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Katedra (ústav): Katedra Algebry
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Chapter 1

Introduction

The problem of finding a solution in Z of a polynomial equation with integer coef-
ficient dates back to ancient Greece. These kinds of equations, called Diophantine
equations, remained in the interest of many mathematicians during the centuries
so that D. Hilbert decided to include them into his famous list of twenty-three
mathematical challenges for 20th century [3]. Known as Hilbert’s tenth problem
it states:

Given a Diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: To devise a process according to which it
can be determined in a finite number of operations whether the equation is solvable
in rational integers.

Very importantly, Hilbert’s tenth problem marks the beginning of develop-
ment of computer science, and particularly was decisive for a formalization of the
concept of an algorithm that is of an aforementioned ”process with finite num-
ber of operations” . It was Y. Matiysevich in 1970, who showed that problem
of finding solutions of such equations is algorithmically undecidable, that is, no
such process can be found [4]. However, there are certain classes of Diophantine
equations, where we do know an algorithm that finds all the solutions or says that
there are not any (e.g. the class of linear Diophantine equations). There exist
many approaches how to solve particular Diophantine equation (e.g. continued
fraction method for solving Pell’s equation), but these methods usually cannot be
generalized in order to solve some larger class of equations. In this thesis we will
treat the techniques employed to solve quadratic Diophantine equations and show
that these techniques can be effectively used in case of homogenous quadratic
homogenous equations in three variables.

One of the useful observations of the theory of Diophantine equations states
that a necessary condition for finding a solution of an equation in Z is the existence
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of a solution of the equation modulo p. We call this the local solution. However,
as it is shown in Chapter 4, the condition is not sufficient and therefore, cannot
guarantee the existence of the global solution.

Somehow stronger result can be obtain by looking up solutions modulo pn for
all n ∈ N, in other words, searching a solution in the field of p-adic integers Zp,
which are discussed in Chapter 2. Although in general again the existence of a
solution in Qp for all the primes p does not give us a guarantee of a success in
finding solution in Z, there is a class of Diophantine equations, i.e. aforementioned
homogenous quadratic equations, where this condition proves to be sufficient. This
result is know as Hasse–Minkowski theorem, which we deal with towards the end
of Chapter 4.

The last chapter is dedicated to applications of the Hasse–Minkowski theorem
to a simplified equation and builds a lot simplier way to to determine the existence
of a solution.
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Chapter 2

p-adic numbers

In this chapter we will define the field of p-adic numbers Qp and show some of its
basic properties. All the mentioned fields are commutative.

2.1 Basic Notions

We would like to define Qp as a completion of Q with respect to a norm with a
special property. Here we provide the definition of a non-Archimedean norm:

Definition 2.1. Let F be a field. A function ||.|| : F → R is called a norm, if it
has the following properties:

(N1) ||x|| ≥ 0, with the equality if and only if x = 0.

(N2) ‖xy‖ = ‖x‖‖y‖.

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We say that the distance d is induced by a norm if d(x, y) = ‖x− y‖.
A norm is called non-Archimedean if

‖x+ y‖ ≤ max(‖x‖, ‖y‖)

holds for all x, y ∈ F .

Obviously, the standard norm on R does not have this property. We will need
the following two properties of non-Archimedean norms.

Proposition 2.1. In a field F with a non-Archimedean norm ‖.‖, all the triangles
are isosceles.
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Proof. Let X, Y, Z ∈ F be a triangle. Without loss of generality, let us assume
that

‖X − Y ‖ < ‖X − Z‖.
Then

‖X − Z‖ = ‖(X − Y ) + (Y − Z)‖ ≤ max(‖X − Y ‖, ‖Y − Z‖),

so ‖X − Z‖ ≤ ‖Y − Z‖.
Also

‖Y − Z‖ = ‖(Y −X) + (X − Z)‖ ≤ max(‖X − Y ‖, ‖X − Z‖) = ‖X − Z‖.

Therefore, we get

‖X − Z‖ ≤ ‖Y − Z‖ and ‖Y − Z‖ ≤ ‖X − Z‖ ⇒ ‖X − Z‖ = ‖Y − Z‖.

Proposition 2.2. Let F be a field with a non-Archimedean norm ‖.‖ and the
distance induced by a norm. Let B(a, r) be a ball in F , i.e. B(a, r) = {x ∈
F ; ‖x− a‖ < r}. Then all the points of the ball are its center.

Proof. For any x, b ∈ B(a, r) we have that

‖x− b‖ = ‖x− a+ a− b‖ ≤ max(‖x− a‖, ‖a− b‖) < r.

Hence, for all x ∈ B(a, r), x is also in B(b, r). Therefore, B(a, r) ⊆ B(b, r).
Analogously, B(b, r) ⊆ B(a, r) and the claim follows.

2.2 Norm |.|p
It is time to define some particular non-Archimedean norm.

Definition 2.2. Let p be a prime. For all a ∈ Z, a 6= 0, we define ordpa as the
greatest power of p that divides a. For a = 0 we put ordpa = ∞. For a ∈ Q,
a = a1

a2
, we put ordpa = ordpa1 − ordpa2.

Definition 2.3. Let p be a prime. We define the norm |.|p on Q

|x|p =

{
p−ordpx, if x 6= 0;

0, if x = 0.
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Proposition 2.3. |.|p is a non-Archimedean norm on Q.

Proof. (N1) If x = 0, then |x|p = 0. Let x 6= 0, p ≥ 0, ordp ∈ Z, then

|x|p = p−ordpx > 0.

(N2) Let x, y ∈ Q. Since p is a prime, ordpxy = ordpx+ ordpy. Then

|xy|p = p−ordpxy = p−ordpx−ordpy = p−ordpxp−ordpy = |x|p|y|p.

(N3) Let x, y ∈ Q. If x = 0 or y = 0 or x + y = 0, then the property holds.
Let x, y, x+ y 6= 0. We can write x = a

b
, y = c

d
. We have

ordp(x+ y) = ordp
ad+ bc

bd
= ordp(ad+ bc)− ordpb− ordpd

The greatest power that divides two numbers is at least the minimum of the
greatest powers that divide each of the two numbers, i.e.

ordp(k + l) ≥ min(ordpk, ordpl).

Therefore, we get

ordp(ad+ bc) ≥ min(ordpad, ordpbc),

ordp(x+ y) = ordp
ad+ bc

bd
≥ min(ordpa+ ordpd, ordpb+ ordpc)− ordpb− ordpd

= min(ordpa− ordpb, ordpc− ordpd) = min(ordpx, ordpy)

ordp(x+ y) ≥ min(ordpx, ordpy)

−ordp(x+ y) ≤ max(−ordpx,−ordpy)

pα increases with α, so

p−ordp(x+y) ≤ max(p−ordpx, p−ordpy),

i.e. |x+ y|p ≤ max(|x|p, |y|p) ≤ |x|p + |y|p.

We have shown that |.|p has the property (N3) and that it is non-Archimedean.

It is possible to show that all the norms on Q are either equivalent to the
standard norm used on R or to a norm |.|p for some prime p. The details can be
found in Gouvea[2].
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2.3 Qp

The field Q is not complete with respect to the Archimedean norm. The real
numbers R may be defined as the completion of Q with respect to an Archimedean
norm. The field of p-adic numbers Qp is defined similarly.

Definition 2.4. We define the field Qp as the completion of Q with respect to the
norm |.|p.

The field Qp has some convenient properties that would not be found in R.

Proposition 2.4. In Qp the series
∑∞

n=0 βn is convergent if and only if βn → 0.

Proof. One implication is clear. To show the reverse implication, we take∣∣∣∣∣
N∑
n=0

βn −
M∑
n=0

βn

∣∣∣∣∣
p

= |
N∑

n=M+1

βn|p ≤ max
M<n≤N

|βn|p −→ 0.

The last inequality holds because the non-Archimedean property can be extended
by induction. So

∑
βn is a Cauchy sequence. Since Qp is complete,

∑
βn is

convergent.

So we have the definition of Qp, but it is not very clear, what the elements
of Qp actually are. Obviously, the elements of Q do belong there, but what else?
First we have a closer look at the elements of Zp, so called p-adic integers, which
is a subset of Qp.

Definition 2.5. We define the set of p-adic integers Zp as a subset of Qp,

Zp = {x ∈ Qp : |x|p ≤ 1}.

We can see that Zp ∩ Q are exactly such numbers x ∈ Q that have the form
x = a

b
, a, b ∈ Z, p - b.

Proposition 2.5. Zp is a ring.

Proof. We take x, y ∈ Zp. We have |x|p, |y|p ≤ 1. Then

|x+ y|p ≤ max(|x|p, |y|p) ≤ 1

|x|p, |y|p ≤ 1 so ordpx, ordpy ≥ 0

we have 0 ≤ ordpx+ ordpy = ordpxy so |xy|p ≤ 1.

We can see that |x+ y|p, |xy|p ≤ 1. Therefore, Zp is a ring.
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Proposition 2.6. Every element of Zp can be written uniquely in the form

α =
∞∑
n=0

anp
n,

where an ∈ {0, 1, ..., p− 1} for all n.

Proof: Based on Cassels[1]. We show that α of the form
∑∞

n=0 anp
n are in Zp:

|α|p =

∣∣∣∣∣
∞∑
0

anp
n

∣∣∣∣∣
p

≤ max
0≤n<∞

(|anpn|p) = max
0≤n<∞

(|pn|p) = 1.

We take an arbitrary α ∈ Zp. As Q is dense in Qp, there exists b ∈ Q such
that |b − α|p < 1. Obviously, there exists a unique a0 ∈ {0, ..., p − 1} such that
|a0 − b|p < 1. Therefore,

α = a0 + pα1 for some α1,

where |α1|p ≤ 1, i.e. α1 ∈ Zp. By induction, we get the series

α = a0 + a1p+ a2p
2 + ...+ anp

n + αn+1p
n+1

where αn+1 ∈ Zp. We show that limn→∞
∑n

i=0 aip
i = α:

| lim
n→∞

n∑
i=0

aip
i − α|p = lim

n→∞

∣∣∣∣∣
n∑
i=0

aip
i − α

∣∣∣∣∣
p

= lim
n→∞

|αnpn|p ≤ lim
n→∞

p−n = 0.

Then the elements of Qp are the series of a form

α =
∞∑

n=−n0

anp
n, an ∈ {1, .., p− 1},

because for α ∈ Qp, we have |α|p = pn0 , for some n0 ∈ Z. Hence α = p−n0α1 for
some α1 ∈ Zp and

α = p−n0

∞∑
n=0

anp
n =

∞∑
n=n0

a′np
n.

Note that the p-adic integers could be defined as the formal series α =
∑∞

n=0 anp
n,

an ∈ {1, ..., p− 1}. The addition, multiplication and congruences are done rather
intuitively. For α =

∑∞
n=0 anp

n, β =
∑∞

n=0 bnp
n, we have:
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α + β =
∞∑
n=0

(an + bn)pn

α · β =
∞∑
n=0

=
∞∑
m=0

anbmp
n+m

α mod pn =
n−1∑
i=0

aip
i

Note that α ∈ Zp is described uniquely by its reductions modulo pn for all
n ∈ N.

ordpα = m, for the largest m ∈ N, such that for all n < m : an = 0

|α|p = p−m.

α is invertible in Zp if and only if a0 6= 0, i.e. |α|p = 1. The set of α ∈ Zp, α
invertible, is called the p-adic units and it is denoted Z×p .

Proposition 2.7. The p-adic expansion of a number α ∈ Qp in series of powers of
p is finite if and only if α is a positive rational number, such that its denominator
is a power of p.

Proof. Let α be finite series of powers of p, i.e. α =
∑N

n=−k anp
n, with k ≥ 0.

α = a−kp
−k + ...+ a0 + a1p+ ...+ aNp

N

=
1

pk
pk(a−kp

−k + ...+ a0 + a1p+ ...+ aNp
N) =

1

pk

N+k∑
n=0

anp
n

We take a =
∑N+k

n=0 anp
n and b = pk. Then α = a/b where a is a finite sum of

integers, which is an integer and b a power of p. This gives us the first implication.
Let α = α1

pk
with k ≥ 0, α1 ∈ Z. Since α1 ∈ Z is a finite number, we can write

it in a p-ary base, α = (a0, ..., aN) with N finite, i.e. α1 =
∑N

n=0 anp
n. Therefore,

α =
α1

pk
=

1

pk

N∑
n=0

anp
n =

N−k∑
n=−k

anp
n,

which proves the proposition.
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Chapter 3

Hensel’s Lemma

This chapter provides us with a very usefull tool for the work with p-adic numbers
and Diophantine equations. We have a Diophantine equation and a prime p and
we want to determine, whether there is a solution in Zp. The Hensel’s lemma
determines the conditions under which we only need to check the existence of a
solution modulo p, which saves us a great deal of effort.

The lemma comes in two versions. The first version is less general than the
second, but its conditions are more straightforward to check. If these conditions
cannot be satisfied, we can still try to use the second version, which has a wider
use.

Theorem 3.1 (Hensel’s lemma, First version). Let F (X) = a0 + a1X + a2X
2 +

... + anX
n be a polynomial, where ai ∈ Zp. Suppose, there exists a p-adic integer

α1 ∈ Zp, such that
F (α1) ≡ 0 mod p

and
F ′(α1) 6= 0 mod p

where F ′(X) = a1 + 2a2X+ ...+nanX
n−1 is the formal derivative of F (X). Then

there exists a p-adic integer α ∈ Zp such that

α ≡ α1 mod p

and
F (α) = 0.

Proof. (Based on Gouvea[2]). We will construct a sequence (αn)n∈N such that
αn ≡ αn+1 mod pn and

F (αn+1) ≡ 0 mod pn.
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The proof goes by induction: for n = 1, we have

F (α1) ≡ 0 mod p.

Suppose we have αn ∈ Zp such that

F (αn) ≡ 0 mod pn.

Note that from αn ≡ α1 modulo p, it follows that F ′(αn) ≡ F ′(α1) 6= 0 modulo p.
We need to find an αn+1 ∈ Zp satisfying

αn+1 ≡ αn mod pn

and
F (αn+1) ≡ 0 mod pn+1.

We want to find x ∈ {1, ..., p−1}, such that αn+1 = αn+pnx and F (αn+pnx) ≡
0 mod pn+1. Expanding into Taylor serie, we have

F (αn + pnx) = F (αn) + F ′(αn)pnx+
1

2
F ′′(αn)p2nx2 + ...

0 ≡ F (αn + pnx) ≡ F (αn) + F ′(αn)pnx mod pn+1

Since F (αn) ≡ 0 mod pn, there exists y ∈ Z such that F (αn) ≡ ypn modulo pn+1.

0 ≡ ypn + F ′(αn)pnx mod pn+1

or equivalently,
0 ≡ y + F ′(αn)x mod p.

Since F ′(αn) 6= 0 mod p, it is perfectly legal to set

x =
y

F ′(αn)
mod p.

We found αn+1 ∈ Zp such that αn+1 ≡ αn mod pn and F (αn+1) ≡ 0 mod pn+1.
We found a Cauchy sequence (αn) in Qp. Because Qp is complete, there exists

a limit. We set α = limαn. Then α ≡ α1 mod p by construction and the
continuity gives us F (α) = 0.
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Theorem 3.2 (Hensel’s lemma, Second version). Let F (X) = a0 +a1X+a2X
2 +

... + anX
n be a polynomial, where ai ∈ Zp. Suppose, there exists a p-adic integer

α1 ∈ Zp, such that
|F (α1)|p < |F ′(α1)|2p

where F ′(X) = a1 + 2a2X+ ...+nanX
n−1 is the formal derivative of F (X). Then

there exists a p-adic integer α ∈ Zp such that

α ≡ α1 mod pordp(F (α1))−ordp(F ′(α1))

and
F (α) = 0.

Proof. We will construct a sequence (αn)n∈N such that

αn ≡ αn+1 mod pn(ordp(F (α1))−ordp(F ′(α1)))

and
F (αn+1) ≡ 0 mod pn(ordp(F (α1))−ordp(F ′(α1))).

The proof goes by induction: for n = 1, we have

F (α1) ≡ 0 mod pordp(F (α1))−ordp(F ′(α1)),

because F (α1) = pordp(F (α1))ξ, where ξ is a p-adic unit and

ordp(F (α1)) > ordp(F (α1))− ordp(F
′(α1)) > 0.

Also
F ′(α1) 6= 0 mod pordp(F (α1))−ordp(F ′(α1)),

because F ′(α1) = pordp(F ′(α1))γ, where γ is some p-adic unit and ordp(F
′(α1)) <

ordp(F (α1))−ordp(F
′(α1)). Note that from αn ≡ α1 modulo pordp(F (α1))−ordp(F ′(α1)),

it follows that F ′(αn) ≡ F ′(α1) 6= 0 modulo pordp(F (α1))−ordp(F ′(α1)). Suppose we
have αn ∈ Zp such that

F (αn) ≡ 0 mod pn(ordp(F (α1))−ordp(F ′(α1))).

We need to find an αn+1 satisfying

αn+1 ≡ αn mod pn(ordp(F (α1))−ordp(F ′(α1)))

and
F (αn+1) ≡ 0 mod p(n+1)(ordp(F (α1))−ordp(F ′(α1))).
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We want to find x ∈ Z, such that αn+1 = αn + pn(ordp(F (α1))−ordp(F ′(α1)))x and

F (αn + pn(ordp(F (α1))−ordp(F ′(α1)))x) ≡ 0 mod pn+1.

Expanding into Taylor serie, we have

F (αn+p
n
(
ordp

F (α1)

F ′(α1)

)
x) = F (αn)+F ′(αn)p

n
(
ordp

F (α1)

F ′(α1)

)
x+

F ′′(αn)

2
p

2n
(
ordp

F (α1)

F ′(α1)

)
x2+...

0 ≡ F (αn+p
n
(
ordp

F (α1)

F ′(α1)

)
x) ≡ F (αn)+F ′(αn)p

n
(
ordp

F (α1)

F ′(α1)

)
x mod p

(n+1)
(
ordp

F (α1)

F ′(α1)

)
Since F (αn) ≡ 0 mod pn(ordp(F (α1))−ordp(F ′(α1))), there exists y ∈ Z such that

F (αn) ≡ ypn(ordp(F (α1))−ordp(F ′(α1))).

0 ≡ yp
n
(
ordp

F (α1)

F ′(α1)

)
+ F ′(αn)p

n
(
ordp

F (α1)

F ′(α1)

)
x mod p

(n+1)
(
ordp

F (α1)

F ′(α1)

)
or equivalently,

0 ≡ y + F ′(αn)x mod pordp(F (α1))−ordp(F ′(α1)).

Since F ′(αn) 6= 0 mod pordp(F (α1))−ordp(F ′(α1)), we can set

x =
y

F ′(αn)
mod pordp(F (α1))−ordp(F ′(α1)).

We found αn+1 ∈ Zp such that αn+1 ≡ αn mod pn(ordp(F (α1))−ordp(F ′(α1))) and
F (αn+1) ≡ 0 mod p(n+1)(ordp(F (α1))−ordp(F ′(α1))).

We found a Cauchy sequence (αn) in Qp. Because Qp is complete, there
exists a limit. We set α = limαn. Then α ≡ α1 mod pordp(F (α1))−ordp(F ′(α1)) by
construction and the continuity gives us F (α) = 0.
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Chapter 4

Local and Global

The aim of the thesis is to use the theory of p-adic numbers in search of integer
or rational solutions of equations that have integer coeficients.

For an equation to have a solution in Z or Q, necessarily it needs to have a
solution modulo p for all the primes p.

Example 4.1.
F (X) = X3 − 2X + 17

does not have a solution modulo 5 for F (X) = 0:

F (X) ≡ X3 + 3X + 2 mod 5.

Trying out the numbers 0, 1, 2, 3, 4 shows that we cannot get the 0. If there was
an x0 ∈ Z that F (x0) = 0, then necessarily also F (x0) modulo 5 would equal zero.

Then we can move one level higher and try to find a solution that holds modulo
pi for all i ∈ N at once.

Here comes an example of a Diophantine equation, where the approach of
proving the non-existence of a local solution to reject the existence of a global
solution is used.

Example 4.2.
F (X, Y, Z) = 3X2 + 2Y 2 − Z2 = 0

This equation does not have a solution in Q3. If there existed a solution (x, y, z) ∈
Q3

3, then we could multiply it through by a convenient power of 3 to obtain a
solution (x′, y′, z′) ∈ Z3

3, where at least one of x1, y1, z1is not in 3Z3. So we have

x′ =
∞∑
i=0

xi3
i,
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y′ =
∞∑
i=0

yi3
i,

z′ =
∞∑
i=0

zi3
i.

We set this into our equation

0 =
∞∑
n=0

3n+1

n∑
i=0

xixn−i +
∞∑
n=0

2 · 3n
n∑
i=0

yiyn−i −
∞∑
n=0

3n
n∑
i=0

zizn−i

then we check the equation modulo 32:

0 ≡ 3(x0+3x1)
2+2(y0+3z1)

2−(z0+3z1)
2 ≡ 3x2

0+3y0y1+2y2
0−z2

0−6z0z1 mod 9.

Since
2y2

0 − z2
0 ≡ 0 mod 3,

We have y0, z0 = 0. Then 3x2
0 ≡ 0 modulo 9 and x0 = 0. Then all x0, y0, z0 are

zero and all x′, y′, z′ ∈ 3Z3, which is a contradiction with the assumption.

If an equation has a solution in Q, then necessarily it needs to have a solution
in Qp for all 2 ≤ p ≤ ∞ (here we use the convention Q∞ = R). Therefore, given
an equation, if we can find such p that there is no solution in Qp, we know that
neither there is one in Q.

In other words, the non-existence of a local solution in some Qp yields the
non-existence of a global solution (in Q). It would be great, if we could prove the
opposite: The existence of a local solution in Qp for all p yields the existence of
a global solution in Q. Unfortunatelly, we cannot. This statement is not true in
general. Here is a counterexample:

Example 4.3.
F (X) = (X2 − 2)(X2 − 17)(X2 − 34) = 0

We will show that this equation has a solution in Qp for all p, but does not have
a solution in Q. We have

F ′(X) = 2X((X2 − 2)(X2 − 17) + (X2 − 2)(X2 − 34) + (X2 − 17)(X2 − 34))

Let p be a prime, p 6= 2, 17. If 2 is a square modulo p, then there exists a ∈
{1, ..., p− 1} : a2 ≡ 2 modulo p. If 17 is a square modulo p, then there exists a ∈
{1, ..., p−1} : a2 ≡ 17 modulo p. If neither 2 nor 17 is a quadratic residue modulo
p then necessarily their product 34 is, i.e, there exists a ∈ {1, ..., p− 1} : a2 ≡ 34

18



mod p. One of these a’s does exist and is a non-trivial solution to F (X) ≡ 0
modulo p. Let a2 ≡ 2 ≡ 17 modulo p. Then either p = 3 or p = 5, but neither
for p = 3 nor for p = 5 is 2 a quadratic residue, so a2 cannot be congruent both
with 2 and 17. Also a2 ≡ 2 ≡ 34 cannot happen, because 32 is not congruent
to zero modulo p 6= 2. Similarly, a2 ≡ 17 ≡ 34 implies 17 is congruent to zero
modulo p 6= 17, which is impossible. We have shown that a2 is congruent to at
most one of the numbers 2,17,34. This gives us F ′(a) 6= 0 modulo p. We found an
a ∈ {1, ..., p− 1} : F (a) ≡ 0 modulo p and F ′(a) 6= 0 modulo p. The first version
of Hensel’s Lemma assures us of the existence of a solution in Qp.

Now let p = 2. We have that F (17) ≡ 0 modulo 24, so |F (17)|p = 2−4. We
calculate F ′(17):

F ′(17) = 2 · 17(287 · 272 + 287 · 255 + 272 · 255) 6= 0 mod 22,

so |F ′(17)|p = 2−1. We have

|F (17)|p = 2−4 < 2−2 = |F ′(17)|2p.

Second version of Hensel’s Lemma says that there exists α ∈ Zp, α ≡ 17 modulo
24−1 = 8, such that F (α) = 0.

Now let p = 17. We set a = 6. Then

F (6) = (36− 2)(36− 17)(36− 34) ≡ 0 mod 17

F ′(6) = 12(36− 17)(36− 34) ≡ 14 6= 0 mod 17

Hensel’s lemma yields that there is a solution in Q17 of F (X) = 0.
Let p =∞. For instance x0 =

√
2 ∈ R is a solution.

We found a solution of F (X) = 0 in Qp for every prime p and also for p =∞.
However, there is not a solution in Q, because none of the numbers 2, 17, 34 is a
square in Q.

The existence of all the local solutions did not serve us in this case. However,
there are certain classes of equations, where the existence of all the local solutions
is a sufficient condition for an existence of a global solution, as explained in the
next section.

4.1 Hasse-Minkowski Theorem

Theorem 4.4 (Hasse-Minkowski). Let F (X1, X2, ..., Xn) ∈ Q[X1, X2, ..., Xn] be a
homogeneous polynomial of degree 2 in n variables. The equation

F (X1, X2, ..., Xn) = 0
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has non-trivial solutions in Q and hence in Z if and only if it has non-trivial
solutions in Qp and hence in Zp, for every prime p ≤ ∞, where Q∞ = R.

The proof of the theorem can be found in Serre[5].
The theorem gives us a sufficient condition for the existence of all local solu-

tions to assure us of the existence of a global solution.
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Chapter 5

Aplication of Hasse-Minkowski
theorem

We have the Hasse–Minkowski theorem that gives us quite good directions on
what to do in order to determine the existence of a solution in Q, but when we
are standing in front of a particular homogeneous polynomial of degree 2, there is
still a lot of work to be done checking the existence of a solution in Qp for all the
primes p. In this chapter we will restrict the homogeneous polynomial of degree 2
to three variables and we will construct a list of simple conditions to be checked,
that will tell us, whether there exists a solution in Q.

We know from Linear Algebra that for a homogeneous polynomial of degree
2 in three variables F (X, Y, Z) = aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z, with
a, ..., f ∈ Z we can find a convenient substitution for X, Y, Z, X ′ = uX + vY +
wZ,... such that F ′(X ′, Y ′, Z ′) = a′X ′2 + b′Y ′2 + c′Z ′2 is diagonal, a′, b′, c′ ∈ Q.
Then we can multiply F ′ through by the denominators of a′, b′, c′ and we get
F ′′ = a′′X ′2 + b′′Y ′2 + c′′Z ′2, where a′′, b′′, c′′ ∈ Z and F ′′ has exactly the same set
of solutions like F ′. We have shown that determining the existence of a solution
of a homogeneous polynomial equation of degree 2 in three variables is equivalent
to determining the existence of a solution of F = aX2 + bY 2 + cZ2.

When does the equation

aX2 + bY 2 + cZ2 = 0 (5.1)

with a, b, c ∈ Q, have a non-trivial solution in Q?

This is a nice quadratic form, so we are going to try to apply the Hasse-
Minkowski theorem. We need to look for solutions in Qp for all primes p, 2 ≤ p ≤
∞.
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5.1 p =∞
Let us first have a look at p = ∞. We want to determine when does (5.1) have
a solution in Qp = R. This is obviously if and only if a, b, c do not all have the
same signs.

5.2 p <∞
For p <∞ it will be useful to make a few assumptions first.

(i) We can assume that a, b, c ∈ Z. If not, we could multiply the equation by
their denominators.

(ii) We can assume that a, b, c are square-free.
Let’s say that a = a1m

2. Then (x0, y0, z0), the solution of (5.1) corresponds to
(mx0, y0, z0), the solution of

a1X
2 + bY 2 + cZ2 = 0,

where a1, b, c are square-free. Also, if (mx0, y0, z0) is a solution to a′X2 + b′Y 2 +
c′Z2 = 0, then (x0, y0, z0) is a solution to a′m2X2 + b′Y 2 + c′Z2 = 0.

(iii) Without the loss of generality, we can assume that gcd(a, b, c) = 1.
If it was not so and gcd(a, b, c) = k 6= 1, we could divide the equation by k

and all the previous solutions would still hold.
(iv) But we can go further, assuming that a, b, c are pairwise coprime.
If they were not, i.e. gcd(a, b) = l 6= 1, l - c, l is square-free, and there existed

a solution (x0, y0, z0) to (5.1), we would get

a1lx
2
0 + b1ly

2
0 + cz2

0 = 0.

We see that l must divide the last term. Since l - c, l must divide z2
0 . Since l

is square-free, l|z0. (x0, y0,
z0
l

) is a solution to

a1X
2 + b1Y

2 + clZ2 = 0.

Also, if (x0, y0, z0) is a solution to aX2 + bY 2 + clZ2 = 0, then (x0, y0, z0l) is a
solution to alX2 + blY 2 + cZ2 = 0.

If at least one of the numbers a, b, c is equal to zero, say a = 0, we have the
obvious non-trivial solution (t, 0, 0), t ∈ Q.

Let me make a little resume of where we are. We have an equation

aX2 + bY 2 + cZ2 = 0,
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where a, b, c ∈ Z−{0} are square-free relativelly prime numbers and we are looking
for a solution (x0, y0, z0) ∈ Qp, for 2 ≤ p <∞.

Let p 6= 2,∞ be a prime. We are going to look for a solution (x0, y0, z0) ∈ Z/pZ
of the equation

aX2 + bY 2 + cZ2 ≡ 0, mod p.

One of the solutions would be the trivial one (0, 0, 0). We’re going to prove that
there is more. From Fermat’s Little Theorem it follows that

(aX2 + bY 2 + cZ2)p−1 ≡

{
1 mod p, if (x, y, z) is not a solution,

0 mod p, if (x, y, z) is a solution.

We put N the number of solutions in Z/pZ. Then

N ≡ p3 −
p−1∑
x=0

p−1∑
y=0

p−1∑
z=0

(aX2 + bY 2 + cZ2)p−1 mod p.

The sums may be expanded into

N ≡ p3 −
∑
x

∑
y

∑
z

∑
i+j+k=p−1

(p− 1)!

i!j!k!
aibjckX2iY 2jZ2k

Note that one of the 2i, 2j, 2k is always less than p− 1. We can rewrite N as

N ≡ p3 −
∑

i+j+k=p−1

(p− 1)!

i!j!k!
aibjck

∑
x

x2i
∑
y

y2j
∑
z

z2k

Here we make use of the following lemma.

Lemma 5.1. For all n ∈ 1, ..., p− 1, p prime, we have

p−1∑
k=0

kn ≡ 0 mod p.

Proof. Let a be some generator of the cyclic group Z/pZ. Then an 6= 1 modulo
p, since n < p− 1. The map

φ : Z/pZ→ Z/pZ
k 7→ ak is bijective.
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Then
p−1∑
k=0

(ak)n ≡
p−1∑
k=0

kn

and

(an − 1)

p−1∑
k=0

kn ≡ 0 mod p,

which leads to
∑p−1

k=0 k
n ≡ 0 modulo p.

We see that the inner part of the sum is always congruent to 0 modulo p.
Therefore, N ≡ 0 modulo p, i.e. N = kp, for some 0 ≤ k ∈ Z. But we already
know that k 6= 0, since (0, 0, 0) is a solution. Then, there must exist at least p− 1
non-trivial solutions to the equation

aX2 + bY 2 + cZ2 ≡ 0, mod p.

Now it’s the time to use Hensel’s lemma. Let (x0, y0, z0) be a non-trivial
solution to (5.1). Say x0 6= 0. We take F (X) = aX2 + by2

0 + cz2
0 . Then

F (x0) ≡ 0 mod p

and F ′(x0) = 2ax0 6= 0 mod p

as long as we reject the case p|a. Then, according to the First version of Hensel’s
lemma, there exists such x1 ≡ x0 modulo p that F (x1) = 0. Then (x1, y0, z0) ∈ Qp

is a solution to (5.1).

Now we have to deal with the cases p|a (or b or c) and p = 2.

5.3 p = 2 - a, b, c
Suppose p = 2 and a, b, c are all odd. If (x0, y0, z0) is a solution to our equation,
we can assume that they are all in Zp and not all of them in 2Zp. If it was not
so, we could divide them all by a convenient power of 2 and the result would still
be a solution. So

aX2 + bY 2 + cZ2 ≡ X2 + Y 2 + Z2 ≡ 0 mod 2

24



Since x0, y0, z0 cannot all be ≡ 0 modulo 2, we see that two of them, say y0, z0 are
odd. We know that for α ∈ 1 + 2Z2, we have α2 ∈ 1 + 8Z2:

α = 1 + 2a1 + 4a2 + ...

α2 = 1 + 4a1 + 8a2 + 4a2
1 + 16a1a2 + 16a2

2 + ... ≡ 1 mod 8

We have
0 ≡ ax2

0 + by2
0 + cz2

0 ≡ b+ c mod 4.

So in order for (x0, y0, z0) to be a solution, necessarily sum of two of a, b, c must
be congruent to zero modulo 4.

We will show that this a sufficient condition. We would like to use the Hensel’s
lemma, but this time it will not be that easy, because the derivative is divisible
by two. We will try to fit it to the Second version of the Lemma. We want to find
an initial solution (x0, y0, z0), such that

ax2
0 + by2

0 + cz2
0 ≡ 0 mod 8.

Let b+ c ≡ 0 modulo 4. Then either b+ c ≡ 0 modulo 8 and (0, 1, 1) is a solution
modulo 8, or b+ c ≡ 4 modulo 8 and setting (x0, y0, z0) = (2, 1, 1), we get

ax2
0 + by2

0 + cz2
0 ≡ 4a+ b+ c ≡ 4a+ 4 mod 8.

Since a is odd, this is congruent to 0 modulo 8 and we are good. We take F (Y ) =
ax2

0 + bY 2 + cz2
0 , then F ′(Y ) = 2bY and

|F (y0)|2 ≤ p−3 < p−2 = |F ′(y0)|22,

because y0, b are odd. Hensel’s Lemma yields that there exists a solution in Q2. We
have that for p = 2 and a, b, c ∈ Z all odd, there exists a solution (x1, y1, z1)∈ Q2

to (5.1) if and only if the sum of two of a, b, c is congruent to 0 modulo 4.

5.4 2 = p|a
Suppose now that p = 2 and p divides one of a, b, c, say p|a, i.e. a = 2a1. As a is
square-free and a, b, c are pairwise coprime, a1, b, c are all odd. Let (x0, y0, z0) be
a solution to (5.1). Again, we may suppose that x0, y0, z0 ∈ Z2 are not all in 2Z2.
If

x0 ∈ 1 + 2Z2 ⇒ x2
0 ∈ 1 + 8Z2
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then y0, z0 must be either both in 2Z2 or both in 1 + 2Z2, otherwise the equation
would not have a solution modulo 2. If y0, z0 ∈ 2Z2, then y2

0, z
2
0 ∈ 4Z2, so

0 ≡ 2a1x
2
0 + by2

0 + cz2
0 ≡ 2a1 + 4(b+ c) mod 8,

which cannot be true, so y0, z0 are both in 1 + 2Z2 and

0 ≡ 2a1x
2
0 + by2

0 + cz2
0 ≡ 2a1 + b+ c mod 8,

therefore, a+ b+ c ≡ 0 modulo 8.

If x0 /∈ 1 + 2Z2, we have

x0 ∈ 2Z2 ⇒ x2
0 ∈ 4Z2.

Then necessarily both y0, z0 ∈ 1 + 2Z2.So

0 ≡ 2a1x
2
0 + by2

0 + cz2
0 ≡ b+ c mod 8.

We conclude that in order for (x0, y0, z0) to be a solution, either sum of two or
sum of three of a, b, c must be congruent to zero modulo 8.

Again, we will make this a sufficient condition for a solution to exist. Again,
we need to find a solution of

2a1x
2
0 + by2

0 + cz2
0 ≡ 0 mod 8,

If a + b + c ≡ 0 modulo 8, then (1, 1, 1) is a solution. If b + c ≡ 0 modulo
8, then (0, 1, 1) is a solution. We found a non-trivial solution to an equation
2a1x

2
0 + by2

0 + cz2
0 ≡ 0 modulo 8. We take F (Y ) = ax2

0 + bY 2 + cz2
0 . Then

|F (1)|2 ≤ 2−3 < 2−2 = |F ′(1)|22.

The Second version of Hensel’s lemma assures us that there is a solution x1, y1, z1 ∈
Q2 to (5.1). The necessary condition is sufficient.

5.5 p|a
Suppose that p 6= 2 and a = pa1, a, b, c are pairwise relatively prime, (x0, y0, z0)
is a non-trivial solution to

aX2 + bY 2 + cZ2 ≡ 0 mod p, so
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pa1x
2
0 + by2

0 + cz2
0 ≡ by2

0 + cz2
0 ≡ 0 mod p

If p - y0, then b+c
z20
y20
≡ 0 modulo p. It follows that there exists such r ∈ {1, ...p−1}

that b + cr2 ≡ 0 modulo p. If y0 = kp, for some k ∈ Z, then by2
0 + cz2

0 ≡ cz2
0 ≡ 0

modulo p and then necessarily p|c and p|b, we set r = 1 and b+ c ≡ 0 modulo p.
(If p|z0, we would have p|x0 and the solution would be trivial.)

Sufficiency of this condition follows. If b + cr2 ≡ 0 modulo p, then (0, 1, r) is
a solution to aX2 + bY 2 + cZ2 ≡ 0 modulo p. We put

F (Y ) = bY 2 + cr2

We have F ≡ 0 modulo p and F ′(1) = 2b 6= 0 modulo p. According to the
first version of Hensel’s Lemma, there exists a y1 ∈ Qp such that F (y1) = 0 and
(0, y1, r) is a non-trivial solution to (5.1) in Qp.

5.6 Conclusion

It’s time to put all the information collected together and state the conditions,
when (5.1) has a non-trivial solution in Qp for every p, hence from Hasse-Minkowski
theorem, there is a non-trivial solution in Q.

Proposition 5.2. Let a, b, c be pairwise relatively prime integers that are square-
free. Then the equation

aX2 + bY 2 + cZ2 = 0

has a solution in Q if and only if all of the following is satisfied:

(1) Not all a, b, c have the same sign.

(2) If 2 - abc, then either a+ b or b+ c or a+ c is divisible by 4.

(3) If 2|a, then either b+ c or a+ b+ c is divisible by 8. (Similarly, if 2|b, c.)

(4) For all odd primes, such that p|a, there exists r ∈ {1, ...p − 1}, such that
b+ cr2 ≡ 0 mod p. (Similarly, if p|b, c.)

Checking these four conditions is obviously way more simple than checking
the existence of a solution in Qp for all the primes p.
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Example 5.3.
F (X, Y, Z) = 5X2 + 7Y 2 − 13Z2

Does the equation have a solution for F (X, Y, Z) = 0 in Q? We need to check
that all the conditions of the proposition are satisfied. Obviously (1) and (3) are.
Then a+b=5+7=12 is divisible by 4, which satisfies (2). We need to check (4) for
p = 5, 7, 13.

7− 3r2 ≡ 0 mod 5 for r = 2,

5− 13r2 ≡ 0 mod 7 for r = 3,

5 + 7r2 ≡ 0 mod 13 for r = 4,

According to the proposition, there exists a solution to this equation in Q.

As we can see, the proposition really did save us a lot of work.
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