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to phrase decision problems by means of formal languages as a “yes-no” ques-
tion. Definition of time complexity formalises polynomial hierarchy and leads
to inquiry about the relationship of the classes P and NP, conjectured to
P 6= NP. Polynomial time reducibility and the notion of NP-completeness,
arising from further research in P vs. NP, are central to the rest of the
work. Second, Satisfiability of Boolean formulae (SAT) is presented noting
its variants. Third, classical NP problems, 3-Satisfiability, Vertex Cover and
Hamiltonian Circuit are reduced to each other. Fourth, departing from al-
ready proved results, others are to be shown NP-complete, with intent to
illustrate the relationship of problems from seemingly disconnected mathe-
matical disciplines as well as importance of the notion of NP-completeness.
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Abstrakt: Předkládaná práce se zabývá NP-úplnými problémy z r̊uzných
oblast́ı matematiky a jejich následnými redukcemi. Pro formulaci rozhodo-
vaćıho problému za pomoci formálńıch jazyk̊u jako zjǐsťovaćı otázky je prvně
zavedeno poč́ıtáńı deterministického a nedeterministického Turingova stroje.
Definice časové složitosti pak umožňuje formalizaci polynomiálńı hierarchie
a vede ke zkoumáni vztahu tř́ıd P a NP, odhadovaného na P 6= NP.
Polynomiálńı převoditelnost a NP-úplnost, vznikaj́ıćı z daľśıho výzkumu
v oblasti P vs. NP, jsou ústředńımi pojmy zbytku práce. Dále je prezen-
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tován problém splnitelnosti Booleovských formuĺı (SAT) a jeho varianty.
Následně jsou na sebe převedeny klasické NP-úplné problémy: splnitelnost
formuĺı v 3 - CNF, vrcholové pokryt́ı a Hamiltonovské kružnice. Konečně na
základe již dokázaných tvrzeńı bude ukázána NP-úplnost daľśıch problémů
se záměrem ilustrovat vztah mezi problémy ze zdánlivě nepropojených mate-
matických disciplin a také význam NP-úplnosti.

Kĺıčová slova: NP-úplné problémy, redukce v polynomiálńım čase.
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Chapter 1

Introduction

1.1 Motivation

NP-completeness was conceptualised in 1970s as a result of vast investiga-
tions in the field of mathematics from late 19th to early 20th century and
Entscheidungsproblem originating in the 17th century. The concept of a deci-
sion problem inspired by Gottfried Leibniz was formalised by David Hilbert in
1928 and defined as a “yes-no” question phrased in a formal system. Embrac-
ing all intractable decision problems, qualitatively characterised as hard to
compute and easy to verify in terms of their solution, NP-complete problems
play a central role in complexity theory. The importance of NP-complete
problems lies in both their dispersion over different areas of mathematics
due to their reductions of one to another, providing a better insight into the
problematic, and direct relation to one of the most famous and beautiful
open problems; P versus NP.

To study NP-completeness and its properties, formalisation of the notion
of computation is needed. Therefore, algorithms, Turing machines and rel-
evant classes of formal languages are defined. The binary encoding of finite
objects is assumed to be used.

1.2 Notation

An algorithm is a method operating on the basis of a finite set of instructions
primarily designed to provide a solution to a problem. A more precise ap-
proach to the notional concept of algorithms is based on viewing algorithms

6



as Turing machines. In brief, Turing machine abstractly models computation
using an infinite tape, a finite state control and a read-write head.

The program limited by instructions, reads the input written in the form
of a string of symbols using the head. Starting from a given square qs, the
head scans the corresponding symbol and proceeds according to the instruc-
tions. A step-by-step computation either ends by reaching a halt state, pro-
viding an answer to the problem, or defines further proceedings of Turing
machine by means of a transition function. Then, the head rubs the con-
tents of the square out and writes a new symbol in its place. With respect
to the direction imposed by the transition function, the read-write head and
the finite state control move to the next square of the tape. The described
procedure is fully illustrative of a computation step of a deterministic Turing
machine as defined below.

Definition 1 (Deterministic Turing Machine - DTM). Deterministic Turing
machine is a 8-tuple M where M = {Γ, Σ, b, Q, qs, qY , qN , T} , Γ, a non-empty
finite set of at least two symbols, denotes the input symbols and a finite set
Σ; Γ ⊂ Σ, denotes the tape symbols, b; b ∈ Σ− Γ, represents a blank symbol,
Q, a non-empty finite set of all state symbols of which qs is the start symbol,
qY , qN , two halt states, and T, is a transition function defined as follows:

T : Σ× (Q− {qY , qN})−→ Σ×Q× {←,→}

where the arrows ←,→ indicate the sense in which the head’s shift is exe-
cuted.

On the condition that the computation of a deterministic Turing machine M
ends, it is possible to analyse its tape to extract results to define function
fM corresponding to the computation of M on an input x.

Gradually, a large variety of Turing machines came into existence. Rang-
ing from multiple-tape models to versions restrained to one-way infinite tapes
with heads moving either right or left, all TM are computationally equiv-
alent and can be successfully simulated using DTM. More complex non-
deterministic Turing machines are also the case.

Definition 2 (Non-Deterministic Turing Machine - NDTM). Non-deter-
ministic Turing machine is a 6-tuple M where M = {Γ, Σ, b, Q, qs, T} ; Γ, Σ,
b, qs, T as in DTM, Q contains non-deterministic states and the computation
on given string x ∈ Γ simulates DTM computation until a non-deterministic
state qND is reached. Then, the next state is chosen arbitrarily.
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An NDTM computation is said to be accepting if it halts in qY , otherwise
it is classified as non-accepting. In other words, an input is accepted if there
is a sequence of non-deterministic choices resulting in answering “yes”.

It is important to note that unlike a single computation path in DTMs,
non-deterministic Turing machines produce a computation tree where any
branch halting with an “accept” condition is sufficient for an NDTM to
accept the input. However, if an input x is not accepted, it does not imply
that x does not belong to a language L, a formal system to be defined.
It means that there was at least one faulty decision in non-deterministic
states in the process of NDTM computation. Consequently, the computation
is to be started afresh.

Formalisation of the computation model from algorithms to one-tape Tur-
ing machines necessitates further development of formal systems to enable
formulation of decision problems. The process of solving a decision problem
is then equivalent to the acceptance or recognition of formal languages de-
scribed subsequently as sets of natural numbers computable by a specific
type of recursive functions.

Definition 3 (Partially Recursive Function). Let A be the domain of a func-
tion f. Function f ; f : A ⊆ N −→ N is a partially recursive function ⇔ ∃M,
an algorithm:

• A = dom(fM)

• ∀x ∈ A; f(x) = fM (x);

where the function fM is given by (the computational output provided by)
the algorithm M.

The class of partially recursive functions is denoted PRF.

Definition 4 (Recursive Function). Function f ; f : N −→ N is a recursive
function ⇔

• ∃f : f ∈ PFR

• dom(f) = N.

The class of recursive functions is denoted RF.
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Definition 5 (Recursively Enumerable Language). Language L; L ⊆ N is
a recursively enumerable language ⇔ ∃f ; f ∈ PRF; dom(f) = L.

The class of recursively enumerable languages is denoted RE.

Definition 6 (Recursive Language). Language L; L ⊆ N is a recursive lan-
guage ⇔ ∃f ∈ RF ; f = χL, a characteristic function:

χL(x) =

{

1, x ∈ L
0, x /∈ L.

The class of recursive languages is denoted R.

Recursively enumerable and recursive languages are also referred to as par-
tially decidable and decidable languages since one of the most important
problems put on algorithms and Turing machines is to decide the language
by determining whether all given words are in the target language. The out-
come of such a task is to reach a halt state, answering either “yes” or “no.”

Nevertheless, it is possible that a state solving the problem unambigu-
ously on an input is never attained, classifying the problem as formally un-
decidable. Halting problem, formalising the notion of unconditional response
provided by algorithms, is undecidable.

Definition 7 (Halting Problem). Let M denote an algorithm, x ranges over
possible inputs to M. Halting problem is defined as follows:

HALT := {(M, x) | M halts on x } .

To grasp the structure and the complexity of decision problems, a func-
tion assessing the time spent on computing the answer to the problem is
needed. Thus, time complexity and its variant classes, depending on the
model of the Turing machine used in computation, will be defined.

Definition 8 (DTM Time Complexity). Time complexity is the function
tM : N −→ N ∪ {∞}; tM := max {timeM (x)|x : |x| 6 n} , where timeM (x)
denotes the number of steps needed for M, a DTM, to halt on x.

Definition 9 (Polynomial Time DTM). Deterministic Turing machine M
is a polynomial time DTM if ∀n :

tM(n) 6 nO(1).1

1 According to Bachmann-Landau notation, ∃c > 0 ∀n : tM (n) 6 nc.
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It is important to note that a polynomial time DTM halts on all inputs.

The time a non-deterministic Turing machine requires to accept the input
string x ∈ Γ∗ of length n is defined as the minimal time over all accepting
computations of NDTM on x on the condition that such a computation
exists. Otherwise, timeM :=∞.

A polynomial bound in the following definition is restricted only to the ac-
cepting computations of the NDTM in question.

Definition 10 (Polynomial Time NDTM). Non-deterministic Turing ma-
chine M is a polynomial time NDTM if ∀x; |x| = n and timeM (x) 6=∞⇒

timeM (n) 6 nO(1).

Polynomial time deterministic and non-deterministic Turing machines can
be seen as specific computational resources for solvability of computational
problems from complexity classes P and NP.

Definition 11 (P). P = {L ⊆ N | ∃ polynomial time DTM M : fM = χL} .

Analogously, NP is the class of languages accepted in polynomial time using
non-deterministic Turing machine. There is an alternative equivalent defini-
tion based on polynomially decidable relation as a verifier of the problem
whose decidability is checkable in a polynomial time.

Definition 12 (NP). L ∈ NP: ∃c > 0 ∧ binary relation R(x, y):

• R(x, y) is decidable in polynomial time;

• ∀x; x ∈ L⇔ ∃y : |y| 6 |x|c ∧R(x, y).

The importance of both the classes P and NP lies in incapacity of proving
that either P = NP or P 6= NP rendering the construction of substantial
class of NP-complete problems a promising approach for further considera-
tion of theoretical question of P (easy to solve) versus NP (easy to verify).

The following concept ofNP-completeness is infinitely more complex and
significant if P is distinct from NP since it provides a whole range of condi-
tional results. In spite of being nearly as intractable as the unconditional ones,
the results based on conjecture that P 6= NP tend to be proved straightfor-
wardly using, among other techniques, the influential notion of polynomial
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time reducibility first presented in Richard Karp’s 1972 paper “Reducibility
Among Combinatorial Problems”[8].2

Definition 13 (Polynomial Time Function). Function f ; f : N −→ N is
a polynomial time function⇔ ∃ DTM running in polynomial time computing
the function f.

Definition 14 (Polynomial Time Reducibility). Let L1, L2 ⊆ N. Polynomial
time reducibility is a polynomial time function f ; f : N −→ N, ∀x ∈ N :

x ∈ L1 ⇔ f(x) ∈ L2.

Polynomial reducibility of L1 to L2 is denoted L1 6p L2.

Polynomial time reducibility is transitive.

Lemma 1. Let L1, L2, L3 ⊆ N. If (L1 6p L2) ∧ (L2 6p L3) ⇒ (L1 6p L3).

Eventually, to specify the characteristics of NP-completeness, a problem
equivalent to the hardest problem found in NP is going to be formally pre-
sented in terms of polynomial reductions.

Definition 15 (NP-Hard). Language L ⊆ N is NP-hard if ∀L′ ∈ NP :

L′
6p L.

Definition 16 (NP-Complete). Language L ⊆ N is NP-complete ⇔

• L ∈ NP;

• L is NP-hard.

The class of NP-complete problems was destined to play an important role
in complexity theory as it allows a deeper understanding of the intractability
of P versus NP problem.

It is widely believed that P 6= NP whereas the majority of failed attempts
intended to prove that P = NP. Main motivation for proving an apparently
less probable conjecture is due to a prospective proof strategy. While there
is no unambiguous means of proceeding to prove P 6= NP, to show that
P = NP, it is sufficient to prove that an NP-complete problem is in P.

2 Twenty-one problems were proved NP-complete within a range of 19 pages to fore-
shadow the potential of the technique of reducibility.
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Thus, applying polynomial time reductions, the whole class of NP-complete
problems, being by definition NP-hard and in NP, is consequently proved
to be included in P. Effacement of the distinction between problems that are
easy to compute and easy to verify then yields equality of both the classes,
formally, P = NP, and lies entirely in the properties of the NP-complete
complexity class as defined.

NP-complete

NP

P

NP-completeness in terms of P and NP hierarchy if P 6= NP .
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Chapter 2

First NP-complete Problem

An NP-complete problem can be alternatively referred to as a decision prob-
lem in NP to which all other problems included in NP are reducible. The
privilege of being the firstNP-complete problem, hence, the hardest problem
contained in NP was granted to the problem of the existence of a satisfiable
evaluation of Boolean formulae. The problem of Satisfiability was first for-
mulated and proved to be NP-complete by Stephen A. Cook in his seminal
1971 paper “The Complexity of Theorem Proving Procedures”[4].

Since then, a significant number ofNP-complete problems emerged rang-
ing from the fields of logic, automata, language, graph, number and set the-
ory, algebra, mathematical programming, program optimisation and network
design even to seemingly unrelated domains of games and puzzles.

2.1 SAT – Satisfiability

By design, Satisfiability has an undeniably central role in the process of prov-
ing intractable problems NP-complete. By definition, Satisfiability signifies
evaluation of Boolean formulae to true.

Let U ; U := {u1, u2, . . . , un} , be a finite set of Boolean variables, taking
T, true, and F, false, for truth values. Boolean formula ϕ is constructed using
arbitrarily many times the following rules, consisting of Boolean variables
joined by Boolean connectives of ∧, ∨ and ¬.

Definition 17 (Boolean Formula). The set of Boolean formulae built from
atoms U is the smallest set such that:

• contains U ;
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• uj ∈ U, a Boolean variable;

• (¬ϕk) ; k < j, the negation of previously defined Boolean expression;

• (ϕk ∧ ϕl) ; k, l < i, the conjunction; or

• (ϕk ∨ ϕl) ; k, l < i, the disjunction of Boolean expressions defined
earlier.

Expressions of the form of a Boolean variable uj and its negation ¬ uj are
referred to as literals. Conjunctions of literals are equally denoted as terms.

Definition 18 (Truth Assignment). Truth assignment for ϕ, a finite set
of Boolean variables U := {u1, u2, . . . , un} , is a function t : U −→ {T, F} .

Notation:

• if t(u) = T⇒ u is true under t

• if t(u) = F⇒ u is false under t.

Conjunctive normal form (CNF) is a conjunction of clauses where clauses
are disjunctions of literals. Disjunctive normal form (DNF) can be defined
in a dual way as a disjunction of one or more terms. In other words, every
Boolean expression can be represented by an equivalent formula in both
conjunctive and disjunctive normal forms. In spite of disjunctive normal
forms being equally representative of Boolean expressions, conjunctive nor-
mal forms are chosen as a more elegant approach towards evaluation of for-
mulae.

Definition 19 (Satisfiability – SAT). SAT := {ϕ ∈ CNF |ϕ is satisfiable}.

The definition of the class of all satisfiable CNF Boolean formulae facilitates
the formulation of an answer to the question of existence of a satisfying truth
assignment for C, a collection of clauses over the variables of a finite set U.
As early as in 1971, the response given by Stephen A. Cook classifies SAT as
the first NP-complete problem and lays the foundations for proving a wide
range of intractable problemsNP-complete by their reduction to SAT, stated
NP-complete by Cook’s Theorem.

14



2.2 Cook’s Theorem

Theorem 1 (Cook’s Theorem). Satisfiability is NP-complete.

Outline of the Proof.
First, SAT ∈ NP since a truth assignment for all the variables in a given

Boolean formula can be guessed by an NDTM and verified in a deterministic
polynomial time.

Second, it is necessary to show that every language from NP is polyno-
mial time reducible to the language encoding Satisfiability, in other words,
that SAT is NP-hard.

To begin, M, specified by Γ, Σ, b, Q, qs, qY , qN and T, denotes an ar-
bitrary polynomial time NDTM program, accepting the language L. Let
fL : Σ −→ SAT be the transformation of an instance of L to a collection
of clauses C. The construction of fL is to ensure that ∀x ∈ Σ∗ : x ∈ L⇔
fL(x) ∈ SAT. A set of clauses constructed from U , a set of Boolean variables,
verifies whether an input x is accepted by M. The clauses, containing a lim-
ited number of variables, are satisfiable if and only if there exists a truth
assignment forced by an accepting computation on x; |x| = n, where both
the number of checking stages as well as the length of guessed string are
bounded by nO(1).

If x ∈ L, there exists an accepting computation of M on x of length
bounded by nO(1) imposing such a truth assignment that C ∈ SAT.

In an opposite way, by construction of C, any satisfiable assignment yields
correspondence to an accepting computation of M on x.

Finally, reduction fL imposes several restrictions on parameters which
result in polynomial time boundedness of fL as |fL(x)| = |U | · |C| 6 nO(1).

Thus, SAT is NP-complete.1

2.3 Variants of Satisfiability

Nearly every problem can be generalised and become whimsically intractable
or considerably simplified when restricted to a special case. The problem
of SAT is not an exception. The distribution of such instances thus varies
from undecidable problems to those found in P. As SAT presents a wide range
of satisfiability problems, it is interesting to see the exact limits for transition
of yet undecidable problems to NP-complete, the hardest of decidable ones,

1 The complete proof of Cook’s Theorem can be found in [6].
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and those easily solvable or found in P. This task is approached by limiting
the number of literals per clause.

Definition 20 (k-CNF). k-CNF denotes a CNF with k literals per clause;
k ∈ N.

Definition 21 (k-Satisfiability – k-SAT). k-SAT := {ϕ ∈ k-CNF | ϕ is
satisfiable }.

A truth assignment of chosen uis satisfying all the clauses is referred to as
a solution to the problem of k-Satisfiability.

Usage of k-SAT problem, the restriction of Satisfiability problem to in-
stances where k denotes the number of distinct literals in each clause, seems
to be the most effective approach not only in the process of establishment
of the upper and lower bounds for Satisfiability but also in recognising and
proving newly phrased problems NP-complete.2

The matter of k-SAT can be illustrated with greater precision if 2-SAT
is considered. While 2-SAT is in P, its transition of generalisation to 3-SAT
has crossed the line of NP-completeness, classifying 3-SAT as another NP-
complete problem.

2 Further information on lower and upper bounds for Satisfiability and related NP-
completeness can be found in [13] and [11] respectively. Unsatisfiable k-CNF formulae are
treated in [7].
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Chapter 3

Basic NP-complete Problems

and Their Reductions

The main aim of this section is to show the most influential strategies in prov-
ing NP-completeness by presenting the basic NP-complete problems as
foundations for further complexity theory results obtained by polynomial
reductions.

Consequently, the problems of Satisfiability of the 3-CNF formulae, Ver-
tex Cover and Hamiltonian Circuit are to be specified and proved NP-
complete by reducing one to another in order of mention. The present proofs,
based on those introduced by Michael R. Garey and David S. Johnson1 in [6],
are written to be uniformly structured in the following manner:

• Argument for L2 ∈ NP, where L2 denotes a targeted problem.

• Definition of the transformation of L1 to L2 by means of a reduction
function f, where L1 stands for an already proved NP-complete prob-
lem and L2 is as specified above.

• Argument for polynomial time reducibility of L1 to L2 (L1 6p L2).

• Statement: ∀x : x ∈ L1 ⇒ f(x) ∈ L2, where x represents an instance
of a decision problem.

• Statement: ∀x : x /∈ L1 ⇒ f(x) /∈ L2.

1 Garey and Johnson’s transformations differ from the original Karp’s [8] in terms
of different reduction path and modifications as well as replacements of some reductions.
Richard Karp’s approach towards proving the above succession of reductions can be seen
in [8], page 96.
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3.1 3-SAT – 3-CNF Satisfiability

By definition of k-SAT, the problem of 3-SAT is a restriction of SAT to 3-CNF
formulae having exactly three literals per clause. The reduction of SAT
to 3-SAT lies in rewriting a given clause with more than three literals as
an equivalent set (in the sense of satisfiability) of three-literal clauses. Fol-
lowing its rather non-complex construction, 3-SAT is one of the largely used
initial problems to depart from with intent to show NP-completeness.

Theorem 2. 3-Satisfiability is NP-complete.

Proof.
The problem of 3-SAT is in NP as a truth assignment for the variables

guessed by an NDTM algorithm is easily checked (in polynomial time) to sat-
isfy all the given three-literal clauses.

The transformation f : SAT −→ 3-SAT is based upon previously de-
scribed representation of arbitrary instances of SAT formed by variables in
U = {u1, u2, . . . , un} and clauses in C = {c1, c2, . . . , cm} .
Let the reduction be defined by construction of C ′ a collection of three-literal
clauses constructed on U ′, a set of variables such that the satisfiability of C ′

implies the satisfiability of C and vice versa. The sets U ′ and C ′ are then
formally represented by:

U ′ = U ∪

(

m
⋃

j=1

U ′
j

)

and C ′ =
m
⋃

j=1

C ′
j,

where U ′
j denotes additional auxiliary variables, restrained only to C ′

j, a col-
lection of three-literal clauses which just replace all the individual clauses
cj ∈ C.

Polynomial time boundedness follows directly from the outline of the
proof of Cook’s Theorem and the argument based on the observation that
the number of 3-CNF clauses found in C ′ is bounded by a polynomial in
|U | . |C| = nm, thus |C ′| 6 (nm)O(1).

To prove that C ∈ SAT ⇒ f(C) = C ′ ∈ 3-SAT, it is sufficient to show
that the collection of clauses denoted as C ′

j can be constructed on the basis
of cj ∈ C.
Following the construction of an arbitrary instance of k-SAT (normalisation
of Boolean formulae to formulae in k-CNF), cj = {z1, z2, . . . , zk} , where zi;
1 6 i 6 k, represents a literal (uh or its negation ¬uh; h 6 n) obtained
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from U. The reduction of a clause in C depends on the number of literals k
present in C ′

j and branches accordingly:

k = 1.
U ′

j = {y1
j , y

2
j}, where y∗

j denotes auxiliary variables,
C ′

j = {{z1, y
1
j , y

2
j}, {z1,¬y1

j , y
2
j}, {z1, y

1
j ,¬y

2
j}, {z1,¬y1

j ,¬y
2
j}},

k = 2.
U ′

j = {y1
j},

C ′
j = {{z1, z2, y

1
j}, {z1, z2,¬y1

j}},

k = 3.
U ′

j = ∅,
C ′

j = {{cj}},

k > 4.
U ′

j = {yi
j : 1 6 i 6 k − 3},

C ′
j = {{z1, z2, y

1
j}}∪{{¬y

i
j , zi+2, y

i+1
j } : 1 6 i 6 k − 4}∪{{¬yk−3

j , zk−1, zk}}.2

Having defined the transformation f : SAT −→ 3-SAT and setting a truth
assignment t : U −→ {T, F} satisfiable to the collection C, the task reduces
to showing that there exists a truth assignment t′ : U ′ −→ {T, F}, an exten-
sion of t, satisfying C ′. By design of U ′, it is only necessary to verify whether
the assignment t can be extended to the variables in U ′

j = U ′ − U, in other

2 More explicitly, the instances of U ′

j and C′

j for k > 4 are represented respectively by:

k = 4.
U ′

j = {y1
j },

C′

j = {{z1, z2, y
1
j }, {¬y

1
j , z3, z4}},

k = 5.
U ′

j = {y1
j , y2

j },

C′

j = {{z1, z2, y
1
j }, {¬y

1
j , z3, y

2
j}, {¬y

2
j , z4, z5}},

k = 6.
U ′

j = {y1
j , y2

j , y3
j},

C′

j = {{z1, z2, y
1
j }, {¬y

1
j , z3, y

2
j}, {¬y

2
j , z4, y

3
j }, {¬y

3
j , z5, z6}}, etc..

It is clear that the satisfiability of C′

j is attributable to the satisfiability of the clause
{z1, z2, . . . , zk} ∈ C; k > 4.
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words, whether it holds for C ′
j , the sole clauses with auxiliary variables.

Therefore, each class of C ′
js defined by the value of k is reviewed.

In the case of k = 1, 2, the clauses can be transformed into equivalent
3-literal clauses by copying their literal once or twice. Hence, corresponding
C ′

js are satisfied by t. As a result, t is extended either to t′ : y 7→ T or
t′ : y 7→ F for ∀y ∈ U ′

j.
If k = 3, the only clause c′j ∈ C ′

j is satisfied by the original assignment t
since it contains no auxiliary variables for further extension of t.

For k > 4 and t, a satisfying truth assignment to C, there exist a minimal
l such that zl ∈ {z1, z2, . . . , zk} : t(zl) = T. The construction of C ′

j yields
following satisfiable truth assignments:

l = 1, 2.
t′(yi

j) = F; 1 6 i 6 k − 3,

l = 3, . . . , k − 2.
t′(yi

j) = T; 1 6 i 6 l − 2,
t′(yi

j) = F; l − 1 6 i 6 k − 3,

l = k − 1, k.
t′(yi

j) = T; 1 6 i 6k − 3.

If already one of the first two literals is assigned true, then c1
j is satisfied

and so are the clauses ci
j; 2 6 i 6 k − 2. Similar arguments apply for

l = k − 1, k. Otherwise, all the clauses preceding the one containing the
first literal set true under t are satisfied due to evaluation of variables y∗

j

to true. The successive clauses are equally satisfied as they are constructed
from negations of variables assigned to false. Consequently, all clauses in C ′

j

are satisfied and C ′ is an instance of 3-SAT.
In an opposite way, if C ′ ∈ 3-SAT then t, a restriction of t′ to variables

in U, is a satisfiable truth assignment to C. It follows immediately that if
C is not satisfiable, nor f(C) is. Thus, satisfying collection of clauses C is
necessary and sufficient condition for satisfiability of 3-CNF formulae derived
thereafter.

The problem of 3-Satisfiability itself has many other variants developed un-
der restrictions put on the number of desirably assigned literals in every
clause. For instance, Not-All-Equal 3-SAT is alternatively phrased to con-
tain a minimum of one true and one false literal and One-in-Three 3-SAT
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requires exactly one true literal per clause. The property ofNP-completeness
of 3-SAT is granted even when the 3-literal clauses are constructed strictly
from variables which are all negated or not. Previously defined decision prob-
lem is also referred to as of Monotone 3-SAT.

Large applicability of the structure of 3-SAT encourages further expansion
of the notion of NP-completeness from the domain of logic into different
areas of research in both computer science and mathematics. Regarding the
nature of studied problems, graph theory certainly classifies as one of the
first intuitive choices for the employment of the concept ofNP-completeness.
As a result, the problem of 3-Satisfiability is to be reduced to Vertex Cover,
considered central to graph theory.

3.2 VC – Vertex Cover

A graph G is formalised as an ordered pair of sets (V, E), where V denotes
an arbitrary finite non-empty set of vertices and E, E ⊆

(

V

2

)

, comprises all
the edges joining different vertices in V. A vertex cover for G is defined on the
basis of the endpoints in every edge.

Definition 22 (Vertex Cover). A set V ′; V ′ ⊆ V, is a vertex cover for G
⇔ ∀ e; e = {u, v} ∈ E : (u ∈ V ′) ∨ (v ∈ V ′) .

Identically named decision problem (VC) asks if there exists a collection
of vertices V ′ bounded by a positive integer k, a vertex cover of size k or less.

Example 1 (Instance of Vertex Cover). The character of the problem for
a graph G = (V, E), presented below, given by sets V = {1, 2, 3, 4, 5, 6, 7}
and E = {{1, 4}, {2, 3}, {2, 4}, {3, 5}, {4, 5}, {5, 6}, {5, 7}, {6, 7}}, can be il-
lustrated by a vertex cover set V ′ = {3, 4, 5, 6} marked in red.
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The vertex cover V ′ stands for a minimal vertex cover for G, thus, by
|V ′| 6 k 6 |V | , k ∈ [4, 7] .3

3 By definition, Example 1 provides an instance of a vertex cover for any VC of size 4
to 7 involving graph G. Minimal Vertex Cover is a related NP-hard optimisation problem.
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Theorem 3. Vertex Cover is NP-complete.

Proof.
To begin, by NDTM’s guess of a subset V ′ ⊆ V and polynomial time

verification of V ′ as a vertex cover of a required size, it is straightforward
that VC ∈ NP.

Let f : 3-SAT −→ VC denote a reduction function. The transformation
of a 3-SAT instance, given by U = {u1, u2, . . . , un} and C = {c1, c2, . . . , cm},
to a graph G = (V, E) having a vertex cover V ′ ⊆ V ; |V ′| 6 k; 0 < k 6 |V | ,
exists exactly in the case of satisfiable C. The construction of the transfor-
mation comprises the following components:

Truth evaluation components T.
T =

⋃n

i=1 Ti; Ti = (Vi, Ei);
Vi = {ui,¬ui}, Ei = {{ui,¬ui}}.

Satisfaction testing components S.
S =

⋃m

j=1 Sj ; Sj = (V ′
j , E

′
j);

V ′
j = {a1[j], a2[j], a3[j]}, E ′

j = {{a1[j], a2[j]}, {a1[j], a3[j]}, {a2[j], a3[j]}}.

Collection of communication edges R.
R =

⋃m

j=1 E ′′
j ;

E ′′
j = {{a1[j], xj}, {a2[j], yj}, {a3[j], zj}}; {xj , yj, zj} = cj ∈ C.4

4 By applying previously defined construction on sets U = {u1, u2} and C = {c1};
c1 = {x1, y1, z1}, it is possible to obtain a graph defined on the set of vertices of the
graph G presented in Example 1. Associating u1 := 1, ¬u1 := 4, u2 := 6, ¬u2 := 7 and
x1 := 4, x2 := 6, x3 := 7, the components Ei, E′

j and R are constructed and represented
in bold, thin and dashed lines respectively.
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An instance of vertex cover of size 4 for G is marked in red. Further conclusions also
set the value of k to k = n + 2m = 4. This case presents C ∈ 3-SAT irrespective of the
truth assignment since c1 = {¬u1, u2,¬u2}.
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Further construction considers at least one of the literals ui,¬ui forming the
edges in Ei and at least two of the vertices a1[j], a2[j], a3[j] of triangle edges
Ej being in a vertex cover V ′, ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . , m}. Hence,
the bound k is set to k = n + 2m and G = (V, E), where

V =

(

n
⋃

i=1

Vi

)

∪

(

m
⋃

j=1

V ′
j

)

and E =

(

n
⋃

i=1

Ei

)

∪

(

m
⋃

j=1

E ′
j

)

∪R.

Polynomial time boundedness follows easily from the construction of Ver-
tex Cover instances built from restricted number of clauses and variables.

A mapping t; t : U −→ {T, F}, is assumed to be a satisfying truth
assignment for a collection of clauses C = {c1, c2, . . . , cm}. If t(ui) = T,
the vertex ui ∈ V ′. Dually, if t(ui) = F, the vertex ¬ui ∈ V ′. By satisfying
each clause cj, t is a satisfiable truth assignment to at least one its literal im-
plying that there exists at least one edge in E ′′

j covered by V ′. The endpoints
of the edge non-incident to the vertex from related communication edge com-
plement the previously established set V ′. The construction is repeated for
∀j ∈ {1, 2, . . . , m}.

Proving that C /∈ 3-SAT⇒ G /∈ VC is equivalent to showing that G ∈ VC
⇒ C ∈ 3-SAT. Let V ′ ⊆ V ; |V ′| 6 k be a vertex cover for G. By ear-
lier observations, V ′ contains at least one vertex from Vi equivalent to Ti

for ∀i ∈ {1, 2, . . . , n} and at least two vertices from V ′
j equivalent to Sj

for ∀j ∈ {1, 2, . . . , m}. Thus, the minimal size of |V ′| = n + 2m.
A truth assignment t evaluates ui to true when ui ∈ V ′, otherwise, ui is
evaluated to false. A clause cj = {xj , yj, zj} is satisfied on the condition that
at least one of its literals is set true. Considering the triangle formed by edges
from E ′′

j , only two of those can be covered by vertices from V ′, the remaining
one is to be satisfied by the truth assignment of variables from U, ui or its
negation ¬ui. Once being in V ′, the literal is assigned true by t. Since the
argument is valid for all clauses cj, C is satisfied.

The problem of vertex cover can be approached in a number of alternative
ways. It is rather simple to reduce Vertex Cover to Independent Set, where
the vertex cover vertices do not form any edges, or Clique, where every two
vertices are mutually adjacent. Vertex Cover, Independent Set and Clique
tend to be all regarded either as variants or equivalent formulations of the
same decision problem. Having proved Vertex Cover NP-complete, NP-
completeness of the other two then follows easily.

23



Variants of Vertex Cover and their reformulations lead to arising decision
problems concerned with vertex ordering. Vertex Cover is to be reduced
to one of the initial problems in Hamiltonian graphs, offering the possibility
of travelling from an arbitrary vertex to another on the condition that each
vertex is only visited once. The problem of Hamiltonian Circuit is described
and proved NP-complete by reduction from Vertex Cover in the succeeding
section.

3.3 HC – Hamiltonian Circuit

The term “Hamiltonian” is chosen in reference to Sir William Rowan Hamil-
ton, whose interest in cycles containing every graph vertex is demonstrated
by a 1859 puzzle called “The Traveller’s Dodecahedron.” The game, based
on Hamilton’s observations, lies in creating a closed path using all 20 vertices
labeled as cities.5 Additionally, it facilitates the formulation of a definition
of the circuits obtained alongside.

Definition 23 (Hamiltonian Circuit). Let G = (V, E) denote an undirected
graph. A Hamiltonian circuit is defined as a sequence 〈v1, v2, . . . , vn〉 of ver-
tices such that its edges {{{vi, vi+1} = ei : 1 6 i < n} ∪ {vn, v1}} ⊆ E and
|V | = n.

The related decision problem (HC) asks if a given graph G is Hamiltonian,
in other words, whether G contains a Hamiltonian circuit.

Example 2 (Instance of Hamiltonian Circuit). The figure below presents
a Hamiltonian Circuit, drawn red, on previously introduced vertices.
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Formally, the sequence defining the Hamiltonian circuit can be written as
〈1, 4, 2, 3, 6, 7, 5〉 . The subset {3, 4, 5, 6} is still a valid vertex cover instance
for the given graph.

5 A concise introduction to history of Hamiltonian Circuit and Travelling Salesperson
problem is given in [2], Chapter 1.
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To complete the series of reductions presented at the beginning of the chapter,
Vertex Cover, a covering problem, is to be polynomially reduced to Hamilto-
nian Circuit, the problem of vertex ordering. NP-completeness of HC then
follows from NP-completeness of VC.

Theorem 4. Hamiltonian Circuit is NP-complete.

Proof.
For HC ∈ NP, it is sufficient for an NDTM to guess a sequence of vertices

which is afterwards verified (in polynomial time) to be a Hamiltonian circuit
in the given graph.

The reduction function f : VC −→ HC characterises the transformation
of a graph G = (V, E) with vertex cover of size k; 0 < k 6 |V | , or less
to an arbitrary instance of HC represented by a Hamiltonian graph G′ =
(V ′, E ′). Paralleling the previous proof, the procedure of construction of the
transformation branches into three sets of components:

Choice making vertices A.
A = {ai : 1 6 i 6 k, ai ∈ V }, where A arbitrarily selects k out of n vertices
from V.

Cover testing components G′
E.

G′
E =

⋃

e∈E G′
e; G′

e = (V ′
e , E

′
e) and e = {u, v};

V ′
e = {(u, e, i), (v, e, i) : 1 6 i 6 6},

E ′
e = {{(u, e, i), (v, e, i + 1)}, {(v, e, i), (v, e, i + 1)} : 1 6 i 6 5}

∪ {{(u, e, 3), (v, e, 1)}, {(v, e, 3), (u, e, 1)}}
∪ {{(u, e, 6), (v, e, 4)}, {(v, e, 6), (u, e, 4)}}.

Collection of connecting edges E ′
V and E ′′.

E ′
V =

⋃

v∈V E ′
v; E ′

v = {{(v, ev[i], 6), (v, ev[i+1], 1)} : 1 6 i < degG(v)};
degG(v) := |{e ∈ E : v ∈ e}| , the degree of a vertex v in G and v[i]
denotes an arbitrary mapping labelling the edges incident with v,

E ′′ = {{ai, (v, ev[1], 1)}, {ai, (v, ev[degG(v)], 6)} : 1 6 i 6 k, v ∈ V }.

The total number k of drawn vertices from A is verified to be a vertex cover
for G by cover testing components from G′

E. Finally constructed Hamiltonian
graph G′ will only contain the cover testing component vertices of the form
(w, e, 1) and (w, e, 6); w = u or w = v; {u, v} = e ∈ E. By design of vertex
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cover, the passage of a Hamiltonian circuit is reduced to one of the three
cases giving locally unclosed cycles also referred to as paths:

e = {u, v}; u ∈ A, v /∈ A.
A single path: (u, e, 1), (u, e, 2), (u, e, 3), (v, e, 1), (v, e, 2), (v, e, 3), (v, e, 4),
(v, e, 5), (v, e, 6), (u, e, 4), (u, e, 5), (u, e, 6).

e = {u, v}; u ∈ A, v ∈ A.
Two distinct paths: (u, e, 1), (u, e, 2), (u, e, 3), (u, e, 4), (u, e, 5), (u, e, 6);

(v, e, 1), (v, e, 2), (v, e, 3), (v, e, 4), (v, e, 5), (v, e, 6).

e = {u, v}; u /∈ A, v ∈ A.
A single path: (v, e, 1), (v, e, 2), (v, e, 3), (u, e, 1), (u, e, 2), (u, e, 3), (u, e, 4),
(u, e, 5), (u, e, 6), (v, e, 4), (v, e, 5), (v, e, 6).

It is worth noting that the connecting edges from E ′
v then create a sole

path for every vertex v ∈ E in a newly constructed G′. The construction is
completed once the first and last vertices from E ′

V are joined by E ′′. Hence
G′ = (V ′, E ′), where

V ′ = A ∪

(

⋃

e∈E

V ′
e

)

and E ′ =

(

⋃

e∈E

E ′
e

)

∪ E ′
V ∪ E ′′.

Polynomial time boundedness follows from the construction of Hamilto-
nian graph G′ on the basis of G, a graph with a vertex cover of restricted
size k and a total number n of vertices in V.

If a set VG denotes a vertex cover of a graph G, bounded by k, no addition
of edges on already defined vertices would necessitate an expansion of the
original set in order to cover graph vertices. Labelling vertex cover elements
as v1, v2, . . . , vk, the choice of what edges to include in HC is made in ac-
cordance with the rules introduced in the cover testing components as VG

is a vertex cover of G and the endpoints create components of Hamiltonian
circuit. Therefore, the needed edges are selected from E ′

vi
in the following

manner:

Hamiltonian circuit edges:
EHC = {{ai, (vi, evi[1], 1)} : 1 6 i 6 k}

∪ {{ai+1, (vi, evi[degG(vi)], 6)} : 1 6 i < k} ∪ {a1, (vk, evk [degG(vk)], 6)}.

26



For completion of the proof it is necessary to verify whether the constructed
set of edges EHC generates a sequence defining a Hamiltonian circuit in the
given graph. The edges in EHC are chosen to enter and depart from every
vertex in VC exactly once. Since at least one endpoint of every edge is in
VC, it is impossible to avoid a vertex from V ′. In such a way, a path between
the succeeding vertices forming a complete cycle is created. Hence, EHC

corresponds to a Hamiltonian circuit in G′.6

Implication G /∈ VC ⇒ G′ /∈ HC is equivalently phrased and proved as
G′ ∈ HC ⇒ G ∈ VC. Let 〈v1, v2, . . . , vn〉 denote a Hamiltonian circuit in
G′, thus |V ′| = n. By construction of vertex cover testing components, any
path which starts and ends with a vertex from a1, a2, . . . , ak, its only vertices
from A, is divided into k different paths corresponding to distinct vertices
vi ∈ V. Since Hamiltonian circuit is to comprise all vertices, it is inevitable
that it also contain the cover testing component vertices, implying a path
associated with an edge endpoint is a part of Hamiltonian circuit. Therefore,
at least one of the endpoints forming the relevant edge is included in vertex
cover set of size k.

The decision problem of Hamiltonian Circuit is closely tied to the prob-
lem of Hamiltonian path, the sequence of vertices 〈v1, v2, . . . , vn〉 , where
{{vi, vi+1} = ei : 1 6 i < n} ⊆ E, |V | = n. NP-completeness of the lat-
ter then follows from a slightly modified construction used in the problem
of Hamiltonian circuit. A detailed account of alternations is described in [6].

6 Having restrained the transformation f to Example 2 with a vertex cover of size 4,
the obtained set of Hamiltonian circuit edges EHC is the following:

EHC = {a1, (v1, ev1[1], 1)}, {a2, (v2, ev2[1], 1)}, {a3, (v3, ev3[1], 1)}, {a4, (v4, ev4[1], 1)},
{a2, (v1, ev1[degG(v1)], 6)}, {a3, (v2, ev2[degG(v2)], 6)}, {a4, (v3, ev3[degG(v3)], 6)},
{a1, (v4, ev4[deg

G
(v4)], 6)}.

More specifically, by association of vertex cover vertices v1 := 3, v2 := 4, v3 := 5, v4 := 6
with their respective degrees degG(3) = 3, degG(4) = 2, degG(5) = 4, degG(6) = 2,

EHC = {a1, (3, {2, 3}, 1)}, {a2, (4, {1, 4}, 1)}, {a3, (5, {1, 5}, 1)}, {a4, (6, {3, 6}, 1)},
{a2, (3, {3, 6}, 6)}, {a3, (4, {2, 4}, 6)}, {a4, (5, {5, 7}, 6)},
{a1, (6, {6, 7}, 6)}.

Thus, the construction verifies that the guessed sequence 〈1, 4, 2, 3, 6, 7, 5〉 forms a Hamil-
tonian circuit in G. By design of the graph, the presented instance of Hamiltonian Circuit
is unique up to isomorphism.
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Considering a directed graph, every original edge e = {u, v} ∈ E decom-
poses into two oriented ones, (u, v) and (v, u), to provide a variety of problems
connected with Hamiltonian Circuit. In fact, all undirected variants can be
reduced to their directed counterparts and vice versa.

This chapter introduced and proved NP-completeness of several decision
problems, ranging from the domain of logic to graph theory to border the
area of optimisation, in the given order:

HC 6p
7 SAT 6p 3-SAT 6p VC 6p HC.

By Lemma 1, transitivity of polynomial time reducibility denoted 6p, it
is evident that any decision problem from the provided set can be reduced
to another. Their membership in NP then yields NP-completeness of the
whole set. Equally, by reduction from k-SAT, the property of solvability in
polynomial time for k 6 2 and NP-complete for k > 3 was conserved for
generalised Vertex Cover and Hamiltonian Circuit, where k denotes the size
of maximum vertex cover for a given graph.

The proof strategies illustrated in the present reduction path included
Local Replacement (SAT 6p 3-SAT), based on rewriting a given instance so
that its principal structure is replaced by a different but equivalent collec-
tion of instances, and Component Design (3-SAT 6p VC, VC 6p HC), lying
in defining a number of components either designed to form a newly struc-
tured instance or exchange information about the satisfiability of a certain
condition put on the structure forming components.

Departing from the basic NP-complete decision problems, the following
chapter aims at proving NP-completeness of other problems with intent
to relate problems from seemingly disconnected mathematical disciplines.

7 The statement follows from Cook’s Theorem.
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Chapter 4

Other NP-complete Problems

Previous chapter presented several of classical NP-complete problems while
demonstrating proof strategies of Local Replacement and Component Design.
This section is to derive new NP-complete results from the existing ones.

Reduction by Restriction is another promising approach in terms of prob-
lem transformations. Much simpler in nature, the technique proves that
a known NP-complete problem is a special case of a target decision prob-
lem. A preferable reduction function, a rather obvious one-to-one mapping,
ensures close correspondence of instances found in both problems.

A proof using the technique of Restriction, structured as announced
in Chapter 3, will be presented in the process of proving NP-completeness
of a widely known optimisation problem of Travelling Salesperson.

4.1 TS – Travelling Salesperson

The foundations of Travelling salesperson problem were implicitly introduced
by Hamilton’s puzzle “The Traveller’s Dodecahedron,” marking the vertices
as cities, asking for a closed path visiting each city once, corresponding
to Hamiltonian Circuit. Furthermore, the edges are assigned a non-negative
integer value representing either distance or cost of the travel. A better insight
into the problematic is provided by formalisation of the Travelling Salesper-
son round.

Definition 24 (Travelling Salesperson Round). Let C = {c1, c2, . . . , cm}
denote a finite set of vertices with a “length function”1 l; l : C × C −→ N,

1 Function l need not to be a metric as subadditivity of l is not required.
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where N = {0, 1, 2, . . .} is the set of natural numbers. Travelling Salesperson
round is defined as an ordering

〈

cπ(1), cπ(2), . . . , cπ(m)

〉

; π is a permutation
on {1, 2, . . . , m}. The length L of Travelling Salesperson round is given by:

L =

(

m−1
∑

i=1

l(cπ(i), cπ(i+1))

)

+ l(cπ(m), cπ(1)).

The problem of Travelling Salesperson (TS) then asks if there exists a round
〈

cπ(1), cπ(2), . . . , cπ(m)

〉

such that a total length L 6 b; b ∈ N.

Theorem 5. Travelling Salesperson is NP-complete.

Proof.
Travelling Salesperson is inNP since a non-deterministic TM can provide

an ordering of cities such that the length of the tour L is bounded by a non-
negative integer b and the guessed instance is verifiable in a deterministic
polynomial time.

Let f : HC −→ TS denote a reduction function. An instance of Hamil-
tonian Circuit, EHC , is defined by G = (V, E); EHC ⊆ E, |V | = m.
A TS instance is characterised by a set of cities C corresponding to V with
“length function” l set to l(vi, vj) = 1 for {vi, vj} ∈ E and l(vi, vj) = 2
for {vi, vj} /∈ E; vi, vj ∈ C. The length L is bounded by b = m.

Reduction in polynomial time follows from a total number of tested com-
binations of vi, vj ∈ C being m(m−1)

2
. The evaluation of every edge necessitates

examination of at maximum m(m−1)
2

edges formed on m vertices in the given
graph G.

By design, a Hamiltonian circuit represented by 〈v1, v2, . . . , vm〉 , is a TS
round of length L =

(
∑m−1

i=1 l(vi, vi+1)
)

+ l(vm, v1) = m.
In an opposite way, if an ordering 〈v1, v2, . . . , vm〉 , is not an instance

of HC for G, at least one of the edges formed thereafter is, by definition
of l, evaluated to 2. Necessarily, L > m which contradicts the fact that L is
bounded by b = m. Hence, f(G) /∈ TS.

By restriction of TS to HC, the reduction path of equivalently hard problems
extends to:

SAT 6p 3-SAT 6p VC 6p HC 6p TS.

Travelling Salesperson has a number of variants operating on the basis
of limitations put on the distances between the cities and bound b, Bottleneck
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TS, or further specification of the “length function” such as Euclidean metric
based Geometric TS. Additional NP-complete problems arise when directed
graphs are considered.

Finally, replacement of a bound b by a minimum possible tour length leads
to NP-hard combinatorial optimisation problem as already noted for Vertex
Cover. The theory of approximation and relevant algorithms are discussed
in detail in [3].

4.2 EC – Ensemble Computation

The problem of Ensemble Computation is of different nature when compared
to previously illustrated decision problems. An expression constructed from
elements and subsets of elements of a given finite set, joined by union oper-
ations, lays the basis for formulation of another decision problem from the
domain of code generation and program optimisation.

Definition 25 (Ensemble Computation Sequence). An Ensemble Computa-
tion sequence S of length j is a sequence 〈z1, z2, . . . , zj〉 of subsets of a finite
set A so that each zi can be decomposed into xi ∪ yi, where xi ∩ yi = ∅ and
each xi, yi is either {a} for a ∈ A or one of zks for k < i.

The problem of Ensemble Computation (EC) then asks if there is an ensem-
ble computation sequence S of length bounded by a positive integer l such
that for ∀c ∈ C; a collection of subsets of A, there is an identical subset
zi ∈ S. In other words, EC decides minimisation of the number of needed
operations on given conditions on input (A, C, l), where A denotes a finite
set, C a collection of its subsets and l stands for a bound on desired number
of operations.

Theorem 6. Ensemble Computation is NP-complete.

The proof, based on [6], follows the already presented uniform structure.

Proof.
The problem of EC ∈ NP as an NDTM’s guess can be verified in deter-

ministic polynomial time.
Let f : VC −→ EC denote a reduction function. An instance of Vertex

Cover, given by G = (V, E) and k 6 |V | , is to be locally replaced. The trans-
formation defines a new element a0; a0 /∈ V, such that {u, v} 7−→ {a0, u, v}
for ∀e = {u, v} ∈ E; u, v ∈ V. Thus, an instance of Ensemble Computation,
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specified by A, non-empty finite set of elementary units, C, a collection of its
subsets and l, an integer bound for cardinality of C, can be written in the
form:

A = V ∪ {a0},

C = {{a0, u, v} : {u, v} ∈ E},

l = k + |E| .

Polynomial time boundedness of construction of an arbitrary EC instance
is ensured by at maximum |V |(|V |−1)

2
edges on |V | vertices that are to be

verified to belong to E.
If V ′ is a vertex cover for G of size k or less, it can be assumed that |V ′| = k

since V ′ is vertex addition invariant. The sets V ′ and and E; |E| = m
are then represented by v1, v2, . . . , vk and e1, e2, . . . , em respectively. Each
edge ej comprises at least one vertex from V ′ and can be rewritten as ej =
{uj, vr[j]}; r : N −→ N; r[j] 6 k. Thus, a sequence S of length k + m =
k + |E| = l, corresponding to an arbitrary EC instance is obtained.

S =
〈

{a0} ∪ {v1}, . . . , {a0} ∪ {vk}, {u1} ∪ zr[1], . . . , {um} ∪ zr[m]

〉

= 〈z1, . . . , zk, zk+1, . . . , zl〉 .

Therefore, G = (V, E) ∈ VC ⇒ (A, C, l) ∈ EC.
In an opposite way, showing that G = (V, E) /∈ VC ⇒ (A, C, l) /∈ EC

is equivalent to departing from an instance of Ensemble Computation and
reducing it to a corresponding VC instance. For that matter, let S be a min-
imum ensemble computation sequence optimised in such a way that occur-
rence of forms constructed consecutively is rare. If there is such zi in S,
certainly zi /∈ C, the only possibility is that {u, v} ∈ E. Hence, {u, v} is to ap-
pear in {a0, u, v} = {a0}∪zi or zi∪{a0},2 by design of C and will not reoccur
in another operation since the sequence S is minimal. That yields possibility
of reducing the number of operations in zi = {u} ∪ {v} to zi = {a0} ∪ {u}
and {a0, u, v} = {a0} ∪ zi to {a0, u, v} = {v} ∪ zi without augmenting the
length l contradicting the minimality of the sequence S. Consequently, S is to
contain only the above optimised forms. Since |C| = |E| and |c| = 3 ∀c ∈ C,
there are |E| operations of the form {v} ∪ zi and j − |E| 6 l − |E| = k

2 The order of operands is further disregarded.
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operations of the form {a0} ∪ {u} in S. A vertex cover is then phrased as
a set V ′ = {zi = {a0} ∪ {u} : u ∈ V, zi ∈ S }. By previous observation, car-
dinality of V ′ is at maximum l − |E| = k and V ′ comprises at least one
endpoint from every edge {u, v} ∈ E.

The placement of the newly obtained NP-complete result in the chain of pre-
vious reductions, relating decision problems from the area of code generation
to logic, graph theory and optimisation, is illustrated by:

SAT 6p 3-SAT 6p VC 6p EC
6p HC 6p TS.

According to [6], anNP-complete modification of Ensemble Computation
can be provided if each subset c ∈ C has at maximum three members or the
condition of xi ∩ yi = ∅ does not hold under the same restriction.

4.3 QDE – Quadratic Diophantine Equations

Ever since David Hilbert’s 1900 posting of 23 unsolved problems, the field
of number theory had been challenged to find an algorithm to decide whether
a given Diophantine equation, an algebraic indeterminate equation in several
variables, with integral coefficients, is solvable in integers or not. A proof by
Yuri V. Matiyasevich, built on Julia Robinson, Martin Davis and Hilary Put-
nam’s results, classified Hilbert’s Tenth Problem as formally undecidable in
1970. A wide range of decision problems arose from specifications of the de-
gree of the equations or the number of unknowns. The problem of Quadratic
Diophantine Equations restrains both numbers to two. To refer to a proof
of NP-completeness of the announced variant, formalisation of the equations
in question is needed.

Definition 26 (Quadratic Diophantine Equation). A quadratic equation
in two variables ax2 + by − c = 0; a, b, c ∈ N is Diophantine precisely if
∃x, y ∈ N : ax2 + by = c.

The problem of Quadratic Diophantine Equations (QDE) asks if a given
quadratic equation ax2 + by − c = 0; a, b, c ∈ N, is Diophantine.

Theorem 7. Quadratic Diophantine Equations problem is NP-complete.

33



Proving NP-completeness in the field of number theory is rather complex
since an instance in binary encoding scheme needs to be represented as a com-
putational problem, in this case solvability of quadratic Diophantine equa-
tions. It may be preferable to attempt the proofs directly.3

The original proof, given in [1], nevertheless presents a possibility of re-
duction of a 3-SAT variant4 to QDE. The following section briefly remarks
on the properties of eventual reduction.

Transformation function f : 3-SAT −→ QDE is defined algorithmically such
that every satisfiable formula ϕ in 3-CNF forces natural number solutions
to the quadratic equation p(x, y) = 0 it generates. Equally, solvability of
a quadratic Diophantine equation corresponds to satisfiability of a Boolean
formula given by Conversion Lemma. This is ensured by successive systems of
definitions converting an arbitrary instance of 3-SAT to an arbitrary instance
of QDE.

Polynomial time boundedness of the reduction follows from a limited
number of variables obtained after deletion of all duplications and uncon-
ditionally satisfiable clauses from ϕ. Complexity of the needed operations –
addition, multiplication and division as well as all their inputs are polyno-
mially bounded.

The remaining condition of satisfiability of ϕ being equivalent to solvabil-
ity of p(x, y) = 0 in natural numbers follows from the proof of correctness
of the transformation algorithm.

The algorithm is proved correct by a succession of three number theory
based lemmas yielding one-to-one correspondence of solutions to the systems
of conditions provided by lemmas and satisfiable truth assignment to ϕ. A
proof of “Lemma 1.,”the only omitted part, can be seen in Appendix.

Reduction of Boolean formulae satisfiability problem to number problem
solvability not only relates logic to number theory but also provides a better
insight into the nature of numerical problems and their intractability. The
design of NP-completeness and transitivity of polynomial reducibility clas-

3 Major steps of the proof are discussed in [12].
4 In the original proof, an arbitrary clause cj ∈ C has at maximum 3 literals. It is

straightforward to reduce “At Maximum 3-SAT” to 3-SAT. It suffices that ∀ |cj | < 3 be
replaced by

∣

∣c′j
∣

∣ = 3 where the latter is built by adding new atoms, unique for each clause,
to the former one so that the truth evaluation is conserved. Limited number of used atoms
and operations resulting thereafter yield “At Maximum 3-SAT” 6p 3-SAT.
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sifies the problem of Quadratic Diophantine Equations as equally hard as
the problem of Travelling Salesperson, Ensemble Computation, SAT or any
other decision problem given below:

SAT 6p 3-SAT 6p QDE
6p VC 6p EC

6p HC 6p TS.

The problem of Quadratic Diophantine Equations can be viewed in terms
of decision problems concerning solvability of Diophantine equations either
of lower or higher degree or in less or more variables. While the problems
of Linear Diophantine Equations, regardless of the number of variables, and
Diophantine Equations in One Unknown, both with integral solutions are
in P, two variables in Diophantine Equation of second degree with natu-
ral solutions yield NP-completeness. The intractability of related problems
even increases when facing a generally stated decision problem. Consisting
in finding integer solutions, its undecidability for 13 unknowns was proved
by Yuri V. Matiyasevich and Julia Robinson.

4.4 Concluding Remarks

Computational complexity theory was shown to be related to many branches
of modern mathematics. The results of this section demonstrated NP-com-
plete problems distributed over optimisation, code generation and number
theory, all tied to classical logic and graph theory. Newer results showed,
by reduction of SAT to Minesweeper5, that even the category of games and
puzzles is involved. The notion of NP-completeness thus relates a broad col-
lection of decision problems distinct in formulation but equivalently hard to
decide in nature. Therefore, a progress lying in providing an efficient algo-
rithm operating in polynomial time for an arbitraryNP-complete problem in
any of the disciplines would mean a progress in all areas, including P vs. NP.

5 To be found in [9], [10] and [5].
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Appendix

“Lemma 1.”

Lemma 2 (“Lemma 1.”). Let τ ; 2 6 | τ, x ∈ Z, k > 3. Then, ((τ −x)(τ +x)
≡ 0 mod 2k+1 ) ⇔ ((τ − x) ≡ 0 mod 2k ) ∨ ((τ + x) ≡ 0 mod 2k ) .

Proof.
“⇒” The expression (τ − x)(τ + x) ≡ 0 mod 2k+1 is equivalent to

2k+1|(τ−x)(τ +x). 2|2k+1 ⇒ 2|(τ−x)(τ +x)⇒ 2|(τ−x), 2|(τ +x) (2 6 |x).
Without loss of generality, let 2k|(τ−x). Since 2|(τ+x)⇒ 2k+1|(τ−x)(τ+x).

“⇐” If 2k+1|(τ − x)(τ + x) ⇒ ∃m, n ∈ N : m + n > k + 1 : 2m|(τ − x)
and 2n|(τ + x). For m > k, the statement holds. Therefore, let m 6 k − 1.
2m|(τ−x) ⇒ 22m|(τ−x)2 ⇒ 2k+1|(τ−x)2 on the condition that 2m > k+1
⇔ 2(k − 1) > k + 1 ⇔ k > 3. As 2k+1|(τ − x)(τ + x) and 2k+1|(τ − x)2, ⇒
2k+1|(τ−x)(τ +x)+(τ−x)2 = 2τ 2−2τx = 2τ(τ−x); 2 6 | τ ⇒ 2k|(τ−x).
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