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Keywords: Value at Risk, Expected Shortfall, Extreme Value Theory

7



Introduction

Value at risk (VaR) has become an international standard for measuring market
risk. Its position strengthened after it was adopted as a preferred measure of
market risk under Basel II accord1.

VaR measures the probable loss in a value of an investment over a specified
time interval, at a given confidence level, and under normal market conditions.
This risk is expressed in money units or as a percentage change in the value of a
portfolio. In this work, we explain several methods for calculating VaR and apply
them on a sample nonlinear portfolio. The work is divided into four chapters and
three appendices that are placed after references.

Chapter 1 describes the theory behind parametric method, Monte Carlo, and
Historical Simulation of VaR. Variance forecasting by exponentially weighted mov-
ing average model is explained, and portfolio non-linearity is discussed. Monte
Carlo and Historical VaR methodologies use scenario sets, thus are non-parametric.
It means that returns (losses) from each scenario are sorted and particular scenario
is the estimated VaR.

Lately there has been VaR criticism about its ability to properly capture high
loss quantiles. Some even say that VaR rather creates than reduces risk. Chapter
2 discusses the drawbacks of VaR, and presents and alternative quantile based
measure of risk called Expected Shortfall (ES ), which focuses on the average of
the worst probable losses.

In chapter 3, a significant amount of space is devoted to VaR and ES es-
timates under Extreme value theory (EVT ). In EVT, one does not investigate
the whole distribution of returns (or losses), but only focuses on the tails of the
distribution, because the tail is of primary interest. No distributional assumption
for the underlying returns has to be made, and only tails are modelled. Strictly
speaking, the returns (or losses) in the tails (the extremes) are fit with General-
ized Pareto Distribution and desired quantile risk measures are then estimated.
Both unconditional and conditional EVT methods are discussed and their use is
demonstrated on Prague stock exchange PX Index.

1Basel II: International Convergence of Capital Measurement and Capital Standards: a Re-
vised Framework: The First Pillar - Minimum Capital Requirements
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Chapter 4 presents an application of parametric (delta and delta-gamma)
method, historical simulation, and methods based on EVT (both conditional and
unconditional) for estimating VaR and ES on a sample portfolio. Within para-
metric method, another section is devoted to analyze nonlinear effect of options
in portfolio. The results are then discussed.

Appendix A describes Cholesky factorisation of a symmetric positive definite
matrix.

Appendix B is devoted FX options. We first present Garman-Kohlhagen for-
mula for pricing FX options and then we discuss T-day stochastic volatility estima-
tion of option’s underlying currency pair. We demonstrate the use of Drost-Nijman
formula that converts one-day volatility into T-day volatility on the calculation
of the premium of an FX option, which is then used in the sample portfolio in
Chapter four. At the end of the appendix, we shortly mention alternative volatility
estimators.

Finally, appendix C discusses the idea of mapping fixed income instruments
into standardized positions, and thus reducing the number of risk factors used for
calculation of risk estimates.

The enclosed compact disc contains Mathematica code, the time series, and
other files that were used for related simulations and calculations, and thereby
complete the thesis.
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Chapter 1

Value-at-Risk

A financial risk is modelled as a random variable, which represents return on an
asset or the future net worth of the asset. We view market risk as a possible
fluctuation of the value of the asset or a portfolio. A risk measure quantifies this
risk. It maps risk on R. The risk measures are still being developed and risk
management is an interesting and evolving field where theory meets practice as
both academics and risk managers strive to construct precise risk measure. In this
work, two widely used risk measures are discussed: Value-at-risk and Expected
Shortfall.

Value-at-Risk is a measure of the maximum potential change in value of a
portfolio of financial instruments with a given probability over a pre-set horizon,
RiskMetrics - Technical Document [15].

Definition 1. Let ∆t be the time horizon, portfolio V (t, S1 (t) , . . . , Sn (t)) be the
function of t and risk factors Si (t), and let L denote the loss in the portfolio value
during ∆t, that is L = −∆V where ∆V = V (t+ ∆t,S (t+ ∆t)) − V (t,S (t)),
and 100(1 − α)% the confidence level, α ∈ (0, 1) . VaR is defined as the (1− α)
quantile qL(1− α) of the loss in portfolio value in [t, t+ ∆t],

V aRα,t+∆t = inf {q|P (L ≤ q) > 1− α} = sup {q|P (L ≤ q) < 1− α} . (1.1)

Equivalently, we can write V aRα,t+∆t = F−1
L (1− α) = qL(1− α) = −q∆V (α),

where F−1 is the inverse of the cumulative distribution function (cdf) FL(q), and
FL(q) = P (L ≤ q). Therefore, V aR is the loss in the value of a portfolio over time
∆t that is not exceeded with probability at least 1 − α. Parameter α is usually
equal to 0.01 or 0.05.

The Role of Distribution

Value at Risk is defined by the probability distribution of portfolio return
∆V , not by the probability distribution of the risk factors. From the definition,
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VaR’s (and other quantile based risk measures’) accuracy depend on the assump-
tion of return distribution. In this chapter, while explaining the parametric and
Monte Carlo method, we assume that this distribution is normal, although empir-
ical studies have shown that the distribution of ∆V is sometimes skewed (we are
especially concerned with negatively skewed returns) and leptokurtic (with posi-
tive excess kurtosis), that is, empirical returns show higher probability of values
around the mean than normally distributed returns (higher and sharper peaks),
and higher probability of extreme values than in normal distribution (heavier
tails). More, it has been observed that down moves in the markets are more se-
vere than the up moves, volatilities are clustered, and instruments such as options
include assymetry into distribution of returns. This is why we ease the assumption
of normality in chapter 3, and assume Generalized Pareto distribution that fits
the tail of the empirical data properly.

1.1 VaR - Parametric approach

In this section we briefly present parametric (variance-covariance) approach for
calculating VaR.

1.1.1 Model Assumptions and Inputs

We start with a standard assumption that risk factor returns are normally dis-
tributed. We work with continuously compounded returns (logarithmic price changes)
Xt,

Xt = ln

(
Pt
Pt−1

)
, (1.2)

where Pt is a price of a security at time t (business day). Similarly we write
the j-day return Xt(j) as

Xt+j = ln

(
Pt
Pt−j

)
, (1.3)

which is a sum of j one day returns. For practical reasons, RiskMetrics [15]
simplifies the portfolio return, and defines it as a weighted sum of individual
returns

Xp,t =
n∑
i=1

wiXi,t, (1.4)

where w = (w1, w2, . . . , wn)′ is the vector of portfolio weights and Xi,t is
the return on i-th risk factor. As mentioned above, to model future returns, we

assume that returns (log prices changes)Xt = ln
(

Pt
Pt−1

)
are conditionally normally
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distributed, conditional on the information available at time t (past prices and
volatilities),

Xt = σtεt ∼ N(0, σ2
t ), (1.5)

where σt is time dependent volatility and εt is independently and identically
distributed (iid) random variable with E(εt) = 0 and V ar(εt = 1). The expected
return is assumed to be zero1. We use the fact that any linear combination of the
returns is also conditionally normally distributed, that is

Xp,t ∼ N(0, σ2
p,t), (1.6)

where
σ2
p,t = w ′Σtw , (1.7)

is the variance of the portfolio return and Σt =
(
σ2
ij,t

)
is the covariance matrix.

1.1.2 Forecasting Variance

In RiskMetrics [15], variance of an individual asset return, and its corresponding
covariances is forecasted from historical data using single Exponentially Weighted
Moving Average model (EWMA), where more weight is put on more recent obser-
vations. The EWMA variance and covariance forecasts2 for the next period t+ 1
can be written in a recursive way

σ2
j,t+1 = Et(X

2
j,t+1) = λσ2

j,t + (1− λ)X2
j,t,

σ2
ij,t+1 = Et(Xi,t+1Xj,t+1) = λσ2

ij,t + (1− λ)Xi,tXj,t, (1.8)

i, j = 1, . . . , n, where smoothing factor λ ∈ (0, 1) is optimal rate of decline over
time, and the forecasts for the next period t+1 are conditioned on the information
up to present time t. Next, the correlation forecast between i− th and j− th asset
return is defined as

ρij,t+1 =
σ2
ij,t+1

σi,t+1σj,t+1

, (1.9)

where σj,t+1 =
√
σ2
j,t+1 is the volatility (standard deviation) of Xj,t+1.

For multiple T-day variance and covariance forecasts we can use a simple
temporal rule that gives us following formulas

σ2
i,t+T = Tσ2

i,t+1 and σi,t+T =
√
Tσi,t+1,

σ2
ij,t+T = Tσ2

ij,t+1. (1.10)

1this is to avoid inaccuracy in the estimation of the mean from past returns.
2by direct substitution of the equation (1.8) back into itself we get σ2

ij,t+1 = (1 −
λ)
∑N
n=1 λ

n−1Xi,t+1−nXj,t+1−n, where sum should run to ∞, but we only use finite number
N of observations.
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Considering correlations, T s cancel out and correlation stays the same. The
equation (1.10) can be derived with the help of basic properties of conditional
expectation, concretely the ”tower property” that states the following.

Theorem 1. Let X be an integrable, real-valued random variable defined on a
probability space (Ω,A, P ), and let F ,G be σ-algebras F ⊂ G ⊂ A. Then

E(E(X|G)|F) = E(X|F) = E(E(X|F)|G). (1.11)

Now we can write forecasted variances over T periods conditioned to the in-
formation we have at the time t as

Et

(
σ2
i,t+T

)
= Et

(
λσ2

i,t+T−1 + (1− λ)X2
i,t+T−1

)
= Et

(
Et+T−2

(
λσ2

i,t+T−1

)
+ (1− λ)Et+T−2

(
X2
i,t+T−1

))
= Et

(
λσ2

i,t+T−1 + (1− λ)σ2
i,t+T−1

)
= Et

(
σ2
i,t+T−1

)
where Et(.) = E(.|Ft) and Ft is σ-algebra generated by past returns Xi,t. Also,
Et(σ

2
i,t+1) = σ2

i,t+1. Since the T -day return is the sum of T continuously com-
pounded daily returns, we can write

Xi,t+T =
T∑
k=1

σi,t+kεi,t+k

σ2
i,t+T = Et(X

2
i,t+T ) =

T∑
k=1

Et(σ
2
i,t+k) = TEt(σ

2
i,t+1) = Tσ2

i,t+1

σi,t+T =
√
Tσi,t+1,

thus we get a simple square root of time rule.

Finding lambda

Regarding smoothing factor λ, RiskMetrics [15] model considers following for-
mula to determine the effective number of historical observations T

α = (1− λ)
∞∑
k=T

λk,

thus,

T =
lnα

lnλ
,

where α is the confidence level. In a portfolio with n risk factors, there are n
variance and n(n−1)

2
covariance forecasts. Practically, it is convenient to choose
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one optimal smoothing factor λ for the whole variance covariance matrix. First,
we determine λ for each risk factor from past return series of this factor. This is
done by taking the minimum from root average squared variance forecast devi-
ations (errors) for different λs. Recall that predicted variance for period t + 1 is
Et(X

2
t+1) = σ2

t+1, therefore, our residual (estimated error) is

εt+1 = X2
t+1 − Et(X

2
t+1) = X2

t+1 − σ2
t+1,

the expectation of the error is 0 (Et(εt+1) = Et(X
2
t+1)−σ2

t+1 = 0) and minimiz-
ing average squared errors between estimated variance and daily squared return
observation gives us

φ =

√√√√ 1

T

T∑
t=1

(
X2
t+1 − σ̂2

t+1(λ)
)2
.

This is done over different values of λ and the one with minimum φ is chosen.
Similarly, we find φ s for more than one day prediction.

Next, let n be the number of risk factors return series, λi the optimal λ for risk
factor i and φi the minimum mean square error of ith risk factor, i = 1, . . . , n.
We can find the optimal λ as the weighted average of individual λis, where we
put the highest weight on the lowest φ. Thus, the individual weight ϑi has the
following form

ϑi =
φ−1
i∑n

i=1 φ
−1
i

, (1.12)

and
∑n

i=1 ϑi = 1. The optimal λ is then

λ =
n∑
i=1

ϑiλi. (1.13)

1.2 Calculating Value at Risk

1.2.1 Linear vs. Non-linear Positions

We dedicate this section to clarify following notions and concepts: linear, nonlin-
ear, delta, gamma. These four words carry significant importance in market risk
management.

Delta ∆ - is the first derivative of the value V of an instrument or a portfolio
with respect to the underlying instrument’s price S,

∆ =
∂V

∂S
.
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∆ tells us how much the price of an instrument or a portfolio changes when
the price of the underlying instrument changes by a small amount. Usually delta
concept refers to derivatives but can be applied to other instruments, too. The un-
derlying instrument can be equity, currency, fixed income instrument, commodity
or a derivative. Loosely speaking, ‘a delta of a derivative equal to 0.5 means that
for a small change in the value of underlying instrument, the price of a derivative
changes by approximately 0.5 × change of the underlying ’. With the change in
the price of the underlying, ∆ also changes.

Gamma Γ - is the second derivative of the value V of an instrument with
respect to the underlying price S,

Γ =
∂2V

∂S2
=
∂∆

∂S
.

Gamma measures the rate of change in ∆, that is, it measures how ∆ changes as
the price of the underlying instrument changes. If delta increases as the price of
the underlying increases, then Γ is positive, more, the larger Γ, the more sensitive
is ∆ to the price of the underlying.

Taylor Series Expansion

The Taylor series is an infinitely differentiable function (of k ≥ 1 variables)
that can be expressed as an infinite weighted sum of its derivatives

f(x1, . . . , xk) =
∞∑

n1=0

· · ·
∞∑

nk=0

∂n1

∂xn1
1

· · · ∂
nk

∂xnkk

f(a1, . . . , ak)

n1! · · ·nk!
(x1 − a1)n1 · · · (xk − ak)nk .

Example. Assume that portfolio V is the function of time t and risk factor S.
The Taylor series expansion of V (t, S ) to the second order about point (t, S ) is

∆V = V (t+ ∆t, S + ∆S)− V (t, S) ≈ ∂V (t, S)

∂t
∆t+

∂V (t, S)

∂S
∆S

+
1

2

(
∂2V (t, S)

∂t2
∆t2 +

∂2V (t, S)

∂S2
∆S2 + 2

∂2V (t, S)

∂t∂S
∆t∆S

)
.

Linearity

Following Pichler & Selitsch [19], a financial instrument is linear when the
change in the value of the instrument (position) over time ∆t is linear in the
returns of its risk factors3. A change in the value of portfolio composed of linear
instruments that depend on n risk factors Si over one period ∆V can be written

3recall that market risk factors are interest rates, foreign exchange rates, prices of underlying
instruments, etc.
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as Taylor series to the first order

∆V =
n∑
i=1

∂V

∂Si
∆Si =

n∑
i=1

δiXi,

δi =
∂V

∂Si
Si, Xi,t = log

(
Si,t

Si,t−∆t

)
≈ ∆Si

Si
, (1.14)

where δi is the sensitivity of the portfolio value with respect to i -th risk fac-
tor, or so-called return adjusted delta. This partial derivatives are calculated by
increasing relevant interest rate by one basis point.

Non-Linearity

A financial instrument is non-linear when the change in the value of the instru-
ment is nonlinear in the returns of its risk factors. To allow for this nonlinearity, we
approximate the change in the portfolio value with the first two orders of Taylor
series

∆V =
n∑
i=1

δiXi +
1

2

n∑
i=1

n∑
j=1

Γi,jXiXj,

Γi,j =
∂2V

∂Si∂Sj
SiSj, (1.15)

where Γi,j is return adjusted gamma4.

Example. Consider a zero-coupon bond with par value F=100 and maturity
T years. The price of the bond using continuous compounding is P = 100e−rTT ,
where rT is the T -year spot rate (yield to maturity). The change in the value of
the bond P with respect to the change in the yield rT is approximately

∆P ≈ −T100e−rTT∆rT +
1

2
T 2100e−rTT∆r2

T ,

The term −T100e−rTT is the bond’s Delta and it accounts for linear change
in the bond’s price. The linear change in the bond’s price is proportional to the
Delta × change in the yield. The second term T 2100e−rTT is the risk exposure to
the second derivative with respect to yield rT , that is, bond’s Gamma. Therefore,
if spot rate rT is the risk factor, then bond is a nonlinear financial instrument,
and we approximated the change in the bond’s price with first two derivatives,
Delta and Gamma, with respect to the yield rT . On the other hand, if we choose
bond’s price P as the risk factor, then the first derivative is equal to 1 and the
bond is linear instrument in its price.

4Expressed in terms of ∆V , δi and Γi,j take into account the size of the position and the
change in the underlying.
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Example. Consider a second simple example. An investor bought one Eurodol-
lar futures contract (he lends one million dollars on the delivery date) at a quoted
price P = 100−fk, where fk is forward 3 months LIBOR starting in k months (fu-
tures contract expires in k months). The change in the futures price with respect
to change in the forward rate is

∆P = −∆fk,

therefore, Eurodollar futures is linear in its forward rate with Delta equal to
-1.

After defining previous concepts, the natural idea is to model the extreme
movements in the risk factors and investigate their effects on the change in the
value of portfolio. For risk management, this straightforwardly leads to modelling
the unfavorable changes in the value of portfolio, thus, calculating the worst ex-
pected loss.

1.2.2 Linear Value at Risk

We introduced the necessary tools to calculate VaR. We start with Linear VaR
method, also called Delta approach. We assume linearity in the risk factors’ re-
turns, and we assume that these returns follow a multivariate normal distribution
with zero mean, that is, X ∼ N(0,Σ), where X is the vector of n risk factor
returns, and Σ is n × n covariance matrix of returns. Recall that from (1.14)
∆V =

∑n
i=1 δiXi. That can be written in a vector notation

∆V = δTX, (1.16)

where δ is a vector of sensitivities δi. Therefore, one day VaR of portfolio V
is given by

V aRα,t+1 = −zα
√
δT Σδ, (1.17)

where zα is the α quantile of normal distribution, and the expression δT Σδ
is the portfolio variance. Due to linearity between the change in the portfolio’s
value ∆V and the returns, ∆V is normally distributed, thus quantile of normal
distribution can be used to calculate VaR.

1.2.3 Non-linear Value at Risk

This approach allows for non-linear relationship between ∆V and risk factor re-
turns, that is, we assume that portfolio contains non-linear instruments, such as
options. Equation (1.15) can be written in a matrix form

∆V = δTX +
1

2
XT ΓX, (1.18)
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where Γ is n × n matrix of Gamma sensitivities Γi,j. For simplicity, we ne-
glect the terms of higher orders. Although, we still assume that individual risk
factor returns are normally distributed, due to non-linear relationship, ∆V is not
normally distributed. This is due to possible skewness that causes assymmetry
of the distribution of ∆V and changes its moments, thus quantile of a normal
distribution is no longer appropriate. We need to find the α quantile of the true
distribution of ∆V . We do not know yet the distribution of ∆V , but we are able to
calculate its moments from δ, Γ and Σ. One of the methods to find the quantiles
of ∆V is Cornish-Fisher Expansion that directly approximates these quantiles.

Cornish-Fisher Expansion

This method approximates the desired quantile z∆V,α of ∆V ’s distribution
F∆V as a function of moments of F∆V and quantiles of the distribution of the
risk factors’ returns. The first moment and the second central moment of the
distribution of ∆V are

Expectation : E(∆V ) = µ∆V =
1

2
tr [ΓΣ]

V ariance : V ar(∆V ) = σ2
∆V = δTΣδ +

1

2
tr [ΓΣ]2 , (1.19)

where tr(.) is the trace of the n × n matrix ΓΣ (the sum of its eigenvalues).
Higher standardized moments of ∆V are given by

E(Xk) =
1
2
k!δTΣ [ΓΣ]k−2 δ + 1

2
(k − 1)!tr [ΓΣ]k(

δTΣδ + 1
2
tr [ΓΣ]2

) k
2

, k ≥ 3, (1.20)

where X is the standardized value of ∆V , X = ∆V−E(∆V )√
V ar(∆V )

. For k = 3 we get

skewness (the third standardized moment that measures the assymetry of the
distribution) and for k = 4 we get kurtosis (the fourth standardized moment that
measures the peak of the distribution). To a certain extent, they both describe
the tails of the distributions.

In the case that the risk factors’ returns are distributed normally, the expres-
sion for z∆V,α using first four moments of ∆V is approximately

z∆V,α ≈ zα +
1

6

(
z2
α − 1

)
E(X3)

+
1

24

(
z3
α − 3zα

)
E(X4)− 1

36

(
2z3

α − 5zα
)

E(X3)2. (1.21)

The non-linear VaR is then given by

V aRα,t+1 = −z∆V,α

√
σ2

∆V + µ∆V . (1.22)
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1.3 Monte Carlo Simulation

Monte Carlo method generates theoretical market movements (returns of the risk
factors) from the statistical model of market data, in our case, from the assumption
of normally distributed risk factors’ returns. The objective of this approach is to
repeatedly simulate risk factors’ returns. After each simulation we revalue the
portfolio of positions, that is, we compute the corresponding changes in portfolio
value ∆V . Large sample of the simulated returns then gives a good approximation
of the distribution of ∆V . We can then easily compute the empirical α-quantile
of the approximated distribution of ∆V .

A standard MC approach is to use Cholesky factorisation (explained briefly
in Appendix A) of the covariance matrix of returns to transform the indepen-
dent random normal sequences of the returns to correlated random sample. These
scenarios generated from random draws are then used to revalue the portfolio.
The ordered results thus form the estimated empirical probability distribution of
the changes in the value of portfolio ∆V . To calculate VaR, we take the desired
empirical quantile from this distribution. We now describe Monte Carlo VaR at
more length.

1.3.1 Simulating Scenarios

Simulating scenario means applying some factor to the current risk factor and
obtaining a change in the risk factor value. Thus, we simulate the returns, these
returns then change the value of underlying asset (portfolio) and a theoretical
portfolio profit or loss is generated.

The return is modelled as in (1.2), (1.3), and (1.5), that is, at time t, the

logarithmic price changes of the underlying asset (risk factor), rt = ln
(

Pt
Pt−1

)
. We

obtain the price of the risk factor at time T (time horizon) from the price today,
P0, and one day volatility forecast σ1 of the return,

PT = P0e
√
Tσ1ε, (1.23)

where ε is standard normal variable. Therefore, we generate random standard
normal variables ε-s to simulate the future prices PT . These ε-s are independent
but not correlated yet. To generate correlated random variables according to our
covariance matrix Σ, as already mentioned, we use Cholesky factorisation.

We estimate the correlation matrix of returns Π from historical data, and
then we decompose Π into Cholesky (lower triangular) matrix L and its transpose
LT , Π = LLT . Next, we multiply the lower triangular matrix L with generated
n× 1 vector of random standard normal variables εi to arrive at n× 1 vector ξ of
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standard normal random variables correlated according to Π,

ξ = Lε.

After this simulation we revalue the single positions and the whole portfolio, e.g.,
the future price of a j -th risk factor at time T is Pj,T = Pj,0e

√
Tσj,1ξj .

The disadvantage of MC is that it is computationally intensive to price each
instrument each time when we revalue the whole portfolio (e.g., one has to run
option pricing formula for every option in the portfolio for each simulation). It
is possible to substitute full valuation method with delta-gamma approximation
explained previously, however, one then loses the opportunity of the full simulation
of the distribution of the change in the portfolio’s value. If we use delta-gamma
approximation, we revalue the portfolio to obtain the empirical distribution of
∆V by using formula ∆V = δTr + 1

2
rT Γr.

To simulate more realistic returns, it is possible to use other than normal
distribution for the returns, e.g., Student t-distribution, which has heavier tails.

1.3.2 Finding Quantile

To calculate the α-quantile of the distribution of ∆V we first sort the results from
the simulations of ∆V in ascending order

∆V (1) ≤ ∆V (2) ≤ . . . ≤ ∆V (N),

where ∆V (i) is the i -th smallest value from the total of N simulations. Value at
risk is then empirical α-quantile of the distribution of ∆V , that is

V aRα = ∆V ([αN ]), (1.24)

where [αN ] = max {m|m ≤ αN,m ∈ N} is the integer part of αN .
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1.4 Historical Simulation

Historical simulation (HS ) uses only empirical distribution of portfolio returns
(losses), therefore, does not depend on any distributional assumption. Of course,
there are other assumptions. Probably the most important one is that we assume
that historical returns from our sample reasonably describe the distribution of
future returns. The advantage of HS is that it accounts for fat tails, kurtosis, or
skewness of actual distribution.

1.4.1 Simple Historical Simulation

HS uses historical returns on market variables to construct a distribution of future
returns. To construct this distribution of returns, we apply last N days5 returns on
a current value of portfolio, therefore we get N hypothetical portfolio values (see
e.g. Hull [13, p. 348]). We sort these values into ascending order and take empirical
α-quantile ztα of this hypothetical distribution of changes in the portfolio value to
arrive at the next day’s VaR estimate

V aRHS
α, t+1 = ztα. (1.25)

The frequency of large losses that occured during last N observations is thus
reflected in the results. Thus, to estimate the next day’s VaR on day t, we take
sample quantile from the corresponding from last N returns). If this quantile
lies between two values, we can interpolate it. To estimate extreme quantiles,
obviously, we need large sample, e.g. at least 1/α (to calculate 99.9% VaR, we
need at least 1/0.001 = 1000 observations).

The disadvantage of this approach arises when we estimate the extreme events.
In the tails, the empirical distribution of returns is ’very’ discrete. While the
most returns fall within the central part of the distribution and are close to each
other, there are few observations left for the tails. The intervals between nearby
returns broaden as we move to the extremes, thus, estimated VaR for α very low
might lead to either underestimation or overestimation (including or excluding few
samples may lead to large swings in VaR, see Danielsson & De Vries [6]). More,
HS does not take into account volatility of the returns. It assumes the distribution
to be fairly constant over the sample period, and thus becomes poorer predictor
of VaR during high volatility periods, especially when high volatilities cluster
together. During these periods, such VaR estimate can then be exceeded several
times in a row.

5In practice, one usually takes one-year historical period, that is, some 250 past returns.

21



Chapter 2

Expected Shortfall

Simultaneously as the use of VaR has been rapidly extending across banks, some
inconsistencies and drawbacks in the model were found. This lead to modifications
and extensions of the model and to the rise of alternative models that measure
market risk. One of them that we present, Expected Shortfall (ES )1 model, mea-
sures the expected loss of a portfolio in the α % worst cases. We turn to the work
of Acerbi & Tasche [1], but first, we briefly mention the issues raised about VaR
and the resulting need for its alternatives.

2.1 Motivation - Imperfections of Value at Risk

As a motivation, we use a simple example that we borrowed from Dowd & Blake
[9].

Example2. Investor buys two identical bonds A, B with returns ∆A, ∆B,
respectively. The probability of independent default of each bond is 4%, and there
is a loss of 100 in case of default or 0 otherwise. The 95%-VaR of each bond is 0,
therefore V aR0.95(∆A) = V aR0.95(∆B) = V aR0.95(∆A) + V aR0.95(∆B) = 0. We
suffer a loss of 0 with probability 0.962 = 0.9216, a loss of 200 with probability
0.042 = 0.0016, and a loss of 100 with probability 1 − 0.9216 − 0.0016 = 0.0768,
therefore V aR0.95(∆A+∆B) = 100. We see that V aR0.95(∆A+∆B) = 100 > 0 =
V aR0.95(∆A) + V aR0.95(∆B). We would expect that if we diversify our portfolio
by investing into two instruments instead of one, we also diversify (lessen) the risk
of the portfolio. We see that if we choose VaR as the appropriate risk measure,
this is not the case. VaR violates the axiom of subadditivity (the overall risk of
two bonds is larger than the sum of risks of individual bonds, while it should be
lower). In this case, risk manager may assume too much risk when imposing limits

1in literature, Expected Shortfall is often called Conditional Value at risk (CVaR).
2for more examples see e.g. Artzner [3].
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on traders.

To manage risks efficiently, one should choose a risk measure that satisfies
axioms that are essential or inevitable. Artzner et al. [3] introduced four axioms
for risk measures that, they argue, should hold for every effective risk measure.
These axioms are

1. Translation (drift) Invariance: X ∈ G, a ∈ R⇒ ρ(X + a) = ρ(X)− a.
Adding a constant return to X decreases the required reserves (risk) by that
amount.

2. Subadditivity: X1, X2 ∈ G ⇒ ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).
The risk for the combination of two returns on instruments is less than the
risk for each separate return (diversification).

3. Positive homogeneity: λ ≥ 0, X ∈ G ⇒ ρ(λX) = λρ(X).
The risk of two returns with same relative value is linear in the scale.

4. Monotonicity: X1, X2 ∈ G, X1 ≤ X2 ⇒ ρ(X2) ≤ ρ(X1).
If the return X2 is always greater than X1, then X2 is less risky.

We think of a risk measure as a map ρ : G → R, where G is the set of all risks
(e.g. G = Rn). That is, ρ maps the riskiness of the portfolio to required reserves
to cover losses from unfavorable movements that regularly occur. A measure that
satisfies these four axioms is then called coherent3. For ρ(X) = V aRα(X) we saw
that VaR is not a coherent measure of risk as it is not subadditive. Artzner [3]
proposes a general coherent risk measure as ‘the supremum of the expected negative
of the final net worth for some collection of generalized scenarios or probability
measures P on states of the final net worth’,

ρ(X) = sup
P∈P

EP [−X].

This steer towards finding some kind of a weighted average of the scenarios of the
worst cases of loss. It sounds more rational to find the expected loss (ES ) than
to find the minimum loss (VaR) from the set of worst losses. In other words, we
are interested in the shape of the tail of the underlying distribution of risk factor
returns, and not only where this tail starts. VaR ignores the tails (large losses)
while ES measures them.

3There are other risk measures that have been defined for risk measurement purposes re-
lated to coherent measures of risk or based on alternative set of axioms, e.g. convex, dynamic,
distortion, spectral risk measure. For discussion, see e.g. Dowd & Blake [9].
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2.2 Calculating Expected Shortfall

Recall that Monte Carlo simulation calculates V aRα as ∆V ([αN ]). But Monte
Carlo method simulates the whole distribution of ∆V , thus, it allows us to find
any desired quantile. When we want to estimate Expected Shortfall in the α%
worst cases, it naturally comes as an average of the α% largest losses

ES(α)
n (∆V ) = −

∑[nα]
i=1 ∆V i

[nα]
. (2.1)

Generally, ES is defined as

Definition 2 (Expected Shortfall). Let ∆V be the portfolio P/L and α ∈ (0, 1) the
confidence level, and q∆V (α) = q(α) the α-quantile of ∆V . The Expected Shortfall
is defined as

ES(α)(∆V ) = − 1

α

(
E
[
I∆V≤q(α)

]
+ q(α)

(
α− P

[
∆V ≤ q(α)

]))
. (2.2)

In case that ∆V is discretely distributed, in the estimate (2.1), ∆V ([αN ]) can
occur more than one time. We assume the underlying risk factor returns to be
continuously distributed, therefore, it holds that P

[
∆V ≤ q(α)

]
= α and the

term q(α)
(
α− P

[
∆V ≤ q(α)

])
vanishes. ES(α) then becomes

ES(α)(∆V ) = − 1

α

(
E
[
I∆V≤q(α)

])
= −E [∆V |∆V ≤ q(α)] . (2.3)

This conditional expectation of ∆V below the quantile q(α) is also called tail
conditional expectation. An equivalent expression of 2.2 is given by the negative
mean of F−1(u) on the confidence level interval u ∈ (0, α]

ES(α)(∆V ) = − 1

α

∫ α

0

F−1(u)du (2.4)

where F−1(u) is the inverse function of F (s), F−1(u) = inf {s|F (s) ≥ u}. This
is a straightforward relation to VaR since V aRu = −F−1(u). We note that when
ES and VaR are defined for all values α ∈ (0, 1), they both completely determine
the distribution of ∆V . ES is, however, much more sensitive to the model of the
tail of the distribution, which is usually calibrated on historical data.
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2.3 Properties of Expected Shortfall

• ES satisfies subadditivity

ES(α)
n (∆V1 + ∆V2) = −

∑[nα]
i=1 (∆V1 + ∆V2)i

[nα]
(2.5)

≤ −
∑[nα]

i=1 (∆V i
1 + ∆V i

2 )

[nα]

= ES(α)
n (∆V1) + ES(α)

n (∆V2).

More, ES satisfies all axioms of coherence, therefore, it is a coherent measure
of risk4.

• ESα is continuous with respect to α. Small changes in the confidence level
α may lead to large changes in VaR of some discontinuously distributed
financial instruments (loans, derivatives), in general, VaR is not continuous
with respect to α. ESα is continuous and not sensitive to small changes in
α.

• ESα is monotonous in α. The smaller the level α, the larger the risk.

• ESα generalizes standard deviation as a measure of risk in case that port-
folio returns are normally distributed (linear VaR).

Theorem 2. If portfolio return ∆V = δTr is normally distributed with zero mean
and covariance matrix δT Σδ, then

ES(α) =
φ(zα)

α

√
δT Σδ, (2.6)

where φ(zα) is the probability density function (pdf) of standard normal distribu-
tion, and zα is the α-quantile of the standard normal variable Z, P [Z > zα] = α.

Proof. Set σ2 = δT Σδ. We have,

ESα = −E[∆V |∆V ≤ q(α)]

= − 1

ασ
√

2π

∫ q(α)

−∞
x exp

(
−(x− µ)2

2σ2

)
dx

= − σ

α
√

2π

∫ zα

−∞
y exp

(
−y

2

2

)
dy

=
σ

α
√

2π
exp

(
−z

2
α

2

)
=
φ(zα)

α
σ.

4For the proof of the coherence of ES see Acerbi [2]
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Chapter 3

Extreme Value Theory

In this chapter, we take a closer look at the tail of the distribution (of individual or
portfolio returns). We are especially interested in the tail of the losses because the
tail is where extreme losses occur. Extreme Value Theory examines the tail area of
the distribution (e.g it estimates high quantiles of a loss distribution). It studies
these rare events and utilizes to the most the little information that is usually
available about them. This theory has been recently widely popularized in the
field of finance, although it has a vigorous history in insurance, e.g. in modelling
large insurance losses. Namely, we can mention the book Modelling extremal events
for insurance and finance by Embrechts, Klüppelberg, and Mikosch, or various
papers from authors such as McNeil [16] [17] [18], Danielsson [6], de Vries, Reiss,
Smith, Rootzen, Tajvidi, Longin, etc. Furthermore, we believe that many new
papers on the financial applications of EVT will arise in following years due to
recent extreme data available from the global financial crisis of 2008-2009.

In the following text, we follow the papers of Gilli & Kellezi [12] and McNeil &
Frey [18]. We turn our focus to observations that exceed some high threshold (e.g.
95% quantile). As already mentioned, tails of the Normal distribution are often
thinner than observed, therefore, we model the tails with another distribution,
namely, Generalized Pareto Distribution (GPD), and apply it to our risk measures
VaR and ES. We start with the basic theory that lies behind the study of extreme
values, and we show an example how to calculate VaR and ES.

3.1 Generalized Extreme Value Distribution

Let us define maximum of sequence of iid random variables (observations of losses)
X1, . . . , Xn as Mn = max(X1, . . . , Xn). The cumulative distribution function of
Mn is then

P [Mn < x] = P [max(X1, . . . , Xn) < x] = P [X1 < x, . . . , Xn < x] = F n(x),
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where F is cdf of X1. We notice that

lim
n→∞

F n(x) =

{
1 if F (x) = 1

0 else,

for given x, thus the limit is degenerate. However, after normalizing this sequence,
it converges to a well defined law.

Theorem 3 ((Fisher & Tippet, 1928), (Gnedenko, 1943)). Let X1, . . . , Xn be a
sequence of iid random variables. If there exist real norming constant bn, an > 0,
and a non-degenerate cdf H such that

lim
n→∞

P

[
Mn − bn
an

≤ x

]
= lim

n→∞
F n(anx+ bn) = H(x), (3.1)

then H is one of the following cdfs:

Fréchet : Φα(x) =

{
0, x ≤ 0,

exp{−x−α}, x > 0,
α > 0,

Weibull : Ψα(x) =

{
exp{−(−xα)}, x ≤ 0,

1, x > 0,
α > 0,

Gumbel : Λ(x) = exp{−e−x}, x ∈ R.

These three distributions are called extreme value distributions. We illustrate
the shape of the probability density functions for Fréchet, Weibull, and Gumbel
distributions in Figure 3.1.
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Figure 3.1: Pdfs for (a), (b), (c), distributions, α = 1.5.

Alternatively, these can be represented by one cdf known as generalized extreme
value distribution

Hξ,µ,σ(x) =

{
exp

{
−
(
1 + ξ x−µ

σ

)−1/ξ
}
, ξ 6= 0,

exp {−e−x} , ξ = 0,
x ∈ R, (3.2)
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where µ ∈ R, and σ > 0. The parameter ξ is called the tail index. The GEV
distribution corresponds to

Fréchet for ξ = α−1 > 0

Weibull for ξ = −α−1 < 0

Gumbel for ξ = 0.

According to limit (3.1), the normalized maxima converge in distribution to H(x)
for a given F, in other words, F is in the maximum domain of attraction of Hξ

for some ξ. Theorem 3 (also called extreme value theorem) is a general result in
extreme value theory. It is similar to central limit theorem in the way that instead
of taking the average of an increasing sample, we take the sample maximum and
investigate its asymptotic distribution. Since we are interested in extreme returns,
the advantage of this theorem is that we know the form of the limiting distribution
of extreme returns (and we can calculate extreme quantiles), although we do not
need to know or assume the distribution of all returns.

3.2 Generalized Pareto Distribution

The General Pareto Distribution describes the limit distribution of scaled excesses
over high thresholds.

Definition 3 (GPD). If X is a random variable (daily loss) with two-parameter
Generalized Pareto Distribution, then the distribution function of X has the form

Gξ,β =


1− (1 + ξx/β)−1/ξ , ξ 6= 0,

1− exp (−x/β) , ξ = 0,

(3.3)

where β > 0, and x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ when ξ < 0.

In case ξ = 0, we work with a limit limξ→0

(
1− (1 + ξx/β)−1/ξ

)
= 1 −

exp (−x/β). Parameter ξ (the tail index) accounts for the shape of the distri-
bution and β is the parameter of the scale. The tail index ξ is the same as for
generalized extreme value distribution. For ξ 6= 0, Gξ,β is a reparameterized Pareto
distribution, for ξ = 0, Gξ,β is the exponential distribution. For ξ > 0, Gξ,β is not
exponentially bounded, therefore, it is heavy-tailed. The k-th moment of GPD,
E[Xk], is finite for ξ < 1/k. The GPD can be extended with a location parameter
µ, Gξ,µ,β(x) = Gξ,β(x− µ).
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First derivative of (3.3) yields the density of GPD

gξ,β(x) =


1
β

(
1 + ξ

β
x
)−1−1/ξ

, ξ 6= 0,

1
β

exp
(
−x
β

)
, ξ = 0.

(3.4)

The tail of the density fattens and the peaks are sharpening with increasing ξ
while with increasing β the central part of the density gets more flat.

3.2.1 The Distribution of Excess Losses

Definition 4 (Excess Distribution). Let X be a random variable. The conditional
distribution function Fu of excess losses over a threshold u is defined as

Fu(y) = P [X − u ≤ y|X > u],

for 0 ≤ y ≤ xF−u, xF is the right endpoint of F, that is xF = sup {x ∈ R : F (x) < 1} ≤
∞, and y = x− u are the excesses over u.

This can be written in terms of F,

Fu(y) =
P [X − u ≤ y,X > u]

P [X > u]
=
P [u < X ≤ u+ y]

1− P [X ≤ u]

=
F (u+ y)− F (u)

1− F (u)
=
F (x)− F (u)

1− F (u)
. (3.5)

We are interested in estimating the extremes, that is, Fu. The following theorem
is an important result in Extreme Value Theory.

Theorem 4 ((Balkema & de Haan, 1974), (Pickands, 1975)). Let X1, . . . , Xn be a
sequence of iid random variables with distribution function F that converges to the
Generalized Extreme Value distribution (GEV) Hξ (F is in the maximum domain
of attraction of Hξ, F ∈ D(Hξ)). Then there exists positive real function β(u),
such that

lim
u→xF

sup
0≤y<xF−u

∣∣Fu(y)−Gξ,β(u)(y)
∣∣ = 0. (3.6)

That is, for large u approaching xF , excess function Fu converges to GPD
Gξ,β. All common continuous distributions satisfy the condition F ∈ D(Hξ). This
theorem allows us to model the distribution of the tails above sufficiently high
thresholds. To do that, we need to choose the right u and estimate ξ and β from
the extreme losses(negative returns above u) from the historical observations or
simulation. The right u must be high enough to approximate the convergence
and low enough to leave enough extreme data. This method of modelling extreme
events under GPD is called Peaks Over Thresholds method.
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3.2.2 Estimating Tails

According to (3.6), Fu(y) = Gξ,β(u)(y) for large u. The expression for underlying
distribution function F (x) thus becomes

F (x) = (1− F (u))Gξ,β(u)(x− u) + F (u), (3.7)

for x > u. Next, we need to estimate the value F (u) to find the corresponding
quantile to u. This can be done from the data by empirical distribution function
F̂ (u) = (n−Nu)/n, where n denotes losses and Nu are losses above threshold u.
We denote the estimates of ξ and β as ξ̂, β̂. The tail estimator of F (x) is given
by

F̂ (x) =
Nu

n

(
1−

(
1 + ξ̂

x− u
β̂

)−1/ξ̂
)

+

(
1− Nu

n

)

= 1− Nu

n

(
1 + ξ̂

x− u
β̂

)−1/ξ̂

, (3.8)

for x > u. F̂ (x) is also GPD with the shape parameter ξ, scale parameter β̄ =
β(1− F̂ (u))ξ and location parameter µ̄ = u− β̄((1− F̂ (u))−ξ − 1)/ξ,

F̂ (x) = 1−

(
1 +

ξ

β(1− F̂ (u))ξ

(
x− u+

β(1− F̂ (u))ξ

ξ

(
(1− F̂ (u))−ξ − 1

)))− 1
ξ

= 1−

(
1 +

ξ(x− u)

β(1− F̂ (u))ξ
+
(

1− F̂ (u)
)−ξ
− 1

)− 1
ξ

= 1−

(
ξ(x− u)

β(1− F̂ (u))ξ
+

1

(1− F̂ (u))ξ

)− 1
ξ

= 1−
(

1− F̂ (u)
)(

1 +
ξ

β
(x− u)

)− 1
ξ

= 1 +
(

1− F̂ (u)
)

(−1 +Gξ,β(x− u))

= (1− F̂ (u))Gξ,β(x− u) + F̂ (u).

3.2.3 Estimating VaR and ES

The quantile function of the GPD is given by

G−1
ξ,β(1− α) =

{
β
ξ
(α−ξ − 1), ξ 6= 0,

−β log(α), ξ = 0.
(3.9)
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For probability 1− α > F (u), we get the estimate of a quantile function (VaR as
(1-α)-quantile of the distribution of losses) from (3.8),

1− α = 1− Nu

n

(
1 + ξ̂

V aRα − u
β̂

)−1/ξ̂

n

Nu

α =

(
1 + ξ̂

V aRα − u
β̂

)−1/ξ̂

(
n

Nu

α

)−ξ̂
− 1 = ξ̂

V aRα − u
β̂

u+
β̂

ξ̂

((
n

Nu

α

)−ξ̂
− 1

)
= V aRα. (3.10)

Expected Shortfall (expected loss if VaR is exceeded), can be written in terms of
VaR,

ESα = E[X|X > V aRα] = V aRα +E[X − V aRα|X > V aRα], (3.11)

that is, ESα is the sum of the threshold V aRα and expected value of the excess
distribution FV aRα(y) over the threshold V aRα. This expectation is also called
mean-excess function of V aRα. It holds that for higher threshold than u, such as
V aRα,

FV aRα(y) = Gξ,β+ξ(V aRα−u)(y). (3.12)

Thus, the mean-excess function can be modelled as the expected value of a random
variable following GPD.

Let the threshold excess X-u follow the GPD Gξ,β. The mean excess for the
GPD Gξ,β(u) (for ξ < 1) for the threshold u is then1

E(X − u|X > u) =

∫ ∞
0

y gξ,β(y) dy =
β

1− ξ
, (3.13)

where gξ,β(y) is the probability density function of Gξ,β(y), and y = x − u. For
any higher threshold, e.g. V aRα > u we define the mean-excess function e(V aRα)
as

e(V aRα) = E(X − V aRα|X > V aRα) =
β + ξ(V aRα − u)

1− ξ
, (3.14)

or alternatively, for any z > 0, we have

e(u+ z) = E(X − (u+ z)|X > u+ z) =
β + ξz

1− ξ
. (3.15)

1As noted earlier, k-th moment exists for ξ < 1/k, in this case, ξ < 1
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Now we can write the expression for Expected Shortfall

ESα = V aRα +
β + ξ(V aRα − u)

1− ξ
=
V aRα

1− ξ
+
β − ξu
1− ξ

. (3.16)

To get the notion of average excess over VaR in terms of VaR, it is sometimes
convenient to work with the ratio ESα

V aRα
,

ESα

V aRα

=
1

1− ξ
+

β − ξu
(1− ξ)V aRα

(3.17)

This ratio is largely determined by the weight of the tail, that is, by shape pa-
rameter ξ (greater ξ > 0, heavier tail).

3.2.4 Mean-excess function plot

We can choose the right threshold u by constructing mean-excess plot

{(u, en(u)), Xn:n < u < X1:n} , (3.18)

where Xi:n is the i -th smallest loss from the sample and en(u) is the sample mean
excess function, an empirical estimate of the mean-excess function

en(u) =

∑n
i=1 (Xi − u) 1{Xi>u}∑n

i=1 1{Xi>u}
.

For the GDP, the mean-excess function is linear, therefore, if the plot is linear
with positive slope above u, then excesses over u follow GPD with positive shape
parameter. We can choose the threshold as the value on the x -axis which is located
where the plot begins to be linear.

3.2.5 QQ-plot

Using quantile (QQ) plot allows us to test if the sample follows a certain distribu-
tion. To compare the sample excess distribution and e.g. a GPD, we plot sample
quantiles exceeding u on the x-axis against quantiles (inverse of the cdf) of GPD
on the y-axis. If the data fit to the GPD, then the quantiles match, and we get a
roughly linear QQ-plot.

3.2.6 Maximum Likelihood Estimation

We use MLE to obtain the estimates of parameters ξ, β. We choose the threshold
u from the mean-excess plot, select the observations above u, and fit the GPD to
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excess returns. Recall that maximum likelihood estimate selects the estimates ξ̂
and β̂ which maximize the likelihood function

L(ξ̂, β̂ |y) = max
ξ,β

L(ξ, β |y) = max
ξ,β

n∏
i=1

gξ,β(yi),

where gξ,β(yi) is the pdf of GPD from (3.13) and y = {y1, . . . , yn} is the sample
of observations. Equivalently, we maximize the log-likelihood function

l(ξ̂, β̂ |y) = max
ξ,β

logL(ξ, β |y) = max
ξ,β

n∑
i=1

log gξ,β(yi).

The log-likelihood function l(ξ, β |y) is the natural logarithm of the joint density
gξ,β(y) of the n observations. Using the properties of natural logarithm, l(ξ, β |y)
simplifies to

l(ξ, β |y) =

{
−n log β − (1

ξ
+ 1)

∑n
i=1 log(1 + ξ

β
yi), ξ 6= 0,

−n log β − 1
β

∑n
i=1 yi, ξ = 0.

(3.19)

3.3 Application - PX Index

We now apply the presented theory to calculate VaR and ES from Czech equity
market returns, represented by PX Index. PX Index is the official Prague Stock
Exchange price index of blue chip stock issues. We analyze the daily returns from
the starting day of the index (4/5/1994) to (3/20/2009)2. This leaves us with
n = 3685 observations showed in Figure 3.2. The relative histogram of returns
is displayed in Figures 3.3, and 3.4 (relative histogram is normalized, so that
integral under the histogram is equal to 1). We use Mathematica program for our
calculations and the code is included in the appendix.

We use former notation and work with losses as negative returns (L = −∆V ).
We observe deviation from normality with negative skewness = −0.52 (it is
likely that extreme loss is larger than extreme return, but there are more days
with positive returns than days with losses) and positive excess kurtosis = 13
(sharp peak, fat tails).

The tail of the sample distribution function of the losses defined for given
ordered n observations x

(1)
n ≤ . . . ≤ x

(n)
n as

F̂n(x(i)
n ) =

i

n
i = 1, . . . , n

2The historical data can be obtained at http://ftp.pse.cz/Info.bas/Cz/px.csv.
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Figure 3.2: Log-returns on PX Index.
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Figure 3.3: Histogram of negative returns compared to normal density.

is presented in Figure 3.5.

We fit this tail with the GDP with suitable parameters. First, we need to
determine the appropriate threshold u. We construct the mean-excess function
plot from (3.18) and we choose the value for u where we believe the plot starts to
be linear.

We observe two values and we choose the latter, that is u1 = 2.57. This leaves
us with Nu1 = 122 excesses. For comparison, we also choose a different value
for u, namely, a 95%-quantile of the losses, that is u2 = 2.2 and corresponding
Nu2 = 185.
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Figure 3.4: Zoom on the tails of the returns (left tail) and losses (right tail).
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Figure 3.5: Tail of the sample distribution of losses.

Maximum Likelihood We know that losses above u follow GPD with pa-
rameters ξ, β. We estimate these parameters from (3.19). We use numerical com-
putation of maximum (maximizing the function without using derivatives). The
procedure FindMaximum in Mathematica evaluates the function at many points
to find the maximum, but it returns only a local maximum, therefore, for our
simulation, starting values are important. We obtain reasonable starting values
from a contour plot, see Figure 3.8. For u1 = 2.57 we get the estimates ξ̂ = 0.25
and β̂ = 1.1. For u2 = 2.2 we have ξ̂ = 0.31 and β̂ = 0.88.

QQ-plot We check if the quantile plot is linear, see Figure (4.4). For our
analysis, both figures present satisfactory fit to the GPD.
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Figure 3.6: Mean Excess Function.
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Figure 3.7: Zoom on the linear part.

We fit the empirical tail with F from (3.8), see Figure 3.10.

VaR and ES We calculate 99%-Value-at-Risk from the equation (3.10)
and corresponding Expected Shortfall from the equation (3.16). The results are
presented in table 3.1.
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Figure 3.8: Contour plot (‘topographical map‘) to select initial values for param-
eter estimates ξ and β, u = 2.57.
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(a) u = 2.57, ξ = 0.25, β = 1.1
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(b) u = 2.2, ξ = 0.31, β = 0.88

Figure 3.9: Quantile plots for estimates (a), (b).
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Figure 3.10: ML GPD fit to the empirical tail for threshold u = 2.57.

u1 = 2.57 u2 = 2.2

ξ̂ 0.25 0.31

β̂ 1.1 0.88
V aR0.01 4.09 4.04
ES0.01 6.06 6.12

ES0.01/V aR0.01 1.48 1.52

Table 3.1: VaR and ES for α = 0.01 (as a percentage change in the value of PX
Index).
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3.4 Conditional Extreme Value Theory

EVT offered us a new first insight about the risk in the tails, but we paid little
attention to the volatility of the returns. In the previous example, we eased the iid
assumption and we worked with a large sample of raw returns, which we consid-
ered some sort of residuals times unconditional (constant) variance. Empirically,
however, the residuals are not iid (see, for example, Figure 3.11) and often exhibit
heteroskedasticidy and autocorrelation (of their absolute or squared values) (En-
gle [11]). The previous example is static, and fails to give proper results in case of
days with high volatility. There is an obvious need to capture current conditional
volatility into our risk measures. This section fills in the gap by introducing dy-
namic (time-varying) volatility into our computations. Very popular approach is
to work with stochastic volatility which takes into account volatility clustering,
which means that returns cluster together (large returns are often followed by
large returns or losses). While returns are uncorrelated, absolute returns (or their
squares) show positive autocorrelation function. In this section, we closely follow
McNeil & Frey [18].

Again, we work with losses as negative changes in the log prices

Xt = −(logPt − logPt−1) = log
Pt−1

Pt
,

where Pt is the closing value of an asset (stock index, exchange rate, etc.) or a
portfolio on day t and we use last n days of data, t = 1, . . . , n. A model for loss Xt

that includes stochastic volatility (and eventually stochastic mean) can be written
as

Xt = µt + σtZt, (3.20)

where volatility of the return σt and expected return µt are calculated from the
past returns. Zt are iid random variables (strict white noise) with distribution
FZ(z) (with zero mean and unit variance) which bring the noise into model. This
allows us to measure volatility of Xt through volatility σt, that is, the unit variance
of Zt ensures that σ2

t is the variance of Xt, conditional on past returns up to t−1.

We are interested in the conditional return distribution

FXt+1|Ft(x),

with Ft indicating history of the process Xt up to day t (we know the past returns).
This is the distribution of forecasted return over the next day and we want to
come up with an estimate for the quantiles in the tails of this distribution. This
is in contrast with previous section, where we worked with unconditional (time-
independent) distribution FX(x). FX(x) can be seen as the marginal distribution
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of Xt (See McNeil & Frey pg.4) [18]. We have

FXt+1|Ft(x) = P (µt+1 + σt+1Zt+1 ≤ x|Ft) = FZ

(
x− µt+1

σt+1

)
.

Relating cdfs of a loss Xt and a noise Zt, we can estimate quantiles of FXt+1|Ft(x)
from the quantiles of the distribution of Zt, FZ(z), which does not depend on time
t. All that is left is to forecast the next day conditional volatility σt+1, mean µt+1,
calculate the residuals, and apply extreme value theory to the tail of FZ(z). We
work with AR(1)-GARCH(1,1) model for σt+1 and µt+1 predictions which is in
common use in practice. We briefly introduce it.

3.4.1 AR(1)-GARCH(1,1) Process

GARCH(1,1) model is widely used stochastic model to account for volatility clus-
tering in which the variance (expected return) depends on the variance (expected
return) of the previous day

µt = cXt−1

σ2
t = a0 + aσ2

t−1Z
2
t−1 + bσ2

t−1, (3.21)

where 0 < a + b < 1 is the rate of decay of the autocorrelation of σt (usually
close to 1), a0 > 0, and |c| < 1. Constants a, b need to be nonnegative, and
a0 > 0 so that the variance is nonnegative, and a + b < 1 ensures the variance is
finite, and after shock it eventually returns to its long-run (unconditional) average
variance a0/(1−a−b) (it exhibits mean reversion). The notation (1,1) means that
there is one autoregressive lag in the equation, and one lag in the moving average.
Variance (squared volatility) of the return for this period (on day t) is forecasted
as a weighted average of a constant, previous period’s predicted variance, and
previous period’s squared error (which captures the new information). In our
case, GARCH(1,1)3 process for the conditional variance σ2

t of the mean-adjusted
return εt = Xt − µt = σtZt is extended with AR(1) process for the conditional
mean µt.

3.4.2 Estimating AR(1)-GARCH(1,1) model

ARCH models in general are interesting in the way that they let the obser-
vations determine the best estimates of the parameters in the model. We use
pseudo-maximum-likelihood estimation to fit the model. The parameter estimates

3To relate GARCH(1,1) model to EWMA model mentioned in previous chapters, we set
a0 = 0, a = 1− λ, and b = λ, and we obtain σ2

t = λσ2
t−1 + (1− λ)σ2

t−1Z
2
t−1.
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θ̂ = (ĉ, â0, â, b̂)
′ are obtained by maximizing normal log-likelihood function for

GARCH(1,1). By normal, we mean that noise variables Zt follow Normal dis-
tribution conditional on past history. The normal log-likelihood function of the
AR(1)-GARCH(1,1) model is then given by

L(θ) = log
n∏
t=1

1√
2πσ2

t (θ)
exp

{
− ε2t

2σ2
t (θ)

}
= −n

2
log 2π − 1

2

n∑
t=1

(
log σ2

t (θ) +
ε2t

σ2
t (θ)

)
. (3.22)

For computation, we can omit the first term which is a constant. Although in
our case, we do not assume normality in Zt, we can use (3.22) to obtain vector
of parameter estimates θ̂. L(θ) is then called pseudo-log-likelihood function, since
the distribution of Zt does not need to be normal. We define pseudo-maximum-
likelihood estimator (PMLE) of parameter θ as estimator θ̂ which maximizes the
pseudo-likelihood function

θ̂ = arg max
θ
L(θ). (3.23)

It can be shown that PMLE is consistent and asymptotically normally distributed.
Starting values for θ need to be carefully chosen (only local maximum is calcu-
lated), for example, we can use sample mean return as a starting value for c, we
can set a0 = 1− a− b, and a is usually relatively close to zero, while b is close to
1. We also set unconditional sample variance as an initial value of σ2

t and sample
mean as initial value for µt.

3.4.3 Applying Conditional EVT on PX Index

We follow up with the previous example and we estimate VaR and ES of PX Index
using conditional EVT. We work with a window of last n = 1000 negative obser-
vations, which is rouhly the most recent 4 years of negative log-returns4. The pa-
rameter estimates of AR(1)-GARCH(1,1) model using PMLE and the maximized
value of log-likelihood function L (omitting constant) are displayed in Table 3.2.

Last 1000 daily losses and conditional volatility prediction are displayed in
Figures 3.11 and 3.12.

Using the estimated parameters, we calculate vector estimates of conditional

4 McNeil & Saladin [16] while simulating heavy-tailed data from different distributions claim
that Nu = 100 exceedances of a threshold is a reasonable and realistic number for estimating
high quantiles. In particular, one of their simulation result is that using 90%-quantile as a
threshold, 100 excesses are sufficient to estimate 99%-quantile in case of Pareto distribution.
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L(a0, a, b, c) a0 a b c
−780 1.25× 10−5 0.104 0.895 0.028

Table 3.2: AR(1)-GARCH(1,1) parameter estimates for PX Index.
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Figure 3.11: Last 1000 days of losses on PX Index from 3/31/2005 to 3/20/2009,
including the stock market crash of 2008.
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Figure 3.12: Corresponding conditional volatility prediction from AR(1)-
GARCH(1,1) model.

mean (µ̂t−n+1, . . . , µ̂t), standard deviation (σ̂t−n+1, . . . , σ̂t), and residuals

(zt−n+1, . . . , zt) =

(
xt−n+1 − µ̂t−n+1

σ̂t−n+1

, . . . ,
xt − µ̂t
σ̂t

)
.
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We consider the residuals as independent noise variables. Next, we calculate one
day forecasts of the conditional mean and variance

µ̂t+1 = ĉxt,

σ̂2
t+1 = â0 + â(xt − µ̂t)2 + b̂σ̂2

t . (3.24)
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Figure 3.13: Graph of extracted standardized residuals from the sample.

We apply extreme value theory from this chapter and fit the GPD to the tails
of the distribution of residuals zt and calculate VaR and ES estimates as

ˆV aRt
α(∆X) = µ̂t+1 + σ̂t+1V aRα(Z)

ˆESαt (∆X) = µ̂t+1 + σ̂t+1ES
α(Z), (3.25)

where V aRα(Z) denotes (1 − α)-quantile of the distribution of residuals Zt and
ESα(Z) is the related expected shortfall.

We set the threshold u as upper 90% quantile, which leaves us with Nu = k =
100 tail data. This means that when we order the residuals z(1) ≥ z(2) ≥ . . . ≥ z(n),
the threshold u = z(k+1) is the (k+1)th order statistic. We then fit the generalized
Pareto distribution to excesses above u, (z(1)−z(k+1), . . . , z(k)−z(k+1)) using MLE
from (3.19).

zk+1 ξ̂ β̂
1.28 0.21 0.59

Table 3.3: GPD parameter estimates for residuals.

After estimating parameters of GPD, we use (3.8) to estimate the tail of FZ(z),
that is

F̂Z(z) = 1− k

n

(
1 + ξ̂

z − z(k+1)

β̂

)−1/ξ̂

. (3.26)
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Inverting this formula we get VaR estimate as in (3.10),

ˆV aRα(Z) = z(k+1) +
β̂

ξ̂

((n
k
α
)−ξ̂
− 1

)
. (3.27)

Similarly, we use ˆV aRα(Z), rewrite the formula (3.16) for expected shortfall, and
from equation (3.25) we get the estimate of conditional expected shortfall as

ˆESα(Z) = µ̂t+1 + σ̂t+1

(
ˆV aRα(Z)

1− ξ̂
+
β̂ − ξ̂zk+1

1− ξ̂

)
. (3.28)

Figure 3.14 compares GPD fit to the empirical tail of residuals with tail of the
standard normal distribution. We see that the assumption of normality fails for
the tails. We confirm that by constructing normal QQ-plot (Figure 3.15).
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Figure 3.14: Empirical tail (dots), GPD fit to the tail (solid line), and the tail of
standard normal (dashed line).

Using (3.24), (3.25), (3.27) and (3.28) we get the following results (Table 3.4
and 3.5).

µ̂t+1 σ̂t+1 V aRα(Z) ESα(Z)
0.047 2.275 3.026 4.023

Table 3.4: One-day conditional mean and volatility predictions, GPD estimate of
99%-quantile of the distribution of residuals and corresponding expected shortfall
estimate.

Considering the ratio of expected shortfall to Value-at-Risk, from (3.25) for
µt+1 small we can write (see [18])

ESαt
V aRt

α

≈ ESαt − µt+1

V aRt
α − µt+1

=
ESα(Z)

V aRα(Z)
= 1.33. (3.29)
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Figure 3.15: QQ-plot of ordered residuals vs. standard normal quantiles.

V aRt
α(∆X) 6.93

ESαt (∆X) 9.65

Table 3.5: Conditional 99%-Value-at-Risk estimate under extreme value theory
(as a percentage change in the value of PX Index).

3.4.4 Multi Day Prediction

It is possible to extend one day EVT VaR and ES estimates to T-day estimates
as regulators usually require5, however, we cannot use the ‘square root of time’
rule for non-normally distributed returns. Danielsson & de Vries [6] use theoretical
results to arrive at an approximation for T-day quantile. They note that in case
of iid r.v. Xi with a heavy-tailed distribution function FX

6 the tail probabilities
are linearly additive

P (X1 + . . .+XT > x) ≈ x−λTL(x) (3.30)

for large x. They used a scaling factor T 1/λ for heavy-tailed distributions for multi
period quantiles. To calculate λ, they propose customized Monte Carlo simulation
for future return paths. This algorithm is also used in McNeil & Frey [18], where it
is applied to residuals to account for stochastic volatility, thus, obtaining different
results. The algorithm takes a large sample of n residuals, randomly picks one
from the sample, and if it exceeds a threshold (both tails), it samples a GPD
distributed random variable. If it does not, the value of the residual remains
unchanged. The residual is then replaced in the sample and the procedure is

5Basel II Framework requires 99% 1-day VaR scaled to 10-days (it is assumed to take 10
days to liquidate banks’ portfolios)

6A distribution is heavy-tailed when there exists finite constant a > 0 such that F (x) ≈
1− x−λL(x), where L(x) satisfies L(tx)

L(x) → 1,for x→∞, t > 0.
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repeated. This simulated distribution approaches the distribution of residuals for
large n.

Recall that we want to estimate the next T-days return (continuous com-
pounding) conditional distribution FXt+1+...+Xt+T |Ft(x). The conditional quantile
of this distribution is given by

qtα,T = inf
{
q ∈ R : FXt+1+...+Xt+T |Ft(q) ≥ 1− α

}
,

and the conditional expected shortfall by

EStα,T = E

(
T∑
j=1

Xt+j|
T∑
j=1

Xt+j > qtα,T ,Ft

)
.

From the algorithm, high number of future return paths (xt+1, . . . , xt+T ) are gen-
erated and summed to obtain realisations of

∑T
j=1Xt+j|Ft and estimates qtα,T and

EStα,T are then calculated.
Denote qα and qα,T quantile of return distribution over one-day and T-days re-
spectively. Using (3.30) for iid r.v. we can write

α ≈ P (X > qα,T ) ≈ (qα,T )−λ T L(qα,T ),

α ≈ P (X > qα) ≈ (qα)−λ L(qα),

and we obtain approximate scaling law

qα,T ≈ qα T
1/λ. (3.31)

If we choose cdf FX whose limiting distribution of excesses is GPD with shape
parameter ξ as a particular heavy-tailed distribution of returns, then from (3.30)
an appropriate scaling formula is

qα,T ≈ qαT
ξ, (3.32)

where qα,T is the desired T-day quantile.

McNeil & Frey [18] adapt the scaling exponent 1/λ from (3.31) to depend on
current volatility σt, thus obtaining

qtα,T
qtα

=
V aRα,T (X)

V aRα(X)
≈ T

1
λt .

They test this empirically on S&P Index for different values of σt and T and
find that for higher initial volatility σt, the scaling exponent is lower than for
the average or low σt, that is, if the initial volatility is higher, one expects lower
average volatility (a median of past volatilities) in the future, thus T-day VaR
increases less than in case of lower initial volatility.
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3.4.5 Backtesting

Backtesting procedure evaluates the risk measurement models by comparing risk
estimates with realized returns using historical data. Daily risk measure estimate
(VaR or ES ) is tested against daily actual (realized) portfolio return (loss). We
use statistical tests to verify that our model accurately captures the frequency
of violations of risk estimates (we compare observed frequency of violations with
expected frequency of violations according to the model).

Indicator of violations

When V aRα,t+1 estimates and actual losses Xt+1 are compared, VaR violation
can be defined as an indicator

It+1 =

{
1, when Xt+1 > V aRα,t+1,

0, when Xt+1 < V aRα,t+1,

and we obtain the sequence of violations {It+1}Tt=1, where T is the number of days
of a backtest. We expect that indicator It+1 = 1 with probability α, therefore, we
are testing the null hypothesis

H0 : It+1 ∼ Bernoulli(α) iid.

The iid assumption allows us to test that the expected value of indicator sequence
1
T

∑T
t=1 It = α, or that the sum of violations follows the binomial distribution with

parameters T and α

H0 :
T∑
t=1

It ∼ B(T, α). (3.33)

McNeil & Frey [18] carry out such backtesting of several VaR methods in-
cluding conditional EVT on different historical return series (stock, stock index,
exchange rate, gold price). They use rolling window of 1000 observations and set
the threshold u as 90th percentile, u = 100. Each day, they compare realized loss
Xt+1 to VaR estimates qα,t+1 from GPD fit at different confidence levels α. They
set significance level for binomial test at 5%, thus, if p-values are smaller than
0.05, the null hypothesis (3.33) is rejected.

Their results are that conditional EVT method is the best and does not lead
to rejection of H0. In the sense of binomial testing, very good results were also
obtained with a GARCH model with conditionally Student-t distributed returns.
They conclude that unconditional EVT estimate can be violated several times in a
row during high volatility periods and the conditional normal estimate (especially
at higher quantiles) is violated more often because it does not take into account
leptokurtosis.
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They also develop a binomial test for conditional ES and verify that EVT
method gives better estimates. They standardize exceedance residuals that ac-
cording to the model are iid with zero expectation and unit variance and test
this zero mean null hypothesis. Their results show that assumption of normally
distributed residuals fails and is useless for calculating ES. On the other hand, for
standardized GPD residuals, the hypothesis is rejected only for stock index, and
GPD assumption tends to underestimate the prediction for stock indices, but in
overall, it gives much better estimates for ES.
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Chapter 4

Application on a portfolio

In this chapter, we construct a theoretical portfolio and calculate VaR and ES us-
ing delta, delta-gamma, historical simulation and extreme value method. Consider
two equal investments, say CZK 1 million each, into Dow Jones Euro STOXX 50
Index, and PX Index1, and a purchase of EURCZK currency put option, such that
a domestic (Czech based) investor is protected from depreciation of Euro against
Czech koruna. We simplify the matter in a common way: we omit the transaction
costs, dividend payments, and we work with mid prices observed at the close of
the day. More, we assume that returns on the risk factors are iid.

Although it is possible to use multivariate extreme value theory (modeling
the tails with multivariate GPD and copulas) for such portfolio, in real portfolios
with many risk factors, it might be difficult to properly match extreme values, and
account for their correlations. Although a simplification, it is reasonable to apply
univariate EVT to a single risk factor represented by the returns on the whole
portfolio. That is, we use historical simulation to calculate hypothetical portfolio
returns, and to estimate the desired quantile, we apply extreme value theory to
the tail of these portfolio returns. This approach is proposed in Danielsson & De
Vries [6]. We also apply demonstrate conditional EVT method: we standardize
the hypothetical returns by AR(1)-GARCH(1,1) volatility estimates and apply
conditional EVT to the residuals.

Next, we apply parametric linear and non-linear approach from Chapter 1.
We use Cornish-Fisher expansion to arrive at correct quantile of portfolio return
distribution. We then compare VaR and ES results from presented methodologies.

1Although indices are not directly tradable, it is convenient to work with them, because they
serve as market benchmarks. Of course, there are many tradable products at different exchanges
that track a certain index performance, thus, investors seeking prompt diversification usually
consider exchange traded funds (e.g. FEZ etf, Lyxor etf, iShares etf, or DB x-trackers for DJ
Euro STOXX 50), index certificates (e.g., PX Index Certificate or Czech Traded X-pert Index
Certificate), index futures, etc.

49



In the subsequent section, we discuss the gamma effect of including option in the
portfolio.

When using our combined HS and EVT approach, it is good to understand
what caused the extremes and conclude how much we are concerned that these
extremes will repeat. With such broader picture we get better feeling about the
risk our portfolio is exposed to, than by simply looking at large changes in risk
factors’ returns.
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(a) Dow Jones EURO STOXX 50 Index graph.
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(b) PX Index graph

Figure 4.1: Graphs of indices with several extreme drops highlighted. Data from
3/22/2004 to 3/20/2009.

Concretely, in Figure (4.1) we plot the graphs of the two indices and we high-
light several extreme daily losses. On Monday January 21, 2008, DJ Euro STOXX
50 plunged 7.6% as investors feared upcoming global economic recession and the
US mortgage turmoil. The sudden drop might have been also partially caused
by Jérôme Kerviel incident which went public that weekend, and promptly on
Monday, Société Générale started to liquidate loss-making positions in leading
European indices (including Euro STOXX 50) what might have caused further
sell-offs. Also on that day, German WestLB reported 1 billion euro loss for 2007.
A day later, the US Federal Reserve cut rates by 75 bps, indicated possible further
cuts and the markets calmed for a while.

The week October 6-10, 2008 was even more interesting: stock markets and
commodities sharply fell, Iceland’s banks collapse, and a number of other banks
were bought, nationalized, or filed for bankruptcy, risk (or investor fear) indicators
jumped at long-time highs, etc. The governments’ attempts to calm the situation
included simultaneous rate cuts, planned billions for bailouts, and an increase in
deposit guarantees. Indeed, there are many explanations for rapid market move-
ments, and we could continue probing into the rest of the extremes for a better
understanding of what caused them, that is, for a better understanding of our
risk. That is not our aim, and we only wanted to point out that when considering
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VaR and ES numbers, we should take into account our concerns about the repeat
of specific extremes in the history.

In our portfolio, there are following risk factors that affect its value: EURCZK
exchange rate, 1 year PRIBOR, 1 year LIBOR, DJ Euro STOXX 50 value, PX 50
value2. We slightly refine the data so that prices remain constant (zero returns)
over holidays. Today is March 20, 2009. The exchange rate is EUR 1 = CZK
26.628 and we are long EUR put CZK call, with expiration in one year, contract
size EUR 37 555 (CZK 1 million), and a strike price set at EUR/CZK 26. The 1-day
exchange rate volatility is modelled by GARCH(1,1) process, and is extended to
1-year volatility by Drost-Nijman formula. Although EURCZK volatility is also a
risk factor, we neglect it since it has a tiny impact on the computation (as shown
in Appendix, 1-year volatility calculated with Drost-Nijman formula fluctuates
insignificantly). We use last five years of closing day prices (from 3/22/2004 to
3/20/2009) and the sample size is n = 1287. We are interested in next day’s, say,
one chance in a hundred and one chance in a thousand largest loss, so we set α
equal 0.01 and 0.001.

Instrument Value
PX Index CZK 1 million

Euro STOXX 50 CZK 1 million
(EUR 37 554)

Put option
Notional EUR 37 554

Current rate 26.628
Strike price 26

Option premium 1.35%
(EUR 509.82)

Table 4.1: Portfolio specification.

After we set up the portfolio (see portfolio specification, Table 4.1), we price
each instrument to obtain their present values. We use Garman-Kohlhagen for-
mula to price FX option, and we get option premium today equal 0.0135 cents
per 1 EUR (see Appendix B). We then calculate historical log-returns of each
risk factor and use the series of returns to simulate possible paths of tomorrow’s
returns (see Historical Simulation section). This way, we constructed the empir-
ical distribution of portfolio returns (see Figure 4.2). We complete the historical
simulation by ordering the portfolio return sample and taking negative of α-th
order statistic as a representative of historical VaR. To estimate historical ES, we

2The data for the exchange and interest rates were downloaded from Bloomberg, STOXX
50 index is available at http://www.stoxx.com/indices/index information.html?symbol=SX5E,
and PX 50 at http://ftp.pse.cz/Info.bas/Cz/px.csv.
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use the formula (2.1) and average α% largest losses.

We now use the tail of the empirical distribution of returns and apply EVT to
estimate GPD VaR and ES. We treat the simulated portfolio returns as historical
returns (Figure 4.2) and proceed as in chapter Extreme Value Theory. We invert
the returns (loss=positive number) and set the threshold u at 90% loss quantile
and obtain the value for u = 1.35 (we might get a better fit if we visually chose
the threshold, however, if using automatized EVT as a risk management tool,
visually choosing the threshold is impractical). We are left with satisfactory 129
extremes.

After maximizing GPD log-likelihood function (3.19), we obtain the estimates
ξ̂ = 0.27 and β̂ = 0.93 and we use (3.8) to fit the empirical tail with Generalized
Pareto distribution. Finally, we obtain GPD Value-at-risk and Expected Shortfall
estimates by plugging the estimated parameters into (3.10) and (3.16). In Figure
4.5 we plot different quantiles obtained from historical simulation and extreme
value theory.
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Figure 4.2: Portfolio log-returns.

We can now consider conditional EVT, and primarily, that the volatility of
the returns is stochastic. As in example from previous chapter, we assume that
Xt = µt + σtZt, and we use AR(1)-GARCH(1,1) model to estimate the next day
conditional volatility σt+1 and mean µt+1 using (3.24). Then we can calculate resid-
uals (iid noise) Zt. To calculate conditional EVT VaR and ES, we subsequently
apply formulas (3.25), (3.26), (3.27), and (3.28). The results are presented in Table
4.3 and subsequently, the corresponding Figures are displayed.

Next, we apply parametric method explained in Chapter 1. We forecast the
variance using EWMA (1.8) and we use prevalent RiskMetrics [15] λ = 0.94 (we
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Figure 4.3: Zoom on the tails of the returns (left tail) and losses (right tail)
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(a) QQ-plot of sample quantiles against GPD
quantiles.
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(b) ML GPD fit to Nu = 129 tail losses

Figure 4.4: Quantile plot (a) and GPD fit to the tail (b) for the estimates u =
1.35, ξ = 0.27, β = 0.93.

also used RMSE criterion to arrive at optimal lambda for our portfolio and we
obtained λ = 0.91 which in our case produces even lower VaR estimates, see
paragraph in section 1.1.2).

Next, we calculate log-return for indices and exchange rate using formula (1.2).
We estimate variance and covariance using formulas (1.8) and we obtain following
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Figure 4.5: VaR estimates for different levels of α using historical simulation and
generalized pareto distribution.

variance-covariance matrix
0.0000967 −0.0000873 −0.0000689 −2.56× 10−7 4.63× 10−8

−0.0000873 0.000556 0.000247 −4.50× 10−7 3.65× 10−7

−0.0000689 0.000247 0.000479 8.74× 10−8 −1.50× 10−7

−2.56× 10−7 −4.50× 10−7 8.74× 10−8 5.12× 10−8 1.63× 10−8

4.63× 10−8 3.65× 10−7 −1.50× 10−7 1.63× 10−8 2.81× 10−8

 .

We calculate the vector of first derivatives from (1.14) numerically by increas-
ing each risk factor by one bp

δT = (727.52, 1000, 1000,−8.75, 5.52),

Using (1.17) we arrive at linear (delta) Value-at-Risk estimate V aRδ
0.01 = 4.25%,

and exercising parametric formula for expected shortfall (2.6) we get ES0.01 =
4.87%.

Next, we build a matrix of second derivatives using formula (1.15). Again, we
numerically measure how the first derivative of each factor changes when we move
each risk factor by 1 bp and we get

4912.76 1000 0 139.39 −86.06
1000 0 0 0 0

0 0 0 0 0
139.39 0 0 4.21 −2.6
−86.06 0 0 −2.6 1.61

 .
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The sensitivities δ and Γ take into account the size of the position (in thousands
CZK) and current levels of risk factors Si(t). Now we turn to Cornish-Fisher ap-
proximation to estimate portfolio’s mean and variance. We can straightforwardly
use formulas from section 1.2.3 to calculate higher moments of the distribution of
portfolio’s returns. The moments of the portfolio’s distribution are presented in
Table 4.2.

Mean µ∆V 0.091
Variance σ∆V 1354.84

Skewness E(∆V−µ∆V )3

σ3
∆V

-0.00547

Kurtosis E(∆V−µ∆V )4

σ4
∆V

0.00012

Table 4.2: Portfolio’s distribution moments.

Based on this moments, we can approximate the desired quantile, and estimate
non-linear (delta-gamma) VaR. The impact of option on our estimates on port-
folio’s return is low, and our estimates change insignificantly. We obtain quantile
z∆V,α = −2.33 and V aRΓ

α = 4.27. Regarding Expected Shortfall, we do not have
parametric expression for non-linear ES.

Complete results are summarized in table 4.3.

V aR0.01 ES0.01 ES0.01

V aR0.01
V aR0.001 ES0.001 ES0.001

V aR0.001

HS 4.71 6.60 1.40 9.88 11.77 1.19
EVT 4.33 6.69 1.55 9.83 14.21 1.45

EVT-GARCH 4.70 6.22 1.32 8.25 10.32 1.25
δ 4.25 4.87 1.15 5.65 6.16 1.09
δ-Γ 4.27 5.67

Table 4.3: VaR and ES estimates (as a percentage change in the value of portfolio)
using Historical Simulation, Extreme Value Theory, Conditional EVT, Delta, and
Delta-Gamma approaches (λ = 0.94), sample size=1287.

From the results of this simple hypothetical portfolio, we conclude that para-
metric methods (based on normality of returns) give lower risk estimates than
historical simulation or methods based on EVT. Both Delta and Delta-Gamma
clearly underestimate the risk for very high quantiles, namely 99.9%. Historical
simulation, while capturing fat tails, is restricted to the range of the sample. This
can lead to imprecise results as the high quantile estimates can be volatile (adding
or dropping large observation may cause swings in the VaR number).
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Assuming that extremes follow Generalized Pareto distribution, one can esti-
mate any quantile measure without extra computational intensity (using EVT, we
smooth the tails obtained from HS, and thus are able to estimate VaR and ES for
any confidence level, in particular, the one that is out of the historical sample, see
Figure 4.5). High quantile estimates using EVT can also be imprecise especially
when using very small set of data, however, it is very useful to have an idea of
how the tails behave. The proposed EVT method based on historical simulation
can be seen as a suitable supplement to historical simulation in addition to stress
testing and scenario analyses.

The demonstrated unconditional EVT VaR is more suitable for long run rather
than daily forecasts because of the large sample size needed (adding new and re-
moving old observation does not produce significant changes in VaR and ES esti-
mates when using large sample size). HS and EVT thus provide stable estimates
but do not update quickly when the market volatility changes (this is undesirable
during periods of high or low volatility). This drawback is removed by Conditional
EVT which reflects the current volatility. It is tempting to say that this makes
the Conditional EVT the most appropriate method, however, extended backtest-
ing procedures must be undertaken first. For now, we can only refer to McNeil &
Frey [18] who backtested several (univariate) return series and showed that Con-
ditional EVT is the best method for estimating high quantiles. Regarding number
of observations, we can say, the larger the sample size, the better, but the size
still remains an important practical issue.

Considering Expected Shortfall estimates, we observe that the ratio ES/VaR
approaches 1 with decreasing α for historical simulation and parametric methods.
This is a drawback of these methods because even if we believe that the VaR num-
ber they produce is reasonable, they underestimate Expected Shortfall estimates
for very high quantiles. On the other hand, EVT methods due to their nature
produce reasonable ES/VaR ratios.

4.1 Portfolio breakdown

In order to fully explore the impact of gamma risk from option’s return on VaR
numbers, let us investigate the option behaviour in the portfolio in these three
very simple cases. First, we run the program without the option to verify that
this specific hedging of Euro STOXX 50 Index investment with put option in our
portfolio did not create large risk (Table 4.4).

In the second case, let us say that (Czech based) investor expects CZK to
depreciate against EUR. He keeps half of his wealth in PX and Euro STOXX 50
Index (say one thousand CZK together), and goes long EUR call CZK put with
the other half (another one thousand CZK). The option parameters stay the same.
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VaR at 99% Excluding option Including option
δ 4.22 4.25

δ − Γ 4.22 4.27

Table 4.4: Impact of FX hedging with put option on VaR number.

He does not hedge, but he uses his ”play” money to speculate on the movement
of exchange rate (he gambles that euro appreciates against CZK). The Table 4.5
captures VaR numbers in this case.

(a) Portfolio Statistics

Mean 5.128
Variance 22456.7
Skewness 0.202
Kurtosis 0.055

(b) Value-at-risk estimates

% 99% 99.9%
δ 17.41 23.13

δ − Γ 16.55 21.23

Table 4.5: Impact of option’s nonlinearity on VaR numbers (as % change in port-
folio value).

As we could have expected, such option exposure notably increases our risk
exposition and the impact of gamma is also in evident. We observe that includ-
ing gamma risk reduces our risk estimates as the distribution becomes positively
skewed.

In the third example, the investor speculates on volatility. He thinks that
there is a high chance of unexpected news coming up within a year that would
significantly move the exchange rates, although he is not sure about the direction
of this change. He decides to establish a simple strategy called straddle, that is,
he buys both a put and a call option on EURCZK at the same strike price, in
the same amount, and with the same expiration date. Such portfolio consisting of
only options describes the option’s nonlinearity and the difference between delta
and delta-gamma probably in the best way. The results are given in Table 4.6.

(a) Portfolio Statistics

Mean 0.475
Variance 18.891
Skewness 0.650
Kurtosis 0.566

(b) Value-at-risk estimates

% 99% 99.9%
δ 16.77 22.28

δ − Γ 14.09 16.33

Table 4.6: VaR of a straddle (as % change in straddle value).

In the last case, we exhibit again positive skew in the distribution and ac-
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counting for gamma reduces our VaR estimates especially for very high quantiles.
These results of course heavily depend on the option’s specifications, for example,
strike price.
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Conclusion and Discussion

This thesis summarizes some of the methods used for calculation Value-at-risk
and Expected Shortfall. Of course, there are other models and issues about VaR
and ES that are not covered in the work.

Chapter 1 is dedicated to the original three approaches, namely, paramet-
ric, Monte Carlo, and Historical Simulation. Introducing parametric (variance-
covariance) approach first, we show how to forecast (EWMA) variance of the
returns, discuss the linearity of the position captured by delta and non-linearity
captured by delta and gamma, and explain how to estimate portfolio linear and
non-linear (using Cornish-Fisher expansion) VaR. The use of EWMA to model
the variance is sometimes substituted with GARCH models. Every market crash,
however, evidences failure of the assumption of normally distributed returns. In
practice, normal distribution is often substituted with a distribution with heavier
tails, most frequently with Student t-distribution with ν degrees of freedom ob-
tained by maximum likelihood estimation (usually ν = 3 or 4 but it does not have
to be an integer). When we consider α = 0.05, that is, 95% confidence level, then
VaR estimate with normally distributed returns gives rather accurate results, it
is the extremes (when α = 0.01 or 0.001) where normality fails.

Next we discuss Monte Carlo approach that simulates returns and revalues
portfolio after each simulation. Large sample of simulated returns then approxi-
mates the distribution of portfolio changes and it is easy to take empirical VaR
and ES estimates from this distribution. Again, it is possible to simulate r.v. from
other than normal distribution and thus allow for heavier tails. The last section
describes Historical Simulation approach and completes chapter 1. HS is a very
popular approach since it is simple, transparent, free of distributional assumption
and captures fat tails, but might not produce accurate forecasts.

In chapter 2 we point out that VaR does not encourage diversification. If
used as a risk management tool, this inefficiency can thus give misguided results
and have severe consequences in terms of financial losses. We introduce Expected
Shortfall which eliminates VaR’s deficiencies and satisfies widely accepted axioms
of an effective risk measure. We show how ES can be (and should be) used as
a complement to (or even replacement of) VaR for measuring market risk. Re-
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markably, Riskmetrics [15] document already mentions ES (Part V - Backtesting),
where it is defined as an expected value of a return given that it violates VaR, and
illustrated with the formula from Theorem 2.

Chapter 3 describes Extreme Value Theory. This can be seen as an improve-
ment of the previous methodologies in a way that EVT particularly focuses on the
tails of the distribution. In this chapter, we define Generalized Pareto Distribution
and use it to model the tails, and consequently, to estimate VaR and ES. Next, we
describe Conditional Extreme Value Theory which respects conditional volatility
of the returns. Both unconditional and conditional EVT techniques are demon-
strated on a stock market index example. The following section that discusses
multi day EVT VaR and ES prediction completes chapter 3.

In chapter 4 we apply Extreme Value Theory to calculate VaR and ES for a
nonlinear portfolio (a simple investment into local and foreign stock market indices
and involved currency risk hedged with a put option) by mixing HS and GPD.
We then compare this method to parametric (delta and delta-gamma) approach
and historical simulation. We show how EVT supplements HS in capturing fat
tails and even the tails that are out of the sample range.

Three appendices that describe Cholesky factorisation (appendix A), discuss
pricing FX options (B), and explain cash flow map of fixed income instruments
(C) finalise the thesis.

Value-at-risk does not describe the worst loss, and it is not designed to do so.
What it does is that it evaluates the probability that a loss in the (left) tail occurs.
Therefore, different approaches may produce similar VaR number, but different
shapes of loss distribution (and its tails in particular). This fact can be seen in
our results, when we moved confidence level from 99% to 99.9%, the ”new” VaR
number then varied significantly from one method to another. The confidence
level and the question of sample period indicates that VaR is measured with some
error, it is a subject to probability sampling variation.

There is, however, more criticism to VaR. For example, Nassim N. Taleb be-
came an increasingly popular critic of current risk management models. His popu-
larity spread after good (lucky?) timing of his book The Black Swan: The Impact
of the Highly Improbable that was released on April 2007, just before the sub-prime
crisis erupted. He points out the difficulty of properly assessing the probabilities of
events that are out of our historical sample and high impact of estimation errors
around small probabilities and argues that present models (in particular the ones
described in this work) cannot estimate tail probabilities with assurance. To be
fair, besides criticism, Taleb offers a proposal for estimating the tails. He often
cites Mandelbrot and advocates the use of true fat tails (Paretian, power-law tails
satisfying P (X > x) ≈ Kx−α, which are scale invariant, see Taleb [21]) as risk
management tools. As a stress test, he suggests to use power laws to measure
sensitivity of errors in the tails by varying power-law exponent α and investigate
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its effect on the changes in VaR and ES estimates. This effect of the unseen can
thus assist in making decisions. In this sense, similar stress tests can be analyzed
in Extreme Value Theory by varying tail index ξ. This alternative approach is
inspiring and deserves further investigation.
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Appendix A

Cholesky factorisation

Cholesky factorisation of matrix Σ ∈ Rn×n is a generalisation of a square root.
It decomposes a symmetric(Σ = ΣT ) positive definite(∀x ∈ Rn \ {0} : xTΣx > 0)
matrix Σ = (σij) into a lower triangular matrix L = (lij) with ljj > 0 and its
transpose LT so that

Σ = LLT . (A.1)

We are solving the equation
σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
. . .

...
σn1 σn2 · · · σnn

 =


l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ln1 ln2 · · · lnn

 .


l11 l12 · · · l1n
0 l22 · · · l2n
...

...
. . .

...
0 0 · · · lnn

 ,

that is

σij =

min(i,j)∑
k=1

liklkj, 1 ≤ i, j ≤ n, (A.2)

where li,k, lk,j = 0 for k > min(i, j). We can find the n! unknowns lij through
matrix multiplication of each entry, starting from the top left column.
Concretely,

l11 =
√
σ11

σi1 = li1l11 ⇒ li1 =
σi1
l11

, (1 < i ≤ n)

σ22 = l221 + l222 ⇒ l22 =
√
σ22 − l221

σi2 = li1l21 + li2l22 ⇒ li2 =
σi2 − li1l21

l22

, (2 ≤ i ≤ n), (A.3)
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in general, the solution is

ljj =

√√√√(σjj − j−1∑
k=1

l2jk

)
, j = 1, . . . , n

lij =

(
σij −

∑j−1
k=1 likljk

)
ljj

, i = j + 1, . . . , n. (A.4)

Cholesky decomposition has an advantage over LU decomposition since only
one triangular matrix needs to be calculated.
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Appendix B

Pricing FX Options

A currency option gives the holder (buyer) right to buy (in the case of call) or
sell (in the case of put) a set amount of one currency for another at a determined
price (strike price) and time. To gain this right buyer needs to pay the price called
option premium.

B.1 Garman-Kohlhagen Formula

Merton generalized Black-Scholes option pricing formula to price European stock
or index options that pay a dividend yield (continuously compounded). In Garman-
Kohlhagen formula this dividend yield is treated as the interest rate in foreign
currency, thus the formula is used to price currency (FX) options. It applies only
to European options. The values of the options are

call = S e−rfTN(d1) −K e−rhTN(d2),

put = −S e−rfTN(−d1) +K e−rhTN(−d2), (B.1)

where

d1 =
log
(
S
K

)
+
(
rh − rf + σ2

2

)
T

σ
√
T

,

d2 = d1 − σ
√
T ,
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and

N(.) = cdf for standard normal random variable

S = spot exchange rate

K = exercise (strike) price

rh = riskless interest rate for the home currency

rf = riskless interest rate for the foreign currency

T = time to maturity

σ = volatility of the spot exchange rate.

In the sample portfolio, we value the FX option assuming that volatility is
stochastic, and follows simple GARCH(1,1) model.

B.2 T-day volatility estimate under GARCH(1,1)

We fit GARCH model to EURCZK currency pair, that is, we estimate the param-
eters of GARCH(1,1) model with MLE as in (3.22). Recall that for 1-day returns
(Xt), simple GARCH(1,1) model has the form

Xt = σtZt,

σ2
t = a0 + aX2

t−1 + bσ2
t−1,

where independent Zt ∼ N(0, 1), t = 1, . . . , T , and a0 > 0, a ≥ 0, b ≥ 0, and
a+b < 1. The daily long-run (unconditional) average variance is σ2 = a0/(1−a−b).
A simple square root of time rule is not desirable to obtain annual (or T-day)
unconditional variance because returns are not iid (volatility clustering, fat tails,
etc.) Instead, we turn to Drost-Nijman formula (see [10]), which may serve as a
manual how to correctly transform the variance of 1-day returns into the variance
of T-days returns under GARCH processes. Drost & Nijman showed that T-day
returns also follow GARCH(1,1) process

σ2
(T )t = a0(T ) + b(T )σ

2
(T )t−1 + a(T )X

2
(T )t−1, (B.2)

where

a0(T ) = Ta0
1− (a+ b)T

1− (a+ b)
,

a(T ) = (a+ b)T − b(T ),

and |b(T )| < 1 is the root of the quadratic equation

b(T )

1 + b2
(T )

=
α(a+ b)T − β

α(1 + (a+ b)2T − 2β
,
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where

α = T (1− b)2 + 2T (T − 1)
(1− a− b)2(1− b2 − 2ab)

(κ− 1)(1− (a+ b)2)

+ 4
(T − 1− T (a+ b) + (a+ b)T )(a− ab(a+ b))

1− (a+ b)2
,

β = (a− ab(a+ b))
1− (a+ b)2T

1− (a+ b)2
,

and κ is the kurtosis of 1-day returns. As T → ∞, then a(T ) → 0, b(T ) → 0, and
volatility fluctuations disappear, while square root of time rule magnifies volatility
fluctuations, see [8].

We implement this formula to calculate annual volatility of EURCZK exchange
rate. Our model comprises of 5 years of data (3/22/2004-3/20/2009), a total of
1287 observations. First, we calculate daily log-returns and apply GARCH(1,1)
model to estimate volatility of EURCZK. We obtain GARCH(1,1) parameter es-
timates by maximizing log-likelihood function as in (3.22). We get the following
estimates

a0 a b
9.94× 10−4 0.075 0.921

Table B.1: GARCH(1,1) parameter estimates for calculating EURCZK volatility.

Using above formulas, we obtain

a0(T ) a(T ) b(T ) α β κ
40.28 0.15 2.94 0.23 0.69 11.65

Table B.2: Inputs to (B.2) for calculating 1-year (T=250 days) volatility

The graphs of
√
T -day scaled volatility and volatility using D&N formula are

displayed in Figure B.1 for T = 250.

B.3 Extreme-value volatility estimators

We complete this appendix by mentioning several alternatives for estimating his-
torical volatility in addition to implied volatilities or autoregressive models. We
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(a) 1-year scaled volatility (1-day volatility
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(b) 1-year volatility using D&N formula (B.2).

Figure B.1: 1-year EURCZK volatility graphs (displayed in %). Scaled (a) vs.
Drost & Nijman formula (b).

have not used them in our calculations and we only introduce them as a matter
of interest.

A sample standard deviation as a volatility estimator is called close-to-close
(CC) since it only uses the market closing prices to estimate the volatility. A
more efficient approach uses daily highs (Ht) and lows (Lt), or even daily opening
prices (Ot) and closing prices (Ct) on a trading day t. In this sense, daily highs
and lows are seen as daily extreme values. Parkinson (1980) proposed the first
extreme-value volatility estimator

σ =

√√√√ 1

4 log 2

1

n

n∑
t=1

(
log

Ht

Lt

)2

. (B.3)

Garman and Klass (1980) extended the estimator to include opening and closing
prices, making the estimator even more efficient (theoretically). They assume that
the process for the asset price returns Pt follows a geometric Brownian motion with
zero drift and constant volatility σ (that is to be estimated), dPt = σPtdZt, where
dZt = φ

√
dt is an increment to a Wiener process (increments dZt are independent

and normally distributed with zero mean and variance dt, φ is standard normal).
This continuity in the process assumes that returns follow the process between
transactions and also while the markets are closed. Garman and Klass historical
volatility estimator is given by

σ =

√√√√ 1

n

n∑
t=1

(
1

2

(
log

Ht

Lt

)2

− (2 log 2− 1)

(
log

Ct
Ot

)2
)
. (B.4)
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Yang & Zhang derived an extension to GK -estimator that allows for opening
jumps in the market

σ =

√√√√ 1

n

n∑
t=1

((
log

Ot

Ct−1

)2

+
1

2

(
log

Ht

Lt

)2

− (2 log 2− 1)

(
log

Ct
Ot

)2
)
. (B.5)

Roger & Satchell constructed an estimator that allows for non-zero drift, but not
for opening jumps

σ =

√√√√ 1

n

n∑
t=1

(
log

Ht

Ct
log

Ht

Ot

+ log
Lt
Ct

log
Lt
Ot

)
. (B.6)

Yang & Zhang derived historical volatility estimator that has a minimum estima-
tion error, does not depend on the drift or opening gaps. It combines Roger &
Satchell estimator, close-open volatility, and open-close volatility. The formula is

σ =
√
σ2
o + kσ2

c + (1− k)σ2
rs, (B.7)

where

σ2
o =

1

n− 1

n∑
t=1

(
log

Ot

Ct−1

− µo
)2

,

µo =
1

n

n∑
t=1

log
Ot

Ct−1

,

σ2
c =

1

n− 1

n∑
t=1

(
log

Ct
Ot

− µc
)2

,

µo =
1

n

n∑
t=1

log
Ct
Ot

,

σ2
rs =

1

n

n∑
t=1

(
log

Ht

Ct
log

Ht

Ot

+ log
Lt
Ct

log
Lt
Ot

)
,

k =
0.34

1 + n+1
n−1

. (B.8)
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Appendix C

Cash Flow Mapping

We price financial instruments by discounting cash flow, in particular the fixed
income instruments. The discounting is done by market interest rates and their
movement creates interest rate risk. However, there is only a limited number of
interest rates that are observable in the market. The idea behind cash flow map-
ping is to map every financial instrument’s position into separate cash flows at
current market rates. These positions usually generate wild combinations of cash
flows at unique times. Thus observing return series and calculating variances and
covariances of too many interest rates is sometimes impossible. The mapping pro-
cedure (splitting every cash flow into two closest interest rate vertices) groups all
the cash flows into standardized time baskets and simplifies the VaR calculation.
This is done in RiskMetrics [15] delta-normal method. It is possible to use only
those vertices for which we have the spot rate (discount factor), variance (volatil-
ity), and correlation with all the other vertices. For example, we can restrict the
actual number of interest rates into a given set of vertices

O/N 1W 1M 2M 3M 6M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 10Y 15Y

Up to 1 year, these are money market rates, and above 1 year, they are swap
rates or government bond yields (treasury rates). These standard interest rates
are chosen because they are liquid and available at financial data providers. The
next step is to map every cash flow with maturity between two standard maturities
into these standard maturities. This can be performed with different methods.

The mapping procedure

Let CF(T) be the expected cash flow at time T that is between two vertices
Ti−1 and Ti. We divide CF (T ) into two made up cash flows that mature at the
previous vertex Ti−1 and the following vertex Ti

CF (T ) −→

{
CF (Ti−1) = aCF (T )

CF (Ti) = bCF (T ),
(C.1)
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where a,b are proportions of the original CF (T ), and T1 < . . . < Ti−1 ≤ T <
Ti < . . . < Tn, Ti ∈ {o/n, 1w, 1m, 2m, 3m, 6m, 1y, 2y, 3y, 4y, 5y, 6y, 7y, 10y, 15y}.
The weights a, b must satisfy two conditions:

1. The present value of the new cash flows is equal to the present value of
original cash flow.
2. The market risk or the duration remains unchanged under the mapping.

We clear the meaning of both choices for the second condition.

Maintaining present value

This approach to determine the proportions a, b is inspired by lecture text by
Deutsch [7]. We denote IR(T0, T ) = IR(T ) the spot interest rate at present time
T0 with maturity at time T. The condition PV (CF (T )) = PV (CF (Ti−1) + CF (Ti)) =
PV (aCF (T ))+PV (bCF (T )) can be expressed by discount factorsD(T ),D(Ti−1),
D(Ti),

PV (CF (T )) = D(T )CF (T )

= D(Ti−1)CF (Ti−1) +D(Ti)CF (Ti)

= D(Ti−1)aCF (T ) +D(Ti)bCF (T ),

thus we have
D(T ) = aD(Ti−1) + bD(Ti) (C.2)

Notice that a + b 6= 1. Discount factors D(T ), D(Ti−1), D(Ti) are calculated
from observed interest rates IR(T ), IR(Ti−1), IR(Ti) and interest rate IR(T) is
interpolated from rates IR(Ti−1), IR(Ti). It is possible to use any interpolation
method and any compounding convention. For example, one can use linear inter-
polation and continuous compounding.

Linear interpolation of spot rate with maturity T is straightforward,

IR(T ) =
Ti − T
Ti − Ti−1

IR(Ti−1) +
T − Ti−1

Ti − Ti−1

IR(Ti), (C.3)

and the discount factor is calculated as D(T ) = e−IR(T )T .

Maintaining market risk

We measure market risk by variance of the risk factors. Instead of interest
rates, we use discount factors directly as the risk factors. Thus the cash flow we
are mapping is linear in the risk factors. The variance of the discount factor D(T)
is therefore D(T )2σ2

T and the condition for preserving market risk is

D(T )2σ2
T = a2D(Ti−1)2σ2

i−1 + b2D(Ti)
2σ2

i + 2 a bD(Ti−1)D(Ti)ρi,i−1σi−1σi (C.4)
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We already showed how to compute volatilities σi, σi−1 and correlation ρi,i−1.
Again, we will use linear interpolation to compute σT , that is

σT =
Ti − T
Ti − Ti−1

σi−1 +
T − Ti−1

Ti − Ti−1

σi. (C.5)

Now we can put these two conditions together. First, we substitute

α =
D(Ti−1)

D(T )
a, β =

D(Ti)

D(T )
b, (C.6)

and the two conditions become

1 = α + β

σ2
T = α2σ2

i−1 + β2σ2
i + 2αβρi,i−1σi−1σi. (C.7)

We substitute β = 1−α into the second equation and solve quadratic equation
with one unknown α

σ2
T = α2(σ2

i−1 + σ2
i − 2ρi,i−1σi−1σi) + 2α(ρi,i−1σi−1σi − σ2

i ) + σ2
i

and with the solution

α =
σ2
i − ρi,i−1σi−1σi ±

√
σ2
T (σ2

i + σ2
i−1 − 2ρi,i−1σi−1σi)− σ2

i σ
2
i−1(1− ρ2

i,i−1)

σ2
i + σ2

i−1 − 2ρi,i−1σi−1σi
.

(C.8)

Finally, the cash flow CF(T) after mapping is

CF (T ) −→

{
CF (Ti−1) = α D(T )

D(Ti−1)
CF (T )

CF (Ti) = (1− α) D(T )
D(Ti)

CF (T ),
(C.9)

This mapping maintains present value and market risk. Alternative to market
risk is to maintain duration.

Maintaining duration

This condition says that the duration must be preserved after mapping. The
cash flow can be seen as a zero coupon bond and the duration of a zero coupon
bond is its maturity, therefore we can write the duration condition as

TD(T ) = Ti−1D(Ti−1)a+ TiD(Ti)b (C.10)

Thus, the two equations we need to solve are

1 = α + β

T = Ti−1α + Tiβ (C.11)
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Similarly, we substitute β = 1 − α and we get a linear equation with the
following solution for α

α =
Ti − T
Ti − Ti−1

, 1− α =
T − Ti−1

Ti − Ti−1

, (C.12)

and the cash flow after duration mapping is

CF (T ) −→

{
CF (Ti−1) = Ti−T

Ti−Ti−1

D(T )
D(Ti−1)

CF (T )

CF (Ti) = T−Ti−1

Ti−Ti−1

D(T )
D(Ti)

CF (T ).
(C.13)
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