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corner of the waveguide. Mathematically we solve partial differential equa-
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Chapter 1

Introduction

In recent decades the technical development of microelectronics allowed us
to create tiny microscopic devices with highly pure materials. These nanos-
tructures revealed that even geometric configuration of the structure may
exhibit quantum effects. Studies of these structures may be found under
term mesoscopic physics. Existence of bound state is one of quantum ef-
fects, which might be exhibited in such structures. Studying behaviour of a
particle in these structures would lead to many-body Schrödinger equation,
which would be very complicated to solve, unless we could make a sufficient
approximation. If we consider very small devices with highly pure materials,
crystallic structure and with smooth walls, we may approximate the device
as a region with zero or constant potential with infinite potential outside
the region. Without loss of generality we may consider the inner potential
to be equal to zero, hence the Schrödinger operator is given by:

Ĥ = − ~2

2m∗∆ (1.1)

where ∆ denotes Laplace operator and m∗ denotes effective mass, which
depends also on conductor material. In present thesis we use standard units,
i.e. we put ~2

2m∗ = 1. We focus on ”opened” shapes with asymptotically
straight branches with perfect hard walls. Such structures are often called
quantum waveguides. Studying bound states in this approximation leads to
stationary Schrödinger equation of a free particle with Dirichlet boundary
conditions. From mathematical point of view we study the spectrum of linear
self-adjoint operator on a Hilbert space.

In presented thesis we study two dimensional case of a waveguide with
one break and two straight external leads. It has been known for a long time
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that bending or breaking of two dimensional waveguide induces the existence
of bound state with energy below the threshold of continuous spectrum
[2],[1]. From mathematical point of view, an eigenvalue of finite multiplicity
appears in the discrete part of the spectrum below the threshold.

In past two decades a relation between bound states and electromagnetic
confined modes has been proved [3]. Some results of quantum studies were
proven in experiments with microwave resonance in waveguides [3]. In this
thesis we study the stability of break-induced bound state to perturbations,
e.g., constant and magnetic potential in the corner of an L-shaped waveguide.
Many of two dimensional problems can be straightforwardly extended to
three-dimension systems [3], but it is not discussed in present thesis.
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Chapter 2

Definition of operators

In presented thesis we study discrete part of spectrum of energy operator
corresponding to open subset Ω ⊂ R2 with Dirichlet boundary conditions.
We define a linear operator Ĥ on Hilbert space H with scalar product (·, ·)
and norm || · || =

√
(·, ·) as a linear mapping from D(Ĥ) ⊆ H into H ,

where D(Ĥ) is called the domain of the operator Ĥ. Operator is densely
defined if D(Ĥ) is dense in H . An operator is said to be symmetric if it is
densely defined and:

(Ĥψ, φ) = (ψ, Ĥφ), ∀φ, ψ ∈ D(Ĥ) (2.1)

For densely defined operator we define an adjoint operator Ĥ∗ with do-
main D(Ĥ∗) by condition:

(Ĥψ, φ) = (ψ, Ĥ∗φ), ∀ψ ∈ D(Ĥ) and ∀φ ∈ D(Ĥ∗) (2.2)

Where the domain D(Ĥ∗) is defined to be a set of all φ ∈ H for which
there exists η ∈ H such that:

(Ĥψ, φ) = (ψ, η) ∀ψ ∈ D(Ĥ) (2.3)

We define the self-adjoint operator to be symmetric and

D(Ĥ∗) = D(Ĥ) (2.4)

We define the spectrum σ(Ĥ) of self-adjoint operator to be a set of points
λ ∈ C for which the operator (Ĥ −λ)−1 either does not exists or if it exists
it is not bounded on D(Ĥ). It is easy to prove that for self-adjoint operator
σ(Ĥ) ⊆ R.
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We define a point spectrum σp(Ĥ) to be a set of all eigenvalues of Ĥ, i.e.

of all λ ∈ R, for which there exists ψ ∈ D(Ĥ) with ||ψ|| = 1 such that
Ĥψ = λψ. It is obvious that σp(Ĥ) ⊆ σ(Ĥ).

We define the geometric multiplicity of λ ∈ σp(Ĥ) to be the dimension

of kernel of operator (Ĥ − λ).

We define the discrete spectrum σd to be a set of all isolated eigenvalues with
finite multiplicity and the essential spectrum to be σe(Ĥ) = σ(Ĥ) \ σd(Ĥ).

We define a closed operator to be an operator Ĥ defined on domain D(Ĥ) ⊆
H if whenever ψn is a sequence in D(Ĥ) with limit ψ in H and there exist
φ ∈ H such that limn→∞ Ĥψn = φ, it follows that ψ ∈ D(Ĥ) and Ĥψ = φ.

We define an extension H̃ of an operator Ĥ if D(H̃) ⊇ D(Ĥ) and H̃ψ = Ĥψ,
∀ψ ∈ D(Ĥ). (For such H̃ we say Ĥ is a restriction.)

We define a closure H of an operator Ĥ to be the smallest closed exten-
sion of Ĥ.

We say the operator Ĥ is positive if (ψ, Ĥψ) ≥ 0, ∀ψ ∈ D(Ĥ). (It is of-
ten written simply Ĥ ≥ 0)

We say the operator is lower semi-bounded if there is c ∈ R such that
(ψ, Ĥψ) ≥ c. (Ĥ ≥ c) We may point out that the lower semi-bounded oper-
ator can be turned into a positive operator by translation.

We define a core D of a closed linear operator Ĥ to be a subset of D(Ĥ) if
Ĥ is the closure of its restriction on D .

Studying the behavior of a linear self-adjoint operator, its domains and their
cores may be in many cases very difficult. To avoid these difficulties we will
use the quadratic form approach. Before defining quadratic forms we give a
condition of segment property:

Let Ω be a bounded open set in Rm and let ∂Ω = Ω\Ω be its topologi-
cal boundary. Ω is said to have a segment property if ∂Ω has a finite open
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covering {Oi} and corresponding nonzero vectors {yi} so that for 0 < t < 1,
x + tyi is in Ω if x ∈ Ω ∩Oi.

2.1 Self-adjoint Operator as a quadratic form

In this part of the thesis we define associated quadratic forms, which are pow-
erful tools for studying self-adjoint operators, yet their rigorous definitions
and detail study is out of scope of present thesis. We give only basic results,
for more information we refer to [5]. We define a non-negative sesquilinear
form Q′ on dense domain D in Hilbert space H is a map Q′ : D ×D → C
such that:

Q′(ψ, φ) is linear in ψ (2.5)

Q′(ψ, φ) is conjugate linear in φ (2.6)

Q′(ψ, φ) = Q′(φ, ψ) ∀ψ, φ ∈ D (2.7)

Q′(ψ, ψ) ≥ 0 ∀ψ ∈ D (2.8)

We define quadratic form to be:

Q(ψ) =

{
Q′(ψ, ψ) if ψ ∈ D

+∞ otherwise
(2.9)

Theorem 2.1.1 (The Friedrichs Extension) Let Ĥ be a positive symmetric
operator and let Q(φ, ψ) = (φ, Ĥψ) for φ, ψ ∈ D(Ĥ). Then Q is a closable
quadratic form and its closure Q̃ is the quadratic form of a unique self-
adjoint operator H̃. H̃ is a positive extension of Ĥ, and the lower bound
of its spectrum is the lower bound of Q. Further, H̃ is the only self-adjoint
extension of Ĥ whose domain is contained in the form domain of Q̃.

This theorem with proof might be found as Theorem X.23 in [6]. Since we
are concerned of open subsets Ω ⊂ R we have therefore Hilbert space H =
L2(Ω). The considered Hamiltonian is ĤD

Ω = −∆D
Ω with domain D(∆D

Ω ) =
C∞

0 (Ω) and we identify the associated quadratic form with:

QΩ(ψ) =

∫

Ω

|∇ψ|2 dx (2.10)

If Ω has segment property the set of all ψ that are infinitely smooth in
the interior of Ω and vanish on its boundary forms a core of −∆D

Ω [1]. We
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may point out that if we add a constant potential in subset Σ ⊂ Ω the
Hamiltonian on Σ is connected with above defined one by translation. For
vector potential we consider Hamiltonian ĤD

Σ, ~A
= (−i∇+ ~A)2 with associated

quadratic form:

Q
~A
Σ(ψ) =

∫

Σ

|(−i∇+ ~A)ψ|2 d2x (2.11)

defined on magnetic Sobolev space H1
0, ~A

(Σ). We may point out that gradient

in above definitions is defined in distributional sense, i.e. in Rn:

∫
(∇φ)ψ dnx = (−1)n

∫
φ∇ψ dnx (2.12)
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Chapter 3

Domain Decomposition

In this part of thesis we define a two dimensional waveguide as an open subset
Ω ⊆ R2. We consider an L-shaped waveguide to be a planar strip of constant
width d with one right-angled break. It is useful to decompose the region
in three new subregions: Ω = ΩI ∪ ΩII ∪ ΩIII , where ΩI = (0, d) × (d,∞),
ΩII = (d,∞)× (0, d) and ΩIII = (0, d)× (0, d). It is clear that this domain
has segment property. See figure 3.1.

Figure 3.1: Domain decomposition

As a point in R2 we denote (x, y). In further text we give the solutions
of Schrödinger equation for each region separately, then we connect them
by mode matching method, i.e. through equality of wavefunctions and its
first derivate on borders of subregions (see Chapter 4). We consider the
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wavefunction Ψ(x, y) to be:

Ψ(x, y) =





ΨI(x, y) if (x, y) ∈ ΩI

ΨII(x, y) if (x, y) ∈ ΩII

ΨIII(x, y) if (x, y) ∈ ΩIII

(3.1)

The symmetry of the given shape (with respect to axis x = y) gives us
great simplification: The wavefunction is either symmetric or antisymmetric
with respect to above defined axis.

3.1 External leads

With respect to above defined symmetry it is sufficient to study the wave-
function only on half of Ω (divided by the symmetry axis). The wavefunction
can be then straightforwardly extended to the second half. Therefore we will
study the solution in one external lead. In our case we consider the potential
in external lead to be equal to zero, hence the Schrödinger operator can be
identified with Hamiltonian of a free particle and Schrödinger equation can
be written as:

Ĥψ = −∆ψ = λψ (3.2)

The infiniteness of potential outside considered region provides vanishing
of wavefunction outside Ω, hence we consider Dirichlet boundary conditions,
i.e. for external lead ΩII : ψ(x, 0) = 0, ψ(x, d) = 0, ∀x ∈ (d,∞). Considering
the zero potential we can separate variables and divide the problem into two
independent problems.

ψ(x, y) = η(x)φ(y) (3.3)

⇒ η′′(x)

η(x)
+ λ = c (3.4)

⇒ −φ′′(y)

φ(y)
= c (3.5)

First we will solve the transversal case (3.5).
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3.1.1 Transversal solution

As a transversal Hamiltonian we consider operator defined as Ĥφ = −φ′′,
defined on L2(0, d). The solution of Schrödinger equation with zero boundary
condition is:

φ(y) =

√
2

d
sin

(
jπy

d

)
, j ∈ N (3.6)

At this point we may point out that we have complete orthogonal set of
eigenfunctions, hence the energy operator Ĥ is essentially self-adjoint. The
solution gives the value of a constant c in (3.5), (3.4), c = j2π2

d2 where j =
1, 2...,∞.

3.1.2 Longitudinal solution

Now we can give a solution to longitudinal part of the problem. The solution
to (3.4) is bounded with zero condition in infinity, and therefore is:

ψ = expπ
√

j2−κ(1−x
d
), (3.7)

where κ = d2

π2 λ0 and the threshold of continuous spectrum is given by the

first transversal mode: λ0 = π2

d2 .

3.1.3 Wavefunction

The wavefunction on ΩII is therefore:

ΨII(x, y) =
∞∑

j=1

(−1)j+1rj eqj(1−x/d)

√
2

d
sin

(
jπy

d

)
, (3.8)

where rj are coefficients. As it was mentioned above, the wavefunction on
ΩI is given by the same expression with swapped variables and coefficients
tj. Due to the symmetry of the problem we consider the wavefunctions to
be symmetric resp. antisymmetric to the axis x = y. The symmetry resp.
antisymmetry can be expressed with relation of the coefficients: rj = tj resp.
rj = −tj.
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Chapter 4

Mode matching

Let Ψ(x, y) is the wavefunction on Ω defined in (3.1). Since the Schrödinger
equation is a second order partial differential equation with piecewise con-
tinuous potential, its solution have to be continuous and continuous in its
prime derivates for all (x, y) ∈ Ω. Above defined separated solutions satisfy
these conditions on their domains. The mode matching method gives us nec-
essary conditions for wavefunctions on borders of their domains. Since we
know the relation between wavefunctions ΨI and ΨII , we focus on relation
between ΨIII and ΨII .

ΨIII(d, y) = ΨII(d, y) ,
∂ΨIII

∂x
(d, y) =

∂ΨII

∂x
(d, y) (4.1)

If the conditions given by these relations and condition between ΨI and
ΨII are satisfied, than the conditions given by relations between ΨIII and
ΨI are satisfied automatically. (In further work, we add a potential in region
ΩIII , thus we may point out that this relation is true only if the inner
potential in ΩIII is also symmetric to the axis x = y.)

4.1 Constant potential

First perturbation studied in presented thesis is constant potential of given
strength V0 placed in region ΩIII . Hence the Schrödinger operator is:

ĤΩIII
= −∆ΩIII

D + V0 (4.2)

with zero conditions on borders x = 0 and y = 0. We can also see that the
solution respects the symmetry to the axis x = y. Using the same method
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as in external leads case can express the solution as:

ΨIII(x, y) =
∞∑

j=1

(−1)j+1

[
rj

sinh(pj
y
d
)

sinh(pj)
φj(x) + tj

sinh(pj
x
d
)

sinh(pj)
φj(y)

]
, (4.3)

where pj = π
√

j2 − κ + V0 and functions φj(·) are defined as in (3.6). In
next section we will show, that for sufficiently strong negative potential
antisymmetric bound states appears. Coefficients tj can therefore be equal
to either to rj or −rj, dependant on to which state they belong. Using
conditions (4.1) with relation of orthogonality of functions φj leads us to
equation:

Cr = r, (4.4)

where r is an infinite vector of coefficients rj and C denotes a matrix operator
Cjk defined as:

Cjk = ± jk

(k2 +
pj

π2 )

1

(qk + pk coth(pk))
(4.5)

The sign of the operator depends on the symmetry resp. antisymmetry
of the state.

4.2 Numerical solutions

In this part (of present thesis) we give numerical solution to equation (4.4).
From mathematical point of view we will study a matrix operator (Cjk− 1),
which depends on V0 and κ. For each value of the potential we will use the
parameter κ as independent variable. If the solution fulfils all conditions the
matrix operator (Cjk − 1) is singular, hence:

det(Cjk − 1) = 0 (4.6)

For further computing we used computer program MATLAB 6.5. For
finding zero point we used built-in function ”fzero”, which is using standard
bisection method. For computing energy values we have to confine ourselves
to a finite row of coefficients. This restriction leads to condition of rapid
convergence of coefficients, which is satisfied automatically if the resulting
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Figure 4.1: Energy levels with respect to constant potential strength V0, with
width of the strip d = π.

wavefunction is in L2(Ω), and which was formerly discussed by prof. Exner
et al. in [1]. Computed values we arranged in following graph:

The graph shows the first symmetric state crossing zero potential line in
point E

.
= 0.93λ0 which corresponds to former computation performed by

prof. P. Exner et al. [1]. One may find interesting that the positive potential
must be surprisingly strong to make the state vanish. The graph also shows
that new states appear for sufficiently strong negative potential. Some ex-
amples of wavefunctions follows in figure 4.2

Studying the first symmetric state shows that the potential pushes the
wavefunction inside external leads. When the repulsive potential is strong
enough the wavefunction cannot be normalised, i.e. cannot be in L2(Ω). The
highest value of potential strength for which we were able to find bound
state was V max

0
.
= 0, 266.
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Figure 4.2: Examples of wavefunctions of bound states for different potential
strength V0 and with width of the strip d = π.
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Figure 4.3: Model of a wavefunction of a ground state with repulsive constant
potential in the corner near the threshold of continuous energy spectrum and
with width of the strip d = π.
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4.3 Magnetic field

Next perturbation studied in present thesis is magnetic field. It’s potential
given by formula:

~A = −1

2
By~ex +

1

2
Bx~ey, (4.7)

where B denotes a parameter of field strength. One would expect that the
solution would be easily found by mode-matching method. It is easy to find
solution on region ΩIII and to formulate necessary conditions as integral
equations. Unfortunately it is not that easy to find numerical solutions.
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Chapter 5

Finite element method

Due to numerical complications we decided to use easier approach. In the
text below we give a brief overview of the Finite Element Method (FEM ),
used for solving the magnetic field case. We do not describe the method
exactly. Proper description including used formulas might be found in [7].
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Figure 5.1: Energy level of ground state with respect to magnetic field
strength B in L-shaped waveguide with width d = π.
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Figure 5.2: Graph of energy levels with respect to magnetic field strength
B in L-shaped waveguide with attractive constant potential V0 = −8 in the
corner and with width d = π.

The finite element method is based on approximation computational do-
main Ω with a union of simple geometric object, in this case triangles. The
main proposition is that the solution is simple on each triangle and that
solutions are continuously connected to each other across the edges. The
simplest function which can be connected are linear. The resolving function
is than approximated by piecewise linear function. The Dirichlet boundary
conditions are simply added as zero value of the function on triangle edges
which lie on borders of defined region. The partial differential equation is
than reformulated in a finite set of linear equations. The approximate so-
lution is hence given by algebraic computation, which is much easier to solve.
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For computing numerical solution we used specialised COMSOL Multi-
Physics 3.4 software. The software does not allow us to compute equations
on infinite objects, hence we have to approximate infinite external leads with
sufficiently long but finite. After defining the problem we received solutions,
which we arranged in a graph (see Fig. 5.1). Graph shows us how the en-
ergy depends on magnetic field’s strength. As control point we can use the
situation when magnetic field vanishes, as we did before for constant poten-
tial. We were also interested in combining both perturbations. The following
graph shows us energy behavior for one value of constant potential.
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Figure 5.3: Graph of energy levels near continuous spectrum with respect to
Magnetic field strength in L-shaped waveguide with width d = π and zero
constant potential.

We may point out that values in Fig. 5.1 and Fig. 5.2 are approximative
only, particularly values close to threshold of essential spectrum. It is easy
to identify the sources of these inaccuracies. One source is given by the
method itself, with its approximation of the considered region by a mesh.
This inaccuracy can be suppressed by refining the mesh. Unfortunately this
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refinement significantly increases the computation time. Second inaccuracy
is given by the restriction to finite shape with Dirichlet condition at the
ends of the leads. When the probability density is pushed inside external
leads and the wavefunction is slowly decaying, the finite external lead is no
longer sufficient approximation. This inaccuracy cannot be suppressed, but
we can replace the Dirichlet boundary condition with Neumann boundary
condition, i.e. ∇Ψ = 0, ∀(x, y) ∈ ∂Ω. Using Proposition 4 in chapter 13 in
[6]:

0 ≤ −∆Ω
N ≤ −∆Ω

D, (5.1)

for all Ω ⊆ Rn and considering the wavefunction to be decaying in external
leads, we may suggest the energy level lies between Dirichlet and Neumann
boundary condition levels. We performed detail computation for values close
to continuous spectrum with zero constant potential (see Fig 5.3)
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Chapter 6

Conclusions

In present thesis we have studied the stability of geometrically induced
bound state in L-shaped waveguide with respect to perturbations. For con-
stant potential we have performed computation of values for energy of the
state with respect to potential strength (Fig. 4.1). We have showed that with
increasing strength of attractive constant potential the number of bound
states increases and the symmetry resp. antisymmetry is manifested in wave-
functions (Fig. 4.2). We have also showed that the repulsive potential have
to be surprisingly strong to destroy the bound state and that the state is
very weakly coupled for strong repulsive potential (Fig. 4.3). These com-
putations were performed on MATLAB 6.5 software. We have also studied
the magnetic field perturbation. We have showed that for sufficiently strong
field the bound state vanishes (Fig. 5.1) and the symmetry of the graph
shows that energy values are not dependant on orientation of the magnetic
field. We have also studied the combination of negative constant potential
and magnetic field (Fig. 5.2). The energy values manifests avoided cross-
ing in several points. The independence to orientation of magnetic field is
kept. These computations were performed on COMSOL MultiPhysics 3.4
software.
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