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Abstract: Kermack-McKendrick model and its version with vaccination are presented.
First, we introduce a model with vaccination and then a numerical study that includes
comparison of different vaccination strategies and searching for optimal vaccination stra-
tegy is presented. We proceed to introduce a stochastic model with migration and conse-
quently we suggest its generalization and prove the existence and uniqueness of a solution
to the stochastic differential equation (henceforth SDE) describing this model. Three
stochastic versions of Kermack-McKendrick model with vaccination are suggested and
compared. A procedure of finding the optimal vaccination strategy is presented. We also
prove the theorem on the existence and uniqueness of a solution to the SDE that drives
a model with multiple pathogens. Finally, the stochastic differential equation describing
the general model is presented. We study properties of a solution to this SDE and present
sufficient conditions for the existence of a solution that is absorbed by the natural barrier
of the model.

Keywords: absorption, differential equation, SIR epidemic models, stochastic differen-
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Chapter 1

Introduction

With massive growth of traveling, the danger of spread of infection diseases increases.
Therefore, it is necessary to keep on improving healing methods and choosing new me-
thods of prevention, hence it is necessary to keep on enlarging our knowledge of behavior
of diseases. One of the tool which helps us to understand the behavior of diseases are
mathematical models for spreading of epidemics.

This work presented both deterministic and stochastic model which are described by
differential equations (DE) and by stochastic differential equations (SDE), respectively,
and we study the properties of solutions to these equations.

In chapter 2, the Kermack-McKendrick model and its generalization with vaccination are
presented. Both these deterministic models are suitable for modeling the spread of highly
infection disease with fast recovery, hence we can consider constant size of population as
the observation time period is short. The typical example of such a disease is influenza.
For more general model with vaccination, we prove the theorem about the existence and
uniqueness of a solution to DE and present the formulas for computing the maximum of
infectives and the number of individuals which were infected during the running time of
epidemics. In the last part of this chapter, we compare different vaccination strategies
and choose the optimal vaccination strategy by using numerical method.

In chapter 3, we present a few stochastic models which are described by stochastic dif-
ferential equations. The first model first presented by Štěpán and Hlubinka in [17] is a
Kermack-McKendrick model with stochastic migration. We present a version with a little
more general susceptibles-infectives contact rate β. In the second part of this section,
we discuss the way, how to establish a stochastic version on the Kermack-McKendrick
model with vaccination and present some numerical results for these versions, including
the choice of optimal vaccination strategy. In the third part, we introduce the model with
multiple pathogens which was introduced by Allen and Kirupaharas in [1]. This model
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describes a behavior of epidemics like HIV-AIDS. This model assumes changing size of
population, and includes births and deaths, as the observation time period is long. In this
model, both the horizontal transmission (i.e. the transmission from infected individual to
susceptible individual) and the vertical transmission (i.e. the transmission from infected
mother to offspring) are considered. The theorem on the existence and uniqueness of a
solution to SDE which describes this model is presented. In the last part of this chap-
ter, we present the (d + 1)-dimensional stochastic differential equation which describes
the general epidemic model. We look for the conditions which provide the model with
required properties, e.g. nonnegative solution, the existence and uniqueness of a solution
which is absorbed by the natural barrier or that all solutions are absorbed by the natural
barrier. We also present a few examples which illustrate the implication of the proved
results.
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Chapter 2

Deterministic models

In this chapter, we will present two deterministic models describing the spread of a highly
infection disease with short healing time (few days) and very short incubation time which
is omitted in the models. A typical example of such a disease is influenza. The first
model is the Kermack-McKendrick model and the second one is its generalization which
describes the situation when vaccination is considered.

2.1 Kermack-McKendrick model

The Kermack-McKendrick model was presented in 1927 by W. O. Kermack and A. G.
McKendrick in [9] and since that time, it has been widely used. In this model, we assume
a homogenously mixed population with constant size n which is divided into three sub-
population changing their sizes in the running time:

• ”susceptibles”. . . the individuals who are not infected, but who can be infected by
the disease, denoted in the model by xt,

• ”infectives”. . . the infected individuals, who are able to spread the disease, denoted
yt,

• ”removals”. . . the individuals who were infected, but who are not able to spread the
infection further or get themselves infected again, denoted zt. In this sub-population
there are people who were recovered and have become immune, die or have been
isolated.

The model is described by the following two dimensional differential equation:
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dxt = −βxtytdt, x0 > 0,

dyt = βxtytdt− γytdt, y0 > 0, (2.1.0.1)

dzt = γytdt, z0 = 0,

where β > 0 is a suscepribles-infectives contact rate and γ > 0 is a recovery rate. Note
that the size of β depends on the rate of infectivity of the disease and also on the density
of population, therefore β is higher for more infectious disease or when modeling the
population in a city and on the other hand lower for a population living in the countryside.
γ−1 is the average time of duration of the disease or more precisely of ”being in infectives”.

Obviously, n = xt + yt + zt = x0 + y0 + z0 for all t ≥ 0, xt is nonincreasing function and
zt is nondecreasing function. It is possible to prove that equation (2.1.0.1) has a unique
solution, there exist limits xt, yt and zt at infinity and xt, yt and zt are nonnegative
functions, but unfortunately the equation (2.1.0.1) has no explicit solution. For further
details see [4].

From the equation
dyt = yt(βxt − γ)dt

it is possible to see, that yt is decreasing for all t ≥ 0 if and only if x0 <
γ
β

= ρ and yt has
maximum (if it is not decreasing for all t ≥ 0) in time when xt = ρ. Therefore the size of
relative removals rate ρ seems to be reasonable measure of the virulence of an epidemics.
One can see from the Figure 2.1 that the epidemics is weak when ρ is approximately the
same as x0. On the other hand, if ρ is twice smaller than x0 then the epidemics is very
serious.

Remark 2.1 If we choose constant β, we assume that the population is not only ho-
mogenously mixed, but also that each member of the population has the same level of
immunity. However this is not very realistic assumption, because for example children
have lower level of immunity than adults, and therefore the probability of infection is
higher for children than for adults . Hence during the running time the proportion of the
individuals with lower level of immunity in susceptibles will be decreasing and therefore,
it is reasonable to expect that β is decreasing during the running time. This choice of β
was presented in [17].

2.2 Kermack-McKendrick model with vaccination

This model is a generalization of Kermack-McKendrick model. We choose more general
β and we added vaccination by the natural way, because we wanted a model of epidemics
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Figure 2.1:
Behavior of an epidemic with the parameters β = 0.0005, γ = 0.45 (left) and β = 0.0005,
γ = 0.25 (right). The black line describes the size of susceptibles, the red line the size of
infectives and the green line the size of removals. In both cases, the initial conditions are
x0 = 990, y0 = 10 and z0 = 0.

which allows us to control epidemics by a vaccination, to study the effect of vaccination
and which allows us to compare different vaccination strategy.

We consider (like in the previous model) constant size of population n which is divided into
three sub-populations (”susceptibles”,”infectives”,”removals”). The model is described
by the following differential equations (see [19]):

dxt = −β(zt)yt [xt − ϑ(zt)]
+ dt, x0 > 0,

dyt = β(zt)yt [xt − ϑ(zt)]
+ dt− γytdt, y0 > 0, (2.2.0.2)

dzt = γytdt, z0 = 0,

where β(zt) is a susceptibles-infectives contact rate that is time dependent through zt,
where γ is a recovery rate of the infection, and finally, ϑ(zt) is the size of vaccinated
susceptibles sub-population controlled by zt again.

We shall assume that β(z) : R → R+ is a nonincreasing continuous function, γ > 0 and
that ϑ(z) : R → R+ is a nondecreasing continuous function. From the assumptions, we
know that xt + yt + zt = n = x0 + y0 for all t ≥ 0.

It means that the size of individuals newly infected during the time interval (t, t +4)
is approximately equal to the product yt[xt − ϑ(zt)]

+β(zt)4, where yt[xt − ϑ(zt)]
+ is the

number of all possible contacts between infective and susceptible nonvaccinated people
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(i.e. the number of all possible pairs) in time t, and β(zt) is a probability that a randomly
chosen susceptible nonvaccinated person is infected by a randomly chosen infective person
during the time interval (t, t+1). Because the population consists of people with different
rate of immunity (e.g. children are more inclined to diseases then adults) and people with
weaker immunity fall ill more easily than strong immune people, the rate of immunity of
susceptibles grows with increasing zt. Therefore the susceptibles-infectives contact rate
β is a nonincreasing function of removals.

After the consultation with practitioners in medicine, the function of vaccinated sus-
ceptibles ϑ is also considered to be a function of the removals, because the number of
the removals is usually known and also because it is an indicator of the extent of the
epidemics used in practice. Moreover, if we choose ϑ as an increasing linear function of
vaccinated individuals, then we vaccinate more people in the case when we have more
infected individuals, because the increment of removals is proportional to the number of
infectives.

2.2.1 Theoretical resuls

In this section, we will speak about a solution to differential equation. By the solution to
DE we mean the classical solution, i.e. we use the definition of a solution as introduced
in [2], p.67.

Lemma 2.1 follows from more general results, e.g. Corollary 16.10, p.219, in [2], but it
could be unnoticed when using it for our case. Therefore we show more intuitive proof
without using any special theorems.

Lemma 2.1 If lt = (xt, yt, zt) is a solution to (2.2.0.2), then lt ∈ [0, n]3 for all t ≥ 0.
Moreover, xt is a nonincreasing function and zt is an increasing function.

Proof. From (2.2.0.2), we can get

yt = y0 exp

{∫ t

0

β(zs)[xs − ϑ(zs)]
+ − γds,

}
,

therefore yt > 0 for all t.

Further, zt = z0 +
∫ t

0
γysds, therefore we get zt as a nonnegative increasing function as

yt > 0.

The size of susceptibles xt is obviously a nonincreasing function.
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If we denote by τv := inf{t ∈ R+ : xt ≤ ϑ(zt)} the first time, when susceptibles are
completely vaccinated, then

dxt = −β(zt)yt[xt − ϑ(zt)]dt (2.2.1.1)

for t ∈ [0, τv]. Moreover, as xt is nonincreasing and zt is increasing, we have for all t > τv
that xt ≤ ϑ(zt) and

dxt = 0.

Solving equation (2.2.1.1) we get

xt =

[
x0 +

∫ t

0

β(zs)ϑ(zs)ys exp

{∫ s

0

β(zu)yudu

}
ds

]
exp

{
−
∫ t

0

β(zs)ysds

}
≥ 0.

Since xt = xτv for all t ∈ (τv,∞), xt is nonnegative function.

We proved that any solution lt = (xt, yt, zt) to (2.2.0.2) maps [0,∞) into the first octant.
As xt ≥ 0, yt ≥ 0 and zt ≥ 0 for all t ≥ 0 and xt + yt + zt = n it follows that lt ∈ [0, n]3.

As ϑ is nondecreasing and x(.) is nonincreasing, then using τv from the previous proof
we can rewrite (2.2.0.2) to the form

dxt = −β(zt)yt [xt − ϑ(zt)] dt, x0 > 0,

dyt = β(zt)yt [xt − ϑ(zt)] dt− γytdt, y0 > 0, (2.2.1.2)

dzt = γytdt, z0 = 0,

for t ∈ [0, τv] and

dxt = 0,

dyt = −γytdt, (2.2.1.3)

dzt = γytdt,

for t ∈ [τv,∞).

Lemma 2.2 Let β and ϑ be Lipschitz bounded functions. Then the equation (2.2.1.2)
has a unique solution on the interval [0, τv].
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Proof. Denote

f(x, y, z) = (−β(z)[x− ϑ(z)]y, β(z)[x− ϑ(z)]y − γy, γy)

and
f̃(l) = f(x̃, ỹ, z̃),

where x̃ = (x∨−2n)∧ 2n. Then, using Lemma 2.1 and the fact that the unique solution
to

dl = f̃(l), l0 = (x0, y0, z0)

is the unique solution to (2.2.1.2) on the interval [0, τv], Lemma 2.2 follows from more
general theorem 7.6 in [2], p.100.

Define τY := arg max yt, i.e. τY = {t ∈ [0,∞) : yt = max
s∈[0,∞)

ys} the time of culmination of

the epidemics. Below we show that the time τY is unique.

The following theorem is the main result of this chapter.

Theorem 2.3 Let β and ϑ satisfy the conditions of Lemma 2.2 Then

(i) the equation (2.2.0.2) has a unique solution in the time interval [0,∞),

(ii) there exist limits of x, y, z at infinity, y∞ = 0. If τv = ∞ then z∞ is a solution to
the equation z = n−X(z), where

X(z) =

[
x0 +

∫ z

0

β(u)

γ
ϑ(u) exp

{∫ u
0
β(s)ds

γ

}
du

]
exp

{− ∫ z
0
β(u)du

γ

}
,

(iii) the size of infectives sub-population yt has a unique maximum yτY .

If β(z0)[x0 − ϑ(z0)]− γ > 0, then β(zτY )[xτY − ϑ(zτY )] = γ.

If β(z0)[x0 − ϑ(z0)]− γ ≤ 0, then τY = 0.

Proof.

(i) The existence and uniqueness of a solution to ((2.2.1.2)) in the time interval [0, τv]
follows from Lemma 2.2. Therefore we need to prove its existence and uniqueness
in the time interval [τv,∞] in the case τv <∞. Because the equation (2.2.1.3) with
the initial conditions x(τv) = x̃(τv), y(τv) = ỹ(τv), z(τv) = z̃(τv), where (x̃, ỹ, z̃) is
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a solution to (2.2.1.2) in the time interval [0, τv], has a unique solution, it follows
that

x(t) = xτv ,

y(t) = yτv − e−γτv + e−γt,

z(t) = n− xτv − yτv + e−γτv − e−γt

holds for all t ∈ [τv,∞).

Joining these solutions, we get a unique solution to ((2.2.0.2)) on the time interval
[0,∞). Indeed, if we denote

l̂t = (x̂t, ŷt, ẑt) =(x̃t, ỹt, z̃t) t ∈ [0, τv],

=(x, y, z) t ∈ (τv,∞),

then

x̂t = x̂0 −
∫ t

0

β(ẑs)ŷs[x̂s − ϑ(ẑs)]
+ds,

ŷt = ŷ0 +

∫ t

0

β(ẑs)ŷs[x̂s − ϑ(ẑs)]
+ − γŷsds,

ẑt =

∫ t

0

γŷsds.

Therefore l̂ is a solution to (2.2.0.2).

(ii) Functions x and z are monotone and bounded, therefore they have their limits
x∞, z∞ at infinity. Because yt = n − xt − zt for all t ∈ [0,∞), the existence of the
limits x∞ and z∞ implies the existence of the limit y∞. Since z∞ < ∞, we get
y∞ = 0. Indeed, if y∞ > 0, then there exists a time T ∈ [0,∞) and a constant
a > 0 such that yt ≥ a for all t > T . Therefore

z∞ =

∫ ∞
0

γysds ≥
∫ T

0

γysds+

∫ ∞
T

γads =∞.

Hence y∞ = 0.

As zt is a continuous differentiable mapping from [0,∞) on [0, z∞] with positive
derivation, it has continuously differentiable inverse z−1

t , we can set X(z) = x(z−1
t )

and (2.2.1.2) implies

dX

dz
(z) =

dxt
dt
dzt
dt

=
−β(zt)Y (zt)[X(zt)− ϑ(zt)]

γY (zt)
, X(z0) = x0,
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therefore

X(z) =

[
x0 +

∫ z

0

β(u)

γ
ϑ(u) exp

{∫ u
0
β(s)ds

γ

}
du

]
exp

{− ∫ z
0
β(u)du

γ

}
. (2.2.1.4)

Finally, let t → ∞ in z(t) = n − x(t) − y(t) to get the equation z∞ = n − x∞ =
n−X(z∞).

(iii) Because β(zt) and xt are nonincreasing functions of t and ϑ a nondecreasing function
of t, it follows that β(zt)[xt−ϑ(zt)] is nonincreasing. Hence β(z0)[x0−ϑ(z0)]−γ ≤ 0
implies dyt ≤ 0 for all t ≥ 0, and yt is nonincreasing. Thus, τY = 0. If β(z0)[x0 −
ϑ(z0)]− γ > 0, then yt is increasing in neighborhood of zero and because moreover
y0 > y∞ = 0, we have 0 < τY <∞. Hence continuity and the existence of derivative
of yt imply that y′τY = 0, therefore β(zτY )[xτY − ϑ(zτY )]− γ = 0.

Consider the case β(zτY )[xτY − ϑ(zτY )] = γ. Denote
T := inf{t ≥ 0 : β(zt)[xt − ϑ(zt)] = γ}. From (2.2.0.2) and yτY ≥ y0 > 0 it follows
that xt is decreasing in T , and so there is no other time t satisfying β(zt)[xt−ϑ(zt)] =
γ. Therefore τY = T is unique. In the case β(z0)[x0−ϑ(z0)]−γ < 0, the uniqueness
of τY is obvious.

Example 2.1 We shall scrutinize the equation z∞ = n−X(z∞) (see Theorem 2.3 (ii))
and assume β to be a constant and ϑ(z) a general function, later on a linear function.

We apply (2.2.1.4) to get

z∞ = n−
[
x0 +

∫ z∞

0

β

γ
ϑ(u) exp

{∫ u
0
βds

γ

}]
exp

{− ∫ z∞
0

βdu

γ

}
. (2.2.1.5)

Denoting ρ = β/γ then (2.2.1.5) yields

z∞ = n− e−ρz∞
[
x0 + ρ

∫ z∞

0

ϑ(u)eρudu

]
.

Choosing a linear vaccination, i.e. ϑ(z) = ϑ0 + ϑ1z, where ϑ0 ≥ 0 a ϑ1 ≥ 0, we have

C1z∞ = C2 − C3e
−ρz∞ , (2.2.1.6)
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where

C1 = 1 + ϑ1,

C2 = n− ϑ0 + ϑ1/ρ,

C3 = x0 − ϑ0 + ϑ1/ρ.

The uniqueness of a solution to equations (2.2.1.5) depends on the choice of functions
β(z), ϑ(z) and initial conditions. If we have more then one solution to the equation, we
have to decide which of them is z∞.

To illustrate it, go back to the equation (2.2.1.6). What we know is that C1 > 0 and
C2 > C3 hold.

If C3 ≤ 0 then the number of vaccinated at t = 0 is larger than or equal to the number
of susceptibles, hence τv = 0 and the assumption of Theorem 2.3 (ii) is not satisfied. In
practice, this choice is not very realistic, mathematically it leads to z∞ = y0 by (2.2.1.3)
and, of course, to y∞ = 0.

If C3 > 0 then (2.2.1.6) possesses two solutions, but only one positive. It follows that
(2.2.1.6) has a unique solution z∞ ∈ [0, n].

Example 2.2 Consider again constants β, γ and a linear ϑ in a way that τv = ∞ and
τY 6= 0. Theorem 2.3 (iii) yields

[xτY − ϑ(zτY )] =
γ

β
. (2.2.1.7)

Computing

X(z) =

[
x0 +

∫ z

0

β

γ
ϑ(u) exp

{∫ u
0
βds

γ

}]
exp

{− ∫ z
0
βdu

γ

}
=

[
x0 +

β

γ

∫ z

0

(ϑ0 + ϑ1u)e
βu
γ

]
e−

βz
γ

=

(
ϑ0 −

ϑ1

ρ

)
+ ϑ1z +

(
x0 +

ϑ1

ρ
− ϑ0

)
e−ρz (2.2.1.8)

by (2.2.1.4) and substituting X(z) into (2.2.1.7), we arrive at(
ϑ0 −

ϑ1

ρ

)
+ ϑ1zτY +

(
x0 +

ϑ1

ρ
− ϑ0

)
e−ρzτY − ϑ0 − ϑ1zτY =

1

ρ
.
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This implies

zτY =
1

ρ

[
log

(
x0 +

ϑ1

ρ
− ϑ0

)
− log

(
1 + ϑ1

ρ

)]
. (2.2.1.9)

Finally, having on mind that n = x+ y + z, we get

ymax = yτY = n−X(zτY )− zτY , (2.2.1.10)

where zτY and X(zτY ) are given by (2.2.1.9) and (2.2.1.8), respectively.

2.2.2 Numerical results

This part deals with several problems that arise when one is trying to get some usable
results concerning the time of culmination of the epidemics, the largest number of those
infected, the influence of vaccination, the comparison of various vaccination strategies
and the choice of the ”optimal” vaccination strategy.

First, we consider a constant β > 0 and a linear vaccination, i.e. ϑ(z) = ϑ0 +ϑ1z. Having
made this choice, we replace the differential equation (2.2.0.2) by the equation

xn+1 = xn − β(zn)yn max{[xn − ϑ(zn)] , 0}∆, x0 = x0 > 0,

yn+1 = yn + (β(zn)yn max{[xn − ϑ(zn)] , 0} − γyn)∆, y0 = y0 > 0, (2.2.2.1)

zn+1 = zn + γyn∆, z0 = 0,

where ∆ is a difference step.

We solved the equation (2.2.2.1) with the number of steps 5000 and the difference step
∆ = 0.016, because we observed that a choice of smaller step does not change the results
significantly. This corresponds to the time interval (0, 80). We decided to use these
values, because on this interval, the behavior of the epidemics can be well graphically
shown (see Figure 2.2). We choose the initial conditions x0 = 990, y0 = 10, what means
that at the beginning, 1% of population suffers from the disease, and we observed the
behavior of the epidemics with several choices of γ, β, ϑ0 and ϑ1. All computations and
graphic results were made by software R.1

Figure 2.2 shows the differences in behavior of epidemics for different vaccinations.
Although in the first case (ϑ0 = 0 and ϑ1 = 1), we have vaccinated 443 individuals
by the time t = 80, while choosing ϑ0 = 300 and ϑ1 = 0.2 we have vaccinated only 363
individual in the same time interval, the evolution of epidemics is less favourable in the

1Version R 2.3.1 was used.
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Figure 2.2:
Behavior of epidemics with β = 0.0005, γ = 0.25 and the vaccination either ϑ0 = 0,
ϑ1 = 1(left) or ϑ0 = 300, ϑ1 = 0.2 (right). The black line describes the size of susceptibles,
the red line the size of infectives and the green line the size of removals.

former case than in the latter one in the sense that the number of removals for the first
choice is 443 in comparison with 317 for the second choice. Moreover, the maximal size
of infected individuals (35) is also in favor of the latter vaccination compared with the
former one (101).

Figure 2.3 shows how the vaccination affects the size of removals at time t = 200 and a
global maximum of infectives. The blue line describes the effect of linear vaccination, the
black line the effect of pre-vaccination.

Table 2.1 summarizes the values obtained by solving equation (2.2.2.1) for several pairs
of the coefficients ϑ0 and ϑ1. Here, we approximated x∞ and z∞ by x12500 and z12500,
respectively. The approximation should be a satisfactory one as already the values y12500

are observed to be close to zero. To get the results, we produced 12500 steps with
difference step ∆ = 0.016 (i.e. we observed the time interval (0, 200)), choosing β and
γ as before, i.e. β = 0.0005, γ = 0.25. The initial conditions were again x0 = 990 and
y0 = 10. The table lists the final values of x, y and z, i.e. the numbers of the susceptibles,
infectives and removals at time t = 200, the total number of vaccinated individuals by
the time t = 200, the size of maxima of infected individuals and the time of maxima.

Numerical results have confirmed our expectations that having determined to provide
a fixed number of vaccinations, an epidemic has a better evolution if choosing a more
robust pre-vaccination (larger ϑ0) because it decreases both the number and the global
maximum of the infected individuals (see Figure 2.3). Moreover, comparing 5th and 10th
row in Table 2.1, we can see that for the same running of epidemics (in the mean of
remained susceptibles), much less (almost one half) people need to be vaccinated in the
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Figure 2.3:
The comparison of the effect of pre-vaccination (the black line) and linear vaccination
(the blue line).

ϑ0 ϑ1 x12500 z12500 y12500 Vaccinated max. y τY
0 0 199.5697 800.4303 5.3 e− 10 0 158.6046 17.552

0 0.2 313.1946 686.8054 5.1 e− 11 137.3611 141.9416 16.848

0 0.5 432.0209 567.9791 3.1 e− 12 283.9895 123.0361 15.984

0 1 557.2330 442.7670 9.8 e− 14 442.7670 101.3385 14.832

0 2 690.4325 309.5675 1.0 e− 15 619.1350 76.0882 13.200

100 0.2 430.9243 569.0757 2.2 e− 09 213.8151 99.6202 18.752

100 0.5 530.3573 469.6427 2.3 e− 10 334.8214 86.0446 17.648

100 1 634.6346 365.3654 1.4 e− 11 465.3654 70.7635 16.192

100 2 744.7960 255.2041 3.1 e− 13 610.4081 53.3868 14.112

300 0.2 681.4626 318.5374 1.2 e− 05 363.7075 34.9557 22.896

300 0.5 736.9506 263.0494 2.8 e− 06 431.5247 30.6612 20.704

300 1 794.3346 205.6654 4.1 e− 07 505.6654 26.0612 17.952

300 2 854.0339 145.9661 2.0 e− 08 591.9322 21.1174 14.304

Table 2.1: For several choices of ϑ0 and ϑ1 the table summarizes the values of
x12500, y12500, z12500, the number of vaccinated individuals, maximum of y and τY ob-
tained from (2.2.2.1), with difference step ∆ = 0.016, β = 0.0005, and γ = 0.25 and
initial condition x0 = 990 and y0 = 10.
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ϑ1 = 0 ϑ1 = 0.2 ϑ1 = 0.5 ϑ1 = 1 ϑ1 = 2

ϑ0 = 0 800.2034 686.5820 567.7654 442.5726 309, 4061

ϑ0 = 100 568.9032 469.4815 365.2218 255.0868

ϑ0 = 300 318.4655 262.9839 205.6079 145.9184

Table 2.2: Values of z∞ for several choices of ϑ0 and ϑ1 with β = 0.0005, γ = 0.25 and
initial condition x0 = 990 and y0 = 10.

ϑ1 = 0 ϑ1 = 0.2 ϑ1 = 0.5 ϑ1 = 1 ϑ1 = 2

ϑ0 = 0 158.4516 141.7980 122.90494 101.2239 75.9957

ϑ0 = 100 99.5348 85.9673 70.6963 53.3324

ϑ0 = 300 34.9380 30.6450 26.0467 21.1049

Table 2.3: Maxima of y for several choices of ϑ0 and ϑ1 with β = 0.0005, γ = 0.25 and
initial condition x0 = 990 and y0 = 10.

case of pre-vaccination. On the other hand, we can see that while vaccination during the
time shorts the time of culmination τY , pre-vaccination makes this time higher, therefore
if we want only to short the time of culmination, it is suitable to choose vaccination
during the time (nonzero ϑ1) without pre-vaccination.

In Table 2.2, there are values of z∞, that we receive as a solution to equation (2.2.1.6)
in Example 2.1. We choose again β = 0.0005, γ = 0.25, x0 = 990 and y0 = 10 and the
vaccination which enters Table 2.1. We solved the equation by using the divising interval
method, we look for a solution in the interval [0, 1000] and we require the error to be less
then 0.001.

Comparing the values delivered by Table 2.1 with those delivered by Table 2.2, the
differences are observed to be less than 0.3.

The values of maxima of infected individuals received by the formula (2.2.1.10) in Exam-
ple 2.2 are presented by Table 2.3 choosing β, γ and the initial conditions as above.

Comparing Table 2.1 and Table 2.3, the differences are seen to be less than 0.2. Hence,
we can conclude that (2.2.2.1) provides approximations close enough to the theoretical
values.

In the last part of this chapter, we introduce how to find the ”optimal” vaccination
strategy. As it was possible to see in Figure 2.2 and Figure 2.3, different vaccination
strategies have different effects, by the mean that the number of removals, the time of
culmination and the time of the end of the epidemics are changing. Therefore, it is
natural question how to choose the suitable vaccination strategy.
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In general, we choose penalization function f and we look for the vaccination strategy
among all considered strategies which minimizes the function f . This strategy is the
optimal.

In our case, we consider linear vaccination as in Example 2.2 and choose the final time
T > 0. For simplicity, we concern only the number of removals at the time T , the number
of people, who have been vaccinated by the time T and the number of pre-vaccinated
people. The time of culmination or the time of the end of the epidemics is not important
for us. Therefore, we define a ”penalization” function by f = c∗(yT +zT )+c0∗v0 +c1∗v1,
where

• yT + zT is the number of people, who have been infected by the time T ,

• v0 is the number of people, who have been pre-vaccinated,

• v1 is the number of people vaccinated during the time interval (0, T ),

• c is a penalization for one person who was infected,

• c0, c1 are penalizations for one pre-veccinated and vaccinated person, respectively.

One possible interpretation of this penalization function can be such that c is a cost of
healing procedure for one infected individual, c0 is the cost of pre-vaccination and c1 is
the cost of vaccination during running the epidemics, therefore f is the sum of money
which were expended for healing and vaccination.

When we choose a linear vaccination ϑ(z) = ϑ0 + ϑ1 ∗ z, then it means that v0 = ϑ0

and v1 = ϑ1 ∗ zT and the vaccination strategy is uniquely represented by choice ϑ0 and
ϑ1 . Thus, if we want to find the optimal strategy, we have to find the minimum of f
dependently on ϑ0 and ϑ1 and such (ϑ0, ϑ1) represent our optimal strategy . Without
lost of generality, we can consider c = 1, hence we get f = yT + zT + c0 ∗ϑ0 + c1 ∗ϑ1 ∗ zT .
Because we look for the minimum of f numerically, we choose ϑm0 and ϑm1 and we find

min
(ϑ0,ϑ1)∈[0,ϑm0 ]×[0,ϑm1 ]

f . While the natural choice of ϑm0 is ϑm0 = n, because we can not

vaccinate more people (n is size of population), the choice of ϑm1 is more complicated.

Figure 2.4 shows a graph of a penalization function f dependently on ϑ0 and ϑ1 with two
different choices of (c0, c1). The left picture represents an interesting situation, when the
optimal choice of θ0 and θ1 is neither on the axe ϑ0 = 0 nor on the axe ϑ1 = 0. The right
one represents more common situation, when the optimal strategy lies on one of the axes
ϑ0 = 0, ϑ1 = 0.

Figure 2.5 shows the areas, where the optimal strategy is ϑ1 = 0 (area I), the opti-
mal strategy is ϑ0 = 0 (area II) and where the optimal strategy is nonzero ϑ0 and ϑ1.
Therefore, if we want to determine optimal strategy for c0 and c1 from the area I, we
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Figure 2.4:
The value of f dependently on ϑ0 and ϑ1. β = 0.3 ∗ 10−6, γ = 0.25 and initial condition
x0 = 990000 and y0 = 10000 are same for both of picture. The value c0 = 0.607 and
c1 = 0.3061 are chosen at left picture, c0 = c1 = 0.5 at the right one.

know that min
(ϑ0,ϑ1)∈[0,ϑm0 ]×[0,ϑm1 ]

f = min
(ϑ0,ϑ1)∈[0,ϑm0 ]×0

f which makes our case more easy. It is not

surprising that for fixed c1, if the cost of pre-vaccination (c0) is increasing, the optimal
pre-vaccination (ϑ0) is decreasing, and the same holds for ϑ1. The smallest value of c0

for which it is not reasonable to use pre-vaccination is c0 = 1.576 and the smallest value
of c1 is c1 = 0.838 and it is possible to say the same about c1 > 0.838c. Thus, if the pre-
vaccination costs 1.576 times more than the healing procedure, it is not reasonable (by
the mean of the optimal strategy, presented by f) to produce vaccine for pre-vaccination.
Therefore, the left picture of Figure 2.5 shows the whole reasonable area for (c0, c1).
However, since the area III is not visible in this picture, we add the right picture which
provide a better idea, how big the area III is.

To get the plots presented in Figure 2.4 and Figure 2.5, we choose T = 150, β = 0.3∗10−6,
γ = 0.25 and initial condition x0 = 990000 and y0 = 10000, thus the size of population
is 106 which is approximately the same number of people as the number of people living
in Prague. The value z150 was approximated by solving (2.2.2.1) with number of steps
2000, therefore the difference step was ∆ = 0.075. This choice of β and γ describes
the epidemics, when without any vaccination, approximately 35% people will be infected
(z150 = 347430, y150 = 135).

Even though there exists the area III, where it is optimal to use both pre-vaccination and
vaccination, this area is too narrow, so the optimal strategy for (c0, c1) ∈ III is not much
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In area I, the optimal vaccination strategy has ϑ1 = 0, in area II, has ϑ0 = 0. In area
III the optimal strategy has nonzero ϑ0 and ϑ1.

better than the optimal strategy which is given by min
(ϑ0,ϑ1)∈[0,ϑm0 ]×0

f or min
(ϑ0,ϑ1)∈0×[0,ϑm1 ]

f , (e.g.

with choice of c0 = 0.607 and c1 = 0.3061, presented by the left picture in Figure 2.4, the
optimal strategy is (ϑ0, ϑ1) = (111000, 2.34) and minimum of the penalization function
f is equal to 216464 while if we consider only pre-vaccination, we get the optimum as
ϑ0 = 219000 and minimum of f is equal to 216566 and in the case we consider only
vaccination during running the epidemics, we get optimal vaccination ϑ1 = 4.86 and
minimum of f is equal to 216550.) These differences are so small that they can be caused
by numerical deviation, therefore we can omit the existence of the area III and we can
look for the optimal strategy only on the axes ϑ0 = 0 and ϑ1 = 0.
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Chapter 3

Stochastic models

3.1 Stochastic model with migration

A stochastic version of Kermack-McKendrick model was introduced by Štěpán and Hlu-
binka in [17]. In this model the spread of an infection is the same as that one introduced
in classical Kermack-McKendrick model, but the size of population (Nt) is a martingale
which solves Engelbert-Schmidt stochastic differential equation. The model is given by
the following SDE:

dXt = −β(Xt, Yt, Zt)XtYtdt+Xtσ(Nt)dWt, X0 = x0 > 0,

dYt = β(Xt, Yt, Zt)XtYtdt− γYtdt+ Ytσ(Nt)dWt, Y0 = y0 > 0, (3.1.0.1)

dZt = γ(Nt)dt+ σ(Nt)dWt, Z0 = z0 = 0,

where Xt, Yt and Zt are stochastic processes, Xt describes the number of ”susceptibles”, Yt
denotes the number of ”infectives” and Zt is the number of ”removals”. The susceptibles-
infectives contact rate is supposed to be a nonnegative function β : R3 → R+, γ > 0
denotes a recovery rate and σ : R3 → R+ is the intensity of migration which satisfies that
supp(σ) ⊆ [a, b], where 0 ≤ a ≤ n0 ≤ b < ∞ and n0 = x0 + y0 is the size of population
at time t = 0 .

The migration affects only the size of the population, but not the proportions of the
sub-populations. Therefore, the model describes the situation, when the migration is
considered only at the area, where the epidemics is spreading homogeneously, and we
observe the situation only at some smaller sub-area.

It is obvious, that the size of population Nt = Xt + Yt + Zt is a solution to the equation
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dNt = Ntσ(Nt)dWt, N0 = n0 = x0 + y0 > 0. (3.1.0.2)

More details about this model can be found in [17].

Here we show that using the same method introduced in [17], we can prove the existence
and uniqueness theorem for a little more general model which considers β as a previsible
path functional1 from C(R+,R3)×R+ to R+. The main idea of choosing β as a functional
is to obtain a model which can describe the epidemics with nonzero incubation time.

Therefore, the model is given by the equation

dXt = −β(X., Y., Z.)XtYtdt+Xtσ(Nt)dWt, X0 = x0 > 0,

dYt = β(X., Y., Z.)XtYtdt− γYtdt+ Ytσ(Nt)dWt, Y0 = y0 > 0, (3.1.0.3)

dZt = γYtdt+ Ztσ(Nt)dWt, Z0 = z0 = 0.

We consider, as in the previous model, 0 < a ≤ n0 ≤ b < ∞, σ is bounded measure
function which satisfies that supp(σ) ⊆ [a, b] and γ > 0.

Note 4ab := {(x., y., z.) ∈ C(R+,R3) : a ≤ xt + yt + zt ≤ b and xt, yt, zt ≥ 0 ∀t ≥ 0}.
Consider that β and σ satisfy following conditions:

(i) β(x., y., z., t) is previsible path functional from C(R+,R3)× R+ to R+,

(ii) β is bounded and locally Lipschitz on 4ab, i.e. ∀N ∈ N there exists a constants
KN and K such that ∀l., l̃. ∈ 4ab which satisfy ||l||∗s ∨ ||l̃||∗s ≤ N and 0 ≤ s ≤ N , it
holds that

|β(l., s)− β(l̃., s)| ≤ KN ||l − l̃||∗s,
|β(l., s)| ≤ K,

where l. = (x., y., z.) is continuous function from R+ to R3, | · | is Euclide norm on
R3 and ||f ||∗s ≡ sup{|f(t)| : t ≤ s} is the sub-norm in C([0, s],R3),

(iii) σ is a bounded measure function on R+ which satisfies that supp(σ) ⊂ [a, b],

(iv) σ is locally Lipschitz on R+.

Theorem 3.1 Assume that β and σ satisfy conditions (i)-(iv). Then, the equation
(3.1.0.3) has a unique strong solution and arbitrary solution Lt = (Xt, Yt, Zt) is non-
negative process on (0,∞).

1The definition of the previsible path functional is possible to find on p.122 in [12].
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Proof. Let ϕ1 and ϕ2 are locally Lipschitz previsible path functionals from C(R+,R3)×R+

to R which satisfy

ϕ1(x., y., z., t) = −β(x., y., z., t) · yt,
ϕ2(x., y., z., t) = β(x., y., z., t) · xt − γ

for all (x., y., z., t) such that, a ≤ xt̃ + yt̃ + zt̃ ≤ b and xt̃, yt̃, zt̃ ≥ 0 ∀t̃ ∈ [0, t]. By using
the condition (ii), we get that ∀l., l̃. ∈ 4ab which satisfy ||l||∗s ∨ ||l̃||∗s ≤ N and 0 ≤ s ≤ N

|ϕ1(l., s)− ϕ1(l̃., s)| =|β(l̃., s)ỹs − β(l., s)ys|
=|(β(l̃., s)− β(l., s))ỹs + β(l., s)(ỹs − ys)|
≤KN ||l − l̃||∗s||ỹ||∗s +K||ỹ − y||∗s
≤(KNN +K)||l − l̃||∗s

holds, therefore the definition of ϕ1 is correct. Using the same way, we can verify the
correctness of the definition of ϕ2.

Assume the following stochastic differential equation:

dX̃t = ϕ1(X̃., Ỹ., Z̃., t)X̃tdt+ X̃tσ(Ñt)dWt, X̃0 = x0

dỸt = ϕ2(X̃., Ỹ., Z̃., t)Ỹtdt+ Ỹtσ(Ñt)dWt, Ỹ0 = y0 (3.1.0.4)

dZ̃t = γỸtdt+ Z̃tσ(Ñt)dWt, Z̃0 = 0.

Then, if we denote L̃t = (X̃t, Ỹt, Z̃t), we can rewrite the equation 3.1.0.4 by

dL̃t = b(L̃., t)dt+ a(L̃t)dBt, L̃0 = (x0, y0, 0), (3.1.0.5)

where

b(l., t) =

 b1(l., t)
b2(l., t)
b3(l., t)

 =

 ϕ1(l., t)xt
ϕ2(l., t)yt

γyt

 : R3 → R3,

a(l) =

 xσ(x+ y + z) 0 0
yσ(x+ y + z) 0 0
zσ(x+ y + z) 0 0

 : R3 →M3.

M3 denotes the space of real matrices 3×3, and Bt = (Wt,W
2
t ,W

3
t ) is a three-dimensional

Brownian motion. It is easy to verify that b(l., t) is previsible path functional

b : C(R+,R3)× R+ → R3
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and a(l) is a measurable function

a : R3 →M3.

Coefficients a(l) and b(l., t) are locally Lipschitz as σ and ϕi(l., t) are bounded and locally
Lipschitz. Moreover, it is possible to show, that for arbitrary N and 0 ≤ t ≤ N ,

|a(l)|+ |b(l., t)| ≤ CN ||l.||∗t ,

holds, where the constant CN ∈ R+ depends on N .

Using Theorem 12.1, p.132, in [12], we get the existence and uniqueness of a strong
solution to (3.1.0.5), hence the equation (3.1.0.4) has also a unique strong solution.

Now, we show that the solution (X̃t, Ỹt, Z̃t) to the equation (3.1.0.4) is nonnegative. We
show that

X̃t = x0 exp

{∫ t

0

ϕ1(X̃., Ỹ., Z̃., u)− 1

2
σ2(Ñu)du+

∫ t

0

σ(Ñu)dWu

}
> 0

almost surely.

Denote Ut :=
∫ t

0
ϕ1(X̃., Ỹ., Z̃., u)− 1

2
σ2(Ñu)du, Vt :=

∫ t
0
σ(Ñu)dWu, and

X̂t = xo exp {Ut + Vt} and using Itô formula, Theorem 17.18, p.340, in [7] we get

dX̂t = x0 exp {U + V }
(
dUt + dVt +

1

2
d〈U〉t +

1

2
〈V 〉t + 〈U, V 〉t

)
= X̃t(dUt + dVt + d〈V 〉t) = X̃t(ϕ1(X̃., Ỹ., Z̃., t)dt+ σ(Ñt)dWt),

therefore, X̂t is a solution to the first equation of (3.1.0.4) and from the uniqueness of
the equation, we get X̃t = X̂t a.s. In the same way, we can verify that

Ỹt = y0 exp

{∫ t

0

ϕ2(X̃., Ỹ., Z̃., u)− 1

2
σ2(Ñu)du+

∫ t

0

σ(Ñu)dWu

}
> 0 a.s.

Now, denote Ut :=
∫ t

0
γỸudu, Vt :=

∫ t
0
σ(Ñu)dWu, St := exp

{
Vt − V0 − 1

2
〈V 〉t

}
and

Rt :=
∫ t

0
S−1
u dUu−

∫ t
0
S−1
u d〈U, V 〉u. Then using Theorem 2.2.13, p.292, in [5], we get that

Ẑt := StRt is a solution to the equation

Ẑt = Ut +

∫ t

0

ẐudVu =

∫ t

0

γỸudu+

∫ t

0

Ẑuσ(Ñu)dWu. (3.1.0.6)
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Because the equation (3.1.0.6) corresponds to the third equation of (3.1.0.4) which has a
unique strong solution then Z̃t = Ẑt almost surely. Therefore

Z̃t =Ẑt = StRt = exp

{
Vt − V0 −

1

2
〈V 〉t

}
·
∫ t

0

S−1
u dUu

= exp

{
Vt −

1

2
〈V 〉t

}
·
∫ t

0

exp

{
−Vu +

1

2
〈V 〉u

}
γỸudu

= exp

{∫ t

0

σ(Ñu)dWu −
1

2

∫ t

0

σ2(Ñu)du

}
·

·
∫ t

0

exp

{
−
∫ u

0

σ(Ñw)dWw +
1

2

∫ u

0

σ2(Ñw)dw

}
· γỸudu,

holds almost surely, hence X̃t, Ỹt, Z̃t > 0 a.s. ∀t ≥ 0.

Note 4ab := {(x, y, z) ∈ [0, b]3, a ≤ x + y + z ≤ b} and define τ := inf{t > 0 : L̃t 6∈ 4ab}
the time of the first exit of L̃ = (X̃, Ỹ , Z̃) from the set 4ab. Then we get

X̃t∧τ = x0 +

∫ t∧τ

0

−β(X̃., Ỹ., Z̃., u)X̃uỸudu+

∫ t∧τ

0

X̃uσ(Ñu)dWu

= x0 +

∫ t∧τ

0

ϕ1(X̃., Ỹ., Z̃., u)X̃udu+

∫ t∧τ

0

X̃uσ(Ñu)dWu

Ỹt∧τ = y0 +

∫ t∧τ

0

(
β(X̃., Ỹ., Z̃., u)X̃uỸu − γỸu

)
du+

∫ t∧τ

0

Ỹuσ(Ñu)dWu

= y0 +

∫ t∧τ

0

ϕ2(X̃., Ỹ., Z̃., u)Ỹudu+

∫ t∧τ

0

Ỹuσ(Ñu)dWu

Z̃t∧τ = γ

∫ t∧τ

0

Ỹudu+

∫ t∧τ

0

Z̃uσ(Ñu)dWu.

From the existence of the unique solution to (3.1.0.4), we get the existence of the unique
solution to (3.1.0.3) in the time interval [0, τ).

It remains to prove, that τ = ∞ almost surely. Let us suppose that there exists a time
t > 0 such that Ñt > b and denote τb the time of the last enter of the process Ñ to b on
[0, t], i.e. τb := sup{s ≥ 0 : Ñs = b}, then

Ñt = n0 +

∫ t

0

Ñuσ(Ñu)dWu = b+

∫ t

τb

Ñuσ(Ñu)dWu

= b+

∫ t

τb

0dWu = b a.s.,

therefore, Ñt ≤ b ∀t ≥ 0 a.s. In the same way, we get Ñt ≥ a ∀t ≥ 0 a.s., hence
a ≤ Ñt ≤ b ∀t ≥ 0 a.s. Because moreover X̃t, Ỹt, Z̃t > 0 ∀t ≥ 0 a.s., we get τ = ∞ a.s.
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Remark 3.1 When we consider β in one of the following forms

β ∈ R+, β ∈ C(R,R+), β ∈ C(R3,R+), β ∈ C(R3 ×R+,R+),

we can rewrite them to the functional form and thus, the previous theorem may be applied
to all these choices of β.

In the model described by (3.1.0.1), the number of the newly infected people at time t
depends only on the state at time t, but in fact, the number of newly infected people
can depend also on the size of X, Y , Z during some time period before the time t. The
choice of β as a functional allows us to describe the situations when the disease has longer
incubational time period during which the disease can burn up.

Example 3.1 Consider a disease which has the incubation time period of the length t̃.
It means that during this time period, the disease can burn up with constant intensity.
Then a possible choice of the coefficient β(.) is

β(x., y., z., t) = C

∫ t

t−et
xuyu

(xu + yu + zu)2
du.

Choosing such a coefficient β(.), the number of newly infected people at time t depends
on the size of Xt and Yt and on the size of the rates X

N
and Y

N
for the whole time period

(t− t̃, t).

Another possible choices of β(.) are

β(x., y., z., t) = C

∫ t

t−t̃

yu
xu + yu + zu

du,

β(x., y., z., t) = C

∫ t

t−t̃
yudu.

It is possible to check that all the introduced choices of β satisfy the conditions (i) and
(ii).

Remark 3.2 It seems that for example the choice of drift at the form
∫ t
t−t̃ βXsYsds in-

stead of β(X., Y., Z., t)XtYt could be also suitable. However, even though the equation with
this drift has a unique solution, the solution does not need to be nonnegative, therefore it
is not reasonable to consider any more general drift than β(X., Y., Z., t)XtYt .
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3.2 Stochastic models with vaccination

In the first part of this chapter, we presented the stochastic version of Kermack-McKend-
rick model, where the stochastic part simulates the effect of migration, therefore it does
not affect the spread of epidemics, but affects only the size of population.

Now, we introduce a stochastic version of Kermack-McKendrick model or more precisely,
a more general stochastic version of the model described by (2.2.0.2), where the stochastic
part has a significant effect to spread of the epidemics. We take the deterministic part
from (2.2.0.2) and choose the diffusion coefficient as a square root of the trend coefficient.
Then the model is described by following stochastic differential equation:

dXt = −β(Zt)Yt[Xt − ϑ(Zt)]dt+
√
β(Zt)Yt[Xt − ϑ(Zt)]dW

1
t ,

dYt = β(Zt)Yt[Xt − ϑ(Zt)]dt− γYtdt−
√
β(Zt)Yt[Xt − ϑ(Zt)]dW

1
t +

√
γYtdW

2
t ,

(3.2.0.7)

dZt = γYtdt−
√
γYtdW

2
t

in the time interval [0, τ). Here τ is the first time, when either no one is infected or all
susceptibles are vaccinated. It means that τ := min{τX , τY }, where τY is a stopping
time of the first entry of the process Y to zero, i.e. τY = inf{t ≥ 0, Yt = 0}, and τX

is a stopping time defined by τX = inf{t ≥ 0, Xt = ϑ(Zt)}, meaning that τX is the
first time, when there are no susceptibles which are not vaccinated. As well as in the
previous model, Xt is the number of susceptible, Yt the number of infectives, Zt the
number of removals and the size of population N is constant. Further, we consider β to
be a continuous function from R to R+, ϑ a nondecreasing continuous function from R
to R+, γ > 0 and Wt = (W 1

t ,W
2
t ) is a Wiener process satisfying that W 1 and W 2 are

independent. We also assume initial conditions X0 = x0 > 0, Y0 = y0 > 0, Z0 = z0 ≥ 0.
The interpretation of β, γ and ϑ is the same as that one introduced in the deterministic
model with vaccination.

A heuristic interpretation of the choice of the stochastic part as the square root of the
deterministic one is following. Assume that the size of population is large and that every
non-vaccinated susceptible can be infected with the same probability. Then the number of
newly infected people in time interval [t, t+ ∆], where ∆ > 0 is small, has approximately
Poisson distribution with parameter λ = Yt[Xt − ϑ(Zt)]∆. Because the variance of the
Poisson distribution is equal to λ, we choose the diffusion coefficient so that the variance
of the number of newly infected people on the interval [t, t+∆] is approximately equal to
λ. This leads us to choose the diffusion coefficient as introduced in the equation (3.2.0.7).

The model is defined only on the interval [0, τ), because after the time τ the situation is
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not interesting. However, if we need a model defined on the whole time interval [0,∞),
we can define the model after a time τ as follows.

In the time interval [τ, τY ) (if it is nonempty), the model is given by the following SDE:

dXt = 0,

dYt = −γYtdt+
√
γYtdW

2
t , (3.2.0.8)

dZt = γYtdt−
√
γYtdW

2
t ,

with initial conditions Yτ = Yτ− , Zτ = Zτ− and Xτ = Xτ− . Consequently Xt = Xτ− for
all t ≥ τ .

And finally, in the time interval [τY ,∞), we set Xt = Xτ− , Yt = YτY− and Zt = ZτY− .

It means that the process described by this model arises by joining the solution of (3.2.0.7)
with the solution of (3.2.0.8) in the point (τ,Xτ− , Yτ− , Zτ−) and by joining the solution of
(3.2.0.8) with the process Lt = (Xτ− , YτY− , ZτY− ) in the point (τY , Xτ− , YτY− , ZτY− ).

For the equation (3.2.0.7), we can say the following theorem about the existence of the
solution.

Theorem 3.2 Let ϑ be a continuous function from R to R+ and β a continuous, bounded
function from R to R+. Then there exists a stopping time τ̃ such that the equation
(3.2.0.7) has a weak solution in the time interval (0, τ̃).

Furthermore, let Lt be a solution to (3.2.0.7) and denote τN the stopping time of the first
exit of process L from the set [0, N ]3. Then we can choose τ̃ such that τN ≤ τ̃ a.s.

Proof. The equation (3.2.0.7) can be rewritten to the form

dLt = b(t, L)dt+ σ(t, L)dWt, (3.2.0.9)

where Wt = (W 1
t ,W

2
t )′, L = (X, Y, Z)′,

b(t, l) = b(lt) =

 −β(zt)yt[xt − ϑ(zt)]
+β(zt)yt[xt − ϑ(zt)]− γyt

+γyt


and

σ(t, l) = σ(lt) =

 +
√
β(zt)yt[xt − ϑ(zt)]+ 0

−
√
β(zt)yt[xt − ϑ(zt)]+ +

√
γyt

0 −√γyt

 .
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Let K > N and denote lKbound = ((x ∨ −K) ∧K, (y ∨ −K) ∧K, (z ∨ −K) ∧K).

Consider the equation

dL̃ = b̂(t, L̃)dt+ σ̂(t, L̃)dWt, (3.2.0.10)

with initial condition L̃0 = (x0, y0, z0), where b̂(t, l) = b(t, lKbound) and
σ̂(t, l) = σ(t, lKbound).

Denote â = σ̂σ̂′ and consider σ̂ to be a bounded, progressive function such that for all
t ∈ R+, σ̂(t, .) is continuous on C(R+,R3). Consequently, â is a bounded, progressive
function such that â(t, .) is a continuous function on C(R+,R3) for all t ∈ R+.

Consider b̂ to be a bounded, progressive function such that b̂(t, .) is bounded for an
arbitrary t ∈ R+. Then from Theorem 21.9, p.419, in [7], we have a solution Pδel0 of the

martingale problem (â, b̂) with initial distribution δel0 , i.e. l̃0 = (x0, y0, z0) a.s.

Using the Theorem 21.7, p.418, in [7], we get the existence of a weak solution to the
equation (3.2.0.10).

Because the initial conditions of equations (3.2.0.9) and (3.2.0.10) are equal to each other,
σ̂(t, L) = σ(t, L) and b̂(t, L) = b(t, L) for Lt ∈ [−K,K]3. Denote τK the first exit of the
solution to (3.2.0.10) from the set [−K,K]3. Then the solution to the equation (3.2.0.10)
in the time interval (0, τK) is also a solution to the equation (3.2.0.9) in the time interval
(0, τK). Because K > N , then τK ≥ τN .

In the previous model, there are problems with the behavior of the processes Y and Z
in the neighborhood of zero and with the behavior of the process X in the situation,
where X is close to ϑ(Z), because in these cases, the diffusion coefficients are not Lip-
schitz. Moreover, it is possible that Zt < 0 for some t > 0 which is not very realistic.
Consequently, we can not use any standard theorem about existence and uniqueness of a
solution.

However, we can easily modify this model and remove these problems by changing the
diffusion coefficient in the neighborhood of zero as follows.
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For the same ε > 0, define the functions g(z) and h(z) by

g(z) = 1 z 6∈ (−ε, ε),

=
|z|
ε

z ∈ (−ε, ε),

h(z) = 1 z 6∈ (−2ε, 2ε),

=

(
|z| − ε
ε

)2

z ∈ (−2ε,−ε) ∪ (ε, 2ε),

= 0 z ∈ [−ε, ε].

The equation (3.2.0.7) will be modified to the equation

dXt =− β(Zt)Yt[Xt − ϑ(Zt)]dt+
√
β(Zt)Yt[Xt − ϑ(Zt)]g(β(Zt)Yt[Xt − ϑ(Zt)])dW

1
t ,

dYt =β(Zt)Yt[Xt − ϑ(Zt)]dt− γYtdt+
√
γYtg(Yt)h(Zt)dW

2
t (3.2.0.11)

−
√
β(Zt)Yt[Xt − ϑ(Zt)]g(β(Zt)Yt[Xt − ϑ(Zt)])dW

1
t ,

dZt =γYtdt−
√
γYtg(Yt)h(Zt)dW

2
t ,

and (3.2.0.8) will be modified to

dXt = 0,

dYt = −γYtdt+
√
γYtg(Yt)h(Zt)dW

2
t , (3.2.0.12)

dZt = γYtdt−
√
γYtg(Yt)h(Zt)dW

2
t ,

where β, γ, ϑ, Wt, τ , τY and τX are defined as above.

Denote L1 = (X1, Y 1, Z1) a solution to (3.2.0.11) with the same initial conditions as in
(3.2.0.7), and denote L2 = (X2, Y 2, Z2) a solution of (3.2.0.12) with the initial condition
L2
τ = (X2

τ , Y
2
τ , Z

2
τ ) = L1

τ− . Let L be defined by

Lt = (Xt, Yt, Zt) = L1
t , t ∈ (0, τ),

= L2
t , t ∈ [τ, τY ), (3.2.0.13)

= (X1
τ− , Y

2
τY−
, Z2

τY−
), t ∈ [τY ,∞).

Then for the process L, it is possible to prove the following theorem about the existence,
uniqueness and behavior of the process L.

Theorem 3.3 Let β and ϑ be measurable, Lipschitz, bounded functions from R to R+.
Then
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(i) if L is defined by (3.2.0.13), then L is a continuous process which satisfies that
Lt ∈ [0, N ]3 for all t ∈ R+, where N = x0 + y0 + z0;

(ii) for any set-up (Ω,Ft, P,W ), there exists exactly one semimartingale L defined
by (3.2.0.13). It means, that if there exists another semimartingale L̃ satisfying
(3.2.0.13), then P [Lt = L̃t,∀t] = 1;

(iii) Xt is a Ft−supermartingale, Zt is a Ft−submartingale;

(iv) all the limits X∞, Y∞ and Z∞ exist.

Proof.

(i) Continuity of the process L follows from continuity of solutions to (3.2.0.11) and
(3.2.0.12). Because x0 and y0 are positive, Xt and Yt are continuous and we stop
the processes Xt and Yt in zero, therefore the processes Xt and Yt are nonnegative.

Let Zt = 0 for some time t. Then Zs = 0 +
∫ s
t
γYudu ≥ 0 for all s ∈ (t, τ tε ),

where τ tε = inf{s > t;Zs ≥ ε}, and therefore Zt is nonnegative. Moreover, because
dXt + dYt + dZt = 0 and therefore Xt + Yt + Zt = N , we get (i).

(ii) First, we prove the existence and uniqueness of a solution to (3.2.0.11). Rewrite
(3.2.0.11) to the form:

dLt = b(Lt)dt+ σ(Lt)dWt, (3.2.0.14)

where

b(l) =

 −β(z)y[x− ϑ(z)]
+β(z)y[x− ϑ(z)]− γy

+γy


and

σ(l) =

 +
√
β(z)y[x− ϑ(z)]g(β(z)y[x− ϑ(z)]) 0

−
√
β(z)y[x− ϑ(z)]g(β(z)y[x− ϑ(z)]) +

√
γyg(y)h(z)

0 −
√
γyg(y)h(z)

 .

Let K > N and denote lKbound = ((x ∨ −K) ∧K, (y ∨ −K) ∧K, (z ∨ −K) ∧K).

Consider the equation

dL̃ = b̂(L̃)dt+ σ̂(L̃)dWt (3.2.0.15)

with initial condition L̃0 = (x0, y0, z0), where b̂(l) = b(lKbound) and σ̂(l) = σ(lKbound).

Because the functions β, ϑ,
√
zg(z) and

√
h(z) are Lipschitz, b̂ and σ̂ are also

Lipschitz and we can apply the theorem 11.2, p.128, in [12] from which we get that
the equation (3.2.0.15) has a pathwise unique strong solution.
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From the fact that σ̂(l) = σ(l) and b̂(l) = b(l) for l ∈ [−K,K]3 follows the existence
and pathwise uniqueness of a strong solution to (3.2.0.14) in thetime interval (0, τK),
where τK = inf{t > 0;Lt 6∈ [−K,K]3}. But because K > N , then from (i) we get
τK > τ , and therefore we have the existence and pathwise uniqueness of a strong
solution to (3.2.0.14) in the time interval (0, τ ].

In a similar way, we can prove the existence and pathwise uniqueness of a strong
solution to (3.2.0.12).

The existence and uniqueness of L follows from existence and uniqueness of solutions
to (3.2.0.11) and (3.2.0.12).

(iii) Let s ∈ (0, τ), t > s, and denote f 1(x, y, z) = β(z)y[x − ϑ(z)] and f 2(x, y, z) =√
f 1(x, y, z)g(f 1(x, y, z)). Then

E[Xt|Fs] = E

[
x0 −

∫ t∧τ

0

f 1(Xu, Yu, Zu)du +

∫ t∧τ

0

f 2(Xu, Yu, Zu)dW
1
u

∣∣∣∣Fs]
= Xs + E

[
−
∫ t∧τ

s

f 1(Xu, Yu, Zu)du+

∫ t∧τ

s

f 2(Xu, Yu, Zu)dW
1
u

∣∣∣∣Fs]
= Xs + E

[
−
∫ t∧τ

s

f 1(Xu, Yu, Zu)du

∣∣∣∣Fs] ≤ Xs a.s.,

because f 1(Xu, Yu, Zu) ≥ 0 for u ∈ (0, τ). If s ≥ τ , then Xs = Xτ = Xt, and
therefore X is a Ft−supermartingale.

If we use the same procedure for Zt with f 1(x, y, z) = γy and
f 2(x, y, z) =

√
γyg(y)h(z), we get that Zt is a Ft−submartingale.

(iv) Because Xt is a continuous bounded Ft−supermartingale, and Zt is a continuous,
bounded Ft−submartingale, we get from Theorem 69.1, p.176, and Theorem 70.2,
p.177, in [11], that the limits X∞ and Z∞ exist. The existence of Y∞ follows
immediately from the relation Yt = N − Xt − Zt together with the existence of
limits X∞ and Z∞.

Such a modification of the coefficients as introduced in (3.2.0.11) could seem to be un-
natural. The most suitable stochastic version of the model with vaccination seems to be
the model given be SDE:

dXt =− β(Zt)Yt[Xt − ϑ(Zt)]I[Xt>ϑ(Zt),Yt>0]dt+
√
β(Zt)Yt[Xt − ϑ(Zt)]I[Xt>ϑ(Zt),Yt>0]dWt,

dYt =β(Zt)Yt[Xt − ϑ(Zt)]I[Xt>ϑ(Zt),Yt>0]dt (3.2.0.16)

− γYtdt−
√
β(Zt)Yt[Xt − ϑ(Zt)]I[Xt>ϑ(Zt),Yt>0]dWt,

dZt =γYtdt,
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where the diffusion coefficient affects only the spread of the infection, but not recovering.
We assume initial conditions X0 = x0 > 0, Y0 = y0 > 0, Z0 = z0 ≥ 0, Wt is a Brownian
motion and β, γ and ϑ are the same as in the previous models.

For this model, it is possible to prove that the solution (Xt, Yt, Zt) never exits the cube
[0, N ]3, Xt is a non-negative supermartingale with Xt = 0 for all t ≥ τX , the limits X∞
and Y∞ exist and Y∞ = 0 a.s. Further, if we consider β and ϑ to be Lipschitz continuous,
we can prove that the equation (3.2.0.16) has a unique solution which satisfies

Xt = Xτ for all t ≥ τ,

Yt = YτXe
−γ(t−τX) for all t ≥ τX ,

Yt = 0 for all t ≥ τY .

All these results will be formulated in the last section of this chapter for more general
model.

If we look back to the heuristic idea of the choice of diffusion coefficient, it seems that
the effect of this coefficient should be weaker for bigger population and stronger for
smaller one. Let us now to study this effect. Consider for simplicity a model without
vaccination, i.e. ϑ = 0, and constant suscepribles-infectives contact rate β. Further,
assume that (Xt, Yt, Zt) is a solution to (3.2.0.16) and denote (X̃t, Ỹt, Z̃t) =

(
Xt
N
, Yt
N
, Zt
N

)
the process of ratios of the sub-populations. For simpler notation, we consider t < τ ,
where τ is the first time such that Xt = 0 or Yt = 0. Then, we get

X̃t =
x0

N
−
∫ t

0

βN

[
Xs

N

Ys
N

]+

ds+

∫ t

0

√
β

[
Xs

N

Ys
N

]+

dWs

= x̃0 −
∫ t

0

β̃[X̃sỸs]
+ds+

∫ t

0

√
β̃

N
[X̃sỸs]+dWs,

where β̃ = βN . In the same way, we can write the equations for Ỹt and Z̃t. If we look
at these equations, we can see that the process (X̃t, Ỹt, Z̃t) does not solve the equation
(3.2.0.16), because the diffusion coefficient is

√
N -times smaller than it should be in

comparison with the trend coefficient. This fact may be interpreted so that with growing
size of population, the effect of diffusion becomes weaker. In Figure 3.4 and Figure 3.5,
we can see the effect of diffusion in dependence on the size of the population.

3.2.1 Simulations

In this section, we show a few simulations of the models from the previous section. We
compare the model described by (3.2.0.7) to its modification given by (3.2.0.11) and we
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Figure 3.1:
Behavior of epidemics with β = 0.0005, γ = 0.25 and the vaccination ϑ = 0 for the
model given by (3.2.0.7) (left) and the model given by (3.2.0.11) (right). The black line
describes the size of susceptibles, the red line the size of infectives and the green line the
size of removals.

show a possible way how to establish the optimal vaccination strategy for the model
defined by (3.2.0.16).

Simulations were produced by using explicit Euler method (see p.247 in [8]). All compu-
tations and graphic results were produced by software R.2

First, we show the behavior of the models given by (3.2.0.7) and (3.2.0.11). For these
simulations, we choose β = 0.0005, γ = 0.25, initial conditions x0 = 990, y0 = 10,
vaccination function ϑ = 0 and ε = 0.01. The length of the observation time period is
equal to 80 because the epidemics with β = 0.0005 and γ = 0.25 has short running. The
number of simulations is 5000 and the number of steps of Euler method is 2000.

Figure 3.1 shows five realizations of the model (3.2.0.7) (left picture) and the model
(3.2.0.11) (right picture). It is possible to see that the behavior of both these models is
very similar as we expected.

Figure 3.2 shows the density of maximum of infectives (left picture) and the density of
culmination time (right picture), where the solid line describes the density for the model
(3.2.0.7) and the dashed line the density for the model (3.2.0.11).

Left picture in Figure 3.3 shows the density of removals at time t = 80 which is approxi-
mately equal to the number of people infected till the time t = 80. There the solid line
describes the density for the model (3.2.0.7) and the dashed line the density for the model

2Version R 2.3.1 was used.
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Figure 3.2:
The densities of maximum of Y (left) and of the time of culmination (right), solid line is
used for the model (3.2.0.7), dashed line for the model (3.2.0.11).

(3.2.0.11). The right picture then shows the difference between the expected values of
respective susceptibles, infectives and removals in the models (3.2.0.7) and (3.2.0.11).

As we can see in Figure 3.1, Figure 3.2 and Figure 3.3, the modified model (3.2.0.11) and
the model (3.2.0.7) have very similar behavior. Therefore we can say that the modification
which ”improve” the theoretical properties of the model (3.2.0.7) does not change its
behavior significantly.

Now, we examine the model given by (3.2.0.16). In the previous section, we have shown
that the effect of diffusion depends on the size of population. Now, let us study, how
strong is the effect for some choices of the size of population. As well as before, we choose
γ = 0.25, β = 0.5/N , vaccination function ϑ = 0, time interval (0, 80), 5000 simulation
and the number of steps equal to 2000.

Figure 3.4 shows the expected value of the solution to (3.2.0.16) (solid line) and the
solution to equation (2.2.0.2) which describes the deterministic model with vaccination.
Left picture shows the situation for the size of population equal to 100, the right one for
the size of population N = 1000. We can see that while for the smaller size, the difference
between the expected value and the solution to the deterministic model is essential (the
stochastic model has milder running), the difference for bigger population is negligible.

Figure 3.5 shows five realizations of the model (3.2.0.16) (dashed lines) and its expected
value (solid line) for the size of population N = 1000 (left picture) and N = 100000 (right
picture). As we can see from the plots, for the populations of the size N = 1000, the
effect of randomness is significant, therefore it can be useful to use the stochastic model.
On the other hand, the influence of randomness for the size of population N = 100000 is
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Figure 3.3:
Density of Z80 for the model (3.2.0.7) (solid line) and the model (3.2.0.11) (dashed line)
(left picture), and the difference of the expected values of models (3.2.0.7) and (3.2.0.11)
(right picture). The black line describes the size of susceptibles, the red line the size of
infectives and the green line the size of removals.
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Figure 3.4:
Behavior of expected value of model (3.2.0.16) (solid line) and the deterministic model
(dashed line). Left picture displays the situation with N = 100, the right one with
N = 1000. On both the pictures, the black line describes the size of susceptibles, the red
line the size of infectives and the green line the size of removals.
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Figure 3.5:
Five realizations of the model (3.2.0.16) (dashed line) and expected value (solid line).
Left picture displays the situation with N = 1000, the right one with N = 105. On
both the pictures, the black line describes the size of susceptibles, the red line the size of
infectives and the green line the size of removals.

very small (meaning that all the realizations are similar) and when we choose N = 106,
it is difficult to distinguish one realization from another. It means that for larger size of
population, the stochastic model gives the same result as the deterministic one, hence it
is not reasonable to use it.

At the last part of this section, we will present one possible way how to find the optimal
vaccination strategy. We will choose a penalization function and define the optimal
vaccination strategy as a strategy for which the penalization function is minimal. The
choice of the penalization function follows from the same idea as described in Section
2.2.2, therefore we choose

f = E[c ∗ (YT + ZT ) + c0 ∗ v0 + c1 ∗ V1 + c2 ∗ Tep], (3.2.1.1)

where c, c0, c1 and v0 has the same meaning as the corresponding coefficients described
in Section 2.2.2, and moreover

• YT + ZT is the number of people, who have been infected by the time T ,

• V1 is the number of people vaccinated during the time interval (0, T ),

• Tep it the length of the time period (or sum of separated periods), when the number
of infectives is being greater than some chosen bound,

• c2 is a penalization for one time unit in which the number of infected people gets
over the chosen bound.
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The interpretation of Tep and c2 is the following. When the number of infectives overgrows
some bound, it is necessary to do some general equipments (like closing schools etc.).
Value c2 is the loss per each day, when it is needed to keep these equipments, and Tep is
the total number of these days. Thus, f may be interpreted as an expected value of the
loss caused by the disease and optimal strategy is that one which minimizes this loss.

Because it is very difficult to compute the expected value from (3.2.1.1), we use simu-
lations to get an approximate value of f . In our case, we look for the optimal linear
vaccination as described in Section 2.2.2., i.e. ϑ(z) = ϑ0 +ϑ1 ∗ z, and therefore, for given
initial conditions and given c0, c1, c2 and T , we can consider the penalization function f
to be a function of (ϑ0, ϑ1), i.e.

f(ϑ0, ϑ1) = E[c ∗ (YT + ZT ) + c0 ∗ ϑ0 + c1 ∗ ϑ1 ∗ ZT + c2 ∗ Tep.

Then the optimal vaccination strategy is given by (ϑ0, ϑ1) = arg min f(ϑ0, ϑ1).

Figure 3.6 shows the approximate value of f for two different choices of c, c0, c1 and c2,
the first one is c = 1, c0 = 0.3, c1 = 0.4 and c2 = 0.5 (left picture), the second one is
c = 1, c0 = 0.6, c1 = 0.304 and c2 = 0 (right picture). In both cases, we choose the size
of population N = 1000, β = 0.3 ∗ 10−3, γ = 0.25, T = 150, x0 = 990, y0 = 10. The
number of simulations as well as the number of steps of Euler method is 1000. The first
choice represents more common situation, when the optimal strategy satisfies that either
ϑ0 = 0 or ϑ1 = 0. In this situation, we do not need too much simulation to establish the
optimal vaccination. In the second case, the situation is more complicated, because the
plot of f is not smooth enough to establish the optimal vaccination strategy. In these
situations, we need more simulations which could have high computational complexity.
On the other hand, although in this situation we can get the optimal strategy which is
not close enough to the real optimal strategy, the effect of this strategy, in meaning of
the penalization function f , is close to the effect of the real optimal strategy. So we get
the strategy which is nearly as good as the real one.

3.3 Model with multiple pathogens

In this section, we present a model with multiple pathogens which was introduced by Allen
and Kirupaharan in [1]. The models with multiple pathogens are suitable for example
for modelling the spread of influenza, HIV-AIDS or malariri. This model assumes that
nobody is infected by two or more pathogen strains and somebody infected by some
pathogen strain is immune for the other pathogen strains. This situation is called the
cross immunity. As we want to model the disease such as AIDS, the observation time
interval is long, therefore it is necessary to add births and deaths to the model. Then the
size of population is not constant. Moreover, we suppose that everyone, who have been
infected by some pathogen can not be recovered.
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Figure 3.6:
Penalization function f = E[Z150 + 0.3 ∗ ϑ0 + 0.4 ∗ ϑ1 ∗Z150 + 0.5 ∗ Tep] (left picture) and
f = E[Z150 + 0.6 ∗ ϑ0 + 0.304 ∗ ϑ1 ∗ Z150] (right picture).

Therefore, we consider a model of epidemics with unstable size of the population Nt

and suppose the population being divided into d + 1 sub-populations: Xt is the size of
susceptibles and Y j

t , j = 1, ..., d, is the size of population which is infected by the j-th
pathogen strain j = 1, ..., d. We consider the end of epidemics as the stopping time
τf when some of processes Xt, Y

j
t enters to zero or to Nb, where Nb > N0 is a chosen

(constant) upper bound for the size of population. The first condition means that there
are no people who can be infected or that some pathogen strain has finished, so we
stop the model. The second condition means that the size of population overgrows some
reasonable bound. The model is given by the following (d + 1)-dimensional stochastic
differential equation:

dXt = Xt

(
b− d(Nt)−

d∑
k=1

βkY
k
t

Nt

)
dt+

d∑
k=1

bkY
k
t dt+

d+1∑
k=1

B1.k(Lt)dW
k
t ,

dY j
t = Y j

t

(
b− bj − d(Nt)− αj +

βjXt

Nt

)
dt+

d+1∑
k=1

Bj+1.k(Lt)dW
k
t , j = 1, . . . , d,

(3.3.0.2)

for t ∈ (0, τf ), with initial condition X0 = x0 > 0, Y 1
0 = y1

0 > 0,. . .,Y d
0 = yd0 > 0

where b is the per capita birth rate, the function d(.) is the per capita death rate, and
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for j = 1, . . . , d, bj ≤ b is the birth rate of health offspring to parents infected by j-th
pathogen, αj is the j-th pathogen-related per capita death rate, and βj is the transmission
rate for j-th pathogen. Therefore (b−bj)/b is possible to be interpreted as the probability
that the parent infected by the j-th pathogen will have infected offspring. In other words
(b − bj)/b is a probability of vertical transmission for j-th pathogen strain. Further,
W k
t , k = 1, ..., d+1, are independent Wiener processes, Lt = (Xt, Y

1
t , ..., Y

d
t ) and B(Lt) =√

C(Lt), where C(Lt) is a (d+ 1)× (d+ 1)-matrix which is symmetric, positive definite
and is defined by

C(Lt) =


0 σ1.2(Lt) · · · σ1.d+1(Lt)

σ2.1(Lt) 0 · · · 0
...

...
. . .

...
σd+1.1(Lt) 0 · · · 0

+ diag(σ11(Lt), . . . , σd+1,d+1(Lt)),

where

σ1.1(Lt) = X

(
b+ d(N) +

d∑
k=1

βkY
k

N

)
+

d∑
k=1

bkY
k,

σj+1.j+1(Lt) = Y j

(
b− bj + d(N) + αj + βj

X

N

)
, j = 1, ..., d,

σ1.j+1(Lt) = −βj
XY j

N
= σj+1.1, j = 1, ..., d.

Matrix C(Lt) is the covariance matrix for the change in the population sizes. For
j, k = 2, ..., d, the coefficients σ1,k(Lt) describe the interaction between Xt and Y k−1

t

and σj,k(Lt) = 0 for j 6= k because of the cross immunity. It can be proved that C(Lt) is
strictly positive definite if and only if X, Y j > 0 and b, d(N), b− bj, αj > 0 holds. Under
these conditions C(Lt) is positive definite, and therefore it has a unique positive definite
square root matrix B(Lt).

For this model, it is possible to prove the following theorem on the existence and unique-
ness of a solution to (3.3.0.2).

Theorem 3.4 Let d(.) is a bounded local Lipschitz function and b, d(N), b− bj, αj > 0.
Then there exists a stopping time τ , such that the equation (3.3.0.2) has a unique solution
for t ∈ (0, τ). If Lt = (Xt, Y

1
t , ..., Y

d
t ) is a solution to (3.3.0.2), a possible choice of τ is

τ = τf , where τf is described above.

Proof. The equation (3.3.0.2) can be rewritten as

dLt = a(Lt)dt+B(Lt)dWt, (3.3.0.3)

where Wt = (W 1
t , ...,W

d+1
t ), a(Lt) = (a1(Lt), ..., a

d+1(Lt)) and
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a1(Lt) = Xt

(
b− d(Nt)−

d∑
k=1

βkY
k
t

Nt

)
+

d∑
k=1

bkY
k
t ,

aj(Lt) = Y j
t

(
b− bj − d(Nt)− αj +

βjXt

Nt

)
, j = 2, .., d+ 1.

Let 1 > ε > 0. Denote l̂ = ((l1∨ε)∧Nb, ..., (ld+1∨ε)∧Nb) for some vector l = (l1, . . . , ld+1).
Define a map Ĉ : Rd+1

+ → Md+1×d+1 so that Ĉ(l) = C(l̂). Then Ĉ(l) is everywhere
strictly positive definite, and from Theorem 12.12, p.134, in [12], the map B̂ := Ĉ

1
2 is

local Lipschitz. Thus, for all N there exists KN such that

|B̂(l)− B̂(l̃)| ≤ KN |l − l̃| (3.3.0.4)

holds for all l, l̃ satisfying |l|, |l̃| ≤ N , where |B̂(l)| ≡
√

trace(B̂(l)B̂(l)T ) and |l| is
Euclidean norm of l.

Because for all j = 1, ..., d+1, aj(l) are local Lipschitz, we get that a(l) is local Lipschitz,
and so for all N , there exists KN such that

|a(l)− a(l̃)| ≤ KN |l − l̃| (3.3.0.5)

holds for all l, l̃ satisfying |l|, |l̃| ≤ N .

Since d(.) ≤ Kdeath for some Kdeath <∞, then

|a(l)| ≤

√√√√( d∑
k=1

(βk + bk) + b+Kdeath

)2

+
d∑

k=1

(b− bk +Kdeath + α + β)2|l| ≤ K|l|

(3.3.0.6)

holds for some K <∞.

Now, we show that bi.j are bounded for all i, j = 1, . . . , d + 1. Denote 1 = (1, ..., 1)

the d + 1 dimensional vector. Then B̂(1) = B(1), σi.j(1) are bounded constants for all
i, j = 1, ..., d + 1 and σi.i > 0 for all i = 1, ..., d + 1. From the Cholesky decomposition
(p.235 in [6]), we have:

b̂i,i(1) = bi.i(1) =

√√√√σi.i(1)−
i−1∑
k=1

b2
i.k(1),

b̂k,i(1) = bj.i(1) =

(
σj.i(1)−

i−1∑
k=1

bj.k(1)bi.k(1)

)
/bi.i(1), if bi,i(1) > 0,

b̂k,i(1) = bj.i(1) = 0, if bi,i(1) = 0.
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As σi,j are bounded for all i, j = 1, ..., d + 1 then from the Cholesky decomposition, we
get that bj.i(1) are bounded for all i, j = 1, ..., d+1, and therefore, there exists a constant
CB <∞ satisfying

|B̂(1)| ≤ CB <∞. (3.3.0.7)

Using (3.3.0.4) and (3.3.0.7) we get that for all N , there exists KN such that

|B̂(l)| ≤ |B̂(l)− B̂(1) + B̂(1)| ≤ KN |l − 1|+ CB ≤ CN(1 + |l|) (3.3.0.8)

holds for all l satisfying |l| ≤ N . Since B̂(l) = B̂(l̂), |l̂| ≤
√
d+ 1Nb and using (3.3.0.8)

we get that

|B̂(l)| ≤ K(1 + |l|) (3.3.0.9)

holds for some K < ∞. Using the properties (3.3.0.4),(3.3.0.5), (3.3.0.6) and (3.3.0.9),
then due to Theorem 12.1, p.132, in [12], the equation

dLt = a(Lt)dt+ B̂(Lt)dWt

has a unique solution. Note that the stopping time τε is the time of the first output of
the process Lt from the interval (ε,Nb)

[d+1]. Then because

Lt∧τε = L0 +

∫ t∧τε

0

a(Ls)ds+

∫ t∧τε

0

B̂(Ls)dWs = L0 +

∫ t∧τε

0

a(Ls)ds+

∫ t∧τε

0

B(Ls)dWs,

the equation (3.3.0.2) has a unique solution in the period [0, τε]. Finally, for ε → 0 we
get the unique solution to (3.3.0.2) in the time period [0, τf ).

More information about epidemic models with multiple pathogen, including a determi-
nistic model and numerical examples can be found in [1].

3.4 General epidemic model

The problems which arose in Section 3.2, when the coefficients of SDE are not Lipschitz,
led us to study this situation in details for a more general model. Therefore, we construct
the model which mainly generalizes the models described in the previous section. All
results in this section follow from [18]. However, as we want to obtain a model which
includes as sub-models the models with vaccination as well as the models with multiple
pathogens, we need to construct a little more general model than that one described in
[18], and hence some proofs from [18] must be modified.
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Consider (Ω,F , P ) a complete probability space and (Ft, t ≥ 0) a P -complete right
continuous filtration. Then the model is given by (d+1)-dimensional stochastic differential
equation

dXt = −
d∑
i=1

ϕi(Xt, Yt)dt+
d∑
i=1

ψi(Xt, Yt)dW
i
t , X0 = x0 ≥ 0,

dY 1
t = ϕ1(Xt, Yt)dt− γ1Y 1

t dt− ψ1(Xt, Yt)dW
1
t , Y 1

0 = y1
0 ≥ 0, (3.4.0.10)

...

dY d
t = ϕd(Xt, Yt)dt− γdY d

t dt− ψd(Xt, Yt)dW
d
t , Y d

0 = yd0 ≥ 0,

where Yt = (Y 1
t , ..., Y

d
t ) and W i

t denotes independent Ft-Brownian motions.

Further, we shall assume

∀i : 1, ..., d, ϕi, ψi : Rd+1 → R are borel functions,

n0 = x0 +
d∑
i=1

yi0, ϕ
i ≥ 0 on [0, n0]d+1, γi > 0. (3.4.0.11)

Denote y = (y1, ..., yd) and assume further that for all i = 1, ..., d,

ϕi(x, y) = ψi(x, y) = 0 ∀(x, y) ∈ (−∞, 0]× Rd or (x, y) ∈ Rd+1 : yi ∈ (−∞, 0]
(3.4.0.12)

and B ⊆ Rd+1 is an open set such that if (x, y) ∈ ∂B ∩ [0, n0]d+1 then (x, ỹ) 6∈ B for all
ỹ ∈ [0, y1]× . . .×[0, yd].

This model describes the spread of disease with d pathogens, ϕi is a function of intensity
of speed of transfer in the direction X → Y i, γi is again the intensity of recovering for
the i-th pathogen strain and ψi describes the randomness of exchange between X and
Y i. The assumption (3.4.0.12) means that no one can be infected by the i-th pathogen
if there are no susceptibles or people infected by the i-th pathogen strain. B is the set,
where the infection can be spread. For example, if we consider a model with vaccination as
introduced in Section 3.2, then B is a set, where the number of susceptibles is bigger than
the number of vaccinated individuals, therefore B := {(x, y) ∈ R2 : x > ϑ(N − x − y)}
(N denotes the size of population and therefore N −x−z is the size of removals). In this
model, we do not define the removal, but if it is needed, we can define the removals by

Zt := N −Xt −
d∑
i=1

Y i
t = n0 −Xt −

d∑
i=1

Y i
t =

d∑
i=1

∫ t

0

γiY i
s ds. (3.4.0.13)
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Consider (Xt, Yt) a fixed solution to the equation (3.4.0.10), and define the Ft-stopping
times τX , τB and τ iY by:

τX := inf{t ≥ 0 : Xt ≤ 0}
τB := inf{t ≥ 0 : (Xt, Yt) /∈ B ∩ (0,∞)× Rd},
τ iY := inf{t ≥ 0 : Yt ≤ 0}.

τB is interpreted as the time of the end of epidemics, τ iY is the first time, when no one is
infected by the i-th pathogen strain and τX is the first time, when the process Xt enters
to zero. It is obvious that τX ≥ τB.

We say that the solution (Xt, Yt) to (3.4.0.10) is absorbed by the natural barrier, if outside
P -null set, (Xt, Yt) satisfies that

Xt = XτB and Y i
t = Y i

τB
e−γi(t−τB) for all t ≥ τB, (3.4.0.14)

Y i
t = 0 for all t ≥ τ iY .

The property (3.4.0.14) is natural for epidemics, so we want to find the sufficient con-
ditions for equation (3.4.0.10) which provides this behavior. We also want to find a
condition for a nonnegative solution or the solution which never exits the set [0, n0]d+1.
These questions are solved in the following section.

Now, we show the connection between a partial differential equation and expected value
of Xt and Y i

t or more generally, expected value of f(Xt, Yt), where f ∈ C2(Rd+1).

In [10], this theory for SDE with Lipschitz coefficients is presented. Since in our model,
we do not require this condition, we show the way of work with more general coefficients
in the following paragraphs.

First, we rewrite the equation (3.4.0.10) to the following equation which is more suitable
for this problem:

dY 1
t = b1(Yt, Zt)dt+ σ1(Yt, Zt)dW

1
t , Y 1

0 = y1
0 > 0,

...

dY d
t = bd(Yt, Zt)dt+ σd(Yt, Zt)dW

1
t , Y d

0 = yd0 > 0, (3.4.0.15)

dZt = bd+1(Yt, Zt)dt, Z0 = z0 = 0,

where Zt is defined by (3.4.0.13) and for i = 1, . . . , d, bi(y, z) = ϕ1(n0−z−
∑
yi, y)−γiyi,

σi(y, z) = −ψi(n0 − z −
∑
yi, y) and bd+1(y, z) =

∑
γiyi. Assume u(s, y, z) ∈ C1,2(R+ ×

Rd+1) and define a process Ms in time interval [0, t] by

Ms = u(t− s, Ys, Zs).
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Using Itô formula, Theorem 17.18, p.340, in [7], we get

dMs =− ∂

∂s
u(t− s, Ys, Zs)ds+

d∑
i=1

∂

∂yi
u(t− s, Ys, Zs)bi(Ys, Zs)ds

+
∂

∂z
u(t− s, Ys, Zs)bd+1(Ys, Zs)ds+

d∑
i=1

1

2

∂2

∂2yi
u(t− s, Ys, Zs)σi(Ys, Zs)ds

+
d∑
i=1

∂

∂yi
u(t− s, Ys, Zs)σi(Ys, Zs)dW i

s ,

hence Ms is a martingale if u is a solution to the following partial differential equation
(PDE):

∂

∂s
u(s, y, z) =

d∑
i=1

∂

∂yi
u(s, y, z)bi(y, z) +

∂

∂z
u(s, y, z)bd+1(y, z)

+
d∑
i=1

1

2

∂2

∂2yi
u(s, y, z)σi(y, z). (3.4.0.16)

Let f ∈ C2(Rd+1) and assume further u(0, y, z) = f(y, z), then we get

E[f(Yt, Zt)] = E[u(0, Yt, Zt)] = E[Mt] = E[M0] = E[u(t, Y0, Z0)] = u(t, y0, z0).

Therefore, if we have the solution u to PDE (3.4.0.16) which satisfies initial condition
u(0, y, z) = f(y, z), then we have E[f(Yt, Zt)] = u(t, y0, z0). Unfortunately, there is no
general method for solving the PDE (3.4.0.16), and even if we choose d = 1, we do not
know how to solve the equation (3.4.0.16) with choices of ϕ1 and ψ1 which we mostly use
in epidemic models. On the other hand, as we do not know any method, for computing
E[f(Yt, Zt)], we must solve this problem numerically. Hence, this connection between
PDE and expected value of f(Yt, Zt) allows us to use the numerical method for solving
PDE also for solving E[f(Yt, Zt)].

3.4.1 Theoretical results

Lemma 3.5 Let ϕi and ψi satisfies (3.4.0.11) and (3.4.0.12) and let τ 0
X := inf{t ≥

0 : Xt < 0}, and for all i = 1, ..., d denote τ 0
Y i := inf{t ≥ 0 : Y i

t < 0}. Then λ0 :=

min{τ 0
X , τ

0
Y 1 , ..., τ 0

Y d
} = ∞ a.s., therefore (Xt, Yt,

∑
γi
∫ t

0
Y i
s ds) never exits the interval

[0, n0]d+2.
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Proof. Assume to the contrary that λ0 <∞. Then there exists t0 > 0 such that Xt0 < 0
or Y i

t0
< 0 for some i = 1, ..., d. If Xt0 < 0, denote s0 := sup{0 ≤ s ≤ t0 : Xs > 0},

therefore Xs ≤ 0 for all s ∈ [s0, t0]. Hence, according to (3.4.0.12),

Xt0 = Xs0 −
d∑
i=1

∫ t0

s0

ϕi(Xs, Ys)ds+
d∑
i=1

∫ t0

s0

ψi(Xs, Ys)dW
i
s = Xs0 ≥ 0

and that is a contradiction.

If Y i
t0
< 0 for some i = 1, ..., d, denote s0 = sup{0 ≤ s ≤ t0 : Y i

s > 0}, hence Y i
s0

= 0 and
Y i
s ≤ 0 in the interval [s0, t0]. It follows again by (3.4.0.12) that

Y i
t = Y i

s0
+

∫ t

s0

ϕi(Xs, Ys)ds−
∫ t

s0

ψi(Xs, Ys)dW
i
s − γi

∫ t

s0

Ysds

= −γi
∫ t

s0

Ysds ≥ 0

holds for t ∈ [s0, t0] and therefore Y i
t = 0 for arbitrary t ∈ [so, t0], hence a contradiction.

Because Xt +
d∑
i=1

Y i
t +

d∑
i=1

∫ t
0
γiYsds = n0 and

d∑
i=1

∫ t
0
γiYsds ≥ 0, the proof is complete.

The following theorem presents conditions which guarantees that a solution (X, Y ) is
absorbed by the barrier {x = 0} and has limits at infinity.

Theorem 3.6 Assume (3.4.0.11) and (3.4.0.12), then Xt is a nonnegative Ft-super-
martingale and outside a P -null set the limits

X∞ = lim
t→∞

Xt, Y i
∞ = lim

t→∞
Y i
t

exist and Y i
∞ = 0 a.s. for all i = 1, ..., d.

Moreover,
τX <∞⇒ Xt = 0 ∀t ≥ τX a.s.

Proof. It follows by (3.4.0.11) and Lemma 3.5 that

x0 +
d∑
i=1

∫ t

0

ψi(Xs, Ys)dW
i
s = Xt +

d∑
i=1

∫ t

0

ϕi(Xs, Ys)ds

is a nonnegative martingale, hence Xt is a nonnegative supermartingale. These processes
are known to have an integrable limits X∞ and to be absorbed by x = 0. Let i =
1, ..., d, then by Lemma 3.5 we get γi

∫∞
0
Y i
s ds ≤ n0 and Y i

s ≥ 0, therefore Y i
∞ = 0 a.s.
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Lemma 3.7 Assume (3.4.0.11) and (3.4.0.12), then outside P -null set

τ iY <∞⇒ τ iY ≤ τX

holds for all i = 1, · · · , d.

Proof. Assume τX <∞ and τ iY > τX , then by Theorem 3.6 and (3.4.0.12)

Y i
t = YτX −

∫ t

τX

γiY i
s ds, a.s. ,∀t > τX .

Hence, Y i
t is a solution to the equation

dỸt = −γiỸtdt, ỸτX = YτX ,

which has a unique solution Ỹt = YτX exp{−γi(t − τX)} > 0, therefore τ iY = ∞ holds
almost surely.

Now we can prove the following theorem about the existence and uniqueness of the process
(X, Y ) that solves the equation (3.4.0.10) and is absorbed by the natural barrier.

Theorem 3.8 Let ϕi, ψi : Rd+1 → R be locally Lipschitz on (0, n0]× [0, n0]i−1× (0, n0]×
[0, n0]d−i ∩ B such that ϕi = 0, ψi = 0 outside B and which satisfies (3.4.0.11) and
(3.4.0.12). Then there exists a unique process (X, Y ) ∈ [0, n0]d+1 satisfying (3.4.0.14)
which solves the equation (3.4.0.10).

Remark 3.3 Obviously, the consequence of this theorem is the fact that we have a unique
solution to (3.4.0.10) in the time interval [0, τ ], where τ = min{τX , τ 1

Y , . . . , τ
d
Y }.

Proof. Denote T = {τB, τ 1
Y , ..., τ

d
Y } and

τ (1) = inf{τ ∈ T},
τ (2) = inf{τ ∈ T : τ > τ (1)},

...

τ (d) = inf{τ ∈ T : τ > τ (d−1)},
τ (d+1) = max{max{τ ∈ T}, τ (d)}

the sequence of stopping times τB, τ 1
Y , ..., τ

d
Y ordered from the smallest to the largest one.
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First, we prove the uniqueness of a solution to (3.4.0.10) in [0, τ (1)].

Let n0 > a1 > a2 > ... and lim
n→∞

an = 0, denote Dn = [an, n0]d+1 and Bn := {(x, y) ∈
[0, n0]d+1 : (x̃, ỹ) ∈ [0, n0]d+1 : |(x, y)− (x̃, ỹ)| < 1/n⇒ (x̃, ỹ) ∈ B}.

Further, construct ϕin, ψ
i
n : Rd+1 → R Lipschitz and bounded functions such that

ϕin = ϕi and ψin = ψi on (an, n0]× [0, n0]i−1 × (an, n0]× [0, n0]d−i ∩Bn, ϕin ≥ 0

and ϕin(x, y) = ψin(x, y) = 0 ∀(x, y) ∈ Rd+1 : x ∈ (−∞, 0] or yi ∈ (−∞, 0].

The equation

dXt = −
d∑
i=1

ϕin(Xt, Yt)dt+
d∑
i=1

ψin(Xt, Yt)dW
i
t , X0 = x0,

dY i
t = ϕin(Xt, Yt)dt− ψin(Xt, Yt)dW

i
t − γiY i

t dt, Y i
0 = yi0 (3.4.1.1)

has a unique strong solution (Xn, Y n) as the coefficients ϕin(x, y), ψin(x, y) and γiy are
Lipschitz of a linear growth. Denote

λn := inf{t ≥ 0 : (Xn
t , Y

n
t ) 6∈ Dn ∩Bn}.

Obviously, the solution (Xn, Y n) to (3.4.1.1) coincides with the solution (X, Y ) to (3.4.0.10)
in [0, λn]. Observe that λn < ∞ a.s. since Y i

∞ = 0 a.s. by Theorem 3.6 and that the
strong uniqueness property of equation (3.4.1.1) implies that

(Xn+1, Y n+1) = (Xn, Y n) on [0, λn] and λn < λn+1, n ∈ N

holds outside a P -null set N . Put λ = supλn and for each ω ∈ Ω define a continuous
function

(X̃0(ω), Ỹ 0(ω)) : [0, λ(ω))→ [0, n0]d+1

by
(X̃0(ω), Ỹ 0(ω)) = (Xn(ω), Y n(ω)) on [0, λn(ω)].

We shall prove that outside another P -null set,

λ <∞⇒ there exists the limit (X̃0
λ− , Ỹ

0
λ−) ∈ [0, n0]d+1 such that

X̃0
λ− = 0 or (X̃0

λ− , Ỹ
0
λ−) ∈ ∂B or Ỹ 0,i

λ− = 0 for some i = 1, ..., d.

The existence of the limits (X̃0
λ− , Ỹ

0
λ−) is obvious by continuity of (X̃0, Ỹ 0). Because either

(X̃0
λn
, Ỹ 0

λn
) ∈ ∂Bn or (X̃0

λn
, Ỹ 0

λn
) ∈ ∂Dn and λn ↗ λ, we conclude that for some i = 1, ..., d,

Ỹ 0,i
λ− = 0 or (X̃0

λ− , Ỹ
0
λ−) ∈ ∂B or X̃0

λ− = 0. Therefore λ = min{τX , τ 1
Y , ..., τ

d
Y } = τ (1) and

(X̃0, Ỹ 0) is a unique solution to (3.4.0.10) in [0, τ (1)].
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Now, we prove the existence of a unique solution to (3.4.0.10) in [τ (1), τ (2)].

Let τ (1) <∞. Denote

AX = {τ (1) = τB},
Ai =

{
ω ∈ Ω \ AX : τ iY (ω) = τ (1)(ω)

}
,

Ãi = Ai \

(⋃
j 6=i

Aj

)
,

Ãi,j =
(
Ai
⋂

Aj
)
\

( ⋃
k 6=i,k 6=j

Ak

)
,

...

Let ω ∈ AX , then we define (X, Y )A
X

by

(X, Y )A
x

= (X̃0, Ỹ 0) in [0, τB],

= (XτB , Y
i
τB
e−γi(t−τB)) in (τB,∞).

(X, Y )A
X

satisfies (3.4.0.14) and solves (3.4.0.10) in [0,∞) for almost every ω ∈ AX .

Let ω ∈ Ãd, choose m ∈ N and denote

Cd,m =
{
ω ∈ Ãd : (Xλ, Y

1
λ , . . . , Y

d−1
λ , 0) ∈ [an, n0]d × R ∩Bm

}
.

Define a random variable

S = (S1, ..., Sd) = (X, Y1, ..., Yd−1)λ in Cd,m,

= 0 in (Cd,m)c,

and Lipschitz, bounded functions ϕd,in and ψd,in such that

ϕd,in (x, y1, ..., yd−1) = ϕin(x, y1, ..., yd−1, 0), ψd,in (x, y1, ..., yd−1) = ψin(x, y1, ..., yd−1, 0)

for i = 1, . . . , d− 1.
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Let n > m and define

Xn
τ (1)+h =S1 −

d−1∑
i=1

∫ τ (1)+h

τ (1)

ϕd,in (Xn
t , Y

n,1
t , ..., Y n,d−1

t )dt

+
d∑
i=1

∫ τ (1)+h

τ (1)

ψd,in (Xn
t , Y

n,1
t , ..., Y n,d−1

t )dW i
t

Y n,1

τ (1)+h
=S2 +

∫ τ (1)+h

τ (1)

ϕd,1n (Xn
t , Y

n,1
t , ..., Y n,d−1

t )

− γ1Y n,1
t dt−

∫ τ (1)+h

τ (1)

ψd,1n (Xn
t , Y

n,1
t , ..., Y n,d−1

t )dW 1
t

...

Y n,d−1

τ (1)+h
=Sd +

∫ τ (1)+h

τ (1)

ϕd,d−1
n (Xn

t , Y
n,1
t , ..., Y n,d−1

t )

− γd−1Y n,d−1
t dt−

∫ τ (1)+h

τ (1)

ψd,d−1
n (Xn

t , Y
n,1
t , ..., Y n,d−1

t )dW d−1
t .

Then, (Xn
τ (1)+t

, Y n,1

τ (1)+t
, ..., Y n,d−1

τ (1)+t
) must coincide a.s. with the strong unique solution

(X̂n
t , Ŷ

n,1
t , ..., Ŷ n,d−1

t ) to

dXt = −
d−1∑
i=1

ϕd,in (Xt, Y
1
t , ..., Y

d−1
t )dt+

d−1∑
i=1

ψd,in (Xt, Y
1
t , ..., Y

d−1
t )dŴ i

t ,

dY 1
t = ϕd,1n (Xt, Y

1
t , ..., Y

d−1
t )dt− ψd,1n (Xt, Y

1
t , ..., Y

d−1
t )dŴ i

t − γ1Y 1
t dt,

... (3.4.1.2)

dY d−1
t = ϕd,d−1

n (Xt, Y
1
t , ..., Y

d−1
t )dt− ψd,d−1

n (Xt, Y
1
t , ..., Y

d−1
t )dŴ i

t − γd−1Y d−1
t dt,

with initial conditions X0 = S1, Y 1
0 = S2,. . . , Y d−1

0 = Sd, where Ŵt = Wτ (1)+t −Wτ (1) ,
therefore (Xn, Y n,1, ..., Y n,d−1) is uniquely determined in [τ (1),∞).

In the same way as above, we can define the process (X̃t, Ỹ
1
t , ..., Ỹ

d−1
t ) in [τ (1), λ1), so

that it coincides with process (Xn
t , Y

n,1
t , ..., Y n,d−1

t ) in time interval [τ (1), λ1
n] and has a

limit (X̃, Ỹ 1, ..., Ỹ d−1)λ1
−

. The stopping times λ1
n and λ1 are defined by

λ1
n := inf{t ≥ τ (1) : (Xn

t , Y
n,1
t , ..., Y n,d−1, 0) 6∈ [an, n0]d × R ∩Bn},

λ1 := supλ1
n.
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Denote

(X, Y )m(ω) = (X̃0, Ỹ 0)t(ω) in [0, τ (1)]

= (X̃, Ỹ 1, ..., Ỹ d−1, 0)t(ω) in [τ (1), λ1],

ω ∈ Cd,m, then (X, Y )m solves (3.4.0.10) and satisfies (3.4.0.14) for almost every ω ∈
Cd,m in [0, λ1]. Let l > m, then (X, Y )m(ω) = (X, Y )l(ω) for almost every ω ∈ Cd,m

and moreover lim
m→∞

P (Cd,m) = P (Ãd), hence there exists a process (X, Y )
eAd such that

(X, Y )
eAd = (X, Y )m ∀ω ∈ Cd,m and ∀m ∈ N, therefore (X, Y )

eAd solves (3.4.0.10) and
satisfies (3.4.0.14) for almost every ω ∈ Ãd on [0, λ1].

Use the same procedure to construct the processes (X, Y )
eAi , (X, Y )

eAi,j ,. . ., and define a
process (X̃1, Ỹ 1) by

(X̃1, Ỹ 1)(ω) = (X, Y )A
X

(ω) ω ∈ AX ,

= (X, Y )
eAi(ω) ω ∈ Ãi,

= (X, Y )
eAi,j(ω) ω ∈ Ãi,j,

...

(X̃1, Ỹ 1) is a solution to (3.4.0.10) in [0, λ1] which satisfies (3.4.0.14). The uniqueness
of such a process follows from the construction. As before, it is possible to show that
λ1 = τ (2).

If P{λ1 < ∞} > 0, use the same procedure again to construct the process (X̃2, Ỹ 2)
which solves the equation (3.4.0.10) on [0, λ2) and satisfies (3.4.0.14). Repeating the
same procedure, we get a process (X, Y ) which solves (3.4.0.10) in [0,∞) and satisfies
(3.4.0.14).

The last theorem presents conditions which guarantee that each solution (X, Y ) to
(3.4.0.10) is absorbed by the barrier {yi = 0}. It means, that after the first time when
the i-th pathogen strain is removed, no one can be infected by this pathogen and the
pathogen can not be restored.

Theorem 3.9 Let ϕi and ψi i = 1, ..., d satisfy (3.4.0.11), (3.4.0.12) and suppose that
there exists ε > 0 such that ϕi(x, y) ≤ γiyi ∀(x, y) ∈ [0, n0]d+1 such that yi ∈ [0, ε]. Then
any arbitrary solution (X, Y ) to (3.4.0.10) satisfies that Y i

t = 0 for all t ≥ τ iY almost
surely.

Proof. Note that

M i
t := −I[τ iY <∞]

∫ t+τY

τY

ψi(Xs, Ys)dW
i
s
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is a continuous Fτ iY +t-local martingale and

Y i
t+τ iY

= I[τ iY <∞]

∫ t+τ iY

τ iY

ϕi(Xs, Ys)− γiY i
s ds+M i

t , t ≥ 0,

a continuous Fτ iY +t-semimartingale. Denoting

τ iδ := inf{t ≥ 0 : Y i
t+τ iY
≥ δ}, δ > 0,

we define an Fτ iY +t-stopping time and by M i
t∧τ iδ

an Fτ iY +t-local martingale. It follows that
for arbitrary 0 < δ ≤ ε

M i
t∧τ iδ

= Y i
t∧τ iδ+τ

i
Y
− I[τ iY <∞]

∫ t∧τ iδ+τ
i
Y

τ iY

ϕi(Xs, Ys)− γiY i
s ds ≥ 0

is a nonnegative Fτ iY +t-local martingale, hence a nonnegative Fτ iY +t-supermartingale.
Therefore

Y i
t∧τ iδ+τ

i
Y

= Y i
τ iY

= 0, t ≥ 0,

holds almost surely for arbitrary 0 < δ ≤ ε. Especially, the implication

τ iY <∞, τδ <∞ ⇒ Y i
τ iδ+τ

i
Y

= 0

is true outside a P -null set. It follows that P [τ iY < ∞, τ iδ < ∞] = 0 for all 0 < δ ≤ ε,
hence the process Y i is absorbed by {yi = 0}.

3.4.2 Examples

In this section, we illustrate different behavior of a solution to (3.4.0.10) in dependence
on choice of ϕi and ψi and the applications of the results from the previous section.

For simplicity, we choose B = (0,∞) × Rd, hence τB = τX and the process (X, Y ) is
absorbed by the natural barrier if and only if it is absorbed by the barrier {x = 0}∪{y1 =
0} ∪ ... ∪ {yd = 0}. In Example 3.2, Example 3.3 and Example 3.4, we choose d = 1,
therefore for simplicity of notation, we write ϑ, ψ, γ, Y and y0 instead of ϑ1, ψ1, γ1, Y 1

and y1
0.

Example 3.2 Consider the deterministic equation

dXt = −γY +
t I[Xt>0]dt, dYt = γY +

t I[Xt>0]dt− γYtdt, (3.4.2.1)
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with x0 = y0 = γ = 1. This is the equation (3.4.0.10) with ϕ(x, y) = γy+I(0,∞)(x) and
ψ(x, y) = 0, i.e. ϕ and ψ satisfy (3.4.0.11) and (3.4.0.12). A solution is found easily as

Xt = (1− t)+, Yt = e−(t−1)+ , (3.4.2.2)

with τX = 1 and τY = +∞. Because ϕ(x, y) ≤ γy for all x ∈ [0, n0] it follows by Lemma
3.5 and Theorem 3.9 that any solution to (3.4.2.1) is a nonnegative process absorbed by
natural barrier. Theorem 3.8 further yields that (3.4.2.2) is a unique solution to (3.4.2.1)
as ϕ and ψ are locally Lipschitz maps on (0, n0]2.

Example 3.3 Consider the equation

dXt = I[Xt>0,Yt>0]dWt, dYt = −γY dt− I[Xt>0,Yt>0]dWt, (3.4.2.3)

with x0 > y0 > 0, i.e. ϕ(x, y) = 0 and ψ(x, y) = I(0,∞)2(x, y). Using Theorem 3.8 together
with Theorem 3.9 we get that equation (3.4.2.3) has a unique solution which is absorbed
by the natural barrier {x = 0} ∪ {y = 0}.

Because Xt = x0 +Wt∧τ and Yt = y0 − γ
∫ t

0
Ys ds−Wt∧τ ≤ y0 −Wt∧τ almost surely then

τX = inf{τY ≥ t ≥ 0 : Wt = −x0} and τ ≤ τ(−x0,y0) where τ(−x0,y0) := inf{t ≥ 0 : Wt 6∈
(−x0, y0)}, hence τ <∞ almost surely (see Proposition 7.3, p. 14, in [11]).

It remains to prove that P [τX < ∞] > 0 and P [τY < ∞] > 0. First define τy̌ := inf{t ≥
0 : Wt = y0 − γn0t} and note that τY ≥ τy̌. Obviously, τX ∧ τy̌ ≤ 1

γ
, hence (see p. 295 in

[3])

P [τX <∞] ≥ P

[
τX ≤

1

γ

]
≥ P

[
τy̌ >

1

γ

]
=

∫ ∞
1
γ

y0√
2πt

3
2

exp

{
−(y0 − γn0t)

2

2t

}
dt > 0

holds. On the other hand, if we denote τy0 = inf{t ≥ 0 : Wt = y0}, then
P [τY < τX ] ≥ P [τy0 ≤ τX ] = x0

n0
> 0 (see again Proposition 7.3, p. 14, in [11]), therefore

P [τY <∞] ≥ x0

n0
> 0.

Example 3.4 In Example 5.6 in [18], Štěpán compared two stochastic versions of Ker-
mack-McKendrick model, where the diffusion coefficient is equal to the trend coefficient
(the first model) or the diffusion coefficient is chosen as the square root of the trend
coefficient (the second model). The models are given by

dXt = −βXtYtdt+ βXtYtdWt,

dYt = +βXtYtdt− γYt − βXtYtdWt, (3.4.2.4)
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Figure 3.7:
Five simulation of (Xt, Yt, γ

∫ t
0
Ysds), where (Xt, Yt) is a solution to (3.4.2.4) (left) and

(3.4.2.5) (right). The black line is used for susceptibles, the red line for infectives and
the green one for removals.

and

dXt = −βX+
t Y

+
t dt+

√
βX+

t Y
+
t dWt

dYt = +βX+
t Y

+
t dt− γYt −

√
βX+

t Y
+
t dWt. (3.4.2.5)

The model given by (3.4.2.5) was presented in more general form in Section 3.2. Both of
these models may be called ”a natural stochastic version of Kermack-McKendrick model”,
but while for the equation (3.4.2.4) we get τX = τY =∞ a.s., for the equation (3.4.2.5),
we know only P [τX =∞] > 0. We can also see in Figure 3.7, that the choice of diffusion
coefficient in (3.4.2.5) does not change the behavior of the model dramatically, on the
other hand, the choice in (3.4.2.4) provides much more rugged paths.

Example 3.5 Consider the equation

dXt = −βX+
t Y

1,+
t dt+ Y 1,+

t I[Xt>0]dW
1
t + I[Xt>0,Y 2

t >0]dW
2
t , x0 > 0,

dY 1
t = βX+

t Y
1,+
t dt− γ1Y 1

t + Y 1,+
t I[Xt>0]dW

1
t , y1

0 > 0, (3.4.2.6)

dY 2
t = −γ2Y 2

t dt− I[Xt>0,Y 2
t >0]dW

2
t , y2

0 > 0,

with β > 0, i.e. ϕ1(x, y1, y2) = βxy1I[x>0,y1>0], ψ1(x, y1, y2) = y1I[x>0,y1>0], ϕ2(x, y1, y2) =
0 and ψ2(x, y1, y2) = I[x>0,y2>0]. Using Theorem 3.8, we get that the equation (3.4.2.6)
has a unique solution which is absorbed by the natural barrier. Let (Xt, Y

1
t , Y

2
t ) is a

solution to (3.4.2.6), then

Y 1
t = y1

0 +

∫ t

0

(βXs − γ1)Y 1
s ds+

∫ t

0

Y 1
s dW

1
s
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for all t ∈ [0, τX ∧ τ 1
Y ], and therefore by Itô formula

Y 1
t = y1

0 exp

{∫ t

0

βXs − γ1 − 1

2
ds−W 1

t

}
> 0, ∀t ∈ [0, τX ∧ τ 1

Y ],

which together with Lemma 3.7 imply τ 1
Y = ∞ almost surely. Using Theorem 3.9 for

Y 2
t , we get Y 2

t = 0 for all t ≥ τ 2
Y a.s and by Lemma 3.5, Xt = 0 for all t ≥ τX ,

hence (Xt, Y
1
t , Y

2
t ) is absorbed by the natural barrier, therefore the equation (3.4.2.6) has

a unique solution. If we denote τW 2,y20
:= inf{t ≥ 0 : W 2

t = y2
0}, then min{τX , τ 2

Y } ≤
τW 2,y20

<∞ almost surely.

More informations about this model with d = 1 and B = (0,∞) × R including further
interesting examples can be found in [18].
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Chapter 4

Conclusion

In this work, we presented the differential equation which describes Kermack-McKendrick
model with vaccination, we studied properties of the solution to this DE and showed a
formula for computing the number of removals at infinity, and the way how to find
the maximum of infectives. In the numerical part, we compared different strategies of
vaccination and determined the optimal vaccination strategy for a given penalization
function.

In the second part, four stochastic models driven by stochastic differential equation were
presented.

The first one is a model with migration for which we suggested such a generalization which
allowed us to model epidemics with nonzero incubation time, and proved the theorem
about the existence and uniqueness of a solution to the SDE associated with the model.

We suggested three stochastic versions of a model with vaccination, and discussed their
respective merits. Their behavior is compared by means of a numerical study, a procedure
to exhibit the optimal vaccination strategy is proposed.

We also studied the SDE which provided a model with multiple pathogens and prove the
theorem about the existence and uniqueness of the solution to this equation.

The last part introduced the SDE for modeling the general epidemics. Its properties
are studied, the conditions for the coefficients of the equation are formulated to ensure
the natural behavior of epidemics. We presented the sufficient conditions for having an
absorbed solution and finally the theory presented is illustrated by several examples.

The thesis provides a complex frame for the epidemics modeling using the differential and
stochastic differential equations, including vaccination, migration of population and epi-
demics with multiple pathogens. Nevertheless, there remains a few unanswered questions.
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Therefore, we conclude our study by a list of open problems:

• We presented a numerical search for the optimal vaccination strategy, an analytical
treatment of the problem is still missing.

• As far as the stochastic models are concerned we still have the problem how to
establish Z∞, E[Xt], E[Yt] and E[Zt] for a given time t > 0.

• The final interesting and important problem is to determine the existence and
uniqueness of a solution to the partial differential equation (3.4.0.16) and to solve
the equation.
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