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Lineárńı semiflexibilńı polyelektrolyty v roztoćıch
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Abstract:

In the thesis, molecular dynamics simulations are used for studying the charged lin-
ear polymers (polyelectrolytes) and their conformational behavior in solutions. The study
focuses on semiflexible chains, because they have not been studied as systematically as
the flexible or stiff polyelectrolytes. The persistence length is a characteristic of chain flex-
ibility which is influenced by intrinsic chain stiffness and by electrostatic interactions of
charged monomer units. In the thesis, the conformational behaviour of polyelectrolytes in
solutions differing in the salt concentration is simulated and the effect of ionic strength on
the conformational behaviour is studied. The persistence length of semiflexible polymer
is calculated using several different definitions and the results are compared. Salt ions
are treated implicitly within the Debye-Hückel approximation. The simulation results are
compared with the Odijk-Skolnick-Fixman theory and with the conclusions of the vari-
ational approach of Manghi and Netz. The results confirm the theoretically predicted
double exponential decay of the orientation correlation function. The roles of the intrinsic
and electrostatic persistence lengths are analyzed and their effects on the conformational
behavior are discussed in detail.

Keywords: polyelectrolytes, persistence length, simulations, salty solutions
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E-mail školitele: zl@vivien.natur.cuni.cz
Konzultant: Mgr. Peter Košovan, PhD.

Abstrakt:

V diplomové práci jsou studovány lineárńı nabité polymery (polyelektrolyty) a je-
jich konformačńı chováńı v roztoćıch pomoćı poč́ıtačových simulaćı metodou molekulárńı
dynamiky. Studie je zaměřena na semiflexibilńı řetězce, které nebyly prostudovány tak
systematicky jako flexibilńı nebo tuhé polyelektrolyty. Perzistenčńı délka charakterizuje
ohebnost řetězce, kterou ovlivňuje jednak vnitřńı tuhost řetězce a jednak elektrostatické
interakce nabitých monomerńıch jednotek. V práci je simulováno konformačńı chováńı
v roztoćıch lǐśıćıch se koncentraćı soli a je studován vliv iontové śıly na konformačńı
chováńı polyelektrolyt̊u. Pro výpočet perzistenčńı délky je použito několik r̊uzných definic
a výsledky jsou porovnány. Elektrostatické interakce jsou popsány pomoćı Debye-Hückelovy
aproximace. Výsledky simulaćı jsou porovnány s Odijk-Skolnick-Fixmanovou teoríı a se
závěry variačńıch výpočt̊u Mangiho a Netze. Výsledky potvrzuj́ı dvouexponenciálńı pr̊uběh
orientačńı korelačńı funkce plynoućı z teorie. Je analyzována role vnitřńı a elektrostatické
perzistenčńı délky a je podrobně diskutován jej́ı vliv na konformačńı chováńı.

Kĺıčová slova: polyelektrolyty, perzistenčńı délka, simulace, zasolené roztoky
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List of Symbols

∆Ebend elastic bending energy per unit length of the chain

∆t time step

ε parameter describing steepness of WCA potential

Γ friction coefficient

κ−1 Debye screening length

κb bending modulus of polymer

λ1,λ2 parameters in Dobrynin’s expression of the orientational correlation function

φ bond angle

φ0 equilibrium value of bond angle

ρ number density of particles

σ diameter of beads

σlp standard deviation of persistence length

τ value of argument of the autocorrelation function for which the function
equals e−1

Rc radius of curvature

θ complementary angle to the bond angle

ε0 vacuum permittivity

εr relative dielectric constant of the medium

A universal symbol for calculated quantity

a, b parameters of linear functions used for fits

B parameter in Manghi’s and Netz’s expression of the orientational correlation
function

c number of saved configurations between two studied conformations

C(c) autocorrelation function of end-to-end distance
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d number of degrees of freedom

e unit charge

f fraction of charged monomeric units

I ionic strength

j distance between two bond vectors

k position on the chain

kB Boltzmann constant

kbend bending constant

kFENE parameter of bonding potential

l bond length

lb Bjerrum length

lp universal symbol for persistence length

l′p apparent persistence length obtained from experiment

lp(k) local persistence length

l0p intrinsic persistence length

lep electrostatic persistence length

ltp total persistence length

mi mass of i-th particle

N number of bond vectors

nc total number of saved configurations

Nm number of monomeric units per chain

ns number of time steps

RFENE maximum bond stretching

rcut WCA cut-off distance

rij distance between the i-th and j-th particle

s distance along the chain contour

sc crossover length

T temperature of the system

t universal symbol for time
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Tk kinetic temperature

ts simulation time

U(φ) angle potential

U(RN) interaction potential

UDH(rij) Debye-Hückel potential

UFENE attractive finitely-extensible non-linear elastic (FENE) potential

UWCA Weeks-Chandler-Andersen potential

V volume of the system

Fr
i (t) stochastic force on i-th particle

Fi force on the i-th particle

Re end-to-end vector

Rg radius of gyration

Ri position vector of i-th particle

ri i-th bond vector between (i− 1)-th and i-th particle

Rcm position vector of the center of mass

vi velocity of particle i

Rmax contour length

FJC freely jointed chain

OCF orientational correlation function

OSF Odijk, Skolnick, Fixman

PEs polyelectrolytes

WCA Weeks-Chandler-Andersen
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1. Introduction

For many years, people have been using polymers without realizing, that they have
been using a special material with extraordinary properties. Biopolymers such as cellu-
lose or natural rubber and also synthetic polymers found applications in various indus-
trial sectors. [1] Nowadays there are many polymer products which help us in everyday
life. They offer a number of benefits to almost all, women appreciated the invention of
nylons, tires changed men’s world and the top-quality nappies make the children’s life
happier. The research of new polymer materials opens new possibilities for scientists,
macromolecules with desired properties are synthesized and polymer physics helps to
understand the behaviour of biopolymers such as DNA or proteins.

Linear polymer is a long chain that is composed of repeating units, called monomeric
units, connected by covalent bonds. Linear polymer chain in a solution can form a number
of different conformations (spatial arrangements). [2] Polyelectrolytes are polymers that
contain charged or ionizable groups in their chains. They are usually water-soluble and
due to the long-ranged electrostatic interactions the description of their properties in
solutions is more complicated than that of neutral polymers. [3] The repulsion of charges
along the chain has an effect on its flexibility, because it leads to chain stretching. When
a salt is added to the solution, the electrostatic interactions are screened by the ions of salt
and it causes conformational changes of the chain. [4] In spite of a large scientific effort
over the last years, the understanding of the behaviour of polyelectrolytes in solutions is
still poor.

Molecular simulations represent an important step in the study of polyelectrolytes. [5]
They allow to predict, analyze and explain the properties of polymers thanks to math-
ematical and statistical approaches. The results of simulations can prove the theoretical
assumptions and they can be used for testing the theories. The simulations can spare a lot
of time and finances, because the simulation data offer basic information about a polymer
chain before it is actually synthesized or studied experimentally. For example, the stiffness
of polyelectrolytes is a property that is quite difficult to quantify under various conditions
and not very well described by theory, so the molecular simulations are a perfect tool for
its investigation.

The chain stiffness can be characterized by the persistence length. [6] The persistence
length expresses the ability of bending of the chain and tells us something about the pos-
sible conformations of polymers in solutions. There are many theories of the persistence
length and different ways how to define it. [7] In case of semiflexible polyelectrolytes,
two contributions to the chain stiffness have to be taken into account: intrinsic stiffness
of the chain and the contribution due to the electrostatic repulsion of charged monomeric
units. The most known theory of the persistence length was derived by Odijk, Skolnick
and Fixman (OSF) [8, 9]. It assumes that the total persistence length is a sum of two
contributions: electrostatic and intrinsic persistence length. Many studies have been based
on this theory and have been focused on the dependence of the electrostatic persistence
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length on the ionic strength of solution. This dependence is particularly helpful in bio-
chemistry. For example, the stiffness of DNA or other biopolymer could be moderated by
suitable choice of conditions and it could influence the biological function of DNA. [10]
It is possible to obtain this dependence from experiment as well. [11, 12, 13] Recently
published results show that the electrostatic persistence length is scale dependent. It is
an important fact that can explain why the bond-angle correlation function calculated
from simulation data of semiflexible polyelectrolytes doesn’t follow the single exponential
decay as was predicted by OSF. [14] As a result we can observe different behaviour of
polyelectrolytes at short length scales (controlled by intrinsic stiffness) and at long length
scales (electrostatic contribution). This two-scale behaviour was the topic of the study
of Manghi and Netz (variational theory) [15] and Dobrynin (simulation and variational
theory) [16]. At present most experimental techniques are able to measure only the stiff-
ness of polymers at long scales, so the two-scale behaviour hasn’t been confirmed by
measurement yet.
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2. Aims of the thesis

The thesis is aimed at information allowing better understanding of the conformational
behavior of linear semiflexible polyelectrolytes in salty solutions. For this purpose, ex-
tensive molecular dynamics simulations were performed and the orientation correlation
function (OCF) was calculated for different values of the ionic strength and intrinsic
stiffness of polyelectrolyte chains.

The goal of a careful analysis of OCF decays is to elucidate the effect of the two
aforementioned characteristics on the conformational behavior. The simulated function
was used also for testing the validity of the Odijk-Skolnick-Fixman theory and of the
conclusions of the variational approach of Manghi and Netz.

9



3. Models of polymer chains

A polymer chain consists of a large number of building units and has a high molecular
weight. When we study such large system, we are usually interested in global charac-
teristics only and we don’t go in details. We choose an appropriate model that includes
the information on the polymer structure (connectivity, charge of monomeric unit etc.)
and interactions in the system, but is simple enough to describe the chain properties.

One of the simplest models is a model of ideal chain. [2] The ideal chain is modeled
by jointed links, they interact neither with each other nor with solvent. The model can
be applied in some cases also for real polymers. Real chains behave like ideal under so
called theta conditions. Theta condition for polymers corresponds to the state, at which
the attractive and repulsive interactions between monomeric units cancel each other.
The condition can be fulfilled by a suitable choice of the solvent and temperature. [17]

Another possibility how to model a polymer chain is to applied a coarse-graining
method. [18] A coarse-grained polymer model consists of units that have non-zero volume
and interactions in system are described by an appropriate force field. It allows to solve
the problems relating to real polymers.

This section deals with both models used in my study, the first one gives basic theoret-
ical expressions for further calculations and the second one is implemented in simulations.

3.1 Ideal chain

Let’s consider a polymer chain consisting of N + 1 monomeric units. The position
of every monomeric unit is given by position vector Ri. Usually it is better to express
the configuration of polymer as a set of bond vectors {ri}=(r1...rN) with the same length
denoted as l. [19] The bond vector is a vector between consequent monomeric units:

ri = Ri −Ri−1 i = 1, 2, 3..N,

|ri| = l.

We replace the system of connected monomeric units by a model of chain represented
by N joined bond vectors without mass and volume. [19] The process is schematically
depicted in Fig. 3.1.

The size of the chain can be characterized by the radius of gyration Rg and end-
to-end distance Re. [2] Both of them are characteristics of ideal chains as well as real
polymers. The square radius of gyration is defined as an average squared distance between
monomeric units in a given conformation and the polymer’s center of mass (see Fig 3.1):

R2
g =

1

(N + 1)

N∑
i=0

(Ri −Rcm)2. (3.1)
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Figure 3.1: Model of ideal chain

Ri and Rcm are position vectors of i-th monomeric unit and center of mass. The end-to-end
distance is a vector connecting the ends of a linear polymer chain in a particular confor-
mation:

Re = RN −R0 =
N∑
i=1

ri. (3.2)

The maximum value of the end-to-end distance of a fully extended linear chain is called
the contour length Rmax. The probability, that a chain forms a fully stretched conforma-
tion in solution, is very low. There is a huge number of different conformations of the chain
in solution and so in order to obtain relevant information on the chain size and struc-
ture, an average value of the end-to-end distance and radius of gyration is calculated.
The mean-square end-to-end distance 〈R2

e〉 is given by:

〈R2
e〉 =

N∑
i=1

N∑
j=1

〈ri · rj〉 =
N∑
i=1

〈r2
i 〉+ 2

∑
i>j

〈ri · rj〉. (3.3)

The equations mentioned above are valid generally for every polymer chain. Under
specific conditions they can be modified and we obtain a simple expression for particular
model of ideal chain:

• Freely jointed chain: there are no correlations between the directions of different
bond vectors ri and rj, thus 〈ri·rj〉 = l2δij. Because 〈r2

i 〉 = l2, the obtained formula is:

〈R2
e〉 = 〈R2

e〉 = Nl2. (3.4)

• Freely rotating chain: all bond lengths and bond angles φ are fixed, but there is a
free rotation around single bonds. We define a complementary angle θ (see Fig 3.1)
as: θ = 180◦ − φ and express the scalar product of i-th and j-th bond vector by
formula for cosine of this angle:

cos θi,j =
ri · rj
l2

. (3.5)

When the distance |j− i| between bond vectors i and j increases, their orientations
become less correlated, because it is possible to rotate |j − i| single bonds between
them. Then the average value of the scalar product of vectors 〈ri · rj〉 is a rapidly
decaying function of the distance |j − i| along the chain:

〈ri · rj〉 = l2(cos θ)|j−i|. (3.6)
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We substitute the second term on the right side of eq. 3.3 with eq. 3.6 and as a
result we get formula for 〈R2

e〉 of freely rotating chain:

〈R2
e〉 = 〈R2

e〉 = Nl2
1 + cos θ

1− cos θ
. (3.7)

Although there is no free motion of segments as in the case of the freely jointed chain,
the interactions at long distances are ignored and therefore this model belongs to
the category of ideal chain.

A limiting case of freely rotating chain is a chain with a extremely small bond length,
l→ 0, and bond angle close to zero, θ → 0. It is called worm-like chain, because it looks
like an infinitely thin chain of a continuous curvature. The worm-like chain has a defined
value of contour length:

Rmax = Nl cos(θ/2) (3.8)

and constant value of persistence length (see chapter 5).

3.2 Coarse-grained chain

CH
2

Ph

CH

Figure 3.2: Model of coarse-grained chain

In the simulations of polymer solutions, we have to deal with different length

scales. Synthetic linear polymer chains are thousands times longer (∼ 103
◦
A) than one

monomeric unit (∼ 100
◦
A). Detailed atomistic simulation of such a long chain would be

extremely time and computationally demanding. Moreover, an exact quantitative descrip-
tion of the system is in many cases unnecessary. Therefore we pass from a fully detailed
model to a simpler one. This process is called coarse-graining.

A coarse-grained model of the chain can be created by replacing several atoms and
groups by one effective elementary unit of the chain. Some of the physico-chemical details
are implemented as a chain stiffness, excluded volume of building blocks or their connec-
tivity, so we don’t lose completely the information on the nature of monomeric units. [20]
The parts of the coarse-grained chain interact via simple effective potential. It allows to
simulate multicomponent systems over longer times than in case of simulations with full
atomistic details. This representation is used for simulations of real polymers. Because of
the simplifying nature of the coarse-grained model, we get only quantitative predictions
of polymer properties. [21]
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There are two categories of real chain models:

• models of specific polymers: they fit to the particular polymers, the force field and
other characteristics of the system have to be predetermined by atomistic simula-
tions.

• generic polymer models: they describe a group of polymers (linear, block copoly-
mers..), the common features of the group are included in model by setting the
interactions or volume of building blocks.

In this thesis the second approach is used. The semiflexible polyelectrolytes are simu-
lated on the basis of a bead-spring model. [22] This coarse-grained model is common for
simulations of polymers in solution. It is schematically depicted in Fig. 3.2. The modeled
chain consists of spherical beads connected by springs. Each bead represents one or more
monomeric units, the number of monomeric units per beads depends on a particular prob-
lem that we study. The spring is responsible for effective flexible bond, so the value of
bond length is not constant and we get only its average. The spring allows the modeling
of elastic properties of the chain.

The beads in our simulations have the same size and every bead bears the unit charge
(i.e. the chain is positively charged). From now on we refer to ”monomeric units” when we
speak about the beads forming a chain and ”counterions” is a term for beads representing
negatively charged ions. Because of the flexible bond between beads, a value of the average
bond length 〈l〉 is used in calculations. To make the notation simpler, we omit the brackets
in the thesis and we use the symbol l for the bond length averaged over all equilibrated
conformations of the polyelectrolyte (see next section). There are long and short range
interactions between beads in the chain and counterions. To restrict the values of bond
angles, an angle potential can be implemented. As a result we obtain a bead-spring model
with specific stiffness, which takes into account the excluded volume of monomeric units
and interactions with solvent.
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4. Simulation method

What is not possible in real life it is possible in virtual reality. What is not possible
to realize in experiment, can be modeled in molecular simulations. Simulations act as
a bridge between theory and experiment. They form an essential part of the research of
polymers, because they allow us to calculate polymer properties that can not be measured,
thanks to simulations we can investigate the validity of theoretical approaches and they
can be used for study in different length and time scales.

This chapter describes the simulation technique that was applied for study of poly-
electrolyte solution. It contains a section about interactions between particles and about
a model of solvent. In the end some technical details are discussed in order to explain
the connection between real and simulated system.

4.1 Introduction to Molecular dynamics

Molecular dynamics is a computer simulation method for studying the time evolution of
a many-body system. [5] The system consists of a set of atoms or molecules, or in our case
of a polyelectrolyte chain in an implicit solvent (see section 4.3). The particles are localized
in the simulation box, the initial configuration is given by positions of particles. The initial
velocities are selected arbitrarily and the interaction potential U(RN) is implemented
(see section 4.2). The motion of particles in the system obeys the Newton’s laws

mi
d2Ri

dt2
= Fi i = 0, 1, 2, 3...N, (4.1)

where t is a time, Fi is a force on a particle i with a mass mi and can be calculated as
a gradient of interaction potential:

Fi = −∂U(RN)

∂Ri

. (4.2)

The equations of motion are solved by step-by-step numerical integration. It means that
the time is divided into discrete time intervals - time steps ∆t and the integration is
provided by using a finite difference method. We used the Velocity-Verlet integration
scheme. [23] After the integration new coordinates of particles are obtained and the value
of time increases to t+∆t. After particular number of time steps ns the simulation output
is represented by evolution of calculated properties in time. The measurement is performed
in simulation as a calculation of time averages of desired quantities A [24]:

〈A〉 =
1

ns

ns∑
i=1

A(i∆t). (4.3)
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In simulations presented in this thesis, the number of particles and the volume V are
not changing and therefore their constant values are set in the beginning of simulation.
The average value of temperature T is kept constant as well. It is provided by the ther-
mostat (see section 4.3). This choice of invariant quantities corresponds to a canonical
ensemble. [24]

4.2 Interaction potential

Not only the model of a chain but also the applied interaction potentials should reflect
the real properties of the studied polyelectrolyte solution. They have to describe all forces
acting on the particles in the system. However, they should be easy processable, because
the calculation of forces (eq. 4.2) is the most time demanding part of the simulation
process. Therefore usually only pairwise interactions between beads are considered and
the contribution of solvent is treated implicitly.

4.2.1 Short range potentials

Non-bonding potential
For the description of attraction or repulsion between the particles in the system usually
the Lennard-Jones potential is used. In our case Lennard-Jones potential was slightly
modified, because we use a model of athermal solvent (see below). The attractive part of
the potential is omitted and only the repulsive part remains. It was achieved by shifting
the potential at the position of its minimum. The final form is known as the Weeks-
Chandler-Andersen potential (WCA) [25]:

UWCA(rij) =

 4ε

[(
σ
rij

)12

−
(
σ
rij

)6

+ 1
4

]
rij ≤ 2

1
6σ

0 rij > 2
1
6σ

(4.4)

Parameter ε controls the steepness of the interaction potential and σ is a diameter of
beads in simulations. The value of parameter ε in every simulation in this thesis was cho-
sen to model an athermal solvent.[2] In athermal solvent there are only excluded volume
interactions among the particles and beads act like relatively hard spheres when they get
closer. The WCA potential with the given parameters is implemented for every bead with-
out exception. Because the beads are the same size, there is no difference in non-bonded
interaction of different types of particles (monomer-monomer, monomer-counterion...) and
a value of energy calculated from WCA potential is dependent only on distance between
beads.

Bonding potential
The beads in the chain are connected by the spring that is modeled via an attractive
finitely-extensible non-linear elastic (FENE) potential:

UFENE(rij) =

 −1
2
kFENER

2
FENE ln

[
1−

(
rij

RFENE

)2
]

rij < RFENE

∞ rij ≥ RFENE

, (4.5)

with parameters kFENE and RFENE. Parameter RFENE is the maximum stretching of
the flexible bond. The values of the parameters chosen for our simulations were rela-
tively high, close to the typical values used for model of polymer networks. This choice
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should assure that the chain crossing is impossible and that the fluctuation of bond length
is minimal. [26] The values of parameters are summarized in section 4.4.

The combination of FENE potential and WCA potential (eq. 4.4) gives an anharmonic
spring interaction with a single minimum. The obtained potential is shown in Figure 4.1.

0

10

20

30

40

50

0.6 0.8 1 1.2 1.4

U
/
ǫ

rij/σ

FENE
WCA

WCA+FENE

Figure 4.1: FENE and WCA potentials as attractive and repulsive components of the
interaction potential

Angle potential
A model of semiflexible chain requires a restriction of flexibility of the chain. The bond
angles are not entirely fixed as it was in case of freely rotating chain, but the restriction
is done by applying an angle potential. The angle potential belongs to the three-body
interactions and it is the only many-body interaction that we used. The selected potential
has a harmonic form:

U(φ) =
1

2
kbend(φ− φ0)

2, (4.6)

where kbend is the bending constant and term (φ − φ0) expresses a fluctuation of bond
angle φ about the desired equilibrium value φ0. The value of φ0 was set to φ0 = π, which
corresponds to completely stretched configuration. This choice of φ0 allows to replace
(φ− φ0) on the right side of eq. 4.6 with angle θ (see definition in sec. 3.1).

After the substitution of θ to expression for angle potential the potential will have a
form similar to bending potential given by Hook’s law for polymers. It is useful, because
we get the connection between parameter kbend, that can be set in the beginning of
the simulation, and bending of the chain. [2, 27] Generally, if the value of bending constant
kbend is high, the value of bond angle tends to be equal to ideal value φ0 and the polymer
appears to be stretched. The values of the bending constant were chosen according to
assumptions for semiflexible chains (see section 4.4).

4.2.2 Long range potential

In our simulations every monomeric unit bears a unit charge +e and every counterion
is charged negatively with charge −e. Charged species in system interact via electrostatic
long range interactions. In a salt-free solution the pure Coulomb potential is used. When
the salt is added to the solution, the screening effect of the ions of salt is taken into
account.
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Then the potential acting on charged particles doesn’t decay like 1/rij but according
to Debye-Hückel (DH) theory the potential has a form:

UDH(rij) = kBT lb
e−κrij

rij
, (4.7)

where rij is the distance between the charges, kB is the Boltzmann constant, κ is a reciprocal
value of the Debye screening length and the Bjerrum length lb expresses the strength of
the bare Coulomb electrostatic interaction [3]:

lb =
e2

4πεrε0kBT
(4.8)

The εr and ε0 denote in previous equation the relative dielectric constant of the medium
(solvent) and the vacuum permittivity. At the distance equal to the Bjerrum length
the interaction energy of two unit charges e gets the value of thermal energy kBT . For
water at room temperature this distance is lb ≈ 7.14Å.

Debye screening length κ−1 from equation 4.7 is related to the ionic strength I:

κ2 = 4πlbI, (4.9)

The electrostatic interaction is screened only at distances larger than Debye screening
length. At shorter distances the particles interact via unscreened Coulomb potential.

The use of DH theory for description of electrostatic interactions in solutions is lim-
ited. The validity of this theory is restricted to the solutions with relatively high ionic
strength. If the calculations of properties of polyelectrolytes in salt-free solutions are based
on the Debye-Hückel approach, the incorrect values of osmotic pressure or end-to-end dis-
tance can be obtained. [28] It is caused by the underestimation of the role of entropy. More-
over, DH theory doesn’t account for the counterion condensation (see sec. 4.3), therefore
it is not suitable for simulations of strongly charged polyelectrolytes in solutions with
relatively high density. The values of κ for our simulations were selected according to
the previous considerations: the salt-free regime or solutions with very low ionic strength
were omitted, but also the value of κ shouldn’t be very high, because then the behaviour
of polyelectrolytes in solution is similar to neutral polymers. The values of κ used in our
simulations correspond to medium ionic strength, i.e. neither the low salt nor the high
salt regimes are studied. They are listed in section 4.4.

4.3 Modeling of the solution

If we wanted to study an explicit effect of solvent molecules on a chain movement in large
polyelectrolyte solution, it would take hours of computational time, because the studied
system would consist of thousands of particles. Due to this fact the solvent molecules are
treated implicitly and the interactions with solvent are usually simulated as random forces,
that mimics the random collisions of particles with the surrounding medium. [29] These
random forces cause jumps in time evolution of kinetic energy and it leads to warming
or cooling of the solution, because the average system temperature T is closely related to
kinetic energy:

N∑
i=0

mi|vi| 2
2

=
d

2
kBTk, (4.10)
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〈Tk〉 = T.

In this equation d denotes the number of degrees of freedom, vi is a velocity of i−th
particle and Tk is so called kinetic temperature.

One possibility, how to control the temperature in canonical simulation and simulta-
neously model the interactions with a solvent is coupling the system to a heat bath. [30]
We use the Langevin thermostat. The implementation of the thermostat is done by modi-
fication of the Newton’s equations of motion, where two forces are added to the right side
of the equation:

mi
d2Ri

dt2
= Fi − Γ

dRi

dt
+ Fr

i (t). (4.11)

Fr
i (t) is the stochastic force that represents the effect of solvent and Γ(dRi/dt) is a drag

force, whereas Γ denotes the friction coefficient. These two forces are coupled through
the fluctuation-dissipation theorem [19]:

〈Fr
i (t) · Fr

i (t
′)〉 = 6kBTΓδijδ(t− t′), (4.12)

where δij is the Kronecker delta and δ(t− t′) the Dirac delta function.
The simulation of salty solution includes also modeling of the added ions. They are

taken into account in the simulations only via Debye-Hückel potential (eq. 4.7), so they
are not explicitly placed in the simulation box. The amount of added salt influences the
value of κ, which is proportional to the ionic strength of solution.

On the other hand, the counterions are considered as charged beads with a nega-
tive unit charge. They are simulated explicitly, because this work handles solutions of
strongly charged polyelectrolytes, where the counterion condensation can occur. [31, 32]
It happens when the electrostatic attraction of counterions to the polymer chain is higher
than the contribution from their translational entropy in the solution. Because in our
simulations the counterions are present in the simulation box, we should be able to ob-
serve the condensation directly in simulation snapshots. However, no condensation was
observed.

We avoid the counterion condensation also by simulating a dilute system. It contains
only one polyelectrolyte chain in simulation box and the box was much longer than average
end-to-end distance of polymer.

4.4 Simulation details

The simulations were performed using the simulation software ESPResSo - Extensible
Simulation Package for Research on Soft Matter [23]. This simulation package was de-
signed by research group from Max-Planck-Institute for Polymer Research in Mainz in
Germany for simulations and analysis of coarse-grained models with emphasis on charged
systems.

The simulation process is composed of three parts:

• creating of system

• warm-up

• integration loop and analysis
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Firstly, the basic components of the system are specified: the number of polymers in
the box, their length, fraction of charged monomeric units, interactions and so on. There
was only one fully charged polyelectrolyte chain in the simulation box in our simulations.
To avoid an effect of the walls of the box on the chain, the periodic boundary conditions
were applied. It means, that we replicate the box with particles by translation in all three
directions throughout space. As a result our system looks like infinitive lattice created
from periodically repeated box. For more information about evaluation of interactions in
such a system see [24]. The fundamental characteristics of our system under investigation
are listed in the next table:

Table 4.1: Characteristics of the system
quantity symbol reduced unit value

number of monomeric units per chain Nm 200
fraction of charged monomeric units f 1

number density of particles ρ σ−3 2.10−5

bond length l σ ≈1.0

friction coefficient Γ σ−1
√
kBT/m 1.0

The quantities are given in typical units for simulations called reduced units. It pre-
vents from dealing with too small or too big numbers in calculations. For example,
if the majority of measured lengths in simulation have the same order of magnitude, it
is convenient to define a basic unit as one of the constant lengths (as diameter of beads,
Bjerrum length...) and express all other quantities as its multiplies. The energy scale in
this work is given by setting kBT = 1. The second basic unit is mass of the bead m = 1.
The length scale is set by the diameter of beads σ = 1.

The initial random configuration created in the first part of the simulation can in-
clude overlapping beads. Therefore we start a warm-up loop to reorganize the particles
in the system, so that the separation between the beads was as big as we require. It is
done by applying the pure repulsive WCA potential. The potential is modified in order
to slightly change the conformation, so called ”force cap” is used. [23] It means that for
distance below the particle size force doesn’t become extremely large, but is ”capped” to
the given value. This value is increasing during the warm-up loop and so the overlapping
of particles is getting unfavourable. When the given minimum distance between beads is
reached, the warm-up loop is stopped and force cap is switched off.

The interaction potentials described in sec. 4.2 are firstly introduced in simulation in
the third part before integration. The parameters chosen for our simulations are summa-
rized in the table:

Table 4.2: Interaction parameters
quantity symbol reduced unit value

steepness of WCA potential ε kBT 0.34

WCA cut-off distance rcut σ 2
1
6

spring constant kFENE kBT/σ
2 30.0

maximum bond stretching RFENE σ 1.5
bending constant kbend kBT 8.0-40.0

inverse Debye screening length κ σ−1 0.04-0.07
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The equations of motion are then integrated with time step ∆t=0.01σ
√
m/kBT .

The analysis of data begins after equilibration of the system. System is equilibrated when
its total energy fluctuates around average constant value. The equilibration time was es-
tablished from the time evolution of energy and equals to 2×107 time steps. Overall time
of simulation was 44× 107 time steps.
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5. Persistence length

5.1 Definition of persistence length

The persistence length lp is a measure of flexibility of a polymer chain. It can be defined
as a distance over which the correlation in orientation of the chain segments is lost. So
at distances shorter than the persistence length the chain remembers the direction of
the previous segments and the orientation of segments is correlated. It means that the
higher is the value of persistence length, the stiffer is the chain and its bending is more
difficult.

If the value of persistence length is higher than length of the chain, the chain behaves
like a stiff rod. The values of persistence length close to the bond length are typical
for flexible chains, their segments move freely without any restriction and their bending
doesn’t require a large applied force. The focus of my study is somewhere in between these
two limiting cases and involves the characterization of persistence length of semiflexible
polymers.

The concept of the persistence length is quite intuitive but the description of the ori-
entation correlation of the chain segments can be done by many different ways. Therefore
there exist several equations for the calculation of persistence length. Some of the most
common definitions are summarized here:

1. The average projection of the end-to-end vector on the tangent to the chain contour
at a chain end. [33]
If the chain is modeled as a set of bond vectors, then the tangent to the chain contour
at the chain end can be represented by the first bond vector. We use the eq. 3.2 and
obtain:

lp =
1

|r1| 〈Re · r1〉 =
1

l

N∑
i=1

〈r1 · ri〉 = l
N∑
i=1

〈cos θ1,i〉 . (5.1)

The angular brackets 〈..〉 stand for the average over all possible conformations
of chain with proper statistical weights. This definition doesn’t take into account
the end-effects that can be observed even for neutral polymers, so its use would be
justified only in an ideal case of an infinitely long chain that can not be achieved in
simulations.

2. The average projection of the end-to-end vector on any bond vector along the chain. [34]

lp(k) =
1

|rk| 〈Re · rk〉 =
1

l

N∑
i=1

〈rk · ri〉 . (5.2)

Symbol k denotes position on the chain. This definition allows to define the persis-
tence length locally and avoid the problems with the end effects.
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3. The decay contour length of angular correlations. [2]
As it was explained in sec. 3.1, the correlation of orientations of bond vectors be-
comes insignificant with increasing distance between them. The correlation function
can be expressed by a scalar product of bond vectors separated by distance j. For
neutral polymers the correlation function decays exponentially and the value of
persistence length can be obtained from its single exponential fit:

〈ri · ri+j〉
l2

= 〈cos θi,i+j〉 = exp

(
−jl
lp

)
. (5.3)

The orientational correlation function (OCF) of polyelectrolytes doesn’t follow the
single exponential decay and expression for average value of cosine 〈cos θi,i+j〉 is
much more complicated (see section 5.2).

4. Integral of the orientational correlation function [35]

lp =

∫ Rmax

0

〈cos θ(s)〉 ds. (5.4)

The definition was derived for a continuous-chain model (see section 3.1) and s is
a distance along the chain contour. The orientational correlation function is inte-
grated over space curve with length Rmax.

5. Parameter that specifies the bending energy of the chain. [6]
We assume a model of a continuous chain. The elastic bending energy per unit
length of the chain is equal to:

∆Ebend =
1

2
κb

(
1

Rc

)2

, (5.5)

where Rc is a radius of curvature and and κb is the bending modulus of polymer.
If there is no other contribution to the bending of polymer (as for example from elec-
trostatic repulsion of charged parts of the chain) then the ratio of bending modulus
and thermal energy kBT define the bare (intrinsic) persistence length of the chain:

l0p =
κb
kBT

. (5.6)

It can be shown that for a semiflexible neutral polymer whose bending is described by
angle potential (eq 4.6), the bending modulus is identical with the bending constant
κb=kbend. [36]

Under special conditions some of the mentioned definitions are equal.
For instance, the first definition can be obtained from second one when we set k = 1.
When we consider a long continuous chain with length Rmax and with single exponential
decay of orientational correlation function:

〈cos θ(s)〉 = exp

(
− s
lp

)
,

then the integral of the orientational correlation function results in

lp =

∫ Rmax

0

〈cos θ(s)〉 ds =

∫ Rmax

0

exp

(
− s
lp

)
ds = lp

(
1− exp

(
−Rmax

lp

))
∼= lp.

So we get the same value of persistence length either from the fit or from the integration
of orientational correlation function.
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5.2 Theories of the persistence length of polyelec-

trolytes

The definitions 2.-5. from previous section (eq. 5.2-5.6) can be applied for neutral poly-
mers and there will be no significant differences between them. In case of polyelectrolytes
we have to deal with different length scales and an additional theory involving electro-
static interactions is necessary. The electrostatic interactions are treated at the level of
the Debye-Hückel approximation. Salt-free solution and polyelectrolytes interacting via
pure Coulomb potential were discussed in my bachelor thesis. [36]

The most famous theory on the bending of PEs is the Odijk, Skolnick, Fixman (OSF)
theory. [8, 9] It was derived for stiff charged worm-like polymers. The configuration
of a straight rod was taken as a reference state. It was assumed that there are two
contributions affecting the stiffness of polyelectrolytes-the intrinsic l0p and electrostatic
lep persistence length. According to OSF approach, they are additive and their sum is
the total persistence length ltp:

ltp = l0p + lep (5.7)

The value of the electrostatic persistence length was obtained from the calculation of the
difference between the bending energy (eq. 5.5) of a considered continuous chain and the
reference state. The changes in bending energy are caused by the electrostatic repulsion.
The final formula for the electrostatic persistence length is:

lep =
f 2lb
4κ2l2

(5.8)

The OSF approach was discussed recently in a number of articles, which presented results
from simulations (e.g. [14, 37, 38]) and variational methods (e.g. [27, 39]). They were
focused mainly on the κ-dependence of lep. It was found out, that the OSF theory is not
valid for flexible chains, which have the value of lep proportional to κ−1.

In simulations the persistence length is calculated usually from the orientational corre-
lation function. It was observed in the studies of semiflexible [14] and flexible chains [40],
that there is no single exponential decay of OCF as is predicted by a concept of one total
persistence length. Data shows, that the chain stiffness differs at two distinct length scales.
The first studies of this phenomenon just described the different behaviour of OCF and
they fitted only the part of the OCF pertaining to long distances between the bond vectors
in order to obtain the value of lep. [37] It was motivated by the fact, that the electrostatic
contribution to the chain rigidity was supposed to be important at the large length scales.

The predictions of the different behaviour of the chain stiffness at different length
scales led to the progress in variational approaches and resulted in definition of crossover
length sc [39]:

sc =
(l0p)

1/2

κ(l0p + lep)
1/2
. (5.9)

The crossover length is a contour length of the chain at which the contributions to chain
bending energy from intrinsic stiffness and from electrostatic interactions are comparable.
For distances j between the bond vectors j < sc the bending of chain is governed by
its intrinsic persistence length and at distances j > sc the additional contribution of
electrostatic persistence length becomes significant.

23



This two scales behaviour can be described according to Manghi and Netz [15] by two
limiting expressions for the orientational correlation function:

〈ri · ri+j〉
l2

=

{
1− j

l0p
j < sc

exp
(
−j

l0p + lep

)
j > sc

(5.10)

The previous equations were derived for strongly charged polymers l0plbf
2 > 1 at small

screening l0plbf
2 > (l0pκ)2. Manghi and Netz assumed the double exponential decay of OCF

and they postulated that OCF should be equal to 1− j
l0p

for small distances between bond

vectors. A condition of continuity of wanted OCF and fulfillment of 〈cos θi,i〉=1 were the
basic requirements for the derivation of formula for orientational correlation function of
polyelectrolytes:

〈cos θi,i+j〉 = B exp

(
− j

l0p + lep

)
+ (1−B) exp

(
−j lep + (1−B)l0p

l0p(l
e
p + l0p)(1−B)

)
. (5.11)

Parameter B can be determined from the assumption that for j = sc the two limiting
cases from eq 5.10 are comparable, so they differ only in constant. We get:

B = exp

( −sclep
l0p(l

0
p + lep)

)
. (5.12)

The predictions of Manghi and Netz were based on variational theory for polyelectrolytes
and were never proved in simulations.

The double exponential decay of OCF was described also by Gubarev, Carillo and
Dobrynin. [16] They acquired it from simulations of semiflexible polyelectrolytes and
specified the form of OCF and parameters by using the variational theory. It led to
expression:

〈cos θi,i+j〉 = (1− β) exp

(
− j

λ1

)
+ β exp

(
− j

λ2

)
, (5.13)

where parameter λ1 corresponds to total persistence length introduced in OSF theory
(eq. 5.7) and λ2 is defined at low salt concentrations as:

λ2 =

(
− l0pl

lbf 2 ln(lκ)

)1/2

. (5.14)

The formula for β can be obtained after some modifications of eq. 5.12. It is apparent,
that these two theories are not identical, although they both describe the existence of
two length scales in the orientational correlation function. For instance, the second term
in eq. 5.11 was chosen in agreement with mentioned conditions whereas the second term
in eq. 5.13 and parameter λ2 has a form characteristic of a semiflexible chain under ten-
sion. [27] Moreover, the form of OCF as was designed by Dobrynin and Gubarev can bring
difficulties by fitting, because the value of λ2 is very small at higher salt concentrations.

The concept of the scale-dependent electrostatic persistence length is still under in-
vestigation and there is no unique method for determination of l0p and lep from OCF.
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5.3 Measurement of the persistence length

The persistence length can be measured only indirectly. An usual way is to measure
the end-to-end distance or the radius of gyration and then calculate the persistence length
from the relation between Re or Rg and orientational correlation function (see eq. 3.3).
In order to formulate the equation for 〈R2

e〉 properly, it would be necessary to substitute
the 〈ri · rj〉 in eq. 3.3 by a double exponential correlation function. However, the most
common way is to use a single exponential OCF, simplify the obtained expression and
denote the persistence length l′p in equation as ”apparent” [13]:

〈R2
e〉 = 2l′pRmax − 2l′p

2

(
1− exp

(
−Rmax

l′p

))
(5.15)

This expression was obtained by considering a worm-like chain model. Some corrections to
this equation were done in recent years, that take into account for example the excluded
volume. [45] Because the experimental method as light scattering or small angle neutron
scattering are not able to measure at two length scales, the value of l0p can be obtained
from measurement of polyelectrolyte in solution with high ionic strength. [12]
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6. Results

6.1 Analysis of data

Time-dependent autocorrelation function of end-to-end distances
During the simulations we get a sequence of configurations by small integration steps,
which means that the two successive configurations differ only little. At each integra-
tion step we calculate current values of desired properties from the coordinates of par-
ticles in a new configuration. Because the conformations are statistically correlated at
short timescales, there is no point saving data very frequently. Firstly we estimate the
frequency of saving, we run the simulation and save nc configurations. Then we use
the autocorrelation function C(c) to establish the number of time steps, after which we
obtain uncorrelated quantities. In our simulations we calculated the autocorrelation func-
tion of end-to-end distance:

C(c) =
1

(nc − c)
∑nc−c

i=1 (Re,(i) − 〈Re〉)(Re,(i+c) − 〈Re〉)
〈R2

e〉 − 〈Re〉2 . (6.1)

Brackets 〈..〉 denote the average over the whole simulation, vectors Re,(i) and Re,(i+c) are
the end-to-end distances of i-th and (i+c)-th saved configuration. The value of c lay in the
interval from 0 to 200, the final value of nc was equal to 2200, so the time interval between
two following saved configurations is represented by 44 × 107/2200=2 × 105 time steps.
The initial part for c < 70 of typical autocorrelation function shape is plotted in Fig. 6.1.
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Figure 6.1: Initial part of autocorrelation function of end-to-end-distance of PE with
kbend=20.0 and κ=0.05
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As we can see, for small values of c the correlation function can be fitted by a
single exponential function and then for cca. c > 25, it fluctuates around zero. We didn’t
plot the evolution of autocorrelation function for the whole interval of c (from 0 to 200),
because we are interested in the initial decay and the data for higher values of c show
only the fluctuations.

We used a function: f(c)=exp(−c/τ) for fitting the first part of the autocorrelation
function (c < 25). Parameter τ obtained from the fit gives the value of c for which
the autocorrelation function equals e−1. For the polyelectrolyte chain with characteristics
kbend=20.0 and κ=0.05, we get τ

.
= 5 from the fit. The value of τ is very similar for all

studied polyelectrolyte systems. It tells us, that there is insignificant correlation between
the end-to-end distances calculated from every fifth saved configuration. So from the total
number of saved configurations nc there are nc/τ=440 of them statistically independent.
This number of statistically independent conformations is sufficient, because to the ori-
entational correlation function of bonds vectors, which is used in our study of persistence
length, each conformation contributes by 3-10 uncorrelated values.

End effects
As it was discussed in section 5.1 the second definition of the persistence length is applica-
ble for any part of the chain. When we determine the value of persistence length according
to the second definition (eq. 5.2), e.g. as the average projection of the end-to-end vector
on k-th bond vector, we are able to study the dependence of its value on the position on
the chain, k. The results for the polyelectrolyte with kbend=8.0 in solutions with different
ionic strength are presented in Fig. 6.2. The persistence length lp(k) of a neutral polymer
is also depicted for comparison.
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Figure 6.2: Local persistence length according to eq.5.2 for PE with kbend=8.0 as a function
of position on the chain k

The persistence length defined by equation 5.2 corresponds to the local persistence
length, because its value is strongly influenced by the position on the chain. The lp(k) is
smaller near the chain ends and increases towards the interior part of the chain where it
is almost constant. It is a consequence of end effects, that can be observed also in case of
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neutral polymers (see Fig. 6.2). The end effects are important when the chain has a finite
length. In the case of polyelectrolytes the different behaviour at the chain ends is caused
especially by asymmetric electric field around charged monomeric units located close to
the ends. In the interior region of the chain the charged monomeric units are surrounded
by charged species and their distribution is uniform, whereas at the ends the situation is
different.

When we want to eliminate end effects in our calculations we have to determine
the persistence length only from the region of the chain, where the properties of the chain
are constant. We identified the constant region as a middle part of chain with length of
100 monomeric units, so we omitted the 50 monomeric units at every end from the further
analysis of lp. We found that the exclusion of 50 units is sufficient for all studied systems.

As it is shown in this section, the value of the persistence length can be strongly
influenced by the end effects and therefore it is not reasonable to determine the persistence
length according to eq. 5.1. In the case of a neutral polymer, the second definition serves for
estimation the value of intrinsic persistence length. [34] The value of intrinsic persistence
length is given by the value of lp(k) at which we are able to observe a plateau in lp(k) curve.
But this approach can not be applied for polyelectrolytes, because the basic assumption
of one persistence length is not valid when the polymer chain is charged.

6.2 Determination of the persistence length

Statistical treatment of data
After the equilibration of a system, we started to collect data for evaluation of the per-
sistence length. The time of simulation ts, that we used for evaluation of the desired
quantities, was splitted into five equal time intervals t1 = t2 = t3 = t4 = t5 = ts/5
(see in Fig. 6.3).

t t t t t54321equilibration

simulation time

sampling time OCFst s

OCF OCF OCF OCF OCF
54321 , l , l , l , l , l

, <l p>

p p p p
p 1 2 3 4 5

Figure 6.3: The division of the simulation time

The persistence length was determined from the orientational correlation function,
that was defined by eq. 5.3:

〈ri · ri+j〉
l2

= 〈cos θi,i+j〉 . (6.2)

For every time interval we calculated the average normalized scalar product of bond vec-
tors as a function of distance between them, thus we got five orientational correlation
functions (in Fig. 6.3 labeled as OCF1-OCF5) and five persistence lengths generally de-
noted as lp1-lp5. The persistence length obtained from the whole sampling interval was
considered as the main value of persistence length 〈lp〉. This procedure allowed us to
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estimate the error of persistence length as:

σlp =

√√√√1

4

5∑
i=1

(lp,i − 〈lp〉)2. (6.3)

As was explained in the previous section, only the region in the middle of the chain was
used for calculation of the OCF, which corresponds to set of bond vectors {ri}=(r51...r150).
To improve the statistics of averaging, the pair of bond vectors ri and ri+j moved along
the selected region of the chain, such that the index i increased its value by one and
the distance j kept constant. Firstly the scalar products for given configuration were
divided by the number, that says how many times per region we calculated the scalar
product for fixed j. By this method we obtain one averaged OCF for every saved config-
uration. Finally, we averaged the orientational correlation functions in order to get one
OCF for selected time intervals (OCF1-OCF5).
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Figure 6.4: The OCF for chains with the same intrinsic stiffness kbend=20.0 under various
conditions.

In Fig. 6.4 the correlation functions OCFs of polyelectrolytes with the same intrinsic stiff-
ness (kbend=20.0) are plotted. The polyelectrolyte solutions have different ionic strength.
There are two limiting cases: polyelectrolyte in salt-free solution and polyelectrolyte in
solution with high ionic strength (κ=0.5). In order to see the difference between single
and double exponential decay of OCF, we focused on the initial part of OCF (j < 50)
and we also plotted the orientational correlation function of a neutral polymer in water in
a semi-logarithmic plot (a linear function). It is obvious, that only the OCF of polyelec-
trolyte in highly salted solution is a single exponential function of the distance between
the bond vectors. In this case, the screening of ions is so strong that the electrostatic
repulsion of charged monomeric units along the chain has almost no effect on the chain
stiffness and the polyelectrolyte chain behaves similar to a neutral one. In the range of
small screening, that we are interested in, the orientational correlation function exhibits
the double exponential decay. We can observe the same trend for other studied semiflex-
ible polyelectrolytes (the value of kbend from 8.0 to 40.0).
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Table 6.1: The crossover length sc, intrinsic l0p and electrostatic lep persistence length
obtained from the fit according to Manghi and Netz [15] (eq. 4.11) and Gubarev, Carrillo
and Dobrynin [16] (eq. 5.13)

fit: equation 5.11
kbend κ sc l0p lep
8.0 0.04 2.1 ± 0.1 9.3 ± 0.2 119.1 ± 7.8
8.0 0.045 2.1 ± 0.0 9.1 ± 0.1 101.1 ± 3.3
8.0 0.05 2.1 ± 0.1 9.1 ± 0.2 89.3 ± 7.0
8.0 0.055 2.0 ± 0.2 8.9 ± 0.3 74.6 ± 10.7
8.0 0.06 2.0 ± 0.1 8.9 ± 0.2 64.9 ± 6.7
8.0 0.07 2.0 ± 0.1 9.0 ± 0.2 52.0 ± 5.6
10.0 0.04 2.3 ± 0.0 11.1 ± 0.1 115.3 ± 5.6
10.0 0.045 2.4 ± 0.1 11.2 ± 0.2 101.3 ± 7.2
10.0 0.05 2.4 ± 0.1 11.2 ± 0.2 83.8 ± 6.6
10.0 0.055 2.4 ± 0.2 11.1 ± 0.3 76.0 ± 11.8
10.0 0.06 2.3 ± 0.1 11.0 ± 0.2 64.5 ± 4.3
10.0 0.065 2.3 ± 0.2 10.8 ± 0.4 57.9 ± 5.1
10.0 0.07 2.2 ± 0.4 10.7 ± 0.4 52.9 ± 11.4
16.0 0.04 2.8 ± 0.2 17.0 ± 0.4 107.9 ± 9.7
16.0 0.045 2.8 ± 0.3 16.7 ± 0.5 91.5 ± 10.6
16.0 0.05 2.7 ± 0.2 16.7 ± 0.3 76.2 ± 7.4
16.0 0.055 2.9 ± 0.1 17.0 ± 0.3 72.8 ± 2.0
16.0 0.06 2.6 ± 0.1 16.4 ± 0.3 55.9 ± 3.4
16.0 0.065 2.7 ± 0.3 16.5 ± 0.4 52.8 ± 6.5
16.0 0.07 2.5 ± 0.3 16.4 ± 0.4 43.8 ± 12.1
20.0 0.04 3.3 ± 0.2 21.4 ± 0.5 112.0 ± 8.4
20.0 0.045 3.0 ± 0.5 20.6 ± 0.6 86.0 ± 19.6
20.0 0.05 3.0 ± 0.4 20.4 ± 0.5 74.1 ± 11.7
20.0 0.055 3.1 ± 0.1 20.7 ± 0.7 67.5 ± 3.4
20.0 0.06 3.1 ± 0.4 20.5 ± 0.6 57.7 ± 8.3
20.0 0.065 2.8 ± 0.4 20.1 ± 0.4 49.7 ± 4.7
20.0 0.07 3.0 ± 0.8 20.5 ± 0.9 45.5 ± 11.9

fit: equation 5.11
kbend κ sc l0p lep
24.0 0.04 3.2 ± 0.2 24.2 ± 0.4 97.8 ± 10.1
24.0 0.05 3.1 ± 0.1 24.1 ± 0.2 71.2 ± 2.6
24.0 0.055 2.9 ± 0.2 23.6 ± 0.4 63.9 ± 5.6
24.0 0.06 3.0 ± 0.8 23.9 ± 1.0 53.9 ± 14.9
24.0 0.065 2.8 ± 0.3 23.5 ± 0.9 47.9 ± 16.1
24.0 0.07 2.9 ± 0.7 23.9 ± 0.9 43.8 ± 8.4
32.0 0.04 3.6 ± 0.5 31.9 ± 0.8 99.9 ± 16.9
32.0 0.05 3.4 ± 0.5 31.2 ± 1.1 73.9 ± 7.8
32.0 0.055 3.7 ± 0.8 32.3 ± 1.0 64.3 ± 8.1
32.0 0.06 2.9 ± 0.7 30.9 ± 1.4 49.5 ± 10.0
32.0 0.065 3.0 ± 0.9 31.0 ± 1.1 43.3 ± 9.2
32.0 0.07 2.8 ± 1.5 30.7 ± 1.9 39.1 ± 14.1
40.0 0.04 3.5 ± 0.5 38.4 ± 1.0 90.0 ± 15.8
40.0 0.05 3.5 ± 1.0 38.6 ± 1.7 66.5 ± 12.7
40.0 0.055 3.2 ± 1.1 38.0 ± 1.8 58.3 ± 15.5
40.0 0.06 3.0 ± 0.8 37.7 ± 1.4 48.1 ± 9.2
40.0 0.065 3.1 ± 2.0 37.9 ± 3.0 44.3 ± 10.6
40.0 0.07 3.3 ± 1.5 38.4 ± 2.1 41.8 ± 11.3

fit: equation 5.13
λ1 λ2 l0p lep

122.0 2.9 30.8 ± 4.0 91.3 ± 7.3
95.3 2.9 27.1 ± 5.4 68.2 ± 3.2
87.5 2.7 22.9 ± 3.5 64.6 ± 5.9
77.9 2.8 23.9 ± 11.2 54.1 ± 5.8
71.4 2.6 19.9 ± 4.7 51.6 ± 13.9
67.7 2.7 21.1 ± 9.7 46.6 ± 2.8
131.8 3.4 41.0 ± 11.0 90.9 ± 6.6
105.1 3.2 33.4 ± 9.5 71.7 ± 3.3
96.6 3.5 38.6 ± 13.8 58.0 ± 5.7
80.4 2.7 23.0 ± 10.5 57.4 ± 2.9
74.3 2.8 23.5 ± 14.1 50.8 ± 4.3
69.8 2.6 19.8 ± 26.6 50.0 ± 10.9
128.4 3.3 38.6 ± 11.2 89.8 ± 6.2
105.1 3.3 35.6 ± 20.9 69.5 ± 7.3
96.3 3.0 29.7 ± 22.6 66.6 ± 6.3
85.7 2.8 24.5 ± 14.5 61.2 ± 4.3
82.2 2.9 26.4 ± 40.2 55.8 ± 27.9
80.3 3.1 28.1 ± 30.0 52.2 ± 17.0
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Comparison of theories
Our data are in agreement with the predictions of variational approaches [15, 16].

The systems studied in [15, 16] were similar to ours, they consisted of the semiflexible
polyelectrolytes or highly charged chains under small screening (for more information
see section 5.2). The form of the orientational correlation function derived by Manghi
and Netz is suitable for fitting our simulation data. The substitution of B (eq. 5.12)
in equation 5.11 results in a function of three parameters: crossover distance sc, intrinsic
persistence length l0p and electrostatic persistence length lep. We fitted our data by the final
form of this expression. The results from the fit are summarized in Tab. 6.1.

We attempted to prove the predictions of Gubarev, Carrillo and Dobrynin [16] as
well. The authors combined the results of the simulations with the variational approach.
They used a double exponential function described in section 5.2 (eq. 5.13) for a fit of
the OCF from simulation data. The relation of the obtained parameters λ1 and λ2 to
the persistence length of a polyelectrolyte was explained on the basis of the results of
the variational method. Our analysis was done in the same way. Firstly, we fitted the
simulation data with the function of three parameters (λ1, λ2, β) given by eq. 5.13. Then
following the procedure of Gubarev, Carrillo and Dobrynin, we expressed the persistence
lengths l0p and lep from the formulas for λ1 and λ2 (eq. 5.14 and 5.7) from the variational
calculations:

l0p = λ2
2

(
− lbf

2 ln(lκ)

l

)
, (6.4)

lep = λ1 − l0p. (6.5)

The article of Gubarev, Carrillo and Dobrynin concerned semiflexible polyelectrolytes with
kbend ≥ 25.0, so in order to reproduce their approach, we analyzed the data only from
simulations of polyelectrolytes with bending constants 24.0, 32.0 and 40.0. The obtained
values of fitted parameters and calculated persistence lengths are listed in Tab. 6.1.

It is obvious, that the accuracy of the estimation of both persistence lengths is strongly
limited by the range of applicability of eq. 6.4. If the formula for λ2 is not valid for our
system and the value of l0p is incorrect, the value of lep calculated afterward is wrong as
well. Expression 5.14 (and consequently 6.4) is considered to be valid for polyelectrolyte
solutions characterized by small values of κ (low salt concentration). When we compare
the values of l0p and kbend, that should be equal for our simulation model (see eq. 5.6),
we see, that for kbend=24.0 the quantity l0p is within the error comparable with kbend for
every value of κ, but for kbend=32.0 and kbend=40.0 there are very high values of standard
deviations, in some cases (κ > 0.06) even higher than main value of intrinsic persistence
length. So when the parameter λ2 is defined by eq. 5.14, we are not able to get reasonable
values of l0p nor lep (because of lep and l0p are connected by relation 6.5).

Our analysis based on the approach of Manghi and Netz gives the values of intrin-
sic persistence length very closed to the values of bending constants. This result is in
agreement with our assumptions and with previous studies and theory. [27, 36]

Both theories consider a double exponential decay of the orientational correlation
function of polyelectrolytes. The first term in both expressions for OCF (eq. 5.11 and 5.13)
describes the behaviour of OCF at long scales. So, one would expect that the parameters
λ1 and l0p + lep are equal. We can see from the results in Tab. 6.1, that this assumption
is true. Apparently, there is no difference in the behaviour of OCF at long distances
predicted by these two approaches.

The equations eq. 5.11 and 5.13 differ in the expression of OCF for small values of
distances between bond vectors. We show that the function derived by Manghi and Netz
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allows a good description of correlations at short length scales. If j → 0 we can use the
approximation exp(−f(j)) = 1− f(j) and we get:

〈cos θi,i+j〉 = B

(
1− j

l0p + lep

)
+ (1−B)

(
1− j lep + (1−B)l0p

l0p(l
e
p + l0p)(1−B)

)
= 1− j

l0p
. (6.6)

Thus the correlations at short length scales (smaller than crossover length) are expressed
as a function of the intrinsic length only as was predicted several years ago. [39] It can be
seen also in Fig. 6.4 that our simulation data show the same trend. The initial part of the
orientational correlation functions of polyelectrolytes with the same intrinsic stiffness does
not depend on the ionic strength of solution. When we examine the expression derived
by Gubarev, Carrillo and Dobrynin (eq. 5.13), we find, that the orientational correlation
function for small distances between bond vectors depends not only on l0p but also on κ
(because λ2 ∼ ln(lκ)). It means, that the correlations of bond vectors at short distances
are influenced by ionic strength of solution. This fact seems to be a reason of disagreement
of the theories of Manghi, Netz and Gubarev, Carrillo and Dobrynin.

Due to the above mentioned reasons we concluded that the approach of Manghi and
Netz is more appropriate for the semiflexible polyelectrolyte systems. The next step was
a more detailed analysis of parameters obtained from the fit: intrinsic l0p and electrostatic
lep persistence length and crossover length sc.
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B exp(−j/(lp0 + lpe))

Figure 6.5: The OCF of PE with characteristics: kbend = 10.0 and κ = 0.06. The values of
l0p and lep can be found in Tab. 6.1.

Crossover length
The crossover length has a meaning of a distance along the chain, at which the electrostatic
repulsion energy of monomeric units and bending energy of the chain become comparable.
In Fig. 6.5 we can see the orientational correlation function of a polyelectrolyte with
the intrinsic stiffness l0p=11.0±0.2 in solution characterized by κ = 0.06.

For illustration, we plotted two limiting cases of OCF, which express the behaviour
of the orientational correlation function at short and long distances. They cross at value
of j that corresponds to the crossover length. We obtained the value of sc directly from
the double exponential fit of OCF (see Tab. 6.1).
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Barrat and Joanny [39] characterized the local flexibility of the chain by the mean-
square value of angle between two bond vectors separated by distance j. The averaged
value of the angle 〈θ2(j)〉 is scale-dependent: at distances shorter than crossover length
the 〈θ2(j)〉 increases linearly:

〈θ(j)2〉 =
j

l0p
, (6.7)

and at longer distances it is described by a function:

〈θ(j)2〉 =
j

(l0p + lep)
+ b. (6.8)

From the analysis of bending energy, Barrat and Joanny derived the expression, that
describes the 〈θ2(j)〉 as a function of the distance between the bond vectors in the whole
range of j [3]. This analysis leads also to the definition of crossover length (eq. 5.9).
The validity of the eq. 5.9 was confirmed only for polyelectrolyte systems, that fulfill the
condition: sc/l

0
p < 0.2. For the majority of our simulation data the ratio sc/l

0
p is comparable

to 0.2. We calculated the crossover length according to eq. 5.9 from the simulation results
given in Tab. 6.1 in order to study the applicability of eq. 5.9 for our polyelectrolyte
systems. The values of sc obtained from calculations are in Tab. 6.2.

Another way how to obtain the value of sc is to fit the simulation data by eq. 6.7
and eq. 6.8. The mean-square value of the angle between two bond vectors is plotted
against the distance between them in Fig. 6.6. We can express the crossover length from
the parameters that we get from the fit:

sc =
bl0p(l

0
p + lep)

lep
(6.9)

The acquired values of sc are summarized in Tab. 6.2. One faces difficulties if he wants
to fit the data, because the region of j, where the eq. 6.7 can be applied is very narrow
and contains only few points. This method of determination of the crossover length is
generally applicable for semiflexible polyelectrolytes, but due to the poor statistics we get
only an approximative value of sc.

For polyelectrolytes, whose intrinsic persistence length is smaller than the electrostatic
one, the crossover length should be proportional to the square root of the intrinsic persis-
tence length sc ∼

√
(l0p). [3] So there is no dependence of sc on ionic strength of solution

(hence on κ) for this group of polyelectrolytes. The condition l0p < lep is satisfied for each of
our systems except for systems with high intrinsic stiffness (kbend=32.0, 40.0) and equally
high ionic strength (κ > 0.06), where l0p ' lep.

In Fig. 6.7, the dependence of sc on
√

(l0p) is shown. The values of the crossover length
obtained from the fit of orientational correlation function lie almost at the same curve. So
no matter if the ionic strength of solution is high or low, within the error the polyelectrolyte
chains with the same intrinsic stiffness have also the same values of crossover length. This
finding is in agreement with previous expectations.

The results obtained from eq. 6.9 are drawn as yellow, green and purple curve. The
three curves for different value of κ don’t overlap. However, the standard deviations of
crossover length are large that we are not able to decide, whether large errors are the
reason why the curves don’t overlap or it is caused by the fact, that the crossover length
depends on κ.

The previous analysis indicates, that the definition of the crossover length derived by
Barrat and Joanny (eq. 5.9) is not suitable for polyelectrolyte solutions with sc/lp ' 0.2.
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Figure 6.7: The crossover distance as a function of square root of the intrinsic persistence
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The obtained values of sc are much larger that those from our simulations and moreover
they don’t show the same tendency as our values of sc. It is evident from eq. 5.9, that
the value of sc is proportional to the Debye screening length κ−1. This dependence wasn’t
observed in our simulations. According to Manghi and Netz the value of sc from the fit of
OCF (third column in Tab. 6.2) is equal to that one calculated from eq. 5.9 (fifth column
in Tab. 6.2). As we have shown in this section, this assumption is not generally true.
For polyelectrolytes, the effective stiffness of which is influenced more by the electrostatic
repulsion of monomeric units than by the intrinsic stiffness, the crossover length obtained
from the double exponential fit of OCF does not depend on ionic strength of solution.
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Table 6.2: The crossover lengths obtained by various methods: from the fit of OCF ac-
cording to Manghi and Netz (eq. 5.11), from eq 6.9. and from definition 5.9

kbend κ sc from OCF sc eq. 6.9 sc eq. 5.9
8.0 0.04 2.1 ± 0.1 3.7 ± 0.3 6.7
8.0 0.05 2.1 ± 0.1 4.0 ± 0.3 6.1
8.0 0.055 2.0 ± 0.2 4.1 ± 0.3 5.9
8.0 0.06 2.0 ± 0.1 4.2 ± 0.1 5.8
8.0 0.07 2.0 ± 0.1 4.5 ± 0.3 5.5
10.0 0.04 2.3 ± 0.0 3.8 ± 0.3 7.4
10.0 0.05 2.4 ± 0.1 4.1 ± 0.2 6.9
10.0 0.055 2.4 ± 0.2 4.5 ± 0.3 6.5
10.0 0.06 2.3 ± 0.1 4.5 ± 0.5 6.4
10.0 0.065 2.3 ± 0.2 4.9 ± 0.3 6.1
10.0 0.07 2.2 ± 0.4 5.1 ± 0.4 5.9
16.0 0.04 2.8 ± 0.2 4.7 ± 0.6 9.2
16.0 0.05 2.7 ± 0.2 5.2 ± 0.1 8.5
16.0 0.055 2.9 ± 0.1 5.5 ± 0.5 7.9
16.0 0.06 2.6 ± 0.1 5.2 ± 0.3 7.9
16.0 0.065 2.7 ± 0.3 5.7 ± 0.7 7.5
16.0 0.07 2.5 ± 0.3 5.7 ± 0.5 7.5
20.0 0.04 3.3 ± 0.2 5.2 ± 0.5 10.0
20.0 0.05 3.0 ± 0.4 5.4 ± 1.1 9.3
20.0 0.055 3.1 ± 0.1 6.0 ± 0.5 8.8
20.0 0.06 3.1 ± 0.4 6.2 ± 0.9 8.5
20.0 0.065 2.8 ± 0.4 6.1 ± 0.6 8.3
20.0 0.07 3.0 ± 0.8 7.0 ± 0.8 8.0
24.0 0.04 3.2 ± 0.2 4.8 ± 0.7 11.1
24.0 0.05 3.1 ± 0.1 5.2 ± 0.3 10.1
24.0 0.055 2.9 ± 0.2 5.6 ± 0.4 9.5
24.0 0.06 3.0 ± 0.8 6.1 ± 1.2 9.2
24.0 0.065 2.8 ± 0.3 6.7 ± 0.9 8.8
24.0 0.07 2.9 ± 0.7 6.7 ± 1.5 8.5
32.0 0.04 3.6 ± 0.5 6.1 ± 1.0 12.3
32.0 0.05 3.4 ± 0.5 6.8 ± 0.6 10.9
32.0 0.055 3.7 ± 0.8 7.6 ± 1.1 10.5
32.0 0.06 2.9 ± 0.7 6.6 ± 1.7 10.3
32.0 0.065 3.0 ± 0.9 7.1 ± 0.9 9.9
32.0 0.07 2.8 ± 1.5 6.9 ± 2.1 9.5
40.0 0.04 3.5 ± 0.5 5.5 ± 1.3 13.7
40.0 0.05 3.5 ± 1.0 6.9 ± 1.6 12.1
40.0 0.055 3.2 ± 1.1 5.9 ± 2.2 11.4
40.0 0.06 3.0 ± 0.8 6.5 ± 1.8 11.1
40.0 0.065 3.1 ± 2.0 8.1 ± 3.0 10.4
40.0 0.07 3.3 ± 1.5 8.4 ± 1.7 9.9
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Figure 6.8: Electrostatic persistence length as a function of inverse Debye screening length
κ (logarithmic plot)

Electrostatic persistence length
The effect of the salt on the value of the electrostatic persistence length is one of the most
discussed problems. The OSF theory predicts the quadratic dependence of the electro-
static persistence length on the Debye screening length (see eq. 5.8). The simulations [14]
and theoretical studies [35] proved, that the prediction is valid only for stiff polyelec-
trolytes. The electrostatic persistence length of flexible polyelectrolytes is thought to be
proportional to κ−1.

We studied the dependence of lep on the inverse Debye screening length. The depen-
dencies for three chosen polyelectrolyte systems (three polyelectrolytes with the given
intrinsic stiffness in solutions with various ionic strength) are plotted in Fig. 6.8. In the
log-log plot the exponent in the relation: lep ∼ κ−a is equal to slope of the linear function
used for the fit:

ln(lep) = a ln(κ) + const.

We determined the value of a for every studied polyelectrolyte system. The obtained
average value of the exponent in the dependence of lep on the Debye screening length κ−1

is equal to:
a = 1.5± 0.1,

so we get the relation between the electrostatic persistence length, the Debye screening
length and the ionic strength of the solution:

lep ∼ κ−3/2 ∼ I−3/4. (6.10)

Fig. 6.8 includes also the curves for two limiting cases: flexible (lep ∼ κ−1) and stiff
polyelectrolytes (lep ∼ κ−2) in order to illustrate the fact, that our simulation data are
located between these two limiting cases. It exists no research work aimed at polyelec-
trolyte solutions with similar characteristics as we have, so it is not possible to compare
our results with previous scientific studies. However, for semiflexible polyelectrolytes, one
can expect a in the interval: a ∈ (1.0, 2.0), so the obtained exponent for the dependence
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of lep on the Debye screening length is in agreement with the prediction for semiflexible
polyelectrolytes.
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Conformational behaviour of polyelectrolyte chains in solution
We analyzed the variations of the radius of gyration under different conditions in order to
get information on the conformational behaviour of the chain in solution. In Fig. 6.9 we see
the dependence of the radius of the gyration on the ratio of the electrostatic-to-intrinsic
persistence lengths.

Firstly we discuss the change of the chain size with increasing the intrinsic stiffness.
As we can see, the polyelectrolyte with the highest intrinsic stiffness (kbend = 40.0) has

also the highest values of
√
〈R2

g〉. It can be explained by the fact, that an increase in

the chain intrinsic stiffness causes the stretching of the chain and forces the chain to form
a fully extended configuration.

When the amount of salt added to the solution increases, the ions of salt screen
the electrostatic repulsion between the monomeric units and the chain become more flex-

ible, thus its value of
√
〈R2

g〉 decreases. For example, the red curve in Fig. 6.9 shows the

decrease of the chain radius of gyration with the decreasing value of electrostatic length
(i.e, with the increasing ionic strength).

The size of the chain is affected by the both: the intrinsic and the electrostatic persis-
tence length. Therefore the polyelectrolytes that differ in the intrinsic stiffness and they
are in the solutions with different ionic strength can have a very similar radius of gy-
ration. For example, this case occurs for the pair of polyelectrolytes with characteristic

kbend = 24.0, κ = 0.065 and kbend = 8.0, κ = 0.05 (see in Fig 6.9 value of
√
〈R2

g〉 .= 40.2

for both of the chains).
It is important to point out, that although the electrostatic interactions are screened

at distances larger than the Debye screening length (κ−1 = 14.3− 25.0), the electrostatic
repulsion between the charged beads influences the chain stiffness far beyond the Debye
screening length. At the same time, the stiffness of the chain at large distances depends on
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Figure 6.10: Illustration of the change in the chain conformational behaviour under various
conditions

intrinsic stiffness of the chain. Therefore we can change the chain conformation by adding
the salt only partially. If the value of intrinsic persistence length of the chain is very high,
chain behaves like a stiff rod and the increasing of ionic strength of the solution doesn’t
have a significant effect on the increasing of the chain flexibility, because the contribution
of the intrinsic persistence length to the total bending ability of the chain is very high.
The demonstration of such a behaviour is in Fig. 6.10. We can observe only slightly
conformational changes with increasing of amount of the salt in solution for PE with
intrinsic stiffness close to the value 40.0.

So it has to be always taken into account that the stiffness of the chain has a two
contributions.
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7. Conclusions

In the presented thesis the conformational behaviour of linear semiflexible polyelec-
trolytes in solutions has been studied. The stiffness of a chain, which is influenced by
a number of factors, is characterized by the persistence length. The persistence length
has two contributions: the intrinsic l0p and electrostatic lep persistence length.

We obtained the persistence length from the orientational correlation function (OCF)
of bond vectors separated by given distance. The double exponential decay of the orienta-
tional correlation function predicted theoretically was observed. Results of our simulations
were compared with two recently published theoretical approaches. Our results confirm
that both approaches describe the OCF at long length scales in agreement with well-
known OSF theory, which states that at long distances the total persistence length of
the chain corresponds the sum of electrostatic and intrinsic persistence length.

For semiflexible polyelectrolytes a proper description of the orientational correlations
at short length scales is essential, what wasn’t achieved by the method of Gubarev, Carrillo
and Dobrynin. Because the expression for OCF derived by Manghi and Netz allows to
explain the properties of OCF at long as well as at short length scales, we used this
expression for analysis of OCF calculated from our simulation data.

The intrinsic persistence length obtained from the analysis is proportional to the con-
stant of the bending potential between the chain units, what confirms the results from my
bachelor thesis and previous theoretical studies. The crossover distance for the studied
polyelectrolyte systems seems to be independent of ionic strength of the solution I. It
is in agreement with the prediction for polyelectrolytes, whose electrostatic persistence
length is larger than intrinsic one. The obtained electrostatic persistence length scales as
lep ∼ I−3/4, what proves, that the prediction of OSF theory (lep ∼ I−2) is not valid for
semiflexible polyelectrolyte chains.

Our result show that the conformational behaviour of semiflexible polyelectrolytes in
solution is controlled by both the electrostatic and intrinsic persistence lengths. The values
of the electrostatic persistence length are influenced by the ionic strength of the solution,
so the size and conformation of the chain can be modified by adding a salt. For the medium
salt regime, that we study, only a small change of the chain conformations can be achieved
with the change of ionic strength.
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