
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Michal Tuláček

Constraint solvers

Department of Theoretical Computer Science and

Mathematical Logic

Supervisor: Doc. RNDr. Roman Barták, Ph.D.

Study programme: General Computer Science

2009

I wish to thank my supervisor Dr. R. Barták for advices and patience. My
thanks also belongs to my friends V. Kopal, M. Bernát and J. Helmich who
helped me with correction of the English text. Last but not least my thanks
belong to my coach J. Baxa who clearly stated that failure is not an option
and then enforced this policy.

Prohlašuji, že jsem svou bakalářskou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım
zveřejňováńım.

I declare that I wrote my bachelor thesis independently and exclusively with
the use of the cited sources. I agree with lending this thesis.

In Prague, 6th August 2009 Michal Tuláček

2

Contents

1 Introduction 7
1.1 Constraint Satisfaction Problems 7
1.2 Constraint programming . 10
1.3 Constraint solvers . 12
1.4 Related work . 12
1.5 Outline of the thesis . 13

2 Methodology 15

3 Benchmarks 17
3.1 Essence programming language 17
3.2 N-queens . 18

3.2.1 Constraint problem model 18
3.3 Magic sequence . 19

3.3.1 Constraint problem model 20
3.4 Self-referential quiz . 21

3.4.1 Constraint problem model 22
3.5 Quasigroup with holes . 24

3.5.1 Constraint problem model 25
3.6 Locating warehouses . 26

3.6.1 Constraint problem model 26

4 Constraint solvers 29
4.1 Mozart/Oz . 29

4.1.1 Solver description . 30
4.1.2 Debugging support 31
4.1.3 Subjective description 32

4.2 Choco . 32
4.2.1 Solver description . 33

3

4.2.2 Debugging support 35
4.2.3 Subjective description 35

4.3 Minion . 36
4.3.1 Solver description . 37
4.3.2 Debugging support 38
4.3.3 Subjective description 38

4.4 Gecode . 39
4.4.1 Solver description . 39
4.4.2 Debugging support 41
4.4.3 Subjective description 41

4.5 ECLiPSe . 42
4.5.1 Solver description . 42
4.5.2 Debugging support 44
4.5.3 Subjective description 44

4.6 SICStus Prolog . 44
4.6.1 Solver description . 45
4.6.2 Debugging support 45
4.6.3 Subjective description 46

4.7 Tailor . 47

5 Benchmark results 48
5.1 The robustness test . 49
5.2 The performance test . 50

6 Conclusions 53
6.1 Which solver to choose? . 53
6.2 Future work . 54

Bibliography 55

A Contents of the CD 58
A.1 Files and directories . 58

B List of the constraint solvers 59

C List of the constraints 62

4

D Implementation of the benchmarks 65
D.1 Mozart/Oz . 65
D.2 Choco . 66
D.3 Minion . 68
D.4 Gecode . 69
D.5 ECLiPSe . 72
D.6 SICStus Prolog . 72

5

Název práce: Řešiče omezuj́ıćıch podmı́nek
Autor: Michal Tuláček
e-mail autora: michal@tulacek.eu
Katedra (ústav): Katedra teoretické informatiky a matematické logiky
Vedoućı bakalářské práce: Doc. RNDr. Roman Barták, Ph.D.
e-mail vedoućıho: bartak@kti.mff.cuni.cz

Abstrakt: Řešič omezuj́ıćıch podmı́nek je specializovaný software, určený k
řešeńı problémů popsaných omezuj́ıćımi podmı́nkami. Práce podává přehled
řešič̊u a vybrané z nich testuje z pohledu uživatelské př́ıstupnosti a rozsahu
problémů, které lze modelovat.

Kĺıčová slova: omezuj́ıćı podmı́nky, řešiče, benchmarky

Title: Constraint solvers
Author: Michal Tuláček
Author’s e-mail address: michal@tulacek.eu
Department: Department of Theoretical Computer Science and Mathemat-
ical Logic
Supervisor: Doc. RNDr. Roman Barták, Ph.D.
Supervisor’s e-mail address: bartak@kti.mff.cuni.cz

Abstract: Constraint solver is a specialized software used to solve constraint
satisfaction problems. The thesis surveys constraint solvers and some of
them compares using the criteria of user accessibility and variety of prob-
lems which can be modeled.

Keywords: constraint satisfaction problems, constraint solvers, benchmarks

6

Chapter 1

Introduction

In this thesis we compare several constraint solvers from the perspective of
a user who is not experienced in the constraint programming. We focus on
easiness of a learning process of each solver and we measure performance by
using benchmarks which compare various aspects of examined systems.

1.1 Constraint Satisfaction Problems

Constraint programming is a programming paradigm which uses constraints
to describe a solution rather than to program a way of achieving such a
solution. The constraint can be any relation which can be asserted as true
or false – X < Y , Billy is older than Johnny, Z = 5, etc. As an example
of a problem which can be solved using constraint programming we use the
Sudoku puzzle. Sudoku is a worldwide known logical problem which is easy
to explain, its difficulty can be scaled and one does not need previous training
to solve Sudoku. It makes the problem easier to understand for many people
and, therefore, it is very popular. Simple rules of Sudoku are: There is a
given table of size nine times nine. Every field of the table contains a number
in the range one to nine. In each column all the numbers are different (this
enforces that every column contains all numbers in range one to nine). In
each row there are also all numbers different. Finally the same rule which
applies for columns and rows also restricts three times three sized squares
which are in the puzzle marked using bolder lines. The Sudoku is prefilled
with a couple of values. These values help at the beginning of solving and
the difficulty can be adjusted by their number and placement.

The way how to describe the Sudoku puzzle in constraint programming

7

Figure 1.1: Example of the Sudoku puzzle

2 5 3 9 1

1 4

4 7 2 8

5 2

9 8 1

4 3

3 6 7 2

7 3

9 3 6 4

is very straightforward. We define the following model:

1. There are 81 variables sij, i, j ∈ {1, ..., 9} which can contain values in
range 1 to 9. We arrange them into a two-dimensional array with size
9 × 9. (The Sudoku is a table sized 9 × 9 containing values in range
1, ..., 9)

2. For all i in 1, ..., 9 the following condition is true: All values of si• are
different (values in each row are different)

3. For all j in 1, ..., 9 the following condition is true: All values of s•j are
different (values in each column are different)

4. For each square the following condition is true: For all k, l such that k,
l are indexes defining the square all values of skl are different (values
in each square are different)

5. For all prefilled values: qmn = V if and only if the field in the column
n and row m is prefilled and contains V .

These constraints fully describe the Sudoku puzzle problem and as the
reader can see they do not differ from the commonly known rules. A person
solving the Sudoku puzzle can use many techniques starting with randomly
filling the table and looking if this is a good solution (the algorithm using this
technique is called GAT – Generate and Test) and ending with generating all

8

possible fillings and correcting the solution if something fails (this algorithm
is called backtracking). The first approach can miss a correct solution. Since
the second approach systematically searches all possible solutions it has to
result in a correct solution; however, it can last enormous time to complete
it (even on a supercomputer). The secret of a successful solution is in the
fact that not all numbers can be filled in a specific field. If there is prefilled
value 8 at position [6,7] it means that in row 6 and in column 7 there cannot
be another number 8. And because of constraint (4) there also cannot be
8 in the right middle square. A person who does these observations usually
writes into the destination field all possible values and as an examination of
the puzzle progresses there are less and less possibilities to fill in. In an easy
Sudoku after this examination there is at least one field which can be filled
with only one number. After filling all such fields the solving continues in
the same way until the entire table is filled. A program which uses constraint
programming solves it in the same way. For each variable it remembers the
range of possible values (we will call it a domain). Before the program starts
searching for a solution it tries to eliminate as many values from the domain
as possible. It can reveal that the problem does not have a solution (if there
is a variable with an empty domain) before a backtracking. It is no surprise
that in a user guide to Choco system, one of the available constraint solvers,
it is stated “if you know Sudoku, then you know constraint programming.”
The formal definitions of the constraint satisfaction problem and the solution
of the constraint satisfaction problem follows (the definitions are cited from
[9]).

Definition 1 The Constraint satisfaction problem or CSP consist of:

• a set of variables X = {x1, ..., xn},

• for each variable xi a finite set Di of possible values (its domain),

• and a set of constraints restricting the values that the variables can
simultaneously take.

Definition 2 A solution to a CSP is an assignment of a value from its
domain to every variable, in such a way that every constraint is satisfied.
We may want to find:

• just one solution, with no preference as to which one,

• all solutions,

9

• an optimal, or at least a good solution, given some objective function
defined in terms of some or all of the variables.

All of the constraint problem can be modeled only by using of the binary
constraints (the constraints with two variables). The constraint satisfaction
problem can be represented as a constraint multigraph where the variables of
the model are the nodes of the graph and the constraints over the variables
in the model are the edges connecting the appropriate nodes. The edge
e(x, y) is consistent if for each value of x there exists a value y such that the
constraint is satisfied. As we can see the constraint which is consistent in
one direction does not have to be consistent in the second direction.

Definition 3 The constraint satisfaction problem is arc consistent if all
of the edges in the constraint graph are consistent in the both directions.

If the problem cannot be transformed to arc consistent state then it ob-
viously does not have a solution; however, the arc consistency itself does not
ensure that the problem can be solved. As an example of such a problem let
consider the following: We have variables X, Y, Z all with the domain {0, 1}
with the constraints X 6= Y , Y 6= Z, Z 6= X on them. The problem is arc
consistent. If we examine all constraints there exists for each possible value
of first variable a value of second variable which satisfies the constraint and
similarly in the second direction. Even though the problem is arc consistent
it cannot be solved because there does not exist evaluation of all variables
which satisfies the all constraints.

1.2 Constraint programming

We can use many algorithms to solve the constraint satisfaction problems.
The most common algorithm consists of two phases which are repeated until
the solution is found or we find that there is no solution. The first phase is
filtering of the variable domain by eliminating as many as possible values of
the domain. We can achieve such filtering by transforming of the problem
to the arc consistent state. The filtration phase can end in three ways:

• The domain of some variable is empty and therefore there is no solution
for a given problem.

10

Figure 1.2: The MAC algorithm

1 procedure l a b e l l i n g (V ,D,C)
2 i f a l l v a r i a b l e s from V are a s s i g ne d then r e t u rn V
3 s e l e c t not−y e t a s s i g n ed v a r i a b l e x from V
4 for each v a l u e v from Dx do

5 (TestOK , D’) := c o n s i s t e n t (V , d , C + { x = v })

6 if T e s t O K = true then

7 R := l a b e l l i n g (V , D ’ , C)
8 i f R <> f a i l then r e t u rn R
9 end for

10 r e t u rn f a i l
11 end

• The domains of all variables have only one element. The algorithm
found the solution.

• The domains of some variables have more than one element while the
problem is arc consistent.

If the problem P is arc consistent but we still do not have the solution
we perform the distribution phase. In the distribution phase we introduce a
new constraint c. We create two new problems P ∪ {c} and P ∪ {¬c}. It is
obvious that if there exists a solution of the original problem then at least
one of the new problems do have to have the solution. After this phase we
run the filtering phase again.

To construct the constraint c used the distribution phase we usually pick
a variable x and its value v. The constraint then can be x = v or x < v

(but we can use any constraint). By selecting of a proper variable and value
we can affect the time needed to compute the solution. The most common
way is to pick a variable with the smallest domain because we should be
able sooner find out that the variable cannot be evaluated. This strategy is
sometimes called first-fail strategy. The solvers usually allows the users to
choose the strategy or implement their own.

The described algorithm is called maintained arc consistency or MAC.
Its schematic source code is in the figure 1.2. The code is cited from [7].
More detailed explanations of algorithms used in CSP solving can be found
in [9].

The optimization problems can be solved by using of the branch-and-
bound algorithm. First the algorithm solves the problem P using the stan-
dard algorithms. After the problem is solved the value f(P) of the objective
function is computed. Then we derive from the problem P a new problem
P ′ with the additional constraint f(P ′) < f(P) and we run the algorithm

11

on the new problem. The last found solution which could be satisfied is the
expected best solution.

In reading previous paragraphs, a reader could think that the constraint
programming is used only as an academic toy for solving Sudoku and for
other applications which are useless in a real life. In fact the constraint
programming is used in various applications. A few examples of many con-
tain scheduling, an image recognition, financial modeling, planning, vehicle
routing, a configuration, computer networks and bio-informatics. The con-
straint programming was also successfully used at NASA in Deep Space 1
experiment. Deep Space 1 was a space probe using 12 cutting-edge tech-
nologies which were never tested in space before. One of these technologies
was a remote agent used to plan actions of a space vehicle while only general
commands were sent to agent. Agent used a constraint solver for planning
[6].

1.3 Constraint solvers

A programmer who wants to solve problems using constraint programming
can encode the ideas described in the previous paragraphs or use specialized
software, a constraint solver. Constraint solver is a system which uses con-
straint programming techniques to solve a given problem. There are many
solvers available both commercial and freeware. A short list of available
systems can be found in the appendix B. A more detailed list is maintained
by Roman Barták in the On-line guide to constraints programming at [8].

1.4 Related work

In this thesis we compare several constraint solvers. There exist papers and
other work which cover the similar area.

There exists a paper “A Comparative Study of Eight Constraint Pro-
gramming Languages Over the Boolean and Finite Domains” by A. Fernan-
dez and others [14] which compares several solvers; however, this paper does
not focus on the user experience with the solvers. They compared solvers by
their performance on various benchmarks and discussed an implementation
of self referential quiz in each solver. We are not benchmarking the same sets
of solvers and we do not use similar methodology which means this thesis
conclusions cannot fully replace or update the results from [14].

12

M. Plachá in 2007 wrote the bachelor thesis [18] focused on the same
topic as this thesis. The thesis compared SICStus Prolog, ILOG Solver
and Gecode/J. She compared the modeling capabilities of these solvers and
showed the ways to debug the models. Finally the speed of solvers was
measured on several benchmarks. In this thesis we study a wider range of
solvers. We used the same criteria as the mentioned thesis by M. Plachá but
additionally we compare the accessibility of the solvers for user.

Every year there is held the International Constraint Solver Competition
where authors of solvers can compete. The solvers can be submitted in two
categories – complete and incomplete. Complete solvers can prove that the
instance of a problem is satisfiable or not (or find and prove the optimum).
As stated in the rules [21] for each solver there is a Boolean capability vector
which indicates which constraints the solver can handle. Solvers with the
same capability vector can be naturally compared. Solvers with different
capabilities can be compared on instances which belong to the intersection
of their capabilities, provided it is non-empty. During the competition the
solvers are run in the sandbox environment on a Linux cluster. The task is
to find a solution of as many benchmarks as possible in the smallest time
amount.

There exists a library [15] of the constraint satisfaction problems which
can be used in benchmarking and comparing of solver capabilities. The li-
brary contains various problems in several fields – optimization problems,
combinatorial problems and so on. We encourage the reader to try to imple-
ment several problems in the chosen solver as a part of learning of modeling
in the solver.

1.5 Outline of the thesis

We described our motivation for this thesis and listed some constraint solvers.
In the second chapter we define methodology used to examine some of the
mentioned solvers. The examination consists of two parts – performance
tests and usability tests. In the third chapter we will define benchmarks
used to performance tests. The fourth chapter describes in details each
solver, mentions a little from their history but mainly focuses on usability
and easiness of learning and using the solver. In the fifth chapter we discuss
the performance tests results and compare the solvers. Finally, in the sixth
chapter we state a conclusion of the whole examination process.

There are four appendixes to this thesis. The content of the included CD

13

is in the appendix A. The short list of constraint solvers is in the appendix
B. The table of supported constraints is in the appendix C. Finally the
source codes of the benchmarks implemented in the compared solvers are in
the appendix D.

14

Chapter 2

Methodology

In the introduction we explained what constraint solvers are and presented
several examples of them. In the rest of the thesis we focus on six of them –
Mozart/Oz, Choco, Minion, Gecode, ECLiPSe and SICStus Prolog. The last
solver is a professional commercial solution and the others are freely available
open source products. The purpose of this thesis is to help new users with
choosing of the right solver. Therefore we study complexity of learning and
using of each solver and their performance and abilities. We test solvers
which use various programming languages and paradigms. The imperative
paradigm is represented by a C++ library Gecode and a Java library Choco.
Users experienced in logical programming might find interesting SICStus
Prolog or ECLiPSe . Mozart is an implementation of Oz, a multi-paradigm
programming language. With these solvers the users can use their current
experience and just learn an API of the constraint library. The Minion
solver is configured by a solver-specific problem description language. This
fact is both advantage and disadvantage. As for disadvantage, we must
accept that users cannot use their experience with existing programming
languages and have to learn new concepts; however, a specialized language
for describing constraint problems can be more accessible for users who do
not have any programming experiences but they need to solve the given
problem. A general overview of the examination follows.

First, we examine all solvers from the perspective of a user experienced
in the given programming language but inexperienced in using of the solver.
In case of Minion we expect that the user has general computer knowledge
and is able to describe a given problem in constraints. The first examination
tries to answer a question how difficult it is to learn to use the solver. We

15

model problems described in the third chapter and look for constraints which
cannot be modelled and we describe possible solutions.

Secondly, a quality of documentation is also an important criterion. A
solver can be the best of all, but it is useless if the user cannot understand the
usage. The quality of documentation is perceived subjectively and cannot
be measured exactly. This means that any evaluation is only informational,
although it should be considered. As a documentation we accept a user guide
as well as all other available guides, documents, web pages or a doxygen
style documentation. An existence of user forums or mailing lists is also an
important part of learning of new systems.

Last but not least, we aim for debugging. There are two areas which
can be debugged - correctness of the program and correctness of the model.
The correctness of the program means that the program does what it should
do, that it handles all inputs as the programmer expects and so on. The
correctness of model stands for an accurate description of a given problem.
The user should be able to inspect variables, visualise a decision tree of
search and other information. We discuss the ways how a solver informs
about mistakes (and how much descriptive the information is), the tools
provided with the solver to debug the program and similarly the tools which
can be used to debug the model correctness.

When the user masters the solver and uses it to solve real problems, the
time and space efficiency of used algorithms matters. We neither examine
source codes, nor analyze time complexity of used algorithms. Instead we
measure the time needed to load and the time to solve the problem. If a
solver cannot provide such information we measure only a total time. We
also measure an amount of consumed memory during the program execu-
tion. All measurements are performed several times and averaged to avoid
randomness. A robustness test is also performed. In the robustness test we
set limit ten minutes and try to determine the length of the longest magic
sequence (readers can find a definition of a magic sequence in the section
3.3) can be computed in the given time. We use the models created in the
process described in the previous paragraph. In [14] authors have sent mod-
els to the solvers’ authors and have given them a chance to modify them to
achieve the best performance of their solvers. We focus on first-time users
of a solver, so we use our own models which are not perfect and, more impo-
rantly, not tuned for any particular solver. All solvers are tested on Debian
4.0 Linux with the kernel 2.6.18 on Pentium 4, 3GHz.

16

Chapter 3

Benchmarks

In this chapter we shall define benchmarks which will later be used to exam-
ine the properties of each solver. We will be dealing with five different cases
which are well known and documented: n-queens problem, magic sequence
problem, self referential quiz, quasigroup with holes problem and locating
warehouses problem. In this chapter, we will show on these benchmarks the
different ways of modeling the problem with solvers. The last benchmarking
problem – locating warehouses – is an optimization problem. The solver not
only has to find correct solutions but also has to evaluate the best of the
solutions based on the value of an objective function. For each benchmark
a general description is presented as is the formal model of the constraint
problem and an implementation in the Essence programming language. The
basics of the language are described in the following section.

3.1 Essence programming language

Essence is a programming language for modeling of combinatorial problems.
It is easy enough to understand and so simple that even person who has never
seen the language before can correctly guess what the expected output of the
program is. Every program in Essence consists of three parts. The first part
defines the version of the language, the second part the used variables and
finally, the third part presents the constraints used on the given variables.
These constrained variables can be integers, booleans and vectors or matri-
ces. The language supports sums and loops over the variables; however, the
bounds of the sum or loop have to be constant as they are in the process of
compiling translated to a sequence of statements. The program itself can be

17

split into the model definition and parameters definition parts. Examples
in this chapters show only the model definition parts. The files containing
the parameter definitions can be found on the included CD. The Tailor tool
is the compiler which translate the code from the Essence language to the
solver specific language. In the current version it can translate the Essence
program to Minion input file, FlatZinc and C++ source code which is using
Gecode library. Further description of the Tailor system is in the section
4.7.

3.2 N-queens

This benchmark is based on a classic chess task. The player has to place
eight queens on the chessboard in a way that none of the queens offends
any other. The task can be scaled to a chessboard of any size. The goal is
then place n queens onto a table of size n × n in such way that no queen
offends any other. A queen offends all pieces which are placed in the same
row, column and diagonal on the chessboard. The problem is a little bit
easier if we realize that in order to place n queens on a chessboard with n

columns, there has to be one queen per column. Therefore we only need to
find out in which rows the queens are in each column. We model a solution
of the problem as a vector qi where i ∈ {1, ..., n}. To avoid placing the
queens in the same row we simply add constraint that all qi are different.
Finally we have to include the diagonals in the model: two pieces are on the
same diagonal, if the difference in the horizontal and vertical coordinates
is equal. Therefore we add the constraint |Q(i) − Q(j)| 6= |i − j|. Since
both the chessboard and the modes of offense the queen can carry out are
symmetric, the solutions are symmetric as well. We can decrease the number
of solutions if we avoid such symmetries (see the next subsection).

3.2.1 Constraint problem model

• Variables and domains:

– Positions of queens: q1, ..., qn ∈ {1, ..., n}, qi.

• Constraints:

– All queens are on different rows: ∀i, j ∈ {1, ..., n} : qi 6= qj ,

18

Figure 3.1: Implementation of N-Queens Problem in Essence

1 l anguage ESSENCE’ 1. b . a

2 find q u e e n s : m a t r i x i n d e x e d by [int (1.. n)] of int (1.. n)

3 such that

4
5 a l l d i f f (q u e e n s) ,

6 f o r a l l i : int (1.. n) . f o r a l l j : int (i +1.. n) .

7 | q u e e n s [i] - q u e e n s [j] | != | i - j |

– all queens are on different diagonals: ∀i, j ∈ {1, ..., n} : |qi− qj | 6=
|i − j|

– optional avoiding of the symmetry: q1 < qn

The Essence implementation (without symmetry breaking) is in the figure
3.1.

Figure 3.2: Solutions of 4-queens problem

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

a b c d

4 0L0Z
3 Z0ZQ
2 QZ0Z
1 Z0L0

a b c d

3.3 Magic sequence

Magic sequence of length n is a sequence of numbers such as mi, i ∈ {0, ...,
n−1} which satisfies the following condition: The value of mk is equal to the
number of occurrences of value k in the sequence. For example the sequence
(2 1 2 0 0) is magic sequence of length five as the condition above is satisfied.
The number zero is twice in the sequence and m0 is equal to two. Similarly
one is in the sequence only once and therefore m1 is one.

19

Figure 3.3: Implementation of Magic Sequence Problem in Essence

1 l anguage ESSENCE’ 1. b . a

2 find s : m a t r i x i n d e x e d by [int (0.. n -1)] of int (0.. n)

3 such that

4 f o r a l l i : int (0.. n -1) .

5 (s [i] = (sum j : int (0.. n -1) . (s [j] = i)))

3.3.1 Constraint problem model

Model for a magic sequence m of length k:

• Variables and domains:

– Magic sequence items: m0, ..., mk−1 ∈ {0, ..., k}.

• Constraints:

– Value of mi is i times in the sequence: ∀i ∈ 0, ..., k − 1 :
mi =

∑

mj=i 1.

In case that solver does not support the constraint mi =
∑

mj=i 1, we
can use an alternative model:

• Values and domains:

– Magic sequence items: m0, ..., mk−1 ∈ {0, ..., k},

– auxiliary variables: ∀i, j ∈ 0, ..., k − 1 : auxij .

• Constraints:

– auxij = 1 if and only if mj = i: ∀i, j ∈ {0, ..., k − 1} :
(auxij = 1) ⇔ (mj = i),

– the value of the items of the magic sequence corresponds to the
sum of some auxiliary variables: ∀i ∈ {0, ..., k − 1} :
mi =

∑k−1

j=0 auxij .

The Essence implementation is in the figure 3.3.

20

3.4 Self-referential quiz

The self-referential quiz is a quiz where the answers to the questions depend
on the answers to other questions in the same quiz. There is only one valid
answer for each question. A typical question in such a quiz can be:

1. First question where the answer is A:
(A) 1 (B) 2 (C) 3 (D) 4 (E) there is no question with answer A

2. Answer to this question:
(A) A (B) B (C) C (D) D (E) E

These quizzes are best modeled using reified constraints. Reified con-
straint is a constraint in the form (C ⇔ x)& (x ∈ {0, 1}). The ways how
to construct such quizzes are described in the article by Maja Bubalo [11].
The quiz assignment follows:

1. The first question to which the answer is A:
(A) 4 (B) 3 (C) 2 (D) 1 (E) none of above

2. The only two consecutive questions with identical answers:
(A) 3 and 4 (B) 4 and 5 (C) 5 and 6 (D) 6 and 7 (E) 7 and 8

3. The next question with answer A:
(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

4. The first even numbered question with the answer B:
(A) 2 (B) 4 (C) 6 (D) 8 (E) 10

5. The only odd numbered question with the answer C:
(A) 1 (B) 3 (C) 5 (D) 7 (E) 9

6. A question with answer D:
(A) comes before this one, but not after this one (B) comes after this
one, but not before this one (C) comes before and after this one (D)
does not occur at all (E) none of the above

7. The last question to which the answer is E:
(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

8. The number of questions to which the answer is a consonant:
(A) 7 (B) 6 (C) 5 (D) 4 (E) 3

21

9. The number of questions to which the answer is a vowel:
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

10. The answer to this question is:
(A) A (B) B (C) C (D) D (E) E

We model the quiz as a table of boolean variables with five columns (A,
B, C, D, E) and ten rows, one for each question. The value in the column
i and row j is true if and only if the answer to the question j is i. Because
there is only one answer possible to each question, we constraint the rows
of the table to contain only one true. The test has only one solution which
is showed in the figure 3.1.

Table 3.1: Solution of a Self Referential Quiz

Question A B C D E

1 0 0 1 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0 1 0 0 0
5 1 0 0 0 0
6 0 1 0 0 0
7 0 0 0 0 1
8 0 1 0 0 0
9 0 0 0 0 1
10 0 0 0 1 0

3.4.1 Constraint problem model

• Variables and domains:

– The answers to the questions: s1|1, s1|2, ..., s10|4, s10|5 ∈ {0, 1}.

• Constraints:

– There is exactly one value 1 in the row:

∀i ∈ {1, . . . , 10} :
(

∑

j∈{1,...,5} si|j

)

= 1,

22

– question 1, A to D:
∀i ∈ {1, ..., 4} : (s1|i = 1) ⇔ ((s4−i+1|1 = 1) ∧ (∀j ∈ {1, ..., 4 − i} :
sj|1 = 0)),

– question 1, E:
(s1|5 = 1) ⇔ (∀j ∈ {1, ..., 4} : sj|1 = 0),

– question 2:
∀i ∈ {1, ..., 5} : (s2|i = 1) ⇔ (∀j ∈ {1, ..., 5} : s3+i−1|j = s3+i|j),

– question 3:
∀i ∈ {1, ..., 5} : (s3|i = 1) ⇔ ((s4+i−1|1 = 1) ∧ (∀j ∈ {4, ..., 2 + i} :
sj|1 = 0)),

– question 4:
∀i ∈ {1, ..., 5} : (s4|i = 1) ⇔ ((s2i|2 = 1)∧ (∀j ∈ {1..i−1} : s2j|2 =
0),

– question 5:
∀i ∈ {1, ..., 5} : (s5|i = 1) ⇔ (s2i−1|3 = 1)

– question 6, A:
∀i ∈ {1, ..., 5} : (s6|1 = 1) ⇔ (∃j ∈ {1, ..., 5} : sj|4 = 1 ∧
∀j ∈ 7, ..., 10 : sj|4 = 0)

– question 6, B:
∀i ∈ {1, ..., 5} : (s6|2 = 1) ⇔ (∃j ∈ {7, ..., 10} : sj|4 = 1 ∧
∀j ∈ 1, ..., 5 : sj|4 = 0)

– question 6, C:
∀i ∈ {1, ..., 5} : (s6|3 = 1) ⇔ (∃j ∈ {1, ..., 5, 7, ..., 10} : sj|4 = 1)

– question 6, D:
∀i ∈ {1, ..., 5} : (s6|4 = 1) ⇔ (∀j ∈ {1, ..., 10} : sj|4 = 0)

– question 6, E:
∀i ∈ {1, ..., 5} : (s6|5 = 1) ⇔ (s6|4 = 1)

– question 7:
∀i ∈ {1, ..., 5} : (s7|i = 1) ⇔ (si+4|5 = 1)∧(∀j ∈ {i+4+1, ..., 10} :
sj,5 = 0))

– question 8:

∀i ∈ {1, ..., 5} : (s8|i = 1) ⇔
(

∑10

j=1

(

sj|2 + sj|3 + sj|4

)

= 7 − i + 1
)

– question 9:

∀i ∈ {1, ..., 5} : (s9|i = 1) ⇔
(

∑10

j=1

(

sj|1 + sj|5

)

= i − 1
)

.

23

Figure 3.4: Implementation of the Self Referential Quiz in Essence

1 l anguage ESSENCE’ 1. b . a

2 find s : m a t r i x i n d e x e d by [int (1 . . 1 0) , int (1 . . 5)] of bool

3 such that

4 $ t h e r e is only one a n s w e r to each q u e s t i o n and t he r e is not any u n a n s w e r e d q u e s t i o n

5 f o r a l l row : int (1 . . 1 0) . ((sum col : int (1 . . 5) . s [row , col]) = 1) ,

6 $ Q u e s t i o n 1

7 $ A to D

8 f o r a l l col : int (1 . . 4) . ((s [1 , col] = 1) <= > ((s [(4 - col +1) ,1] = 1) /\ (f o r a l l row :

int (1..(4 - col)) . (s [row ,1] = 0)))) ,

9 $ E

10 (s [1 ,5] = 1) <= > (f o r a l l row : int (1 . . 4) . (s [row ,1] = 0)) ,

11
12 $ Q u e s t i o n 2

13 f o r a l l col : int (1 . . 5) . ((s [2 , col] = 1) <= > (f o r a l l col2 : int (1 . . 5) . (s [3+ col -1 ,

col2] = s [3+ col , col2]))) ,

14 $ Q u e s t i o n 3

15 f o r a l l col : int (1 . . 5) . ((s [3 , col] = 1) <= > ((s [(4+ col -1) ,1] = 1) /\ (f o r a l l row :

int (4 . . 2 + col) . s [row ,1] = 0))) ,

16 $ Q u e s t i o n 4

17 f o r a l l col : int (1 . . 5) . ((s [4 , col] = 1) <= > ((s [col *2 ,2] = 1) /\ (f o r a l l row : int

(1 . . (col -1)) . s [row *2 ,2] = 0))) ,

18 $ Q u e s t i o n 5

19 f o r a l l col : int (1 . . 5) . ((s [5 , col] = 1) <= > (s [2* col -1 ,3]=1)) ,

20 $ Q u e s t i o n 6

21 (s [6 ,1] = 1) <= > ((e x i s t s row : int (1 . . 5) . s [row ,4] = 1) /\ (f o r a l l row : int

(7 . . 1 0) . s [row ,4] = 0)) ,

22 (s [6 ,2] = 1) <= > ((e x i s t s row : int (7 . . 1 0) . s [row ,4] = 1) /\ (f o r a l l row : int

(1 . . 5) . s [row ,4] = 0)) ,

23 (s [6 ,3] = 1) <= > ((e x i s t s row : int (7 . . 1 0) . s [row ,4] = 1) /\ (e x i s t s row : int

(1 . . 5) . s [row ,4] = 1)) ,

24 (s [6 ,4] = 1) <= > (f o r a l l row : int (1 . . 1 0) . s [row ,4] = 0) ,

25 (s [6 ,5] = 1) <= > (s [6 ,4] = 1) ,

26 $ Q u e s t i o n 7

27 f o r a l l col : int (1 . . 5) . ((s [7 , col] = 1) <= > ((s [col +4 ,5] = 1) /\ (f o r a l l row : int

(col + 4 + 1 . . 1 0) . s [row ,5] = 0))) ,

28 $ Q u e s t i o n 8

29 f o r a l l col : int (1 . . 5) . ((s [8 , col] = 1) <= > ((sum row : int (1 . . 1 0) . (s [row ,2] + s [

row ,3] + s [row ,4])) = (7 - col +1))) ,

30 $ Q u e s t i o n 9

31 f o r a l l col : int (1 . . 5) . ((s [9 , col] = 1) <= > ((sum row : int (1 . . 1 0) . (s [row ,1] + s [

row ,5])) = (col -1)))

32 $ C o n s t r a i n t s for q u e s t i o n 10 are u s e l e s s

The Essence implementation is in the figure 3.4.

3.5 Quasigroup with holes

Quasigroup or latin square is a table of size n × n filled with numbers in
the range 1, ..., n such that all values in each row and in each column are
unique. There can be also additional condition on the items of quasigroup,
for example that the items on the main diagonal have to be even. The task is
to fully fill the given partly filled quasigroup. The completed quasigroup has
to satisfy all previously stated constraints. This problem is called a quasi-
group completion problem or QCP. Unfortunately, this benchmark does not
provide a consistent result. Some partial fillings can be solved surprisingly
easily while other can be extremely demanding; some can even be impossible

24

to solve. The crucial problem is that determining whether the problem can
be solved or not is a NP-complete task [5]. Therefore we cannot determine
with certainty whether the problem is only too hard for the solver or the
solution does not exist at all and the solver has to search through enormous
state space. To avoid this uncertainty, we use a modification of QCP called
quasigroup with holes or QWH. First we generate a fully filled quasigroup
which satisfies the given conditions and then we exclude some of the values;
this quasigroup with holes is the new assignment for QCP. We have a guar-
antee that the assignment is correct and that it can be solved. Generation of
QWH assignments was studied by D. Achlioptas et al. who found out that
the difficulty of finding a solution of such problem depends on the size of the
so called backbone [5]. The backbone is a set of positions in the quasigroup
which have the same value in all solutions. If the size of the backbone is
close to 0%, there are many different solutions and the solver can find some
“by accident”. On the other, hand if the backbone is close to 100%, there
is only one solution and all constraints lead towards it. The experiments [5]
showed that this interesting behavior is somewhere near the 30%. They also
showed that the hard quasigroups of the order n have 1.6n1.55 holes.

The quasigroups we use have no additional conditions. The used quasi-
groups are produced by the generators lsencode developed by Carla Gomez
and walksat by Henry Kautz.

3.5.1 Constraint problem model

Model for a quasigroup of the order n. The assignment values are in the
vector dataij :

• Variables and domains:

– Quasigroup items: q11, ..., qnn ∈ {1, ..., n}.

• Constraints:

– All items in one row are unique: ∀i ∈ {1, ..., n} : ∀j, k ∈ {1, ..., n} :
qij 6= qik,

– all items in one column are unique: ∀i ∈ {1, ..., n} :
∀j, k ∈ {1, ..., n} : qji 6= qki

– some items of the quasigroup are preassigned: dataij defined ⇔
(qij = dataij)

25

Figure 3.5: Implementation of Quasigroup With Holes Problem in Essence

1 l anguage ESSENCE’ 1. b . a

2 l e t t i n g n D o m a i n be d o m a i n int (1.. n)

3 find qcp : m a t r i x i n d e x e d by [nDomain , n D o m a i n] of n D o m a i n

4 such that

5 f o r a l l i : n D o m a i n . a l l d i f f (qcp [i , n D o m a i n]) ,

6 f o r a l l i : n D o m a i n . a l l d i f f (qcp [nDomain , i])

The Essence implementation is in the figure 3.5.

3.6 Locating warehouses

Let us assume that we want to help a hypothetical business company with
the decision which warehouses should be built for their stores and which
warehouses should supply which store. The main criterion is in this case the
cost of the solution. The cost has two components. The first one is payment
of the constant cost for opening a new warehouse. The second component
is the price for the distribution of goods from a warehouse to the store. The
price varies and is different for all pairs (warehouse, store). Each possible
warehouse has a defined maximum capacity which accounts for the number
of stores which can be supplied from this warehouse. As the last condition
of the model, we state that all stores have to be supplied. Our task is to
choose the solution with the minimal total cost.

Both maximum capacities of warehouses and a table with prices for sup-
plying each of the pairs (warehouse, store) are the required input parameters
for the solver which computes the vector si, i ∈ {1, ..., # of stores} where si

indicates which warehouse supplies the store i.

3.6.1 Constraint problem model

We can build W warehouses. The price for opening of a new warehouse
is fixed and stored in the parameter openCost. We also have S shops.
The maximum capacity of warehouses is given by vector w, where wi is
the maximum number of shops which can be supplied by the warehouse
i, i ∈ {1, ..., W}. Finally, we have a matrix of supply costs supplyCost
where supplyCostij translates as the cost of supplying the shop j from the
warehouse i.

26

• Variables and domains:

– The total cost – the value of an objective function: totalCost ∈ N,

– the number of opened warehouses: numberOpen ∈ {0, W},

– the indication whether the warehouse is open: open1, ...,

openW ∈ {0, 1},

– the indication which warehouse supplies which store: supplier1, ...,

supplierS ∈ {1, ..., W},

– the supply cost for given store: cost1, ..., costS ∈ N,

– total supply cost: costSum ∈ N.

• Constraints:

– The objective function: totalCost = costSum + numberOpen ·
openCost,

– the total supply cost: costSum =
∑

i costi,

– the number of opened warehouses: numberOpen =
∑

i openi,

– the maximal capacity of each warehouse: ∀i ∈ {1, ..., W} :
wi ≥

∑

supplierj=i 1,

– the warehouse is open if it supplies at least one shop:

∀i ∈ {1, ..., W} : (openi = 1) ⇔
((

∑

supplierj=i 1
)

> 0
)

,

– the supply cost computation: ∀i ∈ 1, ..., S, ∀j ∈ {1, ..., W} :
(supplieri = j) ⇒

(

costi = supplyCostij

)

.

The Essence implementation is in the figure 3.6.

27

Figure 3.6: Implementation of Locating Warehouses Problem in Essence

1 l anguage ESSENCE’ 1. b . a

2
3 g i v e n C a p a c i t y : m a t r i x i n d e x e d by [W a r e h o u s e s R A N G E] of int (0.. n u m b e r O f S t o r e s)

4 g i v e n S t o r e W a r e h o u s e C o s t : m a t r i x i n d e x e d by [S t o r e s R A N G E , W a r e h o u s e s R A N G E] of C o s t R A N G E

5 l e t t i n g C o s t R A N G E be d o m a i n int (0.. m a x C o s t)

6 l e t t i n g S t o r e s R A N G E be d o m a i n int (0.. n u m b e r O f S t o r e s -1)

7 l e t t i n g W a r e h o u s e s R A N G E be d o m a i n int (0.. n u m b e r O f W a r e h o u s e s -1)

8
9 find

10 T o t a l C o s t : CostRANGE ,

11 Open : m a t r i x i n d e x e d by [W a r e h o u s e s R A N G E] of int (0 . . 1) ,

12 N u m b e r O p e n : int (0.. n u m b e r O f W a r e h o u s e s) ,

13 S u p p l i e r : m a t r i x i n d e x e d by [S t o r e s R A N G E] of W a r e h o u s e s R A N G E ,

14 Cost : m a t r i x i n d e x e d by [S t o r e s R A N G E] of CostRANGE ,

15 S u m C o s t : C o s t R A N G E

16
17 m i n i m i s i n g T o t a l C o s t

18
19 such that

20 T o t a l C o s t = S u m C o s t + N u m b e r O p e n * w a r e h o u s e C o s t ,

21 S u m C o s t = sum j : S t o r e s R A N G E . (Cost [j]) ,

22 N u m b e r O p e n = sum j : W a r e h o u s e s R A N G E . (Open [j]) ,

23
24 f o r a l l i : W a r e h o u s e s R A N G E .

25 (C a p a c i t y [i] >= (sum j : S t o r e s R A N G E . (S u p p l i e r [j] = i))) ,

26
27 f o r a l l i : W a r e h o u s e s R A N G E .

28 (((sum j : S t o r e s R A N G E . (S u p p l i e r [j] = i)) > 0) = > (Open [i] = 1)) ,

29
30 f o r a l l i : W a r e h o u s e s R A N G E .

31 (((sum j : S t o r e s R A N G E . (S u p p l i e r [j] = i)) = 0) = > (Open [i] = 0)) ,

32
33 f o r a l l i : S t o r e s R A N G E . f o r a l l j : W a r e h o u s e s R A N G E . ((S u p p l i e r [i] = j) = > (Cost [i] =

S t o r e W a r e h o u s e C o s t [i , j]))

28

Chapter 4

Constraint solvers

In this chapter we describe the constraint solvers. The description of the
solvers is based on the author’s observation and the information available
in the documentation of each solver. The reference to the documentation of
each solver is in the subjective description section of each solver.

4.1 Mozart/Oz

Mozart is an implementation of the multi-paradigmatic language Oz. Oz is
a functional language with built-in support for threaded applications and
paralelisation. It also contains support for constraint solving. Mozart/Oz
can run the subroutines on computers connected to the cluster. Since it
is a multi-paradigmatic language the user can write imperative as well as
Prolog-like programs. The language also offers classes including inheritance
and creating the objects. The language was designed for the highest variabil-
ity of usage because the programmer can use all the features of imperative,
functional, logic, object-oriented and other paradigms in one program. In
the standard distribution it is shipped as a standalone compiler which com-
piles into native executable code. Moreover it can run in the interactive
mode. The programmer can feed the compiler with a single line, buffer or a
whole program and the compiler immediately responds. As an IDE Mozart
standardly uses the EMACS system.

Just like in any other functional language the programmer can assign to
the variable only once per its lifetime. Therefore all variables holds also its
state. In case that an operation is performed over the not assigned variable
the actual command is suspended until the problem is resolved. This means

29

that after executing the following code the variable c will contain 5:

a = 5

if a > b then c = 5 else c = 6

b = 4

4.1.1 Solver description

As stated in the previous section the language has integrated a constraint
solver. The solver can solve problems with variables whose domains are finite
sets. A finite domain set can contain the natural numbers including zero.
The maximal value of variable is limited and is smaller than the maximal
integer. The computation model for constraint propagation is called a space.
The space consists of several propagators connected to a constraint store.
The constraint store contains conjunction of ground constraints. Ground
constraints are constraints in the form x = n or x ∈ D. For example the
constraint store could contain the constraint x = 6∧ y ∈ {1, ..., 12}∧ z = y.
Propagators contain other constraints, for example x > y or a2 + b2 = c2.
Propagator for a constraint c is an independent agent which tries to shrink
the domain of variables constrained by c. A solution is such assignment of
values to variables which satisfies all the conditions in propagators.

Example 1 Let us have variables X and Y and the following constraints:
X ∈ {0..9}, Y ∈ {0..9}, X + Y = 9, 2X + 4Y = 24.

1. The constraint store contains: X ∈ {0, ..., 9}, Y ∈ {0, ..., 9}. Propaga-
tors: X + Y = 9 a 2X + 4Y = 24.

2. The first propagator cannot do anything but the second changes the
constraint store to X ∈ {0, ..., 8}, Y ∈ {2, ..., 6}.

3. The first propagator changes the constraint store to X ∈ {3, ..., 7},
Y ∈ {2, ..., 6}.

4. The second propagator changes the constraint store to X ∈ {4, ..., 6},
Y ∈ {3, ..., 4}.

5. The first propagator changes the constraint store to X ∈ {5, ..., 6},
Y ∈ {3, ..., 4}

30

6. The second propagator finally changes the constraint store to X = 6,
Y = 3.

Propagation can be either interval or domain. The interval propagation
changes only the bounds of domain. Domain propagation also eliminates the
values of the domain. The domain propagation is on the first sight better
technique but is more complex than the interval propagation. Therefore the
interval propagation is more frequently used.

After propagation if the system is in a stable state and still the solution
was not found the distribution phase begins. Mozart choose a variable x

and value v from the domain Dv and create two new spaces S∪{x = v} and
S ∪ {x 6= v}. The computation then continues with the propagation phase
in the new spaces. If the propagation phase ends with a failure the space
also fails. The problem has no solution if all its spaces have failed.

We can choose from several distribution strategies. Choosing of the
proper strategy noticeable affects the computation time. For most problems
the first-fail strategy is the most suitable. However the user can implement
his own distribution strategies to fully suit his needs.

Two techniques can be used in the solving of the optimization problems.
The näıve technique introduces auxiliary variable o and adds the constraint
o = f(P) where f is the objective function. Then the variable o is increased
until the solution is found. The second possible technique is the branch-and-
bound algorithm which is described in the section 1.2.

4.1.2 Debugging support

Mozart/Oz offers to the user the interactive tool Explorer. The Explorer
can be used to explore the search tree including the choice nodes. The user
can use the Explorer in the interactive mode and choose the subtrees of the
search tree to be expanded. The Explorer tool screenshot is in the figure
4.1. The circles denote the choice nodes of the tree, the diamonds mean
the solution of the problem and finally the squares are the branches with no
solution. The lighter color denotes the nodes which can be expanded. On
the figure there is one solution, two unsuccessful branches and five choice
nodes. Three of the choice nodes can be still expanded. The Explorer tool
offers also exporting of the tree diagram to PostScript.

31

Figure 4.1: The Explorer tool

4.1.3 Subjective description

The Mozart/Oz system is well documented. There is available a website [1]
where the reader can find the documentation for the whole system. The
difficulty level of the documentation varies from the tutorials and basic doc-
umentation to the advanced topics. The Oz language was new for the author
of this thesis but the documentation was sufficient to understand the pro-
grams written in Oz and to be able to write new programs by himself. The
development of the system seems to be stopped now. The last version was
released a year ago. The release contains a bug which results in a problems
while the compiling of the Mozart. There has been nothing done about it
even though the authors stated that the bug will be corrected.

4.2 Choco

Choco is a constraint solver which is implemented as a library in Java pro-
gramming language. It is distributed as a JAR package having a JavaDoc
documentation included. It is quite easy to install it even for beginners in
Java and it lasts about five minutes in commonly used IDEs. Since the Java
is used, the Choco solver is available for various platforms and operating
systems. As far as it is not our goal to describe possibilities of the host en-
vironment, we are not about to further discuss the Java features. Choco is
being developed at Ecole des Mines de Nantes in France and it is freely avail-
able for download from the SourceForge. The main number of the current
version is 2. Choco divides the problem solution into two parts – a model

32

and a solver itself. The model contains variables and constraints given in the
problem. Afterwards, the solver is given the model as an input and it tries
to find a solution. Variables in the model can be integers, real numbers or
sets. Then the solver is able to find a solution for the current model. A user
can get information from the solver whether the problem has a solution or it
contains a conflict. There is an interface for resolving solutions themselves,
whereby one can ask for the first, the following or all existing solutions. If
we define a variable equal to a value of an objective function, the solver can
either minimize or maximize this variable . Furthermore, the solver allows
us to choose a strategy which might perfectly fit the given problem. The
variables of the solver depends on the variables of the model and one can
resolve the values only through the variables of the solver.

4.2.1 Solver description

As it has been already mentioned in the previous section, the problem solving
is divided into two separated tasks – to define a model and to deploy the
model to a well-configured solver. The model as well as the solver are the
independent Java objects. First we describe the model and after that we
look at the solver.

Model

The model is an instance of the class CPModel. In Choco the variables of
the model are represented as objects of the following types: IntegerVariable,
RealVariable and SetVariable. Those variables, generally, are not created
using the keyword new, but in the Choco there are factory methods for
this purpose. One has to register those variables first by calling a function
CPModel::addVariable, or CPModel::addVariables when adding an array
of variables at once. While registering variables into a model, we can set
additional properties to the variables, for example to set whether it is a
decision variable, or a variable containing a result of an objective function.
It is not necessary to set those properties every time; however, they might
rapidly improve the computation time. Alternatively, we can define those
properties in the solver, which way is described later in the following section.

Once we have registered the variables, a definition of constraints fol-
lows. It is possible either to use a large number of build-in constraints,
or to define our own constraints. Some of the constraints which are avail-
able natively in the solver are listed in the appendix C. Each constraint

33

fits in one of the following groups: basic constraints (true, false, relation
operators), basic expressions (goniometric functions, powers, sums), other
constraints (abs, div, max, ...), reified constraints (and, or, ifOnlyIf) and
global constraints (allDifferent, occurenceMax, ...). Furthermore, there
are constraints available which might be used for modeling geometric con-
straints, scheduling constraints and constraints for a sequence of variables
which is accepted by a finite automaton.

Apart from the build-in constraints, is it possible to define own con-
straints. The first step is to define a constraint p(x, y) as a set of the com-
patible values (a, b), where p is satisfied if x = a and y = b, or, eventually, as
a set of the incompatible values. In that case the set is defined as a table of
the values. Besides, we can define the constraint as a predicate, which has
to be satisfied, whereby the constraint is an instance of a class derived from
a class BinRelation with a method checkCouple having implemented. This
function takes two values as parameters and returns boolean value whether
the condition was satisfied or not. Similarly, we can define constraints over
tuples. For all such constraints (either binary or tuple) we can specify the
desired algorithm for arc consistence. There are AC3, AC2001, AC3rm
and AC3 algorithms available for the binary constraints and AC32, AC3rm,
AC2001 and AC2008 algorithms for the tuple constraints. These algorithms
are the variants of the original AC algorithm. Further description for some
of them can be found in [9].

As we found out while implementing of the Self Referential Quiz the
ifOnlyIf constraint is implemented as an extensional constraint (the table
of compatible values is computed). If the constrained variable has a large
domain then the table could be larger than the possible memory.

Solver

A solver is an instance of class CPSolver, which tries to find a solution
according to the model from the previous section. The solver starts with
reading the variables of the model and converting them into variables of the
solver (IntegerVariable into IntDomainVar, RealVariable into RealVar and
SetVariable into SetVar). Afterwards, it reads the constraints of the model
and creates constraints of the solver according to them. Then the solver
uses a search strategy and searches for solutions. Since the chosen strategy
is a key factor for the speed of solving, one can configure its various options.
A user can specify a selector and an iterator. The selector specifies which

34

variable is about to be taken in the next solver’s decision and the iterator
chooses each of available values and iterates over them. In a standard distri-
bution of Choco there are basic selectors such as variable with a minimum
domain, variable with a maximum domain and so on. The iterators can try
values in ascendant or descendant order. An alternative to iterator is a value
selector, which returns next available value when required. As for value se-
lector, we can use, for example, the minimal value in a domain, a random
value in a domain and so on. We can choose different user-defined strate-
gies for various groups of variables so as to follow the specified problem in
the best way. In that case we define the solver’s behavior through so-called
goals. A goal contains a definition of a strategy, that means a selector for
certain variables and an iterator over values.

Solving large-scale problems might be enormously time demanding, take
too much system resources and so on. To avoid this we can define solver
limits. In the solver we can set a time limit, a limit for a number of nodes,
a depth of backtracking, a number of fails or a limit for CPU time. Apart
from that, the users can define their own limits.

Once the solver has read the model and the strategies are defined, it starts
solving the problem. The solver offers an interface for accessing either each
solutions (solve, nextSolution), or to get all the solutions at once. Moreover,
we can specify a variable which the solver tries to minimize or maximize.
Since the result is held in variables of the solver and not in user-defined
variables of the model, it is required to resolve the solver’s variables by
calling a function CPSolver::getVar, which accepts a variable of a model
and returns a variable of a solver.

4.2.2 Debugging support

Choco does not include any tools for the graphic visualization of the search
tree such as the systems Mozart or Gecode do; however, in the Choco it is
possible to print out a log of the solving process. One can configure several
levels how detailed information is logged varying from nothing to a complete
list of what the Choco does internally.

4.2.3 Subjective description

The system has a good documentation [2], although it is a little bit bad
organized. Even though the careful readers find virtually everything they

35

look for. A documentation for developers is generated by JavaDoc system.
Due to that fact it is available as a hinting tool for many users of common
Java IDEs, that definitely helps for better understanding of the solver. Since
the development of the solver is maintained at SourceForge server, it is quite
easy to access source codes as well as a history of versions via revision control
system Subversion. One can find there also a technical support forum, where
the authors answer the users’ questions. The reaction time is very low and
the answers are of high quality so most of the problems are quickly fixed.

4.3 Minion

Minion is a constraint solver which works as a standalone application. Min-
ion takes as an input the problem description and returns the solutions if
there are any. Minion is open source and available at SourceForge. The
problem description is contained in a file with a special format. The file
contains definitions of variables, their domains and constraints on them.
The best description of the input format could be “the constraint assembly
language”. The constraints cannot use as their parameters expressions. If
we need to constrain the expression we have to introduce a new variable to
be equal to the expression and then constrain this variable. For example let
us assume we can use constraints X = |Y | and X < Y and we need to use
the constraint X < |Y |. We have to introduce the auxiliary variable a and
post two constraints a = |Y | and X < a. Using of the many expressions in
our problem leads to the enormous number of auxiliary variables. Moreover
the language does not contain loops. Therefore we cannot post a various
number of constraints based on the size parameter of the model. We have
to state all constraints for a given problem instance. As a result the defini-
tion of 4-queens problem cannot be easily transformed to 8-queens problem.
The set of constraints is limited and cannot be extended. Moreover some
basic constraints have to be used in an unusual way. If we want to constrain
a =

∑

wixi we have to use a pair of constraints a ≤
∑

wixi and a ≥
∑

wixi

since the variant with equal sign is not in the system. The used variables
can be booleans, bounded integers, discrete integers and sparse bounded
integers. Bool variable is a variable with domain {0, 1}. Bounded integer
variable is an integer variable where the solver stores only its bounds. Dis-
crete integers are generally the same as bounded integers except they can
contain holes in the interval. Finally sparse bounded integers are variables
which have a small number of non consecutive values specified in the file.

36

During the computation only bounds of the spare bounded integers are up-
dated.

The input format is not very human-friendly. Even for small problems
the number of auxiliary variables grows over reasonable limits and the input
is not easy to understand. It is a reasonable solution to use a generator to
generate a Minion input file. User can either write his own ad hoc generator
for his problem or use a tool like Tailor which is described in the section 4.7.

4.3.1 Solver description

As stated in the previous section Minion is a standalone executable which
takes as a parameter filename of the input file or through the standard in-
put the contents of input. It automatically starts computation and writes
on the standard output or into the specified file solutions. It can handle
only integers and therefore the problems have to be encoded in a such way.
The format of the input file is not stable but uses an identifier which pre-
vents from misinterpretation of the input. If the user feeds the Minion with
an unsupported format of the file the solver informs about that and ends.
The current version of the input file is 3, and the user can recognize it by
observing the first line of the input, which has to contain only string MINION

3. After identification line there follows the sections of the file. The file can
contain the following sections:

• Definition of the variables

• Definition of the tuples

• Definition of the constraints

• Definition of the search parameter

The list of supported constraints can be found in the appendix C. The
search engine behavior can be adjusted either in the input file or at the
command line by parameters. The user can adjust the order of variables
during the selection phase of search, decide whether to find all solutions or
only one or how to format the output.

In the section D.3 we included the implementation of the Magic Sequence
benchmark of the length five. As the reader can see the input file is divided
into several sections. The specification of the file format comes on the first
line. Then follows the sections of the file denoted by the label *** SECTION

37

NAME ***. These sections can be in the file in any order and repeated as
many times as needed. The only exception is the EOF section which denotes
the end of the file and should be in the file only once at the end of the
file. We used the alternative model of the problem as described in the
section 3.3. Therefore we need five variables for the sequence and twenty-
five auxiliary variables. We define them in the VARIABLES section on lines
4 – 30. Then the constraints are defined in the CONSTRAINTS section. The
implication is modeled using the reification constraint. Since the Minion
have only the constraints

∑

x ≤ a and
∑

x ≥ a but does not have the
constraint

∑

x = a we have to use the constraints sumleq and sumgeq.
Finally the SEARCH section defines the order of the variables. The variables
will be searched in that order. The SEARCH section defines also the solution
using the PRINT command. All variables marked for printing will be printed
out as a solution. To generate the Minion input files we used the Tailor tool
which compiled the Essence source code into the Minion input file; however,
the large models were problematic for this tool. Therefore we had to write
for some benchmarks the ad-hoc generators of the input file.

4.3.2 Debugging support

Minion offers printing out the search tree where one can observe the solvers
actions. However some other output than this printout is not available.
Since the modeling in Minion is difficult the user will probably use the Tailor
tool. Tailor offers not only the translation to the Minion format but direct
invocation of the Minion, passing the input to it and show the solution.
The user then can directly modify the Essence source code and perform the
invocation again if the results are not what he expected.

4.3.3 Subjective description

The largest problem of the solver is the limited set of constraints. If the
problem needs more sophisticated constraints then we cannot represent it
in the Minion. The second large problem is the input format. The problem
can be resolved by using the Tailor tool; however, for the large problems the
tool is not sufficient. Apart of that as a standalone executable which can be
called from the command line it can bring the capability of the constraint
solving to programs written in the languages like bash. The only thing which
is needed is the capability to assemble the input file in the proper format.

38

There is available the reference guide [17] with description of all constraints
available and description of the input format.

4.4 Gecode

Gecode is a C++ library for solving constraint problems. It allows to model
a problem which contains integers, boolean variables and finite integer sets.
Gecode is a free open source software just like most of the mentioned solvers
are. The library is distributed in the source codes and for the Microsoft
Windows there is also an installer with precompiled libraries. Optionally,
an user needs a Qt library, which is used in a visualization graphic tool Gist.
Apart from the basic constraints, Gecode has also constraints for scheduling,
finite automatons, graphs and so on. We describe those constraints further in
the following section. The key person behind the Gecode solver is Christian
Schulte, who also participated in a development of the system Mozart/Oz.

4.4.1 Solver description

A problem is modeled as a class inherited from a class Space. In this partic-
ular class there are defined variables and constraints. The variables are ob-
jects of one of the following types: IntVar for integers, BoolVar for booleans
and SetVar for finite integer sets. Compared to the other solvers the boolean
variables aren’t just integers with a domain {0, 1}. It is not even allowed
to declare a constraint b = i having a boolean variable b and an integer
i. When a relation between the boolean and integer variables is required,
one can use either reified constraints (i = 1) ⇔ (b = true), or channelling
constraints (bj = 1) ⇔ (i = j) (such as b = (0, 0, 0, 1, 0, 0), i = 3). The con-
straints are global functions in a Gecode namespace. To add a constraint
to the model one has to use the post function which takes a constraint as a
parameter. Due to the function overriding, most of the constraints are im-
plemented in a way, where there are more variants each available through the
overriding; and the appropriate one is chosen. If the users uses a so-called
minimodel, they can use short expressions, for instance a constraint a = x ·y
can be written as post(home, a == x*y) instead of mult(home,x,y,a);
however, the minimodel works only as a “syntactic sugar” and, therefore, it
does not come up with any new constraints and it only ease a way how the
current ones are written.

39

Apart from the standard arithmetic constraints and order constraints,
Gecode offers wide range of specialized constraints. For SAT there is a
constraint clause(space,rel,x,y,z), which is equal to a condition

∨

xi ∨
∨

¬yi = z, respectively,
∧

xi ∧
∧

¬yi = z depending on a parameter rel.
There is another interesting constraint count, which guarantees that #{i|xi =
j} = yj is satisfied. This brings us to the fact that the benchmark Magic
sequence can be modeled and implemented by using only one constraint
count(*this, x, x). Moreover, there are also available the extensional
constraints. Those are constraints defined using of the extension, for ex-
ample, a deterministic finite automaton. In such a case, the constraint has
the following pattern: x is a word, which is accepted by the automaton A.
As for graph constraints, Gecode has a constraint x is a Hamiltonian cycle.
For an area of scheduling, there is available a constraint cumulatives(home,
resource, start, duration, end, height, limit, atmost), which gu-
arantees, that in a set of tasks T (task Ti = 〈machinei, starti, durationi, endi,

heighti〉) will be performed on the available machines. Each machine can
handle at most limitj tasks at one moment.

The following constraints can be used for constraining of the set variables:
standard set operations, constraints for cardinality of set and a constraint
which guarantees, that a weighed sum of set has a given value. That means
if we have a set x, a weight vector w and the total should be y, the constraint
has a pattern

∑

xiwi = y. Furthermore, there are two constraints available,
both of which are related to convexity. A set is convexed, if it contains a
continual interval of numbers. A set {1, 2, 3} is convex, but {1, 3, 4, 5} is
not convex, since it does not contain the number 2. The convex hull is the
least convex superset. A constraint convex(home,x) guarantees, that x is
convex and convex(home,x,y) means, that y is a convex hull for x. If one
needs to model an optimization problem, the problem representing class is
derived from a class MaximizeSpace (or MinimizeSpace) instead of a class
Space. In the class there has to be implemented the cost function which
returns the value of the objective function.

Searching is maintained by a function branch(home,x,var,val), which
sets a search vector x. While distributing, a parameter var defines an al-
gorithm for choosing a variable and a parameter val defines an algorithm
for choosing of a value of variable on which depends the distribution. The
following code shows the call interface for the application to invoke a search
for the solution:

Model* m = new Model;

40

SEARCH<Model> e(m);

delete m;

while (Model* s = e.next())

{

s->print();

delete s;

}

A model is a class derived from a class Space or, respectively, Maximize-
Script, which represents a model of CSP. In the real application the SEARCH

must be changed to one of the followings: DFS – the depth-first left-most
search, LDS – the limited discrepancy, BAB – the branch-and-bound algo-
rithm and finally Restart – the depth-first left-most restart search. Both
algorithms BAB a Restart can be used when searching an optimal solution.
All of the algorithms can be used for a parallel computation. Having a
computer with more CPUs, one can reach much faster computation.

4.4.2 Debugging support

In Gecode there is a tool Gist, which visualizes a search tree. It is a tool quite
similar to the tool Explorer in Mozart/Oz solver. The interface, graphic
symbols and functions are the same as in Explorer. On the other hand, Gist
gives us an additional function Gist node statistics, which gives us more
information about a specific node of the search tree, such as the depth of
the node (according to a tree root), current height of the node’s subtree and
the number of successful/unsuccessful solutions in the subtree. In Gist there
is also a tool Inspector, which works equally to the Inspector in Mozart/Oz.

4.4.3 Subjective description

Gecode is a typical example of a top software, which can be totally unusable
due to the absence of a documentation. Before the version 3.0.0, which was
released in March 2009, there was only a technical documentation generated
by Doxygen. Furthermore, the example models were sealed into a pattern
class Example to achieve a more simple call of the examples; however, it
lacked any further explanations how to implement the solver inside own
project and it was necessary to deeply examine the source code of the solver.
Since the version 3.0.0 being released, there is available an e-book Modelling

41

with Gecode [20], which has completely changed the situation. The e-book
is a tutorial, which step by step guides the reader from a basic query – from a
given problem construct a model for the solver – to wide range of possibilities
of setting up the solver. Apart from the classical documentation, there is
also an e-mail conference, which is – while writing this thesis – quite a great
place to ask and where the authors answer after a short period.

4.5 ECLiPSe

The ECLiPSe Constraint Programming System is an open source implemen-
tation of the Prolog programming language. ECLiPSe is provided with li-
braries for constraint solving. It is possible to solve models over integers, real
numbers and finite integer sets. The solver is not just one library but there
is one general solver and several specialized solvers. The basic solver is the
ic library – interval constraints which contains basic arithmetic constraints.
For global constraints there is an ic global library. The global constraints
are constraints which use a couple of more advanced techniques to filter the
variable domain, for example the alldifferent constraint implemented as
a matching in a bipartite graph. The ic library contains the alldifferent
constraint too, but the one introduced in ic global library is stronger. For
scheduling problems there is an ic cumulative library and for finite integer
sets an ic sets library. The users can define their own constraints if the
shipped set of constraints is not satisfactory.

4.5.1 Solver description

As stated in the previous paragraph ECLiPSe is an implementation of the
Prolog programming language. The system contains the solver as an inde-
pendent library. Therefore the users are not limited to use only the shipped
solvers, but they can use their own solvers if any. A standard solver is the
ic solver which is a hybrid finite domain and real number interval constraint
solver. As the name suggests, it offers constraining the variables with both
real and integer domains. It supports arithmetic expressions, arithmetic
constraints, global constraints, reified constraints and search algorithms.
The set of global constraints can be extended by using ic global constraints.
This library provides constraints for lists such as alldifferent, ordered,
occurences and so on. For scheduling the mentioned ic cumulative con-
straint is available as well as their stronger versions ic edge finder or ic ed-

42

ge finder3, both of which vary in the time complexity of used algorithms.
For the constraints over the symbolic domains – such as days of the week
– the ic symbolic domain is available. The constraining over finite integer
domains is also available using the fd sets library. This library provides
member constraints, cardinality constraints, relation constraints, as well as
set expressions. The problem is typically modeled as a Prolog predicate
which constrains the variables domains, then applies constraints on these
variables and, finally, it calls a search algorithm on the variables.

A capability of the solver can be extended by defining user defined con-
straints. For this purpose the system is equipped with Propia library and
the Constraint Handling Rules library or CHR. CHR is a high level lan-
guage for describing constraint rules. The reader can find the description
of CHR in [19]. ECLiPSe offers chr library which can load a source code
in CHR format, translate it into Prolog predicate and then include it. The
constraint then can be used as any standard constraint shipped with the
system. The second way to introduce new constraint is to use the Propia
system. Propia takes any Prolog predicate and convert it to the proper
constraint. The calling convention is Goal infers most. The library infers
as much information about Goal as possible based on the loaded constraint
solver libraries. The level of inference can be adjusted. Propia offers an
approximate generalized propagation. The most inference can be expensive
to compute and may not be necessary. The alternatives are predicates Goal
infers ic, Goal infers unique and Goal infers consistent. As the
name suggests, the unique infer ensures that all answers to the query are
unique. The consistent inference can give answer if the query can be solved
or not. If it can be solved, it additionally checks whether the constraint
is already true or not. The ic inference is the same as the most inference
except that the most is based on currently loaded solvers compared to ic
which uses the specified solver. We shall show the example of using of our
reimplemented X# > Y constraint which enforces that X is greater than
Y using the standard > operator. The problem predicate is the same as if
we used only shipped constraints; however, the > operator cannot handle
constrained variables. And even if it could, it is not what we need. The
standard behavior is to determine if X is greater than Y in the time of call-
ing of the operator predicate and that is all. We need the operator to keep
track on the variables and enforce the constraints as the domain updates
due to the other constraint propagation. This is the point when the Propia
comes. Once we mark the predicate as infers most, it is normal constraint

43

just like any other.

problem(X, Y) :-

X :: [-100..100],

Y :: [-100..100],

(X > Y) infers most, % predicate sent to Propia

X #= 5,

labeling([X,Y]).

4.5.2 Debugging support

ECLiPSe offers visualization related libraries. First the users have to cre-
ate a viewable object using create viewable from viewable library which
contains variables in a proper order and so on. Then users have to in-
voke a visualization client, which is responsible for visualization of the given
viewable objects. The visualization can be performed using a visualization
client in the java vc library. The created viewable objects are shown in the
visualization client using several types of viewlets.

4.5.3 Subjective description

The ECLiPSe system has an exhaustive documentation [13] which covers
both the Prolog language and the available libraries. The constraint library
itself is more deeply documented in the constraint library manual [10]. The
set of constraints which the solver offers is quite limited compared to the
other solvers; however, the set of constraints can be extended either by using
the external libraries or by implementing of the own constraints.

4.6 SICStus Prolog

SICStus Prolog is an implementation of the Prolog programming language by
Swedish Institute of Computer Science or SICS. It differs from the other here
discussed solvers because SICStus Prolog is not a free open source system.
The trial version of this system can be obtained. Just like the ECLiPSe

system the SICStus Prolog is not only a constraint solver but a programming
language where constraint solver is shipped as an independent library. The
system provides libraries for solving the constraint problems over the finite
domains, over the boolean domains and over the real domains.

44

4.6.1 Solver description

Similarly as in the ECLiPSe system the solvers are independent libraries
shipped with the system. The constraint solver over the finite domain consist
of the clp(fd) library [12]. The language constructs are different compared
to ECLiPSe ; however, the basic properties are preserved. Therefore porting
the ECLiPSe program to SICStus Prolog is not a hard work but also it is
not trivial. The number of available constraints is higher than the ECLiPSe

system provides. The clp(fd)library offers standard arithmetic expressions,
the relation constraints and the global constraints. The library also provides
the scheduling constraints and the extensional constraints.

The clp(b) provides a solver over the boolean variables. The solver con-
tains the relation constraints as well as constraints for the tautology and
satisfiability. Finally the clp(q,r) library [16] provides constraining over the
rational and real numbers. The constraint solver for set variables is not
available.

The standard set of constraints can be expanded by the user defined
constraints. As well as the ECLiPSe system the SICStus Prolog offers to
add constraints using the Constraint Handling Rules language and FlatZinc
language. User can also define his own constraints as the Prolog predicate.
The user created constraint can be either a global constraint or a primitive
constraint. The ways how to create such constraints are described in the
SICStus Prolog manual.

The constraint library clfpd is very similar to the ECLiPSe library ic.
We used the benchmarks already implemented in the ECLiPSe system and
changed a very small amount of library-specific calls to get the SICStus
Prolog source code.

4.6.2 Debugging support

The SICStus Prolog offers the Finite Domain Constraint Debugger or fdbg
library. This library can be used next to the standard Prolog debugging
predicate trace. This predicate allows to debug any Prolog program. The
fdbg library provides the log of the constraint propagation and distribution.
There are logged all changes to the domains and other events which occurred
during the computation. The example of the fdbg output is in the figure
4.2. On the first line there is a Prolog query. We constrain the variable
X to be in the domain {5, ..., 9} and the variable Y to be in the domain
{1, ..., 6}. Then we constrain the variable X to be smaller than variable

45

Figure 4.2: The example of the fdbg output.

| ?- X in 5..9, Y in 1..6, X #< Y.

<fdvar_9> in 5..9

fdvar_9 = inf..sup -> 5..9

Constraint exited.

<fdvar_10> in 1..6

fdvar_10 = inf..sup -> 1..6

Constraint exited.

<fdvar_9>+1#=<<fdvar_10>

fdvar_9 = 5..9 -> {5}

fdvar_10 = 1..6 -> {6}

Constraint exited.

X in 4..6,

Y in 5..7

Y . We did not perform the search so the variables remains not solved.
User can set names for the variables to achieve a better orientation in the
printout. The library uses the following events which results in the action.
The constraint event which is invoked when the global constraint is woken
and the labelling event which is called after the variable labeling is started
or a variable gets constrained or the labeling has failed. After such an event
occurs the visualizer is called. The visualizer is a Prolog predicate which
typically shows the event in the user friendly format; however, it can do any
action instead as a response to the event. The primitive constraints are not
tracked by fdbg but the arithmetical constraints like X# < Y are changed
to the global constraints when the library is loaded. The user can specify
the filename where the output of the fdbg will be written.

4.6.3 Subjective description

The SICStus Prolog is a professional solution. The variety of available li-
braries is really large; however if user need to solve constraint problem over
the set variables it is useless. System is well documented and the manual is

46

exhaustive [4]. The system is not available freely for the public use but the
time limited trial version can be acquired.

4.7 Tailor

Tailor is not a constraint solver. It is an open source Essence compiler which
produces an input format of the Minion solver, a C++ source for the Gecode
solver or an input format of Gecode/FlatZinc. Tailor is a Java application,
which can be run either interactively, or as a command line utility. Tailor
accepts as an input both an Essence program and an Essence parameters file.
Then it normalizes the input into one source code. After normalization it
performs the flattening of the code. During the flattening phase it replaces
all the foreach loops and the sums with new auxiliary variables and with
repeated basic constraints. Finally, it transforms this normalized code to a
target language. Moreover, one can tune up the output of the Tailor solver
by setting up several parameters about the language constructs which can
be used. Another feature, which Tailor has, is that one can run the solver
directly from its environment over the translated source code.

47

Chapter 5

Benchmark results

In this chapter we present the results of the performance measuring of each
solver. There are two types of tests. The robustness test and the perfor-
mance test. In the robustness test we compare the solvers according to
the size of the task which the solver was able to compute in a given time
limit. In the performance tests we measure the time which is needed to
find a solution to the problem and the consumed memory. We used for
this purpose designed tool. The tool runs the solver executable with given
parameters. While the solver process is running the benchmarking tool pe-
riodically checks the /proc/(pid)/stat file and saves the current state. If
the elapsed time is larger than the given limit the SIGINT signal is sent to
the process. The process has one second to end and produce some output.
If the process is still running one second after the SIGINT signal the SIGKILL
signal is sent and process is killed. In the robustness test the tool tries to
estimate the size of the task using the binary search.

All of the benchmarks were performed on a single dedicated computer
Pentium IV, 3GHz (single core with hyper threading), 1GB RAM running
the Debian Linux with Linux kernel 2.6.18. Except the Mozart/Oz solver
and SICStus Prolog all solvers were compiled on the target machine. The
precompiled binaries distribution was used for the Mozart/Oz solver be-
cause the source distribution contained in the time of writing of this thesis
error which prevented compiling of the code. The SICStus Prolog is not dis-
tributed as source code but only as a binary. Therefore we used the shipped
executable. Since the SICStus Prolog is not a free open-source software we
used a trial version of the solver. There should be limited only the period
when the solver can be used. The performance of the solver should not be

48

affected.
The following versions of the solvers were used:

• Mozart 1.4.0-20080704

• Choco 2.1.0

• Minion 0.8.1

• Gecode 3.1.0

• ECLiPSe 6.0 96

• SICStus Prolog 4.0.7 – Linux, glibc 2.7

In the performance test as well as in the robustness test we used the fist-
fail search strategy for all of the implemented benchmarks. This strategy is
the default strategy the all solvers.

5.1 The robustness test

In the robustness test we measure how long magic sequence the solver is
able to compute in ten minutes. As stated in the previous paragraph the
benchmarking tool uses for this purpose the binary search. The tool has an
interval [a, b] of values on which the search is performed. It picks a value
v in the middle of the interval and tries to compute the solution of that
length. If it success it changes the interval to [v + 1, b], if it fails it changes
the interval to [a, v − 1]. Then the search continues in the same way until
the lower bound of the interval is larger than upper bound. The results of
the robustness test are in the table 5.1.

The results of the robustness test are in the table 5.1 (the best result is
bolded). As we can see the most robust solver is the Minion solver followed
by the Gecode. At first we tried to implement the benchmark problem in the
Gecode system by using of the constraint count. This constraint meaning is
exactly the Magic Sequence problem; however, the longest magic sequence
which we were able to compute had the length 27. If we compare this value
with the current value 191 it is obvious that the implementation of this
constraint is problematic.

49

Table 5.1: The results of the robustness test.

Mozart/Oz Choco Minion Gecode ECLiPSe SICStus Prolog
94 111 236 191 55 174

5.2 The performance test

This test compares the solvers according to the two criteria. The first cri-
terion is the time needed to solve given problem instances. The second
criterion is the highest peak of used computer memory during the compu-
tation. We divided the instances of the benchmarks into two groups. In the
first group there are the instances of the Quasigroup With Holes problem.

We generated 25 balanced quasigroups of the order n = 16 and removed
approximately 1.6n1.55 values. According to the [5] the quasigroups with this
number of the holes are hard to solve compared to the other quasigroup of
the same order. To generate the quasigroups we used the lsencode combined
with the walksat.

This benchmark gives us a comparison of the allDifferent constraint.
This constraint is a global constraint. That means that the constraint is
not binary but it constrain a set of variables. The allDifferent constraint is
typically implemented using the matching in a bipartite graph [22]. The one
group of nodes consists of the variables and the second group consists of the
possible values of these variables. The variable node and the value node are
connected by the edge if and only if the value is in the variables’ domain.

As we can see in the graph in the figure 5.1 (a version with logarithmic
scale is in the figure 5.2) the best results were achieved with Gecode, Mozart
and Minion. The performance of the SICStus Prolog and ECLiPSe compared
to the others is worse than the order of the magnitude.

In the second group of benchmarks there are the following instances of
the benchmarks:

• queens10 – find all solutions of the 10 queens problem,

• queens100 –find one solution of the 100 queens problem,

• magic20 – find the Magic sequence of the length 20,

• srq – find the solution of the Self Referential Quiz,

50

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

R
un

tim
e

[m
s]

The problem instance id

QWH - order 16

Mozart
Choco
Minion

Gecode
ECLiPSe

SICStus Prolog

Figure 5.1: The QWH benchmark results

• warehouses – find the best solution of the Locating Warehouses prob-
lem.

As we can see in the tables 5.2 and 5.3 (the best result of each benchmark
is bolded) none of the solvers is the ultimate winner; however, the three
solvers – SICStus Prolog, Gecode and Mozart – achieved the best results
in some of the problem instances. ECLiPSe and Minion did not solve the
100 queens problem in the given time limit. Therefore we consider them as
unreliable. The ECLiPSe and Choco were unable to load the big problems
to the memory so we changed the memory limit to one gigabyte. For the
ECLiPSe we changed it for all of the experiments and for the Choco we
used this large memory only for the magic sequence problem. The table 5.3
indicates that the Java Virtual Machine which is running the Choco as well
as the ECLiPSe solver allocated the whole allowed amount of memory. We
observer in the performance test the same problem with the count constraint
in the Gecode system as in the robustness test. For a comparison the original
results for the magic20 benchmark was 2926.86 milliseconds. The memory
peak was nearly the same.

51

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

R
un

tim
e

[lo
g

m
s]

The problem instance id

QWH - order 16

Mozart
Choco
Minion

Gecode
ECLiPSe

SICStus Prolog

Figure 5.2: The QWH benchmark results, logarithmic scale

Table 5.2: The results of the performance test. Runtime (ms)

Benchmark Moz Cho Min Gec ECL SiP
queens10 237.95 850.27 227.69 65.35 809.45 327.53
queens100 184.19 1005.02 × 34.70 × 15.40
magic20 11.48 1092.95 71.24 65.41 4514.14 198.32
srq 6.22 482.81 55.81 25.89 691.13 13.54
warehouses 68.28 1500.83 2338.45 169.71 1808.29 14.41

Table 5.3: The results of the performance test. Memory peak (MB)

Benchmark Moz Cho Min Gec ECL SiP
queens10 8.62 209.42 44.17 8.58 1158.15 38.08
queens100 23.31 209.46 × 6.71 × 1.35
magic20 2.32 1173.19 44.57 7.26 1157.99 39.30
srq 63.36 209.35 44.56 6.68 1158.08 0.94
warehouses 6.79 209.12 44.30 7.00 1157.99 0.89

52

Chapter 6

Conclusions

This thesis presented a survey of available constraint solvers and more de-
tailed described six of them. After reading of this thesis the reader should
have a basic idea about capabilities and performance of each of them. The
solver capabilities were compared on the benchmark problems which were
implemented in all of them. On these benchmarks we showed a different
approach of each solver how to represent the constraint problem model.

6.1 Which solver to choose?

It is a hard question and there is no simple answer to it. Each solver has an
area where is the best choice of others. If we are forced to use a particular
language the best choice would be the solver in that language. That means
that for C++ projects we choose Gecode, for Java projects we use Choco,
for Oz projects the Mozart/Oz and finally for Prolog project we can choose
the ECLiPSe or SICStus Prolog. Since all the solvers except SICStus Prolog
are free we can choose any of them if the main criterion is the budget. If
we need to model the exotic constraints we cannot use the Minion system.
On the other hand the Minion system is suitable as an external solver for
environments where is easy to generate an input file, run a process and then
process its output. Example of such environment could be the bash script
language. Last but not least criterion can be the readers’ conservatism and
will to learn new things. For example the Mozart/Oz is an interesting solver
and language but if the reader do not want to get familiar with the functional
programming paradigm that solver would not be suitable for him.

Based on the experimental results the Choco and ECLiPSe can be labeled

53

as “slow systems”. ECLiPSe has also the limited set of constraint compared
to the other solvers. The set can be extended by the user but the other
system offers wider set of the constraints in the basic release. Minion has a
limited set of constraints which cannot be extended. Moreover it failed to
compute one of the benchmarks. Mozart/Oz is quite fast system; however
the set of available constraints is also limited and the system development
seems stopped.

This leaves us the SICStus Prolog and Gecode which can be recom-
mended as the first choice. The SICStus Prolog was the best in most of the
performance benchmarks and offers many specialized constraints; however,
it is not a free open source system and the price has to be considered. Also
the results of the Quasigroup With Holes benchmark was one the worst com-
pared to the other solvers. Gecode offers nearly as large set of constraints as
SICStus Prolog. Moreover Gecode offers constraining over the set variables
which is not available in the SICStus Prolog.

6.2 Future work

We did not perform a deeper study of the search strategies of the solvers.
In the future it would be useful to compare the other strategies which are
shipped with the solver. In the solvers which offers ways to implement the
own strategy we should try to implement such a strategy and compare it
with the shipped strategies. Also the comparison of the solver based on the
Quasigroup With Holes problem can be performed on the quasigroups of the
higher order (at least 30). Such a comparison should give us a more accurate
data about the performance of each solver. Finally we could examine the
solvers on the real world applications for example as a solver subsystem of
a larger software.

54

Bibliography

[1] Mozart Documentation, 2008. [online, available at http://www.mozart-
oz.org/documentation/; accessed 06-August-2009].

[2] Choco solver, Documentation, 2009. [online, available at
http://www.emn.fr/x-info/choco-solver/doku.php?id=documentation;
accessed 06-August-2009].

[3] Gecode Reference Documentation 3.1.0, 2009. [online, available at
http://www.gecode.org/doc-latest/reference/index.html; accessed 06-
August-2009].

[4] SICStus Prolog User’s Manual, release 4.0.7, 2009. [online, available at
http://www.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf; accessed 06-
August-2009].

[5] Dimitris Achlioptas, Carla Gomes, Henry Kautz, and Bart Selman.
Generating satisfiable problem instances. In AAAI/IAAI, pages 256–
261. AAAI Press, 2000.

[6] The National Aeronautics and Space Administration. Deep
space 1: Autonomous remote agent. [online, available at
http://nmp.nasa.gov/ds1/tech/autora.html; accessed 02-December-
2008], 2001.

[7] Roman Barták. Omezuj́ıćı podmı́nky: od sudoku po vesmı́rné aplikace.
In Umělá inteligence (5), pages 146–172. Academia, 2007. In czech
language.

[8] Roman Barták. On-line guide to constraint programming – sys-
tems, 2007. [online, available at http://ktiml.mff.cuni.cz/ bartak/con-
straints/systems.html; accessed 21-July-2008].

55

[9] Roman Barták. On-line guide to constraint programming, 2009. [online,
available at http://ktiml.mff.cuni.cz/ bartak/constraints/index.html;
accessed 23-July-2008].

[10] Pascal Brisset et al. ECLiPSe, Constraint Library Manual, 2009. [on-
line, available at http://87.230.22.228/doc/libman.pdf; accessed 06-
August-2009].

[11] Maja Bubalo and Mirko Čubrilo. Modeling and solving self-referential
puzzles. JIOS, 29(1):268–306, 2005.

[12] Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended
finite domain constraint solver. Technical report, Proc. Programming
Languages: Implementations, Logics, and Programs, 1997.

[13] Andrew M. Cheadle et al. ECLiPSe, A Tutorial Introduction, 2009.
[online, available at http://87.230.22.228/doc/tutorial.pdf; accessed 06-
August-2009].

[14] Antonio J. Fernández and Patricia M. Hill. A comparative study of
eight constraint programming languages over the boolean and finite
domains. Constraints, 2002.

[15] Ian Gent and Toby Walsh. Csplib: a benchmark library for constraints.
Technical report, Technical report APES-09-1999, 1999. Available from
http://csplib.cs.strath.ac.uk/. A shorter version appears in the Proceed-
ings of the 5th International Conference on Principles and Practices of
Constraint Programming (CP-99).

[16] Christian Holzbaur. Ofai clp(q,r) manual. Technical report, Austrian
Research Institute for Artificial Intelligence, Vienna, 1995.

[17] Christopher Jefferson et al. The Minion Manual,
Minion Version 0.8.1, 2009. [online, available at
http://minion.sourceforge.net/files/Manual081.pdf; accessed 06-
August-2009].

[18] Miroslava Plachá. Porovnáńı systémů pro programováńı s omezuj́ıćımi
podmı́nkami. Bachelor thesis, Fakulta Informatiky, Masarykova uni-
verzita, Brno, 2007. In czech language.

56

[19] Tom Schrijvers. Constraint handling rules (CHR). [online, available
at http://www.cs.kuleuven.be/ dtai/projects/CHR/; accessed 26-July-
2009], 2009.

[20] Christian Schulte, Guido Tack, and Mikael Zayenz Lagerkvist. Modeling
with Gecode, 2009. [online, available at http://www.gecode.org/doc-
latest/modeling.pdf; accessed 06-August-2009].

[21] Marc van Dongen. Call for solvers and benchmarks fourth international
constraint solver competition (csp, max-csp and weighted-csp competi-
tion). [online, available at http://cpai.ucc.ie/09/call2009.pdf; accessed
26-July-2009], 2009.

[22] Willem-Jan van Hoeve. The alldifferent constraint: A survey. Sixth An-
nual Workshop of the ERCIM Working Group on Constraints, Prague,
2001.

57

Appendix A

Contents of the CD

We include a CD with additional content to the thesis. On the included
CD one can find the installation files of the discussed solvers except SICStus
Prolog. Also we put there full source code of the benchmarks implemented
in all solvers including minion input files. An electronic copy of this thesis
can be found there in the PDF format.

The content of the CD is available at http://www.tulacek.eu/bc thesis/

A.1 Files and directories

• readme.txt – the detailed contents of the CD

• thesis.pdf – the electronic version of this thesis

• systems – a directory with the installation files

• benchmarks – a directory with the source codes of benchmarks

– data – the raw test results and the QWH assignments

– choco – the implementation in the Choco

– eclipse – the implementation in the ECLiPSe

– gecode – the implementation in the Gecode

– minion – the implementation in the Minion

– mozart – the implementation in the Mozart/Oz

– sicstus – the implementation in the SICStus Prolog

58

Appendix B

List of the constraint solvers

We present here a short list of the constraint solvers. The more detailed list
can be found in [8].

CHIP V5

CHIP (constraint handling in Prolog) is the second-generation constraint
programming tool. It supports modeling of the scheduling, logistics and
manpower planning.

URL: http://www.cosytec.com/production scheduling/chip/optimization pro-
duct chip.htm

Choco

Choco is a solver library written in the Java programming language.

URL: http://www.emn.fr/x-info/choco-solver/

Comet

Comet is an Object Oriented Programming Language for Constraint-Based
Local Search.

URL: http://www.comet-online.org/

59

ECLiPSe

ECLiPSe is an implementation of the Prolog programing language focused
on the constraint programming.

URL: http://www.eclipse-clp.org/

Gecode

Gecode is a solver library written in the C++ library.

URL: http://www.gecode.org/

Gecode/FlatZinc

Gecode/FlatZinc is a solver for the problems modeled in the FlatZinc lan-
guage

URL: http://www.gecode.org/flatzinc.html

Gecode/J

Gecode/J is the implementation of the Gecode solver in the Java program-
ming language. The software is no longer actively developed.

URL: http://www.gecode.org/gecodej/

Gecode/R

Gecode/R is the implementation of the Gecode solver in the Ruby program-
ming language.

URL: http://gecoder.rubyforge.org/

60

ILOG OPL Development Studio

ILOG OPL provides a set of tools to model and solve the constraint prob-
lems. The models can be integrated into Java, C++ or .NET applications.

URL: http://www.ilog.com/products/oplstudio/

Minion

Minion is a standalone solver which uses its own low-level language to de-
scribe the constraint model.

URL: http://minion.sourceforge.net/

Mozart/Oz

A multiparadigmatic language with the built-in support for constraint solv-
ing.

URL: http://www.mozart-oz.org/

SICStus Prolog

SICStus Prolog is an implementation of the Prolog programming language
with the finite domain library.

URL: http://www.sics.se/isl/sicstuswww/site/

Sugar

Sugar is a SAT-based constraint solver. Sugar has won the global constraints
category in the CSP 2008 Competition.

URL: http://bach.istc.kobe-u.ac.jp/sugar/

61

Appendix C

List of the constraints

In this appendix we present the comparison of modelling capabilites of the
solvers based on the constraints which are supported. We used the manuals
of the systems [1–4, 10, 13, 17, 20] as the source of the data. We do not want
to provide a full list of the supported constraints. Our goal is to show the
most important constraints or the constraints which defines the differences
between the solvers. For each group of the constraint we present a compar-
ison table. The used symbols have the following meaning: The constraint
variables are denoted by the emphatised small latin letters (x, y, a). The
constants are symbolised by the greek small letters (α, β, γ). The vectors of
the constraint variables or the constants are in bold (x, a, α). As usual in
programming languages by square brackets applied on the vector we denote
the element of a vector (x[y]). Finally the boolean variables are denoted by
the monospace font (x, b). The symbol tilde (∼) means a relation operator
(any of the =, 6=, >, <, ≤, ≥). The other symbols have their usual mean-
ing. If it is not possible to describe the constraint with the mathematical
expression we use a symbolic name instead. If the solver fully supports the
constraint the • symbol is used. If the constraint is supported only partial
the symbol ◦ is used. If the solver does not support the constraint at all
we use the symbol × . We say that the solver supports a constraint only if
the constraints is available as a single constraint which can be directly used
or it there exists an expression similar to the constraint. In the other case
even if the constraint effect can be achieved by the combination of some
other constraints we consider that constraint as unsupported. We use the
following abbreviations for the constraint solvers: Moz means Mozart/Oz,
Cho means Choco, Min means Minion, ECL means ECLiPSe and finally SiP

62

Table C.1: Relation and arithmetic constraints

Constraint Moz Cho Min Gec ECL SiP

x ∼ y • • ◦ • • •
∑

i xi ∼ y • • ◦ • • •
∑

i (xiwi) ∼ y • • ◦ • × •
∑

i

(

xi

∏

j wij

)

∼ y • × × × × ×
∧

i xi ∧
∧

i ¬yi = b × × × • × ×
∨

i xi ∨
∨

i ¬yi = b × × × • × ×
|x| = y • • • • • •
|x − y| ∼ z • × ◦ × × •
x mod y = z • • • • • •

means SICStus Prolog.
We divide the constraints into four groups – relation and arithmetic,

global, scheduling and other constraints. The most of the relation and arith-
metic constraints (see the table C.1) are supported in the all solvers. As we
can see the Minion system has for some of the constraints only the partial
support. For the sums it means that Minion supports only the ≤ and ≥ op-
erators. The partialy supported constraint x ∼ y on the other hand means
that it supports only the = and 6= operators and finally for the |x − y| ∼ z

constraint only the operator = is supported. The global constraints (see
the table C.2) are the constraints which constrain the vectors of variables.
The basic global constraint is alldifferent which constrains the given vector
x such that each variable contained in the vector has a different value. The
hamming constraints ensures that the hamming distance of the two given
vectors is at least c. The scheduling constraints as the name suggest offers
the support for modelling of the scheduling problems. The cummulative
constraint is used if we need to schedule the tasks on the given machines.
The overlaps and the disjunctive are used to constrain the relative order of
the taks. Finally in the fourth group there are the other constraints. By
using the extensional constraint we can constrain the complex relations of
the variables by specifying the set of compatible values. The constraint then
constrain the variables such that they have only the compatible values. The
DFA stands for the deterministic fiinite automaton. The constraint enforces
that the given vector of variables is the word which is accepted by the solver.

63

Table C.2: Global constraints

Constraint Moz Cho Min Gec ECL SiP

alldifferent(x) • • • • • •
x[i] = j ⇔ y[j] = i × • × • × •
hamming(x,y) ≥ c × × • × × ×
x[y] = z • • • • • •

Table C.3: Sheduling constraints

Constraint Moz Cho Min Gec ECL SiP

cummulative × • × • • •
overlaps • × × × × ×
disjunctive • • × × • •

Finally the hamiltonian circle ensures that the given vector of variables is a
hamiltonian circle in the graph. In the ECLiPSe we can define the exten-
sional constraint by using of the Propia library. We define the predicate with
the compatible values and the use the Propia library tools on that predicate.

Table C.4: Other constraints

Constraint Moz Cho Min Gec ECL SiP

extensional × • • • ◦ •
DFA × • × • × •
hamiltonian circle × × × • × •

64

Appendix D

Implementation of the
benchmarks

D.1 Mozart/Oz

The following code shows the implementation of the Locating Warehouses
problem in the Mozart/Oz solver.

1 fun {Warehouses Data}
2
3 fun {Regret X}
4 M = {FD . r e f l e c t . min X}
5 in

6 {FD . r e f l e c t . nex tLarge r X M} − M
7 end

8
9 NbStores = {Width Data . c o s t s }

10 NbWarehouses = {Width Data . c a p a c i t y }
11 Capaci ty = Data . c a p a c i t y
12 WarehouseCost = Data . warehouseCost
13 CostMatr ix = Data . c o s t s
14
15 in

16 proc { $ So l }
17 Tota lCos t = {FD . d e c l }
18 Open = {FD . t u p l e warehouse 5 0#1}
19 Su pp l i e r = {FD . t u p l e s u p p l i e r NbStores 1#NbWarehouses}
20
21 Cost = {FD . t u p l e s t o r e NbStores 0#FD . sup}
22 SumCost = {FD . d e c l } = {FD . sum Cost ’ =: ’}
23
24 S t or e s = { L i s t . number 1 NbStores 1}
25
26 NbOpen = {FD . d e c l } = {FD . sum Open ’ =: ’}
27 in

28 So l = p lan (t o t a l C o s t : Tota lCos t open : Open s u p p l i e r : Supp l i e r)
29
30 Tota lCos t =: SumCost + NbOpen ∗ WarehouseCost
31
32 {For 1 NbStores 1
33 proc {$ S tor e }
34 Cost . S tor e : : {Record . t o L i s t CostMatr ix . S tor e }
35 {FD . e lement S upp l i e r . S tor e CostMatr ix . S tor e Cost . S tor e }
36 end}
37
38 {For 1 NbWarehouses 1
39 proc {$ Warehouse}

65

40 {FD . atMost Capaci ty . Warehouse Su pp l i e r Warehouse}
41 Open . Warehouse = {FD . r e i f i e d . sum {Map St or e s fun { $ S tor e } Su pp l i e r . S tor e =:

Warehouse end} ’ >: ’ 0}
42 end}
43
44 {FD . d i s t r i b u t e f f S up p l i e r }
45 end

46 end

47
48 proc {Order Old New}
49 Old . t o t a l C o s t >: New . t o t a l C o s t
50 end

D.2 Choco

The following code shows the implementation of the self referential quiz in
the Choco solver.

1 Model m = new CPModel () ;
2 So l v e r s = new CPSolver () ;
3
4 I n t e g e rVa r i a b l e [] [] q u e s t i o n s = new I n t e g e rVa r i a b l e [1 0] [] ;
5
6 for (int i = 0 ; i < 10 ; i++)
7 {
8 q u e s t i o n s [i] = makeBooleanVarArray (" q u e s t i o n s _ "+i , 5) ;
9

10 m. addCons t ra in t (eq (sum(q u e s t i o n s [i]) , 1)) ;
11
12 m. addVar iab l e s (q u e s t i o n s [i]) ;
13 }
14
15 // Quest ion 1 A−D
16 for (int i = 0 ; i < 4 ; i++)
17 {
18 Cons t ra in t c = eq (q u e s t i o n s [4− i −1] [0] , 1) ;
19
20 for (int j = 0 ; j < 4− i −1; j++)
21 {
22 c = and (c , eq (q u e s t i o n s [j] [0] , 0)) ;
23 }
24
25 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [0] [i] , 1) , c)) ;
26 }
27
28 // Quest ion 1 E
29 Cons t ra in t c1e = TRUE ;
30 for (int i = 0 ; i < 4 ; i++)
31 {
32 c1e = and (c1e , eq (q u e s t i o n s [i] [0] , 0)) ;
33 }
34 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [0] [4] , 1) , c1e)) ;
35
36 // Quest ion 2
37 for (int i = 0 ; i < 5 ; i++)
38 {
39 Cons t ra in t c = TRUE ;
40
41 for (int j = 0 ; j < 5 ; j++)
42 {
43 c = and (c , eq (q u e s t i o n s [2+ i] [j] , q u e s t i o n s [3+ i] [j])) ;
44 }
45
46 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [1] [i] , 1) , c)) ;
47 }
48
49 // Quest ion 3
50 for (int i = 0 ; i < 5 ; i++)
51 {
52 Cons t ra in t c = eq (q u e s t i o n s [i +3] [0] , 1) ;
53

66

54 for (int j = 0 ; j < i ; j++)
55 {
56 c = and (c , eq (q u e s t i o n s [j +3] [0] , 0)) ;
57 }
58
59 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [2] [i] , 1) , c)) ;
60 }
61
62 // Quest ion 4
63 for (int i = 0 ; i < 5 ; i++)
64 {
65 Cons t ra in t c = eq (q u e s t i o n s [i ∗2+1] [1] , 1) ;
66
67 for (int j = 0 ; j < i ; j++)
68 {
69 c = and (c , eq (q u e s t i o n s [j ∗2+1] [1] , 0)) ;
70 }
71
72 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [3] [i] , 1) , c)) ;
73 }
74
75 // Quest ion 5
76 for (int i = 0 ; i < 5 ; i++)
77 {
78 Cons t ra in t c = eq (q u e s t i o n s [i ∗ 2] [2] , 1) ;
79
80 for (int j = 0 ; j < 5 ; j++)
81 {
82 i f (j != i)
83 {
84 c = and (c , eq (q u e s t i o n s [j ∗ 2] [2] , 0)) ;
85 }
86 }
87
88 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [4] [i] , 1) , c)) ;
89 }
90
91 // Quest ion 6
92 I n t e g e rVa r i a b l e sumBefore = makeIntVar (" q u e s t i o n _ 6 _ s u m B e f o r e " , 0 , 10) ;
93 I n t e g e rVa r i a b l e sumAfter = makeIntVar (" q u e s t i o n _ 6 _ s u m A f t e r " , 0 , 10) ;
94 I n t e g e rVa r i a b l e [] b e f o r e = new I n t e g e rV a r i a b l e [5] ;
95 I n t e g e rVa r i a b l e [] a f t e r = new I n t e g e rVa r i a b l e [4] ;
96
97 for (int i = 0 ; i < 5 ; i++)
98 {
99 b e f o r e [i] = q u e s t i o n s [i] [3] ;

100 }
101
102 for (int i = 0 ; i < 4 ; i++)
103 {
104 a f t e r [i] = q u e s t i o n s [6+ i] [3] ;
105 }
106
107 m. addCons t ra in t (eq (sum(b e f o r e) , sumBefore)) ;
108 m. addCons t ra in t (eq (sum(a f t e r) , sumAfter)) ;
109
110 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [5] [0] , 1) , and (g t (sumBefore , 0) , eq (sumAfter ,

0)))) ;
111 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [5] [1] , 1) , and (eq (sumBefore , 0) , g t (sumAfter ,

0)))) ;
112 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [5] [2] , 1) , and (g t (sumBefore , 0) , g t (sumAfter ,

0)))) ;
113 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [5] [3] , 1) , and (and (eq (q u e s t i o n s [5] [3] , 0) , eq (

sumBefore , 0)) , eq (sumAfter , 0)))) ;
114 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [5] [4] , 1) , eq (q u e s t i o n s [5] [3] , 1))) ;
115
116 // Quest ion 7
117 for (int i = 0 ; i < 5 ; i++)
118 {
119 Cons t ra in t c = eq (q u e s t i o n s [i +4] [4] , 1) ;
120
121 for (int j = i +4+1; j < 10 ; j++)
122 {
123 c = and (c , eq (q u e s t i o n s [j] [4] , 0)) ;
124 }
125
126 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [6] [i] , 1) , c)) ;
127 }

67

128
129
130 // Quest ion 8
131 I n t e g e rVa r i a b l e sumConsonants = makeIntVar (" q u e s t i o n _ 8 _ s u m C o n s o n a n t s " , 0 , 10) ;
132 I n t e g e rVa r i a b l e [] consonants = new I n t e g e rV a r i a b l e [3 ∗ 1 0] ;
133 for (int i = 0 ; i < 10 ; i++)
134 {
135 consonants [3∗ i] = q u e s t i o n s [i] [1] ;
136 consonants [3∗ i + 1] = q u e s t i o n s [i] [2] ;
137 consonants [3∗ i + 2] = q u e s t i o n s [i] [3] ;
138 }
139 m. addCons t ra in t (eq (sum(consonants) , sumConsonants)) ;
140
141 for (int i = 0 ; i < 5 ; i++)
142 {
143 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [7] [i] , 1) , eq (sumConsonants , 7 − i))) ;
144 }
145
146
147 // Quest ion 9
148 I n t e g e rVa r i a b l e sumVowels = makeIntVar (" q u e s t i o n _ 9 _ s u m V o w e l s " , 0 , 10) ;
149 I n t e g e rVa r i a b l e [] vowe l s = new I n t e g e rV a r i a b l e [2 ∗ 1 0] ;
150 for (int i = 0 ; i < 10 ; i++)
151 {
152 vowe l s [2∗ i] = q u e s t i o n s [i] [0] ;
153 vowe l s [2∗ i + 1] = q u e s t i o n s [i] [4] ;
154 }
155 m. addCons t ra in t (eq (sum(vowe l s) , sumVowels)) ;
156
157 for (int i = 0 ; i < 5 ; i++)
158 {
159 m. addCons t ra in t (i f O n l y I f (eq (q u e s t i o n s [8] [i] , 1) , eq (sumVowels , i))) ;
160 }
161
162 s . read (m) ;
163
164 Boolean some = s . s o l v e () ;
165
166 i f (some)
167 {
168 do {
169 for (int i = 0 ; i < q u e s t i o n s . l e n g t h ; i++) {
170
171 for (int j = 0 ; j < q u e s t i o n s [i] . l e n g t h ; j++)
172 {
173 int v a l u e = s . getVar (q u e s t i o n s [i] [j]) . ge tVa l () ;
174 System . out . p r i n t (v a l u e+" ") ;
175 }
176 System . out . p r i n t l n () ;
177 }
178 } while (s . n e x t S o l u t i o n ()) ;
179 }

D.3 Minion

The following code shows the Minion input file for the Magic Sequence prob-
lem of the length 5.

1 MINION 3
2
3 ∗∗VARIABLES∗∗
4 DISCRETE s [5] {0 . . 5}
5
6 BOOL aux0
7 BOOL aux1
8 BOOL aux2
9 BOOL aux3

10 BOOL aux4
11 BOOL aux5
12 BOOL aux6
13 BOOL aux7

68

14 BOOL aux8
15 BOOL aux9
16 BOOL aux10
17 BOOL aux11
18 BOOL aux12
19 BOOL aux13
20 BOOL aux14
21 BOOL aux15
22 BOOL aux16
23 BOOL aux17
24 BOOL aux18
25 BOOL aux19
26 BOOL aux20
27 BOOL aux21
28 BOOL aux22
29 BOOL aux23
30 BOOL aux24
31
32 ∗∗SEARCH∗∗
33
34 PRINT [s]
35
36 VARORDER [
37 s , aux0 , aux1 , aux2 , aux3 , aux4 , aux5 , aux6 , aux7 , aux8 , aux9 , aux10 , aux11 , aux12 ,

aux13 , aux14 , aux15 , aux16 , aux17 , aux18 , aux19 , aux20 , aux21 , aux22 , aux23 , aux24]
38
39
40 ∗∗CONSTRAINTS∗∗
41
42 r e i f y (eq (0 , s [0]) , aux0)
43 r e i f y (eq (0 , s [1]) , aux1)
44 r e i f y (eq (0 , s [2]) , aux2)
45 r e i f y (eq (0 , s [3]) , aux3)
46 r e i f y (eq (0 , s [4]) , aux4)
47 sumleq ([aux0 , aux1 , aux2 , aux3 , aux4] , s [0])
48 sumgeq ([aux0 , aux1 , aux2 , aux3 , aux4] , s [0])
49 r e i f y (eq (1 , s [0]) , aux5)
50 r e i f y (eq (1 , s [1]) , aux6)
51 r e i f y (eq (1 , s [2]) , aux7)
52 r e i f y (eq (1 , s [3]) , aux8)
53 r e i f y (eq (1 , s [4]) , aux9)
54 sumleq ([aux5 , aux6 , aux7 , aux8 , aux9] , s [1])
55 sumgeq ([aux5 , aux6 , aux7 , aux8 , aux9] , s [1])
56 r e i f y (eq (2 , s [0]) , aux10)
57 r e i f y (eq (2 , s [1]) , aux11)
58 r e i f y (eq (2 , s [2]) , aux12)
59 r e i f y (eq (2 , s [3]) , aux13)
60 r e i f y (eq (2 , s [4]) , aux14)
61 sumleq ([aux10 , aux11 , aux12 , aux13 , aux14] , s [2])
62 sumgeq ([aux10 , aux11 , aux12 , aux13 , aux14] , s [2])
63 r e i f y (eq (3 , s [0]) , aux15)
64 r e i f y (eq (3 , s [1]) , aux16)
65 r e i f y (eq (3 , s [2]) , aux17)
66 r e i f y (eq (3 , s [3]) , aux18)
67 r e i f y (eq (3 , s [4]) , aux19)
68 sumleq ([aux15 , aux16 , aux17 , aux18 , aux19] , s [3])
69 sumgeq ([aux15 , aux16 , aux17 , aux18 , aux19] , s [3])
70 r e i f y (eq (4 , s [0]) , aux20)
71 r e i f y (eq (4 , s [1]) , aux21)
72 r e i f y (eq (4 , s [2]) , aux22)
73 r e i f y (eq (4 , s [3]) , aux23)
74 r e i f y (eq (4 , s [4]) , aux24)
75 sumleq ([aux20 , aux21 , aux22 , aux23 , aux24] , s [4])
76 sumgeq ([aux20 , aux21 , aux22 , aux23 , aux24] , s [4])
77
78 ∗∗EOF∗∗

D.4 Gecode

The following code shows the implementation of the Locating Warehouses
problem in the Gecode solver. The code is complete except the loading of

69

the data from the external source.
1 #include <gecode / int . hh>

2 #include <gecode / search . hh>

3 #include <gecode /minimodel . hh>

4
5 #include <iostream >

6 #include <fstream >

7 #include <vector>

8 #include <s t r i ng >

9
10 using namespace Gecode ;
11
12 class Warehouses : public MinimizeSpace {
13 protected :
14 IntVar To ta lCos t ;
15 IntVar NumberOpen ;
16
17 IntVarArray Open ;
18 IntVarArray Su pp l i e r ;
19
20
21 IntVarArray Cost ;
22 IntVar SumCost ;
23
24 int numberOfWarehouses ;
25 int numberOfStores ;
26
27 public :
28 Warehouses (
29 int nbWarehouses ,
30 int nbStores ,
31 const s t d : : vec t o r<int>& supp lyCost ,
32 const s t d : : vec t o r<int>& warehouseCapaci ty
33)
34 :
35 numberOfWarehouses (nbWarehouses) ,
36 numberOfStores(nbS to r e s) ,
37 Su pp l i e r (∗ this , nbStores , 0 , nbWarehouses −1) ,
38 Tota lCos t (∗ this , 0 , Gecode : : I n t : : L im i t s : : max) ,
39 Open (∗ this , nbWarehouses , 0 , 1) ,
40 NumberOpen(∗ this , 0 , nbWarehouses) ,
41 Cost (∗ this , nbStores , 0 , Gecode : : In t : : L im i t s : : max) ,
42 SumCost (∗ this , 0 , Gecode : : I n t : : L im i t s : : max)
43 {
44
45 for (int i = 0 ; i < numberOfWarehouses ; i++)
46 {
47 IntVarArray au x s u p p l i e d (∗ this , numberOfStores , 0 , 1) ;
48
49 for (int j = 0 ; j < numberOfStores ; j++)
50 {
51 pos t (∗ this , t t (imp (Su pp l i e r [j] == i , au x s u p p l i e d [j] == 1))) ;
52 pos t (∗ this , t t (imp (Su pp l i e r [j] != i , au x s u p p l i e d [j] == 0))) ;
53
54 pos t (∗ this , t t (imp (Su pp l i e r [j] == i , Cost [j] == supp lyCos t [i + j ∗

numberOfWarehouses]))) ;
55 }
56
57 IntVar aux sum (∗ this , 0 , numberOfStores) ;
58
59 l i n e a r (∗ this , aux s up p l i ed , IRT EQ , aux sum) ;
60
61 pos t (∗ this , t t (imp (aux sum > 0 , Open [i] == 1))) ;
62 pos t (∗ this , t t (imp (aux sum == 0 , Open [i] == 0))) ;
63
64 r e l (∗ this , aux sum , IRT LQ , warehouseCapaci ty [i]) ;
65 }
66
67 l i n e a r (∗ this , Open , IRT EQ , NumberOpen) ;
68
69 l i n e a r (∗ this , Cost , IRT EQ , SumCost) ;
70
71 In tArg s co s tArg s (2) ;
72 co s tArg s [0] = 1 ;
73 co s tArg s [1] = 50 ;
74
75 IntVarArgs c o s t Va r i a b l e s (2) ;
76 c o s t Va r i a b l e s [0] = SumCost ;

70

77 c o s t Va r i a b l e s [1] = NumberOpen ;
78
79 l i n e a r (∗ this , costArgs , c o s tVa r i a b l e s , IRT EQ , Tota lCos t) ;
80
81 branch (∗ this , Supp l i e r , INT VAR SIZE MIN , INT VAL MIN) ;
82 }
83
84 virtual IntVar c o s t () const {
85 return Tota lCos t ;
86 }
87
88 Warehouses (bool share , Warehouses& s) : MinimizeSpace (share , s) {
89 Su pp l i e r . update (∗ this , share , s . Su pp l i e r) ;
90 Tota lCos t . update (∗ this , share , s . Tota lCos t) ;
91 Open . update (∗ this , share , s . Open) ;
92 NumberOpen . update (∗ this , share , s . NumberOpen) ;
93 Cost . update (∗ this , share , s . Cost) ;
94 SumCost . update (∗ this , share , s . SumCost) ;
95
96 numberOfWarehouses = s . numberOfWarehouses ;
97 numberOfStores = s . numberOfStores ;
98 }
99

100 virtual Space∗ copy (bool share)
101 {
102 return new Warehouses (share , ∗ this) ;
103 }
104
105 void p r i n t (void) const {
106 s t d : : cou t << " Cost : " << Tota lCos t << s t d : : end l ;
107 s t d : : cou t << " S u p p l i e r s : " << S upp l i e r << s t d : : end l ;
108 s t d : : cou t << " Open : " << Open << s t d : : end l ;
109 }
110
111 } ;
112
113 int main (int argc , char∗∗ argv)
114 {
115 s t d : : vec t o r <int> supp lyCos t ;
116 s t d : : vec t o r <int> warehouseCapaci ty ;
117
118 // There shou ld be t he l o a d i n g o f t h e data i n t o t he v e c t o r s .
119 // We l e f t i t ou t in p r i n t o u t
120
121 Warehouses ∗ w = new Warehouses (warehouseCapaci ty . s i z e () , supp lyCos t . s i z e () /

warehouseCapaci ty . s i z e () , supp lyCost , warehouseCapaci ty) ;
122
123 BAB<Warehouses> e (w) ;
124 delete w ;
125
126 Warehouses ∗ l a s t = 0 ;
127 while (Warehouses ∗ s = e . nex t ())
128 {
129 i f (l a s t != 0)
130 {
131 delete l a s t ;
132 }
133
134 l a s t = s ;
135 }
136
137 i f (l a s t)
138 {
139 l a s t −>p r i n t () ;
140 delete l a s t ;
141 }
142
143 return 0 ;
144 }

71

D.5 ECLiPSe

The following code shows the implementation of the N-Queens problem in
the ECLiPSe solver.

1 :− l i b (i c) .
2
3 a l l q u e e n s (N, Out) :−
4 b ag o f (Sol , queens (N , So l) , Out) .
5
6 queens (N , So l) :−
7 length (Queens , N) ,
8 Queens : : [1 . .N] ,
9 a l l d i f f e r e n t (Queens) ,

10 d i a g ona l s (Queens) ,
11 l a b e l i n g (Queens) ,
12 So l = Queens .
13
14 d i a g ona l s ([H |T]) :− d i a g ona l s ([H |T] , T) .
15
16 d i a g ona l s ([] ,) .
17 d i a g ona l s (, []) .
18 d i a g ona l s ([H1 |T1] , [H2 |T2]) :− d iagona l s mark (H1 , [H2 |T2] , 1) , d i a g ona l s (T1 , T2) .
19
20 d iagona l s mark (, [] ,) .
21 d iagona l s mark (H, [H2 |T2] , A) :−
22 H − H2 #\= A,
23 H − H2 #\= −A,
24 AA i s A + 1 ,
25 d iagona l s mark (H, T2 , AA) .

D.6 SICStus Prolog

The following code shows the implementation of the Quasigroup With Holes
in the SICStus Prolog.

1 :− use modu le (l i b r a r y (c l p f d)) .
2
3 qwh (N, Assignment , So l) :−
4 NN i s N∗N,
5 length (Matrix , NN) ,
6 domain (Matrix , 1 , N) ,
7 q c o n s t r a i n t (N, Matr ix) ,
8 a s s i g n c o n s t r a i n t (Matrix , Assignment) ,
9 l a b e l i n g ([] , Matr ix) ,

10 So l = Matr ix .
11
12 w r i t e s o l u t i o n (N, So l) :−
13 NN i s N − 1 , w r i t e s o l u t i o n (N, NN, Sol , 0) .
14
15 a s s i g n c o n s t r a i n t ([] , []) .
16 a s s i g n c o n s t r a i n t ([|T] , [−1|TT])
17 :− ! , a s s i g n c o n s t r a i n t (T , TT) .
18
19 a s s i g n c o n s t r a i n t ([H|T] , [HH|TT]) :−
20 H #= HH,
21 ! ,
22 a s s i g n c o n s t r a i n t (T , TT) .
23
24 w r i t e s o l u t i o n (, , [] ,) .
25 w r i t e s o l u t i o n (N, NN, [H|T] , A) :−
26 M i s A mod N,
27 write (H) ,
28 (M = NN, write (’\ n ’) ; M \= NN, write (’ ’)) ,
29 AA i s A + 1 ,
30 w r i t e s o l u t i o n (N, NN, T , AA) .
31
32 s e l e c t c o l umn (N, ColId , Matrix , Col) :−

72

33 s e l e c t c o l umn (N, ColId , Matrix , Col , 0) .
34
35 s e l e c t c o l umn (, , [] , [] ,) .
36 s e l e c t c o l umn (N, ColId , [H|T] , [H|CT] , A) :−
37 ColId i s A mod N,
38 AA i s A + 1 ,
39 s e l e c t c o l umn (N, ColId , T , CT, AA) .
40 s e l e c t c o l umn (N, ColId , [|T] , CT, A) :−
41 Mod is A mod N,
42 Mod \= ColId ,
43 AA i s A + 1 ,
44 s e l e c t c o l umn (N, ColId , T , CT, AA) .
45
46
47 s e l e c t r o w (N, RowId , Matrix , Row) :−
48 BoundL i s RowId∗N,
49 BoundH i s (RowId+1)∗N−1,
50 s e l e c t r ow (N, Matrix , Row , 0 , BoundL , BoundH) .
51
52 s e l e c t r o w (, [] , [] , , ,) :− ! .
53 s e l e c t r o w (, , [] , A, , BH) :− BH < A , ! .
54
55 s e l e c t r o w (N, [H|T] , [H |RT] , A, BL , BH) :−
56 A >= BL ,
57 A =< BH,
58 AA i s A + 1 ,
59 ! ,
60 s e l e c t r ow (N, T, RT, AA, BL , BH) .
61
62 s e l e c t r o w (N, [|T] , RT, A, BL , BH) :−
63 A < BL ,
64 AA i s A + 1 ,
65 ! ,
66 s e l e c t r ow (N, T, RT, AA, BL , BH) .
67
68
69 q c o n s t r a i n t (N, Matr ix) :−
70 q c o n s t r a i n t (N, Matrix , 0) .
71
72 q c o n s t r a i n t (N, , M) :− M >= N, ! .
73 q c o n s t r a i n t (N, Matrix , A) :−
74 A < N,
75 s e l e c t r ow (N, A, Matrix , Row) ,
76 s e l e c t c o l umn (N, A, Matrix , Col) ,
77 a l l d i f f e r e n t (Row) ,
78 a l l d i f f e r e n t (Col) ,
79 AA i s A + 1 ,
80 ! ,
81 q c o n s t r a i n t (N, Matrix , AA) .

73

