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Abstrakt: Röntgenové vyšetrenie zohráva v medićınskej praxi dôležitú rolu,
no popri všetkých výhodách, ktoré prináša, obsahuje aj isté obmedzujúce
nedostatky. V tejto práci detailne popisujeme techniku, ktorá na základe
vopred źıskaných CT dát dokáže zrekonštruovať digitálny röntgenový sńımok
tak, aby sa odstránilo čo najviac nevýhod tradičného sńımkovania. Medzi
hlavné vylepšenia nad klasickou rádiografiou patŕı tvorba sńımku z úplne
ľubovolného poȟladu a interakt́ıvne otáčanie sńımku v reálnom čase. Počas
rekonštrukcie sa kladie vělký dôraz na presné simulovanie fyzikálnych vlast-
nost́ı röntgenového žiarenia, s ciělom obdržať čo najkvalitneǰśı finálny obrá-
zok. Nemalé úsilie je takisto vynaložené na dosiahnutie krátkeho výpočet-
ného času, potrebného k vygenerovaniu jedného sńımku. Za týmto účelom
uvádzame model paralelizácie, ktorý rozložeńım práce niektorých kompo-
nentov na viacero jadier procesorov významne urýcȟluje algoritmus.

Kĺıčová slova: röntgenové žiarenie, digitálna radiografia, poč́ıtačová tomo-
grafia, digitálna rekonštrukcia
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Abstract: X-ray examination is an important part of the medical treatment.
Despite all the advantages it introduces, it brings some limitations as well.
In the present work we describe a technique that from the acquired CT data
reconstructs a digital x-ray image and removes some drawbacks of tradi-
tional x-ray screening. Among the most significant improvements over the
classical radiography belong generation of the screen from very arbitrary an-
gle and interactive rotation of the image in real-time. In order to obtain the
most realistic final image, we put the emphasis on the accurate simulation
of physical properties of the x-ray radiation. We also try to get as low com-
putational time needed to gain one image as possible. For this purpose we
present a parallelization model that decomposes the required work of some
components into several processors’ cores and thus noticeably decreases the
running time of the algorithm.

Keywords: x-rays, digital radiography, computed tomography, digital recon-
struction

8



Chapter 1

Introduction

1.1 Motivation for digital reconstructed ra-

diography

In our everyday life people are often confronted with a lot of injuries, when
it is necessary to transport person into the hospital and examine his/her
health. Among these situations belong different traffic accidents, work in-
juries, collisions and many others. After the participants have been moved
to the medical centre, they usually undergo lots of examinations. Computed
tomography1 and classical x-ray screening2 belong to the routine ones.

X-ray screening is a method providing us possibility to see inner tissues
of a human body. The result of the screening is a two-dimensional image
making us able to locate fractures or damaged organs which normally cannot
be seen by a naked eye. Having set up x-ray apparatus doctor can focus on a
particular part of the body and in a few minutes he is given a detailed screen.
On the other hand, x-ray examination has some potential drawbacks, some
of them are:

• positions, which a patient can be screened in, are very limited. Because
of the construction of the whole apparatus it is impossible to produce
images of an arbitrary body part and under arbitrary angle of x-ray
tube

1often abbreviated as CT
2also called röntgen (RTG) screening after one of its first investigators, Wilhelm Con-

rad Röntgen
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• doctor often needs a detailed screen from a very exact angle. As long
as the given screen does not meet this requirement, either the patient
must undergo the whole procedure again (and that means to undergo
x-ray dose too) or the doctor cannot give his best opinion

• very important issue about radiology3 is radiation, which limits us in a
number of eventually undergone tests. The more examinations taken,
the higher risk of health problems.

Since 1970s, when digital imaging modalities such as computed tomogra-
phy, ultrasound and nuclear medicine gained widespread acceptance, there
has been made a lot of attempts to find new approaches how to avoid some
of the problems of traditional radiography.[3] It is hard to imagine the way
the current screening technology solves those problems and thus the new
approaches are based on an entirely different idea. The main concept is
that we will not get an x-ray screen directly from a screening device but
we will reconstruct it digitally from another acquired modality. The most
suitable form of input data is CT data and branch of science dealing with
generating digital x-ray screens form CT is called digital reconstructed

radiography4.

1.2 Contribution of DRR

Advantages of DRR can be divided into two main groups: ones which im-
prove currently used methods and others presenting completely new possi-
bilities in radio examination which were unfeasible with present technology.

The first group mostly concentrates on a better management and storage
of x-ray films. A final result of a DRR is a two-dimensional digital image
(digital reconstructed radiograph). An electronic form of the screen provides
lots of enhancements over the films:

• x-ray film emulsion is composed of a form of gelatin and a silver halide,
typically silver bromide.[11] These films have several limitations. They
have a limited linear response to radiation, which means that it cannot
tolerate a wide range in radiation exposure without risking saturation.

3radiology is a specialty of medicine that deals with the study and application of
imaging technology like x-ray to diagnosing and treating disease[17]

4often abbreviated as DRR
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The latitude limitations means some areas will be overexposed and
some underexposed in the same film.[6]

• traditional image cannot be adjusted once taken. With DRR the image
can be subsequently scaled, cut or rotated. Due to windowing5 we are
able to change brightness and contrast of the screen in any way to
highlight its particular parts. However, some errors, such as positio-
ning problems or patient movement reduce image quality regardless of
the technology.

• finally, traditional radiography requires handling of film for viewing,
archiving and transmission to others, which costs time. If a patient or
another doctor wants to see screen remotely, the film must be sent via
courier or scanned before electronic transmission.

The second group removes primarily problems related to potential posi-
tions the patient can be screened in:

• DRR allows us to choose arbitrary angle of the x-ray tube

• from one acquired CT dataset we can make as many different images
as desirable

• if we want to focus on a very concrete part of a body, we can get x-ray
tube as close as possible without danger of radiation dose

• we can select which types of tissue should be taken into consideration
during image generation

• it is possible to interactively rotate x-ray tube, thus controlling the
screening process itself is very comfortable

1.3 Disadvantages of DRR

On the other hand, there are areas where digital reconstructed radiographs
can never exceed traditional films:

5windowing is the process of adjusting visualization of the calculated values. A typical
display device can only resolve 256 shades of gray, some special medical displays can
resolve up to 1024 shades of gray. By windowing these shades can be redistributed over
a varying range of computed values[16]

11



• the most important one is an output resolution. While classical film’s
resolution is limited by molecules of the film emulsion, digital recon-
structed image’s resolution is much lower. Major cause of a low reso-
lution is a speed of image reconstruction. The higher resolution, the
higher computational time is required. Even if we wanted resolution
to the exclusion of speed, the final quality would not change rapidly
due to discrete input data.

• it is necessary to have recent CT data always when generating image.
That means, the DRR cannot replace traditional radiography because
exposure of CT is much higher than that of classical x-ray.

• the third drawback is more general and is related to the problems with
storing data on the computer. It can be stolen, removed by hardware
failure, etc.

In the following chapters we will first discuss some of the necessary theo-
retical topics before explaining the image reconstruction process itself. In
chapter 2 we show a physical background of x-rays and their attenuation
when traversing a matter, chapter 3 deals with principles of a computed
tomography and finally in chapter 4 we describe step-by-step the whole pro-
cess of digital x-ray image generation, which was used while implementing
our own application.

12



Chapter 2

X-rays attenuation model

X-radiation (composed of x-rays) is a form of electromagnetic radiation. X-
rays have a wavelength in the range of 10 to 0.01 nanometers, corresponding
to frequencies in the range 30 petahertz to 30 exahertz and energies in the
range 120 eV to 120 keV.[18] As x-rays traverse a matter the number of
photons in a beam decreases due to interactions with the atoms of a material
substance. Attenuation is caused primarily by two processes, absorption and
scattering.[10]

2.1 Energy absorption

In absorption, the energy of the x-ray photon is completely transferred to
the atoms of the material. Rate of beam absorption is expressed by a linear
attenuation coefficient, which reflects the removal of x-ray photons from a
beam. The higher the electron density, the more interaction of photons with
the sample occurs. Assuming that x-rays are monoenergetic and the sample
is homogeneous, the Beer’s law gives us

Ioutput = Iinitial · e
−µ·∆ (2.1)

where Ioutput is an energy of the beam at the end of the sample, Iinitial is an
input energy, µ is sample’s linear attenuation coefficient and ∆ is sample’s
width.

For composite materials, the intensity is given by adding the individual
contributions of each chemical element. Thus the resulting energy is:

Ioutput = Iinitial · e
−

∫

ϕ(x) dx (2.2)
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where ϕ(x) assigns attenuation coefficient to each position x on the ray.
While working with discrete values, equation 2.2 can be rewritten as

Ioutput = Iinitial · e
−

∑

µi·∆i (2.3)

where µi is attenuation coefficient of the i-th element and ∆i is its width.
This is illustrated in Fig. 2.1.

Figure 2.1: Exponential attenuation of x-ray beam

In x-ray imaging what is actually measured is not the final x-ray intensity,
but the blackening (the density) of an optical film. This density depends on
the type of film and is also specific for the x-ray energies used. The density
d of the film is defined as[13]:

d = log
Iinitial

Ioutput

(2.4)

Now if we replace Ioutput with the formula from 2.3, the blackening is given
by

d =
∑

µi ·∆i (2.5)

2.2 Radiation scattering

Unlike absorption, when the energy of the x-ray photon is completely trans-
ferred to the atoms of the material, in the scattering the x-ray photon con-
tinues with a change in direction with or without a loss in energy. There are
two types of scattering[9]:

coherent scattering is a scattering when the energy of the primary x-
ray photon is first completely absorbed and then re-emitted by the
electrons of a single atom. Because no net energy is absorbed by the
atom, the re-emitted x-ray has the same energy as the original x-ray,
however the direction of re-emission is totally arbitrary.
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Compton scattering is a process when some of the photon energy is used
to eject an electron from an incident atom and the photon is scat-
tered with a reduced energy. The great majority of scattered x-rays in
diagnostic x-ray imaging arise from this type of scattering.

Because the scattered radiation deviates from the straight line path between
the x-ray focus and the image receptor, scattered radiation is a major source
of image degradation in x-ray imaging techniques. The residual scatter
reduces radiographic contrast in x-ray imaging and contributes to image
intensity distortion in computed tomography.

Although the scattered x-ray photons are nearly isotropic in direction at
diagnostic energies, the scattered x-ray detected in the image are primarily
forward directed and thus have energies and angles of incidence near those
of the primary x-rays and thus, these scattered x-rays cannot be completely
removed by the use of antiscatter grids or energy filters.

2.3 Beam hardening

In the equations 2.1-2.3 we supposed that a particular volume element atte-
nuates all x-rays in the same way independent of the angle or propagation
path length. In fact, this assumption is not correct due to phenomenon
called beam hardening. Beam hardening is a process referring to a polychro-
matic1 beam when photons with higher attenuation coefficients are removed
from the beam more rapidly. As the x-rays are always polychromatic, this
nonuniform attenuation of different energies results in the preferential deple-
tion of x-rays in energy ranges with higher attenuation coefficients. Thus,
beam hardening is the process of selective removal of soft x-rays2 from the
x-ray beam. As these x-rays are removed, the beam becomes progressively
harder or more penetrating.[8]

The amount of beam hardening depends on the initial x-ray spectrum
as well as on the composition of the material or tissue traversed. However,
for any fixed initial x-ray spectrum and tissue type, the process of beam
hardening represents a monotonic increase in beam hardness as a function
of tissue thickness traversed.[7]

Theoretically, emitted photons can reach an energy between Emin > 0eV
and Emax = Ub · e, where Ub is the maximum x-ray tube voltage and e the

1spectrum with multiple energies
2rays in energy ranges that are more easily attenuated
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elementary charge3. If we denote W (E)4 a weighting factor for each present
energy, output energy for polychromatic beam is defined as[4]:

Ipoly = Iinput ·

∫ Emax

Emin

W (E) · e−
∫

ϕ(x) dx dE (2.6)

The amount of needed correction of beam hardening equals to difference
of 2.2 and 2.6. Some different approaches how compute Ipoly can be found
in [4].

3e = 1.6021764610 · 10−19 coulombs
4W (E) = S(E)·D(E), where S(E) is a polychromatic spectrum and D(E) is detector’s

energy dependent efficiency[4]
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Chapter 3

Computed tomography

A basic problem in imaging with x-rays is that a two-dimensional image
is obtained of a three-dimensional object. This means that structures can
overlap in the final image, even though they are completely separate in the
object. This is particularly troublesome in medical diagnosis where there are
many anatomic structures that can interfere with what the doctor is trying
to see. This problem was solved with the introduction of a technique called
computed tomography which takes advantage of movable x-ray tube and
detector along the patient’s body and generates one screen for each position
of the pair. After acquiring and merging all data we get tridimensional
model of examined body.

3.1 Data acquisition

A main principle of the computed tomography is similar to the one of the
traditional x-ray imaging, when final image is generated on the base of diff-
erently attenuated x-rays. Unlike classical x-ray examination the x-ray tube
and the detector are not static. They make two basic motions - the first one
is transversal1 (call it z direction) along the patient’s body and the second
one is rotational around the one particular z coordinate.

The pair x-ray tube - detector starts at a default position. The colli-
mated2 beam of x-rays is radiated and single attenuations of rays are de-

1there is also another type of acquisition, called tilted acquisition, used with some
special examinations[1]

2collimation is the use of metal plates, slots, bars, etc., to confine and direct radiation
(e.g. x-rays or gamma-rays) to a specific region
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tected. This is called single projection. Then the tube and the detector
rotate about e.g. 1 ◦ and make another projection until they reach e.g. 180 ◦

or 360 ◦[1]. After all projections have been collected they are reconstructed
into the one image - CT slice and the tube with detector move to a new
position in a z direction. Number of obtained slices depends on the range
of examined patient’s body.

3.2 Voxels

In CT imaging the body is mapped as discrete, contiguous volume elements
called voxels (Fig. 3.1). As an x-ray beam crosses the body it is attenuated
by all voxels it traverses. At the end of the acquisition process each voxel is
given two parameters: x, y, z coordinates in the body and linear attenuation
coefficient.

Each voxel has three dimensions. x and y dimensions are determined by
the pixel’s area in the CT image and z dimension is determined by the slice
thickness.

Figure 3.1: Example of body discretization into voxels. Greg Michael: X-ray
computed tomography, 2001
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3.3 Hounsfield units

We said one of the voxel’s properties is its linear attenuation coefficient µ.
However, this physical unit is rather energy dependent3 and direct visuali-
zation of µ of the identical scene would differ with different devices which
is impractical. For quantitative expression of image modality there were
established new Hounsfield units.

Each voxel is given a CT number which depends on the original attenua-
tion coefficient and on the attenuation coefficient of water characteristic for
used energy. CT number is defined as[1]:

CTmaterial = K ·
µmaterial − µwater

µwater

[HU ] (3.1)

where µmaterial and µwater are relevant attenuation coefficients and K is a
contrast/scaling factor determined by a precision of measurement. Current
CT devices reach contrast factor K = 1000. Values of CT numbers typical
for particular tissues can be find in Fig. 3.1[15]:

Tissue type CT number
Air -1000
Fat -80 to -40
H2O 0
Transudates/exudates 20 to 30
Soft tissue 40 to 80
Cancellous bone 150 to 300
Dense bone 300 to 2000

Table 3.1: CT numbers and related tissues

3e.g. for water for tube’s voltages 60, 84 and 122 keV the coefficient is 0.206, 0.180
and 0.166[1]
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Chapter 4

Image reconstruction algorithm

Aim of each DRR application is to produce high quality images resembling
the real x-ray screens as much as possible. Moreover, the reconstruction pro-
cess should be fast enough to provide efficient way of patient’s examination
and diagnosing.

The first goal is achieved by precise representation of x-ray imaging pro-
perties, like positioning of the x-ray tube and the film, film’s resolution and
following the real x-rays attenuation model. The second one is accomplished
by selecting suitable programming techniques to reach the previous goal.
Unfortunately, it is often not possible to gain these both requirements at
once. We usually have to either choose between one of them or better find
an appropriate compromise.

In this chapter we will describe reconstruction algorithm in detail, dis-
cuss problematic parts and also outline other possible solutions. In the
individual sections we will use references and outputs from exclusively our
own application, which was designed according to characterized algorithm.

4.1 Input data

In the very beginning of the algorithm we must choose which modality will
be used as an input data. Because of the same physical background as tradi-
tional x-rays imaging the most suitable one is CT. As was said in chapter 3
CT data consists from multiple separate slices and each slice is formed by a
matrix of pixels. Each dataset is characterized by a number of slices it con-
tains and by a slice’s resolution. While the usual resolution is 512x512 pixels
the number of slices differs according to the range of scanned body. How-
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ever, these two characteristics are not sufficient to obtain the real shape of a
body. To get a true geometry of the data we need another two properties -
distance between each two slices and size of the area represented by one
pixel. With knowledge of all these parameters we get final representation as
a 3D volume of voxels where its width and height is given by multiplying
x and y resolution by a related size of the pixel area and depth is given by
multiplying the number of slices by their distance. This is illustrated in the
following Fig. 4.1:

(a) Original pixel representa-
tion

(b) Real representation with the right geometry
where can be seen the dimensions are not uniform.
In this example the depth of voxel is lower than
other two extents

Figure 4.1: Transition from pixels representation to voxels representation

Except for preceding form of input data there is also another type de-
pending on the settings of CT scanner while acquisition. In the previous
example each slice represented one isolated section in the body. CT scan-
ners can be switched to mode when they produce overlapped slices. Size of
overlapping must be known to process data properly and each DRR appli-
cation must be able to treat both types.

In Fig. 4.1b we showed representation where voxels are ordered in a re-
gular grid. Due to a speed improvement of some algorithms (e.g. 3D DDA),
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it may be sometimes profitable to choose another representation - so called
hierarchical spatial enumeration[5]. The main idea of this method is to put
together same neighbour voxels to form a new one ,,big” voxel. Then as
we traverse through the data we can process the big voxel at once instead
of processing the same voxels one by one. Since CT input data does not
contain wide areas of voxels of the same colour, the enhancement would not
be noticeable and thus we did not include this technique.

4.2 X-ray apparatus representation

The main components of the screening process are an examined object (e.g.
patient), an x-ray tube and a film. In order to achieve the most realistic
results in a DRR application we should obey all their mutual relations while
representing them.

Examined object

Input data as described in a section 4.1 are stored in a 3D matrix and after
they have been loaded they do not need any further attention.

X-ray tube

X-ray tube and its orientation determines the view how the final recon-
structed image is presented to the user. It means the tube behaves like a
point from which the user is looking at an input object and that is why we
will from now refer to the x-ray tube as a camera.

Camera has two primary properties. First of all the camera is defined
by its three coordinates in a space. Unlike the real x-ray tube, the cam-
era’s position is not limited and its coordinates may attain arbitrary values.
However, the distance between object and camera should be short enough to
obtain detailed image and on the other hand long enough to avoid perspective
distortion1 that would degrade realistic appearance which is important.

The second parameter is a direction in which the tube radiates the rays.
Since it is possible to freely rotate the camera around the body, it must be

1perspective distortion is the inevitable misrepresentation of three-dimensional space
when projected onto a two-dimensional surface. The closer the viewing point is to the
object, the more obvious the phenomenon is.
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able to set a new center of rotation easily as well to allow us focus on a
particular part of the body and examine it from any direction.

Film

As we said we would replace words x-ray tube and camera, we will also
denote a screening film as a projection plane.

The first parameter of a projection plane is its position. The position is
derived from the situation of the camera and must meet these requirements:

• the plane is perpendicular to the directional vector of the camera

• the plane is situated behind the inspected object

• the plane is as tight behind the object as possible. In a practice this
property is always followed and significantly contributes to an accurate
reproduction.

To satisfy all of these prerequisites with no error they are all computed
automatically in our application without any help of the user.

The second attribute of the projection plane is a resolution. As was
mentioned in the introduction of the thesis, this issue is a major drawback
of DRR. The time needed to generate the image changes linearly with the
resolution of the plane. To preserve the smoothness of the application the
final resolution of the image is constantly set to 512x512 pixels. There were
also tests with resolution 1024x1024 pixels but the speed of reconstruction
was unsatisfactory.

4.3 Rays simulation

Very natural approach for simulating the radiation of x-rays is a ray casting.
Ray casting is a common method used in a computer graphics serving for
direct volume rendering. In this technique for each pixel of the projection
plane there is generated ray crossing the input data. As a ray traverses the
body it accumulates characteristics given by incident voxels. At the end of
the path the collected value is written to the corresponding pixel.

There are two types of projections used in a ray casting: orthogonal and
perspective projection. In the first one each generated ray is orthogonal to
the projection plane. However, this is different from the nature of the real
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x-ray imaging. That is why in the application is used perspective projection
where all rays origin at the same point - camera - and direct to their pixels
in the projection plane. This is illustrated in Fig. 4.2.

Figure 4.2: Perspective ray casting. Each pixel on the projection
plane is given a colour accumulated along the ray. Skull image
was borrowed from http://www.fossilreplica.com/servlet/the-47/Human-
Female-Skull-with/Detail

4.4 Sampling values along the ray

Assumed the ray was generated, we need to pick concrete positions at which
the value in the data will be evaluated. From all different approaches each
one has its advantages and disadvantages. We always have to find a com-
promise between a good quality and a fast computation.

Basically there are three ways how to scan values: scan the constant num-
ber of equidistant positions for each ray, scan variable number of equidistant
positions for each ray and finally 3D DDA algorithm.
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Constant number of equidistant positions

At the beginning of this method we select one constant value denoting the
number of samples which will be taken along the each ray. Then the part
of the ray which crosses the data is divided by this number into equally
distanced positions (Fig. 4.3).

Figure 4.3: In this figure three rays were shot. For each one the entry
and exit point was computed and then for chosen value 6 were calculated
sampling positions (two red squares and four red circles).

Advantages:

- ability to choose the compromise between the speed and the qua-
lity. The more positions scanned, the higher quality and the lower
speed and vice versa.

Disadvantages:

- if the distance between each two positions is too large, there is a
risk that some ,,important” voxels will be skipped

- if the distance between each two positions is too low, the same
value will be evaluated from the same voxel many times

- the major bottleneck is the number of the scanned positions which
are independent of the ray’s length. For the short rays there is
uselessly large amount of positions which belong to a very few
voxels.
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Variable number of equidistant positions

Likewise the previous method this one scans the positions in equal distances
as well. However, the number of samples is not constant for all rays in
advance, but is computed for each ray individually depending on its char-
acteristics. As a one possible attribute is ray’s length. This method can be
seen in Fig. 4.4.

Figure 4.4: In this picture the number of sampled positions differs for each
ray according to its length inside the data

Advantages:

- same as for the previous method

- in the short rays there are scanned only few positions which im-
proves the computational time

Disadvantages:

- again, if we define a wrong relation between the length of a ray
and the number of positions to be scanned, either too many voxel
can be skipped or one voxel can be processed more times. Yet,
there is still a significant improvement in comparison with the
constant number of positions.

3D DDA algorithm

3D DDA algorithm[12] marks all positions along the ray where ray enters a
new voxel. This guarantees all voxels are visited and each of them just once
(Fig. 4.5).
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Figure 4.5: We can see that no two positions belong to the same voxel and
no voxel is omitted.

Advantages:

- there is no chance any voxel along the path is skipped and thus
no information from input data is lost

Disadvantages:

- a drawback of this method is its computational time

From these three methods it is important to choose that one which suits
our actual requirements. In our application we chose the second method,
because it is able to configure its properties, it is much faster than 3D DDA
algorithm and it removes drawbacks of the first method. The number of
positions is defined directly by the length of an intersection of the ray and
data. It means, if the length of the intersection is 200, we will choose 200
equally distanced positions. Easy configuration is exploited in chapter 4.10
Rotation, where number of positions is set to 50% of the length to improve
the speed.

4.5 Single value evaluation

Now suppose we have a particular position obtained by one from the sam-
pling algorithms and we want to read the input on that position. If the
position was exactly in the beginning of the voxel, we would return related
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value. If the position is situated inside the voxel, the value must be inter-
polated2 from the values around. There are more types of interpolation:

Nearest-neighbour interpolation

This is the simplest interpolation when actual position is rounded to the
nearest voxel and then a value is returned (Fig. 4.6a). Problem of this
interpolation is it sometimes generates very evident and sharp changes of
colour in the final image.

Trilinear interpolation

Trilinear interpolation is a more sophisticated interpolation type where ac-
tual value is not calculated only from one voxel, but is calculated from all
nearest surrounding voxels - it is their weighting (Fig. 4.6b). Trilinear inter-
polation produces smoother images, but at the cost of longer computational
time.

(a) Nearest-neighbour inter-
polation. The light red circle
is an original position, dark
red circle is a rounded posi-
tion to the nearest voxel.

(b) Trilinear interpolation.
The blue circles are known
values of surrounding voxels.
First, we linearly interpolate
these values to get the green
circles, those are linearly in-
terpolated to obtain dark red
circles and a final value is
their linear interpolation.

Figure 4.6: Principle of interpolations

2interpolation is a method of constructing new data points within the range of a
discrete set of known data points

28



In most cases it is sufficient to use nearest-neighbour interpolation, which
benefits from its speed. However, if the dataset had very long distances
between each two slices, the quality of the result would be poor. In that
case it is better to use trilinear interpolation. In Fig. 4.7 is shown how
noticeably different the final image can be if we use distinct interpolations.
It is on the user’s choice in the settings window which method will be used.

Tab. 4.1 shows increase of the required computational time when using
trilinear interpolation instead of nearest-neighbour interpolation.

Dataset [w×h×d] Nearest-neighbour interp. [s] Trilinear interp. [s]
512×512×305 4.11 5.42
512×512×49 10.50 12.98
512×512×73 13.73 17.03
512×512×91 18.06 22.36
512×512×400 5.53 7.40

Table 4.1: Computational time of the algorithm using nearest-neighbour
and trilinear interpolations

4.6 Colour calculation

The crucial part of the application is for a given ray calculate pixel’s colour
on the projection plane. Once the ray has been sampled and all relevant
voxel values have been collected, we need to transform them into a colour
that would be in a real x-ray picture. In order to get the most realistic
digital image the accumulated value should be processed exactly according
to the laws from chapter 2.

Imitating all characteristics of the x-rays is practically not possible and
some of them have to be simplified:

1. First of all we ignore a polychromatism of the x-rays and work with
them as they were monochromatic. This makes us able to avoid the
equation 2.6 for an output intensity of the polychromatic beam which
is very difficult to compute and use its simpler form in equations 2.1-2.3
instead. This simplification also removes a need to simulate a beam
hardening, which is an inevitable phenomenon for a multienergetic
spectrum.
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(a) Nearest-neighbour interpolation used. The ,,steps” are very
visible.

(b) Trilinear interpolation used. The image is obviously smoother.

Figure 4.7: Pelvis example with two different interpolation types. Input
dataset had distance 5mm between each two slices.
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2. We neglected the both types of scattering as well. We assume each
ray is perfectly straight from its very beginning to its very end. If the
scattering was included we would have to for each voxel generate new
scattered rays which would markedly increase computational time of
the algorithm.

With these assumptions the colour calculation is straightforward. As was
said in chapter 2, the factor determining the final colour in the x-ray picture
is its blackening. If we recall equations 2.4 and 2.5 it is obvious we even
do not need the knowledge of the initial and output energy of the beam.
According to equation 2.5 the only necessary information is linear attenua-
tion coefficients along the ray and lengths of the intersections between the
ray and the incident voxels. To get the all lengths of the intersections we
must take care about it in a sampling algorithm (section 4.4). The linear
attenuation coefficients can be obtained indirectly from the input CT data.
In chapter 3 we said each CT slice is a matrix of CT numbers in Hounsfield
units. If we know the attenuation coefficient of the water (which depends
on the energies used), the attenuation coefficient of the particular voxel can
be computed easily according to equation 3.1. With multiplying the atten-
uation coefficients with the related intersection lengths and summing it all
together along the ray we get a number representing a colour.

However, this technique sometimes produced the images where the rear
parts of the volume overlapped the parts in the front, which should be the
most visible and the most consistent in the image. Therefore, we applied an
improvement to our algorithm – before the linear attenuation coefficient is
multiplied by the intersection length, it is nonlinearly transformed in a ma-
nner that the voxels closer to the camera are more important and contribute
more to the cumulated colour. The only parameter of the transformation is
the distance from the camera. Thus the final formula used to calculate the
colour is

d =
∑

e−
i
10 · µi ·∆i (4.1)

Last required step is to assign a colour on the display to the number
gained by a method described in the last paragraph. It is advantageous
not to use an absolute relation between the number and the colour, but
it is better to use colours relative to the range of the computed values. If
we used an absolute relationship, the image would have very low contrast
because most numbers belong to the narrow interval. If we use a relative
relationship, the relatively small range of values is stretched over the wide
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spectrum of grayscaled colours which improves the impression of the image.
In order to get this effect we do a histogram equalization[2] on the image
before showing it on the display.

4.7 Algorithm summary

Now if we put together all previous sections, the skeleton of the application
is following:

1. Prepare input data

- load the data from a medium

- transform them to have the right geometry according to section
4.1

2. Initialize x-ray system

- insert the transformed data into the coordinate system

- set a default camera position and its view direction

- initialize the projection plane, compute its position with respect
to the camera, compute its distance to meet the requirements
from section 4.2

3. For each pixel of the projection plane:

- generate a ray with origin in a camera and direction to the actual
pixel

- find a start point and an end point of the intersection between the
ray and input volume. If there is no intersection, write a default
colour to the pixel

- begin sampling the ray between the start and end point of the
intersection and for each sample position:

- compute the distance from the last position

- evaluate a value at that position either by nearest-neighbour
or trilinear interpolation

- convert the CT number into the linear attenuation coefficient

- multiply the distance and the coefficient and accumulate the
result with the product from previous samples
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- write the total accumulated value into the pixel

4. Postprocess final image3

4.8 Tissue selection

The principle of the algorithm we described allows us to selectively choose
which tissues should be reflected in a final image. Tissue types are defined
by the two boundaries of CT numbers determining the interval of ,,allowed”
values. When we evaluate a value at a particular position on the ray we
check whether the value belongs to the given interval or not. If does, the
number is accumulated, otherwise we proceed directly to the next position.

A goal of the tissue selection is not to provide some sophisticated tech-
niques for such thing like organ segmentation. It is primarily meant to
separate a bone tissue from all other tissues. In Fig. 4.8 we can see two
reconstructed radiographs of the exactly same scene, but with different CT
numbers interval. The interval is adjustable from the settings window of the
application.

4.9 Edge enhancing

Sometimes it may be desirable to highlight certain features in the final pic-
ture. One of the postprocessing techniques is edge enhancing. There are
several different algorithms used to highlight the edges. In our applica-
tion we tested three of them and then chose the one with the best results.
All of them were based on the convolution of the final image and suitable
kernel. We experimented with Sobel operator, Laplace operator and Marr
operator[2]. At last we decided to apply Marr operator which is advanta-
geous over the previous two. Sobel operator generates too thick edges which
may hide certain features and Laplace operator generates too many false
edges which introduces noise to the picture. Moreover, the Marr operator is
configurable in a sense of how sharp the edge should be to try to enhance it.
Fig. 4.9 shows the original picture (Fig. 4.9a) and then picture enhanced
with Marr operator (Fig. 4.9b). The second image has a little bit clearer
edges at the cost of introducing some noise.

3postprocessing is not a necessary part of the algorithm and is placed in a separate
section (4.9)
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(a) Interval of CT numbers set to <1000, 3500>

(b) Interval of CT numbers set to <1200, 3500>

Figure 4.8: Trunk example with two different CT numbers intervals
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(a) An original picture

(b) An enhanced picture

Figure 4.9: Two parts of the skull x-ray image, the second one with enhanced
edges
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4.10 Rotation

Although the DRR gives us possibility to generate digital screens from any
angle, defining camera’s position by three spatial coordinates is very un-
comfortable. That is why we developed another approach for controlling
the direction of the reconstruction. In our application we use a mouse to
interactively rotate the x-ray tube which provides very easy and effective
manipulation with the data.

4.10.1 Virtual trackball

To simulate the rotation we use a virtual trackball. Virtual trackball is a
sphere situated in the centre of coordinate system. When we press a mouse
button and move the mouse, the trackball begins to rotate. The rate of
the rotation depends on the place where the button was pressed and on the
direction of mouse movement. That means in fact we always want to rotate
just the sphere. Now if we have a mathematical apparatus how to rotate
the trackball (see implementation details C.4), calculation of the camera’s
position is easy. We imagine the camera is placed on our virtual sphere
and as we rotate the sphere we rotate the camera according to the same
rules. The same states for the projection plane. Each time the position of
the camera changes we need to recalculate all parameters of the projection
plane as well.

Default center of the trackball is in a point [0, 0, 0]. However, sometimes
we may want to rotate around another point, e. g. we want to focus on a one
bone and examine it from any angle. Then it is better to move the center of
the trackball into this bone and start examination. We can use either mouse
or a settings window to set the centre of rotation, both described in a user
guide (B.3.2, B.4).

4.10.2 Adaptive resolution changing

To gain the experience of real-time rotating of the body it is necessary the
response of the program was as fast as possible. Unfortunately, the computa-
tional time of the algorithm is not satisfactory. To preserve the smoothness
of transition between two subsequent pictures we developed adaptive resolu-
tion changing. As we start to rotate the body, the resolution is automatically
switched into lower values. When the mouse button is released, the image is
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recalculated into the full quality. If we want to rotate the image again while
the high quality recalculation has not finished, it is immediately stopped
and the resolution is lowered and prepared for prompt response. As a good
compromise between the speed and the quality on our dual core processor
we set the low quality resolution to be 16 times lower than the full qual-
ity resolution by default. This value can be whenever changed through the
settings window of the application.

4.10.3 Bilinear interpolation

It is possible to get the good final results despite the low resolution. The
solution is to bilinearly interpolate the low resolution image. Although this
interpolation is performed each time the picture is rotated, it is fast enough
not to break the smoothness of rotation.

If the resolution is lowered 16 times, it means we generate rays only for
each fourth pixel of the projection plane in vertical and horizontal direction.
The others pixels are then interpolated from the surrounding four calculated
pixels. In Fig. 4.10 we show the original image (Fig. 4.10a) and then
bilinearly interpolated picture with low resolution (Fig. 4.10b). As we can
see, the quality is very satisfactory even the resolution is 16 times lower.

4.11 Parallelization

Besides degrading the output resolution there are also other possibilities how
to accelerate the reconstruction and significantly decrease its running time.
Among feasible ways belong:

• upgrading the processor

• improve used algorithms

• use parallelization

As in a medical environment it is not possible to whenever change the hard-
ware because it would be costly and we tried to implement each algorithm
as efficiently as possible, the only reasonable solution is a parallelization.
Parallelization requires more threads to be run at once and all multicore
processors meet this requirement. In our algorithm there are several places
that may run simultaneously.
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(a) An original picture in a full quality

(b) A picture with 16 times lower resolution, but bilinearly interpolated.

Figure 4.10: X-ray images of the skull model. The second one has very good
quality despite the low resolution.
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4.11.1 Raycasting parallelization

Parallelization of raycasting consists in division the projection plane into cer-
tain number of mutually independent areas and then performing raycasting
on each of them separately. The way how the projection plane is divided is
very important and there have to be more criteria taken into consideration:

1. number of the independent areas
It is wrong to assume that it is sufficient to divide the projection plane
into the number of parts equal to the number of processors’ cores.
There may be a case (and in practice this is very often) that some
part of the volume is processed longer than the other parts. This leads
to the situation that some parts of the projection plane have already
been processed and their cores uselessly wait until the overextended
cores will finish their parts. Therefore we chose another approach. The
projection plane is divided into many smaller parts whose number is
much higher than the number of processors’ cores. Then each free core
is given one small part and as soon as the core is finished it is given
a new unprocessed part. This implies that no core is idle while the
other cores would work.

2. size of the areas
To select the most appropriate size of the areas we have to find a
compromise between their size and their amount. The too large a-
reas introduce problems mentioned in the previous paragraph. On
the other hand, the too small areas introduce overhead related to the
management of the threads. A good compromise is to choose number
of pixels between 256 and 1024 pixels.

3. shape of the areas
At the first sight this criterion may seem unimportant. However, the
shape of the areas determines how often we will miss the cache. If we
divided the projection plane into the whole rows, there would certainly
be more cache misses than if we took square areas.

According to these three points we decided to divide the projection plane
into square areas, where each area is 32 pixels wide.
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4.11.2 Postprocessing parallelization

The postprocessing technique that is parallelized is an interpolation. Biline-
ar interpolation is used during image rotation, as described in Sec. 4.10.3.
As there are always required only four surrounding pixels for interpolating
one pixel, the image may be easily divided into the several parts that are
processed simultaneously. Unlike the raycasting parallelization, the image
is divided into the predefined number of parts equal to number of cores,
because all parts are computationally identical and there is no risk any core
would stay idle.

4.11.3 Results of time improvement

In the Tab. 4.2 we present running time of the algorithm depending on the
number of processor’s cores.

Single core [s] Dual core [s] Quad core [s]
1. 7.477 3.936 1.141
2. 7.447 3.939 1.156
3. 7.437 4.126 1.343
4. 11.516 5.975
5. 22.541 11.946
6. 4.006 2.141

Table 4.2: Running times of the algorithm with different number of proces-
sors’ cores. Single and dual core times were computed by AMD Turion 64
X2 TL-52, 1.61 GHz, 1024 MB RAM. Quad core results were computed by
Intel Core 2 Quad Q6600, 2.40 GHz, 8192 MB RAM.
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Chapter 5

Conclusion

In this work we presented a method for generating digital reconstructed
radiograms and then according to described algorithm we implemented our
own DRR application. In the first chapter we outlined the main objectives
that every DRR program should accomplish – produce high quality digital
x-ray screens and do it as fast and as comfortably as possible. We succeeded
in fulfilling these particular goals:

1. The final images were examined and verified by the expert

specialized in radiology, MUDr. Martin Horák, who con-

firmed that quality of the results is good enough to help du-

ring a medical treatment.

Our success was primarily achieved by the emphasis we put on the
accurate simulation of the real screening process. We began with an
exact representation of all components participating in screening pro-
cess. Then we analyzed physical properties of x-rays radiation, mainly
attenuation model, and implemented the formulas into the application.
Although we ignored some phenomena of x-rays, like photons scatte-
ring and beam hardening, it did not noticeably affected the result at
all.

2. To make the manipulation with the program comfortable, we devel-
oped real-time rotation of the input data. User is able to arbitrarily
choose the position of the virtual x-ray tube by the mouse and thus
make the examination effective. Without possibility to interactively
manipulate the data, user would have to set x-ray tube’s position as a
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three coordinates in a 3D space. This approach is very clumsy because
it is not intuitive what the coordinates should be like if we want to
adjust the actual view direction.

3. We also managed to avoid the problems when the bone tissue is covered
with another tissue that is unimportant in the particular situation.
The method we used was a selective processing of voxels, when the
voxels with value outside the selected CT interval were omitted.

Despite the satisfying results there is left a lot of areas in which the work
is imperfect and could be improved.

1. There is always a scope for improving the quality of the final images. If
we compare a real x-ray screen and a screen produced by our applica-
tion, we can see the satisfactory resemblance, but certain difference is
evident. Better results could be achieved by removing some simplifica-
tions (introduced in Sec. 4.6 Colour calculation) of x-rays properties.

2. In the current program state, any computations are performed on
CPU. If we used GPU instead, the computational time would rapidly
decrease.

3. Sometimes it is desirable to highlight a specific tissue type in the in-
put volume. Our application lacks any means to adjust the transfer
function.

4. If we move the centre of rotation and then rotate the x-ray tube, it is
difficult to find out mutual position of the body and tube. It would
be beneficial if we placed a small picture into the settings box showing
centre of coordinate system, volume’s boundaries, center of rotation
and tube’s position at once.
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Appendix A

Contents of CD

On the accompanied CD we can find:

• /Datasets – input data for testing purposes

• /Documents

– /Internal documentation – doxygen generated documentation
of the application

– /MedV4D – user graphical interface documentation of the MedV4D
framework

– /Thesis – source files of this document in LATEX format and com-
piled pdf version

• /Executables – exe files of the application with all necessary files

• /Screenshots – contains outputs of the application

• /Source codes – complete source codes with Microsoft Visual Studio
2008 project files

• contact.txt – contact information in case of any opacities and ques-
tions
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Appendix B

User guide

B.1 Installation and launching

There is no need for any special installation of the application, it is just
sufficient to copy files CT2Xray.exe and config.cfg into the same folder and
then launch CT2Xray.exe. These two files can be found on the provided
CD.

B.2 Data loading

To load the input data we must either choose File – Search from the menu at

the top of the screen or choose an icon from the top of the screen. Then
we are showed a Search window (Fig. B.1) where we can select location of
the dataset. First we must choose what medium is the data on. We select
DICOMDIR tab (mark ). Subsequently we find the folder with the data

and press button Search (mark ). Then in the area at the bottom of the

window (mark ) we are given all found datasets. We choose the one and
double click it. Depending on the dataset, either the loaded data are showed
or the next window will appear (Fig. B.2). In this window we can choose a
concrete data if the dataset has more of them.

As we loaded our data, they are showed on the screen. How to control the
whole graphical user interface of the application, please consult chapter 8 of
the MedV4D documentation that can be found on the CD.
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Figure B.1: Search window for loading datasets

Figure B.2: It is possible to have more different datasets in a one dataset.
This window allows us to choose the concrete one.
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B.3 Settings window

Behavior of the application can be adjusted in several ways through the
Settings window. The settings are divided into two groups - basic settings
and advanced settings. At the bottom of the window there is Start filter
button, which executes the reconstruction process.

B.3.1 Basic settings

Window with the basic settings (Fig. B.3) contains because of simplicity
only those parameters that are used the most often.

Figure B.3: Basic settings window

CT numbers interval

In section 4.8 we spoke about tissue selection. These two fields specify
the interval of CT numbers which will be taken into consideration during
reconstruction process.
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Value interpolation

This field defines the type of interpolation used in a reconstruction algo-
rithm and determines the quality of the final image in general. The nearest-
neighbour interpolation gives faster but poorer quality results and on the
other hand the trilinear interpolation gives slower but higher quality results.

Use edges enhancing

If checked, the reconstructed picture will be subsequently enhanced with
sharper edges.

B.3.2 Advanced settings

Advanced settings (Fig. B.4) are used to setup parameters that are not
changed very often.

Figure B.4: Advanced settings window
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Camera position

These three fields show the actual coordinates of the camera in a virtual 3D
space. By setting these values to concrete values and executing the filter we
can get the camera exactly where we want.

Center of rotation

Center of rotation defines the direction in which the camera is looking and
defines a point around which camera rotates when we use a mouse to inte-
ractively select camera view.

Number of processors’ cores

Number of cores determines the rate of parallelization that will be used.
The higher the number is, the more simultaneously parts of the application
will be running. If we have a single core processor, we set the field to 1, if
we have a dual core processor, set the value to 2 and so on.

Rate of image preview degradation

Section 4.10 dealt with the need of lowering the resolution during interactive
rotation. This field allows to choose the particular factor how much the
resolution is lowered. The available options are 1×, 4× and 16×. The first
option will not degenerate the resolution at all, the second and the third
options will lower it relevant times.

B.4 Rotation

It is possible to use a mouse to control the reconstruction process. By the
mouse we can arbitrary rotate the data, zoom the x-ray tube and change
centre of rotation.

To rotate the data around the center of rotation we use a left mouse
button. We start the rotation by pressing the button, then we move the
mouse in any direction and stop rotating by releasing the button. As far as
the button was released, the image is recalculated into full quality.

In the previous paragraph we said the rotation is performed around a
center of rotation. Sometimes it is desirable to move the center of rotation
and rotate around a different point. To move the center, we press the right
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mouse button and move the mouse. To stop moving the center we release
the button.

It is also possible to zoom in and zoom out the camera. There are two
types of zooming. To zoom in larger steps we use scrolling by the roller.
However, if we need to zoom in a very fine steps, we press the roller and
move the mouse up and down, depending whether we want to zoom in or
zoom out.
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Appendix C

Implementation details

C.1 Compilation

Our DRR application is based on the MedV4D framework. The goal of
the MedV4D project is the development of a complex software for medical
imaging data analysis and processing. Before we compile our project it is
necessary to have prepared the libraries of the framework, concretely revision
1101. A guide how to compile MedV4D can be found at
http://cgg.ms.cuni.cz/trac/medv4d/wiki/HowtoDevel.

To successfully compile the project we need to know location of the
framework’s libraries and header files. If we use a Microsoft Visual Studio,
it is assumed all libraries are placed in a folder MedV4D/trunk/src/lib that
is on the same place as is the main folder of the application. The header
files are assumed to be in a folder MedV4D/trunk/src/include.

Compilation also supposes we have installed boost library from version
1.36.X.

C.2 Shooting and sampling the ray

A class wrapping shooting and sampling rays is called RayTracer. The
method that starts raycasting is void start(int x, int y, int width,

int height). The first two parameters define the starting position in the
projection plane that is going to be processed. The next two parameters
define area’s width and height. Determining the particular part of the pro-
jection plane is used further in parallelization.
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Rays generation is provided by a class PerspectiveRayGenerator. The
class has three methods: void init(), bool hasRay() and void nextRay(

Ray & ray). Their names are self-explanatory. The part of the code gener-
ating the rays is following:

Algorithm 1 Generating the rays

1: raysGenerator.init(startX, startY, width, height);

2: while raysGenerator.hasNextRay() do

3: raysGenerator.nextRay(actRay);
4: further steps
5: end while

Now suppose we have one ray from Alg. 1. The next step is to sample it.
To do this we use a class RegularPercentageRayStepper. This class pro-
vides methods void setRayStartEndPosition(rayStart, rayEnd), bool
hasNextPosition() and VectorType nextPosition(). If we continue from
the line 4 of the Alg. 1, the code is following:

Algorithm 2 Sampling the ray

1: find an intersection of the ray and input data (rayStart, rayEnd);

2: rayStepper.setRayStartEndPosition(rayStart, rayEnd);
3: while rayStepper.hasNextPosition() do

4: actualPosition← rayStepper.nextPosition();
5: further steps
6: end while

The last step is to evaluate the value at the given position and then
accumulate the colour. To find out the concrete value in the input there are
classes NoInterpolationValueEvaluator and TriLerpValueEvaluator.
These static classes have only one method ValueType getValue(actualPo-

sition). The first of the two uses a nearest-neighbour interpolation, the
second one uses a trilinear interpolation. To accumulate the value we use a
RTGAccumulatorExpoAtt class. It has three methods – void flush(), void
addValue(const ValueType & value) and ValueType getResult(). The
first method resets the accumulator, the second one adds a new value and
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the last one returns an accumulated result. Again, if we continue from the
line 5 of the Alg. 2, the algorithm is:

Algorithm 3 Evaluating and accumulating the colour

1: if user chose a nearest-neigthbour interpolation then

2: value← NoInterpolatV alueEvaluator :: getV alue(actualPosition);
3: else

4: value← TriLerpV alueEvaluator :: getV alue(actualPosition);
5: end if

6: accumulator.addV alue(value);

C.3 Threads

Parallelization is based on the execution of some application’s parts in the
individual threads. The application consists of these threads:

• main loop

• GUI events handler

• bilinear interpolator

• low and high quality raytracers1

To implement threads we use a boost library. A class invoking a new
thread is boost::thread. Synchronization among the threads is ensured by
boost::mutex and boost:condition variable classes.

Main loop thread

Main thread is always started at the beginning of the filter and takes care
of correct objects initialization and launching other executive threads.

1from now and further we do not distinct the words raycasting and raytracing
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GUI events handler

Events handler is a thread running on the background and its aim is to
collect and process all mouse and keyboard events. Class responsible for
events is called MouseHandler. Interface of this class provides functions
mouseDoubleClickEvent(), mouseMoveEvent(), mousePressEvent(),
mouseReleaseEvent(), wheelEvent(), keyPressEvent() and
keyReleaseEvent().

Bilinear interpolator

This thread is represented by class boost::thread group. First we divide
the projection plane into the known number of areas and then we interpolate
each of them in a separate thread.

Low and high quality raytracers

This is a set of threads performing the reconstruction process itself. Num-
ber of the simultaneously running threads depends on the user’s settings,
basically is derived from the number of processors’ cores.

In section 4.11.1 we described how the parallelization of the raycasting
is performed. First of all it is necessary to divide the projection plane
into the small pieces and then assign them gradually to separate raytracers.
A class handling the distribution of the pieces is called ChunksManager.
ChunksManager is initialized with four parameters – width and height of
the projection plane and width and height of each chunk (single piece of
projection plane). The pseudo code for managing the chunks is following:

Algorithm 4 Management of the chunks

1: chunksManager.reset();
2: while chunksManager.hasChunk() do

3: chunk ← chunksManager.nextChunk();
4: startRayTracer(chunk.x, chunk.y, chunk.width, chunk.height);
5: end while

It is important to always keep the same number of running raytracers
at once equal to the number of disponsible processors’ cores. As we can see
in the Alg. 4, the chunks are being assigned one by one. To take care of
the right amount of threads there is a class RayTracersPool. This class has
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two main data members, std::vector<ParallelRaytracer> raytracers

and std::deque<int> freeRaytracers. raytracers is an array of both
free and employed raytracers. Each raytracer is given a unique id that
identifies it and that is used as a key for queue freeRaytracers. This
queue determines which raytracers are working and which are not. As far
as there is a request to start a new raytracer, RayTracersPool checks the
freeRaytracers at first and finds out whether it is possible to start a new
thread. If freeRaytracers is empty, it means no raytracer is available and
the pool must suspend execution of new threads until any raytracer finishes
its work. Otherwise, the pool pops the front of the freeRaytracers and
starts raytracer with that id. Alg. 5 sketches described steps:

Algorithm 5 Execution of the new raytracers

1: while freeRaytracers is empty do

2: sleep();
3: end while

4: while freeRaytracers has an item do

5: id← freeRaytracers.front();
6: startThread(raytracers[id]);
7: remove a front from freeRaytracers;
8: end while

Lines 1− 3 show a loop waiting for any raytracer to finish. In practice,
we do not use sleep() function, because it would stop the entire code.
Instead we use a boost::condition variable that can block itself and
after notifying from another thread is able to continue. Usually it is a
raytracer who calls the notify() function when finishes its work and pool
immediately leaves the first while loop. The second loop (lines 4− 8) takes
ids of all free raytracers one by one and executes a new thread for each of
them.

Often there is a place in the code when we need to wait until all raytracers
finishe their work. RayTracersPool provides method stopAndWaitAll()

(Alg. 6) that sends a signal to each raytracer to stop and then block itself
until each raytracer definitely returns from a thread function.
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Algorithm 6 Stopping and waiting all raytracers to finish

1: for i = 1 to maxNumberOfThreads do

2: raytracers[i].stop();
3: end for

4: while freeRaytracers is not full do

5: sleep();
6: end while

Similar to line 2 of the algorithm 5, neither here we use a sleep() func-
tion, but we use a boost::condition variable again.

C.4 Virtual trackball

To control the virtual trackball we use a mouse moving in a 2D window.
As the trackball is three dimensional we need to find a relation between 2D
coordinates in a window and 3D coordinates on the trackball. It is good
to choose the trackball with unit radius. Then the mapping algorithm is
following:

1. Scale the x and y coordinates of the mouse into the interval [−1, 1].
New coordinates are defined as

scaledX =
2 · x

widthwindow

− 1 scaledY = 1−
2 · y

heightwindow

(C.1)

This gives us the first two coordinates on the 3D trackball.

2. The third coordinate is computed from the formula

x2 + y2 + z2 = r2 (C.2)

If we use a unit radius, the z coordinate is given by

z =
√

1− x2 − y2 (C.3)

If the expression in a square root is negative, we set the coordinates
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as

x =
x

√

x2 + y2

y =
y

√

x2 + y2

z = 0 (C.4)

3. The mapped point to the trackball has coordinates (x, y, z).

Now when we have a procedure that maps a 2D point to a 3D point,
we are able to compute the rotation matrix. When the user clicks on a
point within our window, we will calculate corresponding point on the ball
(call it A). Then, as long as the mouse is moved with the button down we
will compute the point on the ball corresponding to the pixel at which the
mouse cursor is (call it B). With the knowledge of these two points we can
calculate rotation Ri(A, B) that takes A into B. Fig. C.1 illustrates our
current situation. To build the rotation matrix we need to know another

Figure C.1: Two points A and B on the trackball

two parameters - rotation axis and rotation angle. To get the rotation axis,
we get the cross product of the two vectors from the centre of the ball to A

and B – ~v× ~w. The rotation angle is an angle between the vectors ~v and ~w

and is defined as

∠(~v, ~w) = arccos (
~v

|v|
·

~w

|w|
) = α (C.5)
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If we denote ~u(x, y, z) = ~v × ~w and normalize it, the rotation matrix has a
form




1 + (1− cos α)(x2 − 1) −z sin α + (1− cos α)xy y sin α + (1− cos α)xz

z sinα + (1− cos α)xy 1 + (1− cos α)(y2 − 1) −x sinα + (1− cos α)yz

−y sinα + (1− cos α)xz x sin α + (1− cos α)yz 1 + (1− cos α)(z2 − 1)





We know how to compute one rotation from A to B. This is only suffi-
cient if the rotation is started from the default position. If we already made
other rotations prior to this one, we need to track all preceding rotation ma-
trices. If Ri(A, B) is an i-th rotation matrix, then the total rotation matrix
after n rotations is given as R = Rn.Rn−1 . . . R2.R1.

C.5 Marr filter

Marr filter is a one of the edge enhancing filters based on the convolution of
original image and convolution kernel. Marr filter is based on another edge
enhancing operator, the Laplacian. The Laplacian is a 2D isotropic measure
of the 2nd spatial derivative of an image. The Laplacian L(x, y) of an image
with pixel intensity values I(x, y) is given by

L(x, y) =
∂2I

∂x2
+

∂2I

∂y2
(C.6)

Since the input image is represented as a set of discrete pixels, we have to
find a discrete convolution kernel that can approximate the second deriva-
tives in the definition of the Laplacian. Two commonly used small kernels
are shown in Tab. C.1. Using one of these kernels, the Laplacian can be

0 -1 0
-1 4 -1
0 -1 0

-1 -1 -1
-1 8 -1
-1 -1 -1

Table C.1: Two kernels for approximating the Laplacian

calculated using standard convolution methods. Because these kernels are
approximating a second derivative measurement on the image, they are very
sensitive to noise. To counter this, the image is often Gaussian smoothed
before applying the Laplacian filter. This pre-processing step reduces the
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high frequency noise components prior to the differentiation step. Gaussian
function in two dimensions is defined as

G(x, y) =
1

2πσ2
e−

x2
+y2

2σ2 (C.7)

In fact, since the convolution operation is associative, we can convolve
the Gaussian smoothing filter with the Laplacian filter first of all, and then
convolve this hybrid filter with the image to achieve the required result. This
new operator is called Marr operator or LoG (Laplacian of Gaussian). 2D
LoG function is given by

LoG(x, y) = −
1

πσ4

[

1−
x2 + y2

2σ2

]

e−
x2

+y2

2σ2 (C.8)

A part of the discrete kernel that approximates this function (for a Gaussian
σ = 1.4) is shown in Tab. C.2.

0 1 1 2 2 2 1 1 0
1 2 4 5 5 5 4 2 1
1 4 5 3 0 3 5 4 1
2 5 3 -12 -24 -12 3 5 2
2 5 0 -24 -40 -24 0 5 2
2 5 3 -12 -24 -12 3 5 2
1 4 5 3 0 3 5 4 1
1 2 4 5 5 5 4 2 1
0 1 1 2 2 2 1 1 0

Table C.2: Discrete approximation of LoG operator for σ = 1.4
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Appendix D

Gallery

Figure D.1: High quality skull image with a noticable sinus
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(a) View from the top of the body

(b) View along the body

Figure D.2: Two different views at a steel rod in a hip joint
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(a) Side of the skull

(b) Back of the skull

Figure D.3: Two different screens of the skull
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