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Vedoućı diplomové práce: doc. RNDr. Miroslav Zelený, Ph.D.
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1. Introduction.

The theory of porous and σ-porous sets forms an important part of real analy-
sis and Banach space theory for more than forty years. It originated in 1967 when
E. P. Dolženko used for the first time the nomenclature ‘porous set’ and proved that
some sets of his interest are σ-porous (see [1]). Since then the porosity has been used
many times especially in the differentiation theory (see [6] for an example). A very
useful fact is that every σ-porous set (in Rn) is of the first category and has Lebesgue
measure zero. In many cases, it is much more comfortable to prove that a given set is
σ-porous than proving that the set is small both in the sense of category and in the
sense of measure. On the other hand, not every set of the first category and measure
zero is also σ-porous which was first proved by L. Zaj́ıček in [9] (although E. P. Dolženko
stated this assertion without proof earlier).

The main question I will consider in this work is the following one:

Question 1.1. Let A be an analytic subset of a metric space X. Suppose that A is not
σ-porous. Does there exist a closed set F ⊆ A which is not σ-porous?

This question was posed by L. Zaj́ıček in [10] (for a Borel set A) and can be also
easily reformulated for various other types of porosity. An affirmative answer was
given independently by J. Pelant (for any topologically complete metric space X) and
M. Zelený (for any compact metric space X). Their results are demonstrated in a
joint paper (see [13]) which combines the original idea of J. Pelant (giving an explicit
construction of the set F ) and techniques developed by M. Zelený. The case of some
other types of porosity (including the ordinary one in a locally compact metric space
X but also 〈g〉-porosity in a locally compact metric space X and symmetrical porosity
in R) was solved (also affirmatively) by M. Zelený and L. Zaj́ıček in [14]. They offer
a less complicated method using so called ‘porosity-like’ relations and giving a non-
constructive proof based on an earlier idea of M. Zelený. However, the authors admitted
that their method cannot be applied to strong porosity and so Question 1.1 for strong
porosity still remained open (even in a compact metric space X). Meanwhile, J. Zapletal
introduced a new powerful tool to describe σ-porous sets. This was an infinite game
which can be used to characterize σ-porous sets in the topological space 2N (which are
defined in a very natural way). This can be found as an example in a joint paper
of J. Zapletal and I. Farah (see [4]). This game is used to show that every analytic
subset of 2N which is not σ-porous has a compact subset which is not σ-porous which
answers another variant of Question 1.1. The only attempt to answer Question 1.1 for
strong porosity (and ordinary porosity once again) was made by D. Rojas-Rebolledo,
who generalized the ideas from [4] (see [8]). He managed to give an affirmative answer
to Question 1.1 in any zero-dimensional compact metric space X.
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For my work, the most inspirational source was [4]. It is the first one which answers
a variant of Question 1.1 by using an infinite game (although some connection between
σ-porosity and infinite games was already shown by M. Zelený in [12]) as well as I will
do. My main aim was finding a similar infinite game which could be used to characterize
σ-porous sets in as much general metric space as possible and using this game (or more
precisely its modification) to answer some variants of Question 1.1 (hopefully also some
unanswered so far). The characterization should be (as it is also in [4]) similar to the
very well known characterization of meager sets using so called Banach-Mazur game.
This means, I would like to find an infinite game (which is played with a set A) such
that A is σ-porous if and only if the second player has a winning strategy in this game.

Let us look at the contents of this work a little closer. In Chapter 2, there are some
definitions and well known results which will be necessary for my work. Chapter 3
introduces an infinite game which can be used to characterize σ-P -porous sets in a
complete metric space X where P is an arbitrary porosity-like relation on X. This
is the first main result of my work. In Chapter 4, we prove that every Borel and
non-σ-P -porous set in any locally compact metric space has a compact and non-σ-P -
porous subset if the porosity-like relation P satisfies some additional conditions. This
is obtained using Martin’s determinacy theorem for Borel infinite games. In a few
words, if we know that the game above is determined then the first player has to have
a winning strategy in the game played with the given Borel and non-σ-P -porous set.
I find a compact subset of this given set such that the first player still has a winning
strategy in the game played with this subset. This means that the second player does
not have a winning strategy and so the subset is not σ-P -porous. In Chapter 5, we
apply the last result to concrete porosities and obtain an (affirmative) answer to two
different variants of Question 1.1. The first one refers to an ordinary porosity and the
second one to strong porosity. As it is described earlier, the former result was already
known but the method used in my work (based on a modification of the infinite game
described in Chapter 3) aspires to be more elegant and easier than the known proofs.
The latter result is new since any of the methods used in previous works (except the one
from [8] which concerns only a very special case) cannot be applied to strong porosity.
Finally, we show that there exists a closed set in R which is σ-(1 − ε)-symmetrically
porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous. This answers a
question posed by M. J. Evans and P. D. Humke in [3].
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2. Preliminaries.

Let (X, d) be a metric space. An open ball with center x ∈ X and radius r > 0
is denoted by B (x, r). Since an open ball (considered as a set) does not uniquely
determine its center and radius, we will identify every open ball with the pair (center,
radius) throughout this work. Therefore two different open balls (i.e. two different pairs
(center, radius)) can still determine the same subset of X. Now, for p > 0 and an open
ball B with center x ∈ X and radius r > 0, we can define p ⋆ B as an open ball with
center x and radius pr. The closed ball with center x ∈ X and radius r > 0 is denoted
by B (x, r). If A ⊆ X is nonempty and r > 0 then B (A, r) = {x ∈ X : dist (x, A) < r}
where dist (x, A) = inf{d (x, a) : a ∈ A}. We also set B (∅, r) = ∅. If A ⊆ X is
nonempty then diam A = sup{d(a, b) : a ∈ A, b ∈ A}.

Let us begin with the definition of porosity and σ-porosity (and some of its variants).
From various equivalent definitions, the following ones are probably the most convenient
for our purpose.

Definition 2.1. Let (X, d) be a metric space, A ⊆ X, x ∈ X and q ∈ (0, 1]. We say
that

• A is q-(ordinary) porous at x if there exist sequences {B (xn, rn)}∞n=1 of open
balls in X and {qn}

∞
n=1 of real numbers from (0, 1) such that

◦ lim
n→∞

xn = x,

◦ lim
n→∞

qn = q,

◦ B (xn, rn) ∩ A = ∅ for every n ∈ N,

◦ x ∈ B
(

xn, rn

qn

)

for every n ∈ N,

• A is q-(ordinary) porous if it is q-porous at every its point,
• A is σ-q-(ordinary) porous if it is a countable union of q-porous sets,
• A is (ordinary) porous at x if it is q-porous at x for some q ∈ (0, 1],
• A is (ordinary) porous if it is porous at every its point,
• A is σ-(ordinary) porous if it is a countable union of porous sets,
• A is strongly porous at x (resp. strongly porous or σ-strongly porous) if it is

1-porous at x (resp. 1-porous or σ-1-porous).

If moreover X = R (with the Euclidean metric), then we say that

• A is q-symmetrically porous at x if there exist sequences {B (xn, rn)}∞n=1 of open
balls in X and {qn}

∞
n=1 of real numbers from (0, 1) such that

◦ lim
n→∞

xn = x,

◦ lim
n→∞

qn = q,

◦ (B (xn, rn) ∪ B (2x − xn, rn)) ∩ A = ∅ for every n ∈ N,

◦ x ∈ B
(

xn, rn

qn

)

for every n ∈ N,
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• A is q-symmetrically porous if it is q-symmetrically porous at every its point,
• A is σ-q-symmetrically porous if it is a countable union of q-symmetrically

porous sets,
• A is symmetrically porous at x if it is q-symmetrically porous at x for some

q ∈ (0, 1],
• A is symmetrically porous if it is symmetrically porous at every its point,
• A is σ-symmetrically porous if it is a countable union of symmetrically porous

sets.

We will need the next theorem which is a particular case of [9, Proposition 4.4] (the
notation used in [9] differs from the one used in this work).

Theorem 2.2 ([9, Proposition 4.4]). Let X be a metric space, A ⊆ X be a σ-porous
set and q ∈ (0, 1). Then A is σ-q-porous.

The immediate consequence of this theorem is that the σ-ideal of all σ-porous sets
coincides with the σ-ideal of all σ-q-porous sets for every q ∈ (0, 1).

We will prove our results for a general porosity-like relation (satisfying some ad-
ditional assumptions) and then apply it to concrete cases. To do this, we need the
following definition.

Definition 2.3. Let X be a metric space and let P ⊆ X × 2X be a relation between
points of X and subsets of X. Then P is called a point-set relation on X. The symbol
P (x, A) where x ∈ X and A ⊆ X means that (x, A) ∈ P . For A ⊆ X and B ⊆ X, we
also use the symbol P (A, B) which is equivalent to [P (a, B) for every a ∈ A].

The point-set relation P on X is called a porosity-like relation if the following con-
ditions hold for every A ⊆ X and x ∈ X:

(P1) if B ⊆ A and P (x, A) then P (x, B),
(P2) we have P (x, A) if and only if there exists r > 0 such that P (x, A ∩ B (x, r)),
(P3) we have P (x, A) if and only if P

(

x, A
)

.

If P is a porosity-like relation on X, A ⊆ X and x ∈ X, we say that

• A is P -porous at x if P (x, A),
• A is P -porous if it is P -porous at every its point,
• A is σ-P -porous if it is a countable union of P -porous sets.

Another theorem we will need is the following one which can be found in [11,
Lemma 3].

Theorem 2.4 ([11, Lemma 3]). Let X be a metric space, P be a porosity-like relation
on X and A ⊆ X. Then A is σ-P -porous if and only if for every x ∈ A there exists
r > 0 such that B (x, r) ∩ A is σ-P -porous.
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It is also necessary to remind some basic definitions which concern infinite games.
Let A be a nonempty set and n ∈ N. We denote by An the set of all sequences
s = (s0, s1, . . . , sn−1) of length n from A. We also set A0 = {∅} where ∅ is the empty
sequence (of length 0). We denote by A<N (resp. AN∪{0}) the set of all finite (resp.
infinite) sequences from A. This means that

A<N =
∞
⋃

n=0

An.

The length of a finite sequence s is denoted by length (s). If s ∈ A<N and n ∈ N ∪ {0}
such that n ≤ length (s) then s|n = (s0, s1, . . . , sn−1) ∈ An. If s, t ∈ A<N then we
say that s is an initial segment of t and t is an extension of s if there exists n ∈
N ∪ {0} such that n ≤ length (t) and s = t|n. If s = (s0, s1, . . . , sn−1) ∈ An and
t = (t0, t1, . . . , tm−1) ∈ Am, then the concatenation of s and t is the sequence s∧t =
(s0, s1, . . . , sn−1, t0, t1, . . . , tm−1) ∈ An+m. If x = (xj)

∞
j=0 ∈ AN∪{0} and n ∈ N∪ {0} then

x|n = (x0, x1, . . . , xn−1) ∈ An. If s ∈ A<N and x ∈ AN∪{0} then we say that s is an
initial segment of x and x is an extension of s if s = x|n for some n ∈ N ∪ {0}.

A subset T ⊆ A<N is called a tree on A if for every t ∈ T and every initial segment s
of t, we have s ∈ T . A sequence x ∈ AN∪{0} is called an infinite branch of T if x|n ∈ T
for every n ∈ N ∪ {0}. The body of T is the set of all infinite branches of T and is
denoted by [T ]. This means that

[T ] = {x ∈ AN∪{0} : x|n ∈ T for every n ∈ N ∪ {0}}.

A tree T is called pruned if every s ∈ T has a proper extension in T , i.e. for every
s ∈ T there exists t ∈ T such that t is an extension of s and t 6= s.

Let A be a nonempty set and X ⊆ AN∪{0}. We associate X (which is called a payoff
set then) with the following game:

I a0 a2 a4

· · ·
II a1 a3 a5

Player I plays a0 ∈ A, then player II plays a1 ∈ A, I plays a2 ∈ A, etc. Player I wins if
(an)∞n=0 ∈ X, II wins in the opposite case. We denote this game by G (A, X).

A strategy for player I in the game G (A, X) is a tree σ ⊆ A<N on A such that

• σ is nonempty,
• if i ∈ N ∪ {0} and (a0, a1, . . . , a2i) ∈ σ then (a0, a1, . . . , a2i, a2i+1) ∈ σ for every

a2i+1 ∈ A,
• if i ∈ N∪{0} and (a0, a1, . . . , a2i−1) ∈ σ then there exists a unique a2i ∈ A such

that (a0, a1, . . . , a2i−1, a2i) ∈ σ.
9



If we say that player I follows the strategy σ, we mean the following. Player I starts
with the unique a0 ∈ A such that (a0) ∈ σ. If II replies by a1 ∈ A then (a0, a1) ∈ σ and
I plays the unique a2 ∈ A such that (a0, a1, a2) ∈ σ, etc.

A strategy for player I is winning in the game G (A, X) if for every run (an)∞n=0 ∈
AN∪{0} of the game, in which I follows the strategy, we have (an)∞n=0 ∈ X (and so I wins
the run).

A (winning) strategy for II is defined in an analogous way.
The game G (A, X) is determined if one of the players has a winning strategy.
In the game G (A, X), both players play arbitrary elements of a given nonempty set A.

In many cases, it is more convenient to let them obey some rules which are represented
by a nonempty pruned tree T ⊆ A<N (which determines so called legal positions). Let
X ⊆ [T ] (X is called a payoff set again), then we define the game G (T, X) as follows:

I a0 a2 a4

· · ·
II a1 a3 a5

Again, I plays a0 ∈ A, II plays a1 ∈ A, etc. But both players have now to choose their
moves such that (a0, a1, . . . , an) ∈ T for every n ∈ N∪{0}. Player I wins if (an)∞n=0 ∈ X,
II wins in the opposite case. The notions of (winning) strategy and determinacy are
defined analogously as before. However, the game G (T, X) is only a special case of the
previous game. Indeed, it is easy to see that if we denote

X ′ = {x ∈ AN∪{0} :
(

there exists n ∈ N such that x|n /∈ T

and the smallest such n is even
)

or (x ∈ X)},

then I (resp. II) has a winning strategy in the game G (T, X) if and only if I (resp. II)
has a winning strategy in the game G (A, X ′).

Now, we can formulate the well known (and very deep) Martin’s theorem. Its proof
can be found in [5, Theorem 20.5]. In this Theorem, we consider the discrete topology
on a nonempty set A, the product topology on AN∪{0} and the derived topology on
[T ] ⊆ AN∪{0} where T is a nonempty pruned tree on A.

Theorem 2.5 ([7]). Let T be a nonempty pruned tree on a nonempty set A and let
X ⊆ [T ] be a Borel set. Then the game G (T, X) is determined.

We will also need the definition of a σ-discrete system of sets.

Definition 2.6. Let X be a topological space. A system V of subsets of X is said to
be

• discrete if for every x ∈ X there exists a neighborhood of x which intersects at
most one set from the system V,
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• σ-discrete if it is a countable union of discrete systems.

We will use the existence of a σ-discrete basis of open sets in a metric space. This is
guaranteed by the following theorem (proof can be found in [2, Theorem 4.4.3]).

Theorem 2.7 ([2, Theorem 4.4.3]). Let X be a metrizable topological space. Then X
has an open basis which is σ-discrete.

11



3. Characterization of σ-P -porous sets in a complete metric space.

Let (X, d) be a nonempty complete metric space and A ⊆ X. Let P be a porosity-like
relation on X. We define a game G (A) between Boulder and Sisyfos as follows:

Boulder B1 B2 B3

· · ·
Sisyfos (S1

1) (S1
2 , S

2
2) (S1

3 , S
2
3 , S

3
3)

(By using the names Boulder and Sisyfos, we follow the original terminology of J. Zaple-
tal.) On the first move, Boulder plays an open ball B1 ⊆ X and Sisyfos plays an
open set S1

1 ⊆ B1. On the second move, Boulder plays an open ball B2 such that
B2 ⊆ B1 and diam B2 ≤ 1

2
diam B1 and Sisyfos plays open sets S1

2 ⊆ B2 and S2
2 ⊆ B2.

On the nth move, n > 1, Boulder plays an open ball Bn such that Bn ⊆ Bn−1 and
diam Bn ≤ 1

2
diam Bn−1 and Sisyfos plays open sets S1

n ⊆ Bn, S2
n ⊆ Bn, . . . , S

n
n ⊆ Bn.

After a run of the game G (A), we get a unique point x lying in the intersection of
the balls Bn, n ∈ N (its existence and uniqueness follows from the completeness of X).
We call this point an outcome of the run. Sisyfos wins the run if at least one of the
following conditions is satisfied:

(i) x /∈ A,

(ii) there exists m ∈ N such that x ∈ X\
∞
⋃

n=m

Sm
n and P

(

x, X\
∞
⋃

n=m

Sm
n

)

.

Boulder wins in the opposite case. If condition (ii) is satisfied for some m ∈ N, then
every such m is called a witness of Sisyfos’ victory.

We say that a finite (also empty) sequence of open balls (B1, B2, . . . , Bi) is good
if the rules of the game G (A) allow Boulder to play the ball Bn on his nth move,
n = 1, 2, . . . , i. (In the game G (A), this is independent of Sisyfos’ moves.) If T =
(B1, B2, . . . , Bi) is a good sequence of open balls, we say that a run of the game G (A)
satisfies condition (⋆T ) if Boulder played the balls B1, B2, . . . , Bi in sequence on his first
i moves.

Let σ be a strategy for Sisyfos in the game G (A). For m ∈ N ∪ {0} and a good
sequence T = (B1, B2, . . . , Bi), we denote by MT

m the set of all

x ∈

{

A if i = 0

A ∩ Bi if i > 0

such that in every run V of the game G (A) such that

• the outcome of V is x,
• V satisfies condition (⋆T ),
• Sisyfos followed the strategy σ,
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all the witnesses of Sisyfos’ victory (if there exist any) are greater than m. (The set
MT

m depends on the set A and on the strategy σ. This will not cause any difficulties
since if we talk about this set later, both A and σ are always fixed.)

Let Boulder and Sisyfos play a run of the game G (A). Let

V = (B1,S1, B2,S2, . . .) ,

Sn =
(

S1
n, S

2
n, . . . , S

n
n

)

, n ∈ N,

where Boulder played the ball Bn and Sisyfos played the sets S1
n, S

2
n, . . . , S

n
n on the nth

move of the run, n ∈ N. Then we will refer to the run itself by V and if we talk about
the ball Bn or about the set Sm

n , m ∈ {1, 2, . . . , n}, n ∈ N, we just use the symbols
Bn (V ) and Sm

n (V ), respectively.
First of all, we prove the following lemma which is well known at least for ordinary

porosity.

Lemma 3.1. Let V be a σ-discrete system of σ-P -porous sets in X. Then
⋃

V is also
σ-P -porous.

Proof. Let V =
∞
⋃

n=1

Vn where Vn is a discrete system for every n ∈ N. Let us take n ∈ N

and x ∈ X. There exists r > 0 such that B (x, r) intersects at most one set from the
system Vn. Therefore B (x, r) ∩

⋃

Vn is a σ-P -porous set. By Theorem 2.4, the set
⋃

Vn is σ-P -porous. Finally,

⋃

V =
∞
⋃

n=1

⋃

Vn

is σ-P -porous as well. �

The next technical lemma will be used to prove Theorem 3.3 which characterizes
σ-P -porous sets via the infinite game described earlier.

Lemma 3.2. Let σ be a strategy for Sisyfos in the game G (A). Let

T0 = (B1, B2, . . . , Bi)

be a good sequence of open balls and let m ∈ N ∪ {0}. Then there exist a P -porous set
NT0

m and a σ-discrete system E of sets such that

MT0

m = NT0

m ∪
⋃

E

and, for every E ∈ E , there exists a finite sequence T of open balls such that T0
∧T is

good and E ⊆ MT0
∧T

m+1 .
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Proof. Whenever we talk about a run of the game G (A) in this proof, we suppose that
Sisyfos followed the strategy σ in the run. Let us denote

Z =
⋃

{

Sm+1
n (V ) : n ≥ m + 1, V is a run of the game G (A) satisfying (⋆T0)

}

.

For every x ∈ Z, we can find n (x) ≥ m+1 and a run V (x) of the game G (A) satisfying
(

⋆T0

)

such that x lies in the open set Sm+1
n(x) (V (x)). For x ∈ Z, let us denote

T (x) =
(

Bi+1 (V (x)) , Bi+2 (V (x)) , . . . , Bn(x) (V (x))
)

.

Now, whenever y ∈ Sm+1
n(x) (V (x)) for some x ∈ Z and V ′ is a run giving y as its

outcome and satisfying (⋆T0
∧T (x)) then V ′ coincides with V (x) in its first n (x) moves,

in particular Sm+1
n(x) (V ′) = Sm+1

n(x) (V (x)), and so y /∈ X\
∞
⋃

n=m+1

Sm+1
n (V ′) and m + 1 is

not a witness of Sisyfos’ victory in the run V ′. Thus, if y ∈ Sm+1
n(x) (V (x)) ∩ MT0

m then

also y ∈ M
T0

∧T (x)
m+1 , or equivalently

Sm+1
n(x) (V (x)) ∩ MT0

m ⊆ M
T0

∧T (x)
m+1 .

Now, if B is a σ-discrete basis of open sets in X (whose existence is guaranteed by
Theorem 2.7) then the system

E ′ =
{

B ∈ B : B ⊆ Sm+1
n(x) (V (x)) for some x ∈ Z

}

is a σ-discrete covering of Z. We can define

E =
{

MT0

m+1

}

∪ {E ′ ∩ MT0

m : E ′ ∈ E ′}

and

NT0

m = MT0

m \
(

Z ∪ MT0

m+1

)

.

The system E is obviously σ-discrete and MT0

m = NT0

m ∪
⋃

E . Moreover, if E ∈ E then

either E = MT0

m+1 = MT0
∧∅

m+1 or E = E ′ ∩ MT0

m for some E ′ ∈ E ′ and then there exists
x ∈ Z such that

E ⊆ Sm+1
n(x) (V (x)) ∩ MT0

m ⊆ M
T0

∧T (x)
m+1 .

It only remains to show that the set NT0

m is P -porous. Let us choose x ∈ NT0

m

arbitrarily. Then x ∈ MT0

m \MT0

m+1 and so there exists a run V of the game G (A) giving
x as its outcome and satisfying (⋆T0) such that m + 1 is a witness of Sisyfos’ victory in
the run V , in particular

P

(

x, X\
∞
⋃

n=m+1

Sm+1
n (V )

)

.

14



But

NT0

m ⊆ X\Z ⊆ X\
∞
⋃

n=m+1

Sm+1
n (V ) ,

and by condition (P1) (see p. 8) we have P
(

x, NT0

m

)

. �

Theorem 3.3. Sisyfos has a winning strategy in the game G (A) if and only if A is a
σ-P -porous set.

Proof. First, let us assume that A =
∞
⋃

n=1

An where An is a P -porous set for every n ∈ N.

On his nth move, let Sisyfos play Sj
n = ∅ for j < n and Sn

n = Bn\An. Let Boulder and
Sisyfos play a run of the game G (A) such that Sisyfos follows the described strategy.
Let x ∈ X be an outcome of this run. We may assume that x ∈ A because otherwise
Sisyfos wins by condition (i) (see p. 12). Then there exists m ∈ N such that x ∈ Am.
We have

X\
∞
⋃

n=m

Sm
n = Am ∪ (X\Bm) .

Therefore

x ∈ Am ⊆ X\
∞
⋃

n=m

Sm
n .

Further, P -porosity of Am implies that P (x, Am). But this is equivalent to P
(

x, Am

)

by condition (P3) (see p. 8) and this is equivalent to P
(

x, Am ∪ (X\Bm)
)

by condition

(P2) (see p. 8) since x ∈ Bm. So we have P

(

x, X\
∞
⋃

n=m

Sm
n

)

. Therefore, Sisyfos wins

by condition (ii) (see p. 12) with m as a witness and the described strategy is winning.
Now, let us assume that Sisyfos has a winning strategy σ in the game G (A). Let us

denote E0 = A. By Lemma 3.2, we have

(1) A = E0 = M∅
0 = N∅

0 ∪
⋃

E

where N∅
0 is P -porous and E is a σ-discrete system of sets such that for every E1 ∈ E ,

there exists a good sequence T (E1) such that E1 ⊆ M
T (E1)
1 . Now, for every E1 ∈ E we

have
E1 ⊆ M

T (E1)
1 = N

T (E1)
1 ∪

⋃

FE1

where N
T (E1)
1 is P -porous and FE1 is a σ-discrete system of sets such that for every E2 ∈

FE1, there exists a finite sequence T (E1, E2) of open balls such that T (E1)
∧T (E1, E2)

is good and E2 ⊆ M
T (E1)∧T (E1,E2)
2 . If we denote

EE1 =
{

E1 ∩ E2 : E2 ∈ FE1
}

15



then we have

(2) E1 =
(

E1 ∩ N
T (E1)
1

)

∪
⋃

EE1.

In the third step, for every E1 ∈ E and E2 ∈ EE1 we have

E2 ⊆ M
T (E1)∧T (E1,E2)
2 = N

T (E1)∧T (E1,E2)
2 ∪

⋃

FE1,E2

where N
T (E1)∧T (E1,E2)
2 is P -porous and FE1,E2 is a σ-discrete system of sets such that

for every E3 ∈ FE1,E2, there exists a finite sequence T (E1, E2, E3) of open balls such

that T (E1)
∧T (E1, E2)

∧T (E1, E2, E3) is good and E3 ⊆ M
T (E1)∧T (E1,E2)∧T (E1,E2,E3)
3 . If

we denote

EE1,E2 =
{

E2 ∩ E3 : E3 ∈ FE1,E2
}

then we have

(3) E2 =
(

E2 ∩ N
T (E1)∧T (E1,E2)
2

)

∪
⋃

EE1,E2.

By iterating this process, we get a system of P -porous sets

U =
{

Ek ∩ N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k :

k ∈ N ∪ {0}, E1 ∈ E , E2 ∈ EE1, . . . , Ek ∈ EE1,E2,...,Ek−1

}

such that for every k ∈ N∪ {0} and for every E1 ∈ E , E2 ∈ EE1, . . . , Ek ∈ EE1,E2,...,Ek−1,
the sequence T (E1)

∧T (E1, E2)
∧ . . . ∧T (E1, E2, . . . , Ek) is good.

We show that A ⊆
⋃

U . Suppose that this is not true and so there exist x ∈ A\
⋃

U .
By (1), there exists E1 ∈ E such that x ∈ E1. By (2), there exists E2 ∈ EE1 such that
x ∈ E2. By this way (continuing by (3)), we get that there exists a sequence (Ek)

∞
k=1

where E1 ∈ E and Ek ∈ EE1,E2,...,Ek−1 for k > 1 such that

x ∈ Ek ⊆ M
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k

for every k ∈ N. Therefore Boulder can play a run of the game G (A) in the following
way. He plays all the balls from T (E1) in sequence on his first moves, then all the balls
from T (E1, E2) and so on. (If there exists k0 ∈ N ∪ {0} such that all the sequences
T (E1, E2, . . . , Ek), k > k0, are empty then the sequence

T (E1)
∧T (E1, E2)

∧ . . . = T (E1)
∧T (E1, E2)

∧ . . . ∧T (E1, E2, . . . , Ek0
)

is finite. Then Boulder can finish the run arbitrarily such that the outcome of the run is
x.) After such a run, x is its outcome and any m ∈ N is not a witness of Sisyfos’ victory

since x ∈ M
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Em)
m for every m ∈ N. This is a contradiction with

the assumption that the strategy σ is winning for Sisyfos.
16



By (P1) (see p. 8), it suffices to show that
⋃

U is a σ-P -porous set. We have

⋃

U =

∞
⋃

k=0

⋃

Uk

where

Uk =
{

Ek ∩ N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k :

E1 ∈ E , E2 ∈ EE1, . . . , Ek ∈ EE1,E2,...,Ek−1

}

.

We will prove that
⋃

Uk is a σ-P -porous set for every k ∈ N ∪ {0} which is obviously
sufficient. For k = 0 we know that

⋃

U0 = N∅
0 which is a P -porous set. Suppose that

k > 0 and E1 ∈ E , E2 ∈ EE1, . . . , Ek−1 ∈ EE1,E2,...,Ek−2 are fixed. Then

C (E1, E2, . . . , Ek−1) :=

⋃

{

Ek ∩ N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k : Ek ∈ EE1,E2,...,Ek−1

}

is a union of a σ-discrete system (since EE1,E2,...,Ek−1 is σ-discrete) of P -porous sets
and by Lemma 3.1 it is a σ-P -porous set. Next, if only E1 ∈ E , E2 ∈ EE1, . . .,
Ek−2 ∈ EE1,E2,...,Ek−3 are fixed, then

C (E1, E2, . . . , Ek−2) :=

⋃

{

Ek ∩ N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k : Ek−1 ∈ EE1,E2,...,Ek−2, Ek ∈ EE1,E2,...,Ek−1

}

=
⋃

{

C (E1, E2, . . . , Ek−1) : Ek−1 ∈ EE1,E2,...,Ek−2

}

is a union of a σ-discrete system (indeed, C (E1, E2, . . . , Ek−1) ⊆ Ek−1 and EE1,E2,...,Ek−2

is σ-discrete) of σ-P -porous sets and by Lemma 3.1 it is σ-P -porous again. Repeating
this consideration, we get that only for E1 ∈ E fixed,

C (E1) :=

⋃

{

Ek∩N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k : E2 ∈ EE1, E3 ∈ EE1,E2, . . . , Ek ∈ EE1,E2,...,Ek−1

}

=
⋃

{

C (E1, E2) : E2 ∈ EE1
}

is σ-P -porous as a union of a σ-discrete system of σ-P -porous sets. Finally,
⋃

Uk =
⋃

{C (E1) : E1 ∈ E}

is σ-P -porous, too. �
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This finishes the first main result of my work. The game G (A) is quite simple in
comparison with its modification described in the next chapter and should be used
instead of this modification whenever possible. Also, the game G (A) can be applied to
more porosities than the upcoming modification since there are no restrictions on the
porosity-like relation P . Indeed, all commonly used types of porosity (understood as
point-set relations in a natural way) are porosity-like relations. Therefore, it is possible
to apply Theorem 3.3 to all of them, namely to ordinary porosity, strong porosity,
symmetrical porosity, but also right and left porosity (see [10, p. 316]), g-porosity (see
[14, p. 35]), etc. However, the upcoming game will be used for inscribing compact and
non-σ-P -porous sets in Theorem 4.7.
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4. Inscribing compact sets.

Let (K, d) be a nonempty compact metric space. Let Rq
r and Rq, r > 0, q ∈ (0, 1],

be point-set relations on K such that for every r > 0, q ∈ (0, 1], A ⊆ K and x ∈ K the
following conditions hold:

(R1) Rq =
⋂

0<q̃<q

⋂

R>0

⋃

0<r̃≤R

Rq̃
r̃ ,

(R2) if Rq
r (x, A) and 0 < w < q

2
then Rq−2w

r (x, B (A, rw)),
(R3) if B ⊆ A and Rq

r (x, A) then Rq
r (x, B),

(R4) we have Rq
r (x, A) if and only if Rq

r (x, A ∩ B (x, 2r)),
(R5) the set {(y, r̃) ∈ K × (0,∞) : Rq

r̃ (y, A)} is open in K × (0,∞).

Claim 4.1. Conditions (R1)-(R5) imply the following:

(S1) if B ⊆ A and Rq (x, A) then Rq (x, B),
(S2) if 0 < q̃ < q and Rq

r (x, A) then Rq̃
r (x, A).

Proof. Condition (S1) is an immediate consequence of (R1) and (R3).
To verify (S2), let us choose q̃ ∈ (0, q). By (R2) applied to w = q−q̃

2
, we have

Rq̃
r

(

x, B
(

A, r(q−q̃)
2

))

. By (R3), we have Rq̃
r (x, A). �

Claim 4.2. For every q ∈ (0, 1], the point-set relation Rq is a porosity-like relation.

Proof. Let us fix q ∈ (0, 1]. We need to show that Rq satisfies conditions (P1)-(P3)
from Definition 2.3.

Condition (P1) is the same as (S1).
Let us prove condition (P2). Suppose that Rq (x, A ∩ B (x, r0)) for some r0 > 0.

By (R1), there exist sequences (qk)
∞
k=1 of real numbers from (0, q) and (rk)

∞
k=1 of real

numbers from (0,∞) such that lim
k→∞

qk = q, lim
k→∞

rk = 0 and Rqk
rk

(x, A ∩ B (x, r0)) for

every k ∈ N. There exists k0 ∈ N such that 2rk ≤ r0 for every k ≥ k0. Then
Rqk

rk
(x, A ∩ B (x, 2rk)) for k ≥ k0 by (R3) and so Rqk

rk
(x, A) for k ≥ k0 by (R4). Using

(R1) and (S2), we get Rq (x, A). The opposite implication follows by (P1).
It remains to verify condition (P3). Let us suppose that Rq (x, A) and choose δ > 0

and 0 < ε < q. By (R1), there exists 0 < r̃ < δ such that R
q− ε

2

r̃ (x, A). By (R2) applied
to w = ε

4
, we have Rq−ε

r̃

(

x, B
(

A, r̃ε
4

))

and by (R3), it follows that Rq−ε
r̃

(

x, A
)

. Since

δ and ε were chosen arbitrarily, we have (using (R1)) that Rq
(

x, A
)

. The opposite
implication follows by (P1). �

For the rest of this chapter, let us fix q ∈ (0, 1] and sequences (Rn)∞n=1 and (an)∞n=1

of real numbers from (0,∞) such that

(4) Rn+1 ≤
1

2n+2
Rn for every n ∈ N
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and

(5) lim
n→∞

an

Rn+2
= 0.

For n ∈ N, let Dn be a finite an-net in K (i.e. a finite subset of K such that K =
⋃

{B (y, an) : y ∈ Dn}) and let

Mn = {B (y, an) : y ∈ Dn}.

Let A be an arbitrary subset of K. We define a game H (A) between Boulder and
Sisyfos as follows:

Boulder B1 B2 B3

· · ·
Sisyfos (S1

1) (S1
2 , S

2
2) (S1

3 , S
2
3 , S

3
3)

On the first move, Boulder plays an open ball B1 ⊆ K with radius R1 and Sisyfos plays
an open set S1

1 ⊆ B1 where S1
1 is a union (possibly empty) of some balls from M1. On

the second move, Boulder plays an open ball B2 with center in 1
2

⋆ B1 and radius R2

and Sisyfos plays two open sets S1
2 and S2

2 such that S1
2 ∪ S2

2 ⊆ B2 where Sj
2 is a union

of some balls from M2, j = 1, 2. On the nth move, n > 1, Boulder plays an open ball
Bn with center in

(

1 − 1
2n−1

)

⋆ Bn−1 and radius Rn and Sisyfos replies by playing open

sets S1
n, S2

n, . . . , S
n
n such that

n
⋃

j=1

Sj
n ⊆ Bn where Sj

n is a union of some balls from Mn,

j = 1, 2, . . . , n.
By (4), we have lim

n→∞
diam Bn = 0. By this fact and the compactness of K, when a

run of the game is over, we get a unique point x lying in the intersection of the balls
Bn, n ∈ N, played by Boulder. We call this point an outcome of the run. Sisyfos wins
if at least one of the following conditions is satisfied:

(a) x /∈ A,
(b) there exist m ∈ N and sequences (nk)

∞
k=1 of integers from {m, m+1, . . .}, (qk)

∞
k=1

of real numbers from (0, 1) and (rk)
∞
k=1 of real numbers from (0,∞) such that

• x ∈ K\
∞
⋃

n=m

Sm
n ,

• lim
k→∞

nk = ∞,

• lim
k→∞

qk = q,

• rk ≤
Rnk

2nk+3 , k ∈ N,

• Rqk
rk

(

x, K\Sm
nk

)

, k ∈ N.

Boulder wins in the opposite case. If condition (b) is satisfied for some m ∈ N, then
every such m is called a witness of Sisyfos’ victory.
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On the first view, condition (b) looks very complicated. For a better understanding,

we can observe that it is stronger than the assertion that Rq

(

x, K\
∞
⋃

n=m

Sm
n

)

by (R1),

(R3) and (S2).

Claim 4.3. For every n ∈ N, we have Bn+1 ⊆
(

1 − 1
2n+1

)

⋆ Bn.

Proof. Suppose that xn is the center of Bn, xn+1 is the center of Bn+1 and z ∈ Bn+1.
Then we have

d (z, xn) ≤ d (z, xn+1) + d (xn+1, xn) < Rn+1 +

(

1 −
1

2n

)

Rn

≤

(

1

2n+2
+ 1 −

1

2n

)

Rn =

(

1 −
3

2n+2

)

Rn <

(

1 −
1

2n+1

)

Rn.

�

We say that a finite (also empty) sequence of open balls (B1, B2, . . . , Bi) is good
if the rules of the game H (A) allow Boulder to play the ball Bn on his nth move,
n = 1, 2, . . . , i. (This is independent of Sisyfos’ moves.)

For n ∈ N and m ∈ N, let us define

dm
n =

{

1 − 1
2n−m+1 if m ≤ n,

1
4

if m > n.

Let σ be a strategy for Sisyfos in the game H(A). If k ∈ N ∪ {0} and l ∈ N then we
say that a good sequence of open balls (B1, B2, . . . , Bi) is (k, l)-good (with respect to the
strategy σ) if there exists a run of the game H (A) such that the following conditions
hold:

• Sisyfos followed the strategy σ,
• Boulder played the ball Bn on his nth move, n = 1, 2, . . . , i,
• the following conditions are satisfied for every positive n ∈ {k, k + 1, . . . , i− 1}:
(H1) if

[

l > n or
(

l ≤ n and Sl
n ∩
(

dl
n ⋆ Bn

)

= ∅
)]

then the center of Bn+1 lies in

dl+1
n ⋆ Bn,

(H2) if
[

l ≤ n and Sl
n ∩

(

dl
n ⋆ Bn

)

6= ∅
]

then the center of Bn+1 lies in dl
n ⋆ Bn.

Let Boulder and Sisyfos play a run of the game H(A). Let

V = (B1,S1, B2,S2, . . .) ,

Sn =
(

S1
n, S

2
n, . . . , S

n
n

)

, n ∈ N,

where Boulder played the ball Bn and Sisyfos played the sets S1
n, S

2
n, . . . , S

n
n on the nth

move of the run, n ∈ N. Then we will refer to the run itself by V and if we talk about
the ball Bn or about the set Sm

n , m ∈ {1, 2, . . . , n}, n ∈ N, we just use the symbols
Bn(V ) and Sm

n (V ), respectively.
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We say that a run V of the game H(A) is (k, l)-good if Sisyfos followed the strategy
σ and the sequence (B1 (V ) , B2 (V ) , . . . , Bj (V )) is (k, l)-good for every j ∈ N.

It is easy to see that if l1 > l2 and a finite sequence of open balls (resp. a run of the
game H (A)) is (k, l1)-good then it is also (k, l2)-good.

If T = (B1, B2, . . . , Bi) is a good sequence of open balls, we say that a run V of the
game H (A) satisfies condition (⋆T ) if Bn (V ) = Bn for every n ∈ {1, 2, . . . , i}.

For m ∈ N ∪ {0} and a good sequence of open balls T = (B1, B2, . . . , Bi), we denote
by MT

m the set of all

x ∈

{

A if i = 0

A ∩
(

1
4

⋆ Bi

)

if i > 0

such that in every (i, m + 1)-good run of the game H(A) giving x as its outcome and
satisfying condition (⋆T ), all the witnesses of Sisyfos’ victory (if there exist any) are
greater than m. (As in Chapter 3, the set MT

m depends on the set A and on the strategy
σ but these will be always fixed.)

Lemma 4.4. Let σ be a strategy for Sisyfos in the game H(A). Let

T0 = (B1, B2, . . . , Bi)

be a good sequence of open balls and let m ∈ N∪{0}. Then there exist an Rq-porous set
NT0

m and an at most countable collection T of finite sequences of open balls such that
T0

∧T is (i, m + 1)-good for every T ∈ T and

MT0

m ⊆ NT0

m ∪
⋃

{

MT0
∧T

m+1 : T ∈ T
}

.

Proof. Define NT0

m as the set of all x ∈ MT0

m such that

(I) there exists an (i, m + 2)-good run of the game H(A) giving x as its outcome
and satisfying (⋆T0) such that m + 1 is a witness of Sisyfos’ victory,

(II) for every (i, m + 2)-good run V of the game H(A) satisfying (⋆T0) and for every
n ≥ max{i, m + 1}, we have x /∈ Sm+1

n (V ) ∩ (dm+1
n ⋆ Bn(V )).

Suppose that x ∈ MT0

m \
(

MT0

m+1 ∪ NT0

m

)

. Then condition (I) holds for x by the definitions

of MT0

m and MT0

m+1. Therefore condition (II) cannot be true by the definition of NT0

m ,
and so there exist an (i, m + 2)-good run V (x) of the game H (A) satisfying (⋆T0) and

n(x) ≥ max{i, m + 1} such that x ∈ Sm+1
n(x) (V (x)) ∩

(

dm+1
n(x) ⋆ Bn(x)(V (x))

)

. Denote

Bj(x) = B (x, Rj) for j > n(x). Find N(x) > n(x) such that BN(x)(x) ⊆ Sm+1
n(x) (V (x))

and denote

T (x) =
(

Bi+1(V (x)), . . . , Bn(x)(V (x))
)

∧
(

Bn(x)+1(x), . . . , BN(x)(x)
)

.

Then the sequence T0
∧T (x) is (i, m + 1)-good. (Indeed, the sequence

T0
∧
(

Bi+1(V (x)), . . . , Bn(x)(V (x))
)
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is even (i, m + 2)-good and the fact that

Sm+1
n(x) (V (x)) ∩

(

dm+1
n(x) ⋆ Bn(x)(V (x))

)

6= ∅

allows Boulder to use condition (H2) (see p. 21) and play the ball with center x ∈
dm+1

n(x) ⋆ Bn(x)(V (x)) on his (n (x) + 1)st move.) Since BN(x)(x) ⊆ Sm+1
n(x) (V (x)), we know

that m + 1 cannot become a witness of Sisyfos’ victory in any run of the game H (A)
satisfying (⋆T0

∧T (x)). Therefore we have

MT0

m ∩

(

1

4
⋆ BN(x)(x)

)

⊆ M
T0

∧T (x)
m+1 ,

and so x ∈ M
T0

∧T (x)
m+1 . By Lindelöf’s property, there exists an at most countable set

{xj : j ∈ N} ⊆ MT0

m \
(

MT0

m+1 ∪ NT0

m

)

such that MT0

m \
(

MT0

m+1 ∪ NT0

m

)

is covered by the system
{

1

4
⋆ BN(xj)(xj) : j ∈ N

}

of open sets and so it is also covered by the countable system
{

M
T0

∧T (xj)
m+1 : j ∈ N

}

.

Now, we can define

T = {∅} ∪ {T (xj) : j ∈ N} .

Then we obviously have

MT0

m ⊆ NT0

m ∪
⋃

{

MT0
∧T

m+1 : T ∈ T
}

.

It remains to show that NT0

m is Rq-porous. Suppose that x ∈ NT0

m and V is an
(i, m + 2)-good run of the game H (A) satisfying (⋆T0) such that x is its outcome and
m + 1 is a witness of Sisyfos’ victory. We know that there exist sequences (nk)

∞
k=1 of

integers from {m+1, m+2, . . .}, (qk)
∞
k=1 of real numbers from (0, 1) and (rk)

∞
k=1 of real

numbers from (0,∞) such that

• x ∈ K\
∞
⋃

n=m+1

Sm+1
n (V ),

• lim
k→∞

nk = ∞,

• lim
k→∞

qk = q,

• rk ≤
Rnk

2nk+3 , k ∈ N,

• Rqk
rk

(

x, K\Sm+1
nk

(V )
)

, k ∈ N.
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We may assume that nk ≥ max{i, m + 2} for every k ∈ N. We know that the center of
Bn+1 (V ) lies in dm+2

n ⋆ Bn (V ) for every n ≥ i by conditions (H1) and (H2) (see p. 21).
Let us fix k ∈ N. By condition (R4), we have

(6) Rqk
rk

(

x, K\
(

Sm+1
nk

(V ) ∩ B(x, 2rk)
))

.

By condition (II), we have

(7) NT0

m ⊆ K\
(

Sm+1
nk

(V ) ∩
(

dm+1
nk

⋆ Bnk
(V )
))

.

Now, let xnk
be the center of Bnk

(V ), xnk+1 be the center of Bnk+1 (V ) and let us take
z ∈ B(x, 2rk). Then we have

d(z, xnk
) ≤ d(z, x) + d(x, xnk+1) + d(xnk+1, xnk

) < 2rk + Rnk+1 + dm+2
nk

Rnk

≤
1

2nk+2
Rnk

+
1

2nk+2
Rnk

+ dm+2
nk

Rnk
=

(

1

2nk+1
+ 1 −

1

2nk−m−1

)

Rnk

=

(

1 −
2m+2 − 1

2nk+1

)

Rnk
≤

(

1 −
1

2nk−m

)

Rnk
= dm+1

nk
Rnk

.

Therefore we have B(x, 2rk) ⊆ dm+1
nk

⋆ Bnk
(V ), and so

(8) K\
(

Sm+1
nk

(V ) ∩
(

dm+1
nk

⋆ Bnk
(V )
))

⊆ K\
(

Sm+1
nk

(V ) ∩ B(x, 2rk)
)

.

Finally, we have Rqk
rk

(

x, NT0

m

)

by (6), (7), (8) and (R3). Therefore also Rq
(

x, NT0

m

)

by
(R1) and (S2). �

Theorem 4.5. Sisyfos has a winning strategy in the game H(A) if and only if the set
A is σ-Rq-porous.

Proof. Suppose first that A =
∞
⋃

n=1

An where Rq (An, An), n ∈ N. For n ∈ N and

m ∈ {1, 2, . . . , n}, let Sisyfos play Sm
n as the union of all balls B ∈ Mn for which

B ⊆ Bn\Am. Let Boulder and Sisyfos play a run of the game H(A) such that Sisyfos
follows this strategy. Let x be an outcome of this run. If x /∈ A then Sisyfos satisfies
condition (a) (see p. 20) and wins. If x ∈ A then there exists m ∈ N such that x ∈ Am.
Then we have

x /∈
∞
⋃

n=m

Sm
n .

Further, since Rq (x, Am), we know by condition (R1) that there exist sequences (qk)
∞
k=1

of real numbers from (0, 1) and (rk)
∞
k=1 of real numbers from (0,∞) such that

• lim
k→∞

qk = q,

• lim
k→∞

rk = 0,

• Rqk
rk

(x, Am), k ∈ N.
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There also exists n0 ≥ m such that

(9)
2n+6an

Rn+1

≤ inf{qk : k ∈ N}

for n ≥ n0 since the expression on the right side is strictly positive and the expression
on the left side tends to zero which follows from (5) and the estimate (derived from (4))

(10) 0 <
2n+6an

Rn+1
≤

8an

Rn+2
.

We may assume that

rk ≤
Rn0

2n0+3

for every k ∈ N. Let us choose k ∈ N and define nk (≥ n0) as the greatest integer such
that

(11) rk ≤
Rnk

2nk+3
.

(Obviously, lim
k→∞

nk = ∞.) Since the previous inequality does not hold for nk +1 instead

of nk, we get

(12) rk >
Rnk+1

2nk+4
≥

4ank

qk

(we used estimate (9) for n = nk in the second inequality). It follows that

qk

2
>

2ank

rk

> 0.

By condition (R2) applied to w =
2ank

rk
, we have

(13) R
qk−

4ank
rk

rk (x, B (Am, 2ank
)) .

Let us denote q̃k = qk −
4ank

rk
. Using the first inequality from estimate (12), we get

(14) 0 ≤
4ank

rk

≤
2nk+6ank

Rnk+1
.

By (5), (10) and (14), we have

lim
n→∞

4ank

rk

= 0

and so

lim
k→∞

q̃k = lim
k→∞

qk − lim
k→∞

4ank

rk

= q.
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To verify condition (b) (see p. 20), it suffices to show that Rq̃k
rk

(

x, K\Sm
nk

)

, k ∈ N.
Let us fix k ∈ N and suppose that z ∈ B (x, 2rk) \B (Am, 2ank

). Then

(15) B (z, 2ank
) ⊆ K\Am

by the definition of B (Am, 2ank
). Let us denote the center of Bnk

by xnk
. If we use

• Claim 4.3 and the fact that x ∈ Bnk+1 (in the second inequality of the upcoming
estimate),

• an immediate consequence of (12) that ank
≤ rk (in the third inequality),

• estimate (11) (in the fourth inequality),

then we have for arbitrary y ∈ B (z, 2ank
) the following:

d (y, xnk
) ≤ d (y, z) + d (z, x) + d (x, xnk

) < 2ank
+ 2rk +

(

1 −
1

2nk+1

)

Rnk

≤ 4rk +

(

1 −
1

2nk+1

)

Rnk
≤

1

2nk+1
Rnk

+

(

1 −
1

2nk+1

)

Rnk
= Rnk

.

This gives us the inclusion

(16) B (z, 2ank
) ⊆ Bnk

.

By putting (15) and (16) together, we get

B (z, 2ank
) ⊆ Bnk

\Am

and it easily follows from the definitions of Dnk
and Mnk

that z ∈ Sm
nk

. So we have

B (x, 2rk) \B (Am, 2ank
) ⊆ Sm

nk

and thus

(17) B (x, 2rk) \S
m
nk

⊆ B (Am, 2ank
) .

By (13), (17) and (R3), we get

Rq̃k
rk

(

x, B (x, 2rk) \S
m
nk

)

.

By (R4), this is equivalent to

Rq̃k
rk

(

x, K\Sm
nk

)

as we wanted.
Now, let us assume that Sisyfos has a winning strategy σ in the game H(A) and

that he follows this strategy in every run of he game H (A). We have A = M∅
0 and by

Lemma 4.4, it follows

(18) A = M∅
0 ⊆ N∅

0 ∪
⋃

{

MT1

1 ; T1 ∈ T
}
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where N∅
0 is Rq-porous and T is an at most countable collection of (0, 1)-good sequences

of open balls. Now, for every T1 ∈ T we have

(19) MT1

1 ⊆ NT1

1 ∪
⋃

{

MT1
∧T2

2 ; T2 ∈ T T1

}

where NT1

1 is Rq-porous and T T1 is an at most countable collection of finite sequences
of open balls such that T1

∧T2 is (length (T1) , 2)-good for every T2 ∈ T T1 . By iterating
this process, we get a countable system of Rq-porous sets

U =
{

NT1
∧T2

∧...∧Tk

k : k ∈ N ∪ {0}, T1 ∈ T , T2 ∈ T T1, . . . , Tk ∈ T T1,...,Tk−1

}

such that for every k ∈ N ∪ {0} and for every T1 ∈ T , T2 ∈ T T1 , . . . , Tk ∈ T T1,T2,...,Tk−1,
the sequence T1

∧T2
∧ . . . ∧Tk is (length (T1

∧T2
∧ . . . ∧Tk−1) , k)-good. By (S1), it suffices

to show that A ⊆
⋃

U . Suppose that this is not true and so there exists x ∈ A\
⋃

U .
By (18), there exists T1 ∈ T such that x ∈ MT1

1 . By (19), there exists T2 ∈ T T1 such

that x ∈ MT1
∧T2

2 . In this way, we get that there exists a sequence (Tk)
∞
k=1 where T1 ∈ T

and Tk ∈ T T1,T2,...,Tk−1 for k > 1 such that x ∈ MT1
∧T2

∧...∧Tk

k for every k ∈ N. Therefore
Boulder can play all the balls from T1 in sequence on his first moves of the game H(A),
then all the balls from T2 and so on. (If there exists k0 ∈ N ∪ {0} such that all the
sequences Tk, k > k0, are empty then the sequence

T1
∧T2

∧ . . . = T1
∧T2

∧ . . . ∧Tk0

is finite. Then Boulder can finish the run such that the center of all the remaining

balls is x. The outcome of such a run is x. Moreover, since x ∈ M
T1

∧T2
∧...∧Tk0

k , we have
x ∈ 1

4
⋆ Bk0

. It follows that the run is (length (T1
∧T2

∧ . . . ∧Tk0
) , m + 1)-good for every

m ∈ N.) Then, x is the outcome of the run and any m ∈ N cannot be a witness of
Sisyfos’ victory since x ∈ MT1

∧T2
∧...∧Tm

m and the run is (length (T1
∧T2

∧ . . . ∧Tm) , m + 1)-
good for every m ∈ N. This is a contradiction since the strategy σ is winning for
Sisyfos. �

Theorem 4.6. Let (K, d) be a nonempty compact metric space and let A ⊆ K be a
Borel set. Then the game H(A) is determined.

Proof. On his nth move, Boulder plays an open ball with radius Rn. Since we identify
every open ball with the pair (center, radius) (see p. 7), this is the same as choosing
the center of the ball which is an element of K. Thus, we may assume that Boulder
plays xn ∈ K (which is the center of Bn) on his nth move. Meanwhile, Sisyfos plays
an element of

(

2K
)n

on his nth move. If we denote the tree of all legal positions of the
game H(A) by T then the payoff set P for the game H(A) is the set of all t ∈ [T ] of
the form

(20) t =
(

x1,
(

S1
1

)

, x2,
(

S1
2 , S

2
2

)

, . . .
)
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such that neither of the conditions (a) and (b) (see p. 20) is satisfied for t. Let us
consider the discrete topology on K and on

(

2K
)n

for every n ∈ N. Then [T ] is a subset
of

K × 2K × K ×
(

2K
)2

× . . .

which will be considered as a topological space with the product topology. By Theo-
rem 2.5, it is sufficient to show that the payoff set P is Borel.

We define mappings f : [T ] → K and hj
n : [T ] → 2K , j ∈ {1, 2, . . . , n}, n ∈ N, such

that for t ∈ [T ] of the form (20) and j, n ∈ N, we have:

• f(t) ∈
∞
⋂

n=1

Bn (i.e. f(t) is the outcome of the appropriate run),

• hj
n(t) = Sj

n.

Let us choose n ∈ N arbitrarily. When the beginnings, sufficiently long, of two
sequences t1 ∈ [T ] and t2 ∈ [T ] coincide then both f(t1) and f(t2) lie in the same ball
Bn played by Boulder. This means that d (f(t1), f(t2)) ≤ 2Rn. Since lim

n→∞
Rn = 0, it

follows that the mapping f is continuous from [T ] to (K, d).
The mapping hj

n is also continuous since its values depend only on the projection of
t to

(

2K
)n

(with the discrete topology).
Next, we define

Tm =
{

t ∈ [T ] : m is a witness of Sisyfos’ victory

in the run of the game H (A) which corresponds to t
}

.

Then we have

P = f−1 (A) \
∞
⋃

m=1

Tm.

The set f−1 (A) is a continuous preimage of a Borel set and so it is Borel.
To finish the proof, it remains to show that Tm is a Borel set for every m ∈ N. Let us

fix m ∈ N. After taking into consideration (S2) and (R5) (see p. 19), we have t ∈ Tm

if and only if

• f(t) ∈ K\
∞
⋃

n=m

hm
n (t) and

• for every k ∈ N there exist nk ≥ max{m, k}, qk ∈ (q − 1
k
, q + 1

k
)∩ (0, 1)∩Q and

rk ∈
(

0,
Rnk

2nk+3

)

∩ Q such that Rqk
rk

(

f(t), K\hm
nk

(t)
)

.
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Further, we have f(t) ∈ K\
∞
⋃

n=m

hm
n (t) if and only if

t ∈
∞
⋂

n=m

⋃

G is a union
of some balls

from Mn

(

(hm
n )−1 (G) ∩ f−1 (K\G)

)

and the set on the right side is Gδ since

• f−1 (K\G) is closed as a continuous preimage of a closed set,
• (hm

n )−1 (G) is open as a continuous preimage of an open set,
• the set Mn is finite for every n ∈ N.

Finally, we have Rqk
rk

(

f(t), K\hm
nk

(t)
)

if and only if

t ∈
⋃

G is a union
of some balls
from Mnk

(

(

hm
nk

)−1
(G) ∩ f−1

(

{y ∈ K : Rqk
rk

(y, K\G)}
)

)

and the last set is open by (R5). �

Theorem 4.7. Let (K, d) be a nonempty compact metric space and let A ⊆ K be a
Borel set which is not σ-Rq-porous. Then there exists a compact set F ⊆ A which is
not σ-Rq-porous.

Proof. Sisyfos does not have a winning strategy in the game H(A) by Theorem 4.5.
But by Theorem 4.6, the game is determined and so Boulder has a winning strategy µ.
The fact that Sisyfos has only finitely many possible choices on each of his moves of the
game H(A) easily implies that the body [µ] is compact in the topology derived from
the topological space

K × 2K × K ×
(

2K
)2

× . . .

with the topology described in Theorem 4.6. Every u ∈ [µ] corresponds to some run Vu

of the game H(A) (won by Boulder) in a natural way. We can define a mapping ϕ : [µ] →
K assigning an outcome of the run Vu to u ∈ [µ]. The mapping ϕ is continuous since it
is a restriction of the continuous mapping f : [T ] → K from the proof of Theorem 4.6.
Define F as the compact set ϕ([µ]). Then F is a subset of A by condition (a) (see p. 20)
because the strategy µ is winning for Boulder.

It remains to show that F is not σ-Rq-porous. Since satisfying of condition (b) (see
p. 20) does not depend on the set which the game is played with, it is obvious that µ
is a winning strategy for Boulder also in the game H(F ). Therefore Sisyfos does not
have a winning strategy in the game H (F ) and using Theorem 4.5 again, we get the
conclusion. �
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5. Applications to porosities.

In the following two theorems, we use Theorem 4.7 to prove the existence of non-
σ-porous (resp. non-σ-strongly porous) compact subset of a given non-σ-porous (resp.
non-σ-strongly porous) Borel set in any locally compact metric space. As it was already
described, Theorem 5.1 was already known (it was proved in [13] for the first time) but
Theorem 5.2 provides a new result.

Theorem 5.1 ([13, Theorem 3.1]). Let (X, d) be a locally compact metric space. Let
A ⊆ X be a non-σ-porous Borel set. Then there exists a non-σ-porous compact set
F ⊆ A.

Proof. First, suppose that the space (X, d) is compact. We define point-set relations
Rq

r and Rq, r > 0, q ∈ (0, 1], on X such that for every r > 0, q ∈ (0, 1], M ⊆ X and
x ∈ X we have

• Rq
r(x, M) if there exists an open ball B(y, r̃) such that

x ∈
(

B (y, r) \B(y, r
2
)
)

∩ B
(

y, r̃
q

)

and B(y, r̃) ∩ M = ∅,

• Rq =
⋂

0<q̃<q

⋂

R>0

⋃

0<r≤R

Rq̃
r .

The relations Rq
r and Rq, r > 0, q ∈ (0, 1], satisfy conditions (R1)-(R5) (see p. 19).

Let us verify only (R2) and (R4), the other conditions are easy to check.
First, we verify condition (R2). Let us take r > 0, q ∈ (0, 1], M ⊆ X, x ∈ X and

0 < w < q

2
and suppose that Rq

r(x, M). We want to show that Rq−2w
r (x, B (M, rw)).

We know that there exists an open ball B(y, r̃) such that

x ∈
(

B (y, r) \B(y,
r

2
)
)

∩ B

(

y,
r̃

q

)

and

B(y, r̃) ∩ M = ∅.

So we have

(21)
r̃

q
> d(x, y) >

r

2

and so

r̃ − rw > r
(q

2
− w

)

> 0.

Since clearly

B (y, r̃ − rw) ∩ B (M, rw) = ∅,
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it suffices to show that x ∈ B
(

y, r̃−rw
q−2w

)

. But indeed, by (21) we have

r̃ − rw

q − 2w
>

r̃
(

1 − 2w
q

)

q − 2w
=

r̃

q
> d(x, y).

Now, we verify condition (R4). Let us assume that r > 0, q ∈ (0, 1], M ⊆ X and
x ∈ X such that Rq

r (x, M ∩ B (x, 2r)). Then there exists an open ball B (y, r̃) such
that

x ∈
(

B (y, r) \B(y,
r

2
)
)

∩ B

(

y,
r̃

q

)

and
B(y, r̃) ∩ M ∩ B (x, 2r) = ∅.

First, let us assume that r̃ ≤ r. If z ∈ B (y, r̃) then

d (z, x) ≤ d (z, y) + d (y, x) < r̃ + r ≤ 2r.

So we have B (y, r̃) ⊆ B (x, 2r) and therefore

B(y, r̃) ∩ M = B(y, r̃) ∩ M ∩ B (x, 2r) = ∅.

It follows that Rq
r (x, M). Now, let us assume that r̃ > r. Then we have

B (y, r) ∩ M = B (y, r) ∩ M ∩ B (x, 2r) ⊆ B(y, r̃) ∩ M ∩ B (x, 2r) = ∅

and the open ball B (y, r) witnesses that Rq
r (x, M). The other implication of condition

(R4) is obvious.
It is also straightforward to verify that M ⊂ X is q-porous at x ∈ X if and only if

M is Rq-porous at x, q ∈ (0, 1]. Moreover, using Theorem 2.2, we know that M ⊂ X

is σ-porous if and only if M is σ-R
1

2 -porous. Therefore, A is not σ-R
1

2 -porous and by
Theorem 4.7, there exists a non-σ-R

1

2 -porous (and thus also non-σ-porous) compact set
F ⊆ A.

Now, suppose that (X, d) is an arbitrary locally compact metric space. Since A is a
non-σ-porous subset of X, there exists x ∈ X such that A ∩ B(x, r) is a non-σ-porous

subset of X for every r > 0 by Theorem 2.4. Let us take r0 > 0 such that B (x, r0)
is compact and denote A′ = A ∩ B(x, r0). Since porosity is a local property, every
M ⊆ B (x, r0) is σ-porous in X if and only if M is σ-porous in the compact metric

space B (x, r0). Therefore, A′ is non-σ-porous in B (x, r0). Due to the previous part of

the proof, there exists a non-σ-porous (in B (x, r0) and therefore also in X) compact
set F ⊆ A′ ⊆ A. �

Theorem 5.2. Let (X, d) be a locally compact metric space. Let A ⊆ X be a non-
σ-strongly porous Borel set. Then there exists a non-σ-strongly porous compact set
F ⊆ A.
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Proof. Let us use the same notation as in the proof of Theorem 5.1. Then M ⊆ X is
σ-strongly porous if and only if A is σ-R1-porous. If the space (X, d) is compact, we can
use Theorem 4.7. The general case can be shown in the same way as in Theorem 5.1,
we only have to substitute ordinary porosity by strong porosity. �

Finally, we apply Theorem 4.7 to answer a question posed by M. J. Evans and
P. D. Humke in [3]. This is the following question.

Question 5.3 ([3, page 178]). Does there exist an Fσ set in [0, 1] which is σ-(1 − ε)-
symmetrically porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous?

We answer this question positively by proving the next theorem.

Theorem 5.4. There exists a closed set F ⊆ [0, 1] which is σ-(1 − ε)-symmetrically
porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous.

Proof. We define point-set relations Rq
r and Rq, r > 0, q ∈ (0, 1], on [0, 1] such that for

every r > 0, q ∈ (0, 1], M ⊆ [0, 1] and x ∈ [0, 1] we have

• Rq
r(x, M) if there exists an open ball B(y, r̃) in [0, 1] such that

x ∈
(

B (y, r) \B(y, r
2
)
)

∩ B
(

y, r̃
q

)

and (B(y, r̃) ∪ B(2x − y, r̃)) ∩ M = ∅,

• Rq =
⋂

0<q̃<q

⋂

R>0

⋃

0<r≤R

Rq̃
r .

Similarly as in Theorem 5.1, we can verify that

• relations Rq
r and Rq, r > 0, q ∈ (0, 1], satisfy conditions (R1)-(R5),

• M ⊂ (0, 1) is σ-1-symmetrically porous (in R) if and only if A is σ-R1-porous
(in [0, 1]).

As it is written in [3], it is known that there exists a Borel set A ⊆ (0, 1) which is
σ-(1 − ε)-symmetrically porous for every 0 < ε < 1 but which is not σ-1-symmetrically
porous. By Theorem 4.7, there exists a compact non-σ-1-symmetrically porous set
F ⊆ A. Since F is a subset of A, it is still a σ-(1 − ε)-symmetrically porous set for
every 0 < ε < 1. �

32



References
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