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Chapter 1

Introduction and motivation

The computers and software have become an important part of today world. They
affect production and everyday activities of many people. Therefore computers,
software and also a process of their preparation are in the centre of improving.
The part of engineering, which is interested in software, its design, development
and meliorating, is called software engineering. It is a young discipline, and is still
developing. It has several directions in which it is converging. One paradigm is
a component based software engineering (CBSE). This is a fast evolving sphere,
which provides a way to build large software systems with a top-down method
by dividing them into small parts called components. Each component expresses
some functionality which is exactly specified. Another important part of CBSE is
collaboration of components, which is performed via well defined interfaces. Because
the component is an independent part of a system it can be reused in different
applications. These benefits can lead to faster development, more robust and highly
scalable applications with easy-to-maintain code bases.

A lot of companies has developed their proprietary component systems. Mi-
crosoft has a family of component models which includes COM+, DCOM and the
newest .NET component model [3]. Sun Microsystems offers popular Enterprise
Java Beans (EJB [8]), which provide many features. We have to also mention CCM
(Corba Component Model [4]) developed by Object Management Group. Except
these closed and proprietary systems several academic systems exist (Fractal [10],
SOFA [17], ArchJava [2]).

Each of these systems understand components and their interconnecting in its
own manner. But, what is the component in fact?

From a developer point of view a component is a program entity which in-
cludes only a business logic and it should not be concerned in a communication.
The component just needs to communicate with other components via well-defined
interfaces. On the other hand the designers of component systems need a way to
model, represent and specify properties of a connection between components. Often
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we need also to monitor or adapt communication of components at run-time. For
these purposes software connectors seems to be most eligible.

These first-class entities (see Figure 1.1) realize interaction-specific tasks for
components. They can mediate various communication styles (method call, mes-
saging, streaming - [41]), bypass differences between component systems and add
extra-value to a connection (e.g. logging, introspection, measurement, adaptation).
The communication layer provided by a connector is simply configurable and can be
individually prepared for each binding between components. Hence the connector
separates a communication logic from the business logic of the component.

Connectors also help us in connecting heterogeneous systems, which are based
on different types of components. A majority of component systems provide a
communication only among components of the same component model and a com-
bination of multiple component systems in one application brings a lot of problems,
because each component system supporting distribution uses a native middleware
(e.g. EJB use RMI, CCM uses CORBA, .NET uses .NET Remoting). Thus there is
a demand to cross the differences (e.g. communication styles, interfaces) in middle-
ware layers. Several bespoke solutions of the problem exist, but they provide only
connecting of chosen component systems - e.g middleware bridges J-Integra [12],
JNBridge [14] mediating a connection between EJB and .NET components. But
these solutions are often closed and they are not scalable.

Thus connecting components via connectors seems as a good idea which could
bring a lot of benefits for CBSE.

There are two ways of implementing connectors. This first method implements
connectors separately before deployment of components. This needs that the con-
nector for each type of the component system and binding should be prepared. But
this way does not support adaptation of the connector at the deployment time when
specific requirements (monitoring, security) can occur.

The second method moves a generation of connectors to a deployment stage.
This decision offers a modification of connector code at deployment time, which can
often produce more optimized target code. Accordingly the generation of connectors
seems as the best way of connector preparation, but on the other side, the connector
generation process itself must not slow down a deployment process significantly.

The idea of connector generation is not new. There are already several at-
tempts of connector generation. The simple generators works on the principle of
generation of stubs and skeletons (e.g. CORBA [23], RMI [20]). But this method
does not offer additional adjustment of code generation. More advanced solutions
work with a template system and provide an abstract definition of a connector imple-
mentation. One representative is Openwings system [16], which realizes connector
generation. The connector in Openwings view is a bundle of Java classes, which
are implemented for the given binding between components. At run-time they are
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loaded on demand and used for connecting components. The main problem of this
concept (which is not only specific for Openwings) is impossibility of connector adap-
tation for specific demands on deployment time, because the connector is already
compiled into a Java class.

Here we also have to mention a connector generator [38]. It is well designed
and suitable for connector generation at deployment time. But the problem of this
generator is a definition of a connector implementation, which relies on a Java class.
The class produces a target code of the connector itself. This feature makes the
generator not easy usable and error prone, because the developer has to write new
Java class producing the implementation of a new connector. The concept bears a lot
of extra code, which is not really necessary for the output connector implementation.

Therefore we want to improve the definition of a connector implementation in
the existing generator and relocate the definition from Java code into code template.

In our view we would like to specify an abstract definition of the connec-
tor implementation at design time. Then it would be completed and adjusted at
deployment time and a target connector would be prepared for connecting given
components. This idea needs a way to write an abstract definition of a connector
implementation, which can be easily transformed into a target code. The definition
of the connector implementation should be simple human readable and writable
by hand. It should also allow generation of different target code and permit code
reuse. These demands lead us to build a definition of the connector implementation
on some well-known programming language (e.g. Java), which will be modified to
support source code transformations. The transformation of the proposed language
into a target language should be fast and easy definable.

The main idea of our concept is using source code transformations which trans-
mute an input written in one language into a program implemented in another lan-
guage. The input language will be designed to agree with our requirements and the
target language will be Java. Thus transformation tool should also allow definition
of a source and target language grammar.

Nowadays many source code transformers (e.g XSLT [9], JET [6]) exist, but
we want to aim at a leading representative, which is Stratego/XT. It complies
with all our requirements and also provides a set of supporting tools, which can help
us to facilitate source code transformations.

Thus general goals of this thesis are:

(i) design of a new domain specific language for defining connector implementa-
tion

(ii) proposal and implementation of a method for transforming defined connector
implementation into a chosen target language
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(iii) integration of the existing connector generator [38] with Stratego language.
The resulting generator should be faster and mainly easy usable then the
existing solution of connector generation.

(iv) testing an eligibility of the Stratego language for source code transforma-
tions and generation in this context.

Figure 1.1: An example of a connector

1.1 Structure of the text

Following chapters start with an introduction into a connector model. The Chap-
ter 2 also shows the existing connector generator. The Stratego language and
supporting tools are shortly described in the Chapter 3. The Chapter 4 revisits the
goals of the thesis and analyzes them deeply. The architecture of the proposed con-
nector generator is shown in the Chapter 5. Following Chapter 6 describes features
and implementation of language for defining connectors. Evaluation of the proposed
solutions is done in Chapter 7 and the next Chapter 8 discusses related work. The
last Chapter 9 concludes the thesis and gives possible ideas for future work.



Chapter 2

Connectors and their generation

Software connectors (see Figure 2.1) are first-class entities providing a configurable
communication layer. They connect different components, which can live on various
computers. Hence connectors span different address spaces.

2.1 Connector model

Connectors are described by a connector model. Numbers of connector models
exist and each of them provides a different set of features and a different connector
structure. This work is using a connector model presented in [33], [30] based on the
model [38], which was changed to suit the automatic connector generation.

Figure 2.1: A simple view of a connector architecture

5
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2.2 Generation process

A process of the generation of connectors is a part of a deployment manager. The
work [31] describes a deployment process based on OMG D&C [24]. OMG D&C
defines a deployment of a homogeneous application in a platform independent way.
It was extended to support a deployment of components from different component
models by introducing software connectors like entities responsible for components
interactions. The OMG specification was also extended to support connector con-
struction during deployment time when we have enough information to prepare a
connector implementation suiting deployed components. The paper [32] describes
an automated process of a connector generation based on a high-level connector
specification. The generation also allows a connector adaptation for a particular
target deployment environment.

The generation process itself can be divided into two stages (see Figure 2.2).
Each stage expects a description of a connector in a particular level of abstraction
and produces a more specific description. The input of the generator is a high-level
connector specification, which prescribes basic requirements. It is partly written by
a connector designer and completed by a tool, which is concerned with component
deployment. This description is transformed into source code. Between the input
connector description and the result code is a big semantic gap, which is filled by
an intermediate connector description called low-level connector configuration.

The first stage of the connector generation is responsible for resolving a con-
nector architecture. It processes an input high-level connector descriptor and tries
to find a satisfactory connector configuration. The result is used as an input for the
second stage, which generates target source code of the connector with help of code
templates.

2.2.1 High-level connector specification

The input of the connector generator is a high-level specification of a connector.
This descriptor allows a user to specify a required connector at the design stage in a
way which is convenient to human. The specification is based on a communication
style and non-functional properties (e.g. security, monitoring).

The communication style is determined by a component designer and it is
associated with the given component interface. Some NFPs (e.g. security require-
ments) can be also connected with a component interface at the design stage. The
additional NFPs (e.g. monitoring of calls on interface) are prescribed by a deployer
tool at assembly and deployment time.

The NFP is a set of named attributes specified in a dot notation (see List-
ing 2.1). A description of required NFPs is written as a restriction over values of
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Figure 2.2: Overview of the generation process

specified NFP attributes. For this purpose the model uses a predicate over chosen
NFP attributes. An example of such specification is shown in Listing 2.1.

( s e c u r i t y . connect ion . type= ’ ssh ’ && s e c u r i t y . server . c e r t = ’ server . c e r t ’ )

Listing 2.1: An example of a predicate of NFPs

2.2.2 Low-level connector configuration

The low-level connector configuration is a structural view of a connector. It describes
an extended hierarchy of inner elements called connector elements, their ports and
bindings among them. The configuration is similar to the description of a component
system - there are also nested entities corresponding to connector elements and
bindings among them.

We can look at the low-level connector configuration as on a tree. In the root
of the tree there is a representation of a connector and nodes of the tree correspond
to connector elements. From one level of nesting view the connector is constituted of
connectors units. Because the connector is a distribution entity we can identify the
largest parts of the connector which can independently live in a deployment dock.
And these parts are represented by connector units. But in fact a connector unit
conforms to a connector element.

As we mentioned above the basic building entity of a connector is a connector
element. In the low-level configuration the element specification includes element
type, actual signatures of element ports and specification of sub-elements. The
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element type is only a black-box view of the element because it specifies element
ports, which play the role of element interfaces. The connector model prescribes
three types of element ports:

• provided ports

• required ports

• remote ports

Each element port in the connector configuration has assigned an actual signature.
It means that all information about a port interface is known. Between ports the
bindings are constituted. We distinguish two types of bindings:

• local binding - this binding is between required, provided or provided, required
ports. It connects elements inside one connector unit (inside one address
space), hence it is implemented by local calls. It also provides a communication
between a element and a component.

• remote binding - this binding is only between remote ports. It connects dif-
ferent address spaces thus it should be implemented by a middleware. The
meta-model doesn’t distinguish a communication style or a direction of re-
mote bindings. An implementation of the remote bindings depends only on
elements, which provide remote ports.

The element itself can have two possible implementations. It can be primitive or
composite. The primitive element is presented by a code template, which implements
desired functionality (e.g marshaling, logging). The primitive elements correspond
to leafs in a tree view of the connector. The composite element describes nested
elements, bindings between them and assembly of sub-elements. It conforms to inner
nodes in a hierarchy view of the connector.

Elements inside one connector unit are connected only via local bindings, be-
cause they live in one address space. If the element has a remote port it has to be
delegated to a port of the bounding element.

On the other hand connector units represents entities which are typically lo-
cated in different address spaces. Therefore a connector unit communicates on one
side locally with a component and on the other side remotely with another connector
unit. Remote communication is provided by some type of a middleware (RMI [20],
JMS [21], JavaSpaces [22], . . . ) which depends on a specialization of the connector.

Figure 2.3 shows a simple connector configuration. It consists of a client unit
and one server unit. The client unit is implemented by a client unit element. It is
a composite element and includes two nesting elements. The first one is a logger
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Figure 2.3: An example of a low-level connector configuration

primitive element, which is a special type of an interceptor. The second is a stub
element providing communication with a skeleton placed on the server side with help
of the RMI middleware. The client unit is connected to the server unit via a remote
binding. Its configuration includes two inner elements - a skeleton collection element,
which is an example of a composite element, and an interceptor element, which does
not affect calls and it is used e.g. for monitoring, debugging or collecting statistics.
The skeleton collection element includes two nested skeleton elements. The first one
is a simple local skeleton capturing calls on a local interface. The second element is a
composite element which includes a RMI skeleton and a socket factory provider. The
RMI skeleton uses the factory provider element to obtain a socket factory for the
given protocol. Multiple skeleton elements permit the server unit to serve multiple
clients implementing different types of a middleware. The example shows that the
low-level configuration of a connector includes all port interfaces with a resolved
signature.

2.2.3 Resolving connector architecture

The first step of a connector generation process is resolving a connector architec-
ture. The input for this part of the generator is a high-level connector specification
described in Subsection 2.2.1 High-level connector specification. The resolver trans-
lates the specification into a low-level connector configuration. During resolving it
uses information about a target deployment environment, where components are
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situated, and also an architectural connector model (it is only one-level of nesting
view of a connector - see Figure 2.4 1).

The process of resolving an architecture searches the space of all possible con-
figurations and tries to find appropriate configurations suitable to the specified high-
level connector specification and deployment requirements. The process of resolving
a connector architecture first chooses a connector architecture of a root element and
then recursively assigns architectures to connector units and sub-elements. Among
found configurations one is selected as the best in according to the ”cost” of the
connector configuration.

Figure 2.4: A simplified connector architecture on the one level of nesting

2.2.4 Source code generation

Source code generation is based on adapting a connector element template with help
of an input low-level connector configuration. It is just deterministic process, which

1The connector architectural model is not described here, because the connector element gen-
erator is just interested in the connector low-level configuration. But at least briefly, the connector
element architecture is a gray-box view of the element. It describes element’s implementation
(primitive, composite), but it is not concerned with specifying element ports. For this task the
connector type is responsible. Hence there can be a number of architectures for an element type.
The Figure 2.4a shows a simple connector architecture. It includes multiple client units and one
server unit. The architecture of a client unit element is shown on Figure 2.4b. It is a composite
element containing two primitive elements - a logger and a stub. The client unit is connected to
the server unit (Figure 2.4c), which includes a skeleton collection element and an interceptor. The
collection element (Figure 2.4d) have multiple skeletons and each of them can implement differ-
ent type of middleware. Hence server unit can support multiple client units, each using different
middleware.
For further details of the connector architecture model the work [33] is recommended.
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transforms a template code into a target source code.

The concept of connector units is important here. Because the unit is stan-
dalone part of a connector, which can be instantiated separately, thus the genera-
tor produces code of connector units. But we have mentioned the connector unit
corresponds to a connector element. Therefore the generator is only interested in
generation of connector elements.

For primitive connector element the generator just adapts an element code
template to particular interfaces. In case of a composite element it has to also
produce builder code, which constructs sub-elements and bindings among them.

2.3 Existing generator

In our work we will extend the existing connector generator presented by [33]. The
generator itself is divided into two parts which provide processes described above.
A part corresponding to resolving a connector architecture is called the architecture
resolver and code generation is the responsibility of the element generator. The or-
chestration of these parts is controlled by a generation manager, which is represented
by Java class GenerationManager.

2.3.1 Architecture resolver

The architecture resolver is representation by the Java class ArchResolver. The
logic of resolving the best connector architecture is implemented in Prolog ([33],
[32]), because it provides backtracking naturally, which is the main idea of finding
the right architecture. A knowledge base of Prolog is filled with information about
the connector and element architectures. Then Prolog is used for finding the best
solution of the connector architecture with backtracking the search tree of all possible
connector configurations. The resolved architecture contains all required information
for code generation.

The input high-level connector specification is defined in the XML language
(see an example on Listing 2.2) and it is produced by a deployment tool, which
put together requirements on deployment docks and NFPs. The example shows a
high-level specification of a connector with the name client_unit containing two
connector units. One is situated on a client side and it provides logging service and
the second one is a server unit.

The architecture resolver needs also a specification of possible element archi-
tectures with their costs. The example of such specification is shown on Listing 2.3.
The file also includes allowable combinations of NFP names and attributes.

<s p e c i f i c a t i o n >
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<u n i t name= ” c l i e n t u n i t ” dock= ” node1 ”>
<nfp−requirement p red ica te= ” nfp mapping ( Uni t , ’ communicat ion sty le ’ , ’ method invocat ion ’ ) ” />
<nfp−requirement p red ica te= ” nfp mapping ( Uni t , ’ logging ’ , ) ” />
<po r t name= ” c a l l ” type= ” provided ” s igna tu re= ” j a v a i n t e r f a c e ( ’ t e s t . Test I face ’ ) ” />

</ un i t>

<u n i t name= ” s e r v e r u n i t ” dock= ” node1 ”>
<nfp−requirement p red ica te= ” nfp mapping ( Uni t , ’ communicat ion sty le ’ , ’ method invocat ion ’ ) ” />
<po r t name= ” c a l l ” type= ” requ i red ” s igna tu re= ” j a v a i n t e r f a c e ( ’ t e s t . Test I face ’ ) ” />
<nfp−requirement p red ica te= ” nfp mapping ( Uni t , ’ logging ’ , ) ” />

</ un i t>
</ s p e c i f i c a t i o n >

Listing 2.2: An example of a high-level connector specification produced by a de-
ployer tool

<?xml version = ” 1.0 ” encoding= ”UTF−8” ?>

<element name= ” l o g g e d c l i e n t u n i t ” type= ” r p c c l i e n t u n i t ” impl−c lass= ” LoggedCl ientUni t ”>

<a r c h i t e c t u r e cost= ” 0 ”>
< i n s t name= ” logger ” type= ” logger ” />
< i n s t name= ” stub ” type= ” stub ” />
<b ind ing por t1= ” c a l l ” element2= ” logger ” por t2= ” i n ” />
<b ind ing element1= ” logger ” por t1= ” out ” element2= ” stub ” por t2= ” c a l l ” />
<b ind ing element1= ” stub ” por t1= ” l i n e ” por t2= ” l i n e ” />

</ a r c h i t e c t u r e >

<nfp−dec la ra t i ons>

<nfp−mapping name= ” logg ing ” value= ” Value ”>
get elem ( This , ’ logger ’ , SE Logger ) ,
nfp mapping ( SE Logger , ’ l ogg ing ’ , Value )

</nfp−mapping>

</nfp−dec la ra t i ons>

. . .

</ s c r i p t >

</element>

Listing 2.3: An example of an element architecture descriptor

2.3.2 Element generator

The connector configuration produced by the architecture resolver selects an element
implementation and prescribes to which interfaces the element should be adapted.
The element generator adapts element templates, generates their source code (e.g.
Java code) and builds the whole connector units. The generator itself is implemented
in the Java code by the class ElementGenerator. It controls source code generation,
its compilation and post modification via performing defined actions. The process
of an element generation is described by a script (see Listing 2.4 containing build
commands. Each command corresponds to a Java class implementing interface
ActionInterface and is interested in one part of an element production.
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The command which realizes source code generation is called jimpl and is
implemented by the Java class JImpl. It takes as an input the class name of a code
generator and the name of a template representing element implementation.

The code generator is a Java class implementing the interface
JImplGeneratorInterface and it is responsible for template transformation
into a target language. Code generators constitute a hierarchy shown on Fig-
ure 2.5. There are two general implementations for primitive elements (class
PrimitiveGenerator) and for composite elements (class CompositeGenerator).
These classes can be specialized (by inheritance) to satisfy special template element
demands (e.g. classes ConsoleLog, LocalStub).

The template itself represents only a static part of an element implementation
and the dynamic part is produced by a code generator class mentioned above. It is
written in a Java language and contains tags enclosed in %. These tags are expanded
by the given code generator.

The generated source code is compiled by the command javac which calls a
java native compiler. Then classes can be post-processed by various commands - e.g.
rmic which generates RMI stubs and skeletons2. The action delete is responsible for
cleaning.

Figure 2.5: UML diagram of the hierarchy of template expanders

2Explicit calling rmic is mandatory only in the case of using Java 1.4
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<?xml version = ” 1.0 ” encoding= ”UTF−8” ?>

<element name= ” l o g g e d c l i e n t u n i t ” type= ” r p c c l i e n t u n i t ” impl−c lass= ” LoggedCl ientUni t ”>
. . .

<s c r i p t >
<command ac t i on = ” j i m p l ”>

<param name= ” generator ” value= ” org . . . generators . CompositeGenerator ” />
<param name= ” c lass ” value= ” LoggedCl ientUni t ” />
<param name= ” template ” value= ” compound default . template ” / >

</command>

<command ac t i on = ” javac ”>
<param name= ” c lass ” value= ” LoggedCl ientUni t ” />

</command>

<command ac t i on = ” de le te ”>
<param name= ” source ” value= ” LoggedCl ientUni t ” />

</command>

</ s c r i p t >

</element>

Listing 2.4: An example of building script of a simple element

package %PACKAGE%;

impor ts org . objectweb . dsrg . deployment . connector . runt ime . ∗ ;

publ ic class %CLASS% implements
ElementLocalServer ,
ElementLocalCl ient ,
ElementRemoteServer ,
ElementRemoteClient {

protected Element [ ] subElements ;
protected UnitReferenceBundle [ ] boundedToRemoteRef ;

publ ic %CLASS%() {
}

%INIT METHODS%
}

Listing 2.5: An example of a template for a composite element



Chapter 3

Overview of Stratego/XT

Stratego/XT [18] is a combination of the Stratego programming language with
the XT bundle of transformation tools.

XT is a set of useful transformation tools, which are used for generation of
parsers, pretty printing, abstract syntax tree transforming, building and bundling
of systems. The package is based on the Syntax Definition Formalism (SDF), the
Generic Pretty-Printing (GPP) package and the Stratego language.

Stratego is a special purpose transformation language, which is based on the
term rewriting and can be seen as the implementation of the strategic programming
paradigm. It provides numerous features such as grammar variables, concrete object
syntax and dynamic rules that make it very suitable for implementing program
transformations.

3.1 Architecture

The XT package is composed of different components. Each component is an exe-
cutable program, which can be used directly from a command line. A set of com-
ponents can be combined via a shell pipe. An example of some typical pipeline is
shown on the Figure 3.1. A source program is parsed by a parser based on the SDF
grammar definition. The result of this step is an abstract syntax tree which is then
transformed by the collection of transformation tools (e.g. a desugarer, an opti-
mizer, a simplifier, a template extender - all of them are written in the Stratego
language). Finally the result can be processed by a pretty-printer which produces
source code in a target language. The target language can be the same as an input
language or can be different in case of language translation.

The grammar definition of a language plays the central role in Stratego/XT.
It uses a SDF language for describing grammars (see Section 3.2 Syntax Definition
Formalism SDF).

15
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XT tools exchange a structured representation of a program - an abstract
syntax tree (AST). There is one-to-one correspondence between trees and prefix
terms. A term is a constructor applied to zero or more terms. Strings and integers
are also terms - e.g Plus(Int("3"), Int("4")) is a representation of 3 + 4. In
Stratego/XT tools use ATerms (Annotated Terms) like internal as well as ex-
ternal representation of programs. ATerm format is discussed later in Section 3.3
ATerm.

Figure 3.1: A structure of the Stratego/XT program transformation system

3.2 Syntax Definition Formalism SDF

SDF is a language for defining syntax of programming languages. It provides several
features which permit writing syntax definitions simply. First contribution is a
modular syntax definition. Syntax can be split into several modules and they can
be reused in different syntax definitions. Second, a lexical and context-free syntax
are integrated in a single formalism in which the complete syntax of a language can
be defined (using Scannerless generalized LR parsing [35]). Third, SDF includes
declarative disambiguation constructs (like priorities, reject productions and follow
restrictions) which support deciding for the right abstract syntax tree.

SDF belongs to a set of declarative languages. This means that the syntax
definition can be used for different purposes: a generation of a parser, pretty-printers
and data type definitions.

A parser is generated automatically from the syntax definition in SDF. The re-
sulting parser is based on Scannerless Generalized-LR parsing ([35]) and it produces
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ATerm representation of an input program.

3.2.1 Abstract syntax tree

An abstract syntax tree (AST) is a tree representation of a source program. Internal
nodes are labeled by operators and leaf nodes represent the operands (i.e. nullary
operators like constants, variables). It is derived from a syntax tree (ST), but
in comparison with it AST does not contains redundant layout information and
comments - i.e. information which do not affect semantics of the input program.
AST is used like an internal representation of programs in parsers and also in the
Stratego/XT system. Stratego itself stores AST in a general term format
called ATerm, which is described in Section 3.3 ATerm.

3.2.2 Modular structure

SDF specification can include several modules. Each module can defines syntax
rules (also called functions, derivation rules). All entities defined in the module may
be visible or invisible in other modules. The module can import another module and
all declarations of the imported module become accessible in the importing module.
And additionally they become exported by the importing module.

module Expr

imports
Expr−expressions
Expr−p r i o r i t i e s
Expr−l ayou t

exports
context−f r ee s t a r t−symbols Exp

Listing 3.1: An example of a simple module

3.2.3 Symbols and productions

Each syntax rule consists of ”symbols”. Symbols are similar to terminals and non-
terminals in other grammar definitions formalism (e.g. Backus-Naur form, BNF).
The elementary symbols are:

• sort corresponds to non-terminals, e.g. Exp

• literal corresponds to terminals, e.g. "+"

• character classes corresponds to set of characters e.g. [a-z]

These elementary symbols create more complex expressions via operators:
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• option - the postfix operator ? defines an optional part in the syntax rule. E.g.
PackageSection? defines zero or exactly one occurrence of PackageSection.

• sequence - the operator (...) allows grouping of two or more symbols. E.g.
("import" Id).

• repetition - the repetition operator expresses that a symbol can occur several
times. It also expresses minimal number of repetitions - at least zero times
(*) or at least once (+).

• alternative - the operator | expresses the choice between two symbols. E.g.
Int | Bool.

• tuple - the expression (T1, T2) creates a tuple of two terms.

A production (also called a syntax function, a syntax rule or a derivation rule)
has the form A1A2 . . . An → A0 where A0, . . . An are symbols. So it means, that the
production takes list of symbols and produces new symbol. It is similar to derivation
rules in context-free grammars: A0 → A1A2 . . . An where A0 is a non-terminal and
A1, . . . An are non-terminals and terminals. Each production can have special at-
tributes specified in curly brackets e.g. {cons("Int")}. These attributes can solve
disambiguation (see Subsection 3.2.7 Solving ambiguity) or modify generation of an
abstract syntax tree (see Subsubsection 3.2.5.1 Constructor attribute)

3.2.4 Lexical syntax

A lexical syntax describes a low level structure of a language. It divides an input
text into lexical tokens. A lexical token consists of a sort name and own text of the
token. The lexical syntax also specifies which part of a text will be skipped (e.g.
layout symbols, comments).

A description of the lexical syntax contains a set of lexical functions. Each
consists of a regular expression on the left side and a result sort on the right side
separated by ->.

module Expr− l i t e r a l s

exports
sorts I n t

l e x i c a l syntax
” 0 ” −> I n t
[1−9][0−9]∗ −> I n t

l e x i c a l r es t r i c t i ons
I n t −/− [0−9]

Listing 3.2: A sample of a lexical syntax definition
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3.2.5 Context-free syntax

The context-free syntax describes a structure of sentences in a language. A declara-
tion of a rule consists of zero or more symbols followed by -> and a result symbol.
The result symbol may be followed by attributes which define associativity or influ-
ence a rewrite process.

Elements on the left side of the rule are separated by the invisible non-terminal
LAYOUT? (optional LAYOUT) in order to permit a layout between these members. This
non-terminal is automatically inserted.

3.2.5.1 Constructor attribute

A constructor attribute cons does not affect the syntax itself. The constructor only
serves to specify the name of a node in the abstract syntax tree which is created
when the syntax function associated with the constructor is applied. E.g.

Exp ” + ” Exp −> Exp { cons ( ” Add ” )}

module Expr−expressions

imports Expr− l i t e r a l s

exports
sorts Exp

context−f r ee syntax
I n t −> Exp { cons ( ” I n t ” )}
Exp ” + ” Exp −> Exp { cons ( ” Add ” ) , assoc}
Exp ”−” Exp −> Exp { cons ( ” Sub ” ) , l e f t }
Exp ” ∗ ” Exp −> Exp { cons ( ” Mul ” ) , assoc}
Exp ” / ” Exp −> Exp { cons ( ” Div ” ) , assoc}
Exp ” ˆ ” Exp −> Exp { cons ( ”Pow” ) , r i g h t }

” ( ” Exp ” ) ” −> Exp { bracket}

Listing 3.3: A sample of a context-free syntax definition

3.2.6 Start symbol

A context-free start symbol serves as a start symbol for the process of parsing an
input program. A module can define multiple start symbols but then we have to
specify before parsing which one will be used.



3.2 Syntax Definition Formalism SDF 20

3.2.7 Solving ambiguity

3.2.7.1 Generalized parsing

Parsing of the input language is based on a generalized LR parser. This means that
the parser finds all possible derivations for a certain input sentence. Thus result for
an input string can be one syntax tree but even forest of syntax trees. For avoiding
and rejecting trees SDF provides special constructs:

• prefer, avoid, reject attributes

• priorities

• associative functions

• restrictions

3.2.7.2 Prefer, avoid, reject attributes

SDF offers specifying of an attribute for each lexical even context-free function. The
most important attributes for solving disambiguation are:

• prefer is used to indicate that a marked function should always be preferred
over other functions.

• avoid indicates that a marked function should be used as a last resort.

• reject can be used to deny given construct. E.g. "begin" -> Id {reject}
denies using the begin keyword as the name for an identifier.

3.2.7.3 Priorities

Relative priorities for two functions can be defined in the section context-free priorities
with the statement F > G, where F and G are context-free syntax functions. This
declaration says that tree nodes corresponding to the function with lower priority
should occur in higher levels in the syntax tree then nodes of the function with
higher priority.

3.2.7.4 Associative functions

Associative functions are productions marked by special attributes solving associa-
tivity. The attributes are often used for marking functions in the form S op S -> S,
where we have to specify an interpretation of sentences like S op S op S.

Currently SDF offers four attributes:
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• left means left associativity of the rule

• right expresses right associativity

• assoc the same sense as left

• non-assoc a marked function is not associativity. It denies expressions like
1 - 2 - 3

3.2.7.5 Restrictions

A restrictions limits look-ahead for the given symbol. It expresses that a symbol
cannot be followed by a character from a given character class. SDF allows writing
a definition of restrictions separately for the lexical syntax and the context-free
syntax. E.g. in the example Listing 3.2 Lexical syntax the symbol Int may not be
followed by any numeral.

3.3 ATerm

Every program (i.e. an input sentence) is represented by terms called ATerms. The
ATerm (Annotated Term) format is used for exchanging program representations
between tools in the Stratego/XT package. A parser generated from the given
SDF grammar produces ATerms which are processed by Stratego programs. ATerms
are also used internally by Stratego programs for storing data. ATerm format uses a
method of maximal sharing - it means that any term is represented only one. Other
occurrences of the same term are represented by pointers to the same location.

The ATerm format provides a set of constructs for representing abstract syntax trees
(see figure 3.2):

• Application - Int(t), Plus(t, t)

• List - [], [t, t, t]

• Tuple - (t, t), (t, t, t)

• Integer - 16

• String - "cheers"

• Annotation - t{t,t,t}
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Figure 3.2: From an input sentence to AST (Abstract Syntax Tree)

3.4 Stratego programming language

Stratego is the language for a program transformation based on the term rewriting
with definable strategies. It works with programs represented in the ATerm format
(see Section 3.3 ATerm).

3.4.1 Stratego program representation

A Stratego program is divided into modules. Each module has a unique name
and can import other modules. Typical program has two sections:

• signatures - this section contains information about terms. It declares sorts
and constructors and this section is usually generated from a SDF grammar
definition.

• strategies - this section contains a definition of strategies.

• rules - this section includes a definition of rewrite rules.

A selected strategy has to be specified during the compilation of a Stratego program
and it will serve like starting point of a transformation process. In listing 3.4 module
EExpr is defined. It imports the basic Stratego library liblib and another mod-
ule. It also defines one strategy with name io-EExpr which is used for parsing input
terms and producing output terms with help of the standard strategy io-wrap.

/∗
∗ Simple expression eva lua t i on .
∗ /

module EExpr

imports l i b l i b Expr−eval

st ra teg ies
io−EExpr = io−wrap ( expr−eval )

Listing 3.4: An example of a Stratego program
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3.4.2 Terms and variables

Stratego works with terms represented in the ATerm format (see Section 3.3
ATerm). To use terms in Stratego programs, their constructors should be declared
in signatures section of a module. Usually these signatures are generated from a
SDF definition of syntax.

A term can also contain meta-variables, which can be bounded to other terms.
Hence a term pattern is a normal term with meta-variables - e.g. Int(x).

3.4.3 Terms creating and matching

Basic operators in the Stratego language are term building and matching. The
term building operator ! replaces a current term with a new term pattern - e.g.
!Int("3"). The term matching operator ? tries to match the current term t to
the specified term pattern c. The operator succeeds if there is a substitution ω of
variables in t to subterms in the term pattern c such that ω(c) = t - e.g. ?Int("9").
Matching operation also involves binding of variables in the pattern c to correspond-
ing subterms of the term t.

3.4.4 Strategies

Strategies are used for controlling usage of rewrite rules. It can combine one or more
transformations (rules, strategies) into a new transformation. A strategy definition
has the form:

f = s

where f is a name of the strategy and s is a strategy expression - a combination of
some transformations.

3.4.4.1 Basic strategies

Stratego presents four basic strategy operators:

• id - always succeeds

• fail - always fails

• !p - term creation

• ?p - term matching
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3.4.4.2 Sequencing

The sequential composition s1 ; s2 of strategies s1, s2 first applies the strategy s1
to the current term and on the result it applies the strategy s2. If some of strategies
s1, s2 fails then the whole composed strategy fails.

3.4.4.3 Choice

Stratego provides several choice operators which serve for deciding between ap-
plying strategies.

The basic choice operator is a deterministic choice s1 <+ s2. It tries to apply
given strategies s1, s2 in that order. If the strategy s1 succeeds then the whole
choice succeeds else s2 is applied to the original term. This strategy combiner is
used in cases when we want to apply multiple mutually exclusive strategies to the
term.

Another operator is a guarded choice s < s1 + s2. If the guard strategy s
succeeds s2 is applied else the strategy s3 is applied. For example, we can define a
negation strategy:

not ( s ) = s < f a i l + i d

3.4.4.4 Parametrized strategies

Definitions of strategies can be parametrized by parameters:

f ( s1 , . . . , sn | t1 , . . . , tm ) = s

where s1, ..., sn are strategies and t1, ..., tn are terms. For example, the
strategy try(s) which applies its argument strategy s and always succeeds is de-
fined:

t r y ( s ) = s <+ i d

3.4.4.5 Recursion

3.4.5 Rewrite rules

Rules define one-step transformation. A named rule has the form:

L : p1 −> p2

where L is a rule name, p1, p2 are term patterns. A rule defines transformation on
terms. It matches an actual term and replaces it with p2 only if p1 matches to the
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actual term. So rules definition is only syntactic sugar for the statement ?p1 !p2.

Simple rule above is an unconditional rule, but Stratego support also con-
ditional rules:

L : p1 −> p2 where c

where L, p1, p2 has the same meaning like above and c is a conditional strategy.
It will replace the current term with p2 only if p1 matches the current term and the
strategy c succeeds.

3.4.5.1 Lambda rules

In come cases there is a need to create an anonymous rewrite rule inside some
strategy expression. This rule is called the lambda rule:

\ p1 −> p2 where s \

where p1, p2 are terms and s is a strategy.

A typical example of usage of the lambda rule is

map ( \ x −> <mul>(x , x ) \ )

It computes the square powers of terms representing numbers, which are stored in
a array term.

3.4.6 Term traversal

There exists many types of traversing trees. For some cases bottom-up traversing is
useful, for another top-down is more suitable. And sometimes there is a demand to
define own traversal strategy. Stratego supports all of them. It has built-in basic
traversal strategies (bottomup, topdown, . . . ) but also user can define own traversal.

3.4.6.1 Congruence operators

Congruence operators provide one way of term traversing. It applies a different
strategy to each argument of a specific constructor. If c is some term constructor and
s1, ...,sn are strategies then c(s1, ..., sn) is either strategy. This strategy
can be applied only to terms in the form c(t1, ..., tn) and it applies the strategy
s_i to the term t_1. For example:

sadd ( s ) = Add ( s , s )

shows the strategy which applies the given strategy s to both subterms of the Add
term.



3.4 Stratego programming language 26

3.4.6.2 Generic traversal operators

Stratego has several basic traversal operators called generic one-step descent op-
erators :

• all(s) - applies the strategy s to all direct subterms.

• one(s) - applies the strategy s to one direct subterms. It fails when application
of the strategy to all subterms fails.

• some(s) - applies the strategy s to at least one direct subterm.

3.4.6.3 Standard traversal strategies

With help of generic traversal operators and congruence operators Stratego presents
many other standard strategies:

bottomup ( s ) = a l l ( bottomup ( s ) ) ; s
topdown ( s ) = s ; a l l ( topdown ( s ) )
innermost ( s ) = bottomup ( t r y ( s ; innermost ( s ) ) )
a l l t d ( s ) = s <+ a l l ( a l l t d ( s ) )
. . .

3.4.7 Dynamic rules and their scope

Above we presented logic of strategies and rewrite rules but all these transformation
are static. They are defined before program compilation and cannot be modified.
But in some situation we need to create a rewrite rule in dependence on actual
terms. The best example is constant folding operation in compilers of programming
languages. Hence Stratego provides dynamic rules. Declaration of a new dynamic
rule L has the form

ru les ( L : t1 −> t2 )

where L is a name of a rule and t1, t2 are terms. Thus the dynamic rule can be
used anywhere in a program.

The scope of defined rule can be restricted by specific construct

{ | L : s | }

where L is a name of the rule which should be restricted and s is a strategy. All
dynamic rules L defined during execution of the strategy s are cleared after leaving
the scope.



Chapter 4

Goals revisited

In the previous chapter we have presented the existing connector element generator.
The main limitation of the solution is the code generator. It is based on a concept,
where code (here the Java language is used) generates another code. The definition,
what should be generated, is divided into two parts - a code template and a Java
class, which provides a dynamic content of a template. The division bears on one
hand a sole method how to define an universal code generator, which does not depend
on a target language. On the other hand, it makes writing connectors tedious and
error-prone. Splitting element template into two places also carries management of
source code difficult.

We want to propose a solution, which removes inadequacies of the existing
connector code generator and provides an independent layer for defining connec-
tor elements. The layer unifies the location of an element template definition and
makes writing elements easier. The layer is based on a Domain Specific Language
(DSL), which is the mixture of a target language (in our solution Java) and a meta-
language. The meta-language allows accessing an element architecture description
and composing target code with meta-statements. The tool which transforms the
connector element language into the target language should communicate with the
existing architecture solver because it provides necessary information about the el-
ement configuration.

The second important goal of this thesis is try to use a specific tool for program
transformations. The tool is used for transforming a template written in a DSL to
the target language (e.g. Java). In our work we test an eligibility of Stratego
programming language because it is one of the most suitable tools for program
transformations and also it includes additional tools for grammar definitions and
pretty-printing.

Thus the main goals of this thesis are:

• design of a DSL which allows defining connector element code.

27
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• design of the connector element code generator in Stratego language.

• the DSL and the code generator should be extensible to support new compo-
nent system.

• the DSL and the code generator should be easily modifiable to add support
for a new target language.

• incorporate the developed connector element code generator into the existing
solution. It means to implement a new subclass of the class BaseGenerator
which will provide communication between the Java part and the Stratego
part of the connector generator.

• test eligibility of the Stratego/XT tool set for designing DSL and its trans-
formation to the source code.



Chapter 5

Overview of proposed generator
architecture

This chapter presents a summary of the connector generator architecture proposed
by this master thesis. The generator is divided into two parts - the first part is
an extension of the existing connector generator [33] which communicates with the
second part implemented in the Stratego language.

5.1 Architecture design

The proposed generator is divided into two parts. The first part is implemented in
the Java language and provides bridging between the existing architecture resolver
and the Stratego part of the generator. The second part is a code generator
implemented in the Stratego language and it concerns the target code generation
from a connector element template and a description of an element configuration.
The architecture of proposed solution is shown on Figure 5.1.

5.1.1 Java part of generator

The existing solution includes the architecture resolver (the class ArchResolver),
which finds the most suitable element configuration. Information about the found
element has to be passed to the Stratego part. The element configuration de-
scriptor (element descriptor for short) has to contain a description of the element
type and architecture:

• list of port descriptions. They have to specify a port name, a resolved signature
of the port interface, a type of the port (provided, required, remote).

• list of sub elements in case of the composite element. Each sub element de-
scriptor has to contain a name of the sub element on which next parts will

29
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Figure 5.1: Architecture of the proposed generator

reference to, and a name of a class which implements given sub element.

• list of bindings. It contains a description of bindings between sub elements and
also bindings from a bounded element to sub elements. One binding descriptor
identifies a source and a target port by an element name and its port name.

• name of a template which provides connector element implementation

Except these information the Stratego part needs knowledge about an envi-
ronment in which the element will live and also additional information like a name
of the generated Java class, a name of a package.

The optimal format for exchanging the information between the Java part and
Stratego is the XML language. It can be simply generated in Java and either
Stratego has a tool set for XML parsing and generation.

Thus the main task of the Java part is preparation of XML source code, which
describe the connector element and its environment. The existing Java implemen-
tation is extended by a new generator class StrategoGenerator. This class im-
plements the interface JImplGeneratorInterface therefore it can be used as the
plugin for the action class JImpl1. The generator class serializes a resolved element

1The class JImpl realizes Java source code generation with help of plugins.
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represented by the class ResolvedElementInstance into the XML format. The
produced XML descriptor has the form shown on Listing 5.1. Apart from descrip-
tor generation, the class StrategoGenerator prepares all subelements in case of a
composite element and also adapts interfaces if it is necessary.

After this preparation stage, the generator class calls the Stratego part with
help of the class NativeStrategoGenerator which implements JNI (Java Native
Interface - [13]) access to the Stratego implementation.

5.1.2 Stratego part of generator

The Stratego part of the generator consists of several modules (see Figure 5.2).
Each of them has a special purpose. The architecture has a form of a pipe-line where
each module takes input terms, produces output terms and the result is passed to
the next module.

The first module is a XML parser which processes an input element descriptor
passed from the Java part of the generator and modifies it. It is also responsible for
saving the input XML fragment for later usage.

The XML descriptor of a connector element contains a name of a template
which should be used for code generation. The template is found and parsed by the
second module.

Then the parsed template is transformed by several stages which are described
in Section 6.4 Template evaluation. Every stage realizes one-step transformation of
the parsed template and the resulting output of the phase is then forwarded to the
next stage.

In the source template there can be statements which need information from
the input element descriptor. For this purpose a query part exists. It provides a
uniform method how to obtain information from the stored XML descriptor and
it also provides special expressions for query restrictions and simple aggregation
functions.

The last part is a target code generator which takes the result of previous part,
assimilates remaining meta-statements and produces pretty printed target code.
The output is saved to the file with the name noted in the input description of the
element.

Dividing the translation of a template to multiple stages allows us to make a
majority of stages independent on a target language and displace a manipulation
with the target source code into the final stage (Stratego module java/* ). There-
fore it permits simple addition of support for a new target language only by writing
a new target code generation module.
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Figure 5.2: Stratego part architecture

5.1.3 Preprocessing of input XML

An input for the Stratego part is a descriptor of the element configuration stored
in the XML format. The form of the XML descriptor is shown in Listing 5.1.
This description is parsed by standard XT component xtc-parse-xml-info which
translates XML tags into ATerm format.

Then the representation of the descriptor is modified to support easy
queries through it. We want to offer a way of querying information which are
not exactly specified by the stored XML fragment. For example, the query
${ports.port(name=call).boundedTo.element.name} should return a subele-
ment’s name to which the port call of the current element is bounded. But the
input descriptor does not contain such information and it has to be completed. Thus
the preprocessor substitutes relevant information in parts where they are needed.
E.g. the part binding contains the XML element port with the name of a bounded
port. This element is substituted by the XML element boundedTo which includes
the description of the given port. The port has to be also described in the input
XML descriptor.

In this way modified descriptor is saved with the help of the dynamic rule
GetXML. The rule always succeeds and rewrites the current term to the XML de-
scriptor of the connector element:

save−xml = ?Document ( Element (Name( , ” element ” ) , , desc ) )
; ru les ( GetXML : i n pu t −> desc )
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Thus the element description is accessible via calling the dynamic rule GetXML any-
where in the Stratego part of the generator.

<element>
<!−− template f i l e f o r element −−>

<template>templates / compound default . e l l ang </ template>

<!−− package of new element −−>

<package>generated . A00003</package>

<!−− c lass name of generated element −−>

<classname>LoggedCl ientUni t </classname>

<!−− l i s t o f po r t s −−>

<por ts>

<!−− d e s c r i p t i o n o f a po r t −−>

<por t>
<name>c a l l </name>
<s ignature>org . congen . DemoIface</ s ignature>

<type>PROVIDED</ type>

</ por t>
<!−− . . . −−>

</ por ts>

<!−− l i s t o f sub−elements −−>

<elements>

<!−− d e s c r i p t i o n o f a sub element −−>

<element>
<!−− i n t e r n a l nam of sub element used f o r d e f i n i n g b ind ings −−>

<name>stub</name>
<class >generated . A00001 . LocalStub</class >

</element>
<!−− . . . −−>

</elements>

<!−− d e s c r i p t i o n o f b ind ings −−>

<bindings>

<binding>

<from>

<element>t h i s </element>
<por t>c a l l </ por t>

</ from>

<to>

<element>l ogger </element>
<por t>i n </ por t>

</ to>

</ b ind ing>

<!−− . . . −−>

</ b ind ings>

</element>

Listing 5.1: an example of element descriptor

5.1.4 Query module

A query module is an important part of the generator. It provides a method how to
retrieve specific information about the input element descriptor. A query is defined
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by a statement enclosed in ${<query-string>}. The part query-string contains
multiple parts separated by dots. Each part of query-string corresponds to a name
of one XML tag and whole string describes a path from the root XML element to
some inner element. The query string part can also include a condition or a count
operator (see below). For example, the statement:

${por t s . po r t . name}

returns names of all described ports.

Evaluation of the query string is performed by the strategy query. It takes
a query string like an input and tries to process it. It uses the element descriptor
stored via the dynamic rule GetXML. Another modification of the query strategy is
query(|xml) which has a term parameter xml and it is used instead of calling the
rule GetXML. The general query strategy takes the first part of query-string, finds
matching XML tag and returns its value. On the result conditions are applied or an
operator is computed. Then the second part is taken and the operation is repeated
with the result of the previous step. Processing of the query stops when all query
parts are utilized. Final result can contains an array of text values or parts of XML
descriptor. If the path described by the query string does not exist in the XML tree
then the strategy fails and it does not modify the current term.

5.1.4.1 Conditions

A query string can also contain simple conditions. It has the form tagname(name=value)
where name is the name of XML tag and value is the string value of the given tag.
The example

${por t s . po r t (name= c a l l ) . s igna tu re }

returns a signature (a name of the interface) of the port with the name call.

5.1.4.2 Count operator

The query module also offers a simple counting operator. This operator is needed
in a situation e.g. when we need to know the number of sub elements. The operator
has the form tagname#count where tagname is a part of the query string and it
counts the number of query results. For example

${elements . element#count}

counts the number of sub elements.



Chapter 6

Template language

We proposed a template language for defining an element implementation. The
language should allow easy specifying connector element implementations and also
it should be simply modifiable to support a new target language or a component
system. The language should also permit a way of accessing an element architecture,
which is considered as external information.

Thus we decided to make the template language as a mixture of two languages -
ElLang language designed by us and a target language of the connector generator. In
the context of this work the Java programming language was chosen. We employed
a MetaBorg method which is provided by Stratego/XT and it offers a way to
simply combine two or more languages (see Section 6.1 Description of MetaBorg
method). The resulting template language is called ElLang-J.

6.1 Description of MetaBorg method

MetaBorg ([29], [28]) is a general method of designing new domain specific lan-
guages. The resulting language is composed of a host language in which another
language is embedded. The embedding process requires a syntax definition for the
host language, a syntax definition for the embedded language and a syntax defini-
tion for the combination of the two languages. A generated parser then uses this
combined syntax definition to parse templates written in the extended language.

Combining two languages is achieved by creating a new SDF module, which
imports both syntax definitions. But only importing does not provide embedding,
because the host language and the embedded language should be strictly separated.
This separation is achieved by renaming all non-terminals by prefixing them with
the name of the language. This renaming is necessary to keep the two languages
strictly separated because e.g. both can provide Id or Stm non-terminal. If these
syntax definitions are just imported directly, then there will be only one Id or Stm

35
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non-terminal. Productions using these non-terminals in one grammar will then refer
to the productions in another language and vice versa. This confusion can way to
unwanted behavior of the resulting parser.

The imported languages are strictly separated from each other since the pro-
ductions of the host language do not refer to non-terminals of the embedded lan-
guage, and vice versa. The embedding is achieved by adding new productions to the
combined syntax definitions which will allow using the embedded language state-
ments or expressions in the place of host language statements or expressions. These
production rules just connect both languages at the desired locations. This embed-
ding is completely user-definable in the SDF module.

The location of the connection between the languages is indicated by spe-
cial constructors. For example, productions which allow the embedded language
statement to be used as the host language statement is marked by the constructor
FromTL. And vice versa productions which allow the host language statement to
stand instead of the embedded language statement uses the constructor ToTL.

An important point of the combined syntax definition is avoiding an ambigu-
ity. But SDF provides a large set of features described in Subsection 3.2.7 Solving
ambiguity which allows solving ambiguous expressions.

An example of the combined syntax definition is shown in Listing 6.1. The host
language is Java in which the meta-language ElLang is embedded. The language
ElLang provides simple meta-statements which allow generating and manipulating
with Java commands.

module ElLang−J

imports
Java−15−Pre f i xed
ElLang−Pre f i xed

exports
sorts

context−f r ee syntax

%% connect ing produc t ion
JavaId −> ElLangVarRef {avoid , cons ( ” IdToTL ” )}
ElLangVarRef −> JavaId {avoid , cons ( ” IdFromTl ” )}

JavaStm −> ElLangStm {avoid , cons ( ” ToTL ” )}
ElLangStm −> JavaStm {avoid , cons ( ” FromTL ” )}

%% ...

%% so lv i ng ambigu i ty
” method ” −> JavaId { r e j e c t }
” template ” −> JavaId { r e j e c t }

p r i o r i t i e s
<JavaStm−CF>−> <ElLangStm−CF>
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> <JavaId−CF>−> <ElLangVarRef−CF>
> <ElLangStm−CF>−> <JavaStm−CF>
> <ElLangVarRef−CF>−> <JavaId−CF>

Listing 6.1: A definition of a combined syntax for two languages

6.2 Proposed template language ElLang-J

6.2.1 ElLang

As we have written above the template language is a mixture of ElLang language
and the target language. ElLang was developed like a meta-language which allows us
to manipulate and modify target language statements. This meta-language provides
simple if, foreach, set, import statements and several more specific statements (like
extension points), which will be described later. ElLang has no expressional power
without embedding it into some language.

6.3 Template description

The template language called ElLang-J consists of target language statements and
ElLang meta-statements. The main part of the template is the element statement
which introduces an element definition. It can be completed by the extends state-
ment with a name of the template which should be extended. The element state-
ment includes interface definitions enclosed in the command interface followed
by an interface name. It can also contain target language statements like variable
declarations or static initializer which will create a part of a generated class. The in-
terface definition can contain methods of the target language or a special statement
method template. The method template includes target language statements as
well as ElLang statements. The method template will be applied on all methods
of the specified interface.

package ${package } ;

import org . . . runt ime . ∗ ;

element {
publ ic ${classname } { / / cons t r uc to r
}

implements in te r face ElementLoca lCl ient {
publ ic void b indE lPor t ( S t r i n g portName , Object t a r g e t ) {

/∗ . . . ∗ /
}

}

implements in te r face ${por t s . po r t (name= l i n e ) . s igna tu re } {
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method template {
/∗ . . . ∗ /

}
}

}

Listing 6.2: An example of a simple template

6.3.1 Meta variables

Meta variables are enclosed in ${name}, where name is the name of a meta-
variable. There are two types of meta-variables. The first type are queries (e.g.
${element.name}) which we have introduced in Subsection 5.1.4 Query module and
the second type are ElLang variables created by set statement. These variables
can have a scalar form (e.g. ${a}) or they can be written as arrays (e.g. ${b[1]}).
Another meta-variable or a literal (integer, string) can stand like an index of an
array. Meta-variables can take the value of a meta-expression or a part of a XML
element descriptor in case of the queries.

6.3.2 Meta expressions

Meta expressions support only + and == operators. As an operand literals (integer,
string) as well as another meta variables can be used. Explicit quotation of meta-
variables with ${...} is not needed inside an expression.

$set ( a = por t s . po r t #count + 1 ) $
$set ( b = por t s . po r t (name= c a l l ) . s igna tu re + ” . java ” ) $

Listing 6.3: An example of meta-expressions

6.3.3 Basic meta statements

ElLang offers several simple meta-statements which are useful for manipulating
with target code.

6.3.3.1 Foreach cycle

Foreach cycle has the form:

” $foreach ( ” Id ” i n ” VarRef ” ) $ ” Stm∗ ” $end$ ” −> Stm { cons ( ” Foreach ” )}

where Id is a name for a cycle meta-variable and VarRef is a meta-variable. The
statements inside the foreach cycle are repeated as many times as is the number of
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values stored in VarRef. The foreach cycle meta-variable with the name represented
by Id obtains one value from the meta-variable VarRef in each loop.

$foreach (REMOTE PORT i n ${por ts . po r t ( type=REMOTE)} ) $
boundedToRemoteRef [ ${ i } ] = nu l l ;
$set r e f [REMOTE PORT. name ] = i $
$set i = i + 1 $

$end$

Listing 6.4: An example of the foreach statement

6.3.3.2 Recursive foreach cycle

A recursive foreach cycle is an analogy of the foreach cycle shown above. It should
be used in situations when we need to generate special target language constructs
and normal foreach cycle cannot be used because of grammar restrictions. Recursive
foreach cycle is defined:

” $ r fo reach ( ” Id ” i n ” VarRef ” ) $ ” RecStm∗ ” $ f i n a l $ ” Stm∗ ” $end$ ” −> Stm { cons ( ” RForeach ” )}

where Id, VarRef has the same meaning like above. In the contrast to the normal
foreach cycle, this recursive variant has two sections of statements separated by
keyword $final$ - the first one contains loop statements and the second one is a
final section. Statements from this section will finish the foreach statement. The
first section RecStm* is a list of statements which should contains special meta-
statement $recpoint$. It has a special importance because it defines a location of
the recursion.

The recursive foreach works as follows - if VarRef has no value (e.g. it is
empty list of XML elements) then only statements Stm* from the final section are
generated. Otherwise meta-variable with the name Id is set to the first value of the
meta-variable VarRef and statements RecStm* are generated and all meta-variables
with the name Id are evaluated. If meta-variable VarRef contains more values then
the first is taken and it creates a new value of the meta-variable with the name
Id. Then $recpoint$ statement is found inside previous generated statements and
its location is substituted with statements RecStm*. If the meta-variable VarRef
contains no more values then $recpoint$ statement is substituted with statements
Stm* from the final section.

$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
i f ( ” ${PORT. name} ” . equals ( portName ) ) {

/∗ . . . ∗ /
} else $recpo in t$
$ f i n a l $
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” +portName+ ” ’ . ” ) ;

$end$

Listing 6.5: An example of the recursive foreach statement
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6.3.3.3 Condition statement

A condition statement is used for making branches in a code execution. The form
of the if statement is simple:

” $ i f ( ” Expr ” ) $ ” Stm∗ ” $end$ ” −> Stm {pre fe r , cons ( ” IF ” )}
” $ i f ( ” Expr ” ) $ ” Stm∗ ” $else$ ” Stm∗ ” $end$ ” −> Stm { cons ( ” IF ” )}

The main branch of if statement is generate only if Expr is not equal to 0 otherwise
the else branch (if exists) is generated.

$ i f ( BINDING . from . element . name ! = ” t h i s ” ) $
$ i f ( BINDING . to . element . name ! = ” t h i s ” ) $

( ( E lementLoca lCl ient ) subElements [ ${ e l [ BINDING . to . element . name ] } ] )
. b indE lPor t ( ” ${BINDING . to . po r t } ” ,

( ( ElementLocalServer ) subElements [ ${ e l [ BINDING . from . element . name ] } ] )
. lookupElPor t ( ” ${BINDING . from . po r t } ” ) ;

$end$
$end$

Listing 6.6: An example of the if statement

6.3.3.4 Set statement

Set statement serves for creating meta variables and changing their values.

” $set ” VarRefPart ” = ” Expr ” $ ” −> Stm { cons ( ” Set ” )}

The scope of created variable is not restricted and it is accessible anywhere in a
template code.

$set i = 0 $
$foreach (ELEMENT i n ${elements . element } ) $

subElements [ ${ i } ] = new ${ELEMENT . class } ( ) ;
/∗ remember ELEMENT index i n ar ray ∗ /
$set e l [ELEMENT . name ] = i $
$set i = i + 1 $

$end$

Listing 6.7: An example of the set statement

6.3.3.5 Import statement

The import statement can be used for importing parts of template code. Interface
definitions and template methods are allowed to be imported.

$import ( ” t e s t s / s imple / template par t method . e l l ang ” ) $

Listing 6.8: An example of import statement
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6.3.4 Template hierarchy

Templates for elements can create a hierarchy structure. Each template can extend
another template but cycles are not allowed. This hierarchy structure permits simple
inheritance where ascendant element definition is extended by a descendant element
definition. The solving of method collisions depends on a template designer.

Figure 6.1: An example of template hierarchy

6.3.5 Template extension points

The proposed template language provides a concept of extension points. An ex-
tension point is definable location inside the code of the template which can
be modified in a descendant templates. A simple extension point is defined by
the meta-statement $extPoint(name)$ but it can also bound several statements
$extPoint(name)$ ... $end$.

In the descendant template a defined extension point can be modified by the
statement $defExtPoint(name)$ ... $end$. The statements inside the definition
substitute extension point with the name name as well as all statements bounded by
that extension point.

6.3.6 Method templates

Selected types of connector elements just need to modify or register a call between
two ports. An example of such situation is a simple log element. It has two ports
- provided in and required out. It just generates a log entry when the call on the
port in is emitted and then delegates the call to a port bounded to out port.

The method template is a part of an interface definition. The template is ap-
plied to all methods of the interface. It begins with reserved words method template
followed by a Java block. Inside this statement special meta-variables with a name
starting method. can be used. They refer to properties of a general method like
a name, a return value, method parameters, . . . During evaluation of the template
they are filled with concrete values.

• ${method.name} - the name of the method.
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• ${method.returnVar} - the name of the return variable if the method has a
return type.

• ${method.declareReturnValue} - declare a new return variable if the method
has a return type.

• ${method.returnStm} - generates a return statement if the method has a
return type.

• ${method.variables} - contains list of method parameters.

The example Listing 6.9 Method templates shows a typical use case of the
method template, which adapts method call to a new interface.

implements in te r face por ts . po r t (name= i n ) {
method template {

/ / dec lare r e t u r n v a r i a b l e i f i t i s needed
${method . declareReturnValue}
/ / dec lare new v a r i a b l e s which w i l l p a r t i c i p a t e i n a method c a l l
S t r i n g preVar ;
S t r i n g postVar ;

/∗ f i l l preVar , postVar v a r i a b l e i n according to a s ta t e o f the element ∗ /

System . out . p r i n t l n ( ” The method \ ” ${method . name}\ ” was c a l l e d . ” ) ;

$ i f ( method . re tu rnVar ) $
${method . re tu rnVar } = th i s . t a r g e t . ${method . name} ( preVar , ${method . v a r i a b l e s } , postVar ) ;

$else$
th i s . t a r g e t . ${method . name} ( preVar , ${method . v a r i a b l e s } , postVar ) ;

$end$

/ / generates r e t u r n statemene i f i t i s needed
${method . returnStm}

}
}

Listing 6.9: An example of method template declaration

6.4 Template evaluation

The template evaluation process consists of several steps assembled into a template
evaluation module (the structure of the module is shown by Figure 6.2). Each step
is implemented by a Stratego module providing a transformation of a selected
part of the template or an assimilation of one or more meta-statements.

Figure 6.2 is showing individual tasks of the template evaluation. The first step
is processing of the extends command which is done by the strategy process-extends.
The program looks for the template, which name stands after extends command.
The name of the extended template is considered as a path on the file system; thus it
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can be absolute or relative to the actual directory. Founded template is parsed and
its body is appended to the current template body. The evaluation process checks
cyclic dependencies and if it finds a cycle the evaluation fails. But it does not care
after overlapping parts (e.g. method with the same signature) of templates bodies.
It lets a solution of this situation on a template developer.

The output is utilized by the strategy process-import. It expands the import
meta-statement into the content of an imported file. The file is parsed by the strat-
egy parse-ElLang-J, which uses the standard sglri tool and ElLang-J grammar
definition stored in the file ElLang-J.tbl (the file should be accessible by the con-
nector element generator). The imported file can contain only an interface definition,
a Java method or a method template definition. This behavior is achieved by ex-
porting multiple starting symbols in the grammar definition of ElLang-J language.

Now collecting information about the template is finished and it has to be pre-
pared for the process of meta-statements evaluation. Preparation of the template
is based on rewriting meta-statements to a unified form. For example, the meta-
statement if can have to forms of notation. One is a simple if without else branch
represented by the term IF(condition, statement*) and another one is if-else
which has the term notation IF(condition, statement*, else-statement*). If
we permit both term representations of if meta-statement we have to write two
different evaluation rules. Hence rewriting the meta-statements into an unified
form is advantageous. In the case of the if example the unified form of the term
IF(condition, statement*) is IF(condition, statement*, []). The strategy
prepare-template looks after a process of terms unification and it unifies the term
representation of meta-statements if, set and extPoint.

After this stage the strategy process-defextpoint is called. It finds all
$extPoint(name)$ statements and substitutes them with statements declared in
the corresponding $defExtPoint(name)$

After this step the template is in a normal form and assimilation of meta-
variables and meta-statements can start. The first task is the evaluation of queries
which refer to the input descriptor of a connector element. This process is imple-
mented by the strategy query described in Subsection 5.1.4 Query module.

Next stage provides assimilation of meta-statements. This process is little bit
more complex because it has to also include evaluation of meta-variables created by
the set statement:

/ / main eva lua t i on s t r a teg y
eva lua t i on = /∗ . . . ∗ /

; a l l t d ( eval−s t a t s )
; /∗ . . . ∗ /

/ / eva luate re fe renc ies to the i n pu t element d e s c r i p t o r
eval−v a r r e f = IdFromTL ( innermost ( EvalVarRef ) )
/ / eva luate meta−statements and meta−v a r i a b l e s
eval−s t a t s = eval−v a r r e f <+ eval−s t a t
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/ / eva luate meta−statements
eval−s t a t = process−foreach <+ process−rforeach <+ process− i f <+ process−set

The strategy eval-stats processes all meta-statements with help of the traversal
strategy alltd. Using of the traversal strategy evokes evaluation of statements in
the order which they were declared. The order is important for evaluation because
the strategy has to figure out values of meta-variables and then propagates these
values to following meta-statements. On the other hand some meta-statements can
contain expressions. The evaluation strategy of these statements has to evaluate
all meta-variables included in the expression, then it has to simplify the expression
(evaluating of operators) and figures out its value. For this operation the best-fit
strategy is bottom-up traversal. For example, the foreach meta-statement has to
in each loop generates its body and evaluates it in according to the actual value of
the cycle variable:

process−foreach = ?Foreach (FVAR, INVAR , BODY) ;
i f <?[ | ] > INVAR then

<map( unfo ld−foreach ( |FVAR, BODY)) > INVAR
else i f <?[] > INVAR then

! Empty / / generates Empty statement
else

<map( unfo ld−foreach ( |FVAR, BODY) ) > [ INVAR ]
end

end
; a l l t d ( eval−s t a t s )

unfo ld−foreach ( |FVAR, BODY) = /∗ . . . ∗ /
; ! BODY
; bottomup ( t r y ( evaluate−v a r r e f ( | var iableXmlValue ) ) ) / / eva lua t i on o f expr .
; /∗ . . . ∗ /

The eval-stats combines all these operations as well as it includes assimila-
tion of basic meta-statements (if, foreach, rforeach, set).

Figure 6.2: Template evaluation module

6.5 Generating target code



Chapter 7

Evaluation

7.1 Eligibility of StrategoXT

One of main objectives of this work is testing suitability of Stratego/XT toolkit
for generation of software connectors. From a high level view Stratego/XT is a
term rewriting system which parses an input language into terms, then runs trans-
formations over terms and finally translates terms into an output language. Each
stage of this process operates over a set of terms, which are the main representation
of data in Stratego/XT. They hold a tree structure of an input program and
allow us to modify parts of tree simply. This concept has been advantageous for
our purposes because it allows separating implementation into relatively indepen-
dent parts. But this separation is not absolute - the part, which is common for all
three stages, is SDF (syntax definition formalism - see Section 3.2 Syntax Definition
Formalism SDF) used for defining a grammar of an input language. The sharing
of the grammar definition brings easy way of propagating changes in the grammar
into the others modules of the code generator.

From our point of view usage of the Stratego/XT system have seemed as
the best choice for transforming a low-level connector configuration into target code.

The parsing capability of Stratego/XT, which is based on SDF (syntax def-
inition formalism - see Section 3.2 Syntax Definition Formalism SDF), fully satisfies
our expectations. SDF offers a simple and fast method of defining a grammar of an
input language. The great advantage of SDF, which help us, is that it imposes no
restriction on the grammar. It allows several derivations for one input string, but
on the other hand it offers a simple way of disambiguation, which makes writing
language grammars really comfortable. Stratego/XT also supports automatic
generation of parsers from a grammar described in SDF. The produced parser is an
executable file, which takes like an input a file and produces terms. This automatic
process is provided by Stratego/XT in the form of makefiles.

Terms representing a tree structure of the input sentence are playing the key
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role in the next stage, where transformation strategies are applied on them. The
strategies are described by the Stratego language, which provides a large set
of commands modifying and transforming an abstract syntax tree represented by
terms. The resulting Stratego program is compiled into executable form and
can be used with a parser. Here we encountered a problem with long-time com-
pilation of Stratego programs. The used compiler (Stratego/XT 0.16) does
not use separated build units, but it compiles all Stratego code every time when
the compilation is requested. This problem does not affect the code generator it-
self, because for defining a new connector element implementation, a developer just
needs to write an element template (i.e. no code in the Stratego programming
language). But it made development of Stratego/XT code generator slower and
uncomfortable. The Stratego group plans to remove this disadvantage in a future
version of Stratego/XT toolkit.

When all transformations are passed the final stage starts. It is called in
order to rewrite terms into human readable format. This step is controlled by
rules defined by pretty print tables. This definition is again derived from language
grammar described in SDF. In this stage we reuse the existing pretty printer, which
produces Java source code from terms. This reuse is typical for the Stratego/XT
toolkit, because it includes a lot of already written programs (pretty printers for
Java, C, SDF) and grammars definition (Java 1.4, Java 5, C, SDF, Stratego).

The prototype implementation does not use a great Stratego language fea-
ture called a concrete syntax. It allows using an input language while writing trans-
formation strategies instead of using term notation. This behavior simplifies compos-
ing strategies and makes source code more readable, but it carries writing additional
definitions of a concrete syntax. But in the context of our work we have not needed
so powerful tool and we have rather focused on a transformation process itself.

The main disadvantage of the Stratego/XT system, which we have met
during writing the prototype implementation of the generator, is its C implemen-
tation. All tools inside Stratego/XT package communicate via shell pipes, but
when we need to connect them with a program implemented in Java, it carries im-
plementation of a bridge (JNI call or executing an external process). This feature
handicaps Stratego/XT from a view of Java developers.

The Stratego/XT engine is not also suitable for manipulation with system
resources. Although, it implements a large set of system calls in the form of strategies
(e.g. creating a file, writing to a file, reading directory content), usage of them is
rigid and uncomfortable.

An indisputable advantage of Stratego/XT is that it is the active project
without critical bugs, which has stable research and development background at
Utrecht University in Netherlands.
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7.2 Eligibility of ElLang-J

The language ElLang-J which has been proposed in this thesis, is a mixture of
the Java programming language and the ElLang meta-language. It provides a
comprehensive way of defining connector elements. It is used as a replacement of
templates and generator classes in the previous solution [33]. The original template
language was based on the Java language which was extended with meta-tags en-
closed in % characters. These meta-tags were expanded by a specified generator
class. It generates except simple names (like a class name, a package name) also
bundles of source code. On the one hand this concept offers a way of evaluating
arbitrary templates, but on the other hand it knows nothing about the grammar of
a template language and it cannot check if the template is well written or not. And
also dividing the template definition into a text template and its expanding class
carries a lot of problems for connector element designers.

Therefore the newly designed template language tries to remove disadvan-
tages of the existing generator and unifies a place, where a template is defined.
The language itself provides a set of meta-statements, which can access an input
connector element descriptor and control generation of output source code. These
statements move the logic of template evaluation from a Java class into a template
itself. Except common statements (if, set, import) the solution introduces a spe-
cial meta-statements like joint-points or recursive foreach (see Chapter 6 Template
language). These statements reflect special demands of element implementations,
which were discovered during developing of the prototype. We have demonstrated
the expressiveness of ElLang-J by rewriting all existing connector element defini-
tions into a new format using ElLang-J. The comparison of the previous element
definition and proposed template language is shown in appendix.



Chapter 8

Related work

The connector element generator presented by this thesis constitutes a comprehen-
sive solution of connector generation.

However, there are several existing approaches of connector generation. One
representative named OpenWings was mentioned in Chapter 1 Introduction and
motivation. Generation system Unicon [42] is another project concerned in gen-
eration of connectors. It is an architectural description language for creating con-
nectors. From the UniCon point of view the connector does not correspond to a
separate compilation unit, but rather to a system call, linker instructions or other
type of glue code. Because a connector mediates a connection between components,
it is described by a protocol. The protocol itself consists of a connector type and list
of roles (i.e. points through which a connector communicates with a component).
UniCon tries to identify known types of connectors in accordance with a communi-
cation style (e.g. data flow - pipe, procedure call, data sharing - blackboard, . . . ).
The connector type is the main abstraction in UniCon, because it denotes connector
roles and component players (i.e. communication points of a component) which can
cooperate together. Each connector is realized by an expert, which contains knowl-
edge required to build a connector. It includes C source code fragments, templates,
build scripts and semantics rules, which are checked before connector construction.
The concept of UniCon system is really close to the generator [33] used in this work.
But in UniCon there is no way how to easily define a new type of the connector. A
new type has to be provided as an external module of the Unicon framework.

Nevertheless all these systems provide a solution of the connector generation
problem they do not cover a complexity of the problem and they are not actively
supported. Therefore only building a connector generator from scratch with help of
the experiences from existing systems appears as the right way.

Connector generation is a wide subject which is influenced by many technolo-
gies and ideas. Thus the following sections introduce topics which are partially
related to our work.
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8.1 Methods of program synthesis

The code generator implemented in Stratego takes like an input an abstract
descriptor of a connector element. The description is transformed into source code
with help of templates. The idea of a program synthesis from an abstract description
is not new and it helps reduce development time, errors and maintenance.

One representative is AutoBayes [37] - a fully automatic high level generator
system developed in NASA which produces data analysis programs from statistical
models. The model specifies statistical properties, their conditions and probabilities.
From this description, AutoBayes generates optimized and commented1 C++ code
which can be then used in Matlab or Octave programs. A generation process is
guided by a general algorithm schemes which include program fragments with open
slots and constraints checked against a statistical model during code generation.
The open slots are filled in according to the input model and described schema
constraints. The generator can be easily extended with new control schema without
modifying the kernel of the system. AutoBayes code generation system is completely
implemented in SWI Prolog.

Another program synthesis tool is AutoFilter [44] as well implemented by
Robust Software Engineering group at NASA Ames. It deals with generation of
programs that solves estimation problems (e.g. computing an approximate attitude
or a velocity vector) with special methods called generally Kalman filters. Given
high-level model of a problem described in a form of linear or differential equations
is automatically transformed into C/C++ (or Modula II) code, which can compute
estimations in according to the described model. The code generation is also schema
based, where a schema is a generic representation of a well-known algorithm which
solves an input problem. The algorithm is described by a simple template program-
ming language. An advantage of the generation system is pluggable support modules
that produce target code.

Both systems mentioned above represents an idea of program synthesis from
a high level description, which is close to our system. They contain well-designed
part of target code generation that supports pluggable modules. On the other hand,
each of them implements a solution of a domain specific problem that cannot be
adapted to general connector generation.

Another approach of synthesizing programs is reuse existing code fragments
and build them together in accordance with a high-level description. The solution
proposed by the thesis is based on this idea of program constructing. It adapts
code templates for different elements and brings them together. Our solution is
not generic and is close to connector element generation. However, the general
applications of this principle exist:

1The comments are reused in correctness proving of generated code.
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Feature oriented programming is a paradigm for applications synthesis, analy-
sis and optimization. The main idea of FOP is to build programs (and also classes)
incrementally by composing features. Features are shown as basic building blocks
of applications (which are interested for stakeholders) and feature characteristics
are used to distinguishing programs within a family of related programs. These
families are called software product lines [27]. The model of a product line archi-
tecture has three basic ideas - (a) identifying the similar set of features in a family
of applications, (b) implementing each feature in one or more ways and (c) defining
specific applications of product lines by the set of features that it supports and their
implementations. This concept permits the feature to refine others features.

There are several implementation of feature refinements - one of them is
AHEAD (Algebraic Hierarchical Equations for Application Design) [26] which is
based on step-wise refinement. This system considers the feature as the primary
unit of software modularity. The feature is not only source code (e.g. class), but
also another hierarchical program representation (e.g. makefile, documentation,
UML model, . . . ). From AHEAD theoretical view features are algebra operators
and programs can be created by composition of such operators.

The idea of composing features is related to building connector from elements.
Each feature would be associated with some type of element (e.g. log element has
logging feature) and the whole connector would be built as a product line of specified
elements. But currently FOP is only academic concept which is not widely accepted.

Aspect oriented programming [39] is a method which helps programmers to
separate concerns. The AOP is primary focused on cross-cutting concerns. These
concerns appears across many modules in a program (typical example is logging
which is tangled and scattered in code). This is the contrast [25] with FOP which
separates program features which are composing the resulting application. With
AOP programmers instead of implementing functionality into an object they write
a point-cut which weaves the aspects into objects. Hence objects can contain the
basic logic which are not tangled with uninteresting code.

AOP identifies well-defined points in program flow (e.g. method execution,
method call, field get, . . . ), which are called joint-points. Execution at a joint-point
can be modified by an aspect. The aspect encapsulates information which joint-
points affects it and how. Thus it introduces point-cut - a set of join-points in
which the given aspect is interested. And in addition the aspect has to specify what
happens at the join-points. The piece of the code which is executed at the specified
point-cut is called advice. This code can access variables which are visible at given
point-cut (e.g. class variables).

The leading Java implementation of this paradigm is AspectJ [5]. It provides
all features of AOP described above. Although AOP is currently widely used even in
a commercial environment, it is not really usable for connector element generation
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based on the concept of the existing generator [33]. This is because AOP just affects
predefined parts of code, but we need to adapt and modify whole element template
as a solid unit.

8.2 Transformation languages

The proposed generator transforms a template into a target programming language
with help of the Stratego language. Transformations are implemented by term
rewriting strategies, but it is not only sole approach, which can be chosen.

One favorite method of a transformation is using extensible stylesheet lan-
guage transformation (XSLT [9]) It belongs among XML-based languages used for
the transformation of XML documents. It is most often used for converting XML
documents into web pages or pdf documents but it can be also used for code genera-
tion. An input XML document serves as an input template which is processed by a
XSLT processor. The processor is driven by a XSLT stylesheet file which describes
transformation over the input document (represented as XML tree). Because an
input template is in a XML language we do not need to define a grammar of the
template. The main disadvantage of this approach is not-well readable language for
defining template transformations (because it is based on XML) and also the limited
access to system resources for XSLT processor.

Special group of transformation languages is composed of template languages.
They provide a set of meta-commands which control generation of output code (e.g.
HTML, XML, RTF). These languages are often designed for a general purpose, but
favorite target domain, where they are used, is generation of web pages. The most
known are Velocity [19] or FreeMarker [11], which offer accessing Java variables
from a simple template language. Next representative is JET project, which tem-
plate language is Java based and is similar to proposed language in this thesis. Java
Emitter Templates (JET) [6] is a part of Eclipse Modelling Framework. It realizes
implementation of code generation from an abstract model. The syntax of JET
templates is based on JSP (Java Server Pages). Hence the template provides Java
based meta language to access Java variables. Variables can be passed into the tem-
plate via a template expander class and they can be easy used inside template code.
The template itself is translated into a Java class during the evaluation stage. The
class has a method generate which produces a result string (containing evaluated
template). The advantage of this approach is easy learning template language based
on Java. But the main problem of the JET and generally of all template engines
is the grammar of the template. The engines do not know the target language,
so they cannot define a complete grammar of a template language (they can only
define the grammar of a meta-language). This is the main difference between our
solution and the general template engines, because the proposed template language
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has the grammar based on the grammar of the target language (Java) and the meta-
language (ElLang). Thus all syntax errors in a template can be found during parsing
stage, which makes writing templates more comfortable and error proof.

8.3 Term rewriting systems and grammar tools

The core of the proposed connector generator is a transformation system based on
the Stratego language. Stratego is a member of a wide group composed of term-
rewriting systems. It transforms terms with respect to a set of rewriting strategies.
The closest systems to Stratego are the ELAN [7] system developed at LORIA
centre, ASF+SDF [1] or the Maude system [15]. In comparison with Stratego, these
tools are not so powerful and do not provide so wide set of supporting tools and
grammar definitions. They are not also under so active research and development
as Stratego.

For program transformations the grammar of an input language has to be
specified. Chosen tool in this work was SDF (Syntax Definition Formalism) from
Stratego/XT package, because it has several advantages in comparison with so-
lutions based on javacc or on a combination of lex and bison. The grammar defined
via SDF can be modularized into separate files, which allows re-use of parts of other
grammar definitions. The defined grammar can be directly used for generation a
language parser and further the same definition can be reused in the Stratego
transformation language. The modularized structure of a grammar allows defining
mixed grammars composed of already written grammars (e.g combination of meta-
language ElLang and Java is resulting into ElLang-J ). In contrast to lex+bison,
which allow only class of LALR(1) grammars, SDF imposes no restrictions on the
grammar. In SDF all derivations are produced and no implicit disambiguation will
apply. Thus SDF provides a set of features (see Subsection 3.2.7 Solving ambiguity)
which helps solving ambiguities and makes writing grammar definitions comfortable.



Chapter 9

Conclusion and future work

9.1 Summary of work

The main goal of this master thesis was an improvement of the existing connector
generator ([33]) with the Stratego language. We have focused on a definition of a
connector element implementation and we attempted to make writing the definition
easier and more user friendly. We have presented an implementation of a connector
generator, which offers templates for defining a connector element implementation.
The template definition is based on a domain specific language ElLang-J which is
a mixture of the Java language and our meta-language ElLang.

The ElLang is the core language which give us the way to access an input con-
nector element description stored in XML format. It also contains meta-statements
which manipulate with a target code and directly affect generated code. The lan-
guage also allows simple inheritance among connector elements where child element
inherits all code of the parent element implementation and it can modify specified
parts of code. Another method how to modify parent element code is the principle
of joint-points. The parent connector element implementation specifies such joint-
points in the program execution. Then the child element can add new target code
at the specified joint-points. These features give us a way of code reuse and they
simplify an element implementation.

With this language we achieve separation of a connector element implementa-
tion from the connector generator.

The inner structure of the element transformer was designed in a way which
allows us adding a new target language by specifying its mixture grammar and
writing several Stratego language statements transforming an intermediate source
code format into target code.

The main objective of the thesis was also testing an eligibility of Strat-
ego/XT toolkit for generating target code of a connector element and making
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transformation above it. Stratego/XT seems to be suitable for this objectives,
because it provides simple a way to parse, transform and generate source code. It
allows defining domain specific languages and their parsers. Transforming itself is
based on strategies which allow step-by-step code modification.

As the problematic part of using the Stratego/XT toolkit we have detected
its C-based implementation. Stratego/XT generates parsers and transformers
in C code and compile it into an executable format. This carries demand for their
recompilation on different target platforms and includes an overload due to necessity
to over bridge Java and C implementations.

9.2 Prototype implementation

This thesis is supplemented by a prototype implementation of the connector element
generator based on the Stratego/XT package. The solution extends already im-
plemented connector generator [33]. Our generator also re-implements all connector
element templates from the previous generation system. Thus it is at least powerful
as the existing one.

We have included the described connector element generator to the latest ver-
sion of the existing generator. The actual version of this implementation can be
found at http://aiya.ms.mff.cuni.cz/~bures/congen/websvn/.

9.3 Future work

One of the future tasks is making the generation of connector elements faster. Cur-
rent solution generates Java code, which is subsequently compiled by a Java language
compiler (javac). The slowest part of the connector generation process is the com-
pilation of Java code. Hence it seems advantageous to precompile templates into
Java bytecode and then realize transformations of bytecode. With this approach
we will be able to omit the Java code compilation stage and speed up generation of
connectors.

The part which also needs improvement is the Stratego compiler. As we have
mentioned in Section 7.1 Eligibility of StrategoXT the compiler of the Stratego
language does not use separate compilation units and it compiles whole code every
time.

The thesis has proposed the template language ElLang-J, which is a mixture
of Java and the ElLang language. It is transformed into Java code, but in situations
when we want to connect e.g. C++ components we would like to prefer generating
C++ code. Thus implementing ElLang-C++ or ElLang-C# clone of ElLang-
J could be an interesting future task.

http://aiya.ms.mff.cuni.cz/~bures/congen/websvn/
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Appendix A

Examples of source code

A.1 Template from previous connector generator

The previous version of the connector generator [33] divides a definition of connector
implementation into two parts - a text file, which represents a static part of a
template, and a Java class representing a dynamic part. This example shows a
static part of a default template for a composite element. In comparison with a
template presented in Section A.3 it seems much more simple but in fact its logic
is hidden into a Java class (see Listing A.4 Generated code), which expands tags
quoted in % and generates the rest of code.

package %PACKAGE%;

publ ic class %CLASS% implements
org . objectweb . dsrg . connector . ElementLocalServer ,
org . objectweb . dsrg . connector . E lementLocalCl ient ,
org . objectweb . dsrg . connector . ElementRemoteServer ,
org . objectweb . dsrg . connector . ElementRemoteClient {

protected org . objectweb . dsrg . connector . Element [ ] subElements ;

protected org . objectweb . dsrg . connector . RemoteRefBundle [ ] boundedToRemoteRef ;

publ ic %CLASS%() {
}

%INIT METHODS%

}

As we have mentioned above the previous version of the generator uses a Java class
for evaluation of a text template:

/∗∗
∗ Source code generator f o r composite elements .
∗ /

publ ic class CompositeGenerator extends BaseGenerator {

/∗∗
∗ Runtime package p r e f i x .
∗ /

pr iva te s t a t i c f i n a l S t r i n g RUNTIME PACKAGE =
” org . objectweb . dsrg . connector ” ;

/∗∗
∗ Map cap tu r ing the assignment o f element ins tances to i nd i ces i n the ar ray

59



A.1 Template from previous connector generator 60

∗ of element ins tances .
∗ /

protected Map <ResolvedElementInstance , S t r ing > elementInstMap ;

/∗∗
∗ Map cap tu r ing the assignment o f remote po r t names to ind i ces i n the ar ray
∗ of remote po r t t a r g e t re ferences .
∗ /

protected Map <St r ing , S t r ing > remotePortMap ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ CONSTRUCTORS
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

/∗∗
∗ Creates a new <code>CompositeGenerator</code> i ns tance given an
∗<code>ElementGenerator</code>.
∗
∗ @param elemgen
∗ /

publ ic CompositeGenerator ( ElementGenerator elemgen ) {
super ( elemgen ) ;

elementInstMap = new HashMap <ResolvedElementInstance , S t r ing > ( ) ;
remotePortMap = new HashMap <St r ing , S t r ing > ( ) ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ J Imp lGenera to r In te r face
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

/∗∗
∗ I n i t i a l i z e s the element ins tance and remote po r t maps and c a l l s the
∗<code>generate () </ code> method of the superc lass .
∗ /

publ ic synchronized void generate (
throws Act ionExcept ion {

/∗
∗ Create a map of element ins tances f o r which the element ins tance name
∗ i s the key and the index i n the ar ray o f element ins tances i s the
∗ value .
∗ /

elementInstMap . c l e a r ( ) ;

i n t instanceNo = 0 ;
fo r ( ResolvedElementInstance ins tance : ad . r e i . subElementInst ) {

elementInstMap . put ( instance , I n tege r . t o S t r i n g ( instanceNo ) ) ;
instanceNo ++;

}

/∗
∗ Create a map of remote por t s f o r which the remote po r t name i s the
∗ key and the index i n the ar ray o f remote po r t t a r g e t re ferences i s
∗ the value .
∗ /

remotePortMap . c l e a r ( ) ;

i n t portNo = 0 ;
fo r ( ResolvedElementPort po r t : ad . r e i . po r t ) {

i f ( po r t . po r t . type == PortType .REMOTE) {
remotePortMap . put ( po r t . po r t . portName , In tege r . t o S t r i n g ( portNo ) ) ;
portNo ++;

}
}

/∗
∗ F i n a l l y , propagate the c a l l to the superc lass .
∗ /

super . generate ( ed , ad , parameters , pd ) ;
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Conten tP rov ide r In te r face
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

/∗∗
∗ Provides content f o r generat ion o f Java implementat ion o f a composite
∗ connector element . Recognizes the f o l l o w i n g content i d e n t i f i e r s :
∗
∗<dl>
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∗ <dt>COMPOSITEL METHODS<dd>
∗ Provides Java code of composite element implemenation
∗ methods: <code>i n i t i a l i z e A r c h i t e c t u r e () </ code>.
∗ <dt>ELEMENT METHODS<dd>
∗ Provides Java code of Element i n t e r f a c e methods :
∗ <code>ge tE lDesc r i p t i on () </ code>.
∗ <dt>LOCALSERVER METHODS<dd>
∗ Provides Java implementat ion o f ElementLocalServer i n t e r f a c e
∗ methods: <code>l ookupElPor t () </ code>.
∗ <dt>LOCALCLIENT METHODS<dd>
∗ Provides Java implementat ion o f E lementLoca lCl ient i n t e r f a c e
∗ methods: <code>b indE lPor t () </ code> , and <code>unbindElPor t () </ code>.
∗ <dt>REMOTESERVER METHODS<dd>
∗ Provides Java implementat ion o f ElementRemoteServer i n t e r f a c e
∗ methods: <code>lookupElRemotePort () </ code>,
∗ <code>l i s tE lRemotePor ts () </ code>.
∗ <dt>REMOTECLIENT METHODS<dd>
∗ Provides Java implementat ion o f ElementRemoteClient i n t e r f a c e
∗ methods: <code>bindElRemotePort () </ code>,
∗ <code>unbindElRemotePort () </ code> , and
∗ <code>getElRemoteTarget () </ code>.
∗ </ d l>
∗ /

publ ic S t r i n g getContent ( S t r i n g i d e n t i f i e r )
throws TemplateProcessingExcept ion {

S t r i n g B u i l d e r output = new S t r i n g B u i l d e r ( ) ;

i f ( ”COMPOSITE METHODS” . equals ( i d e n t i f i e r ) ) {
i m p l e m e n t I n i t i a l i z e A r c h i t e c t u r e ( output ) ;

} else i f ( ”ELEMENT METHODS” . equals ( i d e n t i f i e r ) ) {
implementGetElDescr ip t ion ( output ) ;
/ / implementSetElReconf igurat ionHandler ( output ) ;

} else i f ( ”LOCALSERVER METHODS” . equals ( i d e n t i f i e r ) ) {
implementLookupElPort ( output ) ;

} else i f ( ”LOCALCLIENT METHODS” . equals ( i d e n t i f i e r ) ) {
implementBindElPort ( output ) ;
implementUnbindElPort ( output ) ;

} else i f ( ”REMOTESERVER METHODS” . equals ( i d e n t i f i e r ) ) {
implementLookupElRemotePort ( output ) ;
implementListElRemotePorts ( output ) ;

} else i f ( ”REMOTECLIENT METHODS” . equals ( i d e n t i f i e r ) ) {
implementBindElRemotePort ( output ) ;
implementUnbindElRemotePort ( output ) ;
implementGetElRemoteTarget ( output ) ;

} else i f ( ”RECONFIGURATION METHODS” . equals ( i d e n t i f i e r ) ) {
imp lemen t Inva l i da teE lPor t ( output ) ;
/ / implement Inval idateElRemotePort ( output ) ;

} else {
return super . getContent ( i d e n t i f i e r ) ;

}

return output . t o S t r i n g ( ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Composite Method Generator
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

/∗∗
∗ Provides Java code of the element i n i t i a l i z a t i o n method :
∗<code>i n i t i a l i z e A r c h i t e c t u r e () </ code>.
∗
∗ @throws TemplateProcessingExcept ion
∗ /

protected void i m p l e m e n t I n i t i a l i z e A r c h i t e c t u r e ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p r i v a t e vo id i n i t i a l i z e A r c h i t e c t u r e ( )\n ” +
”\ t\ t ” + ” throws %s . ElementLinkExcept ion {\n\n ” ,
RUNTIME PACKAGE

) ;

/∗
∗ I n i t i a l i z e element ins tance and remote po r t re ference ar rays .
∗ /

r e s u l t . format (
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”\ t\ t ” + ” subElements = new %s . Element [%d ] ;\ n ” ,
RUNTIME PACKAGE, elementInstMap . s ize ( )

) ;
r e s u l t . format (

”\ t\ t ” + ” remoteTargetRefs = new %s . RemoteRefBundle [%d ] ;\ n\n ” ,
RUNTIME PACKAGE, remotePortMap . s ize ( )

) ;

/∗
∗ I n s t a n t i a t e subelements .
∗ /

r e s u l t . format (
”\ t\ t ” + ” / / i n s t a n t i a t e subelements\n ” +
”\ t\ t ” + ” t r y {\n ”

) ;

fo r ( ResolvedElementInstance i n s t : ad . r e i . subElementInst ) {
/∗
∗ Generate the subelement implementat ion and get the package
∗ which conta ins the implementat ion . Add the newly generated
∗ package i n t o run−t ime dependencies o f t h i s element .
∗ /

PackageDescriptor ins tPd ;

t r y {
i ns tPd = elemgen . generate ( new Adapta t ionDescr ip to r ( ad , i n s t ) ) ;

} catch ( ElementGeneratorException e ) {
throw new TemplateProcessingExcept ion ( e ) ;

}

pd . runDependsOnPackage . add ( ins tPd . packageName ) ;

/∗
∗ I n s t a n t i a t e subelements and prov ide them wi th
∗ Reconf igura t ionHandler i n t e r f a c e .
∗ /

S t r i n g implClass = Proper ty . f i n d F i r s t ( ins tPd . execParam , ” implClass ” ) ;
JavaNames implClassJN = new JavaNames ( cam , ins tPd . packageName , implClass ) ;
r e s u l t . format (

”\ t\ t\ t ” + ” / / i n s t %s , type %s , impl %s\n ” +
”\ t\ t\ t ” + ” subElements [%s ] = new %s ( parentUni t , f a l s e ) ;\n ” ,
i n s t . instanceName , i n s t . elementType . typeName , i n s t . elementImplName ,
elementInstMap . get ( i n s t ) , implClassJN . absoluteClassName

) ;
}

r e s u l t . format (
”\n ” +
”\ t\ t ” + ”} catch ( Except ion e) {\n ” +
”\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion ( e ) ;\n ” +
”\ t\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;

/∗
∗ Provide server subelements w i th r e c o n f i g u r a t i o n handler .
∗ /

r e s u l t . format (
”\ t\ t ” + ” / / d i s t r i b u t e r e c o n f i g u r a t i o n handler to server subelements\n ” +
”\ t\ t ” + ” d i s t r i b u t e R e c o n f i g u r a t i o n H a n d l e r ( ) ;\ n ”

) ;

/∗
∗ Bind subelements toge ther . Only do t h i s f o r r e a l b indings , i . e .
∗ b ind ings where both elements are set and the por t s have complementary
∗ types . The other b ind ings serve f o r de lega t ion and subsumption o f
∗ t h i s element po r t s to subelement po r t s .
∗ /

fo r ( ResolvedElementBinding bind : ad . r e i . b ind ing ) {
/ / r e s u l t . format ( ”\ n ” ) ;

i f ( b ind . i sB ind ing ( ) ) {
/∗
∗ Both elements are set , j u s t get the c o r r e c t order f o r
∗ f o r m a t t i n g .
∗ /

ResolvedElementInstance serverElement = bind . getServerElement ( ) ;
S t r i n g serverPortName = bind . getServerPortName ( ) ;
S t r i n g serverElementIndex = elementInstMap . get ( serverElement ) ;
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ResolvedElementInstance c l i en tE lement = bind . getCl ien tE lement ( ) ;
S t r i n g cl ientPortName = bind . getCl ientPortName ( ) ;
S t r i n g c l ien tE lement Index = elementInstMap . get ( c l i en tE lement ) ;

r e s u l t . format (
”\n ” +
”\ t\ t ” + ” / / b ind %s.%s−> %s.%s\n ” +
”\ t\ t ” + ” ((%s . E lementLoca lCl ient ) subElements [%s ] ) . b indE lPor t (\”%s\” ,\n ” +
”\ t\ t\ t ” + ” ((%s . ElementLocalServer ) subElements [%s ] ) . lookupElPor t (\”%s \ ” ) ) ;\ n ” ,
c l i en tE lemen t . instanceName , cl ientPortName ,
serverElement . instanceName , serverPortName ,
RUNTIME PACKAGE, c l ien tE lement Index , cl ientPortName ,
RUNTIME PACKAGE, serverElementIndex , serverPortName

) ;
}

}

/∗
∗ Closing brace . . .
∗ /

r e s u l t . format ( ”\ t}\n\n ” ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Element Method Generator
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

/∗∗
∗ Provides Java code of the element d e s c r i p t i o n method :
∗<code>g e t E l D e s c r i p t i o n I n f o () </ code>.
∗
∗ @throws TemplateProcessingExcept ion
∗ /

protected void implementGetElDescr ip t ion ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format ( ”\ t ” + ” p u b l i c S t r i n g getElement In fo ( S t r i n g inden t ) {\n ” ) ;

/∗
∗ Const ruct the element i n fo rma t i on .
∗ /

r e s u l t . format (
”\ t\ t ” + ” S t r i n g B u i l d e r r e s u l t = new S t r i n g B u i l d e r ( ) ;\ n\n ” +
”\ t\ t ” + ” r e s u l t . append ( inden t +\” Implementat ion : \\\”%s\\\”\\n\ ” ) ;\n ” ,
ad . r e i . elementImplName

) ;

fo r ( ResolvedElementInstance i n s t : ad . r e i . subElementInst ) {
r e s u l t . format (

”\ t\ t ” + ” r e s u l t . append ( inden t +\” Sub−element : \\\”%s\\\”\\n\ ” ) ;\n ” ,
i n s t . instanceName

) ;

r e s u l t . format (
”\ t\ t ” + ” r e s u l t . append ( subElements [%s ] . getElement In fo ( inden t +\ ” \ ” ) ) ;\n ” ,
elementInstMap . get ( i n s t )

) ;
}

r e s u l t . format (
”\n ” +
”\ t\ t ” + ” r e t u r n r e s u l t . t o S t r i n g ( ) ;\ n ”

) ;

/∗
∗ Closing brace . . .
∗ /

r e s u l t . format ( ”\ t ” + ”}\n\n ” ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ElementLocalServer Method Generators
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

protected void implementLookupElPort ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {
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Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l Object lookupElPor t ( S t r i n g portName)\n ” +
”\ t\ t ” + ” throws %s . ElementLinkExcept ion {\n\n ” ,
RUNTIME PACKAGE

) ;

/∗
∗ Lookup a PROVIDED por t o f given name and r e t u r n re ference to i t .
∗ /

r e s u l t . format ( ”\ t\ t ” ) ;
fo r ( ResolvedElementPort prov idedPor t : ad . r e i . po r t ) {

i f ( p rov idedPor t . po r t . type == PortType .PROVIDED) {
r e s u l t . format (

” i f (\”%s\ ” . equals ( portName )) {\n ” ,
prov idedPor t . po r t . portName

) ;

/∗
∗ Find the f i r s t b ind ing desc r ib ing the de lega t ion o f t h i s
∗ element provided po r t to a subelement provided po r t and
∗ delegate the lookup method to the subelement ins tance . The
∗ de lega t ion b ind ing has one of the elements set to n u l l to
∗ s i g n i f y t h i s parent element .
∗ /

fo r ( ResolvedElementBinding bind : ad . r e i . b ind ing ) {
i f ( b ind . i sDe lega t i on ( prov idedPor t . po r t . portName ) ) {

S t r i n g childPortName =
bind . getChildPortName ( ) ;

ResolvedElementInstance ch i ldElement =
bind . getChi ldElement ( ) ;

S t r i n g ch i ldElement Index =
elementInstMap . get ( ch i ldElement ) ;

/∗
∗ Get the re ference from the c h i l d element .
∗ /

r e s u l t . format (
”\ t\ t\ t ” + ” / / i n s t %s , type %s , impl %s\n ” +
”\ t\ t\ t ” + ” Object r e s u l t = ((%s . ElementLocalServer )\n ” +
”\ t\ t\ t\ t ” + ” subElements [%s ] ) . lookupElPor t (\”%s\ ” ) ;\n\n ” ,
ch i ldElement . instanceName , ch i ldElement . elementType . typeName ,

ch i ldElement . elementImplName ,
RUNTIME PACKAGE,
chi ldElement Index , chi ldPortName

) ;

/∗
∗ Regis ter the re ference wi th the DCM i f top−l e v e l
∗ and r e t u r n the r e s u l t .
∗ /

r e s u l t . format (
”\ t\ t\ t ” + ” i f ( isTopLevel ) {\n ” +
”\ t\ t\ t\ t ” + ”dcm . rereg is te rConnec torUn i tReference (\n ” +
”\ t\ t\ t\ t\ t ” + ” parentUni t , portName , r e s u l t ) ;\n ” +
”\ t\ t\ t ” + ”}\n\n ” +
”\ t\ t\ t ” + ” r e t u r n r e s u l t ;\n\n ”

) ;

/∗
∗ For l o c a l por ts , the de lega t ion must be 1 : 1 , so we e x i t
∗ the loop when the f i r s t de lega t ion b ind ing has been
∗ found .
∗ /

break ;
}

}

r e s u l t . format ( ”\ t\ t} else ” ) ;
}

}

/∗
∗ Throw an except ion i f the po r t i s unknown .
∗ /

r e s u l t . format (
”{\n ” +
”\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion (\n ” +
”\ t\ t\ t\ t ” + ” \” I n v a l i d provided po r t ’\ ”+ portName +\ ” ’ .\ ” ) ;\n ” +
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”\ t\ t ” + ”}\n ” +
”\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ElementLoca lCl ient Method Generators
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

protected void implementBindElPort ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l vo id b indE lPor t ( S t r i n g portName , Object t a r g e t )\n ” +
”\ t\ t ” + ” throws %s . ElementLinkExcept ion {\n\n ” ,
RUNTIME PACKAGE

) ;

/∗
∗ Lookup a REQUIRED por t o f given name and bind i t to the t a r g e t
∗ ob jec t .
∗ /

r e s u l t . format ( ”\ t\ t ” ) ;
fo r ( ResolvedElementPort requ i redPor t : ad . r e i . po r t ) {

i f ( requ i redPor t . po r t . type == PortType .REQUIRED) {
r e s u l t . format (

” i f (\”%s\ ” . equals ( portName )) {\n ” ,
requ i redPor t . po r t . portName

) ;

/∗
∗ Find the b ind ing desc r i b ing the subsumption o f a subelement
∗ requ i red po r t to t h i s element requ i red po r t and delegate
∗ the bind method to the subelement ins tance . The subsumption
∗ b ind ing has one of the elements set to n u l l to s i g n i f y ” t h i s ”
∗ parent element .
∗ /

fo r ( ResolvedElementBinding bind : ad . r e i . b ind ing ) {
i f ( b ind . isSubsumption ( requ i redPor t . po r t . portName ) ) {

S t r i n g childPortName =
bind . getChildPortName ( ) ;

ResolvedElementInstance ch i ldElement =
bind . getChi ldElement ( ) ;

S t r i n g ch i ldElement Index =
elementInstMap . get ( ch i ldElement ) ;

r e s u l t . format (
”\ t\ t\ t ” + ” / / i n s t %s , type %s , impl %s\n ” +
”\ t\ t\ t ” + ” ((%s . E lementLoca lCl ient )\n ” +
”\ t\ t\ t\ t ” + ” subElements [%s ] ) . b indE lPor t (\”%s\ ” , t a r g e t ) ;\n ” ,
ch i ldElement . instanceName , ch i ldElement . elementType . typeName ,

ch i ldElement . elementImplName ,
RUNTIME PACKAGE,
chi ldElement Index , chi ldPortName

) ;
}

}

r e s u l t . format (
”\n ” +
”\ t\ t ” + ”} else ” ) ;

}
}

/∗
∗ Throw an except ion i f the po r t i s unknown .
∗ /

r e s u l t . format (
”{\n ” +
”\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion (\n ” +
”\ t\ t\ t\ t ” + ” \” I n v a l i d requ i red po r t ’\ ”+ portName +\ ” ’ .\ ” ) ;\n ” +
”\ t\ t ” + ”}\n ” +
”\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;
}
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protected void implementUnbindElPort ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l vo id unbindElPor t ( S t r i n g portName)\n ” +
”\ t\ t ” + ” throws %s . ElementLinkExcept ion {\n\n ” ,
RUNTIME PACKAGE

) ;

/∗
∗ Lookup a REQUIRED por t o f given name and unbind i t
∗ /

r e s u l t . format ( ”\ t\ t ” ) ;
fo r ( ResolvedElementPort requ i redPor t : ad . r e i . po r t ) {

i f ( requ i redPor t . po r t . type == PortType .REQUIRED) {
r e s u l t . format (

” i f (\”%s\ ” . equals ( portName )) {\n ” ,
requ i redPor t . po r t . portName

) ;

/∗
∗ Find the b ind ing desc r i b ing the subsumption o f a subelement
∗ requ i red po r t to t h i s element requ i red po r t and delegate
∗ the unbind method to the subelement ins tance . The subsumption
∗ b ind ing has one of the elements set to n u l l to s i g n i f y ” t h i s ”
∗ parent element .
∗ /

fo r ( ResolvedElementBinding bind : ad . r e i . b ind ing ) {
i f ( b ind . isSubsumption ( requ i redPor t . po r t . portName ) ) {

S t r i n g childPortName =
bind . getChildPortName ( ) ;

ResolvedElementInstance ch i ldElement =
bind . getChi ldElement ( ) ;

S t r i n g ch i ldElement Index =
elementInstMap . get ( ch i ldElement ) ;

r e s u l t . format (
”\ t\ t\ t ” + ” / / i n s t %s , type %s , impl %s\n ” +
”\ t\ t\ t ” + ” ((%s . E lementLoca lCl ient )\n ” +
”\ t\ t\ t\ t ” + ” subElements [%s ] ) . unb indElPor t (\”%s\ ” ) ;\n ” ,
ch i ldElement . instanceName , ch i ldElement . elementType . typeName ,

ch i ldElement . elementImplName ,
RUNTIME PACKAGE,
chi ldElement Index , chi ldPortName

) ;
}

}

r e s u l t . format (
”\n ” +
”\ t\ t ” + ”} else ” ) ;

}
}

/∗
∗ Throw an except ion i f the po r t i s unknown .
∗ /

r e s u l t . format (
”{\n ” +
”\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion (\n ” +
”\ t\ t\ t\ t ” + ” \” I n v a l i d requ i red po r t ’\ ”+ portName +\ ” ’ .\ ” ) ;\n ” +
”\ t\ t ” + ”}\n ” +
”\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ElementRemoteServer Method Generators
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

protected void implementLookupElRemotePort ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
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∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l %s . RemoteRefBundle lookupElRemotePort (\n ” +
”\ t\ t\ t ” + ” S t r i n g portName)\n ” +
”\ t\ t ” + ” throws %s . ElementLinkExcept ion {\n\n ” ,
RUNTIME PACKAGE, RUNTIME PACKAGE

) ;

/∗
∗ Resul t value .
∗ /

r e s u l t . format (
”\ t\ t ” + ”%s . RemoteRefBundle r e s u l t =\n ” +
”\ t\ t\ t ” + ”new %s . RemoteRefBundle ( ) ;\ n\n ” ,
RUNTIME PACKAGE, RUNTIME PACKAGE

) ;

/∗
∗ Lookup a REMOTE por t o f given name and r e t u r n a bundle o f typed
∗ re ferences to i t .
∗ /

r e s u l t . format ( ”\ t\ t ” ) ;
fo r ( ResolvedElementPort se rve rPor t : ad . r e i . po r t ) {

i f ( se rve rPor t . po r t . type == PortType .REMOTE) {
r e s u l t . format (

” i f (\”%s\ ” . equals ( portName )) {\n ” ,
se rve rPor t . po r t . portName

) ;

/∗
∗ C o l l e c t typed references to a l l subelement remote server
∗ por t s t h i s element remote server po r t delegates to .
∗ /

fo r ( ResolvedElementBinding bind : ad . r e i . b ind ing ) {
i f ( b ind . i sDe lega t i on ( se rve rPor t . po r t . portName ) ) {

S t r i n g childPortName =
bind . getChildPortName ( ) ;

ResolvedElementInstance ch i ldElement =
bind . getChi ldElement ( ) ;

S t r i n g ch i ldElement Index =
elementInstMap . get ( ch i ldElement ) ;

r e s u l t . format (
”\n ” +
”\ t\ t\ t ” + ” / / i n s t %s , type %s , impl %s\n ” +
”\ t\ t\ t ” + ” i f ( subElements [%s ] ins tanceo f %s . ElementRemoteServer ) {\n ” +
”\ t\ t\ t\ t ” + ” / / lookup %s.%s\n ” +
”\ t\ t\ t\ t ” + ” r e s u l t . addRefBundle (\n ” +
”\ t\ t\ t\ t\ t ” + ” ((%s . ElementRemoteServer )\n ” +
”\ t\ t\ t\ t\ t ” + ” subElements [%s ] ) . lookupElRemotePort (\”%s \ ” ) ) ;\ n ” +
”\ t\ t\ t ” + ”}\n ” ,
ch i ldElement . instanceName , ch i ldElement . elementType . typeName ,

ch i ldElement . elementImplName ,
chi ldElement Index , RUNTIME PACKAGE,
ch i ldElement . instanceName , childPortName ,
RUNTIME PACKAGE,
chi ldElement Index , chi ldPortName

) ;
}

}

r e s u l t . format (
”\n ” +
”\ t\ t ” + ”} else ” ) ;

}
}

/∗
∗ Throw an except ion i f the po r t i s unknown , otherwise r e t u r n the
∗ re ference bundle .
∗ /

r e s u l t . format (
”{\n ” +
”\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion (\n ” +
”\ t\ t\ t\ t ” + ” \” I n v a l i d remote server po r t ’\ ”+ portName +\ ” ’ .\ ” ) ;\n ” +
”\ t\ t ” + ”}\n\n ” +
”\ t\ t ” + ” r e t u r n r e s u l t ;\n ” +
”\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;
}
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protected void implementListElRemotePorts ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l S t r i n g [ ] l i s tE lRemotePor ts () {\n ” ) ;

/∗
∗ Create a S t r i n g ar ray w i th names of remote por t s .
∗ /

S t r i n g p r e f i x = ”\ t\ t ” + ” r e t u r n new S t r i n g [ ] {\n ” + ”\ t\ t\ t ” ;
fo r ( ResolvedElementPort remotePort : ad . r e i . po r t ) {

i f ( remotePort . po r t . type == PortType .REMOTE) {
r e s u l t . format (

”%s ” + ”\”%s\” ” , p r e f i x , remotePort . po r t . portName
) ;

p r e f i x = ” , ” ;
}

}

/∗
∗ Close the ar ray cons t ruc to r and method d e c l a r a t i o n .
∗ /

r e s u l t . format (
”\n ” +
”\ t\ t ” + ” };\n ” +
”\ t ” + ”}\n\n ”

) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ElementRemoteClient Method Generators
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

protected void implementBindElRemotePort ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l vo id bindElRemotePort (\n ” +
”\ t\ t\ t ” + ” S t r i n g portName ,\n ” +
”\ t\ t\ t ” + ”%s . RemoteRefBundle refBundle )\n ” +
”\ t\ t ” + ” throws %s . ElementLinkExcept ion {\n\n ” ,
RUNTIME PACKAGE, RUNTIME PACKAGE

) ;

/∗
∗ Lookup a REMOTE c l i e n t po r t o f given name and bind i t to the remote
∗ t a r g e t using a bundle o f re ferences .
∗ /

r e s u l t . format ( ”\ t\ t ” ) ;
fo r ( ResolvedElementPort c l i e n t P o r t : ad . r e i . po r t ) {

i f ( c l i e n t P o r t . po r t . type == PortType .REMOTE) {
r e s u l t . format (

” i f (\”%s\ ” . equals ( portName )) {\n ” ,
c l i e n t P o r t . po r t . portName

) ;

/∗
∗ Push the remote re ference bundle to a l l the elements t h a t
∗ subsume t h e i r remote c l i e n t po r t to t h i s element remote
∗ c l i e n t po r t .
∗ /

fo r ( ResolvedElementBinding bind : ad . r e i . b ind ing ) {
i f ( b ind . isSubsumption ( c l i e n t P o r t . po r t . portName ) ) {

S t r i n g childPortName =
bind . getChildPortName ( ) ;

ResolvedElementInstance ch i ldElement =
bind . getChi ldElement ( ) ;

S t r i n g ch i ldElement Index =
elementInstMap . get ( ch i ldElement ) ;

r e s u l t . format (
”\n ” +
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”\ t\ t\ t ” + ” / / i n s t %s , type %s , impl %s\n ” +
”\ t\ t\ t ” + ” i f ( subElements [%s ] ins tanceo f %s . ElementRemoteClient ) {\n ” +
”\ t\ t\ t\ t ” + ” / / b ind %s.%s\n ” +
”\ t\ t\ t\ t ” + ” ((%s . ElementRemoteClient )\n ” +
”\ t\ t\ t\ t\ t ” + ” subElements [%s ] ) . bindElRemotePort (\”%s\ ” , re fBundle ) ;\n ” +
”\ t\ t\ t ” + ”}\n ” ,
ch i ldElement . instanceName , ch i ldElement . elementType . typeName ,

ch i ldElement . elementImplName ,
chi ldElement Index , RUNTIME PACKAGE,
ch i ldElement . instanceName , childPortName ,
RUNTIME PACKAGE,
chi ldElement Index , chi ldPortName

) ;
}

}

/∗
∗ Keep the remote re ference bundle f o r f u t u r e quer ies .
∗ /

r e s u l t . format (
”\n ” +
”\ t\ t\ t ” + ” remoteTargetRefs [%s ] = refBundle ;\n\n ” +
”\ t\ t ” + ”} else ” ,
remotePortMap . get ( c l i e n t P o r t . po r t . portName )

) ;
}

}

/∗
∗ Throw an except ion i f the po r t i s unknown .
∗ /

r e s u l t . format (
”{\n ” +
”\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion (\n ” +
”\ t\ t\ t\ t ” + ” \” I n v a l i d remote c l i e n t po r t ’\ ”+ portName +\ ” ’ .\ ” ) ;\n ” +
”\ t\ t ” + ”}\n ” +
”\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;
}

protected void implementUnbindElRemotePort ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l vo id unbindElRemotePort ( S t r i n g portName)\n ” +
”\ t\ t ” + ” throws %s . ElementLinkExcept ion {\n\n ” , RUNTIME PACKAGE ) ;

/∗
∗ Lookup a REMOTE c l i e n t po r t o f given name and unbind i t from the
∗ remote t a r g e t using .
∗ /

r e s u l t . format ( ”\ t\ t ” ) ;
fo r ( ResolvedElementPort c l i e n t P o r t : ad . r e i . po r t ) {

i f ( c l i e n t P o r t . po r t . type == PortType .REMOTE) {
r e s u l t . format ( ” i f (\”%s\ ” . equals ( portName )) {\n ” , c l i e n t P o r t . po r t . portName ) ;

/∗
∗ T e l l a l l the elements t h a t subsume t h e i r remote c l i e n t po r t
∗ to t h i s element remote c l i e n t po r t to unbind the remote
∗ po r t from the remote t a r g e t .
∗ /

fo r ( ResolvedElementBinding bind : ad . r e i . b ind ing ) {
i f ( b ind . isSubsumption ( c l i e n t P o r t . po r t . portName ) ) {

S t r i n g childPortName =
bind . getChildPortName ( ) ;

ResolvedElementInstance ch i ldElement =
bind . getChi ldElement ( ) ;

S t r i n g ch i ldElement Index =
elementInstMap . get ( ch i ldElement ) ;

r e s u l t . format (
”\n ” +
”\ t\ t\ t ” + ” / / i n s t %s , type %s , impl %s\n ” +
”\ t\ t\ t ” + ” i f ( subElements [%s ] ins tanceo f %s . ElementRemoteClient ) {\n ” +
”\ t\ t\ t\ t ” + ” / / unbind %s.%s\n ” +
”\ t\ t\ t\ t ” + ” ((%s . ElementRemoteClient )\n ” +
”\ t\ t\ t\ t\ t ” + ” subElements [%s ] ) . unbindElRemotePort (\”%s\ ” ) ;\n ” +
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”\ t\ t\ t ” + ”}\n ” ,
ch i ldElement . instanceName , ch i ldElement . elementType . typeName ,

ch i ldElement . elementImplName ,
chi ldElement Index , RUNTIME PACKAGE,
ch i ldElement . instanceName , childPortName ,
RUNTIME PACKAGE,
chi ldElement Index , chi ldPortName

) ;
}

}

/∗
∗ I n v a l i d a t e the remote re ference bundle .
∗ /

r e s u l t . format (
”\n ” +
”\ t\ t\ t ” + ” remoteTargetRefs [%s ] = n u l l ;\n\n ” +
”\ t\ t ” + ”} else ” ,
remotePortMap . get ( c l i e n t P o r t . po r t . portName )

) ;
}

}

/∗
∗ Throw an except ion i f the po r t i s unknown .
∗ /

r e s u l t . format (
”{\n ” +
”\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion (\n ” +
”\ t\ t\ t\ t ” + ” \” I n v a l i d remote c l i e n t po r t ’\ ”+ portName +\ ” ’ .\ ” ) ;\n ” +
”\ t\ t ” + ”}\n ” +
”\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;
}

protected void implementGetElRemoteTarget ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l %s . RemoteRefBundle getElRemoteTarget (\n ” +
”\ t\ t\ t ” + ” S t r i n g portName)\n ” +
”\ t\ t ” + ” throws %s . ElementLinkExcept ion {\n\n ” ,
RUNTIME PACKAGE, RUNTIME PACKAGE

) ;

/∗
∗ Lookup a REMOTE c l i e n t po r t o f given name and r e t u r n a bundle o f
∗ re ferences to the remote t a r g e t i t i s bound to .
∗ /

r e s u l t . format ( ”\ t\ t ” ) ;
fo r ( ResolvedElementPort po r t : ad . r e i . po r t ) {

i f ( po r t . po r t . type == PortType .REMOTE) {
/∗
∗ Return the remote re ference the po r t i s bound to .
∗ /

r e s u l t . format (
” i f (\”%s\ ” . equals ( portName )) {\n ” +
”\ t\ t\ t ” + ” r e t u r n remoteTargetRefs [%s ] ;\ n\n ” +
”\ t\ t ” + ”} else ” ,
po r t . po r t . portName ,
remotePortMap . get ( po r t . po r t . portName )

) ;
}

}

/∗
∗ Throw an except ion i f the po r t i s unknown .
∗ /

r e s u l t . format (
”{\n ” +
”\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion (\n ” +
”\ t\ t\ t\ t ” + ” \” I n v a l i d remote c l i e n t po r t ’\ ”+ portName +\ ” ’ .\ ” ) ;\n ” +
”\ t\ t ” + ”}\n ” +
”\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;
}
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/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Reconf igura t ionHandler Methods
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

protected void imp lemen t Inva l i da teE lPor t ( S t r i n g B u i l d e r output )
throws TemplateProcessingExcept ion {

Formatter r e s u l t = new Formatter ( output ) ;

/∗
∗ Method s igna tu re .
∗ /

r e s u l t . format (
”\ t ” + ” p u b l i c f i n a l vo id i n v a l i d a t e E l P o r t (\n ” +
”\ t\ t\ t ” + ”%s . ElementLocalServer element ,\n ” +
”\ t\ t\ t ” + ” S t r i n g portName)\n ” +
”\ t\ t ” + ” throws %s . Reconf igura t ionExcept ion {\n\n ” +
”\ t\ t ” + ” t r y {\n\n ” ,
RUNTIME PACKAGE, RUNTIME PACKAGE

) ;

/∗
∗ Handle i n v a l i d a t e requests f o r l o c a l prov ided por t s .
∗
∗ I f the i n v a l i d a t e d po r t i s l o c a l and pa r t o f a binding , query the
∗ po r t f o r the l o c a l re ference and pass i t to the requ i red s ide o f the
∗ b ind ing . I f the i n v a l i d a t e d po r t i s pa r t o f de legat ion , i n v a l i d a t e
∗ the de lega t ion po r t .
∗
∗ So , go through a l l prov ided por t s o f a l l subelement instances ,
∗ determine the c l i e n t s o f these por t s and generate code to reb ind
∗ the c l i e n t po r t s to the provided por t s .
∗ /

r e s u l t . format ( ”\ t\ t\ t ” ) ;
fo r ( ResolvedElementInstance i n s t : ad . r e i . subElementInst ) {

/∗
∗ A map of c l i e n t s o f a PROVIDED por t .
∗ /

Map <ResolvedElementInstance , S t r ing > c l i e n t s =
new HashMap <ResolvedElementInstance , S t r ing > ( ) ;

fo r ( ResolvedElementPort po r t : i n s t . po r t ) {

/∗
∗ Skip por t s t h a t are not PROVIDED.
∗ /

i f ( po r t . po r t . type ! = PortType .PROVIDED) {
continue ;

}

/∗
∗ Find c l i e n t elements and por t s t h a t REQUIRE t h i s po r t . For
∗ t h i s we have to f i n d the b ind ings t h a t have t h i s element
∗ and t h i s p a r t i c u l a r po r t as the server pa r t o f the b ind ing .
∗ Then we can get the i n fo rma t i on about the c l i e n t .
∗ /

c l i e n t s . c l e a r ( ) ;
fo r ( ResolvedElementBinding bind : ad . r e i . b ind ing ) {

i f (
b ind . i sB ind ing ( )
&&
i n s t . instanceName . equals ( bind . getServerElement ( ) . instanceName )
&&
po r t . po r t . portName . equals ( bind . getServerPortName ( ) )

) {
c l i e n t s . put ( bind . getCl ien tE lement ( ) , b ind . getCl ientPortName ( ) ) ;

}
}

/∗
∗ I f there are no c l i e n t s , the po r t i s e i t h e r unbound , or i s
∗ delegated to the parent element .
∗
∗ TODO Handle the de lega t ion . . .
∗ /

i f ( c l i e n t s . s i ze ( ) = = 0 ) {
continue ;

}

/∗
∗ Get the re ference from the prov ides po r t and
∗ bind a l l the c l i e n t s to i t .
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∗ /
ResolvedElementInstance serverElement = i n s t ;
S t r i n g serverPortName = por t . po r t . portName ;
S t r i n g serverElementIndex = elementInstMap . get ( serverElement ) ;

r e s u l t . format (
” / / i n s t %s , type %s , impl %s\n ” +
”\ t\ t\ t ” + ” i f ( element == subElements [%s] && \”%s\ ” . equals ( portName )) {\n ” +
”\ t\ t\ t\ t ” + ” / / lookup %s.%s\n ” +
”\ t\ t\ t\ t ” + ” Object t a r g e t = \n ” +
”\ t\ t\ t\ t\ t ” + ” ((%s . ElementLocalServer ) subElements [%s ] ) . lookupElPor t (\”%s\ ” ) ;\n\n ” ,
serverElement . instanceName , serverElement . elementType . typeName ,

serverElement . elementImplName ,
serverElementIndex , serverPortName ,
serverElement . instanceName , serverPortName ,
RUNTIME PACKAGE, serverElementIndex , serverPortName

) ;

/∗
∗ Rebind a l l the c l i e n t s . . .
∗ /

fo r ( Ent ry <ResolvedElementInstance , S t r ing > c l i e n t : c l i e n t s . en t rySet ( ) ) {
ResolvedElementInstance c l i en tE lement = c l i e n t . getKey ( ) ;
S t r i n g cl ientPortName = c l i e n t . getValue ( ) ;
S t r i n g c l ien tE lement Index = elementInstMap . get ( c l i en tE lement ) ;

r e s u l t . format (
”\ t\ t\ t\ t ” + ” / / reb ind %s.%s\n ” +
”\ t\ t\ t\ t ” + ” ((%s . E lementLoca lCl ient ) subElements [%s ] ) . b indE lPor t (\”%s\ ” , t a r g e t ) ;\n\n ” ,
c l i en tE lemen t . instanceName , cl ientPortName ,
RUNTIME PACKAGE, c l ien tE lement Index , c l ientPortName

) ;
}

r e s u l t . format ( ”\ t\ t\ t ” + ”} else ” ) ;
}

}

/∗
∗ Throw an except ion i f the po r t i s unknown .
∗
∗ Note : as a convenience , we throw an ElementLinkExcept ion even though
∗ we should throw Reconf igura t ionExcept ion , because i f we d id not
∗ generate any code ( above ) , there w i l l be no c a l l s to b indE lPor t ( )
∗ and t h e r e f o r e noth ing t h a t could generate an ElementLinkExcept ion and
∗ the generated code would f a i l to compile .
∗ /

r e s u l t . format (
”{\n ” +
”\ t\ t\ t\ t ” + ” throw new %s . ElementLinkExcept ion (\n ” +
”\ t\ t\ t\ t\ t ” + ” \” I n v a l i d r e c o n f i g u r a t i o n request f o r po r t ’\ ”+ portName +\ ” ’ .\ ” ) ;\n ” +
”\ t\ t\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE

) ;

/∗
∗ Transform ElementLinkExcept ion to Reconf igura t ionExcept ion .
∗ /

r e s u l t . format (
”\ t\ t ” + ”} catch (%s . ElementLinkExcept ion e) {\n ” +
”\ t\ t\ t ” + ” throw new %s . Reconf igura t ionExcept ion ( e ) ;\n ” +
”\ t\ t ” + ”}\n ” +
”\ t ” + ”}\n\n ” ,
RUNTIME PACKAGE, RUNTIME PACKAGE

) ;
}

}

Listing A.1: An example of a generator for a composite element

A.2 Generated element descriptor

The Java part of the proposed generator passes to the Stratego/XT part the
XML descriptor of a connector element which should be generated. This process
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is transparent to the user because the XML descriptor is automatically generated
from the low-level configuration of the connector.

The listing below shows a descriptor of stub element, which is composed of
two subelements.

<element>
<!−− name of element . I t i s not compulsory . −−>
<name>LoggedCl ientUni t</stub>

<!−− template f i l e f o r element −−>
<template >compound default . e l l ang</template >

<!−− package f o r new element −−>
<package>generated . A00003</package>
<!−− c lass name f o r generated element −−>
<classname>LoggedCl ientUni t</classname>

<!−− l i s t o f po r t s −−>
<por ts>

<po r t name= ” c a l l ”>
<name>c a l l </name>
<s ignature>

org . objectweb . dsrg . deployment . connector . generator . DemoIface
</s ignature>

<type>PROVIDED</type>

</por t>
<po r t name= ” l i n e ”>

<name>c a l l </name>
<s ignature>

org . objectweb . dsrg . deployment . connector . generator . DemoIface
</s ignature>

<type>REMOTE</type>

</por t>
</por ts>

<!−− l i s t o f sub−elements −−>
<elements>

<element>
<name>stub</name>
<class>generated . A00001 . LocalStub</c lass>

</element>
<element>

<name>l ogger</name>
<class>generated . A00002 . ConsoleLog</c lass>

</element>
</elements>
<!−− d e s c r i p t i o n o f b ind ings −−>
<bindings>

<binding>

<from>t h i s . c a l l </from>

<to>l ogger . i n</to>

</b ind ing>

<binding>

<from>l ogger . out</from>

<to>stub . c a l l </to>

</b ind ing>

<binding>

<from>t h i s . l i n e</from>

<to>stub . l i n e</to>

</b ind ing>

</b ind ings>

<!−− name of a f o l d e r where source codes are s tored −−>
<source−f o l de r>t e s t s / generated /</source−f o l de r>
<!−− name of a f o l d e r where generated code w i l l be s tored −−>
<dest−f o l de r>t e s t s / generated /</dest−f o l de r>

</element>

Listing A.2: XML descriptor of stub element

A.3 Element template presented in this thesis

This example shows a default template for a composite element, which is used
for generation of the stub element described in Section A.2 Generated element
descriptor.
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In comparison with the preceding version of the generator, the Stratego
based generator does not separate a connector element template into a static and a
dynamic part. The logic of generation is located into the template itself.

/∗
∗ Name of package f o r generated c lass .
∗ /

package ${package }

/∗
∗ Some java s p e c i f i c impor ts .
∗ /

import org . objectweb . dsrg . deployment . connector . runt ime .∗ ;

/∗
∗ Meta d e c l a r a t i o n o f connector element .
∗
∗ /

element compound default {

protected Element [ ] subElements ;

protected UnitReferenceBundle [ ] boundedToRemoteRef ;

publ ic ${classname} ( ) {
}

/∗
∗ I n i t i l a z a t i o n o f element s t r u c t u r e .
∗ /

void i n i t E l S t r u c t u r e ( ) throws ElementLinkExcept ion {
subElements = new Element [ ${elements . element . s i ze } ] ;

/∗ Create sub−elements ∗ /
$set i = 0 $ ;
$foreach (ELEMENT i n ${elements . element })$

subElements [ ${ i } ] = new ${ELEMENT. class } ( ) ;
$set i = i + 1 $
/∗ remember ELEMENT index i n ar ray ∗ /
$set ELEMENT. index = i $

$end$

/∗ create b ind ings ∗ /
$foreach (BINDING i n ${b ind ings . b ind ing })$

$ i f ( BINDING . from . element . name ! = ” t h i s ” ) $
$ i f ( BINDING . to . element . name ! = ” t h i s ” ) $

( ( E lementLoca lCl ient ) subElements [ ${e l [ BINDING . to . element . name ]} ] )
. b indE lPor t ( ” ${BINDING . to . po r t} ” ,

( ( ElementLocalServer ) subElements [ ${e l [ BINDING . from . element . name ]} ] )
. lookupElPor t ( ” ${BINDING . from . po r t} ” ) ) ;

$end$
$end$

$end$

/∗ C l i e n t s bounded to remote re ferences − t h i s pa r t needs a number o f remote por t s ∗ /
boundedToRemoteRef = new UnitReferenceBundle [ ${por t s . po r t ( type=REMOTE) . s ize } ] ;
$set i = 0 $
$foreach (REMOTE PORT i n ${por t s . po r t ( type=REMOTE)} )
boundedToRemoteRef [ ${ i } ] = nu l l ;
/∗ remember element index ∗ /
$set r e f [REMOTE PORT. name ] = i $
$set i = i + 1 $

$end$
}

/∗ Implements i n t e r f a c e s ∗ /
implements in te r face ElementLocalServer {

publ ic Object lookupElPor t ( S t r i n g portName )
throws ElementLinkExcept ion {

/∗ t h i s pa r t needs number o f PROVIDED por ts and r i g h t index to subElements [ ] ∗ /
$r foreach (PORT i n ${por t s . po r t ( type=PROVIDED)} ) $

i f ( ” ${PORT. name} ” . equals ( portName ) ) {
return ( ( ElementLocalServer ) subElements [ ${e l [PORT. boundedTo . element . name ]} ] )

. lookupElPor t ( ” ${PORT. boundedTo . po r t} ” ) ;
} else

$recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” +portName+ ” ’ . ” ) ;
$end$

}
}
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implements in te r face ElementLoca lCl ient {

/∗ t h i s needs number o f REQUIRED por ts and f i n d r i g h t index o f se lec ted element ∗ /
publ ic void b indE lPor t ( S t r i n g portName , Object t a r g e t ) throws ElementLinkExcept ion {

$r foreach (PORT i n ${por t s . po r t ( type=REQUIRED)} ) $
i f ( ” ${PORT. name} ” . equals ( portName ) ) {

( ( E lementLoca lCl ient ) subElements [ ${e l [PORT. boundedTo . element . name ]} ] )
. b indE lPor t ( ” ${PORT. boundedTo . po r t} ” , t a r g e t ) ;

} else
$recpo in t$

$ f i n a l $
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” +portName+ ” ’ . ” ) ;

$end$

}

publ ic void unbindElPor t ( S t r i n g portName ) throws ElementLinkExcept ion {
$r foreach (PORT i n ${por t s . po r t ( type=REQUIRED)} ) $

i f ( ” ${PORT. name} ” . equals ( portName ) ) {
( ( E lementLoca lCl ient ) subElements [ ${e l [PORT. boundedTo . element . name ]} ] )

. unb indElPor t ( ” ${PORT. boundedTo . po r t} ” ) ;
} else

$recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” +portName+ ” ’ . ” ) ;
$end$
}

}

implements in te r face ElementRemoteServer {

publ ic UnitReferenceBundle getElRemoteRefs ( S t r i n g portName )
throws ElementLinkExcept ion {

UnitReferenceBundle r e s u l t = new UnitReferenceBundle ( ) ;

/∗ here we need number o f REMOTE por ts and r i g h t b ind ing ∗ /
$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
i f ( ” ${PORT. name} ” . equals ( portName ) ) {

i f ( subElements [ ${e l [PORT. boundedTo . element . name ]} ] instanceof ElementRemoteServer ) {
r e s u l t . addRefBundle ( ( ( ElementRemoteServer ) subElements [ ${e l [PORT. boundedTo . element . name]} ]

. getElRemoteRefs ( ” ${PORT. boundedTo . po r t} ” ) ) ) ;
}
} else

$recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” +portName+ ” ’ . ” ) ;
$end$

return r e s u l t ;
}
}

implements in te r face ElementRemoteClient {

publ ic void bindElRemotePort ( S t r i n g portName , UnitReferenceBundle refBundle ) throws ElementLinkExcept ion {

/∗ here we need number o f REMOTE por ts and r i g h t b ind ing ∗ /
$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
i f ( ” ${PORT. name} ” . equals ( portName ) ) {

i f ( subElements [ ${e l [PORT. boundedTo . element . name ]} ] instanceof ElementRemoteClient ) {
( ( ElementRemoteClient ) subElements [ ${ r e f [PORT. name ]} ] )

. bindElRemoteRefs ( ” ${PORT. boundedTo . po r t} ” , re fBundle ) ;
}
boundedToRemoteRef [ ${ r e f [PORT. name ]} ] = refBundle ;
} else

$recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” +portName+ ” ’ . ” ) ;
$end$
}

publ ic void unbindElRemotePort ( S t r i n g portName ) throws ElementLinkExcept ion {
$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
i f ( ” ${PORT. name} ” . equals ( portName ) ) {

i f ( subElements [ ${e l [PORT. boundedTo . element . name ]} ] instanceof ElementRemoteClient ) {
( ( ElementRemoteClient ) subElements [ ${ r e f [PORT. name ] } ] ) . unbindElRemoteRefs ( ” ${PORT. boundedTo . po r t} ” ) ;

}
boundedToRemoteRef [ ${ r e f [PORT. name ]} ] = nu l l ;
} else

$recpo in t$
$ f i n a l $
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throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” +portName+ ” ’ . ” ) ;
$end$
}

publ ic UnitReferenceBundle getElRemoteTarget ( S t r i n g portName ) throws ElementLinkExcept ion {

/∗ here we need number o f REMOTE por ts and r i g h t index o f po r t i n t o ar ray boundedToRemoteRef ∗ /
$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
i f ( ” ${PORT. name} ” . equals ( portName ) ) {
return boundedToRemoteRef [ ${ r e f [PORT. name ]} ] ;
} else

$recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” +portName+ ” ’ . ” ) ;
$end$
}

}
}

Listing A.3: Source code of template element

A.4 Generated code

This listing shows code which is produced by the proposed connector element genera-
tor from the given element descriptor (see Section A.2 Generated element descriptor)
and the template (see Section A.3 Element template presented in this thesis). Code
is the same as code produced by the previous version of the generator.

package generated . A00000004 ;

import org . objectweb . dsrg . deployment . connector . runt ime .∗ ;

publ ic class LoggedCl ientUni t implements ElementLocalServer ,
ElementLocalCl ient ,

ElementRemoteServer ,
ElementRemoteClient {

protected Element [ ] subElements ;

protected UnitReferenceBundle [ ] boundedToRemoteRef ;

publ ic LoggedCl ientUni t ( ) {
}

void i n i t E l S t r u c t u r e ( ) throws ElementLinkExcept ion {
subElements = new Element [ 2 ] ;
subElements [ 0 ] = new generated . A00000002 . LocalStub ( ) ;
subElements [ 1 ] = new generated . A00000005 . ConsoleLog ( ) ;

( ( E lementLoca lCl ient ) subElements [ 1 ] ) . b indE lPor t ( ” out ” ,
( ( ElementLocalServer ) subElements [ 0 ] ) . lookupElPor t ( ” c a l l ” ) ) ;

boundedToRemoteRef = new UnitReferenceBundle [ 1 ] ;
boundedToRemoteRef [ 0 ] = nu l l ;

}

publ ic Object lookupElPor t ( S t r i n g portName ) throws ElementLinkExcept ion {

i f ( ” c a l l ” . equals ( portName ) ) {
return ( ( ElementLocalServer ) subElements [ 1 ] ) . lookupElPor t ( ” i n ” ) ;

} else {
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” + portName + ” ’ . ” ) ;

}
}

publ ic void b indE lPor t ( S t r i n g portName , Object t a r g e t ) throws ElementLinkExcept ion {
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” + portName + ” ’ . ” ) ;

}

publ ic void unbindElPor t ( S t r i n g portName ) throws ElementLinkExcept ion {
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” + portName + ” ’ . ” ) ;
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}

publ ic UnitReferenceBundle getElRemoteRefs ( S t r i n g portName )
throws ElementLinkExcept ion {

UnitReferenceBundle r e s u l t = new UnitReferenceBundle ( ) ;

i f ( ” l i n e ” . equals ( portName ) ) {

i f ( subElements [ 0 ] instanceof ElementRemoteServer ) {
r e s u l t . addRefBundle ( ( ( ElementRemoteServer ) subElements [ 0 ] )

. getElRemoteRefs ( ” l i n e ” ) ) ;
}

} else {
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” + portName + ” ’ . ” ) ;

}

return r e s u l t ;
}

publ ic void bindElRemotePort ( S t r i n g portName , UnitReferenceBundle refBundle )
throws ElementLinkExcept ion {

i f ( ” l i n e ” . equals ( portName ) ) {

i f ( subElements [ 0 ] instanceof ElementRemoteClient ) {
( ( ElementRemoteClient ) subElements [ 0 ] ) . bindElRemotePort ( ” l i n e ” ,

re fBundle ) ;
}
boundedToRemoteRef [ 0 ] = refBundle ;

} else {
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” + portName + ” ’ . ” ) ;

}
}

publ ic void unbindElRemotePort ( S t r i n g portName ) throws ElementLinkExcept ion {

i f ( ” l i n e ” . equals ( portName ) ) {

i f ( subElements [ 0 ] instanceof ElementRemoteClient ) {
( ( ElementRemoteClient ) subElements [ 0 ] )

. unbindElRemotePort ( ” l i n e ” ) ;
}
boundedToRemoteRef [ 0 ] = nu l l ;

} else {
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” + portName + ” ’ . ” ) ;

}
}

publ ic UnitReferenceBundle getElRemoteTarget ( S t r i n g portName )
throws ElementLinkExcept ion {

i f ( ” l i n e ” . equals ( portName ) ) {
return boundedToRemoteRef [ 0 ] ;

} else {
throw new ElementLinkExcept ion ( ” I n v a l i d po r t ’ ” + portName + ” ’ . ” ) ;

}
}

}

Listing A.4: Generated element Java code



Appendix B

Content of attached CD ROM

This thesis is accompanied by the CD ROM containing binaries and source code of
the prototype implementation. The CD ROM is organized as follows:

/README.TXT

Brief description of the content of the CD ROM.

/doc/

Electronic version of this thesis.

/src/congen/java/

Source codes of the existing connector generator extended by a bridge con-
necting it with the Stratego part.

/src/congen/stratego/

Source codes of the Stratego based implementation of the connector gener-
ator.

/examples/

Examples of connectors elements written in the ElLang-J language

/prerequisites/

Software prerequisites of the prototype: StrategoXT v0.16, ATerm library
v2.4.2
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