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1. INTRODUCTION

Suppose that X and Y are normed linear spaces. We say that X is embedded into Y, denoted
X <Y, if X CY and the identity operator from X to Y is continuous, i.e.

Iflly <Clifllx, feX,

for some constant C' independent of f.

Furthermore, X is compactly embedded into Y, denoted X —<— Y, if X C Y and the identity
operator from X to Y is compact, equivalently, if for every sequence (f,,)52; bounded in X, we
can find its subsequence convergent in Y.

Compact embeddings play an important role when functional-analytic methods are applied
to finding solutions of partial differential equations. However, it is often quite complicated to
establish the compactness of an embedding. In this text, we define some other type of embedding,
called an almost-compact embedding, which is generally weaker then a compact embedding but
in some cases it could be useful for establishing compact embeddings.

Suppose that X and Y are Banach function spaces (in the sense described in the following
section) over a measure space (R, ). We say that X is almost-compactly embedded into Y and

write X < Y if for every sequence (E,)%°; of p-measurable subsets of R satisfying E, — 0
p-a.e., we have

lim sup |[fxz,[ly =0.

T fllx <1

We first prove an equivalence between an almost-compact embedding to certain type of almost-
everywhere convergence. An important corollary of this result shows that an almost-compact em-
bedding combined with a bounded Sobolev embedding leads immediately to a compact Sobolev
embedding. This result in some sense justifies the label “almost compact embedding”. This is
done in Section 3. In Section 4 we study the product operator and find its intimate relation
to the almost-compact embedding. An important and useful necessary condition for almost-
compact embeddings expressed in terms of fundamental functions is established in Section 5. In
Section 6, we study almost-compact embeddings between certain special function spaces, called
Lorentz and Marcinkiewicz endpoint spaces. We present a complete characterization of all possi-
ble mutual embeddings for such spaces. Compactness of an embedding between function spaces
is intimately related to the subspace of functions having absolutely continuous norms of a given
Banach function space. In the final section, we study inclusions of endpoint spaces into such
subspaces.

2. PRELIMINARIES

In this chapter we shall fix the notation and recall some basic facts from the theory of Banach
function spaces and rearrangement-invariant spaces. We shall not prove the well-known results;
our standard general reference is [2].

Let (R,p) be a totally o-finite measure space. Denote by M™ the set of all u-measurable
functions on R with values in [0, 00]. A mapping p : M* — [0,00] is called a Banach function
norm if, for all f, g, fn, (n =1,2,...), in M™, for all constants a > 0, and for all y-measurable
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subsets E of R, the following properties hold:
(P1) p(f)=0% f=0pn—ae., plaf)=ap(f), p(f+g) < p(f)+ plg),
f)

(P2) 0<g<fp—ae =p(g) <pf),
(P3) 0< ful fu—ae = p(fa)lp(f),
(P4) p(E) < 00 = p(xE) < oo,

(P5) w(E) < 00 = /E fdu < Coplf)

for some constant Cg, 0 < Cg < oo, depending on F and p but independent of f.

Denote by M the set of all u-measurable real-valued functions on R. The collection X = X (p)
of all functions f € M for which p(|f]) < oo is called a Banach function space. For every f € M,
we define

1fllx = p(I£1)-

Let X be a Banach function space. The Fatou lemma says that whenever (f,,)5; is a sequence
in X such that f, — f p-a.e. and liminf, . || fn]|x < oo, then f € X and

I£llx < liminf || £,x.

Given a Banach function space X, the associate space X' is a Banach function space consisting
of all functions g € M such that fg is integrable for every f € X. The norm on X’ is given by

gl = sup{ /R Foldu: £ e X, |flx < 1}.

Then X” = (X') = X. Moreover, for every f, g in M, we have the Holder inequality

/R Fald < 1 Flxllglx-

If X and Y are Banach function spaces over the same measure space, then X < Y is equivalent
to Y/ — X’'. Furthermore, X < Y holds if and only if X C Y (see [2, Chapter 1, Theorem
1.8]).

Let (E,)5; be a sequence of py-measurable subsets of R. We write E,, — () p-a.e. if the
characteristic functions x g, converge to 0 pointwise p-a.e. Moreover, if the sequence (E,)22; is
nonincreasing, we write £, | () p-a.e.

A function f in a Banach function function space X is said to have an absolutely continuous
norm in X if || fxg,| — 0 for every sequence (E,)2 , satisfying E, — 0 p-a.e. The set of all
functions in X of absolutely continuous norm is denoted by X,.

Suppose that f € M. The nonincreasing rearrangement of f is the function f* defined on
[0, 00) by

ff@)y=inf{\:p{z e R:|f(x)| >} <t}, t>0.

Furthermore, f** denotes the mazimal function of f*, defined by

t
@) = %/0 f*(s)ds, t > 0.

A Banach function space X is said to be a rearrangement-invariant space if || f||x = ||g||x holds
whenever f, g belong to X and f* = g*.

Now suppose that (R, 1) is a nonatomic o-finite measure space and that X is a rearrangement-
invariant Banach function space over (R, ). Then there is a (not necessarily unique) rearrangement-
invariant Banach function space X over [0, u(R)) such that

Ifllx=1£"1x, fe€X.



The space X is called the representation space of X.

Because (R, 1) is nonatomic, the range of p consists of the interval [0, u(R)]. Thus, for every
t € [0, u(R)] (if u(R) < 00), or t € [0,00) (if u(R) = o0), we can find a set E; with pu(E;) = t.
Let

ex(®) = e lx-

The function px so defined is called the fundamental function of X. Then ¢x is nonnegative and
nondecreasing, ¢x(t) = 0 if and only if t = 0, px (t)/t is nonincreasing. A function satisfying
these properties is said to be quasiconcave.

Let X’ be the associate space of X. Then

(2.1) ex(t)ox(t) =t
holds for each finite value of ¢ in the range of u.

Let ¢ be a quasiconcave function on (0, u(R)). The Marcienkiewicz endpoint space M, =
M, (R, i) consists of all functions f in M for which the functional

1fllae, = sup  {f*(t)e(t)}
t€(0,u(R))

is finite.

For every quasiconcave function ¢, we define its least nondecreasing concave magjorant @g as
a pointwise infimum of all nondecreasing concave majorants of . Then

1
§¢POSCP§<,00.

As a consequence of this, we get that every rearrangement-invariant space X over (R, pu) can
be equivalently renormed with a rearrangement-invariant norm in such a way that the resulting
fundamental function is concave.

Denote a = u(R). Let ¢ be a positive nondecreasing concave function on (0,a). The Lorentz
endpoint space Ay = Ay (R, i) consists of all f € M for which

Illns = | " () dis) = [ fllpe(04) + /O " (s (s) ds

is finite.
It is not hard to show that both the spaces A, and M, have fundamental function ¢.
If X is a rearrangement-invariant Banach function space with a concave fundamental function
¢, then
Ay — X — M,.
An important example of rearrangement-invariant spaces are the Lebesque spaces LP =
LP(R, ), (1 <p < ), consisting of all f € M, for which

1
Ul = { UnlfPan)?, 1<p < oo
€Sssuppr ’f’a b = 005

is finite.
Let ¢ : [0,00) — [0,00) be a nondecreasing and left-continuous function with ¢(0) = 0,
¢(s) > 0 for s > 0. Then the function ® defined by

d(1) :/0 o(s)ds, t >0,

is said to be a Young’s function. In particular, every Young’s function is convex.
Let ® be a Young’s function. The Orlicz space L* = L®(R, j1) is the rearrangement-invariant
Banach function space consisting of all f € M, for which

1o = inf{k™ - /R B(k|f()]) di < 1)
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is finite.

Suppose that d € N and € is a nonempty open subset of R%. Let A denote the Lebesgue
measure on §2. For a Banach function space X over (2, ), the Sobolev space W'X consists of
all real-valued weakly-differentiable functions f in X such that |V f| € X.

3. ALMOST-COMPACT EMBEDDINGS AND CONVERGENCE

We first observe that, in the definition of an almost-compact embedding, the sequence (E,,)
can be taken nonincreasing.

Theorem 3.1. Let X and Y be Banach function spaces over a totally o-finite measure space
(R,p). Then X <Y if and only if

lim sup ||fxg, |y =0

T flIx <1

holds for every sequence (Ey)22 satisfying Ep, | 0 p-a.e.

This is a well-known fact which follows by replacing (E,) by (Uk>n Ek> We omit the proof.
We start with an easy observation about almost-compact embedings for associate spaces.
Theorem 3.2. Let X and Y be Banach function spaces over a totally o-finite measure space

(R,11). Then X <Y if and only if Y' < X'.

Proof. Suppose that X < Y. Let (En)22, be an arbitrary sequence of sets in R satisfying
E, | 0 p-a.e. Using the definition of the associate norm and the fact that Y =Y, we get

" lgllyr <1 "Tglly <1 \IIfllx <1

= lim sup sup / |foxE,|dun
T flx <1 \lglly'<1JR

= lim sup | fxmllyr = lim sup | fxm,ly =0,
"TIfllx <1 T fllx <1

lim sup |lgxg,lx = lim sup <Sup / |f9XEn|d,U>
R

ie. Y <5 X' as required.
Tt remains to show that Y’ <> X' implies X <, Y. From the first part of the proof we get

Yy <X implies X" < Y. Because every Banach function space coincides with its second
associate space, we get the result. O

The following theorem provides a characterization of X <Y in terms of convergence [i-a.e.

Theorem 3.3. Let X and Y be Banach function spaces over a totally o-finite measure space

(R,p). Then X Sy if and only if for every sequence (f,)52; of pu-measurable functions on R
satisfying || fullx <1 and f, — 0 p-a.e., it holds || fn|ly — O.

Proof. Suppose that X Sy, First, we will construct a g-measurable function g such that g > 0
on R and ||g|ly < oo. Let (R,,)22; be a sequence of sets of finite measure satisfying R,, T R. For
every positive integer n, consider a function g, given by

1 1
Let us also define a function g by g = > -7, gn. We have
1 1
2 1+ [Ixra Iy

gn =

gnlly = Axrally <

1
2_71'



Thus

lglly = lim
n—00

n o 1
< i — =
< nh_{loloz lgelly <> o = L
Y k=1 k=1

Because, obviously, g > 0 on R, g has the required properties.

Let (fn)22, be a sequence of p-measurable functions on R satisfying ||f,||x <1 and f, — 0
p-a.e. Choose ¢ > 0 arbitrarily. Let E,, = {z € R : |f,(z)| > eg(x)}. Because f,, — 0 p-a.e. and
eg > 0 on R, for p-a.e. © € R we have that x € E, holds only for finitely many positive integers
n. This implies E,, — 0 p-a.e.

Observe that

I fully = IfuxE, + faxeslly < | faxe,ly + | faxes ly-
The assumptions X <> Y and || f,|lx < 1 give

hm | fuxe,lly < hm sup |lhxg,|v =0.
)l x <1

Moreover,
I faxeglly < lleglly =elglly <e.
Altogether, we have
limsup || fr]ly < e,

n—oo
which holds for every € > 0. So, lim,, . || fn]ly = 0.
Conversely, suppose that for every sequence (f,,)>2; of u-measurable functions on R satisfying
| frllx <1 and f, — 0 p-a.e., it holds || fn|[y — 0. Let (E,)2; be a sequence of subsets of R
satisfying E, — () p-a.e. Then we can find a sequence of functions (f,)52; such that || f,||x <1
and .
| faxeally +=> sup ||fxe,lly.
o flx <t

Because E,, — ( p-a.e., we have f,xg, — 0 p-a.e. Due to the assumption, ||f,xg,|y — 0.
Thus

. 1
tm sup | fxe,ly < lim <||fann||y+ —) —o.
oo fllx <1 n

O

In the following two theorems we will show that an almost compact embedding is in general
stronger then a regular embedding but weaker then a compact one.

Theorem 3.4. Suppose that (R, 1) is a totally o-finite measure space and X andY are Banach
function spaces over (R, u) satisfying X Y. Then X — Y.
Proof. Let (fn)>2; be a sequence in X such that ||f, — f|lx — 0 for some f € X. To get a

contradiction, assume that || f, — f|ly /# 0. Then we can find € > 0 and a subsequence (gy)32 of
(fn)o2 satisfying ||gr — flly > € for every k € N. Because gy — f in X, there is a subsequence

(hi)i2, of (gr)52, such that hy — f p-a.e. Using that X <, Y, by Theorem 3.3 we obtain
|\hi — flly — 0, which gives a contradiction. So, X — Y. O

Theorem 3.5. Suppose that (R, i) is a totally o-finite measure space and X andY are Banach
function spaces over (R, u) satisfying X <—— Y. Then X Y.

Proof. Let (f,)s%; be a sequence in X such that ||f,||x < 1 for every n € N and f, — 0
p-a.e. To get a contradiction, assume that ||f, ||y 7 0. Then there is ¢ > 0 and a subsequence

(gr)32, of (fn)pe, satisfying ||gi|ly > € for every k € N. Because (gx)7° is bounded in X and
X —<— Y, we can find a subsequence ()72, of (gx)3> such that (h;);°, is convergent in Y.
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But h; — 0 p-a.e., so the limit must be 0. So, |||y — 0, which contradicts the assumption.
Thus, X < Y. O

The following theorem shows, in fact, that in the cases that might be of a possible interest, a
Banach function space cannot be almost-compactly embedded into itself.

Theorem 3.6. We say that a totally o-finite measure space (R, p) has the property (x) if there
exists a sequence (E,)5  of u-measurable subsets of R such that E, | 0 p-a.e. and u(E,) >0
for every n € N.

(i) Assume that the measure space (R, u) has the property (x). Let X be a Banach function

space over (R,pu). Then X 4 X,
(ii) Conwversely, assume that (R, ) does not have this property. Then all Banach function

spaces over (R, ) coincide, and, moreover, X < X holds for each Banach function space X.

Proof. We start with proving the assertion (ii). We first observe that in the definition of
an almost-compact embedding, it is enough to consider only those sequences E, | ( p-a.e.,
for which u(E,) >0 (n=1,2,...). Indeed, for Banach function spaces X and Y, the condition
lim sup |fxe,lly =0
T <t
trivially holds if p(F,) = 0 for some n € N (then u(E,,) = 0 for every m > n, thus also
fxE, =0 p-ae. and || fxE, |y =0 whenever m > n and f € X).
Assume that (R, i) does not have the property (x). Then for every pair of Banach function

spaces X and Y, we have X <Y and also Y <5 X. So, by Theorem 3.4, X — Y and Y — X,
i.e. X and Y coincide and X <> X. This shows (ii).

As for the statement (i), suppose that (R, ) has the property (x). To get a contradiction,
assume that X <> X holds for some Banach function space X. Let (En)22, be the sequence
of subsets of R satisfying u(E,) > 0 for every n € N and E,, | § p-a.e. Consider a sequence
(fn)22 of functions in X defined by f, = mx g,- Then, for every n € N, we have

sup ||fxe.llx > Ifallx =1,
Ifllx <1

which contradicts the assumption X <X, O

The condition from Theorem 3.3 is often used as a crucial step in proofs of compact em-
beddings, for example of Sobolev spaces (cf. [4, Section 9] or [3]). For that matter, so is the
almost-compactness, hence their equivalence is very reasonable. Let us now present a result that
illustrates the importance of almost-compact embeddings.

Theorem 3.7. Let d € N and let Q be a nonempty open subset of RE. Suppose that X, Y, Z
are Banach function spaces over (2, X), where X denotes the n-dimensional Lebesgue measure.

Moreover, assume that W'X — Y and Y < Z. Then WX —es Z.

Proof. Whenever = € (0, we can find a ball B, centered in z such that B, C Q. For x € Q,
consider also a ball B, with center z and with radius equal to one half of the radius of B,.
Then the set {Bw :x € Q} forms an open covering of 2. Because §) is separable, we can find
a sequence (1,)2%, of points in Q such that {B, = B,, : n € N} covers . Furthermore, we
denote B, = B;, (n=1,2,...).

Let (gx)32, be a bounded sequence in WX = W'X(Q). By induction, for every n € N
we will find a subsequence (g!)72, of the sequence (92_1)1?;1 (here we formally put g9 = gi)
converging p-a.e. on B,. Then, the diagonal sequence (gr)oo; will converge p-a.e. to some

function ¢ on the entire Q (because {B, : n € N} forms a covering of ).
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Fix n € N and suppose that we already know the sequence (gz_l)z‘;l. Then (gz_l)z‘;l is

bounded in WX (B,) and (by property (P5) of Banach function spaces) also in W1i(B,).
Consider a function 1) defined on R? by

vla) - {exp(_ﬁ% o] < 1

0, |z| > 1.

Denote by 1, the function satisfying 1, (z) = ¥((z — z,)/rn) for z € R? (r,, denotes the radius
of By,). Then v, is a C°°-function on R? and 1, (x) # 0 if and only if 2 € B,,. Define a sequence
(UM, by u(z) = g¢ ' (2)n(2), © € B,. The sequence (uf)?2, is bounded in Wol’l(Bn), SO
we can extend it by 0 out of B, and consider (u)?° ; to be bounded in W1(R¢). Thus, there is
a subsequence (uj )p2; which converges p-a.e. to some function uy, (see [4, Lemma 9.2]). We will

denote by (g7)3, the sequence (921_1)?21- Because ¥, (z) # 0 for = € B, we have gp = Un/Pn

p-a.e. on By, as required.
By the assumption, (g;1)>° is bounded in Y. Hence, by the Fatou lemma,

lglly < Timinf [lgp [}y < oo,
n—oo

s0 g € Y. By assumption Y <» Z and by Theorem 3.3, llgr — gllz — 0, i.e. gF — g in Z. Thus,
WX e Z. O

4. THE PRODUCT OPERATOR

In the first half of this section we observe that the fact that a rearrangement-invariant Banach
function space does not coincide with either of L', L, can be characterized by its fundamental
function and also by the almost-compact embedding. We shall finish the section with a charac-
terization of an almost-compact embedding by some properties of a certain product operator.

Definition 4.1. Suppose that (R, u) is a measure space. Then we define the product operator
P: MxM— M by

Theorem 4.2. Let (R, ) be a nonatomic measure space satisfying 0 < u(R) < oo and let X
be a rearrangement-invariant Banach function space over (R, u). Denote by ¢ the fundamental
function of X. Then the following statements are equivalent:

(i) X # LY

(ii) limy_.o, ﬁ =0;

(iii) X < L.

Proof. (i) = (ii) Suppose X # L'. Then there exists a function f € L'\ X. We may suppose
that f is nonnegative (otherwise we may consider the function |f| which is nonnegative and
belongs to L'\ X) and ||f||;1 = 1. (Because f does not belong to X it cannot be equal to
0 p-a.e., so it has a positive norm in L'. If this norm is different from 1 we may consider
the function || fHZ} f instead of f.) Let (uy); be a sequence of nonnegative nontrivial simple

functions satisfying u, 1 f. Then u,, € X for every n € N, ||u,||x T 0o and ||uy||pr < ||fll = 1.
Thus

tim 19X S = oo,

n=00 [[up |1 T n—oo

Choose K > 0 arbitrarily. Then we can find n € N such that ||u,||x > K|up|/z1. Suppose

k
Un =Y aixa,
=1
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where A; are pairwise disjoint subsets of R and a; are different positive constants. By the
triangle inequality, we have
k
lunllx < aillxallx,
i=1
moreover

k
lunllze =D aillxa; o1
i=1

Now we use ||uy||x > K||lun||r1 to get the following inequality

k k
Y aillxalx > K aillxalln
i=1 =1

There must exist 7 € {1,2,...,k} such that a;||xa,l|x > Kai||xa,| 1, ie. ||||Xﬁ‘|l|l—xl > K. Denote

by t the measure of A;. It holds ¢(t) = ||xa4,|lx and t = ||xa,||r1. So, for an arbitrary K > 0

we have found ¢ > 0 such that @ > K. Together with the fact that @ is nonincreasing, it

()
t

(ii) = (iii) Fix an arbitrary sequence (E,)°; of subsets of R with E,, | () u-a.e. Moreover,
suppose that u(E,) > 0 for every n € N (in the proof of Theorem 3.6, we observed that it is
enough to consider only sequences of this type). We will show that for every n € N

((En)

4. B WL
(4.1) ||fS||l;1(p§1 1fxE. L, < DG

Indeed, using the Holder inequality and (2.1), we get

implies lim; o, = o0, in other words lim;_.q, ﬁ = 0.

wmmhzéummwgwmmmwz¢é me
)

for every n € N and f € X, which implies (4.1). Because u(R) < oo and E; O Ey O ..., it
holds that w(E,) — p((— E n) = 0. Thus, by (ii),

. - p(En)
lim sup |[fxe,lr, < lim ———— =0.
"o fx <1 "7 oo p(pu(En))
So we have proved that X Ny 2%
(iii) = (i) It follows from Theorem 3.6 that L! <> L' cannot be true. O

Near the other endpoint space, L°°, we have an analogous result.

Theorem 4.3. Let (R, ) be a nonatomic measure space satisfying 0 < u(R) < oo and let X
be a rearrangement-invariant Banach function space over (R, u). Denote by ¢ the fundamental
function of X. Then the following statements are equivalent:

() X £ L%

(ii) limy o, o(t) = 0;

(iii) L>® < X.

_t_
e(t)
for every t € (0,u(R)]. This gives lim; o, ¢(t) = 0 if and only if lim; .o, ﬁ = 0. Because
(L) = L' we have X # L* if and only if X’ # L' and (by Theorem 3.2) L>® <> X if and only
if X’ < L. The assertion thus follows from Theorem 4.2. 0

Proof. Denote by 1 the fundamental function of the associate space X’. Then (t) =
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Lemma 4.4. Suppose that (R, 1) is a nonatomic measure space with 0 < u(R) < oo and X and
Y are Banach function spaces over (R, ). Then the following two statements are equivalent:

(i) XSy

(ii) lim sup sup | fxely =0.
=04 ) £l x <1 p(E)<t

Proof. (i) = (ii) Consider a function H defined by

H(t)= sup sup [fxely, t <€ (0,u(R)].
I£]lx <1 u(E)<t

Clearly, H is nondecreasing on (0, u(R)]. Thus, it will be enough to prove

(4.2) lim sup sup | fxely =0
T fllx <1 p(B)<an

for some sequence (a,)5 ; satisfying a, | 0. We will choose the sequence a,, = 1/ n?. Observe
that > 7, a, < co. For every n € N we can find f, € X, E,, C R such that ||f,|lx < 1,
w(Ey) < ap and

1
(4.3) sup  sup || fxelly < | faxmlly + —
1fllx <1 u(E)<an n

Denote F,, = U, Ex. Then F; O F» D ... and

n—oo

u(m F,) = lim u(F,) < lim ZN(Ek) = lim Zak =0.
k k=n

n=1 =n

This implies F;, | @ p-a.e. Because E,, C F,, for every n € N and X iR Y, we have

lim || foxe,lly < lim sup ||fxe,ly < lim  sup |[fxg,ly =0.
oo O fllx <1 O fllx <1

Using the inequality (4.3), we obtain (4.2).
(ii) = (i) Choose an arbitrary sequence (E,)°; of subsets of R such that E, | 0 p-a.e.
Because p(R) < oo we have

n—oo

lim p(Ey) = p([) En) =0.
n=1

Thus

lim sup |fxg,ly < lim sup  sup | fxely =0,
" fllx <t "0 fllx <1 p(E)=p(En)

0 X Y. O

The following simple but useful lemma shows that the set inclusion P(X x Y) C Z already
implies the norm boundedness P : X x Y — Z. Both the result and the proof are modeled
upon [2, Chapter 1, Theorem 1.8].

Lemma 4.5. Let X, Y, Z be Banach function spaces over a measure space (R,u). Suppose
that P(X xY) C Z. Then there exists K > 0 such that

(4.4) 1f9llz < KIlfllxllglly
whenever f € X, g€ Y.
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Proof. Suppose that (4.4) fails. Then for every n € N we can find fn € X, gn €Y such that

1fgnllz > 2°[ fullx I gally-

In particular, we have ||fpg~n||z >0, 50 fugn # 0, and thus ||fu]|x >0, ||gnlly > 0. Dividing the
previous inequality by [ fu]lx||duly, we get

‘]Fn’ ‘gn 5
”anX ”gn”Y an |x ”gn”Y
Denote f, = HJIcfHIXa gn = ||J]i7|L||Y- Then f, > 0, g, > 0, ||anX = ||gn||Y =1, ||fn9n||Z > nd.
Consider the functions
o0
Z o
20 9~ 2°
n —in
We have
n o0
e fr ||fk||X _ 1
I£llx = lim > 3| S nangOZ =) 2 <%
k=1 X k=1

so f € X. Analogously we obtain g € Y. Moreover, 0 < % < fand 0 < 97;—5 < g for every n € N.
Multiplying these two inequalities, we get

fn9n

n
which gives
Sngnllz
gl > Motz o,
for every n € N. This means [|fg||z = oo, i.e. fg ¢ Z, which contradicts the assumption
P(X xY)C Z. O

The following theorem is the main result of this section.

Theorem 4.6. Suppose that (R, ) is a nonatomic measure space with 0 < u(R) < oo and X
and Y are Banach function spaces over (R, ). Then the following two conditions are equivalent.
i) X Sy

(ii) there exists a rearrangement-invariant Banach function space Z over (R, i) such that Z # L'
and P(X xY') C Z.

Proof. (i) = (ii) We will find a quasiconcave function ¢ such that lim;_q, ﬁ =0and || fglam, <

I fllxlglly’, whenever f € X, g € Y. Once this is done, M, will be a rearrangement-invariant
Banach function space different from L! (Theorem 4.2) satisfying P : X x Y/ — M, so the
proof will be complete.

Let f € X, g €Y' Let us recall that

| f9llar, = sup ﬂ/o(fg)*(s)ds.

teOu(r) 1t
Fix t € (0, u(R)). Then (see e.g. [2, Chapter 2, Lemma 2.5]) there exists E; C R with u(FE;) =

such that
/(fg dS—/ |fgldp.

/E Faldi < Il xa v gl
t

Due to Holder inequality,
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and because

< sup sup [|hxzlly,
Y lhllx<1u(B)<t

H—f XE
Ifllx ™

we also get

I xe v llglly < [l fllxllglly sup  sup [lhxely-
Ml x<1pu(E)<t

Define the function H by
H(t)= sup sup |hxely,
hllx <1 p(E)<t

t € (0, u(R)). Because X <, Y, we have in particular X < Y, so there exists a constant C' > 0
such that |||y < C||h||x for every h € X. Using that ||hxg|y < |||y holds for every h € Y (in
particular, for h € X) and E C R, we observe that the function H is bounded by the constant
C'. Moreover, due to Lemma 4.4, lim;_o, H(t) = 0. Our goal is to find a function ¢ such that
1 is a nondecreasing concave majorant of H and lim;_, ¢(t) = 0.

First, observe that the constant function C' is a nondecreasing concave majorant of H. Now
consider all nondecreasing concave majorants of H and denote by v its pointwise infimum. Then
1) is itself a nondecreasing concave majorant of H, so it remains to prove that lim; g, 9 (t) = 0.

Choose ¢ € (0,2C). Because lim;_o, H(t) = 0, there exists § > 0 such that H(t) < 5 for

t € (0,6). From this it follows that the function F(t) = /2 4 t(C — £/2)/é is a nondecreasing
concave majorant of H, so ¥(t) < F(t) on (0,u(R)). But we can find § > 0 (namely, 0 =
£6/(2C —¢)) such that F(t) < e for t € (0,0), therefore 1(t) < & on (0, d), which gives the result.

Now we are in a position to define the function ¢. So, put ¢(t) = ﬁ, t € (0,u(R)). Then ¢

is quasiconcave and limy_.q, Sol(t—t) = limy o, ¥ (t) = 0. Moreover, for f € X, g € Y we have

t)y [t t
Vol = sup £8 [ w9r s <ol s 20 b
teur) t Jo te@u(R)) t
p(t
<Ifixlaly su Pyt =7l
te(0,u(R))

which completes the proof.
(ii) = (i) Choose an arbitrary sequence (F,)5°; of subsets of R satisfying E,, | 0 p-a.e. We
have
sup ||fxe,ly = sup sup / [foxe.|dp.
lIfllx <1 Ifllx<1lgly<1J/R
Due to Lemma 4.5, there exists a constant K > 0 such that || fgllz < K| f||x|lg|ly’ for every
feX, geY' Thus, if |flx <1and|g|y <1 then |fg]lz < K, which implies

h
sup  sup /IfQXEnldué sup /IhXEnlduz sup K [ | 2=xE,| dp
Ifllx<1lglly <1/ R |hllz<K JR Ipllz<K R
=K sup /|hXEn|d,U-
lr]z<1JR
According to Theorem 4.2, Z < L' so
lim sup | fxg,[ly <K lim sup /IhXEnldMZO,
TIflx <1 "R z<1 IR
ie. X Y. O

Our next example illustrates that the restriction to rearrangement-invariant spaces in Theo-
rem 4.6 is indispensable.
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Example 4.7. Suppose that (R, u) is a nonatomic measure space with 0 < u(R) < oo and X
and Y are Banach function spaces over (R, ). We will show that if a Banach function space
Z # L' is not rearrangement-invariant, then the condition P(X x Y') C Z does not necessarily
imply X < Y. To do this, it is enough to find a Banach function space Z # L' such that it
does not hold Z <> L! (recall that this is impossible if Z is rearrangement-invariant). Having
such a space Z, weset X = Z,Y = L', so Y’ = L>®. Suppose that f € Z, g € L. There must
exist a positive constant K such that |g| < K a.e. Then ||fgllz < K||f|lz < o0, so fg € Z.
Thus, we have P(X x Y') = P(Z x L®) C Z # L', but X <, Y is not true, as required.
Consider the measure space ((0,1),A). For a measurable function f, define

11z = 1 Fxo.n) o + 1 xller-

Using the facts that L>((0, %), A) and Ll([%, 1), A) are Banach function spaces, it is easy to see
that Z is a Banach function space as well. We have Z # L', because the function f(t) = 1/t
belongs to L' but not to Z. Set E,, = (1 —1/n,1) and f, = nxg, (n € N). Then E, |  and,
|| fullz =1 for n > 1. Thus

sup |[fxe,ller = [[faxe,ller =1, (n>1)
lfllz<1

so Z < L' does not hold.

5. ALMOST-COMPACT EMBEDDINGS AND THE FUNDAMENTAL FUNCTION

In this section we shall present an important necessary condition for an almost-compact
embedding between two rearrangement-invariant spaces in terms of their fundamental functions.

Lemma 5.1. Suppose that (R, ) is a nonatomic measure space satisfying 0 < u(R) < oo and
let X andY be rearrangement-invariant Banach function spaces over (R,u). Let S denote the
set of nonnegative nonzero simple functions on R. Then the following conditions are equivalent.

(i) XSy
(i) lim  sup [|f*xplly = 0;
=0+ x <t
u* o
(iii) lim sup 7“ X[O’t)”y =0.

=04 yes luxpnlls

Proof. (i) < (ii) Due to Lemma 4.4, X <Y is equivalent to

lim sup sup |fxely =0.
E=04 £l x <1 u(B) <t

Thus it is sufficient to show that, for every f € X and for every ¢ € (0, u(R)),

sup |Ifxely = 1 Xy
w(E)<t

Fix f € X and t € (0, u(R)). Whenever E is a measurable subset of R with u(E) < ¢, we have
I xelly = I(fxe)lly = I(fxe) oy < 1 X0y
and therefore

sup [[fxelly < If x0.0llv-
m(E)<t
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For f € X and ¢t € (0,u(R)), we can find a measurable set F' C R with p(F) = t such that
I*Xj0,5) = (fxr)* (this follows from the proof of [2, Chapter 2, Lemma 2.5]). Thus, we can write

sup |fxelly = sup [[(Fxe)"lly = 1(Fxe) v = 1/ X0y
n(E)<t m(E)<t

which gives the reverse inequality.
(ii) < (iii) We will show that for every ¢ € (0, u(R))

[w* X0, |17
sup ”f*X[O,t)”Y/ = sup %7
llfllx<1 ues |lu X[o,t)”X

which is obviously enough for the proof.
Suppose that f € X, ||f||x < 1. Then we have

* 5 < f >
< I (2 ,
Fxwon = jpexon = 7 ) X00

which gives

< sup gy
v lgllx=1

. f )
o <
”f X[o,t)HY > H <HfHX X[0,t)

SO

sup I/ xp.lly < sup [[f* X0,y
Ifllx<1 I1f]lx=1

The reverse inequality is obvious, thus

sup [|f* xjo0lly = sup [1f X0,y

IFllx<1 Ifllx=1
Furthermore,
. f o\ 1" X0y 1" X0y
sup || f X[O,t)HY/: sSup Xjo)| = sup — o = T
I1fllx=1 o£rex ||\ fllx v oozrex  Ifllx o£fex  IIf*llx
We need to show that i} i}
1" xpplly X0y

orrex Il ozrex X llx
Because ||f*||x > [|f*Xjo.) |z, it must be

1/ X0y 1/ X(0.lly
o£fex I llx 7 ozrex X0l
On the other hand, whenever f € X, f # 0, we can find a measurable set F' such that u(F) =t
and f*xp0,) = (fxr)* = (fx#)"X[0,)- Then
1 xpally _ IFxr) xpnlly _ 9" X[0.6) Iy
* = o = SUP T
[Fxools ~ T = ofax Tl

which gives the reverse inequality.

Finally, we observe that the supremum can be taken over the (smaller) set S instead of X'\ {0}.
Indeed, for every f € X, f # 0, we can find a sequence (uy,); with u, € S, (n € N), and
up T |f|. This implies uy,x(0,1) T f*X[0,t), and thus

A

)

i lunxonlly  I1f*Xj0.0llv
im — = ;
n—oo lurxponlls 1 *xp00llx

which gives the result. O

Now we are in a position to state and prove our main result of this section.
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Theorem 5.2. If (R, u) is a nonatomic measure space satisfying 0 < u(R) < oo and X and Y

are rearrangement-invariant Banach function spaces over (R, u) such that X < Y, then

m —('Dy(t) =0,
=0+ @x (1)

where px, wy are fundamental functions of X, Y respectively.
Proof. The function f =1 on R belongs to S defined in the Lemma 5.1. Thus, for ¢ € (0, u(R)],

py(t) _ I xpnlly - v X 0,1y
ox () f*xpnllx ~ ues lu X0l x

According to the lemma, we have

oy (t)

im =0.
t=0+ @x (1)

0
Corollary 5.3. Let (R, i) be a nonatomic measure space satisfying 0 < p(R) < oo and let ¢ be

a positive nondecreasing concave function on (0, u(R)). Then it does not hold that A, 5 M,.

Proof. A, and M, have the same fundamental function ¢ so the necessary condition for almost
compact embedding from Theorem 5.2 cannot hold. O

Our next example shows that the necessary condition from Theorem 5.2 is not sufficient for
an almost-compact embedding.

Example 5.4. Suppose that X, Y are rearrangement-invariant Banach function spaces with

fundamental functions ¢y, ¢y, respectively. We will show that the condition lim; .o, Zig)) =0

does not imply X < Y. In particular, it does not imply X Sy,

Let p € (1,00). Denote by p’ the conjugate index satisfying 1% + % = 1. We will consider for
X the Marcinkiewicz space Ly~ and for Y the Lorentz-Zygmund space Ly 1.—1 over ((0,1), ),
consisting of all measurable functions f such that

1
[ fllpoo = sup f*(t)tr < oo
te(0,1)

1 px L1 1 *
1fllp,15-1 = / MCLI / lfids < 00,
o €—logs 0 s¢(e—logs)

and

respectively. We note that the functionals ||-||p 00 and |- ||p.1;—1 are equivalent to rearrangement-
invariant Banach function norms.

Then it follows from [1, Theorem 9.3] that L, o % Lp1,—1. Moreover, if we denote by ¢
the fundamental function of L, o, and by v the fundamental function of L, 1,_1, then, for every
t € (0,1), we have

1 1
@(t) = sup xu(s)s? =tr,
s€(0,1)
while
t 1
P(t) :/ ——ds.
0 s¥ (e —logs)
Because

lim ¢(t) = lim ¢(t) =0,

t—04 t—04
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we can use the L’Hospital rule to get

i O g YO b

= = =0.
t—04 (t) t—l>%1+ ¢/ (t) t—l>%1+ e—logt

Example 5.5. Let (R, ) be a nonatomic measure space such that pu(R) = 1. Recall that for
every Young’s function ® and every f € L® = L®(R, 1), we have

1
1o = inf{k~ - /R (k| f(2)]) dw < 1} = inf (k" - / (kS (@) dr < 1} = | ] o

0
Moreover, for f € L®, t € (0,1) and A > 0, we have |f*xjollze < 1/X if and only if
Jy @\ f*(z))de < 1.
Suppose that A, B are Young’s functions. We will consider Orlicz spaces L4 = LA(R, 1),
LB = LB(R, ). Our goal is to show that L4 < LB if and only if for every A > 0,
B(A\t)

(5.1) O

Note that a necessary and sufficient condition for L4 < L? to be true is that there exists C' > 0
such that B(t) < A(Ct) for every t > 0, while L4 << L never holds because L < L.

It follows from the proof of Lemma 5.1 that the condition L4 < LB s equivalent to

. 17 X0l
im sup o7 =
=01 ozpera |F*X0,0 24

Furthermore, for ¢t € (0,1), we have

£ X005
W0l _ gy glzn 1 xolzn =
0£feLA 1 £*x0,0)ll A {1 Xl = 1 X0z }

= sup{[[f"xonllzz * I/ "X0llza <1}

So, LA <i> L? holds if and only if for every A > 0 there exists > 0 such that the condition
fo ))dz < 1 implies f B(Af*(z))dz < 1 (we are using the fact that the expression
Sup{llf XO,t 2z /"X llza <1} increases with #).

Assume that L4 < LB, We claim that, for every A > 0, there is to > 0 such that B(At) < A(t)
for t > tg. Suppose that this is not true. Then we can find A > 0 and a sequence t, — o
satisfying B(At,) > A(ty) for every n € N. For this A > 0, choose § > 0 as above. Because
lim;_oo A(t) = 00, there is m € N such that 1/A(t,,) < ¢. Denote dy = 1/A(t,,). Since (R, p)
is nonatomlc we can find a set ' C R with u(F) = dp. The function f = t,,xr satisfies

fo ))dz = 6o A(ty,) = 1 but ng()\f*(ac))dw = 60B(Aty) > dpA(tm) = 1, which gives a
contradlctlon
Because B is convex and B(0) = 0, we have for every k € N and ¢ € [0, 00)
1 k—1 1 k—1 1
Bt)=B| - -kt+ —- <--B ——— - B(0) = — - B(kt).
(0 =5 (ke 5 0) < Bl + S BO) = Bl

Fix A > 0. Then for every k € N there is t; > 0 such that B(kAt) < A(t), t > t;. Thus

B(M) 1 B(kA) _ 1
AQ Sk AG CF (= t),

which gives (5.1), as required.



20

Now assume that (5.1) holds for every A > 0. Choose A > 0 arbitrarily. Then we can find
to > 0 such that B(A\t) < 1/2-A(t), whenever t > to. Set § = 1/(2B(Mp)). Let f be an arbitrary
p-measurable function on R. Denote a = min(u{x € R : |f(z)| > to},d). We have

/OJB(Af*(:c))dx_/a (Af* (@ ))dm+/ BAf*(z))de < - / A(f da;+/jB(At0)dx

J
_2/ A(f d:c+/ B(Mo)dx < 1,
0

whenever f06 A(f*(z))dz < 1. Thus LA < LB.

Remark 5.6. Suppose that p € [1,00) and consider the Young function ®(¢) = t?. Then the
Orlicz space L® is exactly the Lebesgue space LP. The characterization of almost compact
embedding between Orlicz spaces from the previous example together with Theorem 4.3 shows
that for 1 < p,q < oo, P <, L9 holds if and only if ¢ < p. Note that LP — L% if and only if
q < p, while LP << LY is never true.

6. ALMOST-COMPACT EMBEDDINGS BETWEEN SPACES OF TYPE A AND M

In this section we present a complete characterization of all possible mutual almost-compact
embeddings among the Lorentz and Marcinkiewicz endpoint spaces. We shall work for our
typographical convenience on the measure space ((0,1),A). This of course can be done with
no loss of generality and the results of this section can be easily extended to all non-atomic
finite-measure spaces.

Suppose that ¢ is a quasiconcave function on (0,1). In the following text, ¢ denotes the
quasiconcave function satisfying ¢(t) = @f—t) for every t € (0,1).

Lemma 6.1. Let ¢ and ¢ be quasiconcave functions on (0,1). Suppose that there exist positive
constants C1, Cy such that
Crp(t) < (t) < Cap(t)
for every t € (0,1). Then My, = M,y
Proof. Assume that f € M,. Then f € My, because
1fllaz, = sup o(t)f(t) < Ca sup o(t)f™(t) = Cal|flln, < o0
te(0,1) te(0,1)

The converse embedding follows from symmetry. O

Lemma 6.2. Suppose that ¢ is a quasiconcave function on (0,1). Let « be the least nonde-
creasing concave magjorant of p. Then MS’D = A..

Proof. The function « satisfies = ( ) < % < a(t) for t € (0,1). Thus also @ < af—t) < p(t) on
(0,1). Due to Lemma 6.1, M, = Ma.

First, we will show that M; C A,. This is equivalent to A, C M;f = M, = M. But A,
has the fundamental function & and My is the largest rearrangement-invariant space with this
fundamental function, so A, C Mj.

On the other hand, because M, = Mz, we have M/, = M. Using that M has the fundamen-
tal function o and A, is the smallest rearrangement-invariant space with fundamental function
«, we obtain A, C M. = MS’D. O

Lemma 6.3. Let ¢ and v be positive nondecreasing concave functions on (0,1). Suppose that
there exist positive constants Cv, Co such that

(6.1) Crp(t) < (t) < Cap(2)
for every t € (0,1). Then A, = Ay.
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Proof. According to Lemma 6.2, A, = Mé and Ay, = M 1’; The assumption (6.1) gives
Cri(t) < ¢(t) < Caii(t)
for every ¢t € (0,1). So, due to Lemma 6.1, Mz = My, thus also Ay, = M:Z = M:Z; = Ay. O

Theorem 6.4. Suppose that ¢ and ¢ are positive nondecreasing concave functions on (0,1).
Then the following four statements are equivalent.

(i) Ay < Ay

(ii) My < My;
(iii) Ay < My;

: ()
(iv) tl_l)%l+ o 0.

Proof. According to Theorem 5.2, each of the conditions (i), (ii), (iii) implies (iv).
(iv) = (i) Due to Lemma 5.1, we only need to prove that

u* A
lim supH*X(w =0,
=0+ yes [|u*x (0,0l A,

where S denotes the set of nonnegative nonzero simple functions on (0, 1).
Suppose that u € S. Given t € (0,1), we have

n
WX = D CiX(0,t)1
=1

where ¢; > 0,i=1,2,...,nand 0 < t; < --- < t, <t. Because

Y(t) < swp 1/1(8)7
o(ti) ~ o<s<t ©(s)
we have
lw"xopllay _ X vt _ 2 i1 Citp(ti) SuPp<s <y ij(% B P(s)
xonln,  Sicel) — Sy aplt) T ozezi 9(s)
Thus
lim sup 7”“*)((0,@”% < lim sup w(s) =0.

=01 yes [[u* XA, ~ =0+ 0<s<t ¢(8)

(iv) = (ii) Denote by «a, (8 the least nondecreasing concave majorant of @, zﬁ, respectively.
Then
(
(

Q

for every t € (0,1). The assumption (iv) gives

i 8 o 220 g

i —
t—01 B(t) ~ =04 (t)
Using the implication (iv) = (i), which was just proved, for functions «, 3, we obtain Ag < Ao
Due to Lemma 6.2, A, = M, and Ag = M,{l} Thus we have Ml/l} 5 M, which (by Theorem 3.2)
implies M, < My, as required.
(i) = (iii) This is a consequence of the facts that A, — M, and M, . My. O
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Theorem 6.5. Suppose that ¢ and 1) are positive nondecreasing concave functions on (0,1)
and « is the least nondecreasing concave majorant of ¢. Assume that limy_o, (t) = 0 and

limy o, @f—t) = 0. Then the following statements are equivalent:
(1) M, — Ay,

(id) M, < Ay,
1
(iii) /0 o (s)Y'(s)ds < oo.

Moreover, if " exists on (0,1), then the conditions (i), (i), (iil) are equivalent to

. Ys(—y"(s))
(iv) /0 st < 0.

Proof. (i) = (iii) The function « satisfies %ﬁ < < < aft) for every t € (0,1). We have

wt) =
lim a(t) < lim A 0
t—04 T o0 (t)
We also have
t) [ t t) 2
ol = sup A [t s = sup 2O gy < sup 202 g,
te(0,) v Jo te0,1) 1 te(0n) t p(t)

so o € M, and because M, — Ay, we obtain o/ € Ay, i.e.

1
/ o (8)Y'(s) ds < oo,
0

as required.
(iii) = (ii) According to Lemma 5.1, it is enough to show that

lim sup ”f*X(o,t)HA = 0.
=041 fllag, <1 ’

Using the Holder inequality and the fact that M; = A,, in particular A, — M, we have for
te€(0,1) and f € M,
1
1" X0, lay :/0 Y ($)x ) ds < N F v, 19 x 0.0l

t
< Cllfllaz 19" X0, 20 = CHfHM“’/o W' (s)a/(s) ds,

where C' is a positive constant independent of f. Thus

t
lim sup ||/™x A, < lim C/ V' (s)d!(s)ds =0,
s w700l < Jip © [ 90
which completes the proof.

(i) = (i) X <Y implies X < Y for every pair of Banach function spaces X and Y.
(iii) < (iv) The functions o and 1)’ are measurable and nonnegative a.e., thus /¢’ is mea-

surable and nonnegative a.e., so fol o/ (s)Y'(s) ds exists. Because ¢ exists on (0,1), we have
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P(s)—Y'(1-) = fsl —1"(r) dr. Using the Fubini theorem, we obtain

1 T

:/0 g (r)/o o (s) ds dr + a(1_ )y (1.)
1

= [ at)-vr)dr a1

0
The product a(1-)y’'(1_) is always finite, so

/ () (s dS<OO<:>/ (s))ds < .

For s € (0,1), we have & ) <

St < als ) and —¢”(s) > 0, which implies

1 1 s(—"(s 1
5 [ e < | %Sj”dsg [ atu s as
Thus

1 1 W
/ a(s) (=" (s))ds < 0o & / uds < 00,
0 0 2
and we are done. O

Remark 6.6. The conditions lim; o, ¥(t) = 0 and lim;_.q, ﬁ = 0 are equivalent to Ay # L™
and M, # L.

Example 6.7. We will show that for general concave function ¢ on (0, 1), the condition

1 "
/ S(_’l/} (S)) ds < 00
0 ©(s)
does not necessarily imply M, < Ay.
Suppose that p € (0,1). Let ¢(t) = tP. Define a function ) to be linear on each of the intervals
[n—ll—l’ 1] (n € N) in such a way that 1o(1) = & holds for every n € N. Put ¢ =t | (0,1). It
is easy to see that v has the required properties. Observe that 1" = 0 a.e., which gives

/1Mds:0<oo
; .

(s)
Now we will show that Ay, = Ay. Proving this, we will get M, % Ay, because M, # A, (the
function f(t) = % belongs to M, but does not belong to A,).

FixneN and suppose that ¢ belongs to [
Thus

nt+i’ n) Then QO( ) [m7#)7 w(t) € [ma #)

() =sm= ()

But for every n € N, we have 57 < (;%57)? and (=t1)P < 2P, This gives
i < ﬂ < 9P
27 p(t)

for every t € (0,1). Due to Lemma 6.3, Ay = A,,.

Corollary 6.8. Let X and Y be Banach function spaces of type M or A (not necessarily both
of the same type) over ((0,1),A). Denote by px, ¢y the fundamental functions of X and Y,

respectively. Then X Sy if and only if X — Y and lim;_,o ¢ f(-% =0.
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v (t)

Proof. The conditions X — Y and lim;_g4 (“;75 = 0 are necessary for an almost compact

embedding between rearrangement-invariant Banach function spaces over a finite nonatomic

measure space. Conversely, Theorems 6.4 and 6.5 show that these conditions are also sufficient.
O

7. EMBEDDINGS INTO THE SUBSPACE OF FUNCTIONS OF ABSOLUTELY CONTINUOUS NORM

Theorem 7.1. Let X be a rearrangement-invariant Banach function space over ((0,1),X) and
let ¢ be a positive nondecreasing concave function on (0,1) such that lim,_o, ¢(t) = 0. Suppose
that A, — X. Then A, C X,.

Proof. Because A, — X, we have
1fllx < Clifla,
for every f € A, and for a constant C' > 0 independent of f. Thus,

¢
Jim (1" xllx < lim Clf xo0la, = Ctlglg1+/0 f*(s)¢'(s)ds = 0,
so every function f € A, belongs to X,. O

Corollary 7.2. Suppose that ¢ is a positive nondecreasing concave function on (0,1) satisfying
limy_o, ¢(t) = 0. Then

Ay © (My)a-
Proof. Just use the fact that A, < M, and the previous theorem. O

Remark 7.3. In the case that lim; .o, ¢(t) > 0, the inclusion A, C (M), fails because
(My)q = {0} and A, # {0}.

Theorem 7.4. Let X be a rearrangement-invariant Banach function space over ((0,1),X) and

let ¢ be a positive nondecreasing concave function on (0,1) such that lim;_o, —t = 0. Suppose

©(t)
that M, C X,. Then M, < X.

Proof. Choose a concave function « satisfying # < ﬁ < af(t) for every t € (0,1). To prove

that M, <, X it is enough to show that X’ < M, = Ay, which is equivalent to

lim sup ”f*X(O,t)HAa =0.
=04 17|l <1

In the proof of Theorem 6.5 it was shown that lim;—o, a(t) = 0 and o/ € M,. The latter
condition implies, together with the assumption M, C X, that o/ € X, (in particular, o/ € X).
Thus, due to Holder inequality, for ¢ € (0,1)

1
Hf*X(O,t)”Aa = /0 f*(s)a/(S)X(O,t) ds < HfHX/Ha/X(o,t)HX-
So, using that o/ € X,

hm su * Au S hm O/ .= 0
Jug sup I xoollas < g llexool

This completes the proof. O
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