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nimi.
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Abstract: The modern theory of real interpolation has forced an introduction of many
new notions with superordinary importance. We will concentrate on Lorentz spaces,
which originated as a generalization of weak Lebesgue spaces, and on Marcinkiewicz
spaces, named after the Polish mathematician J. Marcinkiewicz, which represent an
example of the so-called Banach function spaces. Our goal is, at the beginning, to
describe some relationship between certain generalizations of a norm and a metric,
and, afterwards, to apply the knowledge obtained to Lorentz spaces, which, in general,
are not, and neither can be, equipped with a suitable norm. At first, we will endow them
with an α-norm. Using properties of the nonincreasing rearrangement of a function,
we will equip the special cases of Lorentz spaces, more precisely the spaces L1,q, where
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to original functional as possible. Hereafter, we induct Marcinkiewicz spaces based on
quasiconcave functions and describe a necessary and sufficient condition for continuous
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Introduction

The thesis is divided into three parts.
In the first part we treat a norm in a normed linear space and its general-

izations, namely, a quasinorm and an α-norm. We describe relationship between
these functionals. More precisely, we will concentrate on an α-norm, its de-
pendence on various values of the positive parameter α and its relationship to
a quasinorm. The knowledge obtained thereby is then applied to a metric and,
analogously to a quasimetric and an α-metric.

In the second part, we introduce the nonincreasing rearrangement of a function
and Lorentz spaces. Next, we describe Lorentz spaces with a particular emphasis
to their norms. Because the usual functional used in Lorentz spaces does not
always satisfy all the norm axioms, we would like to find an α-norm, as similar to
original functional as possible. We will use results presented in [1]. We examine
separately the cases L1,q for 1 < q < ∞ and L1,∞, in which case we also prove
the optimality of our results. In both cases we are able to find an α-norm and,
with the help of the results presented in the first part, we can equip them also
by a quasinorm and a quasimetric.

In the final part, we introduce the notion of a quasiconcave function, which
leads to Marcinkiewicz spaces, and we explore necessary and sufficient condi-
tions for continuous and almost-compact embeddings between them, using basic
properties of quasiconcave functions.



1 NORMS AND METRICS 6

1 Norms and metrics

Our purpose will be to study the question, whether it is possible to equip Lorentz
spaces with a suitable generalization of a norm and establish its optimality.

Definition 1.1. Let X be a vector space over the field C of complex numbers.
A mapping ‖ · ‖ : X −→ [0,∞) is called norm on X, if for all a ∈ C and x,y ∈ X

‖x‖ = 0 ⇔ x = 0, (1)

‖ax‖ = |a|‖x‖, (2)

‖x + y‖ ≤ ‖x‖ + ‖y‖. (3)

Definition 1.2. Let X be a vector space over the field C of complex numbers.
A mapping ‖ · ‖ : X −→ [0,∞) is called quasinorm on X, if for all a ∈ C and
x,y ∈ X

‖x‖ = 0 ⇔ x = 0,

‖ax‖ = |a|‖x‖,
‖x + y‖ ≤ K(‖x‖ + ‖y‖) for some K ≥ 1.

Definition 1.3. Let X be a vector space over the field C of complex numbers.
Let α ∈ (0, 1], then a mapping ‖ · ‖ : X −→ [0,∞) is called an α-norm on X for
some α ∈ (0, 1], if for all a ∈ C and x,y ∈ X

‖x‖ = 0 ⇔ x = 0, (4)

‖ax‖ = |a|‖x‖, (5)

‖x + y‖α ≤ ‖x‖α + ‖y‖α.

It is obvious that every norm is a quasinorm with constant K = 1 and also an
α-norm with α = 1.

Remark 1.4. In all text we will use known the trivial inequalities

(A + B)α ≤ Aα + Bα α ≤ 1;

(A + B)α ≥ Aα + Bα α ≥ 1;

for A,B ≥ 0.

Now we will prove that if a mapping is an α0-norm for some α0, then it is also
a β-norm for each β < α0.
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Proposition 1.5. Let X be a vector space and the mapping ‖ · ‖ is an α0-norm
on X for some α0, that is,

‖f + g‖α0 ≤ ‖f‖α0 + ‖g‖α0 (6)

for each f, g ∈ X. Let β ∈ (0, α0). Then for each f, g ∈ X,

‖f + g‖β ≤ ‖f‖β + ‖g‖β.

Proof. From (6) we have:

‖f + g‖β = (‖f + g‖α0)β/α0 ≤ (‖f‖α0 + ‖g‖α0)β/α0 .

Because β/α0 < 1, we have

(‖f‖α0 + ‖g‖α0)β/α0 ≤ (‖f‖α0)β/α0 + (‖g‖α0)β/α0 = ‖f‖β + ‖g‖β.

Remark 1.6. We say that an α0-norm is optimal on a vector space X, if α0 is the
largest value, which satisfies all α-norm axioms, in other words, it is an α-norm
if and only if α ∈ (0, α0].

Hereafter we will describe the relationship between quasinorms and α-norms
and we will apply it to Lorentz spaces.

At the beginning we will prove that a Banach space equipped with an α-norm
can be also endowed with a quasinorm.

Proposition 1.7. Let 0 < α < 1 and assume that for every f and g in a Banach
space X one has

‖f + g‖α ≤ ‖f‖α + ‖g‖α.

Then
‖f + g‖ ≤ 2

1

α
−1(‖f‖ + ‖g‖).

Proof. Denote c := ‖f + g‖, a := ‖f‖ and b := ‖g‖. Then

cα ≤ aα + bα

and
c ≤ (aα + bα)

1

α ,

which we require to be less than or equal to

2
1

α
−1(a + b).
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If a = 0 or b = 0, then the inequality holds. So, we find the maximum of

(

aα + bα

(a + b)α

)
1

α

,

where a > 0 and b > 0, and we hope that this maximum is less than or equal to
2

1

α
−1.
Let b = λa and let us find the maximum of

aα + (λa)α

((1 + λ)a)α
.

Since
aα + (λa)α

((1 + λ)a)α
=

(1 + λα)aα

(1 + λ)αaα
,

it is sufficient to find the maximum of

1 + λα

(1 + λ)α
.

Next,
(

1 + λα

(1 + λ)α

)′
=

(αλα−1)(1 + λ)α − (1 + λα)α(1 + λ)α−1

(1 + λ)2α
,

α(1 + λ)α−1[λα−1(1 + λ) − (1 + λα)] = 0

and
λα−1 + λα − 1 − λα = 0.

Thus,
(

1+λα

(1+λ)α

)′
= 0 only for λ = 1,

(

1+λα

(1+λ)α

)′
> 0 for λ < 1 and

(

a+λα

(1+λ)α

)′
< 0

for λ < 1 (for α < 1). Therefore, the maximum of our expression is attained at

λ = 1 and equals to
(

1+1α

(1+1)α

)
1

α

= 2
1

α
−1. Consequently, we found a quasinorm on

the space X with the constant K = 2
1

α
−1.

On the other hand, we would like to be able to make an α-norm from a quasi-
norm. Unfortunately, there exists no general dependence.

Proposition 1.8. There exists a quasinorm ‖ · ‖ which is not an α-norm for any
α ∈ (0, 1).

Proof. Let X be a Banach space equipped with the norm ‖ · ‖X , and let Y be its
closed nontrivial subspace. Let us define

‖ · ‖X̃ =

{

2‖y‖X , y ∈ Y ;
‖x‖X , x ∈ X\Y.
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At first, we have to confirm that ‖ · ‖X̃ satisfies the axioms of a quasinorm. It is
easy to observe that

‖x‖X̃ = 0 ⇔ x = 0

and that
‖kx‖X̃ = |k|‖x‖X̃ whenever k is a scalar.

It remains to prove that ‖ · ‖X̃ is a quasinorm with constant K = 2.
For x + y ∈ Y , we have

‖x + y‖X̃ = 2‖x + y‖X ≤ 2(‖x‖X + ‖y‖X).

For x + y ∈ X\Y ,

‖x + y‖X̃ = ‖x + y‖X ≤ (‖x‖X + ‖y‖X) ≤ 2(‖x‖X + ‖y‖X).

We shall now prove that, given any α ∈ (0, 1), ‖ · ‖X̃ is not an α-norm. Let
x, y ∈ Y , thus x + y ∈ Y . If ‖ · ‖X̃ was an α-norm, then it would have to obey

‖x + y‖α
X̃

= 2α‖x + y‖α
X ≤ ‖x‖α

X + ‖y‖α
X .

Let y = mx for some scalar m. Then it is required, that for all such m,

2α‖x(1 + m)‖α
X ≤ ‖x‖α

X + ‖mx‖α
X .

Hence,
2α(1 + m)α‖x‖α

X ≤ (1 + mα)‖x‖α
X

and

2α ≤ 1 + mα

(1 + m)α
.

Because

lim
m→∞

(1 + m)α

1 + mα
= 1,

it holds that (1+m)α

1+mα < 2α for large enough m. So, for any given α, we found x and
y such that ‖ · ‖α

X̃
does not satisfy the triangle inequality. Consequently, ‖ · ‖X̃ is

not an α-norm, for any α > 0.

Now we define some other important terms; in particular, a metric, which
is also called a distance function, and a quasimetric, which is an analogue of
a quasinorm in normed spaces.
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Definition 1.9. Let X be a (non empty) set. The function ρ : X × X → [0,∞)
is called a metric if, for all x, y, z ∈ X,

ρ(x, y) = 0 ⇔ x = y;

ρ(x, y) = ρ(y, x);

and
ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

Definition 1.10. Let X be a (non empty) set. The function ρ : X ×X → [0,∞)
is called a quasimetric if, for all x, y, z ∈ X,

ρ(x, y) = 0 ⇔ x = y;

ρ(x, y) = ρ(y, x);

and
ρ(x, y) ≤ K(ρ(x, z) + ρ(z, y)) for some K ≥ 1.

It is obvious that every metric is also a quasimetric with the constant K = 1.

Remarks 1.11. (i) Let (X, ‖ · ‖) be a normed vector space. Then we can
introduce a metric ρ on X by setting ρ(x, y) = ‖x − y‖ for all x, y in X.

(ii) Analogically, we can generate a quasimetric by a quasinorm.
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2 Lorentz spaces

In this section we shall develop a theory of the nonincreasing rearrangement of
a given function and, in particular, of Lorentz and Marcinkiewicz spaces.

Most of the material and further details can be found in [1].
Prior to the definition of Lorentz spaces we have to define some auxiliary

notions and their properties.

Let (R, µ) denote a totally σ-finite measure space.
Let M denote the collection of all extended scalar-valued (real or complex)

µ-measurable functions on R, and let M0 denote the class of functions in M that
are finite µ-a.e.

Definition 2.1. The distribution function µf of a function f in M0 = M0(R, µ)
is given by

µf (λ) = µ{x ∈ R : |f(x)| > λ}, λ ≥ 0.

Observe that the distribution function is a nonnegative, nonincreasing and
right-continuous function on [0,∞).

Definition 2.2. Two functions f ∈ M0(R, µ) and g ∈ M0(S, ν) are said to be
equimeasurable if they have the same distribution function, that is, if µf (λ) =
νg(λ) for all λ ≥ 0.

Definition 2.3. Suppose f belongs to M0(R, µ). The nonincreasing rearrange-

ment of f is the function f ∗, defined on [0,∞) by

f ∗(t) = inf{λ : µf (λ) ≤ t}, t ≥ 0.

We will presume that inf ∅ = ∞. Hence, if for some t, we have µf (λ) > t for
all λ, then f ∗(t) = ∞. Because µf is nonincreasing, we can express f ∗ also as

f ∗(t) = sup{λ : µf (λ) > t}.

We can think of the nonincreasing rearrangement as a ‘generalized inversion’
of µf . In the cases, when µf is strictly decreasing and continuous, we have
f ∗ = (µf )

−1.
Now we shall introduce some properties of the nonincreasing rearrangement,

which we will need in this section. For the proof see [1, Chapter 2; Proposition
1.7].

Proposition 2.4. Suppose f , g belong to M0(R, µ) and let a ∈ R be any
scalar. The nonincreasing rearrangement f ∗ is a nonnegative, nonincreasing,
right-continuous function on [0,∞), and

(af)∗ = |a|f ∗, (7)
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(|f |p)∗ = (f ∗)p, 0 < p < ∞,

and
(f + g)∗(t1 + t2) ≤ f ∗(t1) + g∗(t2), t1, t2 ≥ 0. (8)

Observe that for a nonincreasing function f , f ∗ = f .

Definition 2.5. Let f belong to M0(R, µ). Then f ∗∗ will denote the maximal

function of f ∗, defined by

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds, t > 0.

We will now summarize some properties of the maximal function. For the
proof see [1, Chapter 2; Proposition 3.2] and [1, Chapter 2; Theorem 3.4].

Proposition 2.6. Suppose f , g belong to M0 and let a ∈ R be any scalar. Then
f ∗∗ is nonnegative, nonincreasing, and continuous on (0,∞). Furthermore, the
following properties hold:

f ∗∗ ≡ 0 ⇔ f = 0 µ-a.e;

(af)∗∗ = |a|f ∗∗;

(f + g)∗∗(t) ≤ f ∗∗(t) + g∗∗(t).

Definition 2.7. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed linear spaces such that
X ⊆ Y . We say that X is continuously embedded into Y , denoted X →֒ Y , if
the identity function Id : X → Y is continuous, in other words, if there exists
a constant c ≥ 0 such that ‖x‖Y ≤ c‖x‖X for every x ∈ X.

Definition 2.8. Let (R, µ) be a totally σ-finite measure space and suppose 0 < p,
q ≤ ∞. The Lorentz space Lp,q = Lp,q(R, µ) consists of all f in M0(R, µ) for
which the quantity

‖f‖p,q =







{

∫ ∞
0

[t1/pf ∗(t)]q dt
t

}1/q

if 0 < q < ∞
sup

0<t<∞
{t1/pf ∗(t)} if q = ∞.

is finite.

Now we recall some properties of Lorentz spaces. If p = q ∈ (0,∞), then
Lp,p = Lp and ‖f‖p,p = ‖f‖p, which results from (7) and the fact, that f and
f ∗ are equimeasurable. If q = ∞, then Lp,∞ is the so-called weak Lebesgue space

and Lp,∞ ) Lp for p < ∞. For p = ∞ and q < ∞, then L∞,q = {0}.
The next proposition describes an embedding of Lorentz spaces for a fixed p.

For the proof see [1, Chapter 4; Proposition 4.2].
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Proposition 2.9. Let 0 < p ≤ ∞ and 0 < q ≤ r ≤ ∞. Then

Lp,q →֒ Lp,r.

(There exists a positive c such that for every f it holds that ‖f‖p,r ≤ c‖f‖p,q.)

The inclusions between Lp,q spaces with different p is similar to those between
Lebesgue spaces Lp, independent of q [1, Chapter 4; page 217].

Despite our notation, the functional ‖ · ‖p,q is not always a norm. More
precisely, it is a norm if and only if 1 ≤ q ≤ p and 1 < p < ∞. In cases when
1 < p < ∞ and q ∈ [1,∞], it is at least equivalent to the norm ‖f ∗∗‖p,q.

However, the Lorentz space L1,q, where q ∈ (1,∞], can not be equipped with
any norm equivalent to ‖ · ‖1,q.

Henceforward we will concentrate on the most interesting case p = 1 and our
goal will be to equip Lorentz spaces with a suitable α-norm or to show that such
an α-norm does not exist.

Now let us demonstrate the necessity of this search and prove that, for q = ∞,
the functional ‖f‖1,∞ is not a norm.

Proposition 2.10. Let (L1,∞, ‖·‖1,∞) be as in Definition 2.8. Then, the mapping
‖ · ‖1,∞ does not satisfy (3) – the triangle inequality.

Proof. It is sufficient to find a counterexample. Let f := x and g := 1 − x, then
f + g ≡ 1. We will compute their norms using 2.8. We have:

‖f‖1,∞ = sup
0<t<1

{tf∗(t)} = max
0<t<1

t(1 − t) =
1

4
,

‖g‖1,∞ = sup
0<t<1

{tg∗(t)} = max
0<t<1

t(1 − t) =
1

4

and
‖f + g‖1,∞ = sup

0<t<1
{t(f + g)∗(t)} = sup

0<t<1
t · 1 = 1,

but 1 6≤ 1
4

+ 1
4
, hence ‖f + g‖ 6≤ ‖f‖ + ‖g‖.

Our purpose now is to equip L1,∞ with an optimal α-norm. Because the
functional ‖ · ‖1,∞ obviously satisfies the norm axioms (1) and (2) , we have to
prove only the triangle-inequality. At first, we will prove it for α = 1/2.

Theorem 2.11. Let (L1,∞, ‖ · ‖1,∞) be as in Definition 2.8. Then

‖f + g‖1/2
1,∞ ≤ ‖f‖1/2

1,∞ + ‖g‖1/2
1,∞.
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Proof. We require:

( sup
0<t<∞

t(f + g)∗(t))1/2 ≤ ( sup
0<t<∞

tf∗(t))1/2 + ( sup
0<t<∞

tg∗(t))1/2,

that is, by the properties of the supremum,

sup
0<t<∞

√
t
√

(f + g)∗(t) ≤ sup
0<t<∞

√
t
√

f ∗(t) + sup
0<t<∞

√
t
√

g∗(t).

Denote a := sup
0<t<∞

√
t
√

f ∗(t) and b := sup
0<t<∞

√
t
√

g∗(t). We need to show that,

for every t ∈ (0,∞),
t(f + g)∗(t) ≤ (a + b)2,

that is

(f + g)∗(t) ≤ 1

t
(a + b)2.

From (8), we get

(f + g)∗(t) ≤ f ∗(λt) + g∗((1 − λ)t), for every λ ∈ [0, 1]. (9)

Now, it suffices to prove that

f ∗(λt) + g∗((1 − λ)t) ≤ 1

t
(a + b)2. (10)

Recall that
a = sup

0<t<∞

√

tf∗(t),

hence
a = sup

0<t<∞

√

λtf ∗(λt)

and
a2 = sup

0<t<∞
λtf ∗(λt).

Thus,
λtf ∗(λt) ≤ sup

0<t<∞
λtf ∗(λt) = a2,

that is

f ∗(λt) ≤ a2

λt
.

Similarly, we get

g∗((1 − λ)t) ≤ b2

(1 − λ)t
.
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Let us insert this into (10), we then obtain

a2

λt
+

b2

(1 − λ)t
≤ 1

t
(a + b)2

and
a2

λ
+

b2

(1 − λ)
≤ (a + b)2.

Finally, we need to find λ satisfying

(1 − λ)a2 + λb2 ≤ λ(1 − λ)(a + b)2.

Because λ can depend on a and b, we need to solve the quadratic inequation: let
λ := a

a+b
, then λ ∈ (0, 1) and

(1 − λ)a2 + λb2 ≤ λ(1 − λ)(a + b)2.

So, we found λ satisfying (10), and from (9) we obtain the required inequality.

Combining this result with the Proposition 1.5, we immediately obtain that
‖ · ‖ is an α-norm also for all α ∈ (0, 1/2].

Now we shall demonstrate that α = 1/2 is the largest (optimal) value for
which the functional ‖ · ‖1,∞ is an α-norm.

Proposition 2.12. Let β > 1/2, then exist f, g ∈ M0 such that

‖f + g‖β
1,∞ > ‖f‖β

1,∞ + ‖g‖β
1,∞.

Proof. We will use the same counterexample as above. Let f := x and g := 1−x,
then f + g ≡ 1. Then

‖f‖1,∞ =
1

4
,

‖g‖1,∞ =
1

4

and
‖f + g‖1,∞ = 1.

Let us define h(β) := 2(1
4

β
), then h is a strictly decreasing function, h(1/2) =

1, so, for each β > 1/2, h(β) < 1, proving the claim.

Corollary 2.13. Let (L1,∞, ‖ · ‖1,∞) be as in Definition 2.8. Then ‖ · ‖1,∞ is the
α-norm if and only if α ∈ (0, 1/2].
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Using the relationship between a α-norm and a quasinorm, we can formulate
the following corollary.

Corollary 2.14. We can equip the Lorentz space L1,∞ with a quasinorm with
constant K = 2.

Using Remark 1.11 we can formulate yet another corollary.

Corollary 2.15. We can equip the Lorentz space L1,∞ with a quasimetric with
constant K = 2.

We shall now leave the case q = ∞ and will explore other cases. Before doing
that, we will formulate a result by Godfrey Harold Hardy, for its proof see [1,
Chapter 2; Proposition 3.6].

Proposition 2.16 (Hardy’s lemma). Let f and g be nonnegative measurable
functions on (0,∞) and suppose

∫ t

0

f(s)ds ≤
∫ t

0

g(s)ds

for all t > 0. Let h be any nonnegative nonincreasing function on (0,∞). Then
∫ ∞

0

f(s)h(s)ds ≤
∫ ∞

0

g(s)h(s)ds.

Now we are able to show that ‖f‖1,q for q ∈ (0, 1) is a q-norm. The first
two α-norm axioms (4) and (5) are obvious, so we will prove only the triangle-
inequality.

Proposition 2.17. Let 0 < q < 1, then

‖f + g‖q
1,q ≤ ‖f‖q

1,q + ‖g‖q
1,q.

Proof. We know that
∫ s

0

(f + g)∗(t)dt ≤
∫ s

0

f ∗(t)dt +

∫ s

0

g∗(t)dt.

Thus, for h nonincreasing, we have:
∫ ∞

0

(f + g)∗(t)h(t)dt ≤
∫ ∞

0

f ∗(t)h(t)dt +

∫ ∞

0

g∗(t)h(t)dt.

Let h := tq−1, then, for q < 1, h is decreasing, and

‖f + g‖q
1,q ≤ ‖f‖q

1,q + ‖g‖q
1,q.
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Next, we will describe the spaces L1,q, where 1 < q < ∞. The following propo-
sition shows that we are able to equip all such Lorentz spaces by an 1/2-norm.
Because of the properties of the nonincreasing rearrangement, it is necessary to
prove only the triangle-inequality.

Theorem 2.18. Let 1 < q < ∞ and (L1,q, ‖ · ‖1,q) be as in Definition 2.8. Then

‖f + g‖1/2
1,q ≤ ‖f‖1/2

1,q + ‖g‖1/2
1,q . (11)

Proof. Let denote a := ‖f‖1,q and b := ‖g‖1,q. We need to show that

(
∫ ∞

0

(f + g)∗(t)qtq−1dt

)1/q

≤ (
√

a +
√

b)2. (12)

From (8), we have
(

∫ ∞

0

(f + g)∗(t)qtq−1

)1/q

≤
(

∫ ∞

0

[f ∗(λt) + g∗((1 − λ)t)]qtq−1dt

)1/q

.

Using the Minkowski inequality, we obtain
(

∫ ∞

0

[f ∗(λt) + g∗((1 − λ)t)]qtq−1dt

)1/q

≤
(

∫ ∞

0

f ∗(λt)qtq−1dt

)1/q

+

(
∫ ∞

0

g∗((1 − λ)t)qtq−1dt

)1/q

. (13)

We set s = λt and get
(

∫ ∞

0

f ∗(λt)qtq−1dt

)1/q

=

(
∫ ∞

0

f ∗(s)q
( s

λ

)q−1 1

λ
dt

)1/q

,

and, similarly,

(
∫ ∞

0

g∗((1 − λ)t)qtq−1dt

)1/q

=

(

∫ ∞

0

g∗(s)q

(

s

1 − λ

)q−1
1

1 − λ
dt

)1/q

.

Then we insert this into (13), and we obtain

1

λ
‖f‖1,q +

1

1 − λ
‖g‖1,q =

1

λ
a +

1

1 − λ
b.

From (12) it sufficient to show

1

λ
a +

1

1 − λ
b ≤ (

√
a +

√
b)2.

Now, because λ can depend on a and b we can just take λ =
√

a√
a+

√
b
, and the

desired inequality (11) follows.
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As in the case L1,∞, we can equip the Lorentz space L1,q with a quasinorm
and a quasimetric.

Corollary 2.19. We can equip the Lorentz space L1,∞ with a quasinorm with
constant K = 2 and with a quasimetric with constant K = 2.
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3 Marcinkiewicz spaces

Now we would like to define Marcinkiewicz spaces and describe embeddings be-
tween them. Prior to the definition of Marcinkiewicz spaces we also have to insert
some preliminary material.

Definition 3.1. Let ϕ be a nonnegative function defined on the interval R+ =
[0,∞). If

ϕ(t) is nondecreasing on (0,∞);

ϕ(t) = 0 ⇔ t = 0;

ϕ(t)/t is nonincreasing on (0,∞), (14)

then ϕ is said to be quasiconcave.

Definition 3.2. Let ϕ be a quasiconcave function on R+. The Marcinkiewicz

space mϕ = mϕ(R, µ) consists of all functions f in M0(R, µ) for which the func-
tional

‖f‖mϕ
= sup

0<t<∞
{f ∗(t)ϕ(t)}

is finite.

Definition 3.3. Let X be a normed vector space. The unit ball is the set

BX = {x ∈ X : ‖x‖ ≤ 1}.

The next proposition describes embeddings between Marcinkiewicz spaces.

Proposition 3.4. Let ϕ and ψ be a quasiconcave functions. Then

mϕ →֒ mψ (15)

if and only if

sup
0<t<∞

ψ(t)

ϕ(t)
< ∞. (16)

Proof. At first, we will prove the sufficiency of the condition.
We would like to prove that, assuming (16), we have

sup
f 6≡0

‖f‖mψ

‖f‖mϕ

< ∞.

Suppose that sup
0<t<∞

ψ(t)
ϕ(t)

= c for some c > 0. Then, for every t > 0,

ψ(t) < cϕ(t).
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Let f be a fixed but arbitrary function in M0(R, µ). Then, by Definition 3.2 and
the properties of the supremum, we have

sup
0<t<∞

f ∗(t)ψ(t)

sup
0<s<∞

f ∗(s)ϕ(s)
<

sup
0<t<∞

f ∗(t)cϕ(t)

sup
0<s<∞

f ∗(s)ϕ(s)
= c

sup
0<t<∞

f ∗(t)ϕ(t)

sup
0<s<∞

f ∗(s)ϕ(s)
= c.

Thus,

sup
f∈mϕ

‖f‖mψ

‖f‖mϕ

≤ c.

Now we shall prove the necessity of the condition (16).
Suppose, for contradiction, that (15) holds and simultaneously, for each n ∈ N,

there exists a sequence an ∈ (0,∞), n ∈ N, such that

ψ(an)

ϕ(an)
≥ n. (17)

Let fn be a function defined by the following formula:

fn(t) =

{

1, t ∈ [0, an];
0, t ∈ (an,∞).

Since fn is nonincreasing, we have fn = f ∗
n.

Now we will compute the norm ‖fn‖mϕ
:

sup
0<t<∞

f ∗
n(t)ϕ(t) = max{ sup

t∈(0,an]

f ∗
n(t)ϕ(t), sup

t∈(an,∞)

f ∗
n(t)ϕ(t)} =

max{ sup
t∈(0,an]

1 · ϕ(t), sup
t∈(an,∞)

0 · ϕ(t)} = sup
t∈(0,an]

ϕ(t).

Because ϕ is nondecreasing,

‖fn‖mϕ
= ϕ(an), (18)

and fn ∈ mϕ.
Now, let us estimate the value of ‖fn‖mψ

: from the properties of the supremum
we have

sup
0<t<∞

f ∗
n(t)ψ(t) ≥ fn(an)ψ(an) = 1ψ(an),

hence, from (17) and (18)

ψ(an) ≥ nϕ(an) = n‖fn‖mϕ
.

So
‖fn‖mψ

‖fn‖mϕ

≥ n
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for each n ∈ N. Consequently,

sup
f∈mϕ

‖f‖mψ

‖f‖mϕ

= ∞,

which is a contradiction with (15).

In the theory of compact embeddings between function spaces [2], the follow-
ing notion is of importance.

Definition 3.5. We say that one Marcinkiewicz space mϕ is almost compactly

embedded into another one, mψ, if

lim
a→0+

sup
f∈Bmϕ

‖f ∗χ(0,a)‖mψ
= 0

and
lim
a→∞

sup
f∈Bmϕ

‖f ∗χ(a,∞)‖mψ
= 0.

The aim of this chapter is to characterize when this happens. We begin with
two properties.

Proposition 3.6. Let mϕ, mψ be Marcinkiewicz spaces. Then

lim
a→0+

sup
f∈Bmϕ

‖f ∗χ(0,a)‖mψ
= 0 (19)

if and only if

lim
a→0+

sup
0<t<a

ψ(t)

ϕ(t)
= 0. (20)

Proof. At first, we will prove the sufficiency of (20). We begin with writing out
the definition of the unit ball. We have

f ∈ Bmϕ

if and only if
‖f‖mϕ

≤ 1.

By Definition 3.2, this is the same as

sup
0<t<∞

f ∗(t)ϕ(t) ≤ 1,

that is,

f ∗(t) ≤ 1

ϕ(t)
for every t ∈ (0,∞).
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Because ϕ is nondecreasing, then 1/ϕ is nonincreasing, and, for every t ∈ (0,∞)

1

ϕ
(t) =

(

1

ϕ

)∗
(t),

hence

f ∗(t) ≤
(

1

ϕ

)∗
(t),

then

f ∗(t)χ(0,a)(t) ≤
(

1

ϕ

)∗
(t)χ(0,a)(t).

It is obvious that
(f ∗χ(0,a))

∗(t) = f ∗(t)χ(0,a)(t)

and
((

1

ϕ

)∗
χ(0,a)

)∗

(t) =

(

1

ϕ

)∗
(t)χ(0,a)(t).

Hence

‖f ∗χ(0,a)‖mψ
≤

∥

∥

∥

∥

(

1

ϕ

)∗
χ(0,a)

∥

∥

∥

∥

mψ

.

Now we will test the condition (19):

lim
a→0+

sup
f∈Bmϕ

‖f ∗χ(0,a)‖mψ
≤ lim

a→0+

∥

∥

∥

∥

(

1

ϕ

)∗
χ(0,a)

∥

∥

∥

∥

mψ

= lim
a→0+

sup
0<t<∞

(

1

ϕ

)∗
(t)χ(0,a)(t)ψ(t) = lim

a→0+
sup

0<t<a

ψ(t)

ϕ(t)

and from the condition (20)

lim
a→0+

sup
f∈Bmϕ

‖f ∗χ(0,a)‖mψ
= 0,

which we needed.
Now we shall prove the necessity of (20). Suppose for contradiction, that (19)

holds and

lim
a→0+

sup
0<t<a

ψ(t)

ϕ(t)
= c > 0. (21)

Let f := 1
ϕ
. Then f ∗ =

(

1
ϕ

)∗
= 1

ϕ
and f ∈ Bmϕ

. Let us compute

lim
a→0+

‖f ∗χ(0,a)‖mψ
= lim

a→0+

∥

∥

∥

∥

χ(0,a)

ϕ

∥

∥

∥

∥

mψ

,
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using the computation above, we know that

lim
a→0+

∥

∥

∥

∥

χ(0,a)

ϕ

∥

∥

∥

∥

mψ

= lim
a→0+

sup
0<t<a

ψ(t)

ϕ(t)
,

but from (21),

lim
a→0+

sup
0<t≤a

ψ(t)

ϕ(t)
= c > 0,

so
lim

a→0+
sup

f∈Bmϕ

‖f ∗χ(0,a)‖mψ
≥ c > 0,

which is in a contradiction with (19).

Proposition 3.7. Let mϕ, mψ be Marcinkiewicz spaces. Then

lim
a→∞

sup
f∈Bmϕ

‖f ∗χ(a,∞)‖mψ
= 0 (22)

if and only if

lim
a→∞

sup
a<t<∞

ψ(t)

ϕ(t)
= 0. (23)

Proof. Analogously to the last proof, at first we will prove the sufficiency of (23).
Using the definition of the unit ball and Definition 3.2, we know that for every

f ∈ Bmϕ

f ∗(t) ≤ 1

ϕ(t)
for every t ∈ (0,∞).

Since ϕ is nondecreasing, 1/ϕ is nonincreasing and for every t ∈ (0,∞)

1

ϕ(t)
=

(

1

ϕ

)∗
(t).

Hence

f ∗(t)χ(a,∞)(t) ≤
(

1

ϕ

)∗
(t)χ(a,∞)(t)

and

‖f ∗(t)χ(a,∞)‖mψ
≤

∥

∥

∥

∥

(

1

ϕ

)∗
χ(a,∞)

∥

∥

∥

∥

mψ

.

It is obvious that
(

χ(a,∞)

ϕ

)∗
(t) =

1

ϕ(a + t)
.



3 MARCINKIEWICZ SPACES 24

Now we will test the inequality (22):

lim
a→∞

sup
f∈Bmϕ

‖f ∗χ(a,∞)‖mψ
≤ lim

a→∞

∥

∥

∥

∥

(

1

ϕ

)∗
χ(a,∞)

∥

∥

∥

∥

mψ

= lim
a→∞

sup
0<t<∞

(

χ(a,∞)

ϕ

)∗
(t)ψ(t)

= lim
a→∞

sup
0<t<∞

ψ(t)

ϕ(t + a)

= lim
a→∞

sup
0<t<∞

ψ(t)

ψ(t + a)

ψ(t + a)

ϕ(t + a)

Because ψ is nondecreasing, ψ(t)/ψ(t + a) ≤ 1. Therefore

lim
a→∞

sup
0<t<∞

ψ(t)

ψ(t + a)

ψ(t + a)

ϕ(t + a)
≤ lim

a→∞
sup

0<t<∞

ψ(t + a)

ϕ(t + a)
= lim

a→0+
sup

a<t<∞

ψ(t)

ϕ(t)

and from the condition (23)

lim
a→∞

sup
f∈Bmϕ

‖f ∗χ(0,a)‖mψ
= 0,

which we needed.
Now we shall prove the necessity of (23). Suppose for contradiction, that (22)

holds and

lim
a→∞

sup
a<t<∞

ψ(t)

ϕ(t)
= c > 0. (24)

Let f := 1
ϕ
. Then f ∗ =

(

1
ϕ

)∗
= 1

ϕ
and f ∈ Bmϕ

. Let us compute

lim
a→∞

‖f ∗χ(a,∞)‖mψ
= lim

a→∞

∥

∥

∥

∥

χ(a,∞)

ϕ

∥

∥

∥

∥

mψ

,

using the computation above, we know that

lim
a→∞

∥

∥

∥

∥

χ(a,∞)

ϕ

∥

∥

∥

∥

mψ

= lim
a→∞

sup
0<t<∞

ψ(t)

ϕ(t + a)

= lim
a→∞

max

{

sup
0<t≤a

ψ(t)

ϕ(t + a)
, sup
a<t<∞

ψ(t)

ϕ(t + a)

}

.

It is enough to consider only the case t > a. We have

lim
a→∞

sup
a<t<∞

ψ(t)

ϕ(t + a)
= lim

a→∞
sup

a<t<∞

ψ(t)

ψ(t + a)

ψ(t + a)

ϕ(t + a)
.
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Because ψ is quasiconcave, from (14)

ψ(a + t) ≤ ψ(2t) ≤ 2ψ(t)

and

lim
a→∞

sup
a<t<∞

ψ(t)

ψ(t + a)

ψ(t + a)

ϕ(t + a)
≥ lim

a→∞
sup

a<t<∞

1

2

ψ(t + a)

ϕ(t + a)

=
1

2
lim
a→∞

sup
2a<t<∞

ψ(t)

ϕ(t)
.

that is, from (24)
1

2
lim
a→∞

sup
2a<t<∞

ψ(t)

ϕ(t)
≥ c

2
,

hence

lim
a→∞

∥

∥

∥

∥

χ(a,∞)

ϕ

∥

∥

∥

∥

mψ

≥ c

2
,

which is in a contradiction with (22).

The following theorem is a direct consequence of Propositions 3.6 and 3.7.

Theorem 3.8. A Marcinkiewicz space mϕ is almost compactly embedded into
another one, mψ, if and only if (20) and (23) hold.

Acknowledgment: It has been recently brought to our attention that part of
our results in Section 2 has been independently obtained by J. Vyb́ıral in [3].
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