In the present work we study tetrahedral k-reptiles. A d-dimensional simplex is called a k-reptile if it can be tiled in k simplices with disjoint interiors that are all congruent and similar to S . For $\mathrm{d}=2$, triangular k -reptiles exist for many values of k and they have been completely characterized. On the other hand, the only simplicial k -reptiles that are known for d 3 have $\mathrm{k}=\mathrm{md}$, where m 2 (Hill simplices).
We prove that for $\mathrm{d}=3$, tetrahedral k -reptiles exist only for $\mathrm{k}=\mathrm{m} 3$. This partially confirms the Hertel's conjecture, asserting that the only tetrahedral k -reptiles are the Hill tetrahedra. We conjecture that $\mathrm{k}=$ md is necessary condition for existence of d-dimensional simplicial k-reptiles, $\mathrm{d}>3$.

