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Chapter 1

Introduction

Cosmology belongs to the main areas of fundamental physics. As particle
physics describes interactions between basic constituents of the universe,
the main goal of cosmology is to explain the structure and evolution of the
universe on the large scales. The interaction governing primarily the macro-
scopic matter in the universe is gravitation. Although electromagnetic inter-
action is stronger than gravitation and also has long range, there exist both
negative and positive charges and most of macroscopic bodies are neutral.
While magnetic fields can be important in astrophysics, in cosmology their
role appears to be much less significant.

The best present theory of gravitation is Einstein’s general theory of
relativity. However, similarly to the situation in astrophysics where it is
possible to use classical Newton’s theory of gravitation in most of the cases
of interest, it is possible to employ Newtonian gravitation in the analysis of
the behaviour of cosmological models. The review of the main features of
the Newtonian cosmology is the subject of this thesis.

In Chapter 2 we analyse the basic principles of cosmology – the Coper-
nican principle and the cosmological principle. In Chapter 3 we describe
Olbers’ paradox of the dark night sky and its resolution. Next we deal with
the Newtonian potential for the uniform distribution of matter and illustrate
the problems connected with this potential. We also add the cosmological
constant into Poisson’s field equation as the weak-field limit of Einstein’s
equations with the non-vanishing cosmological term requires. Then cosmo-
logical models of homogenous and isotropic universes are derived and the
limits of the applicability of the Newtonian cosmology are discussed. Finally
we are concerned with the newest aspects of the Newtonian cosmology. We
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show the possible relation between the cosmological term and the total mass
of a finite universe. Then we introduce pressure into the equations governing
the dynamics of the universe to enable us to treat the cosmological term as
a perfect fluid in the Newtonian framework.

In Chapter 4 we focus our attention on the growth of small linear pertur-
bations in the density and pressure in an otherwise homogenous and isotropic
universe. Jeans’ formula for gravitational instability in a static universe is
discussed and it is shown that its proof is incorrect. However, further we
derive that in a dynamical universe a very similar formula for gravitational
instability is valid. In Chapter 5 we give a brief summary.

Since our attention is primarily concentrated on the Newtonian models
we relegated a brief review of relativistic cosmology to Appendix. At the
end of the Appendix we explicitly demonstrate that the equations for the
dynamical evolution of the homogenous and isotropic universes within rela-
tivistic cosmology are identical to those of the Newtonian cosmology. Our
discussion of the behaviour of the Newtonian models in Chapter 3 thus goes
over to relativistic cosmology without change.
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Chapter 2

The Cosmological Principle

2.1 The Homogeneity and Isotropy of the

Universe

One of the main postulates on which the standard cosmology is based, is
the Copernican principle: ”The Earth is not in a special location in the
Universe.” Copernicus originally proposed that we are not in a central po-
sition, indeed, but in fact he only replaced the geocentric picture with the
heliocentric one and set the Sun at the centre of the cosmos. Nevertheless
nowadays the Copernican principle is understood in the sense that humans
are not privileged observers of the universe. If we accept this principle and
contrast it with astronomical observational data which reveal the universe to
be isotropic on a large-scale, we may assume that an arbitrary place enables
existence of observers also perceiving the space around them isotropic. This
argument leads to the conclusion that the universe is globally isotropic and
hence also homogenous, since global isotropy implies homogeneity. This is
called the cosmological principle and is the foundation of most of the cos-
mological theories.

Evidence for the large-scale isotropy lies in the distribution of the galax-
ies, reflected in the distribution of their apparent magnitudes and redshifts,
and in the distribution of the radio sources. And, of course, there is the
remarkable isotropy of the low-temperature cosmic microwave background
(CMB) radiation – the most convincing source of evidence. Precise mea-
surements show that the CMB has a small ”dipole” anisotropy. It is slightly
warmer in one direction of the sky than in the opposite direction. As the
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Earth moves within our solar system, the Sun moves in the Galaxy, and the
Galaxy moves with respect to the local group, the intensity of the radiation
is modified by the Doppler effect. Hence, the standard explanation of this
anisotropy of the CMB is that our local group of galaxies moves relatively
to the ”fundamental” reference frame in which the CMB is isotropic. From
the CMB data, the relative velocity of this motion appears to be about
630 km/s.

The cosmological principle is basically unprovable. We should be aware
that its postulating is not quite self-evident. It is a bit like explorers put
at a fixed place on a strange planet who on the basis of their observation
conclude that the planet is covered with desert altough there can be deep
jungle on the other hemisphere. As an example of inhomogeneous universe
we can consider an island of stars in a flat infinite universe. Franz Selety
[12] proved that such an island would remain stable if its density vanishes
as 1/r2.

We shall now treat the concepts of homogeneity and isotropy further.
Homogeneity of the universe means that, at a given moment of a preferred
time, all places and, of course, the physical laws are the same everywhere,
i.e., that the physical conditions are identical. Thus we cannot distinguish
one point from the others by any physical measurement at a given moment
of time. Similarly, isotropy of the universe means that any observer who
is moving with the cosmological substratum cannot distinguish one direc-
tion from the others by any physical measurement. There is no ambiguity
about a given moment of time in Newton’s theory (time is determined up
to an additive constant). However, in general relativity the problem how to
understand this intuitive phrase arises. But if we divide the entire space-
time into preferred spacelike hypersurfaces marked with the time parameter,
the concept ”at a given moment of time”, then translated into ”on a given
spacelike hypersurface”, is made precise. A homogenous universe can also
be anisotropic but if one place is isotropic, the universe is globally isotropic.
In an inhomogenous universe there might be one place from which the space
seems isotropic. We perceive a state of isotropy. Provided we could observe
the universe homogeneous, the cosmological principle would become valid
automatically. However, when we look out into the universe we also look
back into the past and thus the cosmological principle remains an useful
heuristic hypothesis from which various consequences follow. Their validity
can then be checked by confronting them with observation.
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Chapter 3

Idealized Newtonian

Cosmology

3.1 Olbers’ Paradox

Olbers’ paradox, sometimes also referred to as the dark night sky paradox,
shows contradiction between the observed darkness of the night sky and an
assumption of a uniform infinite eternal universe1 (which was often believed
to be the universe we live in). The paradox can be easily derived from the
following consideration.

Assume that we live in an infinite universe with an infinite number of
uniformly distributed luminous stars which all are for convenience assumed
to be identical ”average” stars. Every line of sight should then eventually
terminate on the surface of a star. At this point, due to the finite speed of
light, we also need to suppose that the uniform distribution did not change
rapidly in the course of time. The mean free path of the line of sight (i.e.,
the mean distance of background stars) can be calculated as

λ =
V

πR2
S

, (3.1)

where V is the volume that contains on the average one star, RS is the
radius of the star and πR2

S is the star’s cross-sectional area. Consider an
observer on the Earth who observes two stars at the distances r1, r2 at their
respective solid angles Ω1, Ω2. Since the stars have the same magnitude

1In the relativistic framework it is also possible to have the paradox in a finite un-
bounded universe.
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we have Ω1r
2
1 = Ω2r

2
2. The observed brightness or the apparent luminosity

decreases with distance r as L/4πr2 where L is the absolute luminosity.
Hence, the apparent luminosity of observed stars related to the solid angle
is the same

L

4πr2
1Ω1

=
L

4πr2
2Ω2

. (3.2)

The amount of light is thus equal at every solid angle, independent of the
distance which the light travels from. The night sky should then be entirely
covered by stars and it should appear like the Sun’s disk. Now the question
arises: Why the sky is dark at night?

Despite its name, Olbers’ paradox was first revealed in 1610 by Johannes
Kepler who preferred a finite bounded universe. He used the paradox as an
argument against the infinite universe proposed by Thomas Digess in 1576
[5]. Since then, many scientist paid attention to the problem of the dark
night sky. In 1823 Heinrich Wilhelm Olbers proposed as the explanation the
interstellar absorption. However, from thermodynamics it follows that the
absorbing medium would soon heat up and the emission of radiation would
equal the absorption.

American poet and writer Edgar Allan Poe was the first who came with
the right idea how to solve the paradox. In his essay Eureka: A Prose Poem
(1848) he suggested that the distance of the background (i.e., (3.1)) is so
immense that the light from it has not yet reached the Earth. Hence, the
paradox can be resolved on the assumption that our universe lasted for a
finite time only and is also young enough so that the size of the visible
universe is much less than the background distance. The first person who
quantitatively derived the finite-age solution was William Thomson Kelvin
(in 1901).

However, strictly speaking the finite age of the universe itself is not
sufficient since the theory describing the creation of the universe must also
account for the paradox. Nowadays the mainstream theory of the universe
really assumes that our universe has a finite age and its creation is described
by the Big Bang theory. According to this theory the sky was much brighter
in the past, especially in the first few seconds of the universe. However, the
Big Bang theory also involves subsequent expansion which redshiftened this
radiation to microwave wavelenghts and so formed the invisible CMB.

Since observation reveals that our universe expands the redshift also af-
fects the light from stars. Nevertheless, despite a common belief this diminu-
tion caused by the expansion is not great enough to resolve the paradox

11



completely without the finite-age assumption as it is shown for example in
[6].

3.2 The Newtonian Gravitational Potential

Gravitation in the classical conception is considered to be a force with long
range of action which cannot be shielded by any known means. For our
purposes we can modify the formulation of Newton’s first law under the
presence of gravitation to take the following form [14]:

i) There exist free falls - a class of motions of bodies acted upon only by
a gravitational force.

ii) There exists a global Cartesian coordinate system {xi}, i = 1, 2, 3,
and a real-valued function Φ, called the gravitational potential, such that
free falls are characterized by the equation of motion

d2xi

dt2
= −∂Φ(~x, t)

∂xi
, (3.3)

where t is an absolute time. This equation is invariant under the transfor-
mations which consist of a rigid rotation and a transformation of the form

xi → x′i = xi + f i(t) (3.4)

which can be understood as an arbitrarily accelerated motion of the rigid
frame {xi}. This must be accompanied by the transformation of the poten-
tial

Φ(~x, t) → Φ′(~x ′, t) = Φ(~x, t) −
3

∑

i=1

d2f i(t)

dt2
xi + g(t). (3.5)

Here the real-valued functions f i(t) and g(t) are arbitrary.
Newton’s law of attraction between two point masses can be derived from

Poisson’s equation which playes a role of a gravitational ”field equation” in
Newton’s theory:

∆Φ = 4πGρ, (3.6)

where G is the gravitational constant and ρ is the mass density (which is
the delta function for a point mass); the potential is assumed to be bounded
for |~x| → ∞. Note that under this condition the solutions of (3.6) differ
only by a constant and are therefore a special case of (3.4) and (3.5) leaving
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(3.3) invariant. If we require the potential to tend to zero for |~x| → ∞ the
general solution of (3.6) is then given by

Φ(~x) = −G

∫

ℜ3

ρ(~x ′)

|~x − ~x ′|d
3x′ (3.7)

provided the integral exists. This can be guaranteed by assuming ρ to de-
crease sufficiently rapidly.

In accordance with the cosmological principle we will now consider the
uniform matter distribution and global isotropy. Evidently, (3.7) diverges
for ρ = const. but we can obtain an unbounded solution directly from (3.6).
Hereafter we look only for a spherically symmetric potential because an
observer at the origin (we shall consider only observers moving with the
cosmological fluid) must also see the universe isotropic. On that condition
the solution takes the form

Φ(r) =
2πGρ

3
r2 + const., (3.8)

where r = |~x|. We will get back to this solution later.
In order to avoid an unbounded potential Hugo von Seeliger [13] (in 1895)

and Carl Neumann [10] (in 1896) proposed to replace Poisson’s equation by

∆Φ − ΛΦ = 4πGρ, Λ = const. (3.9)

which has for constant ρ the solution

Φ = −4πGρ

Λ
. (3.10)

Obviously this potential appears alike to all observers. Furthermore we can
see that the gravitational forces vanish, hence such a universe remains static.
Alternatively, we may say there exists a particular inertial frame in which
the matter is at rest. The solution of (3.9) for a unit point mass located at
the origin is

Φ(r) = −G

r
e−

√
Λr. (3.11)

However, Einstein’s field equations

Rµν −
1

2
gµνR + gµνΛ =

8πG

c4
Tµν (3.12)
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(where Rµν is the Ricci tensor, gµν the metric tensor, R the scalar curvature,
Λ the cosmological constant, c the speed of light, and Tµν the stress-energy
tensor) in the weak-field limit do not go over into (3.9) but into the equation

∆Φ + Λc2 = 4πGρ. (3.13)

Then (3.6) is a special case of (3.13). The solution for constant ρ takes the
form

Φ =
4πGρ − Λc2

6
r2 + const. (3.14)

Negative Λ contributes to density whereas positive Λ causes ”anti-gravity”.
At first sight this potential appears to violate the cosmological principle
since it seems that an observer at the origin is the only one who can see the
space isotropic. However, if we make a translation with ai arbitrary

xi → x′i = xi − ai,

Φ(~x,t) → Φ′(~x ′, t) = Φ(~x, t)
(3.15)

leaving (3.3) invariant, the potential remains the same and we have actually
moved ”the origin” to the point which was in the old coordinates marked as
[a1, a2, a3]. Since ai are arbitrary, all points of the universe are equivalent
and the potential appears radial to all observers. In addition, due to the
generally nonvanishing force the matter cannot be at rest in any frame of
reference. So we are forced to deal with a non-static universe.

Nonetheless, potential (3.14) faces up some difficulties. In any observer’s
system the gravitational force is radial and so there is no preferred direction
of the force at a particular point. Moreover, since the force vanishes at
the origin every observer’s system may be regarded as an inertial frame
although different observers can be mutually accelerated. We shall discuss
these conceptual issues connected with the Newtonian cosmology in Section
3.4.

For unit point mass M equation (3.13) gives

Φ = −MG

r
− Λc2

6
r2 + const. (3.16)

By differentiating this potential we obtain modified Newton’s law of gravi-
tation for a unit point mass attracted to point mass M under the presence
of the cosmological constant:

~F =

(

−MG

r2
+

Λc2r

3

)

~x

r
. (3.17)
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F ∝ r−2 and F ∝ r are the only two cases which allow stable planetary
orbits. Moreover in both cases a spherically symmetric mass can be treated
as a point mass located at the centre. In addition the force inside a spherical
shell is zero in the first case whereas in the other case it remains constant.

This fact enables us to derive (3.14) alternatively. Consider the uniform
matter distribution with density ρ. Choose a system of coordinates and an
arbitrary point at arbitrary distance r from the origin. The point lies on the
sphere of radius r with the origin as its centre. Hence a unit mass at this
point acts upon by the force

~F =

(

−MG

r2
+

Λc2r

3

)

~x

r
=

(

−4πρG

3
+

Λc2

3

)

~x. (3.18)

By integration we get the potential (3.14). Obviously the arbitrariness in a
selection of a sphere, on which the point under consideration lies, makes the
direction and the magnitude of the force fully indeterminate. The potential,
however, due to the allowed transformations, remains independent of this
choice.

3.3 Cosmological Models

In this section we fully accept the cosmological principle as the essential
assumption. Now the purpose is to describe the motion of the substratum
of the universe (”fundamental particles”, or ”typical galaxies”) idealized as
a perfect fluid. For this purpose consider two observers O and O′ moving
with the substratum. They set up a system of coordinates, each of them
considering themselves being at their respective origins, and observe at time
t the motion of the substratum which they characterize by the velocity fields
~v(~r, t) and ~v ′(~r ′, t) where ~r and ~r ′ are the position vectors of fluid particles
relative to O, O′ respectively. From the cosmological principle we deduce
that the functions ~v, ~v ′ must be the same, for otherwise O and O′ would
have different pictures of the universe.

Suppose that they measure the velocity of a general point P of the liquid
and find the values ~v(~r, t) and ~v ′(~r ′, t) = ~v(~r ′, t). Let the vector OO′ be ~a.
Then the velocity of O′ relative to O is ~v(~a, t). Since the observers look at
the same particle we get ~r ′ = ~r − ~a and consequently

~v(~r, t) − ~v(~a, t) = ~v ′(~r ′, t) = ~v(~r ′, t) = ~v(~r − ~a, t). (3.19)
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Thus ~v(~r, t) is a linear function of ~r and we may write

vi = Ai
j(t)r

j, (3.20)

where Ai
j is a tensor and i, j = 1, 2, 3. Since in general a tensor distinguishes

directions, Ai
j must be a multiple of the unit tensor. Then (3.20) becomes

~v = H(t)~r, (3.21)

where we have introduced Hubble’s parameter H(t). If we put

H(t) =
1

R(t)

dR(t)

dt
, (3.22)

where R(t) is a non-negative funtion called the scale factor, (3.21) takes the
form

d~r

dt
=

1

R

dR

dt
~r, (3.23)

and may be integrated into

~r = R(t)~r0, ~r0 = ~r(t0), R(t0) = 1. (3.24)

This result shows that the requirement of global isotropy and homogeneity
implies that each observer occupies the origin of a unique frame of reference
in which they observe a uniform expansion or contraction due to a time-
dependent scale factor.

From the cosmological principle we also infer that the density and pres-
sure must be the same throughout the whole space, i.e.,

ρ = ρ(t), (3.25)

p = p(t). (3.26)

To complete the analysis we impose the conservation laws in the form of
the continuity equation and Euler’s equation of motion for a perfect fluid
and supplement them by Poisson’s equation (3.13). If we substitute (3.21),
(3.22) and (3.25) into the continuity equation

∂ρ

∂t
+ ∇ · (ρ~v) = 0, (3.27)

we obtain
dρ

dt
+

ρ

R

dR

dt
∇ · ~r =

dρ

dt
+

3ρ

R

dR

dt
= 0, (3.28)
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and, consequently,

ρ(t) =
ρ(t0)

R3(t)
. (3.29)

This is also a natural result of (3.24).
Since every observer’s system is inertial we can impose Euler’s equation

d~v

dt
+

1

ρ
∇p + ∇Φ = 0 (3.30)

without contradictions. We have already shown that in case of uniform
density Poisson’s equation (3.13) has the solution (3.14). By substituting
(3.14), (3.21), (3.22), (3.24) and (3.26) into Euler’s equation we get

d

dt

(

1

R

dR

dt
~r

)

+
4πGρ − Λc2

3
~r =

d

dt

(

dR

dt
~r0

)

+

(

4πGρ

3
− Λc2

3

)

R~r0 =

=

(

d2R

dt2
+

4πGρ

3
R − Λc2

3
R

)

~r0 = 0. (3.31)

Or we may write

1

R

d2R

dt2
+

4πGρ

3
− Λc2

3
= 0. (3.32)

Finally, by integration and by virtue of (3.29) we obtain

(

dR

dt

)2

− 8πGρ

3
R2 − Λc2

3
R2 + K = 0, (3.33)

where K is a constant of integration. It is remarkable that this equation
has precisely the same form as the relativistic Einstein-Friedmann equation
for the universe filled with (pressure-free) dust (see Appendix A for a brief
description of relativistic cosmology).

Integration of (3.33) leads to elliptic functions but we shall settle for the
qualitative integration. Our discussion is similar to that in [1], for example.
There is a number of various solutions which are of interest. For convenience
we put 8πGρ(t0) = 3C, rewrite the equation as

(

dR

dt

)2

=
C

R
+

Λc2

3
R2 − K, (3.34)
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and denote the function on the right-hand side by F (R). First of all note
that the equation is invariant under the time inversion. In order to eliminate
the solutions which can be obtained from the others by reversing the time
direction we will choose the direction of time, where possible, such that R(t)
is increasing. The origin of time is also matter of arbitrariness and so we
will choose that one to get R(0) = 0, if possible. Then different solutions
can be distinguished on the basis of the signs of Λ and K.

I) K < 0

(i) Λ > 0. In this case F (R) is a positive function of R. For small t we

have R ≈ (9Ct2/4)
1
3 . The expansion slows down until Rm = (3C/2Λc2)

1
3 ,

which is a minimum of F (R), then it accelerates and for large t we get

R ≈ exp
[

t(1
3
Λc2)

1
2

]

. This exponential expansion is typical for the model

called de Sitter universe.
(ii) Λ = 0. F (R) is now a positive decreasing function, hence the rate

of the expansion decreases continuously. For small t we again have R ≈
(9Ct2/4)

1
3 , and for large t, R ≈ (−K)

1
2 t.

(iii) Λ < 0. F (R) is a decreasing function. It takes positive values in
0 < R < Rc, where F (Rc) = 0, and negative values when R > Rc. For small

t we again have R ≈ (9Ct2/4)
1
3 . However, the expansion does not go on

forever as in the previous cases. It slows down until R reaches its maximum
value Rc, after that, the contraction begins. The system runs through its
previous phase but in the opposite sense, until R = 0. Then the cycle
starts again and we get an oscillating model. From physical point of view,
of course, fundamental problems arise with passing through singularities at
R = 0.

II) K = 0

(i) Λ > 0. F (R) is positive, with a minimum at Rm = (3C/2Λc2)
1
3 . Thus

the behaviour is very similar to the case where K < 0 and Λ > 0. But now
we have the explicit solution available

R3 =
3C

2Λc2

{

cosh
[

t(3Λc2)
1
2

]

− 1
}

. (3.35)

(ii) Λ = 0. Here we can immediately write down the simple solution

R =

(

9Ct2

4

)
1
3

. (3.36)
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(iii) Λ < 0. Now F (R) is a decreasing function. As for K < 0 and Λ < 0
we get the oscillating model with similar properties. The explicit solution
takes the form

R3 =
3C

2(−Λ)c2

{

1 − cos
[

t
(

−3Λc2
)

1
2

]}

. (3.37)

III) K > 0

If Λ > 0, F (R) has the minimum

F (Rm) =

(

9C2Λc2

4

)
1
3

− K. (3.38)

Evidently the behaviour of R(t) depends, among others, on the sign of F (R).
We shall define a critical value Λc for which F (Rm) = 0,

Λc =
4K3

9C2c2
. (3.39)

(i) Λ > Λc. F (R) is now positive. The behaviour of R is similar to the
previous cases where Λ > 0.

(ii) Λ = Λc. In this case F (R) is positive except the point Rm at which
F = 0. This allows three different solutions:

(ii a) Obviously there is a static solution R = Rm. Since R(t0) = 1, it
follows that Rm = 1. From that we infer

Λ = Λc =
4πGρ

c2
. (3.40)

Hence, the potential (3.14) is really constant consistently with our expecta-
tions. This model corresponds to the Einstein static universe. It was the
first model of the universe, constructed by Einstein in 1917, but it is not
stable.

(ii b) Next we start with expansion, which slows down and R approaches

Rm asymptotically from below. For small t, as usual, R ≈ (9Ct2/4)
1
3 .

(ii c) Last solution approaches Rm asymptotically from above for t →
−∞. Expansion continuously increases and R ≈ exp

[

t(1
3
Λc2)

1
2

]

for large t.

This is so-called Lemâıtre model.
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Eddington in 1930 proposed another model. His universe initially exists
for an infinite period of time as a static Einstein universe and then, as a
result of disturbance, it begins to expand.

(iii) 0 < Λ < Λc. Now the equation F (R) = 0 has two different roots
R1 < R2. Hence F (R) is positive except the interval R1 ≤ R ≤ R2 and we
have two solutions:

(iii a) 0 ≤ R ≤ R1. We again get an oscillating universe which behaves
similarly to the preceding oscillating models.

(iii b) R2 ≤ R. As t → −∞, R ≈ exp
[

−t(1
3
Λc2)

1
2

]

. The rate of contrac-

tion decreases until R reaches its minimum value R2. Then expansion sets
in and continuously increases. The system runs through the previous phase,

but in the opposite sense. For large t, R ≈ exp
[

t(1
3
Λc2)

1
2

]

. Again the same

expansion as in de Sitter universe.
(iv) Λ ≤ 0. In this case we have again an oscillating model similar to the

previous ones.
Now we have described all possible models of the homogeneous and

isotropic universe filled with incoherent matter (dust) within Newtonian
cosmology. To sum up, we may divide the models into six classes: the static
universe, expanding models starting at a definite time from R = 0, expand-
ing models starting with a finite value R at t = −∞, expanding models
starting at a definite time from R = 0 and asymptotically approaching a
finite value R, oscillating models, and, finally, the model which contracts
from infinity to a finite value R and then expands again to infinity.

The qualitative behaviour of these models can be derived by using the
method of the effective potential. Equation (3.34) can be rewritten in the
form

H2 =
Λc2

3
− V (R), (3.41)

where

V (R) =
K2

R2
− C

R3
(3.42)

is the effective potential. In Figure 3.1 we have displayed the plot of V (R)
versus R. The diagram is only schematic, not quantitative. The models
of possible universes can be derived from the simple consideration that the
difference between Λc2/3 and V (R) must be non-negative to have Hubble’s
parameter real. The regions where this difference is negative are inaccesible.
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 0

V

R

K = 0
K < 0
K > 0

Figure 3.1: Schematic plot of the effective potential V (R) versus the scale
factor R. See the text for details.
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3.4 Limits of the Newtonian Cosmology

We have now treated the largest possible system - the universe. With respect
to the limitations of Newtonian mechanics we can hardly expect that our
results are aplicable to that whole system. Classical mechanics is adequate
if the velocity of particles is small compared with the speed of light c and
if gravity is weak, i.e., the gravitational potential Φ is small in comparison
with c2: Φ

c2
<< 1. Regarding (3.21) and (3.14) we see that the results can

be use only for sufficiently small regions.
We have already noticed that Newtonian cosmology assumes that each

of two mutually accelerated observers possesses an inertial system. This
is of course not Newtonian since in the classical Newtonian theory inertial
frames are global and move with constant relative velocities. Moreover, the
uniform matter distribution defines no preffered direction of gravitational
forces which contradicts the general statement that the gravitational force
at a given point is determined completely by the instantaneous distribution
of matter in the universe.

Consider a sphere of radius R(t) imbedded in an empty space. On con-
dition that the density inside the sphere remains uniform and the motion is
radial at every point, the dynamics of such a sphere is the same as if it was
a part of a uniform isotropic universe. So we may investigate a spherical
region of the universe as a sphere in an empty space. This approach also
means that the direction and magnitude of the gravitational force are fully
determined and, in general, the only observer (moving with the fluid) poss-
esing an inertial system is the one at the centre of the sphere. Hence, we see
that Newtonian mechanics is valid for sufficiently small spherical volumes.

3.5 The Cosmological Constant and Dark

Energy

There are two possible interpretations of cosmological constant Λ. First, it
can be considered as a term contributing to Newton’s gravitational force.
We shall treat this option in detail.

Consider a linear force ~FL by which point mass m, with position vector
~rm, acts on a unit point mass, with position vector ~r,

~FL(~r) = Cm(~r − ~rm), (3.43)
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where C is an arbitrary constant. By integration we find corresponding
potential ΦL:

ΦL =
Cm

2
(~r − ~rm)2 + const. (3.44)

The potential can also be derived from Poisson’s equation

∆ΦL = 3Cm, (3.45)

on condition that we assume spherical symmetry around the mass m.
In case of general mass distribution and provided that the integrals below

exist, there are expressions for ~FL and ΦL in the form of convolution:

~FL(~r) = C

∫

V

ρ(~r ′)(~r − ~r ′)dV = CM(~r − ~rT ), (3.46)

ΦL(~r) =
C

2

∫

V

ρ(~r ′)(~r − ~r ′)2dV + const. =
CM

2
(~r − ~rT )2 + const. (3.47)

Here M is overall mass and ~rT is a position vector of the centre of mass.
Hence, we see that the linear force and its potential do not depend on the
mass distribution whatsoever, but acts as if the total mass is concentrated
at its centre of mass. Considering the symmetry around the centre of mass,
equations (3.46), (3.47) can also be derived from Poisson’s equation (3.45),
where point mass m is replaced with overall mass M .

The problem, of course, arises with the uniform mass distribution. Since
the space in Newtonian mechanics is an infinite Euclidean space, the mass
corresponding to the uniform matter distribution takes the infinite value.
However, in general relativity there may exist finite cosmological models.
Newtonian cosmology gives a good approximation in sufficiently small vol-
umes without relativistic objects such as black holes etc.; so let us now
suppose that the space is finite, described on ”small” scales with sufficient
accuracy by the Newtonian cosmology and the total mass, which the uni-
verse consists of, is M . Since in case of uniform matter distribution, there
is no mass center we shall suppose that the force FL and potential ΦL is
radially symmetric in a selected coordinate system - as we have already
assumed previously and also discussed the difficulties connected with such
arbitrariness.
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Adding the linear force to Newton’s gravitational force, in case of uniform
matter distribution, we get

~F =

(

−4πρG

3
+ CM

)

~r. (3.48)

By identifying the corresponding constants in (3.18) and (3.48) we find
CM = Λc2/3, i.e.,

Λ ∝ M. (3.49)

Hence, except the interpretation of the cosmological term as a fundamental
constant, we could possibly relate Λ to universe’s total mass. This useful
insight which appears to be given for the first time very recently [3], is easily
given by the Newtonian cosmology.

In relativistic treatment, the positive cosmological constant can also be
represented as a perfect fluid with constant energy density ρΛc2 = Λc4/8πG
and negative pressure pΛ = −ρΛc2. However, in Newtonian mechanics a
perfect fluid with constant matter density ρΛ does not satisfy the continuity
equation (3.28) for a dynamical universe (when R depends on time). Re-
garding Λ as a fluid also in the Newtonian cosmology is useful from practical
reasons; therefore our next goal will be to modify the continuity equation
and consequently equations determining the scale factor [11].

Consider a volume V (t) = V (t0)R
3(t) adiabatically expanding with the

universe. By substituting the relativistic expression of the energy in the
volume

E = V (t0)R
3ρc2, (3.50)

into the first law of thermodynamics

dE + pdV = 0, (3.51)

we get the continuity equation in an expanding universe

dρ

dt
+ 3H

(

ρ +
p

c2

)

= 0. (3.52)

As it is possible in relativistic physics, we shall suppose that Λ con-
tributes to the total density with the term ρΛ = Λc2/8πG. To fit (3.52),
the corresponding pressure pΛ must be equal to −ρΛc2. We see that on the
right-hand side of equation (3.33) then appears only the density ρ + ρΛ, no
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pressure. Hence, we let that equation unchanged. By differentiating (3.33)
and using (3.52) we obtain the corrected form of (3.32):

1

R

d2R

dt2
= −4πG

3

(

ρt + 3
pt

c2

)

= −4πG

3

(

ρb + 3
pb

c2

)

+
Λc2

3
, (3.53)

where ρt and pt are the total density and pressure respectively, and ρb =
ρt − ρΛ, pb = pt − pΛ. Since equation (3.32) is derived from

1

R

d2R

dt2
~r = −∇Φ, (3.54)

(3.53) is also consistent with the fact that if we do not neglect the pressure,
Einstein’s equations (3.12), in the weak-field limit, go over into

∆Φ = 4πG
(

ρt + 3
pt

c2

)

. (3.55)

Now the equations describing evolution of the universe, have the same form
as Friedmann’s equations. Equation (3.55) nicely exhibits the feature of
general-relativistic physics: the source of gravity is not just ρ but ρ+3 p

c2
;the

pressure also contributes to gravity.
As it follows from (3.53), the negative pressure contributes to acceleration

whereas the positive pressure deccelerates. This seems to be in contradiction
with our intuition that compressed substance expands with greater effect.
However, this intuition is related to the pressure gradient which is zero in
idealized cosmology. Strictly speaking, the pressure should not appear in
the Newtonian idealized cosmology. If we introduce pressure into the New-
tonian continuity equation and field equation, we could also introduce other
non-Newtonian terms which also can be sources of gravity as, for example,
viscosity, electromagnetic fields etc. And if the pressure cannot be neglected
we do not have a weak field any more. Nevertheless, the pressure corrections
can help us to understand some interesting features of cosmology within the
relatively simpler Newtonian framework.

In order to solve the evolution equations, we need to know an equation
of state. In case of barotropic fluid, the equation is given by w = pt/ρtc

2.
For instance, dust, radiation and Λ correspond to w = 0, 1/3 and −1 re-
spectively. On condition that the universe is filled with a perfect fluid with
the equation of state w = pt/ρtc

2 = const., we find from (3.52)

ρt ∝ R−3(1+w), (3.56)

25



and from (3.33) for large R or in case of K = 0 for any R

R(t) ∝ t
2

3(1+w) , ω > −1. (3.57)

R(t) ∝ e
√

Λ
3

ct, w = −1. (3.58)

Recent observational data reveal that our universe expands at an increas-
ing rate (”accelerating universe”). Therefore, we infer from (3.53)

pt < −ρtc
2

3
, (3.59)

i.e., we need an exotic ”fluid”, called the dark energy, to fit the observations.
The simplest candidate is provided by the cosmological constant. It appears
that ordinary matter (planets, stars, intergalactic gas etc.) makes up only
4% of the total mass of the universe. Non-baryonic dark matter2 makes
up about 21% and the remaining 75% - the dark energy - has not been
satisfactorily explained.

There are other theories explaining the accelerating expansion. In the
quintessence model of the dark energy, the observed acceleration is caused by
the potential energy of a dynamical scalar field, referred to as a quintessence
field. In contrast to the cosmological constant, quintessence can vary in space
and time. A special case of quintessence is the phantom energy - a fluid which
has an equation of state w < −1. In a phantom energy-dominated universe,
the solution of (3.33) for large R or for K = 0 for any R takes the form

R(t) ∝ (ts − t)
2

3(1+w) , (3.60)

H(t) ∝ 1

ts − t
, (3.61)

where ts is an integration constant. A phantom-dominated universe will end
itself in a singularity, known as the Big Rip. As t → ts, i.e., at a finite future
time, the scale factor, Hubble’s parameter and the density diverge.

2Mostly cold dark matter hypothesis is considered. The particles which the cold dark
matter should consist of are hypotethical WIMPs (weakly interacting massive particles),
e.g. neutralino.
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Chapter 4

Perturbed Newtonian

Cosmology

4.1 Jeans’ Formula for Gravitational

Instability

In the previous chapter we have worked with a perfectly isotropic and ho-
mogenous universe. Clearly, such idealized models cannot represent precisely
the real universe with stars, galaxies, galactic clusters and other types of
inhomogenities. Therefore, we now focus our attention on small linear per-
turbations of velocity and density in an otherwise uniform universe. These
played a role in the structure formation in the early homogenous universe.
An attempt was made by James H. Jeans [7] already who derived a formula
which gives the condition for gravitational (in)stability of a static cloud of
gas. We shall first derive the formula in its original form and see that the
proof is questionable.

Let us suppose that the mass of gas under consideration is in equilibrium
characterized by density ρ0 and pressure p0 and that it stays at rest in
a certain inertial frame of reference. The only force which the gas is acted
upon is the gravitational force ~F0. General hydrodynamical Euler’s equation
and the continuity equation

∂~v

∂t
+ (~v · ∇)~v +

1

ρ
∇p − ~F = 0, (4.1)
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∂ρ

∂t
+ ∇ · (ρ~v) = 0, (4.2)

then become

1

ρ0

∇p0 − ~F0 = 0, (4.3)

ρ0 = ρ0(x). (4.4)

The force ~F0 = −∇Φ0 satisfies the equation

∇ · ~F0 = −4πGρ0 (4.5)

as a consequence of Poisson’s equation (3.6). Further, assume that the
pressure is a function of the density only (”barotropic fluid”), hence p = p(ρ).

Now we shall consider small perturbations such that the gas can move
with a small velocity ~v and the density and force can vary like

ρ(~x, t) = ρ0(~x) + ρ1(~x, t), (4.6)

~F = ~F0 + ~F1. (4.7)

We suppose that the changes of the density are due to ~F1, so

∇ · ~F1 = −4πGρ1. (4.8)

Squares and products of small deviations ~v, ρ1, ~F1, and of their derivatives
will be neglected. On that condition equations (4.1), (4.2) for perturbed
gas, by virtue of (4.3) and (4.4), give

∂~v

∂t
− ~F0 − ~F1 +

1

ρ0

∇p0 + ∇
(

ρ1

ρ0

dp

dρ

)

=
∂~v

∂t
− ~F1 + ∇

(

ρ1

ρ0

dp

dρ

)

= 0, (4.9)

∂

∂t
(ρ0 + ρ1) + ∇ · (ρ0~v) =

∂ρ1

∂t
+ ∇ · (ρ0~v) = 0, (4.10)

where dp/dρ is understood to be taken at ρ = ρ0. To derive (4.9) we have
used the chain of identities

1

ρ0 + ρ1

∇ [p(ρ0 + ρ1)] =

(

1

ρ0

− ρ1

ρ2
0

)

· ∇
(

p0 +
dp

dρ
ρ1

)

=
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=
1

ρ0

∇p0 +
1

ρ0

∇
(

ρ1
dp

dρ

)

− ρ1

ρ2
0

∇p0 =
1

ρ0

∇p0 +
1

ρ0

∇
(

ρ1
dp

dρ

)

− ρ1

ρ2
0

dp

dρ
∇ρ0 =

=
1

ρ0

∇p0 +
1

ρ0

∇
(

ρ1
dp

dρ

)

+ ρ1
dp

dρ
∇

(

1

ρ0

)

=
1

ρ0

∇p0 + ∇
(

ρ1

ρ0

dp

dρ

)

.

By applying the divergence on (4.9), ∂/∂t on (4.10) and by virtue of
(4.4) and (4.5), we get

∂

∂t
(∇ · ~v) + 4πGρ1 + ∆

(

s
dp

dρ

)

= 0, (4.11)

∂2s

∂t2
+

∂

∂t
(∇ · ~v) +

(∇ρ0)

ρ0

∂~v

∂t
= 0, (4.12)

where we have put s = ρ1/ρ0. These equations reduce to

∂2s

∂t2
+

(∇ρ0)

ρ0

∂~v

∂t
= 4πGρ1 + ∆

(

s
dp

dρ

)

. (4.13)

Now to obtain the equation for s given by Jeans [7]

∂2s

∂t2
= 4πGρ0s + ∆

(

s
dp

dρ

)

, (4.14)

we have to suppose ρ0 = const. However, if ρ0 (and therefore p0) is con-
stant, hydrodynamical equation (4.3) with Poisson’s equation (4.5) have no
solution! Jeans did not explicitly mention such an assumption but, in fact,
in order to get (4.14) he, indeed, had to take ρ0 constant.

Nevertheless, we shall proceed and deduce Jeans’ condition for gravita-
tional instability following his derivation. Consider a solution of (4.14) in the
form of a wave propagated along axis x, for example, characterized by the
wave length λ and the function h(t), describing how the amplitude changes
with time,

s = h(t) cos
2πx

λ
. (4.15)

By substituting (4.15) into (4.14) we find

d2h

dt2
=

(

4πGρ0 −
4π2

λ2

dp

dρ

)

h. (4.16)
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Hence, we see that the perturbation increases exponentially with time if

λ >

(

π

Gρ0

dp

dρ

)
1
2

. (4.17)

Therefore, a clump of mass of gas with the size greater than this will be
unstable. From (4.16) it is clearly seen that the gravitational part in the
equation, ∝ G, implies a smaller velocity of propagation. Nevertheless, for λ
small, the second term on the r.h.s. ∝ 1

λ2 will be large and the gravitational
term will represent just a small correction to this term.

4.2 Gravitational Stability in Newtonian

Models

We have already shown that the solution of equations (4.1), (4.2) and (3.13)
for a perfectly isotropic universe takes the form

ρ0 =
ρ0(t0)

R(t)3
, (4.18)

p0 = p0(t), (4.19)

~v0 =
Ṙ(t)

R(t)
~r, (4.20)

~F0 =

(

−4πρ0G

3
+

Λc2

3

)

~r, (4.21)

where ˙ denotes ∂/∂t and R(t) satisfies the differential equation

Ṙ2 −
(

8πGρ0 +
Λc2

3

)

R2 + K = 0 (4.22)

and the initial condition R(t0) = 1. We add to that solution small per-

turbations ρ1, p1, ~v1, ~F1 and seek for a perturbed solution [2]. Euler’s hy-
drodynamical equations (4.1), the continuity equation (4.2) and Poisson’s
equation (3.13) for perturbed quantities give

ρ̇1 + 3
Ṙ

R
ρ1 +

Ṙ

R
(~r · ∇)ρ1 + ρ0∇ · ~v1 = 0, (4.23)
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~̇v1 +
Ṙ

R
~v1 +

Ṙ

R
(~r · ∇)~v1 = ~F1 −

1

ρ0

∇p1, (4.24)

∇ · ~F1 = −4πGρ1. (4.25)

Squares and products of perturbations and of their derivatives were again
neglected.

As in the previous section, we shall suppose that there is an equation of
state p = p(ρ). On that condition the pressure perturbation can be written
as

p1 = ρ1
dp

dρ
, (4.26)

where dp/dρ is understood to be calculated at ρ = ρ0.
We shall first assume spherically symmetric perturbation, i.e.,

ρ1 = ρ1(r), (4.27)

~v1 =
~r

r
v1(r), (4.28)

~F1 =
~r

r
F1(r). (4.29)

The equations (4.23) – (4.25) then become

ρ̇1 + 3
Ṙ

R
ρ1 + r

Ṙ

R

∂ρ1

∂r
+ ρ0

(

∂v1

∂r
+

2v1

r

)

= 0, (4.30)

v̇1 +
Ṙ

R
v1 + r

Ṙ

R

∂v1

∂r
= F1 −

1

ρ0

dp

dρ

∂ρ1

∂r
, (4.31)

∂F1

∂r
+

2F1

r
= −4πGρ1. (4.32)

For convenience we change to a new variable by the transformation

r = χR(t). (4.33)

31



Hence, (4.30) – (4.32) read as follows

ρ̇1 + 3
Ṙ

R
ρ1 +

ρ0

R

(

∂v1

∂χ
+

2v1

χ

)

= 0, (4.34)

v̇1 +
Ṙ

R
v1 = F1 −

1

Rρ0

dp

dρ

∂ρ1

∂χ
, (4.35)

∂F1

∂χ
+

2F1

χ
= −4πGρ1R. (4.36)

It is also convenient to express the changes in the density by using the

fractional term s = ρ1

ρ0
= ρ1R3(t)

ρ0(t0)
. The equations above change into

∂v1

∂χ
+

2v1

χ
= −Rṡ, (4.37)

v̇1 +
Ṙ

R
v1 = F1 −

1

R

dp

dρ

∂s

∂χ
, (4.38)

∂F1

∂χ
+

2F1

χ
= −4πGsρ0R. (4.39)

From (4.38) we calculate ∂F1

∂χ
+ 2F1

χ
and substitute into (4.39). We get

∂v̇1

∂χ
+

2v̇1

χ
+

Ṙ

R

(

∂v1

∂χ
+

2v1

χ

)

+
1

R

dp

dρ

(

∂2s

∂χ2
+

2

χ

∂s

∂χ

)

= −4πGρ0Rs.

(4.40)

Expressing ∂v1

∂χ
+ 2v1

χ
from (4.37) and using the result in (4.40) gives

1

R2

dp

dρ

(

∂2s

∂χ2
+

2

χ

∂s

∂χ

)

= s̈ + 2
Ṙ

R
ṡ − 4πGρ0s. (4.41)

Finally, we consider a radial-wave solution

s = h(t)
eik r

R(t)

r
R(t)

= h(t)
eikχ

χ
, (4.42)

32



where k is a real number (no confusion with index of curvature k should arise)
and h(t) is the function of interest which characterizes how the amplitude of
the wave changes with time. The factor 1/R(t) means that the wavelength
is stretched out by the expansion of the universe. Substituting (4.42) into
(4.41) we find

ḧ + 2
Ṙ

R
ḣ + h

(

k2

R2

dp

dρ
− 4πGρ0

)

= 0. (4.43)

There is an obvious similarity between (4.43) and Jeans’ equation (4.16). If
we replace k by the wavelength of the disturbance

λ =
2πR

k
, (4.44)

the only term, in which the equations differ, is the second term on the
r.h.s., i.e., 2ḣṘ/R due to the expansion (or contraction). In Einstein’s static
universe (R = const. = 1, Λ = 4πGρ0(t0)) (4.43) goes exactly over into
Jeans’ relation. Before we investigate (4.43) in more detail we shall show that
assuming a plane-wave solution, equation (4.43) for corresponding function
h(t) remains the same as for the radial-wave solution [15].

Indeed, suppose the perturbations take the form

ρ1 = ρ1
′(t)e

i~r·~q
R(t) , (4.45)

~v1 = ~v1
′(t)e

i~r·~q
R(t) , (4.46)

~F1 = ~F1
′(t)e

i~r·~q
R(t) . (4.47)

Equations for perturbed quantities (4.23)–(4.25) then become

ρ̇1
′

ρ0

+ 3
Ṙ

R

ρ1
′

ρ0

+
i

R
~q · ~v1 = 0, (4.48)

~̇v1
′ +

Ṙ

R
~v1

′ = ~F1
′ − ~q

i

R

dp

dρ

ρ1
′

ρ0

, (4.49)

i~q · ~F1
′ = −4πGρ1R. (4.50)
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The latter equation has the solution

~F1
′ =

4πiGρ1
′R~q

q2
, (4.51)

where q = |~q|.
In the next step we decompose ~v1

′ into two parts – perpendicular and
paralel to ~q:

~v1
′(t) = ~v⊥(t) +

~q (~q · ~v1
′(t))

q2
= ~v⊥(t) + ~qǫ(t), (4.52)

~q · ~v⊥ = 0. (4.53)

Equations (4.48) and (4.49) then split into the part determining ~v⊥,

~̇v⊥ +
Ṙ

R
~v⊥ = 0, (4.54)

and into the part which describes the perturbation of the velocity parallel
to ~q:

ḣ = − i

R
q2ǫ, (4.55)

ǫ̇ +
Ṙ

R
ǫ =

(

4πGρ0R

q2
− 1

R

dp

dρ

)

ih, (4.56)

where we have introduced the function h(t) = ρ′
1/ρ0.

Using (4.55) to eliminate ǫ in (4.56) implies

ḧ + 2
Ṙ

R
ḣ + h

(

q2

R2

dp

dρ
− 4πGρ0

)

= 0. (4.57)

This is the same differential equation as we have derived for the radial wave.
To be correct, we should also investigate equation (4.54) which has a simple
solution

~v⊥(t) ∝ 1

R(t)
. (4.58)
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Nevertheless these modes are not connected with changes in the density.
Equation (4.57) is the fundamental differential equation that determines

the gravitational condensation in Newtonian dynamical cosmology. Assume
a perturbation at time t1 such that

h(t1) > 0, ḣ(t1) > 0. (4.59)

Obviously h(t) increases after t1 and will stop only if it reaches a maximum,
say at time t2, i.e.,

ḣ(t2) = 0, ḧ(t2) < 0. (4.60)

It follows from (4.57) that if ḣ(t2) = 0 and also

q2

R2

dp

dρ
− 4πGρ0 < 0 at t = t2, (4.61)

ḧ(t2) must be positive. Thus, h(t) does not have the maximum at t2 and
continues increasing. This analysis shows that if (4.61) is satisfied at time
t1, the condensation will surely proceed until such time t′ when (4.61) ceases
to be valid. By using the definition (4.44) – with q instead of k – (4.61)
becomes exactly the formula (4.17) given by Jeans. In the present case of a
dynamical model, however, physical quantities are time-dependent.
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Chapter 5

Conclusion

Although Einstein’s general theory of relativity provides the best so far
known description of gravitation, the dynamics of the universe on sufficiently
small scales can also be described by the Newtonian cosmology. In Chapter
3 we showed that the Newtonian cosmology can exhibit the evolution of the
perfectly isotropic and homogenous universe. In Section 3.2 the Newtonian
gravitational potential was treated. We derived its form from modified Pois-
son’s field equation in case of the uniform matter distribution and showed
that the magnitude and direction of the corresponding gravitational force
are undetermined. However, as we discussed in Section 3.4, if we restrict our
investigation to a spherical volume filled with uniformly distributed matter
embedded in empty space, the potential remains the same whereas the force
becomes fully determined. In Section 3.3 we found the equations governing
the dynamics of the universe. It is remarkable that they have the same form
as the relativistic Friedmann equations for the universe filled with (pressure-
free) dust.

In Section 3.5 we dealt with the interesting features of the Newtonian
cosmology which were presented quite recently. In the Newtonian framework
it was possible to show that the cosmological constant may be related to the
finite universe’s total mass. We also introduced pressure into the Newtonian
continuity equation to enable us to treat the cosmological constant as a
perfect fluid.

In Chapter 4 we focused our attention on small linear perturbations in
the density and pressure in an otherwise uniform universe. First we derived
Jeans’ formula for gravitational instability of a clump of gas in a static uni-
verse. In order to get his formula we needed to assume that the background
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unperturbed density and pressure of the gas are constant. However, Euler’s
hydrodynamical equation, the continuity equation and Poisson’s equation
have no solution for constant density and pressure. In a dynamical universe,
where the background density and pressure are time-dependent, we found a
formula for gravitational instability very similar to the Jeans’ one.

Newtonian cosmology still offers a number of interesting problems. For
instance, David Langlois and Filippo Vernizzi [8] recently found some quan-
tites which are conserved in the relativistic perturbation theory. It would be
interesting to derive the Newtonian analogy of these conservation laws and
describe them in more familiar Newtonian framework. Perhaps a rigorous
formulation of the Newtonian limit within so-called frame theory [4] could
be applied in such a problem.
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Appendix A

Relativistic Cosmology

Throughout this appendix we set c = G = 1. Latin indices run over the three
spatial coordinates (except the letter t which denotes the time coordinate)
whereas Greek indices run over the four spacetime coordinates (except φ, θ,
and χ which are used for particular space coordinates). The subscripts ,µ

and ;µ denotes the partial and covariant derivation respectively, with respect
to xµ.

We will consider a perfectly isotropic and homogenous universe. This
requirement of global homogeneity and isotropy places tight demands on
the geometry of spacetime and on the motion of the cosmological fluid.
Homogeneity of the universe means that the entire spacetime can be divided
into a one-parameter family of spacelike hypersurfaces of homogeneity, i.e.,
physical conditions are identical at every event on such a hypersurface, in
particular, the curvature of spacetime, density and pressure must be the
same on the homogenous hypersurface.

Isotropy of the universe means that every observer who is moving with
the cosmological fluid cannot distinguish one of their space directions from
the others by any local physical measurements. Isotropy also implies that
the cosmological substratum is at rest relative to a hypersurface of homo-
geneity, thus the world lines of the fluid are orthogonal to the family of such
hypersurfaces. Otherwise, an observer moving with the cosmological fluid
could measure his or her non-zero ordinary velocity relative to that hyper-
surface and so distinguish one space direction in his or her rest frame from
all others.

This result enables us to set up so-called comoving coordinate systems.
Consider world lines of the cosmological fluid and a one-parameter family
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of spacelike homogenous hypersurfaces orthogonal to them. Let the time
coordinate t′ be the parameter which labels the hypersurfaces. Assign to
every event on the given world line the space coordinates (x1, x2, x3). Since
the world lines do not intersect, such an assignment is unique. Moreover, the
fluid is then at rest relative to the space coordinates - the space coordinates
are comoving.

In addition, as the time coordinate we can choose proper time τ mea-
sured along the world lines. This can be simply deduced from the following
consideration: Two different observers moving with the fluid along different
world lines are at time t′ on the same hypersurface S1, i.e., perceiving the
same physical conditions. They make observations after the same interval
∆τ of their respective proper time. Since the Einstein equations are de-
terministic – identical initial conditions and identical lapses of proper time
leads to identical final conditions – the observers must see the same physics
again and, therefore, they must be on the same hypersurface of homogeneity
S2, now labeled by the time t′ + ∆τ . The observers and ∆τ were arbitrary,
hence, we see that the hypersurfaces of homogeneity are also the hypersur-
faces of constant proper time measured along the world lines. Thus we can
replace the time coordinate t′ with more familiar cosmic time t = τ .

Let us have the comoving spatial coordinates and the cosmic-time coordi-
nate, xµ = (t, x1, x2, x3). The basis vector ∂xµ

∂t
at any given event is tangent

to the world line which passes through that event. And the basis vectors ∂xµ

∂xi

at any given event are tangent to the hypersurfaces of homogeneity which
goes through that event. From the orthogonality of the world lines to the
hypersurfaces we require the orthogonality of ∂xµ

∂t
to ∂xµ

∂xi :

gµν

∂xµ

∂t

∂xν

∂xi
= 0. (A.1)

Hence, from (A.1) we infer gti = 0. The 4-velocity of the cosmological fluid
reads

uµ =
dxµ

dτ
=

∂xµ

∂t
= (1, 0, 0, 0), (A.2)

where τ is the proper time measured along the world lines of the fluid. The
4-velocity is normalized:

gµν

∂xµ

∂t

∂xν

∂t
= −1. (A.3)
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This implies gtt = −1.
Then the expression for the line element takes the form

ds2 = −dt2 + gijdxidxj = −dt2 + dσ2. (A.4)

dσ2 describes the spatial (time-dependent) 3-dimensional geometry with
constant curvature. There are three such geometries. One obvious possi-
bility is 3-dimensional flat Euclidean space with the line element

dσ2 = (dx1)2 + (dx2)2 + (dx3)2. (A.5)

Another possibility is a spherical 3-dimensional hypersurface

(x1)2 + (x2)2 + (x3)2 + (x4)2 = a2, a > 0, (A.6)

imbedded in 4-dimensional Euclidean space with the line element

dσ2 = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2. (A.7)

And the last geometry is a 3-dimensional hyperboloid

(x4)2 −
[

(x1)2 + (x2)2 + (x3)2
]

= a2, a > 0, (A.8)

imbedded in 4-dimensional Minkowski space with the line element

dσ2 = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2. (A.9)

We use the spherical polar coordinates:

x1 = r sin θ cos φ,

x2 = r sin θ sin φ,

x3 = r cos θ,

(A.10)

for which the equations for the 3-sphere and 3-hyperboloid become

(x4)2 ± r2 = a2, (A.11)

and the line elements of 4-dimensional Euclidean and Minkowski spaces take
the form

dσ2 = dr2 + r2(dθ2 + sin2 θdφ2) ± (dx4)2 = dr2 + r2dΩ2 ± (dx4)2. (A.12)
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The differential of equation (A.11) gives

x4dx4 = ∓rdr. (A.13)

By substituting (A.11) into (A.13) we can express (dx4)2 as

(dx4)2 =
r2dr2

a2 ∓ r2
. (A.14)

By virtue of (A.14) geometry (A.12) reads as follows

dσ2 =
dr2

1 ∓ a2

r2

+ r2dΩ2. (A.15)

This can be extended for the case of flat 3-dimensional Euclidean space by
writing it as

dσ2 =
dr2

1 − k a2

r2

+ r2dΩ2, (A.16)

where k is the index of curvature;

k = +1 for sphere,

k = −1 for hyperboloid,

k = 0 for Euclidean space.

(A.17)

For convenience we change to a new coordinate by the transformation

r = aΣ, (A.18)

Σ = sin χ, χ ∈ (0, π), if k = +1,

Σ = sinh χ, χ ∈ (0, +∞), if k = −1,

Σ = χ, χ ∈ (0, +∞), if k = 0.

(A.19)

Geometry (A.16) then becomes

dσ2 = a2(dχ2 + Σ2dΩ2). (A.20)

By substituting (A.20) into (A.4) we finally get the spacetime geometry

ds2 = −dt2 + a2(dχ2 + Σ2dΩ2). (A.21)
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This is a commonly used form of so-called FLRW (Friedmann - Lemâıtre -
Robertson - Walker) metric. Since the geometry of 3-dimensional hypersur-
faces may depend on time, the term a is, in fact, time dependent; a = a(t).
All the dynamics is then imprinted in this term.

From (A.21) it is seen that the metric tensor has only diagonal elements:
gtt = −1, gχχ = a2(t), gθθ = a2(t)Σ2 and gφφ = a2(t)Σ2 sin2 θ.

The volume of the above universes can be calculate as
∫ 2π

0

∫ π

0

∫ χmax

0

√
gχχgθθgφφdχdθdφ = 4πa3

∫ χmax

0

Σ2dχ. (A.22)

The universe for k = +1 is finite with volume 2π2a3 and like any spherical
surface it has no boundary. The spaces for k = −1 and k = 0 are infinite,
however, they may be constructed finite by imposing suitable periodical
conditions. There is an infinite number of possible conditions of periodicity
for k = −1 and k = 0 as well as for k = +1. But we will not consider
these models which arise from changing the topology of 3-spaces by suitable
identifications. In this way some global symmetries are lost.

Before we use Einstein’s equations (3.12) to determine a(t), we need to
calculate the Ricci tensor Rµν . Thus let us first calculate the affine connec-
tion

Γλ
µν =

1

2
gλρ(gρµ,ν + gρν,µ − gµν,ρ). (A.23)

The individual components read as follows:

Γt
tt = −1

2
(gtt,t + gtt,t − gtt,t) = 0, (A.24)

Γt
ti = −1

2
(gtt,i + gti,t − gti,t) = 0, (A.25)

Γi
tt =

1

2
gij(gjt,t + gjt,t − gtt,j) = 0, (A.26)

Γt
ij = −1

2
(gti,j + gtj,i − gij,t) =

1

2
gij,t =

ȧ

a
gij, (A.27)

Γi
tj =

1

2
gik(gkt,j + gkj,t − gtj,k) =

1

2
gikgkj,t =

ȧ

a
gikgkj =

ȧ

a
δi
j, (A.28)
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Γi
jk =

1

2
gil(glj,k + glk,j − gjk,l). (A.29)

The only non-vanishing purely spatial components of the affine connection
are Γθ

θχ, Γφ
φχ, Γφ

φθ, Γ
χ
θθ, Γ

χ
φφ, and Γθ

φφ.
Following identities will be useful

Γi
it,t = 3

∂

∂t

(

ȧ

a

)

, Γt
ij,t =

∂(aȧ)

∂t

gij

a2
,

Γi
tjΓ

j
ti = 3

ȧ2

a2
, Γt

ikΓ
k
jt =

ȧ2

a2
gij, Γt

ijΓ
l
tl = 3

ȧ2

a2
gij.

(A.30)

The expression for the Ricci tensor in terms of the affine connection takes
the form

Rµν = Γλ
µν,λ − Γλ

λµ,ν + Γλ
µνΓ

σ
λσ − Γλ

µσΓσ
νλ. (A.31)

By using (A.24)–(A.30) we have

Rtt = −Γλ
λt,t − Γλ

tσΓσ
tλ = −Γi

it,t − Γi
tjΓ

j
ti = −3

ä

a
, (A.32)

Rti =Γλ
ti,λ − Γλ

λt,i + Γλ
tiΓ

σ
λσ − Γλ

tσΓσ
iλ =

=Γj
tiΓ

k
jk − Γj

tkΓ
k
ij = 0,

(A.33)

Rij =
[

Γk
ij,k + Γt

ij,t

]

− Γk
ki,j +

[

Γk
ijΓ

l
kl + Γt

ijΓ
l
tl

]

−

−
[

Γt
ikΓ

k
jt + Γk

itΓ
t
jk + Γl

ikΓ
k
jl

]

= R̃ij +

(

2
ȧ2

a2
+

ä

a

)

gij,
(A.34)

where R̃ij is the purely spatial Ricci tensor

R̃ij = Γk
ij,k − Γk

ki,j + Γk
ijΓ

l
kl − Γl

ikΓ
k
jl. (A.35)

It can be shown ([9]) that

R̃ij = 2
k

a2
gij. (A.36)

Hence,

Rij =

(

2
k

a2
+ 2

ȧ2

a2
+

ä

a

)

gij. (A.37)
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Except the Ricci tensor, we also need the values of the stress-energy
tensor Tµν for the cosmological fluid

Tµν = (ρ + p)uµuν + pgµν . (A.38)

p = p(t) and ρ = ρ(t) are the pressure and energy density of the cosmological
fluid and uµ = −uµ = (1, 0, 0, 0) is its 4-velocity.

Ttt = ρ, Tij = pgij, Tit = 0 (A.39)

T µ
µ = (ρ + p)uµuµ + pδµ

µ = −ρ + 3p. (A.40)

The momentum conservation law, T iµ
;µ = 0, is automatically satisfied whe-

reas the energy conservation law gives

0 = T tµ
;µ =T tµ

,µ + Γt
µνT

νµ + Γµ
µνT

tν = T tt
,t + Γt

ijT
ij + Γi

itT
tt =

=ρ̇ +
ȧ

a
gijT

ij +
ȧ

a
ρδi

i = ρ̇ + 3
ȧ

a
(ρ + p),

(A.41)

so that

ρ̇ + 3
ȧ

a
(ρ + p) = 0. (A.42)

We have already solved (A.42) in case of barotropic fluid characterized by
the equation of state w = p/ρ, see (3.56).

We shall use the Einstein equations in the convenient form

Rµν = 8πTµν − 4πT σ
σgµν + Λgµν . (A.43)

From tt component we get

3
ä

a
= −4π(ρ + 3p) + Λ, (A.44)

and from the diagonal spatial components we obtain

2
ȧ2

a2
+

ä

a
= 4π(ρ − p) − k

a2
+ Λ. (A.45)

The other components are identically zero. By using (A.44) to eliminate ä
in the equation above, (A.45) becomes

ȧ2

a2
=

8πρ

3
− k

a2
+

Λ

3
. (A.46)
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(A.44) and (A.46) are the Friedmann equations which govern the dynamics
of the universe. By differentiating (A.46) and substituting it into (A.44) one
gets the energy conservation equation (A.42). This is not suprising since the
conservation law is a consequence of the Einstein equations.

In case of k = +1, a(t) can be called the radius of the universe. If
k = 0, a(t) may be fixed to any arbitrary positive value at a particular
time. However, the form of the Friedmann equations is invariant under the
transformation:

a(t) → R(t) =
a(t)

a(t0)
,

k → K =
k

a2(t0)
.

(A.47)

R(t) is the scale factor and K may be, in general, any number. Transformed
equations (A.44) and (A.46) have then precisely the same form as the New-
tonian equation (3.33), if considering p = 0, or as the corrected Newtonian
equations (3.53) together with (3.33). Hence, cosmological models derived
from (3.33) remain the same also in relativistic cosmology. Our discussion
of their behaviour can thus be directly taken over to the models based on
general relativity.
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