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2



Contents

1 Introduction 5

2 Preliminaries 7

2.1 Pythagorean-Hodograph curves . . . . . . . . . . . . . . . . 7

2.2 Support function . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Hermite interpolation 11

3.1 Statement of the problem . . . . . . . . . . . . . . . . . . . 11

3.2 Analysing Tschirnhausen cubic . . . . . . . . . . . . . . . . 12

3.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Conclusion 26

Bibliography 27

3
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Abstract: In this work we study the Hermite interpolation with polynomial
Pythagorean-Hodograph (PH) cubic. Every polynomial PH cubic is simi-
lar to some segment of the Tschirnhausen cubic. A necessary condition of
solvability of the Hermite interpolation problem is given, the number of so-
lution is given, too. The solution of this problem is based on parametrizing
the Tschirnhausen cubic using support function and on its analysis. Using
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Chapter 1

Introduction

Polynomial Pythagorean-Hodograph (PH) curves were introduced by Farou-
ki in 1990 [2]. There are not as many polynomial PH curves as polynomial
curves but they have some properties which are very useful in practical use
in geometry. For example the arc length of these curves can be expressed as
a polynomial function the of parameter, and their offsets are rational curves.
From these properties follow others interesting properties like that curvature
can be expressed as rational function of parameter.

The most simple non trivial polynomial PH curves are polynomial PH cubics.
They are also simple to describe, they have only one shape freedom, they
are similar to a segment of the Tschirnhausen cubic as proved in [2].

The Hermite interpolation is a problem with practical use. The solution of
this problem allows to construct spline or approximate smooth curve. Prob-
lem of Hermite interpolation with Tschirnhausen cubic was introduced in
1997 by Meek in [4]. In this paper he answers questions what Hermite data
could be interpolated by Tschirnhausen cubic. He searches for the control
polygon of Tschirnhausen cubic using following necessary and sufficient con-
dition for polygon of PH curve from [2].

Theorem. For a plane cubic r(t) with Bezier control points pi, i = 0, 1, 2, 3
let L1, L2, L3 be lengths of the control polygon legs, and let θ1, θ2 be the
control polygon angles at the interior vertices p1, p2. Then the conditions
L2 =

√
L1L3 and θ1 = θ2 are sufficient and necessary to ensure that r(t) has

a Pythagorean hodograph.
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This solution is very technical. We give more elegant solution which is based
on taking all possible pairs of points on Tschirnhausen cubic and searching
what data could be obtained in this way.

First we parametrize Tschirnhausen cubic by its normal using the support
function. Than we fix the angle between tangent vectors and we rotate
Tschirnhausen cubic what is easy because we have the parametrization by
normal. In this way we obtain a different solution of this problem than Meek
in [4]. This work yields interpolants for certain data not included in [4], on
the other hand we show some data mentioned in [4] can not be interpolated.

This thesis is organized as follows. In section 2 we recall some basic claims
about PH curves and support function. We give support function of Tschirn-
hausen cubic. Third section show the structure of the Tschirnhausen cubic
in the context of Hermite interpolation problem. We deduce the necessary
and sufficient condition of solvability of Hermite interpolation problem and
number of solutions. The remainder of section 3 is devoted to algorithm of
solving this problem and examples. Finally, we conclude this thesis.

6



Chapter 2

Preliminaries

2.1 Pythagorean-Hodograph curves

Definition. A polynomial planar curve C = [x(t), y(t)] is called Pythagorean-
Hodograph (PH) curve if it satisfies

x′2(t) + y′2(t) = σ2(t) (2.1)

for some polynomial σ(t).

We can construct polynomial PH curves using following lemma (proved by
Kubota in [3]).

Lemma 1. The condition (2.1) is satisfied if and only if there exist polyno-
mials u(t), v(t), h(t) such that

x′(t) = 2u(t)v(t)h(t) and

y′(t) = [u2(t) − v2(t)]h(t). (2.2)

Example. (Tschirnhausen cubic) Let h(t) = 1, u(t) = t, v(t) = −1 are
polynomials from the previous lemma. We obtain x′(t) = −2t, y′(t) = t2−1,

by integration we get PH curve T =
[

−t2, t3

3
− t
]

.

This cubic is very special PH cubic as show lemma. The proof of this lemma
is in [2].

Lemma 2. Any PH cubic can be obtained as scaled, rotated, shifted and
reparametrized Tschirnhausen cubic.
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In this work we will consider (2.2) as a default position of Tschirnhausen
cubic.

1

1

Figure 2.1: Tschirnhausen cubic with singularity in [-3,0]

2.2 Support function

Definition. Gauss map GC of an oriented planar smooth curve C is the
mapping GC : C → S1 which assigns to a point the unit normal of this
point, i. e. GC : p → ~np.

Example. Image of the Gauss map GT of the Tschirnhausen cubic is
S1\{[−1, 0]}.

Definition. Let C be a smooth curve with (locally) injective Gauss map
GC . Define the support function h : S ⊃ Im(GC) → R as the function, which
to a normal ~n associates the distance to the origin [0, 0] of the tangent line
to C at the point G−1

C (~n).

In practice we will parametrize S1 as [cos θ, sin θ] and identify a normal with
the corresponding θ.

The applicability of support function we can see in this lemma. It is proved
in [5].
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Lemma 3. Let h be a support function of C, then

Y (θ) :

{

x = h(θ) cos θ − h′(θ) sin θ

y = h(θ) sin θ + h′(θ) cos θ
(2.3)

is a parametrization of C.

Moreover Y (θ) is the inverse map to GC, i.e. unit normal vector at Y (θ) is
[cos θ, sin θ].

Lemma 4. The support function of Tschirnhausen cubic is

h(θ) =
tg2 θ

2
(3 − tg2 θ

2
)

3(1 + tg2 θ
2
)

. (2.4)

Proof. Let T be Tschirnhausen cubic, O = [0, 0] be the origin, p ∈ T and
~np associated unit normal. Let θ be the angle between the normal vector
and the positive half of the x-axis and tp be the tangent line of T in p. Let
N be the point of intersection of tp and line in direction ~np and passing
trough O, see fig. 2.2.

O

p

tp

N

T

θ

Figure 2.2: Tschirnhausen cubic: searching for its support function

Now, we are looking for the distance |ON |. The coordinates of N are the
solution of the equation p + α~tp = O + β~np, which we can use for finding
the distance |ON |.
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N =
(

t2(1−t2)(3+t2)
3(1+t2)2

,
2t3(3−t2)
3(1+t2)2

)

(2.5)

|ON | =
√

2t4(3+t2)2

(1+t2)2
(2.6)

But the support function is the function of θ, the angle between normal
vector ~np and positive x-axis ~ex. Because ~np = T ′ = (1 − t2, 2t) and ~ex =

(1, 0), using formula we obtain cos θ = 1−t2

1+t2
, which is equivalent with t =

1−cos θ
1+cos θ

= | tg θ
2
|. By substitution in (2.6), we verify (2.4).

�

Corollary 1. The parametrization of Tschirnhausen cubicby its normal is

T =

[

− 6 − 6 cos 2θ

12(1 + cos θ)2
,
8 sin θ + 8 sin 2θ

12(1 + cos θ)2

]

.
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Chapter 3

Hermite interpolation

3.1 Statement of the problem

We have the situation as in the figure 3.1, i.e. we are given two points and
unit tangent vectors and we would like to find a curve (of a given type)
which interpolates these data.

We want to fully solve this problem for PH cubics, so we want find the
necessary and sufficient condition of existence of interpolants and if given
data could be interpolated we want to find the number of different solutions.

U

V

u

v

U

V

u

v

Figure 3.1: Given situation and a solution

The given data are (up to similarity) fully described by pair of angles (β, ω),
where β is the angle between given tangent vectors and ω is the angle be-
tween bisector of β and the distance vector of the two given points, see figure
3.2.
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U

V

v

v

u

ω

β

Figure 3.2: Notation

3.2 Analysing Tschirnhausen cubic

Let T be the Tschirnhausen cubic, which is (up to scaling, rotation and
translation) the only PH cubic. For this reason it is sufficient to analyse its
segments and in this way to get a full understanding of the solutions of the
Hermite interpolation problem. We will consider all pairs of points U, V ∈ T

and see which data β, ω are interpolated by the segment U, V . In particular
we will consider the inverse problem and decide how many different pairs
U, V produce given β, ω.

U

V

~u

~v

ω

β

Figure 3.3: Analysing Tschirnhausen cubic
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Theorem 1. Let two angles β ∈ (−π, π) and ω ∈ (−π, π) be given. Then
the number of different pairs U, V ∈ T producing hermite data described by
β, ω is following

a) There exist two different pairs for

β ∈
(

−2π
3

, 2π
3

)

and

ω ∈
(

− arctg
(

2 sin β

2√
1+2 cos β

)

, arctg
(

2 sin β

2√
1+2 cos β

)) (3.1)

b) There exists one pair for

β ∈
(

−2π
3

, 2π
3

)

and

ω = ± arctg
(

2 sin β

2√
1+2 cos β

) (3.2)

c) There exist two pairs for all ω and for

β ∈
(

−π,−2π
3

)

∪
(

2π
3

, π
)

(3.3)

d) If β = ±2π
3

then there exists one pair for all ω.

Proof. We know from the corollary 1 that Tschirnhausen cubic T could be
parametrized

T = T0 =

[

− 6 − 6 cos 2θ

12(1 + cos θ)2
,
8 sin θ + 8 sin 2θ

12(1 + cos θ)2

]

. (3.4)

Let Tα be Tschirnhausen cubic rotated through α around the origin. If we
want to rotate Tschirnhausen cubic through α around the origin, we just
substitute θ′ = θ + α to the formula (3.4) and we get

Tα =

[

−6 cos α + 4 cos θ − 4 cos (2α + θ) + 7 cos (α + 2θ) − cos (3α + 2θ)

12(1 + cos (α + θ))2
,

6 sin α + 4 sin θ + 4 sin (2α + θ) + 7 sin (α + 2θ) + sin (3α + 2θ)

12(1 + cos (α + θ))2

]

We define U = Tα(β

2
) and V = Tα(−β

2
). It is obvious that β is the angle

between tangent vectors and that by changing α we obtain all such pairs
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U, V . It is easy to see that bisector of the angle of normal vectors is x axis
and that bisector of the angle of tangent vectors is y axis.

In this situation, we need to know how the vector
−−→
UV depends on α, more

precisely, what is its angle with the axis y. After short computation we get

−−→
UV = (r1, r2) =

(

− 8 sin α sin3 β

2

3(cos α + cos β

2
)3

,
4(3 cos β

2
+ (2 + cos β) cos α) sin β

2

3(cos α + cos β

2
)3

)

Its angle from y-axis must be ω, so we get the condition

tg ω =
r1

r2

= − 2 sin α sin2 β

2

3 cos β

2
+ (2 + cos β) cos α

=: F (α, β) (3.5)

Our problem is now reduced to the question how many α exist for given
(β, ω) so that (3.5) is satisfied. For this purpose, we will analyse function F .

It is easy to check that the function F (α, β) is odd in α and even in β.
First we check if function F (α, β) is defined on the whole interval, i.e. in
this situation we determine if the denominator could be zero and find that
it is zero if and only if:

α = ±αn = ± arccos
(

− 3 cos β

2

2+cos β

)

(3.6)

αn exist if and only if − 3 cos β

2

2+cos β
∈ [−1, 1], which is equivalent to β ∈ (−π,−2π

3
]

or β ∈ [2π
3

, π). So for all β ∈ (−π,−2π
3

] ∪ [2π
3

, π) there exists some αn for
which F (α, β) does not exist. Because function is odd, it is not defined in
−αn either. In the rest (i. e. β ∈

(

−2π
3

, 2π
3

)

) is function F (α, β) defined on
whole interval [−π, π]. We will study 3 cases.

CASE 1: β ∈ (−2π
3

, 2π
3

)

For example F (π
2
, α) is in figure 3.4. For others β ∈ (−2π

3
, 2π

3
) is the function

quite similar.

Let β be fixed. We know that Fβ(α) is defined on the whole interval [−π, π].
Now we are looking for range of Fβ(α). We can see that the function is

14



1

−π π α

Fβ(α)

Figure 3.4: F (α, β) for β ∈ (−2π
3

, 2π
3

), concretely β = π
2

continuous on whole interval [−π, π]. Let us try to find extremes, so first
derivative will be zero.

∂F (α, β)

∂α
=

2(2 + 3 cos α cos β

2
+ cos β) sin2 β

2

(3 cos β

2
+ (2 + cos β) cos α)2

= 0 (3.7)

The solution of this equation is following

α = ±αe = ± arccos
(

− 1

3 cos β

2

(2 + cos β)
)

(3.8)

The first derivative is positive in intervals [−π,−αe), (−αe,−π] and nega-
tive in interval (−αe, αe). So function Fβ(α) is strictly increasing in intervals
[−π,−αe), (−αe,−π] and strictly decreasing in interval (−αe, αe). So in αe is
local minimum and in −αe is local maximum, but F (β,−π) = F (β, π) = 0
so local extremes are global on [−π, π]. Coordinates of global maximum

and global minimum on [−π, π] are
[

−αe,
2| sin β

2
|√

1+2 cos β

]

,
[

−αe,
2| sin β

2
|√

1+2 cos β

]

re-

spectively.

The continuity of F implicate that its range is:

tg ω = F (α, β) ∈
[

− 2 sin β

2√
1+2 cos β

,
2 sin β

2√
1+2 cos β

]

(3.9)
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hence ω ∈
[

− arctg
(

2 sin β

2√
1+2 cos β

)

, arctg
(

2 sin β

2√
1+2 cos β

)]

(3.10)

From the previous reasoning about monotonicity it is clear that for

ω ∈
(

− arctg
(

2 sin β

2√
1+2 cos β

)

, arctg
(

2 sin β

2√
1+2 cos β

))

there exist two solutions and

for ω = ± arctg
(

2 sin β

2√
1+2 cos β

)

there exists one solution as claimed in a) and

b).

CASE 2 β ∈ (−π,−2π
3

) ∪ (2π
3

, π)

Function Fβ(α) is similar to one shown in figure 3.5.

5
−π

π α

Fβ(α)

Figure 3.5: F (α, β) for β ∈ (−π,−2π
3

) ∪ (2π
3

, π), concretely β = 3π
4

We fix β ∈ (−π,−2π
3

) ∪ (2π
3

, π). We have two points where Fβ(α) is not
continuous: ±αn. We can compute limits in these points

lim
α→α−

n

− 2 sin α sin2 β

2

3 cos β

2
+ (2 + cos β) cos α

= −∞

lim
α→α+

n

− 2 sin α sin2 β

2

3 cos β

2
+ (2 + cos β) cos α

= +∞ (3.11)
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and the limits in −αn are clear from oddity of F . Because function Fβ(α) is
continuous on (−αn, αn), solution exists on whole [−π, π].

From the first derivative (3.7) we have that Fβ(α) is strictly decreasing
in [−π,−αn), (−αn, αn) and (αn, π]. So there exist two solutions for all
ω ∈ [−π, π].

CASE 3 β = ±2π
3

In the case β = ±2π
3

the αn become π and we have only one solutions for all
ω ∈ [−π, π]. The function Fβ(α) is in figure 3.6. �

5

−π π α

Fβ(α)

Figure 3.6: F (α, β) for β = ±2π
3

3.3 Interpolation

In this section we construct the Hermite interpolants. We have two given
angles ω and β and we are looking for Tschirnhausen cubic. It is sufficient
to find suitable angle of rotation α. So we solve the equation:

tg ω = − 2 sin α sin2 β

2

3 cos β

2
+ (2 + cos β) cos α

where ω, β are fixed. (3.12)
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The number of solutions follow from theorem 1. In order to solve (3.12)
we make the substitution k = tg ω, b = cos β and x = cos α, which after
squaring and some computation becomes

9k2 − 9k2b − 2 − 2b2 − 4b + x(6
√

2(1 − b)k2b + 12k2x
√

2(1 − b))+

+x2(8k2 + 2b2k2 + 8bk2 + 2 + 2b2 + 4b) = 0

We solve this quadratic equation and we obtain two roots for x. We have
four solutions and by testing we find out that two are correct, see below. For
the seek of brevity let’s define

M =

√

− tg2 ω(−2 + tg2 ω + 2(1 + tg2 ω) cos β)(3 sin
β

2
+ sin

3β

2
)2

In the case a) of the theorem 1 we have these solutions

α = − arccos

(

− sin2 β

2
M − 3 tg3 ω cos β

2
(2 + cos β)2

tg3 ω(2 + cos β)3 + 4 tg ω(2 + cos β) sin4 β

2

)

(3.13)

α = − arccos

(

(cos β − 1)M − 6 tg3 ω cos β

2
(2 + cos β)2

−2 tg3 ω(2 + cos β)3 − 8 tg ω(2 + cos β) sin4 β

2

)

(3.14)

In the case b) of the theorem 1 the solutions (3.13) and (3.14) become equal,
so we have only one solution.

In the case c) of the theorem 1 we have following solutions:

α = arccos

(

− sin2 β

2
M − 3 tg3 ω cos β

2
(2 + cos β)2

tg3 ω(2 + cos β)3 + 4 tg ω(2 + cos β) sin4 β

2

)

(3.15)

α = − arccos

(

(cos β − 1)M − 6 tg3 ω cos β

2
(2 + cos β)2

−2 tg3 ω(2 + cos β)3 − 8 tg ω(2 + cos β) sin4 β

2

)

(3.16)

In the case d) of the theorem 1 we have one solution

α = 2ω (3.17)
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3.4 Algorithm

1. given data: points U , V and vectors from these points ~u,~v

2. compute angles β, ω as in the figure 3.2

3. compute α:

• if β ∈
(

−2π
3

, 2π
3

)

and ω ∈
(

arctg
(

− 2 sin β

2√
1+2 cos β

)

, arctg
(

2 sin β

2√
1+2 cos β

))

exist 2 solutions described by α1 see (3.13) and α2 see (3.14)

• if β ∈
(

−2π
3

, 2π
3

)

and ω = ± arctg
(

− 2 sin β

2√
1+2 cos β

)

exists one solu-

tion described by α1 see (3.13)

• if β ∈
(

−π,−2π
3

)

∪
(

2π
3

, π
)

exist 2 solutions described by α1 see
(3.15) and α2 see (3.16)

• if β = ±2π
3

exists one solution described by α1 see (3.17)

• in the others cases no solution exists

4. for each αi compute θi < θ′i:

{θi, θ
′
i} =

{ {

−β

2
+ αi,

β

2
+ αi

}

if |αi| + |β
2
| ≤ π

{

−2π + β

2
+ α,−β

2
+ α

}

otherwise
(3.18)

5. for each αi compute ti and t′i corresponding to θi and θ′i respectively:

t = −1±| cos θ|
sin θ

so as [−t2, t3

3
− t] = Tα(θ)

6. compute Bezier control polygon:

P0 = [−t2i ,
t3i
3
− ti]

P1 = [
1

3
(−2tit

′
i − t′2i ),

1

3
(−ti − 2t′i + tit

′2
i )]

P2 = [
1

3
(−2tit

′
i − t2i ),

1

3
(−t′i − 2ti + t2i t

′
i)]

P3 = [−t′2i ,
t′3i
3

− t′i] (3.19)

7. shift, rotate and scale the control polygon so as the P̃0 = U and P̃3 =
V , general transformation is of the form:

B̃ =
|UV |
|P0P3|

(

cos φ − sin φ

sin φ cos φ

)

B + U (3.20)
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where φ is the angle between UV and P3P0

8. determine the solution as Bezier curve given by transformed control
polygon

Remark. (explanation of some steps of algorithm)

ad 3 Follow from the theorem 1.

ad 4 The first case is not possible to consider when this interval contain
angle ±π, which has the limit tangent, so in this case, we need to con-
sider the complement to [−π, π] which is equivalent to second second
case in 4.

ad 5 The PH cubic is the segment (which should be rotated, shifted and
scaled) of Tschirnhausen cubic, which correspond to θ ∈ [θi, θ

′
i] in the

parametrization (3.4). Using formulae sin θ = 2t
t2+1

and cos θ = 1−t2

1+t2
we

can find corresponding ti and t′i in the parametrization
[

−t2, t3

3
− t
]

mentioned in 5.

ad 6 We reparametrize cubic again substituting t = t̄(t′i − ti) + ti. Now
t̄ ∈ [0, 1] and we can express Tschirnhausen cubic in Bernstein-Bezier
base and coefficients are control points.

3.5 Examples

In this section we will demonstrate algorithm from the previous section on
three representatives examples.

Example 1.

1. given data: points U = [−2, 1] and V = [1, 2] and tangent vectors at

these points ~u =
(

−1√
2
, 1√

2

)

, ~v = (1, 0)

2. compute angles β = 3π
4

, ω
.
= 0.7144

3. β ∈ [−π, 2π
3

] so the interpolation problem has 2 solutions described by
α1

.
= 3.0696, α2

.
= −1.0904

20



4. because of |α1| +
∣

∣

β

2

∣

∣

.
= 4.2477 > π we have θ1

.
= 1.8915 and

θ′1
.
= −2.0354 and similarly |α2|+

∣

∣

β

2

∣

∣

.
= 2.2685 < π we have θ2

.
= 0.0877

and θ′2
.
= −2.2685

5. compute corresponding t: t1
.
= 1.6199, t′1

.
= −1.3860, t2

.
= 2.1433,

t′2
.
= −0.0439

Figure 3.7: interpolants in example 1 are segments of Tschirnhausen cubic

6. find the Bezier control polygon for the first and the second solution:

P0 = [−2.6239. − 0.2031] P ′
0 = [−4.5938, 1.1387]

P1 = [0.8564, 1.4212] P ′
1 = [0.0620,−0.6838]

P2 = [0.6221,−1.8301] P ′
2 = [−1.4686,−1.4814]

P3 = [−1.9209, 0.4985] P ′
3 = [−0.0019, 0.0438]

(3.21)

7. shift, rotate and scale the control polygon, angles between UV and
P3P0 and P ′

3P
′
0 are φ1

.
= −0.4626 and φ2

.
= 0.5558. Transformed poly-

gons are for the first and the second solution:

P̃0 = [−2, 1] P̃ ′
0 = [−2, 1]

P̃1 = [10.2241, 0.6823] P̃ ′
1 = [1.2936, 1.6085]

P̃2 = [4.9362,−8.2483] P̃ ′
2 = [0.7045, 0.6136]

P̃3 = [1, 2] P̃ ′
3 = [1, 2]

(3.22)
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8. The Bezier curve determined by transformed polygons is interpolation
cubic:

C1 = [−2 + 22.2987s − 11.8196s2 − 7.4791s3,

1 − 22.2987s + 47.5974s2 − 24.2987s3]
C2 = [1 − 8.5646s + 7.5584s2 − 1.9938s3,

2s − 2.4292s2 + 1.4292s3]

(3.23)

9. These cubic are in the figure:

U

V

Figure 3.8: solution of example 1

Example 2.

1. given data: points U = [−2, 1] and V = [1, 2] and tangent vectors at
these points ~u = (1, 0) , ~v = (0, 1)

2. compute angles β = π
2
, ω

.
= −0.4636

3. β ∈
(

−2π
3

, 2π
3

)

and ω ∈ (−0.9553, 0.9553) so the interpolation problem
has 2 solutions described by α1

.
= −1.6335, α2

.
= −3.0789

4. because of |α1| +
∣

∣

β

2

∣

∣

.
= 2.4189 < π we have θ1

.
= −2.4189 and

θ′1
.
= −0.8481 and similarly |α2| +

∣

∣

β

2

∣

∣

.
= 3.8643 > π we have

θ2
.
= −3.8643 and θ′2

.
= −8.5767
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Figure 3.9: interpolants in example 2 are segments of Tschirnhausen cubic

5. compute corresponding t: t1
.
= 2.6458, t′1

.
= 0.4514, t2

.
= −2.6456,

t′2
.
= 2.2153

6. find the Bezier control polygon for the first and the second solution:

P0 = [−7, 3.5277] P ′
0 = [−4.9073, 1.4084]

P1 = [−0.8641,−1.0032] P ′
1 = [1.574, 6.1943]

P2 = [−3.1296,−0.8610] P ′
2 = [2.2716,−4.9228]

P3 = [−0.2038,−0.4208] P ′
3 = [−7,−3.5277]

(3.24)

7. shift, rotate and scale the control polygon, angles between UV and
P3P0 and P ′

3P
′
0 are φ1

.
= 0.8481 and φ2

.
= 2.2935, transformed polygons

are for the first and the second solution:

P̃0 = [−2, 1] P̃ ′
0 = [−2, 1]

P̃1 = [1, 1.6456] P̃ ′
1 = [5.6458, 1]

P̃2 = [0.3542, 1] P̃ ′
2 = [1,−3.6458]

P̃3 = [1, 2] P̃ ′
3 = [1, 2]

(3.25)

8. The Bezier curve determined by transformed polygons is interpolation
cubic:

C1 = [−2 + 7.0628s − 5.1255s2 + 1.0628s3,

s + 1.9373s2 − 0.9373s3]
C2 = [s + 13.9373s2 − 16.9373s3,

2 − 16.9373s + 30.8745s2 − 14.9373s3]

(3.26)
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9. These cubic are in the figure 3.10

U

V

Figure 3.10: solution of example 2

Example 3.

1. given data: points U = [−2, 1] and V = [1, 2] and tangent vectors at

these points ~u =
(

1
2
,−

√
3

3

)

, ~v =
(

1
2
,
√

3
3

)

2. compute angles β = 2π
3

, ω
.
= 0.3218

3. β = 2π
3

so the interpolation problem has one solution described by
α1

.
= 0.6435

4. because of |α1| +
∣

∣

β

2

∣

∣

.
= 1.6907 < π we have θ1

.
= −0.4037 and

θ′1
.
= 1.6907

5. compute corresponding t: t1
.
= −1.1277, t′1

.
= 0.2046

6. find the Bezier control polygon for the first and the second solution:

P0 = [−0.0419,−0.2018]
P1 = [−0.2701, 0.7703]
P2 = [0.1399, 0.2237]
P3 = [−1.2717, 0.6497]

(3.27)
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Figure 3.11: interpolant in example 3 is segment of Tschirnhausen cubic

7. shift, rotate and scale the control polygon, angle between UV and P3P0

is φ1
.
= 2.2143, transformed polygon is:

P̃0 = [−2, 1]

P̃1 = [−0.0665, 0.1528]

P̃2 = [−1.5109, 0.1528]

P̃3 = [1, 2]

(3.28)

8. The Bezier curve determined by transformed polygons is interpolation
cubic:

C1 = [−2+1.4673s+2.866s2 − 1.3333s3, 1− 2.5415s+2.5415s2 +1.s3]
(3.29)

9. This cubic are in the figure:

U

V

Figure 3.12: solution of example 3
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Chapter 4

Conclusion

In this work we have fully analysed and solved the problem of the Hermite
interpolation with PH cubics. We determined the sufficient and necessary
condition of solvability and we also found number of different solution in
cases when given data could be interpolated. We also give an explicit algo-
rithm for the construction of the interpolants.

In the future, we intend to study interpolation with PH curves of higher
degree and with other special curves.
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