Review on Lakáás Chrpa's I issertation Thesis Entitled Learning for Classical I'lanning

 Fsis of antomatacally comstmeted plans. whe can induce fommal knowledge that

 hot topic and the timing for the the sin wertert.

The way that hest helper me moderstand the logieal strueture of the thesis was fore se it as a composition of tive malding blocks. 'low of then ane fommdational. providing the theoretical bases for the momaning there. that in turn

 wher actions in the phate without invalidating it The serond theoretical bexty is the entanglement theory ident if ying operators that. informally put. are an ant
 altored by atoons in the plans. I liked a lot both of these hemies. While I did not grasperver line of all proofs the prestented algorithas rembering the theory operational made perlede semse to me.

 of producod phans and have mothong to do with leaming. Thas is likely the redson why they ate only briefly stated in the thesis and supplebtented with
 action dependency theory this time to constract matoroperators. The eompolling and to my kowledge inmovative tationale is here ats follows. Suppose

 pationarly usefol combination of "preatoms that likely wonld ocen in fatme
plane an well. There the the good rasm to promete this combination to the
 of this strategy is that the respective athons do not have to be adjacent in the
 adjacent. The thised method developed rests on the entanglement theory. By observing operators entangled to the initial of goal state in many plans, the method ikentifes atem-groundings of these operatons that will likely mot make sense in the completion of liture plaming tasks. (Of interest, the the sis shows a useful trick through which such gromodings can be prewoted be reformatating
 axtenswely exaluated in experment. with tank coming from the haternatumal
 the developech methoels te their batedine valants.
 as lowe contributions abowe ate of high quality and atome sutficient for at PhD thesis, my complaints hereatter are to he mostly taken as suggestions for fut ure work.

Finstly: the thesis contams a fommatization of the problem backeround and also a good fommalization of the setutoms to the problem. What in missing is a
 propertion of the expected imputs and these of the dexine omputs. commonly
 statroment that is now rather inplicit would. in my view, be twofold. The simpler version, that doest mot involve laming. wembl have a plan on both the input and output pratt. surl that the output plan is in some sense equivale ent to the input plan wh shoter. The second problem. involving laming, would deal with operator-sel reformulation and its precise statement wond of conse be were complex. A dear. up-fromt fomulation of the problem would help the reader understand better what and why the auther is dome. It would alse

 sot of plans. Traming set propertion represent a cructal aspect in any madine leaming application. As of 1 mos. it is bet dear whether the inpul phane are "xperced to folles any distributional propertito (oming from the same plamer or a defimed mixhure therenf?) more.g. Whether the (taming plats should follow the same distribution as the test ing phans (on which the degree of improvernents is being meatured). Latity, (tue problem formalization would also entail eriteria
 withey through masisuments or possibly be providine therentical bomuls.

Thesecome iten on my wishlist pertans to the leaming ingratient of the the sis, which is umbultedly ement ial but which, motortmately, sources very little from existing machine learning technigues. To memain brief. I will provide two examples where it wonld be beneficial tes take a closer lowk wh whathene

 as frequency theshohds. and do so in an athor maner. Here. the powerbial Its.son one of statistical mathime leatomg workl rightly dictate to than sumb paranuters by cross validation on the initial training set. Secondlys the thesis relies on the important mathine learning tertmigue of generalization bit dom so in at crade way and onlv implecitly, without propessing at explicit peturality structure For example if certans action-pats are fomb frequent. it in mohe tively infered that the if common weralization (the sulsuming operator-pais) is chataterist ic for the phans topataly proshed in the domam. What 1 fomm ernde about thas is that this is only a 1 wo-step generalization whereas the gen crality sextram between the fully grounded actions on ont hand and the fully varabilized operators on the other hand ofvionsly contains much mome than just the two extremes and the empirically-lent generalizer maty indeat be someWhere in beewern of them. (iencralization can obvionsly also go along axis ot ber than variabilization of constants. For example. one condal consider looking for

 to my own inchation to machime leaming. I consider this a high quality thesin whth nisefin resullas. and fully fit tor a defense.

('zerla Terduical Cniversity
Facmer of Fhectrical Finginerrine
Department of ('vertuet is's

