤ 1

k
· B(kλt)

A(t)
≤ 1

k
, (t ≥ tk),

which gives (5.1), as required.
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Now assume that (5.1) holds for every λ > 0. Choose λ > 0 arbitrarily. Then we can find
t0 > 0 such that B(λt) ≤ 1/2 ·A(t), whenever t ≥ t0. Set δ = 1/(2B(λt0)). Let f be an arbitrary
µ-measurable function on R. Denote a = min(µ{x ∈ R : |f(x)| ≥ t0}, δ). We have
∫ δ

0
B(λf∗(x)) dx =

∫ a

0
B(λf∗(x)) dx +

∫ δ

a
B(λf∗(x)) dx ≤ 1

2

∫ a

0
A(f∗(x)) dx +

∫ δ

a
B(λt0) dx

≤ 1

2

∫ δ

0
A(f∗(x)) dx+

∫ δ

0
B(λt0) dx ≤ 1,

whenever
∫ δ
0 A(f∗(x)) dx ≤ 1. Thus LA

∗→֒ LB.

Remark 5.6. Suppose that p ∈ [1,∞) and consider the Young function Φ(t) = tp. Then the
Orlicz space LΦ is exactly the Lebesgue space Lp. The characterization of almost compact
embedding between Orlicz spaces from the previous example together with Theorem 4.3 shows

that for 1 ≤ p, q ≤ ∞, Lp
∗→֒ Lq holds if and only if q < p. Note that Lp →֒ Lq if and only if

q ≤ p, while Lp →֒→֒ Lq is never true.

6. Almost-compact embeddings between spaces of type Λ and M

In this section we present a complete characterization of all possible mutual almost-compact
embeddings among the Lorentz and Marcinkiewicz endpoint spaces. We shall work for our
typographical convenience on the measure space ((0, 1), λ). This of course can be done with
no loss of generality and the results of this section can be easily extended to all non-atomic
finite-measure spaces.

Suppose that ϕ is a quasiconcave function on (0, 1). In the following text, ϕ̃ denotes the
quasiconcave function satisfying ϕ̃(t) = t

ϕ(t) for every t ∈ (0, 1).

Lemma 6.1. Let ϕ and ψ be quasiconcave functions on (0, 1). Suppose that there exist positive
constants C1, C2 such that

C1ϕ(t) ≤ ψ(t) ≤ C2ϕ(t)

for every t ∈ (0, 1). Then Mϕ = Mψ.

Proof. Assume that f ∈Mϕ. Then f ∈Mψ, because

‖f‖Mψ
= sup

t∈(0,1)
ψ(t)f∗∗(t) ≤ C2 sup

t∈(0,1)
ϕ(t)f∗∗(t) = C2‖f‖Mϕ <∞.

The converse embedding follows from symmetry. �

Lemma 6.2. Suppose that ϕ is a quasiconcave function on (0, 1). Let α be the least nonde-
creasing concave majorant of ϕ̃. Then M ′

ϕ = Λα.

Proof. The function α satisfies α(t)
2 ≤ t

ϕ(t) ≤ α(t) for t ∈ (0, 1). Thus also ϕ(t)
2 ≤ t

α(t) ≤ ϕ(t) on

(0, 1). Due to Lemma 6.1, Mϕ = Mα̃.
First, we will show that M ′

ϕ ⊆ Λα. This is equivalent to Λ′
α ⊆ M ′′

ϕ = Mϕ = Mα̃. But Λ′
α

has the fundamental function α̃ and Mα̃ is the largest rearrangement-invariant space with this
fundamental function, so Λ′

α ⊆Mα̃.
On the other hand, because Mϕ = Mα̃, we have M ′

ϕ = M ′
α̃. Using that M ′

α̃ has the fundamen-
tal function α and Λα is the smallest rearrangement-invariant space with fundamental function
α, we obtain Λα ⊆M ′

α̃ = M ′
ϕ. �

Lemma 6.3. Let ϕ and ψ be positive nondecreasing concave functions on (0, 1). Suppose that
there exist positive constants C1, C2 such that

(6.1) C1ϕ(t) ≤ ψ(t) ≤ C2ϕ(t)

for every t ∈ (0, 1). Then Λϕ = Λψ.
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Proof. According to Lemma 6.2, Λϕ = M ′
ϕ̃ and Λψ = M ′

ψ̃
. The assumption (6.1) gives

C1ψ̃(t) ≤ ϕ̃(t) ≤ C2ψ̃(t)

for every t ∈ (0, 1). So, due to Lemma 6.1, Mϕ̃ = Mψ̃, thus also Λϕ = M ′
ϕ̃ = M ′

ψ̃
= Λψ. �

Theorem 6.4. Suppose that ϕ and ψ are positive nondecreasing concave functions on (0, 1).
Then the following four statements are equivalent.

Λϕ
∗→֒ Λψ;(i)

Mϕ
∗→֒Mψ;(ii)

Λϕ
∗→֒Mψ;(iii)

lim
t→0+

ψ(t)

ϕ(t)
= 0.(iv)

Proof. According to Theorem 5.2, each of the conditions (i), (ii), (iii) implies (iv).
(iv) ⇒ (i) Due to Lemma 5.1, we only need to prove that

lim
t→0+

sup
u∈S

‖u∗χ(0,t)‖Λψ

‖u∗χ(0,t)‖Λϕ

= 0,

where S denotes the set of nonnegative nonzero simple functions on (0, 1).
Suppose that u ∈ S. Given t ∈ (0, 1), we have

u∗χ(0,t) =
n
∑

i=1

ciχ(0,ti),

where ci > 0, i = 1, 2, . . . , n and 0 < t1 < · · · < tn ≤ t. Because

ψ(ti)

ϕ(ti)
≤ sup

0<s≤t

ψ(s)

ϕ(s)
,

we have

‖u∗χ(0,t)‖Λψ

‖u∗χ(0,t)‖Λϕ

=

∑n
i=1 ciψ(ti)

∑n
i=1 ciϕ(ti)

≤
∑n

i=1 ciϕ(ti) sup0<s≤t
ψ(s)
ϕ(s)

∑n
i=1 ciϕ(ti)

= sup
0<s≤t

ψ(s)

ϕ(s)
.

Thus

lim
t→0+

sup
u∈S

‖u∗χ(0,t)‖Λψ

‖u∗χ(0,t)‖Λϕ

≤ lim
t→0+

sup
0<s≤t

ψ(s)

ϕ(s)
= 0.

(iv) ⇒ (ii) Denote by α, β the least nondecreasing concave majorant of ϕ̃, ψ̃, respectively.
Then

α(t)

β(t)
≤ 2

ϕ̃(t)

ψ̃(t)
= 2

ψ(t)

ϕ(t)

for every t ∈ (0, 1). The assumption (iv) gives

lim
t→0+

α(t)

β(t)
≤ lim

t→0+

2
ψ(t)

ϕ(t)
= 0.

Using the implication (iv) ⇒ (i), which was just proved, for functions α, β, we obtain Λβ
∗→֒ Λα.

Due to Lemma 6.2, Λα = M ′
ϕ and Λβ = M ′

ψ. Thus we have M ′
ψ

∗→֒M ′
ϕ, which (by Theorem 3.2)

implies Mϕ
∗→֒Mψ, as required.

(ii) ⇒ (iii) This is a consequence of the facts that Λϕ →֒Mϕ and Mϕ
∗→֒Mψ. �
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Theorem 6.5. Suppose that ϕ and ψ are positive nondecreasing concave functions on (0, 1)
and α is the least nondecreasing concave majorant of ϕ̃. Assume that limt→0+

ψ(t) = 0 and

limt→0+

t
ϕ(t) = 0. Then the following statements are equivalent:

Mϕ →֒ Λψ,(i)

Mϕ
∗→֒ Λψ,(ii)

∫ 1

0
α′(s)ψ′(s) ds <∞.(iii)

Moreover, if ψ′′ exists on (0, 1), then the conditions (i), (ii), (iii) are equivalent to
∫ 1

0

s(−ψ′′(s))

ϕ(s)
ds <∞.(iv)

Proof. (i) ⇒ (iii) The function α satisfies α(t)
2 ≤ t

ϕ(t) ≤ α(t) for every t ∈ (0, 1). We have

lim
t→0+

α(t) ≤ lim
t→0+

2t

ϕ(t)
= 0.

We also have

‖α′‖Mϕ = sup
t∈(0,1)

ϕ(t)

t

∫ t

0
α′ (s)ds = sup

t∈(0,1)

ϕ(t)

t
· α(t) ≤ sup

t∈(0,1)

ϕ(t)

t
· 2t

ϕ(t)
= 2 <∞,

so α′ ∈Mϕ, and because Mϕ →֒ Λψ, we obtain α′ ∈ Λψ, i.e.

∫ 1

0
α′(s)ψ′(s) ds <∞,

as required.
(iii) ⇒ (ii) According to Lemma 5.1, it is enough to show that

lim
t→0+

sup
‖f‖Mϕ≤1

‖f∗χ(0,t)‖Λψ = 0.

Using the Hölder inequality and the fact that M ′
ϕ = Λα, in particular Λα →֒ M ′

ϕ, we have for
t ∈ (0, 1) and f ∈Mϕ

‖f∗χ(0,t)‖Λψ =

∫ 1

0
f∗(s)ψ′(s)χ(0,t) ds ≤ ‖f‖Mϕ‖ψ′χ(0,t)‖M ′

ϕ

≤ C‖f‖Mϕ‖ψ′χ(0,t)‖Λα = C‖f‖Mϕ

∫ t

0
ψ′(s)α′(s) ds,

where C is a positive constant independent of f . Thus

lim
t→0+

sup
‖f‖Mϕ≤1

‖f∗χ(0,t)‖Λψ ≤ lim
t→0+

C

∫ t

0
ψ′(s)α′(s) ds = 0,

which completes the proof.

(ii) ⇒ (i) X
∗→֒ Y implies X →֒ Y for every pair of Banach function spaces X and Y .

(iii) ⇔ (iv) The functions α′ and ψ′ are measurable and nonnegative a.e., thus α′ψ′ is mea-

surable and nonnegative a.e., so
∫ 1
0 α

′(s)ψ′(s) ds exists. Because ψ′′ exists on (0, 1), we have
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ψ′(s) − ψ′(1−) =
∫ 1
s −ψ′′(r) dr. Using the Fubini theorem, we obtain

∫ 1

0
α′(s)ψ′(s) ds =

∫ 1

0
α′(s)

∫ 1

s
−ψ′′(r) dr ds+

∫ 1

0
ψ′(1−)α′(s) ds

=

∫ 1

0
−ψ′′(r)

∫ r

0
α′(s) ds dr + α(1−)ψ′(1−)

=

∫ 1

0
α(r)(−ψ′′(r)) dr + α(1−)ψ′(1−).

The product α(1−)ψ′(1−) is always finite, so
∫ 1

0
α′(s)ψ′(s) ds <∞ ⇔

∫ 1

0
α(s)(−ψ′′(s)) ds <∞.

For s ∈ (0, 1), we have α(s)
2 ≤ s

ϕ(t) ≤ α(s) and −ψ′′(s) ≥ 0, which implies

1

2

∫ 1

0
α(s)(−ψ′′(s)) ds ≤

∫ 1

0

s(−ψ′′(s))

ϕ(s)
ds ≤

∫ 1

0
α(s)(−ψ′′(s)) ds.

Thus
∫ 1

0
α(s)(−ψ′′(s)) ds <∞ ⇔

∫ 1

0

s(−ψ′′(s))

ϕ(s)
ds <∞,

and we are done. �

Remark 6.6. The conditions limt→0+
ψ(t) = 0 and limt→0+

t
ϕ(t) = 0 are equivalent to Λψ 6= L∞

and Mϕ 6= L1.

Example 6.7. We will show that for general concave function ψ on (0, 1), the condition
∫ 1

0

s(−ψ′′(s))

ϕ(s)
ds <∞

does not necessarily imply Mϕ →֒ Λψ.
Suppose that p ∈ (0, 1). Let ϕ(t) = tp. Define a function ψ0 to be linear on each of the intervals

[ 1
n+1 ,

1
n ] (n ∈ N) in such a way that ψ0(

1
n) = 1

np holds for every n ∈ N. Put ψ = ψ0 ↾ (0, 1). It

is easy to see that ψ has the required properties. Observe that ψ′′ = 0 a.e., which gives
∫ 1

0

s(−ψ′′(s))

ϕ(s)
ds = 0 <∞.

Now we will show that Λψ = Λϕ. Proving this, we will get Mϕ 6 →֒ Λψ because Mϕ 6 →֒ Λϕ (the

function f(t) = 1
tp belongs to Mϕ but does not belong to Λϕ).

Fix n ∈ N and suppose that t belongs to [ 1
n+1 ,

1
n). Then ϕ(t) ∈ [ 1

(n+1)p ,
1
np ), ψ(t) ∈ [ 1

(n+1)p ,
1
np ).

Thus
(

n

n+ 1

)p

≤ ψ(t)

ϕ(t)
≤
(

n+ 1

n

)p

.

But for every n ∈ N, we have 1
2p ≤ ( n

n+1)p and
(

n+1
n

)p ≤ 2p. This gives

1

2p
≤ ψ(t)

ϕ(t)
≤ 2p

for every t ∈ (0, 1). Due to Lemma 6.3, Λψ = Λϕ.

Corollary 6.8. Let X and Y be Banach function spaces of type M or Λ (not necessarily both
of the same type) over ((0, 1), λ). Denote by ϕX , ϕY the fundamental functions of X and Y ,

respectively. Then X
∗→֒ Y if and only if X →֒ Y and limt→0+

ϕY (t)
ϕX(t) = 0.
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Proof. The conditions X →֒ Y and limt→0+
ϕY (t)
ϕX(t) = 0 are necessary for an almost compact

embedding between rearrangement-invariant Banach function spaces over a finite nonatomic
measure space. Conversely, Theorems 6.4 and 6.5 show that these conditions are also sufficient.

�

7. Embeddings into the subspace of functions of absolutely continuous norm

Theorem 7.1. Let X be a rearrangement-invariant Banach function space over ((0, 1), λ) and
let ϕ be a positive nondecreasing concave function on (0, 1) such that limt→0+

ϕ(t) = 0. Suppose
that Λϕ →֒ X. Then Λϕ ⊆ Xa.

Proof. Because Λϕ →֒ X, we have

‖f‖X ≤ C‖f‖Λϕ

for every f ∈ Λϕ and for a constant C > 0 independent of f . Thus,

lim
t→0+

‖f∗χ(0,t)‖X ≤ lim
t→0+

C‖f∗χ(0,t)‖Λϕ = C lim
t→0+

∫ t

0
f∗(s)ϕ′(s) ds = 0,

so every function f ∈ Λϕ belongs to Xa. �

Corollary 7.2. Suppose that ϕ is a positive nondecreasing concave function on (0, 1) satisfying
limt→0+

ϕ(t) = 0. Then

Λϕ ⊆ (Mϕ)a.

Proof. Just use the fact that Λϕ →֒Mϕ and the previous theorem. �

Remark 7.3. In the case that limt→0+
ϕ(t) > 0, the inclusion Λϕ ⊆ (Mϕ)a fails because

(Mϕ)a = {0} and Λϕ 6= {0}.

Theorem 7.4. Let X be a rearrangement-invariant Banach function space over ((0, 1), λ) and
let ϕ be a positive nondecreasing concave function on (0, 1) such that limt→0+

t
ϕ(t) = 0. Suppose

that Mϕ ⊆ Xa. Then Mϕ
∗→֒ X.

Proof. Choose a concave function α satisfying α(t)
2 ≤ t

ϕ(t) ≤ α(t) for every t ∈ (0, 1). To prove

that Mϕ
∗→֒ X it is enough to show that X ′ ∗→֒M ′

ϕ = Λα, which is equivalent to

lim
t→0+

sup
‖f‖X′≤1

‖f∗χ(0,t)‖Λα = 0.

In the proof of Theorem 6.5 it was shown that limt→0+
α(t) = 0 and α′ ∈ Mϕ. The latter

condition implies, together with the assumption Mϕ ⊆ Xa, that α′ ∈ Xa (in particular, α′ ∈ X).
Thus, due to Hölder inequality, for t ∈ (0, 1)

‖f∗χ(0,t)‖Λα =

∫ 1

0
f∗(s)α′(s)χ(0,t) ds ≤ ‖f‖X′‖α′χ(0,t)‖X .

So, using that α′ ∈ Xa,

lim
t→0+

sup
‖f‖X′≤1

‖f∗χ(0,t)‖Λα ≤ lim
t→0+

‖α′χ(0,t)‖X = 0.

This completes the proof. �
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