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Abstract

The 3D visibility (graph) drawing is a graph drawing in IR3 where vertices
are represented by 2D sets placed into planes parallel to xy-plane and the
edges correspond to z-parallel visibility among these sets. We continue the
study of 3D visibility drawing of complete graphs by rectangles and regular
polygons.

We show that the maximum size of a complete graph with a 3D visibil-
ity drawing by regular n-gons is O(n4). This polynomial bound improves
significantly the previous best known (exponential) bound

(
6n−3
3n−1

)− 3 ≈ 26n.
We also provide several lower bounds. We show that the complete graph

K2k+3 (resp. K4k+6) has a 3D visibility drawing by regular 2k-gons (resp.
(2k + 1)-gons).

We improve the best known upper bound on the size of a complete graph
with a 3D visibility drawing by rectangles from 55 to 50. This result is based
on the exploration of unimodal sequences of k-tuples of numbers.

A sequence of numbers is unimodal if it first increases and then decreases.
A sequence of k-tuples of numbers is unimodal if it is unimodal in each
component. We derive tight bounds on the maximum length of a sequence of
k-tuples without a unimodal subsequence of length n. We show a connection
between these results and Dedekind numbers, i.e., the numbers of antichains
of a power set P({1, . . . , k}) ordered by inclusion.
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1 Introduction

1.1 Graph Theory

A (simple) graph G is an ordered pair (V,E) where V is a finite set and
E is a set of 2-element subsets of V , i.e., E ⊂ (

V
2

)
. Members of the set V

are called vertices and members of the set E are called edges. The vertices
resp. the edges of a graph G are also denoted by V (G) resp. E(G). The
vertices belonging to an edge are called ends, endpoints or end vertices of
the edge. An edge {u, v} is usually denoted simply by uv. Two vertices are
adjacent if an edge exists between them. The vertices adjacent to a vertex v
are called neighbors of v. A subgraph H of a graph G is a graph such that
V (H) ⊂ V (G) and E(H) ⊂ E(G).

A path in a graph G is a sequence (vi)
k
i=1 of vertices of G such that

{vi, vi+1} ∈ E for 1 ≤ i < k. A cycle is a path such that the first vertex
and the last vertex are the same. A simple path is a path with no repeated
vertices. A cycle with distinct vertices aside from the necessary repetition of
the first and the last vertex is a simple cycle. The length of a path is the
number of edges on the path, i.e., the length of the path (vi)

k
i=1 is k − 1.

A directed graph G is an ordered pair (V,E) where V is a finite set and
E is a set of ordered pairs of V , i.e., E ⊂ V 2. A directed graph is also called
a digraph. A directed graph can be considered as a simple graph with an
additional information (the direction of the edges) provided. Hence, a lot of
terms defined for simple graphs apply to directed graphs as well.

A directed path is a path (vi)
k
i=1 such that (vi, vi+1) ∈ E, i.e., all edges of

the path have the same direction. Similarly, a directed cycle is a cycle with
all edges having the same direction. A directed graph is acyclic if it doesn’t
contain any directed cycle.

A tournament is a directed graph in which each pair of vertices is con-
nected by exactly one edge, i.e., for every vertices u, v ∈ V there is either
(u, v) ∈ E or (v, u) ∈ E.

v1 v2 v3 v4

Figure 1. A tournament with 4 vertices

A complete graph is a graph in which every vertex is adjacent to every
other. A complete graph on n vertices is denoted by Kn. A bipartite graph is
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a graph whose vertices can be divided into two disjoint sets V1 and V2 such
that every edge connects a vertex in V1 to one in V2. In general, a graph is
k-partite if its vertex set can be divided into k pairwise disjoint sets V1, . . . , Vk

such that every edge connects vertices from the different sets. A complete
k-partite graph is a k-partite graph that has an edge between every pair of
vertices from the different sets. A complete k-partite graph is denoted by
Kn1,...,nk

where ni = |Vi|, 1 ≤ i ≤ k.

v1

v2

v3v4

v5

v1 v2 v3

v4 v5 v6

Figure 2. A complete graph K5 and a complete bipartite graph K3,3

A simple path (resp. a simple cycle) that includes every vertex of a graph
is known as a Hamiltonian path (resp. a Hamiltonian cycle). A graph that
contains a Hamiltonian cycle is called a Hamiltonian graph.

Figure 3. A Hamiltonian graph with a Hamiltonian cycle

If it is possible to establish a path from any vertex to any other vertex
of a graph then the graph is said to be connected. Otherwise, the graph is
disconnected. A (connected) component of a graph G is a maximal connected
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subgraph of G. A cut vertex of a graph is a vertex whose removal from the
graph increases the number of connected components.

A vertex labeling is a function from the vertex set to some fixed set. The
values assigned to individual vertices are called (vertex) labels. A (proper
vertex) coloring is a vertex labeling such that no two vertices sharing the
same edge have the same label. The labels of a coloring are called colors.
A coloring using at most k colors is a k-coloring. A graph that can be
assigned a k-coloring is k-colorable. The smallest k such that a graph G is
k-colorable is a chromatic number of G.

Figure 4. A 3-coloring of a graph

1.2 Graph Drawing

The aim of graph drawing is a creation of a geometric representation of
a (combinatorial) graph – often for visualization purposes. Vertices of the
graph are represented by geometric objects (points, line segments, rectan-
gles, etc.) and edges are represented either as a different type of geometric
objects or as a specific relationship between the objects representing vertices
(intersection, visibility, etc.)

Graphs can be found in any area of our life. Vertices of a graph can
represent domain entities and edges correspond to a relationship between the
entities. Therefore, there is a huge amount of graph drawing applications.
We can find them in software engineering (layouts of UML diagrams in CASE
tools or ER diagrams in DB systems), electronic engineering (VLSI design,
circuit board layouts), biology, chemistry (molecular drawings), cartography,
etc.

Given a certain graph it is natural to look for the best drawing of this
graph. Unfortunately, there is no best drawing of a graph. One can assess
the quality of a drawing of a graph in many ways because the different ways
of displaying a graph emphasize different characteristics of the graph.

We can attempt to achieve various aesthetic criteria – minimize the num-
ber of edge crossings, minimize the area of a bounding box (the smallest
rectangle or box that surrounds the drawing), maximize the angular reso-
lution (the size of the smallest angle between any pair of edges incident to
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the same vertex), minimize the total length of edges, maximize the display
of symmetries and many other. Usually, there are trade-offs among these
criteria, see Figure 5.

(a) (b)

Figure 5. A drawing of K4 (a) minimizing the number of crossings (b)
maximizing the display of symmetries

The most common type of graph drawing is a drawing that represents
vertices by points in a plane and edges by simple arcs (homeomorphic images
of the interval [0, 1]) such that

• the endpoints of the arc corresponding to an edge e are the points
associated with the end vertices of e and

• no arc includes points associated with other vertices.

If, in addition, two arcs never intersect at a point which is in an interior of
either of the arcs then this drawing is called a planar embedding of the graph.
A graph that admits such a drawing is called a planar graph.

Planar graphs were characterized by Kazimierz Kuratowski [19].

Theorem (Kuratowski’s theorem). A graph is planar if and only if it doesn’t
contain a subgraph that is a subdivision of K5 or K3,3.

Let’s remind that a subdivision of a graph is a graph resulting from sub-
divisions of edges in G. A subdivision of an edge {u, v} is a replacement of
this edge by a new vertex w and edges {u,w} and {w, v}.

There are various other styles of graph drawing, see [3, 4] for an overview
of graph drawing types and algorithms. We concentrate on visibility drawings
in this thesis.

1.3 Visibility Drawing

The visibility drawing of a graph represents vertices by disjoint sets in IRn

and expresses edges as visibility relations among these sets. There are several
types of visibility drawings that differ by the (set of) shapes used to represent
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vertices (i.e., rectangles, boxes, polygons) and by the direction(s) in which
we determine the visibility between vertices.

We say that sets A,B (resp. the corresponding vertices) can see each
other if there exists a ∈ A and b ∈ B such that the line segment ab doesn’t
intersect other sets (besides A and B) associated with vertices. We say that
the sets (resp. the vertices) can see each other in the direction of a vector ~w
(resp. a line h) if the line segment ab is parallel to ~w (resp. h).

The visibility drawings have two subtypes: weak and strong. Two vertices
can see each other in a strong visibility drawing if and only if there is an edge
between these vertices. There is a one-to-one relation between the edges of
the graph and the pairs of mutually visible vertices. A weak visibility drawing
allows visibility between vertices that are not connected by an edge, i.e., if
there is an edge between two vertices then these vertices must be able to see
each other but they can see each other even when they are not connected by
an edge.

The advantage of strong visibility drawings is that the represented graph
is specified by the location of (the sets representing) the vertices only, i.e.,
we don’t have to draw the edges. The theory of strong visibility drawings
also seems to be broader. On the other hand, weak visibility drawings are
probably more practical. For example, there is no problem if two chips on
a circuit board can see each other and we don’t connect them with a wire.
This thesis is focused on drawing of complete graphs where there is no dif-
ference between weak and strong drawings. We consider the weak visibility
drawing on the few spots where it could make a difference.

Figure 6. A bar-visibility drawing of K2,4

An example of visibility drawing is a bar-visibility drawing. The bar-
visibility drawing represents vertices by parallel line segments in IR2. Two
line segments must see each other in the direction orthogonal to the line
segments whenever the corresponding vertices are connected by an edge.

Another example of visibility drawing is a 2D rectangle visibility drawing.
This type of drawing represents vertices by axis-aligned rectangles in a plane.
Two rectangles must see each other in the direction parallel to some axis (i.e.,
x-axis or y-axis) whenever the corresponding vertices are connected by an
edge.
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Figure 7. A 2D rectangle visibility drawing of K5

Two-dimensional variants of visibility drawings received a wide attention
due to their applications in CASE tools, circuit board layouts or VLSI design
[11, 29].

The increasing popularity of visibility drawings led to an introduction
of three-dimensional variants. In fact, a 3D analogy of the 2D rectangle
visibility drawing is another well-known type of drawing: the 0-bend 3D
orthogonal (box) drawing, i.e., a drawing where vertices are represented by
axis-aligned boxes in IR3 and the edges are axis-parallel lines of visibility
among boxes.

Figure 8. A 0-bend 3D orthogonal drawing of K1,6

A 3D analogy of the bar-visibility drawing is the 3D visibility drawing. It
represents vertices by two-dimensional sets placed into planes parallel to the
xy-plane. Two sets must see each other in the direction of the z-axis whenever
the corresponding vertices are connected by an edge. We concentrate on the
3D visibility drawing in this thesis.

There are several subtypes of the 3D visibility drawing. They differ by
the allowed shapes of vertices. The most popular subtype is the 3D rect-
angle visibility drawing that allows only rectangular vertices. We study this
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drawing in Section 3.1. Another popular subtype represents vertices by equal
regular polygons. We explore this subtype in Section 4.

A natural question regarding any type of graph drawing is ‘What graphs
can be represented by this type of drawing?’ Unfortunately, the recogni-
tion of visibility graphs turns out to be difficult. Shermer [21] shows that
the recognition of graphs with a 2D rectangle visibility drawing is an NP-
complete problem. Fekete et al. [15] show that the recognition of graphs
with a 3D visibility drawing is NP-hard when the vertices are represented
by unit squares and Štola [23] shows the same result for drawings by equal
triangles.

Figure 9. A 3D rectangle visibility drawing of K3,3

If we cannot decide effectively whether a graph has a drawing of the given
type then it is natural to look for classes of graphs for which this decision is
possible. The research in this area has been concentrated on complete graphs
[1, 6, 7, 9, 14, 16, 28], complete bipartite graphs [1, 9] and on graphs with
the bounded colorability [25, 26]. We continue to study the set of complete
graphs, i.e., we attempt to determine the maximum size of a complete graph
with the given type of 3D visibility drawing.

The drawing of K22 given by Rote and Zelle (included in [7, 14]) provides
the best known lower bound on the maximum size of a complete graph with
a 3D rectangle visibility drawing. On the other hand, Bose et al. [6] showed
that no complete graph with 103 or more vertices has such a drawing. This
result was then improved to 56 by Fekete et al. [7, 14]. We further lower
this bound to 51 in Section 3.1. This improvement is based on the study of
unimodal sequences of k-tuples. A unimodal sequence of numbers is, loosely
speaking, a sequence that first increases and then decreases. A sequence of
k-tuples is unimodal if the sequences of individual components are unimodal.
We explore unimodal sequences in Section 2.

If the vertices are represented by unit squares then the largest complete
graph with this type of 3D visibility drawing is K7 according to Fekete et al.
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[14]. This is the only exact result known about drawings by equal regular
polygons. Only estimates are known for n 6= 4. Babilon et al. [2] show that
K14 can be represented by equal triangles. They also present a lower bound
bn+1

2
c + 2 on the maximum size of a complete graph with a 3D visibility

drawing by equal regular n-gons. Štola [24] then moved this bound to n + 1.
We prove new lower bounds in Section 4.2. We show that K2k+3 has a 3D
visibility drawing by regular 2k-gons and K4k+6 has a 3D visibility drawing
by regular (2k + 1)-gons.

The first upper bound 22n
(on the maximum size of a complete graph

with a 3D visibility drawing by equal regular n-gons) was given by Babilon
et al. [2]. This doubly-exponential estimate was improved by Štola [24] to
an exponential

(
6n−3
3n−1

) − 3 ≈ 26n. The main result of Section 4.1 is another
significant improvement of this bound. We present a polynomial upper bound
O(n4) there.
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2 Unimodal Sequences

This section is not devoted to graph drawing directly. It deals with unimodal
sequences. It turns out that these sequences play an important role in the
analysis of some types of graph drawing.

Definition 1. A finite sequence is unimodal if it first increases and then
decreases, i.e., a sequence (si)

n
i=1 is unimodal if there exists l ∈ {1, . . . , n}

such that s1 ≤ s2 ≤ · · · ≤ sl and sl ≥ sl+1 ≥ · · · ≥ sn.

Some authors (see, for example, [18]) call a sequence with this property
an upper unimodal sequence and call a sequence that first decreases and
then increases a lower unimodal sequence. Upper unimodal sequences are
also called strongly unimodal (in [8]) or unimaximal (in [7]).

1
2

3
4

5

1
2

3
4

5

1
2

3
4

5

Figure 10. Examples of unimodal sequences

The notion of unimodality can be generalized into higher dimensions.

Definition 2. A sequence ((sj
i )

k
j=1)i of k-tuples of real numbers is unimodal

if all sequences (sj
i )i, j ∈ {1, . . . , k} are unimodal, i.e., a sequence of k-tuples

is unimodal if it is unimodal in each component.

Unimodal sequences of integers can be found in many areas of combina-
torics. Unimodal sequences of k-tuples of real numbers appear, for example,
in some types of graph drawing, see [7, 27].

The basic result in this area is attributed (by Chung [8]) to V. Chvátal
and J.M. Steele, among others.

Theorem 1. [8] The maximum length of a sequence of distinct integers that
doesn’t contain a unimodal subsequence of length n is

(
n
2

)
.

An upper bound on the maximum length of a sequence of k-tuples without
a unimodal subsequence of the given length can be derived from the upper
bound for the one-dimensional case. For example, we obtain an upper bound((n

2)+1

2

) ≈ 1
8
n4 for sequences of pairs. Unfortunately, the bounds obtained

in this way are not tight. A tight upper bound for sequences of pairs is
1
12

n2(n2 − 1) according to Štola [27].
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We generalize the approach used in [27] to obtain the tight bound for
sequences of pairs. This generalization gives us a tool to determine the max-
imum length of a sequence without more types of forbidden subsequences (not
only unimodal subsequences). For example, we show that Erdős-Szekeres
theorem [13] can be obtained as a special case – monotone subsequences of
the given length are forbidden in this case. The details about the generalized
approach are in Sections 2.1, 2.2 and 2.3.

Let uk(n) be the maximum length of a sequence of k-tuples of real num-
bers without a unimodal subsequence of length n. We show that uk(n) is
a polynomial in n and determine its coefficients for k ≤ 5 in Section 2.4.

Section 2.5 shows a connection between unimodal subsequences and Dede-
kind numbers. Dedekind number Dk is the number of antichains of a power set
P({1, . . . , k}) ordered by inclusion. We prove that Dk = uk(3) and Dk+1 =
uk(4).

2.1 Preliminaries

Definition 3. Let B be a (base) set and R be a finite set of binary relations
on B. We call a sequence (bi)i of members of B an R-sequence if for every
subsequence bi1 , bi2 of (bi)i there exists exactly one relation r(bi1 , bi2) ∈ R such
that (bi1 , bi2) ∈ r(bi1 , bi2).

For example, if B = IN and <, ≤, >, ≥ are the standard ‘lower/greater
than (or equal)’ relations on IN, R1 = {<,>} and R2 = {≤,≥} then the
sequence 1, 3, 5, 4, 2 is both an R1-sequence and an R2-sequence. On the
other hand, the sequence 1, 2, 3, 2, 1 is neither an R1-sequence (because 1 6< 1
and 1 6> 1) nor an R2-sequence (because 1 ≤ 1 and 1 ≥ 1, i.e., the relation
r(1, 1) is not unique).

Definition 4. Let ¹ be a partial order on R. An R-sequence (bi)
n
i=1 is for-

bidden if ∀i ∈ {1, . . . , n−2} : r(bi, bi+1) ¹ r(bi+1, bi+2). Moreover, we denote
by s(B,R,¹, n) the maximum length of an R-sequence without a forbidden
subsequence of length n.

Example 1. Let < (resp. >) be the standard ‘lower than’ (resp. ‘greater
than’) relations on IR. If B = IR, RM = {<,>} and ¹M is a discrete
order, i.e., ¹M= {(<,<), (>, >)} then a sequence is an RM -sequence if and
only if its members are distinct. An RM -sequence is forbidden if and only
if it is monotone. Therefore, the number s(IR, RM ,¹M , n) is the maximum
length of a sequence of distinct numbers without a monotone subsequence of
length n.

14



Example 2. Let B = IR, RU = {<,>} and < ¹U>, i.e., ¹U= {(<,<),
(<,>), (>,>)}. The order ¹U ensures that a decreasing sequence may fol-
low an increasing sequence in a forbidden sequence but the opposite is not
allowed. Therefore, a sequence is forbidden in this case if and only if it is
unimodal. Hence, the number s(IR, RU ,¹U , n) is the maximum length of
a sequence of distinct numbers without a unimodal subsequence of length n.

If (R,¹) is a partially ordered set then we denote by ¹k the partial
order on Rk such that (r1

i )
k
i=1 ¹k (r2

i )
k
i=1 if and only if r1

i ¹ r2
i for every

i ∈ {1, . . . , k}.
Example 3. The previous examples can be generalized into higher dimen-
sions. If we take B′ = Bk, R′ = Rk and ¹′=¹k then a sequence ((bj

i )
k
j=1)i of

k-tuples is (B′, R′,¹′)-forbidden if and only if all sequences (bj
i )i, 1 ≤ j ≤ k

are (B, R,¹)-forbidden. If we generalize the first (resp. the second) example
then a sequence of k-tuples is forbidden if and only if it is monotone (resp.
unimodal) in each component.

2.2 Labeled Tournaments

We examine the function s(B, R,¹, n) in the following two sections. We start
by forgetting the base set B and by looking on the ordered set of relations
first.

Definition 5. Let Tm = G({1, . . . , m}, {(i, j), i < j}) be an acyclic tourna-
ment. If ` is a mapping of E(Tm) into R then we say that ` is an R-labeling
of (edges of) Tm and that (Tm, `) is a labeled tournament.

1

2

3

4

<

<

<

>

>

> 1

2

3

4
<

<

>

>

(a) (b)

<<

Figure 11. Examples of the {<,>}-labeling of the tournament T4

Definition 6. Let ¹ be a partial order on R. A directed path (vi)
n
i=1 in an

acyclic R-labeled tournament (T, `) is forbidden if `(vi, vi+1) ¹ `(vi+1, vi+2)
for 1 ≤ i ≤ n− 2. We say that a labeling ` of a tournament T is n-correct if
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there is no forbidden path of length n in (T, `). We denote by t(R,¹, n) the
maximum size of an acyclic tournament that has an n-correct R-labeling.

For example, if R = {<, >} and ¹ is a discrete order on R then the
R-labeling on Figure 11a is 2-correct. On the other hand, the R-labeling on
Figure 11b is not 2-correct because `(1, 3) = `(3, 4) = <, i.e., `(1, 3) ¹ `(3, 4).

Lemma 1. s(B,R,¹, n) ≤ t(R,¹, n− 1)

Proof. Let (bi)
m
i=1 be an R-sequence. We define ` : E(Tm) → R by `(i, j) =

r(bi, bj). Clearly, (bi)i contains a forbidden subsequence of length n if and
only if the R-labeled tournament (Tm, `) contains a forbidden path of length

n − 1 (i.e., with n vertices). Hence, every R-sequence (bi)
s(B,R,¹,n)
i=1 without

a forbidden subsequence of length n defines an R-labeled tournament with
(n− 1)-correct labeling. Therefore, s(B, R,¹, n) ≤ t(R,¹, n− 1).

The proof of Lemma 1 shows that every R-sequence (bi)
m
i=1 defines an

R-labeled tournament (Tm, `). We say that (bi)
m
i=1 is a realization of the

tournament (Tm, `). If a tournament (Tm, `) has a realization then we say
that it is realizable.

For example, the {<,>}-labeled tournament on Figure 11a is realizable
by sequence 3, 1, 4, 2. If b1, b2, b3, b4 is a realization (in IR) of the tournament
on Figure 11b then it must be b1 < b3 < b4 and b1 > b4, i.e., the tournament
is not realizable.

The opposite inequality in Lemma 1 may not hold because some tourna-
ments may not be realizable in B.

Lemma 2. If U is the set of all upper sets of the partially ordered set (R,¹)
then t(R,¹, n) ≤ ∑

U∈U t(R \ U,¹, n− 1) for n ≥ 2.

Proof. Let Tm,m = t(R,¹, n) be an acyclic tournament with an n-correct
R-labeling `. We show that the vertex set V (Tm) can be partitioned into
pairwise disjoint sets V U , U ∈ U such that the subtournament induced by
V U is (n− 1)-correctly (R \ U)-labeled.

For any vertex v ∈ V (Tm) we denote by Rv the set of the last labels
on the forbidden paths of length n − 1 ending in v, i.e., Rv = {r ∈ R;
∃ a forbidden path (vi)

n
i=1 : `(vn−1, vn) = r and vn = v}.

Let V U = {v ∈ V (Tm) : ↑Rv = U}, U ∈ U , i.e., we group the vertices
of Tm according to ↑Rv (the smallest upper set containing Rv). Clearly,⋃

U∈U V U = V (Tm) and V U1 ∩ V U2 = ∅ for U1 6= U2, U1, U2 ∈ U .
We claim that `(v, w) 6∈ U for any v, w ∈ V U . Let’s assume that `(v, w) ∈

U . We know that ↑Rv = U . Therefore, there exists r ∈ Rv, r ¹ `(v, w) and
a forbidden path (vi)

n
i=1 such that vn = v and `(vn−1, vn) = r. We can append
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w to this path to obtain a forbidden path v1, . . . , vn = v, w of length n. This
is in contradiction with the definition of Tm.

If (vi)
n
i=1 is a forbidden path with all vertices in V U then `(vn−1, vn) ∈

Rvn ⊆↑Rvn = U . This is not possible by the previous paragraph. Hence,
the labeled subtournament TU induced by the vertex set V U doesn’t contain
a forbidden path of length n− 1.

The last two paragraphs show that TU is (n−1)-correctly (R\U)-labeled
tournament. Therefore, we have |V U | ≤ t(R \ U,¹, n − 1) and t(R,¹, n) =
|V (Tm)| = ∑

U∈U |V (TU)| ≤ ∑
U∈U t(R \ U,¹, n− 1).

The following lemma shows that the estimate of t(R,¹, n) in Lemma 2
is tight.

Lemma 3. If U is the set of all upper sets of the partially ordered set (R,¹)
then t(R,¹, n) ≥ ∑

U∈U t(R \ U,¹, n− 1) for n ≥ 2.

Proof. Let TU be an acyclic tournament with t(R \U,¹, n− 1) vertices and
(n− 1)-correct (R \ U)-labeling `U . Let (Ui)i be an ordering of U such that
Uk \Uj 6= ∅ for j < k. An ordering with this property always exists. We can,
for example, order the upper sets according to their cardinality.

Let T be an acyclic tournament with the vertices
⋃

U∈U V (TU) and edges⋃
U∈U E(TU) ∪ {(v, w); v ∈ TUj , w ∈ TUk , j < k}, i.e., the tournament T is

a ‘concatenation’ of tournaments TU . We define an R-labeling ` on the edges
of T . We keep the labeling of the edges of subtournaments TU and label the
edges between subtournaments TUj and TUk , j < k by members of Uk \ Uj

arbitrarily. Formally, if (v, w) ∈ E(T ), v ∈ TUj and w ∈ TUk then

• `(v, w) = `Uj
(v, w) (= `Uk

(v, w)) for j = k,

• `(v, w) ∈ Uk \ Uj for j < k.

We claim that ` is an n-correct R-labeling of T . Let’s assume that (vi)i is
a forbidden path in T . If the whole path is contained in some subtournament
TU then its length is at most n − 2 by the definition of TU . Therefore, we
can assume that the path (vi)i visits at least two subtournaments. Let TUj

be the subtournament where the path starts and vx ∈ TUk be the first vertex
on the path (vi)i that is not in TUj .

If vx is not the last vertex of the path then either vx+1 ∈ TUk or vx+1 ∈
TUl , k < l. We have `(vx, vx+1) ∈ R \ Uk in the first case and `(vx, vx+1) ∈
Ul \ Uk in the second case. Therefore, `(vx, vx+1) 6∈ Uk. On the other hand,
`(vx, vx+1) º `(vx−1, vx) ∈ Uk \ Uj and `(vx, vx+1) ∈ Uk because Uk is an
upper set. Hence, vx must be the last vertex of the path.
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We know that a forbidden path in TUj has length at most n−2. Therefore,
x ≤ n and the length of a forbidden path in T is at most n − 1. This
proves that ` is an n-correct R-labeling of T . Hence, t(R,¹, n) ≥ |V (T )| =∑

U∈U |V (TU)| = ∑
U∈U t(R \ U,¹, n− 1).

If we combine Lemma 2 and Lemma 3 then we obtain the following the-
orem.

Theorem 2. If U is the set of all upper sets of the partially ordered set
(R,¹) then t(R,¹, n) =

∑
U∈U t(R \ U,¹, n− 1) for n ≥ 2.

2.3 Realization of Tournaments

We extend the results of the previous section from tournaments to sequences.
The following lemma is an analogy of Lemma 2.

Lemma 4. If U is the set of all upper sets of the partially ordered set (R,¹)
then s(B, R,¹, n) ≤ ∑

U∈U s(B, R \ U,¹, n− 1) for n ≥ 3.

Proof. Let (bi)
s(B,R,¹,n)
i=1 be an R-sequence without a forbidden subsequence

of length n and (T, `) be an (n − 1)-correctly R-labeled acyclic tournament
realized by (bi)i.

We know from the proof of Lemma 2 that the tournament (T, `) can
be partitioned into subtournaments (TU , `U), U ∈ U . Every subtournament
(TU , `U) has a realization by a subsequence of (bi)i. We denote this subse-
quence by sU . The sequences sU , U ∈ U form a partitioning of (bi)i, i.e., for
any i ∈ {1, . . . , s(B, R,¹, n)} there is exactly one subsequence sU containing
bi.

The proof of Lemma 2 shows that `U is an (n−2)-correct (R\U)-labeling
of TU . Therefore, r(bi, bj) = `U(i, j) ∈ R\U for any bi, bj ∈ sU , i < j, i.e., sU

is (R \ U)-sequence. Moreover, sU doesn’t have a forbidden subsequence of
length n − 1. Hence, s(B,R,¹, n) =

∑
U∈U length(sU) ≤ ∑

U∈U s(B, R \ U,
¹, n− 1).

The opposite inequality in Lemma 4 may not hold because the tournament
T constructed in the proof of Lemma 3 may not have a realization in (B,R).

Definition 7. Let R be a finite set of binary relations on a set B. We say
that (B, R) has a realization property if for every r ∈ R and every pair of
realizable R-labeled tournaments (T1, `1) and (T2, `2) there exists a realization

of an R-labeled tournament T1

r⊕ T2 such that

• V (T1

r⊕ T2) = V (T1) ∪ V (T2),
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• E(T1

r⊕ T2) = E(T1) ∪ E(T2) ∪ {(v, w) : v ∈ V (T1), w ∈ V (T2)},
• `(v, w) = `1(v, w) for (v, w) ∈ E(T1),

• `(v, w) = `2(v, w) for (v, w) ∈ E(T2),

• `(v, w) = r for v ∈ V (T1) and w ∈ V (T2).

1

2

3

1’

2’

c

⊕
=

a

b

c b 1

2

3

1’

2’

a

b

c b
c

c

c

c

c

c

Figure 12. The construction of the tournament T1

c⊕ T2

If (B, R) has a realization property then the estimate in Lemma 4 is tight.

Lemma 5. If (B,R) has a realization property and U is the set of all upper
sets of the partially ordered set (R,¹) then s(B,R,¹, n) ≥ ∑

U∈U s(B, R\U,
¹, n− 1) for n ≥ 3.

Proof. Let sU = (bU
i )i be an (R \U)-sequence of length s(B, R \U,¹, n− 1)

that doesn’t contain a forbidden subsequence of length n − 1. Let (TU , `U)
be the (n− 2)-correctly (R \ U)-labeled acyclic tournament realized by sU .

We proceed in the same way as in the proof of Lemma 3. We define an
R-labeled tournament T again but we have to specify the order on U and the
labels of the edges between subtournaments more carefully (to ensure that
the resulting tournament has a realization).

Let <R be an arbitrary linear order on R. We define a linear order <U
on U . If U, V ∈ U , U ( V then U <U V . If neither U ⊂ V nor V ⊂ U then
U <U V if and only if max<R

(U \ V ) <R max<R
(V \ U).

We define an acyclic tournament T with vertices
⋃

U∈U V (TU) and edges⋃
U∈U E(TU) ∪ {(u, v); u ∈ TU , v ∈ T V , U <U V }. Moreover, we define an

R-labeling ` of T . If (u, v) ∈ E(T ), u ∈ TU and v ∈ T V then

• `(u, v) = `U(u, v) (= `V (u, v)) for U = V ,

• `(u, v) = max<R
(V \ U) for U <U V .

We know from the proof of Lemma 3 that ` is (n− 1)-correct R-labeling
of T . We claim that (T, `) has a realization in (B, R).
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Let (rj)
|R|
j=1 be the set R ordered according to <R. We proceed by induc-

tion on i and show that for any set S ⊆ {rj : j ≥ i} the labeled subtour-
nament T S

i induced by the vertex set
⋃

U∈US
i

V (TU), US
i = {U ∈ U : U ∩

{rj : j ≥ i} = S} has a realization.
If i = 1 then we have US

1 6= ∅ if and only if S ∈ U . Hence, V (T S
1 ) =⋃

U∈US
1 ={S} V (TU) = V (T S) and we know that sS is a realization of the

corresponding subtournament T S
1 = T S.

If 1 < i ≤ |R|+ 1 and S ′ = S ∪ {ri−1} then

V (T S
i ) =

⋃

U∈US
i

V (TU) =
⋃

U∈US
i−1

V (TU) ∪
⋃

U∈US′
i−1

V (TU) = V (T S
i−1) ∪ V (T S′

i−1).

We have ri−1 6∈ U (resp. ri−1 ∈ V ) for any U ∈ US
i−1 (resp. V ∈ US′

i−1).
Moreover, for any rj, j ≥ i it is rj ∈ U if and only if rj ∈ V (if and only
if rj ∈ S). Therefore, U <U V and `(u, v) = ri−1 for any u ∈ V (TU) and

v ∈ V (T V ). In other words, T S
i = T S

i−1

ri−1⊕ T S′
i−1.

We know from the previous step of the induction that both T S
i−1 and T S′

i−1

have a realization. Hence, T S
i = T S

i−1

ri−1⊕ T S′
i−1 has a realization because

(B,R) has a realization property.
We proved that every T S

i has a realization. For S = ∅ and i = |R|+ 1 we
have U∅|R|+1 = {U ∈ U : U ∩ ∅ = ∅} = U . Therefore, T ∅

|R|+1 = T and T has
a realization.

Let (bi)
m
i=1 be an R-sequence that realizes (T, `). This sequence doesn’t

contain a forbidden subsequence of length n because ` is (n − 1)-correct
R-labeling. Therefore, s(B, R,¹, n) ≥ m = |V (T )| =

∑
U∈U |V (TU)| =∑

U∈U length(sU) =
∑

U∈U s(B,R \ U,¹, n− 1).

If we combine Lemma 4 and Lemma 5 then we obtain an analogy of
Theorem 2.

Theorem 3. If (B,R) has a realization property and U is the set of all upper
sets of the poset (R,¹) then s(B, R,¹, n) =

∑
U∈U s(B, R \ U,¹, n− 1) for

n ≥ 3.

Corollary 1. If (B, R) has a realization property and n ≥ 1 then s(B,R,
¹, n) = t(R,¹, n− 1).

Proof. We proceed by induction on n and show that for any M ⊆ R it is
s(B, M,¹, n) = t(M,¹, n− 1).

For n ∈ {1, 2} and M ⊆ R we have s(B,M,¹, 1) = t(M,¹, 0) = 0 and
s(B, M,¹, 2) = t(M,¹, 1) = 1.
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We know that (B,M) has a realization property because (B, R) has a re-
alization property. Therefore, if n ≥ 3 then according to Theorem 3, the
previous step of the induction and Theorem 2 we have

s(B,M,¹, n) =
∑

U∈UM

s(B, M \ U,¹, n− 1) =

=
∑

U∈UM

t(M \ U,¹, n− 2) = t(M,¹, n− 1)

where UM is the set of all upper sets of the poset (M,¹).

2.4 Unimodal and Monotone Subsequences

In this section we determine the maximum length of a sequence of k-tuples
without a unimodal subsequence of length n. At first we show that we can
depend on the realization property in this case.

Lemma 6. If R ⊆ {<,>}n then (IRn, R) has a realization property.

Proof. Let r = (ri)
n
i=1 ∈ R and T1 (resp. T2) be a tournament with a real-

ization (s1
i )

m1
i=1 (resp. (s2

i )
m2
i=1). We define a realization (si)

m1+m2
i=1 of T1

r⊕ T2

in the following way. We set si = s1
i for i ≤ m1 and si = s2

i + D,D ∈ IRn for
i > m1. We choose D such that (si, sj) ∈ r for every i ≤ m1 and j > m1.

Let (ei)
n
i=1 be the standard orthonormal basis of IRn, i.e., e1 = (1, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0), etc. If D = C
∑n

i=1 ciei where ci = 1 (resp. ci = −1) for
ri = < (resp. ri = >) and C ∈ IR+ is sufficiently large then the sequence

(si)
m1+m2
i=1 is a realization of T1

r⊕ T2.

If n is small and the set of all uppersets has either small cardinality or its
structure is simple then Theorem 2 (resp. Theorem 3) can be used directly to
determine t(R,¹, n) (resp. s(B, R,¹, n)). It turns out that these theorems
can be used easily to determine t(R,¹, n) and s(B, R,¹, n) even for large
values of n. The following lemma shows how to do it.

Lemma 7. If (R,¹) is a partially ordered set then t(R,¹, n) is a polynomial
with a positive leading coefficient and the degree |R|. Moreover, if U is the set
of all upper sets of (R,¹) then t(R,¹, n) = 1+

∑n−1
k=1

∑
U∈U\{∅} t(R\U,¹, k)

for n ≥ 1.

Proof. We proceed by induction on |R|. If |R| = 0 then R = ∅, t(∅,¹, n) = 1
and 1 +

∑n−1
k=1

∑
U∈∅ t(∅,¹, k) = 1 +

∑n−1
k=1 0 = 1 for n ≥ 1.
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If |R| > 0 and n ≥ 2 then according to Theorem 2 we have

t(R,¹, n) = t(R,¹, n− 1) +
∑

U∈U\{∅}
t(R \ U,¹, n− 1) =

= t(R,¹, 1) +
n−1∑

k=1

∑

U∈U\{∅}
t(R \ U,¹, k) = 1 +

n−1∑

k=1

∑

U∈U\{∅}
t(R \ U,¹, k).

If n = 1 then t(R,¹, 1) = 1 and 1+
∑0

k=1

∑
U∈U t(R\U,¹, k) = 1. Therefore,

the identity t(R,¹, n) = 1 +
∑n−1

k=1

∑
U∈U\{∅} t(R \ U,¹, k) holds for n ≥ 1.

We know from the previous step of the induction that t(R \ U,¹, k) is
a polynomial with the degree |R\U | and a positive leading coefficient. Hence,∑

U∈U\{∅} t(R \ U,¹, k) is a polynomial with the degree maxU∈U\{∅} |R \ U |.
Therefore, t(R,¹, n) is a polynomial with the degree 1 + maxU∈U\{∅} |R \U |.
The leading coefficient of the polynomial t(R,¹, n) is positive because all
polynomials t(R \ U,¹, k), U ∈ U \ {∅} have positive leading coefficients.

The poset (R,¹) has at least one maximum rmax because R is finite.
Therefore, maxU∈U\{∅} |R \ U | = |R| − 1 because {rmax} is an upper set.
Hence, the degree of the polynomial t(R,¹, n) is |R|.
Corollary 2. If (R,¹) is a partially ordered set and (B, R) has a realization
property then s(B, R,¹, n) is a polynomial with a positive leading coefficient
and the degree |R|. Moreover, if U is the set of all upper sets of (R,¹) then
s(B, R,¹, n) = 1 +

∑n−1
k=2

∑
U∈U\{∅} s(B, R \ U,¹, k) for n ≥ 2.

Proof. This corollary is a simple consequence of Lemma 7 and Corollary 1.

Corollary 3. If (R,¹) is a discrete poset then t(R,¹, n) = n|R| for n ≥ 1.

Proof. We proceed by induction on |R|. If |R| = 0 then R = ∅ and t(∅,¹
, n) = 1. If |R| > 0 then every subset of R is an upper set in the discrete
poset (R,¹). Therefore, according to Lemma 7 and the previous step of the
induction we have

t(R,¹, n) = 1 +
n−1∑

k=1

|R|−1∑
m=0

∑

U∈U ,|U |=|R|−m

t(R \ U,¹, k) =

= 1 +
n−1∑

k=1

|R|−1∑
m=0

( |R|
|R| −m

)
km = 1 +

n−1∑

k=1

(
(k + 1)|R| − k|R|

)
= n|R|.
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If (RM ,¹M) is the partially ordered set from Example 1 in Section 2.1
then (IR, RM) has a realization property due to Lemma 6. Therefore, s(IR,
RM ,¹M , n) = t(RM ,¹M , n − 1) = (n− 1)2 by Corollary 1 and Corollary 3.
This means that the maximum length of a sequence (of distinct numbers)
that doesn’t contain a monotone subsequence of length n is (n−1)2. In other
words, Erdős-Szekeres theorem [13] is a special case of Corollary 3.

Lemma 8. The maximum length of a sequence of k-tuples of real numbers
that doesn’t contain a unimodal subsequence of length n is s(IRk, Rk

U ,¹k
U , n)

where RU = {<,>} and ¹U= {(<,<), (<,>), (>,>)}.
Proof. We know (from Example 2 and Example 3) that the maximum length
of an Rk

U -sequence of k-tuples that doesn’t contain a unimodal sequence of
length n is s(IRk, Rk

U ,¹k
U , n). We have to show that this bound holds also

for sequences that are not Rk
U -sequences. We claim that every sequence

s = ((bj
i )

k
j=1)i of k-tuples (i.e., not necessarily Rk

U -sequence) longer than

s(IRk, Rk
U ,¹k

U , n) contains a unimodal subsequence of length n.
We repeat the following process until we obtain an Rk

U -sequence. If the
sequence s contains members (bj

x)
k
j=1 and (bj

y)
k
j=1, x 6= y such that bj′

x = bj′
y

for some j′ ∈ {1, . . . , k} then we replace bj′
x by bj′

x + ε. We choose ε > 0 such

that bj′
x + ε > bj′

i (resp. bj′
x + ε < bj′

i ) whenever bj′
x > bj′

i (resp. bj′
x < bj′

i ).
The resulting Rk

U -sequence s′ = ((cj
i )

k
j=1)i has the same length as the orig-

inal sequence s (i.e., is longer than s(IRk, Rk
U ,¹k

U , n)). Therefore, it contains
a unimodal subsequence ((cj

il
)k
j=1)

n
l=1. We performed the replacements in s

such that cj
x < cj

y (resp. cj
x > cj

y) only if bj
x ≤ bj

y (resp. bj
x ≥ bj

y). Hence, the

subsequence ((bj
il
)k
j=1)

n
l=1 of s is also unimodal and has length n.

Now we can proceed to the main result of this section.

Theorem 4. If uk(n) is the maximum length of a sequence of k-tuples of real
numbers that doesn’t contain a unimodal subsequence of length n ≥ 2 then

u1(n) = (n− 1)n/2

u2(n) = (n− 1)n2(n + 1)/12

u3(n) = (n− 1)n(n + 1)(n + 2)(2n4 + 4n3 + n2 − n + 4)/1680

u4(n) = (n− 1)n(n + 1)2(n + 2)(n + 3)(2188n10 + 21880n9 + 81000n8

+122880n7 + 106689n6 + 390150n5 + 857015n4 + 320180n3

−1778862n2 − 2788020n + 2872800)/27243216000

u5(n) = (n−1)n(n+1)(n+2)(n+3)(n+4)(482024870952388n26+18798969967143132n25

+331613261704350160n24+3478540936142196360n23
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+24245249756669384305n22+122065775931899836905n21

+498970836617766995500n20+1898007921240632301585n19

+6719775479513894172100n18+18902955809181381835185n17

+36331230260439507728350n16+30739296553709404093710n15

−160517480691164408211635n14−774895455899521661518305n13

+1307253531304994398188100n12+13993216097643044201045385n11

−3149148469074212091802190n10−145226381189665260254119725n9

−25378478176587338599016550n8+935650325100713964444939960n7

+160293815795710365537370032n6−3467393139664210783067322192n5

+403013636559535706828929440n4+6753480934722715830642048000n3

−8342695734133534267314240000n2−22545812692304999988871680000n

+60321249146355912658944000000)/8565456931435336268464128000000

Proof. It is sufficient to determine s(IRk, Rk
U ,¹k

U , n) because it is equal to
uk(n) by Lemma 8.

Let uk(R, n) = s(IRk, R,¹k
U , n), R ⊆ Rk

U . If k = 1 then according to
Corollary 2 we have

u1(∅, n) = 1,

u1({<}, n) = 1 +
n−1∑
m=2

u1(∅,m) = n− 1,

u1(n) = u1(RU , n) = 1 +
n−1∑
m=2

(
u1({<},m) + u1(∅,m)

)
=

= 1 +
n−1∑
m=2

m =

(
n

2

)
.

If k > 1 then we proceed in the same way, i.e., we use the formula from
Corollary 2 until we calculate uk(n). The length of the calculation increases
significantly with the increasing k. It is easy to determine u2(n) using a paper
and a pencil but for k > 2 we used a simple Java program. The program
computed u3 and u4 in a fraction of a second. The computation of u5 took 8
minutes on an average laptop.

2.5 Dedekind Numbers

The results presented in this section don’t have direct applications in graph
drawing but they allow us to explain why we weren’t able to find a general
formula for uk(n) in Theorem 4.
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{1, 2}

{1} {2}

∅

(a)

(b)

(c)

∅, {∅}, {{1}}, {{2}}, {{1}, {2}}, {{1, 2}}

{{1}, {1, 2}}, {{2}, {1, 2}}, {{1}, {2}, {1, 2}},{∅, {1}, {2}, {1, 2}}, {{1, 2}}∅,

Figure 13. (a) The Hasse diagram of the poset (P({1, 2}),⊆), (b) the
antichains of this poset and (c) the corresponding upper sets

Let’s remind the definition of Dedekind number.

Definition 8. Dedekind number Dk is the number of antichains of the power
set P({1, . . . , k}) ordered by inclusion.

We show a connection between Dedekind numbers and unimodal subse-
quences in this section.

Lemma 9. uk(3) = Dk

Proof. Let f : (Rk
U ,¹k

U) → (P({1, . . . , k}),⊆) be a mapping defined by

f((ri)
k
i=1) = {i, i ∈ {1, . . . , k} : ri = >}.

The mapping f is a bijection. Moreover, f is an isomorphism because

(r1
i )

k
i=1 ¹k

U (r2
i )

k
i=1 ≡ ∀j ∈ {1, . . . , k} r1

j ¹U r2
j ≡

≡ ∀j ∈ {1, . . . , k} (r1
j , r

2
j ) ∈ {(<,<), (<, >), (>,>)} ≡

≡ ∀j ∈ {1, . . . , k}
(
j ∈ f((r1

i )i) ⇒ j ∈ f((r2
i )i)

)
≡

≡ f((r1
i )i) ⊆ f((r2

i )i).

Therefore, the number of antichains in (Rk
U ,¹k

U) is Dk.
Let U be the set of all upper sets of the partially ordered set (Rk

U ,¹k
U). We

have Dk = |U| because antichains correspond to upper sets in finite posets.
Finally, according to Theorem 3 we have

uk(3) = s(IRk, Rk
U ,¹k

U , 3) =
∑
V ∈U

s(IRk, Rk
U \ V,¹k

U , 2) =
∑
V ∈U

1 = |U| = Dk.
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Lemma 10. ua+b(n) ≤ ua

(
ub(n) + 1

)

Proof. Let s = ((bj
i )

a+b
j=1)i be a sequence of (a+b)-tuples of length ua(ub(n) + 1)

+1. This sequence contains a subsequence s′ = ((bj
il
)a+b
j=1)

ub(n)+1
l=1 unimodal in

the first a components, i.e., (bj
il
)
ub(n)+1
l=1 is unimodal for any j ∈ {1, . . . , a}.

Similarly, the sequence s′ contains a subsequence s′′ of length n unimodal
in the last b components. Moreover, the sequence s′′ is unimodal in the
first a components because every subsequence of a unimodal sequence is uni-
modal. In other words, the subsequence s′′ of s is unimodal and has length
n. Therefore, ua+b(n) < ua(ub(n) + 1) + 1.

Corollary 4. Dk+m ≤ uk(Dm + 1) for m ≥ 0

Proof. If m = 0 then D0 = 2 and Dk = uk(3) = uk(D0 + 1) by Lemma 9.
If m > 0 then according to Lemma 9 and Lemma 10 we have Dk+m =
uk+m(3) ≤ uk(um(3) + 1) = uk(Dm + 1).

Lemma 9 shows that the estimate in Corollary 4 is tight for m = 0. The
following lemma shows that it is tight for m = 1 as well.

Lemma 11. uk(4) = Dk+1

Proof. We denote Rk
U (resp. ¹k

U) simply by R (resp. ¹) in this proof. Let
US, S ⊆ R be the set of all upper sets of the partially ordered set (S,¹).
According to Lemma 6 and Theorem 3 we have

uk(4) = s(IRk, R,¹, 4) =
∑

V ∈UR

s(IRk, R \ V,¹, 3) =

=
∑

V ∈UR

∑
W∈UR\V

s(IRk, (R \ V ) \W,¹, 2) =
∑

V ∈UR

∑
W∈UR\V

1 = |M|

where M = {(V,W ) : V ∈ UR,W ∈ UR\V }.
Let f be the isomorphism from the proof of Lemma 9. Let Uk+1 be the

set of all upper sets of the partially ordered set (P({1, . . . , k + 1}),⊆). We
define a mapping g : M→ Uk+1 by

g(V,W ) =
{

f(v) : v ∈ V
}
∪

{
f(v) ∪ {k + 1} : v ∈ V ∪W

}
=

= f(V ) ∪
{

x ∪ {k + 1} : x ∈ f(V ∪W )
}

.

We claim that g is a bijection.
At first we show that V ∪W is an upper set in (R,¹) for any (V, W ) ∈M.

Let x ∈ V ∪W and x ≤ y, y ∈ R. If y ∈ V then y ∈ V ∪W obviously. If
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y 6∈ V then x 6∈ V because V is an upper set. Finally, if x ∈ W and y ∈ R\V
then y ∈ W ⊂ V ∪W because W is an upper set in (R \ V,¹).

If (V, W ) ∈M then f(V ) (resp. f(V ∪W )) is an upper sets in (P({1, . . . ,
k}),⊆) because f is an isomorphism and V (resp. V ∪W ) is an upper set in
(R,¹).

We have to show that g is defined correctly, i.e., that g(V,W ) is an upper
set for any (V,W ) ∈M. Let x ∈ g(V,W ) and x ⊆ y, y ∈ P({1, . . . , k + 1}).
We have x \ {k + 1} ∈ f(V ∪W ) and x \ {k + 1} ⊆ y \ {k + 1} ∈ f(V ∪W )
because f(V ∪W ) is an upper set. Therefore, if k + 1 ∈ y then y ∈ g(V, W ).
If k + 1 6∈ y then x ∈ f(V ) and y ∈ f(V ) ⊆ g(V, W ) because f(V ) is an
upper set.

g is injective because f is injective. It remains to show that g is surjective.
Let U be an upper set in (P({1, . . . , k + 1}),⊆). Let V = f−1({x ∈ U :
{k+1} 6∈ x}) and W = f−1({x\{k+1} : x ∈ U})\V . Clearly, g(V, W ) = U
but we have to show that (U, V ) ∈M.

V is an upper set in (R,¹) because f is an isomorphism and {x ∈ U :
{k + 1} 6∈ x} is an upper set in (P({1, . . . , k}),⊆). Similarly, V ∪ W =
f−1({x \ {k + 1} : x ∈ U}) is an upper set in (R,¹) because {x \ {k + 1} :
x ∈ U} is an upper set in (P({1, . . . , k}),⊆). Hence, W = (V ∪W ) \V is an
upper set in (R \ V,¹) and (V,W ) ∈M.

We proved that g is a bijection. Therefore, Dk+1 = |Uk+1| = |M| =
uk(4).

It might be tempting to conjecture that the estimate in Corollary 4 is
tight for any m. Unfortunately, this is not true. The estimate is not tight
for m = 2 and k = 1 already: D3 = 20 < 21 = u1(7) = u1(D2 + 1).

D0 2
D1 3
D2 6
D3 20
D4 168
D5 7581
D6 7828354
D7 2414682040998
D8 56130437228687557907788

Table 1. The only known Dedekind numbers [22]

Let’s recall that Dedekind’s problem [12] is a longstanding problem re-
quiring to provide a closed formula for Dedekind numbers. Nobody has been
able to provide such a formula so far. In fact, there are only nine Dedekind
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numbers (D0, D1, . . . , D8) known by now, see Table 1. Hence, it is not sur-
prising that we are not able to find a closed formula for uk(n) for a general
k. Lemma 9 and Lemma 11 would give a solution to Dedekind’s problem
otherwise.
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3 Rectangle Visibility Drawing

We study the rectangle visibility drawing in this section.

Definition 9. A graph is representable as a rectangle visibility graph in IRn

if each vertex can be mapped to a hyper-rectangle in IRn (where the hyper-
rectangle is a cartesian product of n − 1 intervals in IR and a number in
the last coordinate, i.e., [a1, b1]× . . . [an−1, bn−1]×{an}) such that two hyper-
rectangles see each other in the direction orthogonal to the hyper-rectangles
whenever the corresponding vertices are connected by an edge.

Graph drawing terminology is slightly confusing regarding rectangle vis-
ibility drawings. Graphs representable as rectangle visibility graphs in IR3

are also called 3D rectangle visibility graphs. On the other hand, 2D rectan-
gle visibility graphs are not necessarily representable as rectangle visibility
graphs in IR2. Graphs representable as rectangle visibility graphs in IR2 are
those graphs that admit a visibility drawing with vertices represented by
line segments and edges orthogonal to these line segments. On the other
hand, the 2D rectangle visibility drawing represents vertices by axis-aligned
rectangles and edges are parallel either to the x-axis or to the y-axis.

Cobos et al. [9] show that every graph is representable as a rectangle
visibility graph.

Lemma 12. [9] Given a graph G, there exists n ∈ IN such that G is repre-
sentable as a rectangle visibility graph in IRn.

It is interesting to look for the minimum dimension in which the graph is
representable.

Definition 10. A graph G has a representation index equal to n if it is
representable as a rectangle visibility graph in IRn and is not representable in
IRm, m < n. We denote the representation index of G by RI(G).

Lemma 12 ensures that the representation index is defined for any graph.
Cobos et al. [9] also show that the set of graphs representable in IRn grows
with n.

Lemma 13. [9] Every graph representable as a rectangle visibility graph in
IRn is representable in IRn+1.

Graphs with the representation index at most 2 are called bar-visibility
graphs. Tamassia, Tollis [29] and Wismath [30] give the following character-
ization of bar-visibility graphs.
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Lemma 14. [29, 30] A graph G is a bar-visibility graph (i.e., RI(G) ≤ 2)
if and only if there is a planar embedding of G with all cut vertices on the
exterior face.

The characterization of graphs with the representation index at most 3 is
an open problem. All planar graphs are in this category according to Bose
et al. [7].

It turns out to be useful to refine the definition of the representation
index.

Definition 11. A graph G of the (old) representation index equal to n has
a (fractional) representation index equal to (n− 1) + 1/2 if it admits a rep-
resentation in IRn such that any hyper-rectangle (representing a vertex) is of
the form [a1, b1]× · · · × [an−2, bn−2]× [an−1, 0]× {an}.

We use the term representation index for the fractional representation
index in the sequel.

Cobos et al. [9] characterize the graphs with the representation index
lower or equal to 1+1/2.

Lemma 15. [9] A graph G has a representation index at most 1+1/2 if and
only if it has a Hamiltonian path such that there exists a planar embedding
of G with all edges of this path on the exterior face.

The characterization of graphs with the representation index lower or
equal to k/2, k ∈ IN, k > 4 remains an open problem.

3.1 3D Rectangle Visibility Drawing

This section is focused on complete graphs with the representation index
lower or equal to 3. These graphs are called 3D rectangle visibility graphs.
In other words, a graph is a 3D rectangle visibility graph if it has a visibil-
ity drawing in IR3 where vertices are represented by axis-aligned rectangles
placed in planes parallel to xy-plane. If two vertices are connected by an
edge then the corresponding rectangles must see each other in the direction
parallel to z-axis. A drawing with these properties is called a 3D rectangle
visibility drawing.

Let’s assume that we have a 3D rectangle visibility drawing of a complete
graph and consider orthogonal projections of all rectangles into xy-plane.
Every pair of projections must intersect because every pair of rectangles
can see each other (because they represent a complete graph). Therefore,
all projections have a common intersection due to a Helly-type theorem for
axis-aligned rectangles in a plane (see [10]).
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Let O be the common intersection of the projections. We introduce a co-
ordinate system with the origin O and four axes p1, p2, p3 and p4 = p0

orthogonal to individual sides of the rectangles, see Figure 14. Every projec-
tion can be described using a 4-tuple of orthogonal distances of individual
sides of the projection from the origin O. We call these 4-tuples rectan-
gle coordinates. Hence, the location of any rectangle in the drawing can be
described using its rectangle coordinates and its z-coordinate.

O

p1

p2

p3

p4

c1

c2

c3

c4

R

Figure 14. A rectangle R with the coordinates (c1, c2, c3, c4).

We don’t include the z-coordinate in rectangle coordinates because its
exact value is unimportant. It is sufficient to know the order of the rectangles
according to the z-coordinate only. If we sort the rectangles coordinates
according to the z-coordinate of the corresponding rectangle then we obtain
a sequence of 4-tuples that fully describes the drawing.

Fekete et al. [7, 14] found a sufficient and necessary condition for the
visibility between two rectangles.

Lemma 16. [7, 14] Let rectangles (Rk)
m
k=1 (ordered according to the z-

coordinate) form a 3D rectangle visibility drawing of a complete graph Km and
let (ck

i )
4
i=1 be rectangle coordinates of Rk. The rectangles Ra and Rb, a < b

can see each other in the quadrant p̂l−1pl, l ∈ {1, 2, 3, 4} if and only if for
every rectangle Rx, a < x < b it is cx

l−1 < min(ca
l−1, c

b
l−1) or cx

l < min(ca
l , c

b
l ).

Proof. Let R′
k be the orthogonal projection of Rk into the xy-plane. Any

potential line of visibility (in the quadrant p̂l−1pl) between rectangles Ra and
Rb must intersect Q = R′

a ∩R′
b ∩ p̂l−1pl.

If there exists a rectangle Rx, a < x < b such that cx
l−1 ≥ min(ca

l−1, c
b
l−1)

and cx
l ≥ min(ca

l , c
b
l ) then all lines of visibility going through Q are blocked

by Rx, see Figure 15a. Therefore, the rectangles Ra and Rb cannot see each
other in the quadrant p̂l−1pl.

On the other hand, if cx
l−1 < min(ca

l−1, c
b
l−1) or cx

l < min(ca
l , c

b
l ) for every

x : a < x < b then the z-parallel lines of visibility in the neighborhood of the
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pl−1

pl

R′

a

R′

b

R′

x

ca

l−1

cb

l−1

ca

l cb

l

pl−1

pl

R′

a

R′

b
q

ca

l−1

cb

l−1

ca

l cb

l

R′

x

(a) (b)

Q

Figure 15

point q are not blocked, see Figure 15b. Therefore, the rectangles Ra and Rb

can see each other in the quadrant p̂l−1pl.

The following lemma provides an important property of 3D rectangle vis-
ibility drawings of complete graphs. It is inspired by the proof of Lemma 2.3
in [7].

Lemma 17. Let rectangles (Rk)
m
k=1 (ordered according to the z-coordinate)

form a 3D rectangle visibility drawing of a complete graph Km and let (ck
1, c

k
2,

ck
3, c

k
4) be rectangle coordinates of Rk. If (ck

1)
m
k=1 is a unimodal sequence then

the rectangles (R′
k)

m
k=1 with the coordinates (0, ck

2, c
k
3, c

k
4) also form a 3D rect-

angle visibility drawing of Km.

Proof. Let (ck
i )

4
i=1 be rectangle coordinates of R′

k. The rectangles R′
a and

R′
b see each other in the quadrant p̂l−1pl, l ∈ {1, 2, 3, 4} if and only if for

every rectangle R′
x, a < x < b it is cx

l−1 < min(ca
l−1, c

b
l−1) or cx

l < min(ca
l , c

b
l )

according to Lemma 16.
If l 6= 1 then cx

l < min(ca
l , c

b
l ) if and only if cx

l < min(ca
l , c

b
l ) because

ck
l = ck

l for any k ∈ {1, . . . ,m}.
If l = 1 then cx

l < min(ca
l , c

b
l ) doesn’t hold because the sequence (ck

1)
m
k=1 is

unimodal. The inequality 0 = cx
1 < min(ca

1, c
b
1) = min(0, 0) = 0 also doesn’t

hold.
Therefore, the rectangles R′

a and R′
b see each other in the quadrant p̂l−1pl,

l ∈ {1, 2, 3, 4} if and only if the rectangles Ra and Rb can see each other in
the same quadrant. Hence, the rectangles (R′

k)
m
k=1 also form a drawing of

a complete graph.

Lemma 17 motivates the study of 3D rectangle visibility drawings of
complete graphs where some coordinates of all rectangles are equal to zero.

Lemma 18. Let rectangles (Rk)
m
k=1 (ordered according to the z-coordinate)

form a 3D rectangle visibility drawing of a complete graph Km and let (ck
1, c

k
2,

ck
3, c

k
4) be rectangle coordinates of Rk.
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(i) If ck
1 = ck

2 = ck
3 = ck

4 = 0, k ∈ {1, . . . , m} then m ≤ 2.

(ii) If ck
1 = ck

2 = ck
3 = 0, k ∈ {1, . . . , m} then m ≤ 3.

(iii) If ck
1 = ck

3 = 0, k ∈ {1, . . . ,m} then m ≤ 4.

(iv) If ck
1 = ck

2 = 0, k ∈ {1, . . . ,m} then m ≤ 6.

(v) If ck
1 = 0, k ∈ {1, . . . , m} then m ≤ 10.

Proof. (i) The rectangles degenerate to points in this case. If m > 2 then
any point/rectangle Rk, k = 2, . . . , m − 1 blocks the visibility between R1

and Rm. Hence, m ≤ 2.
(ii) The rectangles degenerate to line segments in this case. All the line

segments lie in the xz-plane. Moreover, one endpoint of each line segment
lies on the z-axis and all line segments lie in one half-plane determined by
the z-axis. In other words, these line segments form a rectangle visibility
drawing that shows that the representation index of the corresponding graph
is at most 1 + 1/2. Hence, it must be m ≤ 3 because Km, m > 3 has
a representation index bigger than 1+1/2 according to Lemma 15.

(iii) This case is similar to the previous one. The rectangles are again
degenerated to line segments and lie in the xz-plane. They form a bar-
visibility drawing there. All bar-visibility graphs are planar according to
Lemma 14. Therefore, m ≤ 4 because Km, m > 4 is not planar.

(iv) If m ≥ 7 then the sequence ((ck
3, c

k
4))

m
k=1 contains a unimodal sub-

sequence ((cki
3 , cki

4 ))3
i=1 according to Theorem 4. If we apply Lemma 17 on

rectangles Rk1 , Rk2 , Rk3 (we apply the lemma twice - at first we use it on
the 3rd coordinates and then on the 4th coordinates) then we obtain a 3D
rectangle visibility drawing of K3 that is in contradiction with (i). Hence,
m ≤ 6.

(v) This case is similar to the previous one. If m ≥ 11 then the sequence
(ck

3)
m
k=1 contains a unimodal subsequence (cki

3 )5
i=1 according to Theorem 1. If

we apply Lemma 17 on rectangles (Rki
)5
i=1 then we obtain a 3D rectangle

visibility drawing of K5 that is in contradiction with (iii). Hence, m ≤ 10.

Figure 16 shows that all upper bounds in Lemma 18 are tight. Fig-
ure 16(iv) shows 4 rectangles that can be seen from the back and front. We
obtain a drawing of K6 by adding two large rectangles into this drawing of
K4. We add one rectangle behind and one rectangle in front of all displayed
rectangles. There is a similar situation on Figure 16(v).

The following lemma is a simple consequence of Lemma 17 and Lemma 18
but it provides a lot of information about structure of 3D rectangle visibility
drawings of complete graphs.
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(i) (ii) (iii)

1
2

3
4

1

2

3

4
5

6
7

8

(iv) (v)

Figure 16. 3D rectangle visibility drawings of complete graphs showing
that the upper bounds given by Lemma 18 are tight (the numbers represent
the z-coordinates of the rectangles)

Lemma 19. Let rectangles (Rk)
m
k=1 (ordered according to the z-coordinate)

form a 3D rectangle visibility drawing of a complete graph Km and let (ck
1, c

k
2,

ck
3, c

k
4) be rectangle coordinates of Rk.

(i) The sequence ((ck
1, c

k
2, c

k
3, c

k
4))

m
k=1 doesn’t contain a unimodal subsequence

of length 3.

(ii) The sequence ((ck
1, c

k
2, c

k
3))

m
k=1 doesn’t contain a unimodal subsequence of

length 4.

(iii) The sequence ((ck
1, c

k
3))

m
k=1 doesn’t contain a unimodal subsequence of

length 5.

(iv) The sequence ((ck
1, c

k
2))

m
k=1 doesn’t contain a unimodal subsequence of

length 7.

(v) The sequence (ck
1)

m
k=1 doesn’t contain a unimodal subsequence of length

11.

Proof. (i) If the sequence ((ck
1, c

k
2, c

k
3, c

k
4))

m
k=1 contains a unimodal subsequence

((cki
1 , cki

2 , cki
3 , cki

4 ))3
i=1 then we can apply Lemma 17 on rectangles (Rki

)3
i=1 to
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obtain a 3D rectangle visibility drawing of K3 that is in contradiction with
Lemma 18(i).

The proofs of other cases are analogous.

Now we are ready to improve the best known upper bound on the maxi-
mum size of a complete graph with a 3D rectangle visibility drawing.

Theorem 5. If (Rk)
m
k=1 is a 3D rectangle visibility drawing of a complete

graph then m ≤ 50.

Proof. Let (ck
i )

4
i=1 be the rectangle coordinates of Rk. If m > u2(5) = 50

then the sequence ((ck
1, c

k
3))

m
k=1 of pairs contains a unimodal subsequence

((cki
1 , cki

3 ))5
i=1 according to Theorem 4. This is in contradiction with Lemma 19

(iii). Hence, m ≤ 50.

The proof of Theorem 5 utilizes the part (iii) of Lemma 19. The proof can
be rephrased to use other parts of Lemma 19 but we would obtain weaker
bounds. On the other hand, it is important to note that the proof uses
the part (iii) only while the conditions from all parts of Lemma 19 must
be satisfied. It remains an open question how to combine these conditions
to obtain a better bound. There still remains a big gap between our upper
bound and the largest known complete graph with a 3D rectangle visibility
drawing (K22), see Table 2.

z 1 2 3 4 5 6 7 8 9 10 11
cz
1 22 11 9 8 7 5 1 17 16 4 15

cz
2 22 15 18 12 9 8 7 5 4 1 3

cz
3 22 13 6 2 19 17 18 14 12 20 15

cz
4 22 16 15 20 8 11 12 1 2 14 3

z 12 13 14 15 16 17 18 19 20 21 22
cz
1 19 14 6 3 2 20 13 10 18 12 21

cz
2 2 19 6 10 11 16 14 20 13 17 21

cz
3 16 1 3 4 5 7 8 9 10 11 21

cz
4 4 6 18 17 19 5 7 9 10 13 21

Table 2. Rectangle coordinates of the 3D rectangle visibility drawing of
K22 by Rote and Zelle (included in [7, 14])
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3.2 Rectangle Visibility Drawing in Higher Dimensions

The ideas from the previous section can be used also in Euclidean spaces
with more dimensions.

Let’s assume that some complete graph is representable as a (hyper-)
rectangle visibility graph in IRn. We consider orthogonal projections of all
hyper-rectangles into the hyperplane xn = 0. Every pair of projections must
intersect because every pair of hyper-rectangles can see each other. Therefore,
all projections have a common intersection according to Helly-type theorem
for axis-aligned hyper-rectangles, see [10].

We can assume (without loss of generality) that the common intersection
is the origin of the coordinate system, i.e., for every hyper-rectangle [a1, b1]×
· · · × [an−1, bn−1]× {an} we have ai ≤ 0 and bi ≥ 0, i ∈ {1, . . . , n− 1}.

We define hyper-rectangle coordinates similar to rectangle coordinates.

Definition 12. Let R be a hyper-rectangle [a1, b1]×· · ·× [an−1, bn−1]×{an}.
We call the (n − 1)-tuple of pairs ((−ai, bi))

n−1
i=1 hyper-rectangle coordinates

of R.

The following lemmas generalize Lemma 16 and Lemma 17.

Lemma 20. Let hyper-rectangles (Rk)
m
k=1 (ordered according to the xn-coordi-

nate) form a rectangle visibility drawing of a complete graph Km in IRn and let
((ck

i , d
k
i ))

n−1
i=1 be hyper-rectangle coordinates of Rk. Let Q = Q1×· · ·×Qn−1×IR

where each Qi is either IR+
0 or IR−

0 .
The hyper-rectangles Ra and Rb, a < b can see each other in the ‘hyper-

quadrant’ Q if and only if for every hyper-rectangle Rx, a < x < b there
exists i ∈ {1, . . . , n− 1} such that

• cx
i < min(ca

i , c
b
i) and Qi = IR−

0 or

• dx
i < min(da

i , d
b
i) and Qi = IR+

0 .

Proof. The proof is analogous to the proof of Lemma 16.

Lemma 21. Let hyper-rectangles (Rk)
m
k=1 (ordered according to the xn-coordi-

nate) form a rectangle visibility drawing of a complete graph Km in IRn and
let ((ck

i , d
k
i ))

n−1
i=1 be hyper-rectangle coordinates of Rk. Let (dk

n−1)
m
k=1 be a uni-

modal sequence. Finally, let R′
k be a hyper-rectangle with hyper-rectangle

coordinates ((ck
i , d

k

i ))
n−1
i=1 where d

k

i = dk
i , i ∈ {1, . . . , n − 2} and d

k

n−1 = 0.
The hyper-rectangles R′

k also form a rectangle visibility drawing of Km in
IRn.

Proof. The proof is analogous to the proof of Lemma 17.
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Lemma 21 allows us to derive an estimate of RI(Km).

Theorem 6. RI(Kuk(m)+1) ≥ RI(Km) + k/2

Proof. Let n be a representation index of Kuk(m)+1, i.e., n = RI(Kuk(m)+1).

Let (Rj)
uk(m)+1
j=1 be a (hyper-)rectangle visibility drawing of Kuk(m)+1 in IRn

(with rectangles ordered according to the xn-coordinate) and ((cj
i , d

j
i ))

n−1
i=1 be

hyper-rectangle coordinates of Rj.
We assume that RI(Kuk(m)+1) is an integer. The proof is analogous when

RI(Kuk(m)+1) is not an integer.

We consider a sequence ((ej
i )

2n−2
i=1 )

uk(m)+1
j=1 where ej

2i−1 = cj
i and ej

2i = dj
i ,

i ∈ {1, . . . , n − 1}. This sequence contains a subsequence ((ejl
i )2n−2

i=1 )m
l=1 that

is unimodal in the last k components.
We use Lemma 21 on rectangles (Rjl

)m
l=1 repeatedly to obtain a rectangle

visibility drawing of Km by hyper-rectangles that have the last k hyper-
rectangle coordinates equal to zero. In other words, we obtain a rectangle
visibility drawing of Km showing that RI(Km) ≤ n − k/2, i.e., RI(Km) +
k/2 ≤ RI(Kuk(m)+1).

Theorem 6 generalizes the estimate RI(K(m
2 )+1) > RI(Km) given by

Cobos et al. [9]. They also derived the following estimate.

Theorem. [9] RI(K2m) ≤ RI(Km) + 1/2

Corollary. If n ≥ 6 and m ≤ 11.2n−5 then RI(Km) ≤ n/2.

Proof. The corollary is an immediate consequence of the previous theorem
and the fact that RI(K22) ≤ 3 (according to Table 2).
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4 3D Visibility Drawing by Polygons

We concentrate on 3D visibility drawings by regular polygons in this section.
These drawings represent vertices by shifted copies of a regular polygon. The
rotation of the polygons is not allowed because otherwise any complete graph
can be represented in a trivial way, see Figure 17.

P1

P2

P3

P4
. . .

Figure 17. A sketch of a visibility drawing of Kn by rotated copies of (one
side of) a polygon, see [2] for the details of this drawing

The results of Section 3.1 are based on Lemma 16. The lemma holds
because the system of rectangle coordinates has the origin in the common
intersection of the rectangles and because the axes of the coordinate system
intersect the corresponding sides of the rectangles. Unfortunately, a 3D vis-
ibility drawing by regular polygons doesn’t have to meet these criteria. For
example, Figure 18a shows a drawing of a complete graph by triangles that
don’t have a common intersection.

(a)

p1

p2

p3

p4

p5

p6

(b)

Figure 18. 3D visibility drawings by polygons that do not form a short-
distance set

Even if the polygons in a drawing have a common intersection and we
place the origin of our coordinate system there then the axes of the coordi-
nate system don’t have to intersect the corresponding sides of polygons, see
Figure 18b. It turns out that these problems don’t occur if the polygons are
close to each other.
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Definition 13. Let {Pi, Pi = P + ~wi} be a set of shifted copies of a regular
n-gon P (inscribed in a unit circle). We say that this set is a short-distance
set if ∀i : | ~wi| < min(sin(π/n), cos(π/n)).

Let P be a regular n-gon inscribed in a unit circle (with the center c). Let
v0, v1, . . . , vn = v0 be the vertices of P , s0 = v0v1, . . . , sn−1 = vn−1vn, sn = s0

the sides of P , mj the center of sj and pj the half-line −−→cmj. If Pi is a copy of
P (shifted by a vector ~wi) then we denote its vertices by vi

j and the sides by
si

j.
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The distance of vj and pj is sin(π/n), similarly dist(vj, pj−1) = sin(π/n)
and dist(sj, c) = cos(π/n). Hence, if | ~wi| < cos(π/n) then c lies in the
shifted polygon Pi. If, in addition, | ~wi| < sin(π/n) then vi

j (the shifted copy
of vj) remains in the angle p̂j−1pj and si

j intersects pj. In other words, if
{Pi, Pi = P + ~wi} is a short-distance set then c ∈ ⋂

Pi and the half-line pj

intersects j-th sides of polygons from the set.
The definition of a short-distance set requires a reference polygon P that

is close to every polygon from the set. If the polygons Pi = P + ~wi are
far from P but close to each other, i.e., ∀i, j : | ~wi − ~wj| < min(sin(π/n),
cos(π/n)) then they also form a short-distance set because we can take any
Pi as the reference polygon in this case.

For a polygon Pi from a short-distance set we can define qi
j = pj ∩ si

j

and ci
j = dist(c, qi

j), see Figure 19b. We call the n-tuple (ci
j)

n
j=1 polygon

coordinates of Pi.
Every polygon can be reconstructed from its coordinates, see Figure 20.

If H i
j is the half-plane with its boundary line hi

j such that c ∈ H i
j, hi

j⊥pj

and dist(hi
j, c) = ci

j then Pi =
⋂n

j=1 H i
j. Therefore, the intersection Pi∩Pk =⋂n

j=1(H
i
j ∩Hk

j ) can be described by coordinates (min(ci
j, c

k
j ))

n
j=1.

We assume in the rest of Section 4 that P is a regular n-gon inscribed in
a unit circle and {Pi = P + ~wi, i = 1, . . . , m} is a 3D visibility representation
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Figure 20. The reconstruction of the polygon P1 from its coordinates

of a complete graph Km. We assume that the z-coordinate of Pi is i but we
use it to identify polygons that can block the visibility between other polygons
only. Otherwise, we ignore the z-coordinate and work with the polygons as if
they were in the same xy-parallel plane. Formally, these operations represent
operations over orthogonal projections of the relevant objects (points, lines,
polygons) into a common xy-parallel plane and the projection of the results
(for example, intersection points) into individual planes of the polygons.

The following lemma is a polygonal analogy of Lemma 16.

Lemma 22. Let {Pi, i = 1, . . . , m} be a short-distance set of regular n-gons
and (ci

j)
n
j=1 be polygon coordinates of Pi. The polygons Pi and Pk can see each

other if and only if there exists l such that ∀j, i < j < k : (cj
l < min(ci

l, c
k
l )

or cj
l+1 < min(ci

l+1, c
k
l+1)).

Proof. Q = Pi ∩ Pk is a polygon given by coordinates (min(ci
j, c

k
j ))

n
j=1. Let

Ql be the intersection of Q with the angle p̂lpl+1 and ql be the (only) vertex
of Q in p̂lpl+1.
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If cj
l < min(ci

l, c
k
l ) or cj

l+1 < min(ci
l+1, c

k
l+1) then Pj doesn’t block the

visibility of Pi and Pk in the neighborhood of ql, see Figure 21a. Hence, if
for a fixed l this condition holds for all polygons Pj between Pi and Pk then
Pi and Pk can see each other in the neighborhood of ql.
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On the other hand, if ∀l ∃jl : i < jl < k, cjl

l ≥ min(ci
l, c

k
l ) and cjl

l+1 ≥
min(ci

l+1, c
k
l+1) then Pjl

blocks the visibility between Pi and Pk in the angle
p̂lpl+1, see Figure 21b. Therefore, Pi cannot see Pk.

Lemma 22 describes a sufficient and necessary condition for the visibility
between two polygons from a short-distance set. If we shift the polygon Pi by
a sufficiently small vector then we don’t break any of the strict inequalities in
Lemma 22. In other words, the shifted polygon can see all polygons that the
original polygon can see. Therefore, we can replace the original polygon Pi by
the shifted one without breaking the completeness of the represented graph.
This observation allows us to assume in the sequel that j-th coordinates of
polygons are distinct, i.e., ∀i, j, k, i 6= k : ci

j 6= ck
j .

Lemma 23. Let Pi be a regular n-gon with coordinates (ci
j)

n
j=1 and Pk =

Pi + ~w be a shifted copy of Pi with coordinates (ck
j )

n
j=1. If n is even then

there are exactly n/2 adjacent coordinates with sgn(ck
j − ci

j) = 1 and n/2
adjacent coordinates with the opposite signum. If n is odd then there are
bn/2c or dn/2e adjacent coordinates with sgn(ck

j − ci
j) = 1 and the rest with

the opposite signum.

Proof. The length of the orthogonal projection of ~w into the line containing
pj is |ck

j − ci
j|. The difference ck

j − ci
j is positive (resp. negative) if this

projection of ~w has the same (resp. the opposite) orientation as pj.
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Let h be a line such that h⊥~w and c ∈ h. h divides the plane into half-
planes H+ and H−. Let H+ be the half-plane in the direction of the vector
~w. pj lies in H+ resp. H− if ck

j > ci
j resp. ci

j > ck
j .

If n is even then exactly n/2 adjacent half-lines from (pj)
n
j=1 lie in H+

and n/2 adjacent half-lines lie in H−, see Figure 22a. If n is odd then bn/2c
or dn/2e adjacent half-lines lie in H+ and the rest of them lie in H−, see
Figure 22b.
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4.1 Upper Bounds

The next lemma shows that every 3D visibility drawing (by regular polygons)
of a complete graph contains a large short-distance subset. The following
sections focus on these subsets.

Lemma 24. Let {Pi = P + ~wi, i = 1, . . . , m} be a set of regular n-gons. If
(Pi)i is a 3D visibility drawing of a complete graph Km then (Pi)i contains
a short-distance subset with at least dm/16n2e polygons.

Proof. Every two polygons Pj, Pk from the drawing have to intersect (to see
each other). The polygons (Pi)i are shifted copies of P (a polygon inscribed
into a unit circle). Hence, Pj can intersect Pk only if the distance of their
centers is at most 2. Therefore, the set C of the centers of the polygons from
(Pi)i has the diameter at most 2.

Let S be a square that contains all points from C and whose side-length
is 2. We can divide this square into 4n × 4n = 16n2 sub-squares with the
side-length 1/2n. At least one of these sub-squares must contain at least
dm/16n2e points of C. We claim that the polygons with the center in this
sub-square form a short-distance set.

It is sufficient to show that two points in one sub-square have the dis-
tance lower than min(sin(π/n), cos(π/n)). For x ∈ (0, π/3〉 we have x√

2π
<

min(sin x, cos x). Hence, for n ≥ 3 we have 1√
2n

< min(sin(π/n), cos(π/n))

and 1√
2n

is the maximum distance of two points in one sub-square.

4.1.1 Regular 2k-gons

The goal of this section is a polynomial upper bound on the maximum size of
a complete graph with a 3D visibility drawing by regular 2k-gons. We start
with a lemma that points out an important forbidden configuration of three
polygons.

Lemma 25. Let {P1, P2, P3} be a short-distance set of regular 2k-gons. If
{P1, P2, P3} is a 3D visibility drawing of a complete graph K3 then it cannot
happen that c1

1 < c2
1 < c3

1 and c1
2 > c2

2 > c3
2 (where (ci

j)
2k
j=1 are coordinates of

Pi).

Proof. If c1
1 < c2

1 < c3
1 and c1

2 > c2
2 > c3

2 then c1
l > c2

l > c3
l for l ∈ {2, . . . , k+1}

and c1
l < c2

l < c3
l for l ∈ {k + 2, . . . , 2k} ∪ {1} by Lemma 23. Therefore, c2

l >
min(c1

l , c
3
l ) for l ∈ {1, . . . , 2k} and P1 cannot see P3 according to Lemma 22

but this is a contradiction.

The following lemma shows that if the sequence (ci
1)i of the first coordi-

nates is monotone then the size of the represented graph is small.
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Lemma 26. Let {Pi, i = 1, . . . , m} be a short-distance set of regular 2k-
gons. If (Pi)i is a 3D visibility drawing of a complete graph Km and (ci

1)
m
i=1

is a monotone sequence (where (ci
j)

2k
j=1 are coordinates of Pi) then m ≤ k+1.

Proof. We assume that the sequence (ci
1)

m
i=1 is increasing. The proof for

a decreasing sequence is similar. Let I = {{i, j} : i < j, ci
2 > cj

2}, i.e., the
pairs of polygons whose boundaries intersect in p̂1p2. We claim that I = ∅
or

⋂
I 6= ∅.

We proceed by contradiction. Let’s assume that I 6= ∅ and
⋂

I = ∅.
At first we show that there must be (at least) two disjoint pairs in I. Let’s
assume that there aren’t two disjoint pairs in I. If {a, a : a < a} ∈ I then
there exist B = {b, b : b < b} and C = {c, c : c < c} in I such that a 6∈ B and
a 6∈ C (because a, a 6∈ ⋂

I). Moreover, a ∈ B and a ∈ C because the pairs

{a, a} and B (resp. C) are not disjoint. If a = b then ca
1 < ca

1 = cb
1 < cb

1 and

ca
2 > ca

2 = cb
2 > cb

2 which is in contradiction with Lemma 25. Therefore, a = b
and B = {b, a}. An analogous argument shows that a = c and C = {a, c}.
The pairs B and C are not disjoint according to our assumption. This can
happen only if c = b but then ca

1 < cc
1 = cb

1 < ca
1 and ca

2 > cc
2 = cb

2 > ca
2 which

is in contradiction with Lemma 25 again. This means that there must be
two disjoint pairs in I.

Let {a, a : a < a} and {b, b : b < b} be disjoint pairs in I. We can assume
without loss of generality that a < b.

Let’s assume that a < b (see Figure 23):

a < a < b, a < b < b, (ci
1)i increasing ⇒ ca

1 < ca
1 < cb

1, c
a
1 < cb

1 < cb
1

{a, a : a < a}, {b, b : b < b} ∈ I ⇒ ca
2 > ca

2, c
b
2 > cb

2

cb
1 < cb

1, c
b
2 > cb

2 ⇒ cb
l > cb

l , l ∈ {2, . . . , k + 1} by Lemma 23

ca
1 < ca

1, c
a
2 > ca

2 ⇒ ca
l < ca

l , l ∈ {k + 2, . . . , 2k} ∪ {1} by Lemma 23

ca
1 < cb

1 ⇒ cb
k+1 < ca

k+1 by Lemma 23

We can see that ca
1 < cb

1 and cb
l > cb

l , l ∈ {2, . . . , k + 1}. Therefore, cb
l >

min(ca
l , c

b
l ), l ∈ {1, . . . , k + 1}. Similarly, cb

k+1 < ca
k+1 and ca

l < ca
l , l ∈

{k + 2, . . . , 2k} ∪ {1}, i.e., ca
l > min(ca

l , c
b
l ), l ∈ {k + 1, . . . , 2k} ∪ {1}. Hence,

Pa cannot see Pb according to Lemma 22 but this cannot happen because
(Pi)i is a drawing of a complete graph. Therefore, it cannot be a < b.

If b < a then a < b < b < a and ca
1 < cb

1 < cb
1 < ca

1 because (ci
1)i is

increasing. ca
2 < ca

2 and cb
2 < cb

2 because {a, a : a < a}, {b, b : b < b} ∈ I. If

ca
2 < cb

2 then Pb, Pb and Pa are in contradiction with Lemma 25. Similarly, if
cb
2 < ca

2 then Pa, Pb and Pb are in contradiction with Lemma 25. Therefore, it
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must be cb
2 < ca

2 < ca
2 < cb

2 but this means that the disjoint pairs {a, b : a < b},
{b, a : b < a} satisfy the assumptions of the previous paragraph and we again
have a contradiction with the completeness of the represented graph.

We know that a 6= b because {a, a} and {b, b} are disjoint. On the other
hand, both possibilities a < b and b < a lead to a contradiction. Hence, the
original assumption that I 6= ∅ and

⋂
I = ∅ cannot be satisfied. It must be

either I = ∅ or
⋂

I 6= ∅.
If I = ∅ then (ci

2)i is increasing. If I 6= ∅ then there exists a ∈ ⋂
I. This

means that if i < j and c2
i > c2

j then i = a or j = a. In other words, the
sequence (ci

2)i∈{1,...,m}\{a} is increasing.
We can repeat this proof with c2, c3, . . . , ck subsequently and show that

there is a set A such that |A| ≤ k and (ci
k+1)i∈{1,...,m}\A is increasing. On the

other hand, this sequence is also decreasing by Lemma 23 because the se-
quence (ci

1)i∈{1,...,m}\A is increasing. Therefore, the sequence (ci
k+1)i∈{1,...,m}\A

has length at most 1 and 1 ≥ |{1, . . . , m} \ A| ≥ m− k.

Now we are ready to prove the main theorem of this section.

Theorem 7. If (Pi)
m
i=1 is a 3D visibility drawing of a complete graph Km by

equal regular n-gons (where n = 2k) then m ≤ 4n2(n + 2)2.

Proof. The set {Pi, i = 1, . . . , m} contains a short-distance subset {Pil , l =
1, . . . , dm/16n2e} according to Lemma 24. Let (cl

j)
n
j=1 be the coordinates of

Pil . If dm/16n2e ≥ (k + 1)2 + 1 then due to Erdős-Szekeres theorem [13]

the sequence (cl
1)
dm/16n2e
i=1 contains a monotone subsequence of length k + 2

which is in contradiction with Lemma 26. Therefore, m/16n2 ≤ dm/16n2e ≤
(k + 1)2.
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4.1.2 Regular (2k + 1)-gons

We focus on regular (2k + 1)-gons in this section. We prove a theorem
analogous to Theorem 7. Unfortunately, Lemma 25 doesn’t hold for (2k+1)-
gons. We have to use a more complicated version.

Lemma 27. Let {P1, P2, P3, P4} be a short-distance set of regular (2k + 1)-
gons. If (Pi)i is a 3D visibility drawing of a complete graph K4 then it cannot
happen that c1

1 < c2
1 < c3

1 < c4
1 and c1

2 > c2
2 > c3

2 > c4
2 (where (ci

j)
2k+1
j=1 are

coordinates of Pi).

Proof. If c1
1 < c2

1 < c3
1 < c4

1 and c1
2 > c2

2 > c3
2 > c4

2 then c1
l > c2

l > c3
l > c4

l for
l ∈ {2, . . . , k + 1} and c1

l < c2
l < c3

l < c4
l for l ∈ {k + 3, . . . , 2k + 1} ∪ {1}

by Lemma 23. In other words, c2
l > min(c1

l , c
3
l ) and c3

l > min(c2
l , c

4
l ) for

l ∈ {1, . . . , 2k + 1} \ {k + 2}.
P1 and P3 can see each other. Therefore, c2

k+2 < min(c1
k+2, c

3
k+2) according

to Lemma 22. Similarly, c3
k+2 < min(c2

k+2, c
4
k+2) because P2 and P4 can see

each other. But this is a contradiction because the first inequality gives us
c2
k+2 < c3

k+2 while c3
k+2 < c2

k+2 by the second inequality.

We need the following consequence of Lemma 27 several times in this
section.

Corollary 5. Let {P1, P2, P3, P4} be a short-distance set of regular (2k + 1)-
gons. If (Pi)i is a 3D visibility drawing of a complete graph K4 then it
cannot happen that c1

1 < c2
1 < c3

1 < c4
1 and c1

k+1 < c2
k+1 < c3

k+1 < c4
k+1 (or

c1
k+2 < c2

k+2 < c3
k+2 < c4

k+2).

Proof. If c1
1 < c2

1 < c3
1 < c4

1 and c1
k+1 < c2

k+1 < c3
k+1 < c4

k+1 then c1
k+2 >

c2
k+2 > c3

k+2 > c4
k+2 by Lemma 23 but this is in contradiction with Lemma 27

for coordinates k + 1 and k + 2 (Lemma 27 holds for any pair of adjacent
coordinates).

Similarly, if c1
1 < c2

1 < c3
1 < c4

1 and c1
k+2 < c2

k+2 < c3
k+2 < c4

k+2 then c1
k+1 >

c2
k+1 > c3

k+1 > c4
k+1 by Lemma 23 and we have a contradiction again.

The next lemma is an analogy of Lemma 26. The proof of this lemma is
more complicated because the drawings by (2k+1)-gons are more complicated
but the main ideas of both proofs (of Lemma 26 and Lemma 28) are the same.

Lemma 28. Let {Pi, i = 1, . . . , m} be a short-distance set of regular (2k+1)-
gons. There exists c > 0 independent of k such that if (Pi)i is a 3D visibility
drawing of a complete graph Km and (ci

1)
m
i=1 is a monotone sequence (where

(ci
j)

2k+1
j=1 are coordinates of Pi) then m ≤ ck.
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Proof. We assume that the sequence (ci
1)

m
i=1 is increasing. The proof for

a decreasing sequence is similar. Let I = {{i, j} : i < j, ci
2 > cj

2}. We claim
that there exists n0 ∈ IN (independent of k) such that I doesn’t contain n0

pairwise disjoint pairs.
Let’s assume that J ⊆ I : ∀A,B ∈ J,A 6= B ⇒ A ∩ B = ∅. Consider

a complete graph on the vertex set J . We color the edge {{a, a : a < a}, {b, b :
b < b} : a < b} by

• color 1 when a < b and ca
k+2 < min(ca

k+2, c
b
k+2)

• color 2 when a < b and ca
k+2 > min(ca

k+2, c
b
k+2)

• color 3 when b < a, ca
2 < cb

2, cb
2 < ca

2 and cb
k+2 < min(ca

k+2, c
a
k+2)

• color 4 when b < a, ca
2 < cb

2, cb
2 < ca

2 and cb
k+2 > min(ca

k+2, c
a
k+2)

• color 5 when b < a, ca
2 < cb

2 and ca
2 < cb

2

• color 6 when b < a, cb
2 < ca

2 and cb
2 < ca

2

• color 7 when b < a, cb
2 < ca

2 and ca
2 < cb

2

If {{a, a : a < a}, {b, b : b < b} : a < b} has the 7th color then ca
1 <

cb
1 < cb

1 < ca
1 because a < b < b < a and (ci

1)i is increasing. cb
2 < cb

2 because

{b, b : b < b} ∈ I. Therefore, ca
2 < cb

2 < cb
2 < ca

2 and Pa, Pb, Pb, Pa are in
contradiction with Lemma 27. Hence, the 7th color is not used and every
edge of KJ has one of the first six colors.

According to Ramsey’s theorem [17, 20] there exists n0 such that if |J | ≥
n0 then KJ contains a monochromatic subgraph KS, S = {{a, a : a <
a}, {b, b : b < b}, {c, c : c < c}, {d, d : d < d} : a < b < c < d}.

If KS has color 1 then ca
k+2 < cb

k+2 < cc
k+2 < cd

k+2, a < b < c < d and

ca
1 < cb

1 < cc
1 < cd

1 (because (ci
1)i is increasing). This is in contradiction with

Corollary 5.
If KS has color 2 then we have

a < b < b, a < a < b, (ci
1)i increasing ⇒ ca

1 < cb
1 < cb

1, c
a
1 < ca

1 < cb
1

{a, a : a < a}, {b, b : b < b} ∈ I ⇒ ca
2 < ca

2, c
b
2 < cb

2

cb
1 < cb

1, c
b
2 < cb

2 ⇒ cb
l < cb

l , l ∈ {2, . . . , k + 1} by Lemma 23

ca
1 < ca

1, c
a
2 < ca

2 ⇒ ca
l < ca

l , l ∈ {k + 3, . . . , 2k + 1} ∪ {1} by Lemma 23

We can see that ca
1 < cb

1 and cb
l < cb

l , l ∈ {2, . . . , k+1}. Hence, cb
l > min(ca

l , c
b
l )

for l ∈ {1, . . . , k + 1}. Similarly, ca
l < ca

l , l ∈ {k + 3, . . . , 2k + 1} ∪ {1} and
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ca
k+2 > min(ca

k+2, c
b
k+2). Therefore, ca

l > min(ca
l , c

b
l ) for l ∈ {k+2, . . . , 2k+1}∪

{1}. If ca
k+1 > min(ca

k+1, c
b
k+1) then Pa cannot see Pb according to Lemma 22.

It must be ca
k+1 < min(ca

k+1, c
b
k+1), namely ca

k+1 < cb
k+1. The same argument

shows that also cb
k+1 < cc

k+1 < cd
k+1. On the other hand, ca

1 < cb
1 < cc

1 < cd
1

(because a < b < c < d) which is in contradiction with Corollary 5.

If KS has color 3 then cd
k+2 < cc

k+2 < cb
k+2 < ca

k+2, d < c < b < a and

cd
1 < cc

1 < cb
1 < ca

1 (because (ci
1)i is increasing) and we have a contradiction

again.
If KS has color 4 then we proceed in a similar way as with the second

color. We have

ca
2 < cb

2, c
b
2 < ca

2

a < b < b < a, (ci
1)i increasing ⇒ ca

1 < cb
1 < cb

1 < ca
1

{a, a : a < a} ∈ I ⇒ ca
2 < ca

2

cb
1 < ca

1, c
a
2 < ca

2 < cb
2 ⇒ ca

l < cb
l , l ∈ {2, . . . , k + 1} by Lemma 23

ca
1 < cb

1, c
b
2 < ca

2 < ca
2 ⇒ ca

l < cb
l , l ∈ {k + 3, . . . , 2k + 1} ∪ {1} by Lemma 23

We can see that ca
1 < cb

1 and ca
l < cb

l , l ∈ {2, . . . , k+1}. Hence, cb
l > min(ca

l , c
a
l )

for l ∈ {1, . . . , k+1}. Similarly, ca
l < cb

l , l ∈ {k+3, . . . , 2k+1}∪{1} and cb
k+2 >

min(ca
k+2, c

a
k+2). Therefore, cb

l > min(ca
l , c

a
l ) for l ∈ {k + 2, . . . , 2k + 1} ∪ {1}.

If cb
k+1 > min(ca

k+1, c
a
k+1) then Pa cannot see Pa according to Lemma 22. It

must be cb
k+1 < min(ca

k+1, c
a
k+1), namely cb

k+1 < ca
k+1. The same argument

shows that also cd
k+1 < cc

k+1 < cb
k+1. On the other hand, cd

1 < cc
1 < cb

1 < ca
1

(because d < c < b < a) which is in contradiction with Corollary 5.

If KS has color 5 then ca
2 < cb

2 < cc
2 < cd

2, d < c < b < a and cd
1 < cc

1 <

cb
1 < ca

1 (because (ci
1)i is increasing). This is in contradiction with Lemma 27.

If KS has color 6 then cd
2 < cc

2 < cb
2 < ca

2, a < b < c < d and ca
1 <

cb
1 < cc

1 < cd
1 (because (ci

1)i is increasing) and we have a contradiction with
Lemma 27 again.

We can see that KJ cannot contain a monochromatic subgraph KS.
Therefore, |J | ≤ n0 − 1, i.e., I doesn’t contain n0 pairwise disjoint pairs.

Let Jmax ⊆ I be a maximal subset of pairwise disjoint pairs. We know
that |⋃ Jmax| = 2|Jmax| ≤ 2(n0 − 1). For any A ∈ I there exists B ∈ Jmax

such that A ∩B 6= ∅. Hence, the sequence (ci
2)i∈{1,...,m}\⋃ Jmax is increasing.

We can repeat this proof with c2, c3, . . . , ck subsequently and show that
there is a set J ′ such that |J ′| ≤ 2(n0−1)k and (ci

k+1)i∈{1,...,m}\J ′ is increasing.
The sequence (ci

1)i∈{1,...,m}\J ′ is also increasing. Therefore, its length is less
than 4 by Corollary 5, i.e., 4 > |{1, . . . , m} \ J ′| ≥ m− 2(n0 − 1)k.
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Lemma 28 allows us to prove an analogy of Theorem 7 for regular (2k+1)-
gons.

Theorem 8. There exists c > 0 such that if {Pi, i = 1, . . . ,m} is a 3D
visibility drawing of a complete graph Km by equal regular n-gons (where
n = 2k + 1) then m ≤ cn4.

Proof. The proof is the same as the proof of Theorem 7 (using Lemma 28
instead of Lemma 26).

If we combine Theorem 7 and Theorem 8 then we obtain the following
result.

Theorem 9. If s(n) is the maximum size of a complete graph with a 3D
visibility drawing by equal regular n-gons then s(n) = O(n4).

Proof. Theorem 7 if n is even and Theorem 8 if n is odd.

4.2 Lower Bounds

The previous section presents several upper bounds on the maximum size of
a complete graph with a 3D visibility drawing by equal regular polygons. We
concentrate on lower bounds in this section. The following definition helps
us to describe the construction of the drawings used in proofs of our lower
bounds.

Definition 14. Let P1 (resp. P2) be a regular n-gon with the polygon coor-
dinates (c1

i )
n
i=1 (resp. (c2

i )
n
i=1). We say that P1 has an (r, s)-relation to P2

• if 1 ≤ r ≤ s ≤ n and

– c1
i < c2

i for i ∈ {r, . . . , s} and

– c1
i > c2

i otherwise

or

• if 1 ≤ s < r ≤ n and

– c1
i < c2

i for i ∈ {1, . . . , s} ∪ {r, . . . , n}
– c1

i > c2
i otherwise.

If P1 has an (r, s)-relation to P2 then we write P1
(r,s)−−→ P2.
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Figure 24. The definition of the lines hi and the half-planes Hi for drawings
by regular pentagons

Lemma 23 shows that there are only n possible relations between two
polygons when n is even and there are only 2n possible relations when n is
odd. There are only (1, k), (2, k + 1), . . . , (n, k − 1) relations for n = 2k and
(1, k), (1, k + 1), (2, k + 1), (2, k + 2), . . . , (n, k) relations for n = 2k + 1.

Let’s remind that we use a coordinate system that has an origin c and
n axes p1, p2, . . . , pn. Let hi be a line such that c ∈ hi and hi⊥pi. The line
hi divides the plane into half-planes H+

i and H−
i . Let H+

i be the half-plane
in the direction of the i-th axis, i.e., H+

i is the half-plane that contains the
half-line pi, see Figure 24.

c

h1

h2

h3

h4

h5

H+

1
H−

1

H+

2

H−

2

H+

3
H−

3

H+

4

H−

4

H+

5

H−

5

~w

(1, 3)

(1, 2)(2, 3)

(2, 4)

(3, 4)

(3, 5)
(4, 5)

(4, 1)

(5, 1)

(5, 2)

P1

P2

~w

p1

p2

p3

p4 p5

Figure 25. The correspondence between shift vectors and (r, s)-relations

Let P1 (resp. P2) be a regular n-gon with the polygon coordinates (c1
i )

n
i=1

(resp. (c2
i )

n
i=1) and ~w be the shift vector between P1 and P2, i.e., P2 = P1+ ~w.

We have c2
i > c1

i (resp. c2
i < c1

i ) if the vector ~w points into H+
i (resp. H−

i ).
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Therefore, the polygon P1 has an (r, s)-relation to P2, r ≤ s if and only if
~w ∈ H+

i for i ∈ {r, . . . , s} and ~w ∈ H−
i for i 6∈ {r, . . . , s}, see Figure 25.

There is an analogous condition for (r, s)-relations with r > s.
In other words, the lines hi, i ∈ {1, . . . , n} divide the plane into sections

that represent individual relations between polygons. The polygon P1 has
an (r, s)-relation to P2 if the shift vector ~w points into the corresponding
section.

The relation between polygons is given by the direction of the shift vector
only. Therefore, a ‘compression’ of the centers of polygons doesn’t change
the relations between polygons.

Lemma 29. Let Pi, i ∈ {1, . . . , m} be a regular polygon with the center
(xi, yi). If P ′

i , i ∈ {1, . . . , m} is a regular polygon with the center (cxi, cyi)
(where c > 0 independent of i) then the relation of Pi to Pj is the same as
the relation of P ′

i to P ′
j, i, j ∈ {1, . . . ,m}, i 6= j.

Proof. The relation of the polygon Pi to the polygon Pj is given by the
direction of the vector (xj−xi, yj−yi). Similarly, the relation of the polygon
P ′

i to the polygon P ′
j is given by the direction of the vector (cxj−cxi, cyj−cyi).

The directions of the vectors (xj − xi, yj − yi) and (cxj − cxi, cyj − cyi) are

the same. Therefore, Pi
(r,s)−−→ Pj if and only if P ′

i

(r,s)−−→ P ′
j .

We present several 3D visibility drawings of complete graphs in this sec-
tion. It happens frequently (during construction of these drawings) that we
need to add a polygon that has a specified relation to all polygons present
already in the drawing. The following lemma shows that a polygon with such
relations always exists.

Lemma 30. Let (Pi)
m
i=1 be a short-distance set of regular n-gons. Let (r, s)

be a relation that can occur between two n-gons. There exists a short-distance
set (P ′

i )
m
i=0 such that

• the relation of Pi to Pj is the same as the relation of P ′
i to P ′

j,
i, j ∈ {1, . . . , m}, i 6= j and

• P ′
0 has the (r, s)-relation to P ′

i , i ∈ {1, . . . , m}.
Proof. We prove this lemma for n even. The proof is similar for n odd.

Let ci be the center of the regular n-gon Pi. Let H
+

r be a shifted copy of
H+

r such that it contains all points of S = {ci, i ∈ {1, . . . ,m}} and at least

one of these points lies on its boundary line hr. Let H
−
r−1 be a copy of H−

r−1

shifted in the same way, i.e., S ⊂ H
−
r−1 and S ∩ hr−1 6= ∅. Finally, let O be
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S
c0

H
+

r

H
−

r

H
+

r−1

H
−

r−1

hr−1

hr

Figure 26

the interior of H
−
r ∩ H

+

r−1, c0 be a point in O and P0 be the regular n-gon
with the center c0, see Figure 26.

If (ci
j)

n
j=1 are the polygon coordinates of Pi then c0

r < ci
r and c0

r−1 >
ci
r−1, i ∈ {1, . . . ,m} clearly. Therefore, P0 has the (r, s)-relation to Pi, i ∈
{1, . . . , m} according to Lemma 23.

It may happen that c0 is far from S, i.e., that (Pi)
m
i=0 don’t form a short-

distance set. We can use Lemma 29 in this case to move the centers of
polygons close to each other sufficiently. Let {P ′

i , i ∈ {0, . . . ,m}} be the re-

sulting short-distance set of polygons. Obviously, P ′
0

(r,s)−−→ P ′
i , i ∈ {1, . . . ,m}

and Pi
(x,y)−−→ Pj if and only if P ′

i

(x,y)−−→ P ′
j , i, j ∈ {1, . . . ,m}, i 6= j.

Lemma 30 holds also in the opposite direction, i.e., when we request
a polygon P ′

0 such that all polygons (P ′
i )

m
i=1 have an (r, s)-relation to P ′

0. It

is a consequence of the fact that P ′
i

(r,s)−−→ P ′
0 if and only if P ′

0

(s+1,r−1)−−−−−→ P ′
i .

The next lemma allows us to verify the visibility among polygons in one
special polygon configuration. We use this lemma several times in the proofs
of completeness of the graphs represented by 3D visibility drawings described
further in this section.

Lemma 31. Let {Pi, i = 1, . . . , m} be a short-distance set of n-gons. Let
(ci

j)
n
j=1 be the polygon coordinates of Pi. If cm

1 > c1
1 > c2

1 > · · · > cm−1
1 then

the polygon Pm can see all polygons P1, P2, . . . , Pm−1.

Proof. We have cm
1 > ck

1 and ck
1 > ci

1, i.e., ci
1 < min(ck

1, c
m
1 ), for 1 ≤ k <

i < m. Therefore, the polygon Pm can see the polygon Pk according to
Lemma 22.

4.2.1 Regular 2k-gons

The following lemma shows that the upper bound given by Lemma 26 is
tight.
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Lemma 32. There exists a short-distance set {Pi, i = 1, . . . , k + 1} of equal
regular 2k-gons such that (Pi)

k+1
i=1 is a 3D visibility drawing of a complete

graph Kk+1 and (ci
1)

k+1
i=1 is a monotone sequence (where (ci

j)
2k
j=1 are polygon

coordinates of Pi).

Proof. We start the construction of the required short-distance set with the
polygon P1 and add polygons P2, P3, . . . , Pk+1 subsequently such that the
polygons P1, P2, . . . , Pi−1 (the polygons added already) have the (i, i+k−1)-
relation to Pi, i.e.,

P1, . . . , Pi−1
(i,i+k−1)−−−−−→ Pi, i ∈ {2, . . . , k + 1}.

A short distance set with these relations exists by Lemma 30. We claim
that this set forms a 3D visibility drawing of a complete graph Kk+1.

P1

P2

P3

p1

p2

p3

p4

P1

P2

P3

P4

p1

p2

p3

p4

p5

p6

Figure 27. A 3D visibility drawings of K3 by squares and K4 by regular
hexagons based on Lemma 32

We have

Pi−1
(i,i+k−1)−−−−−→ Pi ⇒ ci−1

x > ci
x, x ∈ {i + k, . . . , 2k}, i ∈ {2, . . . , k + 1}, (*)

P1
(i,i+k−1)−−−−−→ Pi ⇒ ci

i+k−1 > c1
i+k−1, i ∈ {2, . . . , k + 1}. (**)

If we fix x ∈ {k + 1, . . . , 2k} then ci−1
x > ci

x for i ∈ {2, . . . , x− k} by (*).
If we set y = x− k + 1 then we obtain ci−1

y+k−1 > ci
y+k−1 for y ∈ {2, . . . , k + 1}

and i ∈ {2, . . . , y − 1}.
We can combine the last inequality with (**) to get

cy
y+k−1 > c1

y+k−1 > c2
y+k−1 > · · · > cy−1

y+k−1, y ∈ {2, . . . , k + 1}.
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Therefore, the polygon Py can see the polygons P1, . . . , Py−1 by Lemma 31.
In other words, (Pi)

k+1
i=1 form a 3D visibility drawing of a complete graph

Kk+1.
Finally, we have

Pi−1
(i,i+k−1)−−−−−→ Pi ⇒ ci−1

1 > ci
1, i ∈ {2, . . . , k + 1}.

Hence, the sequence (ci
1)

k+1
i=1 is monotone.

We can combine two drawings provided by Lemma 32 to obtain a 3D
visibility drawing of K2k+2.

Lemma 33. There exists a 3D visibility drawing by equal regular 2k-gons of
a complete graph K2k+2.

Proof. Let (Pi)
k+1
i=1 be the short-distance set from Lemma 32 and (ci

j)
2k
j=1 be

the polygon coordinates of Pi.
We know that the sequence (ci

1)
k+1
i=1 is monotone. This ensures that the

first sides of polygons (Pi)i are visible from one side of the drawing. The first
sides form a stair-like configuration with all stairs visible from above or all
stairs visible from below (with respect to the z-axis).

Let (P ′
i )

k+1
i=1 be a copy of (Pi)

k+1
i=1 rotated by π/k and turned upside down

(w.r. to the z-axis). The polygons (P ′
i )

k+1
i=1 also form a 3D visibility drawing

of Kk+1. Moreover, if (ci
j)

2k
j=1 are polygon coordinates of P ′

i then the sequence

(ci
2)

k+1
i=1 is monotone.
If the original stair configuration in (Pi)

k+1
i=1 is turned upward (resp. down-

ward) then the corresponding stair configuration in (P ′
i )

k+1
i=1 is turned down-

ward (resp. upward).

down

up⊕
(Pi)i

(P ′

i
)i (P ′′

i
)i

(Pi)i

Figure 28. The construction of a 3D visibility drawing of K2k+2 from two
drawings of Kk+1

Let (P ′′
i )k+1

i=1 be a copy of (P ′
i )

k+1
i=1 shifted such that the stair configurations

in (Pi)i and (P ′′
i )i cross and face each other, i.e., all the first sides of (Pi)i

cross all the second sides of (P ′′
i )i, see Figure 28.
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We claim that {Pi, i ∈ {1, . . . , k + 1}} ∪ {P ′′
i , i ∈ {1, . . . , k + 1}} form

a 3D visibility drawing of K2k+2. The polygons Pi and Pj (resp. P ′′
i and P ′′

j ),
i, j ∈ {1, . . . , k + 1}, i 6= j can see each other because (Pi)i (resp. (P ′′

i )i) is
a 3D visibility drawing of Kk+1. The polygons Pi and P ′′

j , i, j ∈ {1, . . . , k+1}
can see each other in the intersection of the stair configurations.

P1

P2

P3

P
′

1

P
′

2

P
′

3

P1

P2

P3

P4 = P
′′

3

P5 = P
′′

2

P6 = P
′′

1

⊕

Figure 29. A 3D visibility drawing of K6 by squares based on Lemma 33

We can use the ideas from the proof of Lemma 33 in a more inventive
way to obtain a drawing of a complete graph with one more vertex.

Theorem 10. There exists a 3D visibility drawing by equal regular 2k-gons
of a complete graph K2k+3, k ≥ 3.

Proof. We construct the 3D visibility drawing of K2k+3 in a similar way as
we constructed the drawing of K2k+2 in the previous proof.

Let (Pi)
k
i=1 be the polygons from the proof of Lemma 32 and (ci

j)
2k
j=1 be

polygon coordinates of Pi. We know that the sequence (ci
1)

k
i=1 is decreasing.

The proof of Lemma 32 shows that also the sequence (ci
2k)

k
i=1 is decreasing

(note that we omitted the polygon Pk+1 from our consideration).
Let (P ′

i )
k
i=1 be a copy of (Pi)

k
i=1 rotated by π/k and turned upside down

(with respect to the z-axis). The first and the second sides of (P ′
i )i form

stair-like configurations oriented in the opposite direction (w.r. to the z-
axis) than the corresponding stair configurations formed by the 2k-th and
the first sides of (Pi)

k
i=1.

Finally, let P ′′
1 , P ′′

2 , P ′′
3 be regular 2k-gons such that P ′′

1

(1,k)−−→ P ′′
2 and

P ′′
1 , P ′′

2

(2,k+1)−−−−→ P ′′
3 . Polygons with these properties exist by Lemma 30. Let

(ci
j)

2k
j=1 be polygons coordinates of P ′′

i . Clearly, c1
k < c2

k < c3
k and c1

k+2 >
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c2
k+2 > c3

k+2. These polygons form a 3D visibility drawing of K3 (P ′′
1 can see

P3 according to Lemma 31 because c3
k+1 > c1

k+1 > c2
k+1).

We shift (P ′
i )

k
i=1 such that the stairs formed by the second sides of (P ′

i )
k
i=1

and the stairs formed by the 2k-th sides of (Pi)
k
i=1 cross and face each other.

We put the polygons (P ′′
i )3

i=1 between (w.r. to the z-axis) the polygons
(Pi)

k
i=1 and (P ′

i )
k
i=1. We shift the polygons (P ′′

i )3
i=1 such that the stairs formed

by the k-th sides of (P ′′
i )3

i=1 and the stairs formed by the first sides of (Pi)
k
i=1

cross and face each other. Moreover, we shift the polygons (P ′′
i )3

i=1 such that
also the stairs formed by the (k+2)-nd sides of (P ′′

i )3
i=1 and the stairs formed

by the first sides of (P ′
i )

k
i=1 cross and face each other. Finally, the polygons

(P ′′
i )3

i=1 should be shifted such that the (k + 1)-st sides of (P ′′
i )3

i=1 do not
block the visibility among polygons (Pi)

k
i=1 and (P ′

i )
k
i=1, see Figure 30.

up

up

dow
n

down

up
do

w
n

⊕⊕

up
dow

n

up

up

down

do
w
n

(Pi)i

(P ′

i
)i

(P ′′

i
)i

(Pi)i

(P ′

i
)i

(P ′′

i
)i

Figure 30. A sketch of the construction of the 3D visibility drawing accord-
ing to the proof of Theorem 10

The resulting drawing is a 3D visibility drawing of K2k+3. The polygons
from the same group ((Pi)

k
i=1, (P ′

i )
k
i=1 or (P ′′

i )3
i=1) see each other because

the individual groups form 3D visibility drawings of complete graphs. The
polygons from the different groups can see each other in the area where the
corresponding stair configurations cross.

This construction works for k ≥ 3 only because for k = 2 the second sides
of (P ′

i )
k
i=1 and the 4th sides of (Pi)

k
i=1 are parallel, i.e., they cannot cross.
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′
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1
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Figure 31. A 3D visibility drawing of K9 by regular hexagons based on
Theorem 10
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The construction in the proof of Theorem 10 works for k > 2 only, but
Fekete et al. [14] show that this theorem holds for k = 2 as well, i.e., they
describe a 3D visibility drawing of K7 by squares, see Figure 32.

P1

P2

P3

P4

P5

P6

P7

Figure 32. A 3D visibility drawing of K7 by squares

Theorem 10 improves the best known lower bound on the maximum size of
a complete graph with a 3D visibility drawing by regular n-gons (for n even).
Štola [24] describes a drawing of Kn+1 while Theorem 10 provides a drawing
of Kn+3.

4.2.2 Regular (2k+1)-gons

We have seen that drawings by (2k + 1)-gons can be more complex than
drawings by 2k-gons. Therefore, we are able to construct drawings of larger
complete graphs by (2k + 1)-gons than by 2k-gons.

Lemma 34. There exists a short-distance set {Pi, i = 1, . . . , 2k +3} of equal
regular (2k + 1)-gons such that (Pi)

2k+3
i=1 is a 3D visibility drawing of a com-

plete graph K2k+3 and (ci
k+1)

2k+3
i=1 is a monotone sequence (where (ci

j)
2k+1
j=1 are

polygon coordinates of Pi).

Proof. We construct a 3D visibility drawing of K2k+2 at first and we describe
how to add the last polygon later.

We start our construction of the required short-distance set with the
polygon Pk+1 and add polygons Pk+2, Pk, Pk+3, Pk−1, Pk+4, . . . , P1, P2k+2 sub-
sequently such that the added polygon has the same relation to all polygons
already added:

Pi
(k+2−i,2k+1−i)−−−−−−−−−→ Pi+1, . . . , P2k+2−i, i ∈ {1, . . . , k}, (R1)
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P2k+3−i, . . . , Pi−1
(i−k−1,i−1)−−−−−−−→ Pi, i ∈ {k + 2, . . . , 2k + 2}. (R2)

A short-distance set with these relations exists by Lemma 30. We claim
that this set forms a 3D visibility drawing of a complete graph K2k+2.

P1
(k+1,2k)
−−−−−−→ . . . Pk

(2,k+1)
−−−−−→ Pk+1

(1,k+1)
−−−−−→ Pk+2

(2,k+2)
−−−−−→ Pk+3 . . .

P2k+2

P2k+3

(k+1,2k+1)
−−−−−−−→

−
→

(1, k + 1)

(k+1,2k+1)

−−
−−

−−
−→

Figure 33. A schema of the relations among the polygons

We have

Pi
(k+2−i,2k+1−i)−−−−−−−−−→ Pi+1 ⇒ ci

x < ci+1
x , x ∈ {k+2−i, . . . , 2k+1−i}, i ∈ {1, . . . , k},

Pi−1
(i−k−1,i−1)−−−−−−−→ Pi ⇒ ci−1

x < ci
x, x ∈ {i−k−1, . . . , i−1}, i ∈ {k+2, . . . , 2k+2}.

If we fix x ∈ {1, . . . , k + 1} then ci
x < ci+1

x for i ∈ {k + 2− x, . . . , k} and
ci−1
x < ci

x for i ∈ {k + 2, . . . , x + k + 1}. In other words,

ck+2−x
x < ck+3−x

x < · · · < cx+k+1
x , x ∈ {1, . . . , k + 1}. (*)

Moreover, it is

Pi
(k+2−i,2k+1−i)−−−−−−−−−→ P2k+2−i ⇒ ci

k+1−i > c2k+2−i
k+1−i , i ∈ {1, . . . , k}.

If we set x = k + 1− i then ck+1−x
x > ck+1+x

x , x ∈ {1, . . . , k}. Lemma 31, the
last inequality and (*) prove that the polygon Pk+1−x can see all polygons
Pk+2−x, . . . , Px+k+1, x ∈ {1, . . . , k}. If we set i = k + 1 − x then the last
sentence shows that Pi can see the polygons Pi+1, . . . , P2k+2−i, i.e., if we
add a polygon according to the rule (R1) then the new polygon can see all
previously added polygons.

We proceed in an analogous way to show that the same holds for the rule
(R2), too. We have

Pi
(k+2−i,2k+1−i)−−−−−−−−−→ Pi+1 ⇒ ci

x > ci+1
x , x ∈ {2k+2−i, . . . , 2k+1}, i ∈ {1, . . . , k},

Pi−1
(i−k−1,i−1)−−−−−−−→ Pi ⇒ ci−1

x > ci
x, x ∈ {i, . . . , 2k + 1}, i ∈ {k + 2, . . . , 2k + 2}.

If we fix x ∈ {k +1, . . . , 2k +1} then ci
x > ci+1

x for i ∈ {2k +2−x, . . . , k}
and ci−1

x > ci
x for i ∈ {k + 2, . . . , x}. In other words,

c2k+2−x
x > c2k+3−x

x > · · · > cx
x, x ∈ {k + 1, . . . , 2k + 1}. (**)
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Figure 34. A 3D visibility drawing of K5 by triangles based on Lemma 34

Moreover, it is

P2k+3−i
(i−k−1,i−1)−−−−−−−→ Pi ⇒ c2k+3−i

i−1 < ci
i−1, i ∈ {k + 2, . . . , 2k + 2}.

If we set x = i− 1 then c2k+2−x
x < cx+1

x , x ∈ {k + 1, . . . , 2k + 1}. Lemma 31,
the last inequality and (**) prove that the polygon Px+1 can see all polygons
P2k+2−x, . . . , Px, x ∈ {k + 1, . . . , 2k + 1}, i.e., if we add a polygon according
to the rule (R2) then the new polygon can see all previously added polygons.

We start our construction with a single polygon and add subsequent poly-
gons such that the added polygon can see all existing polygons. Hence, the
resulting drawing is a drawing of a complete graph K2k+2. Finally, the se-
quence (ci

k+1)
2k+2
i=1 is increasing according to (*).

It remains to add one more polygon. We add a polygon P2k+3 such that

P2k+2
(1,k+1)−−−−→ P2k+3 and P1, . . . , P2k+1

(k+1,2k+1)−−−−−−→ P2k+3, i.e., the polygon
P2k+3 has the same relation to polygons P1, . . . , P2k+1 as the polygon P2k+2.

We must show that it is possible to add P2k+3 in this way. The addition of
the polygon P2k+2 is based on Lemma 30. The proof of this lemma shows that
it is possible to place the center of P2k+2 anywhere in the set O (described
in the proof) to keep the prescribed relation of P2k+2 to all other polygons.
If we place the center of P2k+3 into O then the polygon P2k+3 has the same
relation as P2k+2 to other polygons. Additionally, we know that the relation
between two polygons is given by the direction of the shift vector between
these polygons. Let ~w be the vector that corresponds to the (1, k+1)-relation.
We place the center of P2k+3 into O in the direction of the vector ~w from the
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P1

P2

P3

P4

P5

P6

P7

p1

p2

p3

p4

p5

Figure 35. A 3D visibility drawing of K7 by regular pentagons based on
Lemma 34

center of P2k+2. This is always possible because the set O is open (it is an
interior of an intersection of two half-planes).

We have to show that P2k+3 can see all other polygons. We have c1
2k+1 >

c2
2k+1 > · · · > c2k+1

2k+1 according to (**) and

P1, . . . , P2k+1
(k+1,2k+1)−−−−−−→ P2k+3 ⇒ c1

2k+1 < c2k+3
2k+1, c

i
1 > c2k+3

1 , i ∈ {1, . . . , 2k+1}

P2k+2
(1,k+1)−−−−→ P2k+3 ⇒ c2k+2

1 < c2k+3
1 .

The polygon P2k+3 can see the polygons P1, . . . , P2k+2 (in p̂2k+1p1) according
to these inequalities and Lemma 22.

Finally, c2k+2
k+1 < c2k+3

k+1 because the polygon P2k+2 has the (1, k+1)-relation
to P2k+3. Therefore, the addition of the last polygon doesn’t break the mono-
tonicity of the sequence (ci

k+1)
2k+3
i=1 .
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Two drawings provided by Lemma 34 can be combined to obtain a 3D
visibility drawing of K4k+6 by regular (2k + 1)-gons.

Theorem 11. There exists a 3D visibility drawing by equal regular (2k +1)-
gons of a complete graph K4k+6.

Proof. The proof of this lemma is the same as the proof of Lemma 33. The
only difference is that we use the drawing provided by Lemma 34 instead of
the drawing given by Lemma 32.

Theorem 11 improves the best known lower bound on the maximum size of
a complete graph with a 3D visibility drawing by regular n-gons (for n odd).
It provides a 3D visibility drawing of K2n+4 while Štola [24] gives a drawing
of Kn+1 only.
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5 Related Results

This section contains several results indirectly related to the main topic of
this thesis (i.e., 3D visibility drawings of complete graphs). We relax our
requirements on the type of the drawing or the class of the represented graphs.
Section 5.1 concentrates on complete graphs in drawings related to the 3D
visibility drawing. The other sections deal with the visibility drawing of other
classes of graphs, i.e., graphs that are not necessarily complete graphs.

5.1 Complete Graphs

5.1.1 Orthogonal Drawing

Let’s remind the definition of a d-dimensional b-bend orthogonal drawing.

Definition 15. A d-dimensional b-bend orthogonal drawing of a graph G is
a graph drawing where

• v ∈ V (G) is represented by an axis-aligned box Bv

• ∀v, w ∈ V (G), v 6= w ⇒ Bv ∩Bw = ∅
• {v, w} ∈ E(G) is represented by an axis-aligned polyline (with b+1 line

segments) connecting points on the surface of Bv and Bw

• edges (with the exception of their endpoints) don’t intersect vertices

• if d > 2 then the edges don’t intersect other edges

• if d = 2 then the edges can have a finite number of intersections.

Theorem 5 allows us to improve the best known upper bound on the size
of a complete graph with a 0-bend 3D orthogonal drawing.

Fekete and Meijer [16] show that no complete graph with more than 183
vertices has a 0-bend 3D orthogonal drawing. The following lemma can be
distilled from their proof.

Lemma 35. [16] If Km is a complete graph with a 0-bend 3D orthogonal
drawing then m ≤ 3k + 18 where k is the maximum size of a complete graph
with a 3D rectangle visibility drawing.

We can combine this lemma with Theorem 5 to obtain the improved
upper bound.
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Theorem 12. No complete graph with more than 168 vertices has a 0-bend
3D orthogonal drawing.

Proof. The maximum size of a complete graph with a 3D rectangle visibility
drawing is at most 50 according to Theorem 5. Therefore, the size of a com-
plete graph with a 0-bend 3D orthogonal drawing is at most 3×50+18 = 168
by Lemma 35.

The largest complete graph that is known to have a 0-bend 3D orthogonal
drawing is K56 by [16]. Fekete and Meijer [16] also studied 3D orthogonal
drawings where vertices are represented by unit cubes. They show that
K8 has and K10 doesn’t have such a drawing. Their paper provides a lot
of information about any potential drawing of K9 but they weren’t able
to construct a drawing of this graph or prove that it doesn’t exist. They
conjectured that K9 doesn’t have a 0-bend 3D orthogonal drawing by cubes.

1.5
0.0

1.7

1.3

2.4

3.5

1.1

2.2

Figure 36. A 0-bend 3D orthogonal drawing of K8 by unit cubes (the
number in each cube is the z-coordinate of the bottom face of the cube)

The horizontal (resp. vertical) edges of any 0-bend 2D orthogonal draw-
ing induce a planar subgraph. Therefore, every graph with a 0-bend 2D
orthogonal drawing is a union of at most two planar graphs. Beineke [5]
proved that K9 is not a union of at most two planar graphs. Hence, the
largest complete graph with a 0-bend 2D orthogonal drawing has at most
8 vertices. The matching upper bound (a 0-bend 2D orthogonal drawing of
K8) was given by Dean and Hutchinson [11], see Figure 37.
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Figure 37. A 0-bend 2D orthogonal drawing of K8

5.1.2 Limited Number of Shapes

Graphs that have a 3D rectangle visibility drawing or a 0-bend 3D orthogonal
drawing appear in some 3D packing algorithms, see [32]. The number of types
of objects being packed is usually limited. This is the reason why Fekete and
Meijer [16] started to study drawings of complete graphs by rectangles/boxes
with a limited number of shapes. They considered two ways in which two
bodies can be considered equal:

• They can be made identical by translations only.

• They can be made identical by translations and rotations.

They say that two objects have the same size (resp. the same shape) if
the first (reps. the second) condition holds. For example, an axis-aligned
rectangle with the sides a and b (i.e., with the given shape) can have two
sizes: a× b and b× a.

It was shown by Fekete et al. [14] that K8 does not have a 3D visibility
drawing by unit squares. This implies an upper bound on the maximal size of
a complete graph Kn with a 3D visibility drawing by rectangles of r different
sizes. Any subset consisting of rectangles of the same size can be converted
into a set of unit squares by scaling the coordinates appropriately. Therefore,
n ≤ 7r. The same argument shows that n ≤ 14s for drawings by rectangles
of s different shapes. Moreover, n ≤ 50 by Theorem 5.
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shapes min max sizes min max
1 12 14 1 7 7
2 18 28 2 12 14
3 20 42 3 18 21
4 20 50 4 20 28
5 20 50 5 20 35
6 22 50 6 20 42

...
...

...
7 20 49
8 20 50
9 20 50

10 20 50
11 22 50
...

...
...

Table 3. Lower and upper bounds on the maximum size of a complete graph
with a 3D visibility drawing by rectangles with a limited number of shapes
or sizes

shapes min max sizes min max sizes min max
1 30 54 1 8 9 14 52 126
2 44 108 2 14 18 15 52 135
3 50 162 3 20 27 16 52 144
4 52 168 4 25 36 17 52 153
5 52 168 5 31 45 18 53 162
6 56 168 6 36 54 19 54 168

...
...

...
7 42 63 ...

...
...8 46 72

9 48 81 24 54 168
10 50 90 25 55 168
11 51 99 26 56 168
12 52 108 ...

...
...13 52 117

Table 4. Lower and upper bounds on the maximum size of a complete
graph with a 0-bend 3D orthogonal drawing by boxes with a limited number
of shapes or sizes
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As for the lower bounds, Fekete and Meijer [16] provided several drawings
of complete graphs with a limited number of sizes and shapes. Table 3
summarizes these results.

We can use analogous arguments for the 0-bend 3D orthogonal drawing.
We know that K10 doesn’t have a 0-bend 3D orthogonal drawing by unit
cubes according to Fekete and Meijer [16]. Therefore, if Kn is a complete
graph with a 0-bend 3D orthogonal drawing by boxes of r different sizes then
n ≤ 9r. An axis-aligned box of a certain shape can have 6 different sizes.
Hence, n ≤ 54s for a drawing by boxes of s different shapes. Moreover,
n ≤ 168 by Theorem 12.

Several lower bounds were given by Fekete and Meijer [16]. Table 4
provides a summary of these results.

5.2 Bipartite Graphs

5.2.1 0-bend 2D Orthogonal Drawing

We say that a graph G has a thickness t if t is the minimum number of planar
subgraphs Gi of G such that G is a union of (Gi)i, i.e., E(G) =

⋃t
i=1 E(Gi).

The thickness of a graph with a 0-bend 2D orthogonal drawing is at
most two because the vertical (resp. horizontal) edges of the drawing induce
a planar graph (a bar-visibility graph).

(a) (b)

Figure 38. A 0-bend 2D orthogonal drawing of (a) K5,6 (by Wood [31])
and (b) K4,n

The bipartite graphs K4,n and K5,6 have a 0-bend 2D orthogonal drawing,
see Figure 38. Even though the graphs K5,n, n ∈ {7, . . . , 12} and K6,n,
n ∈ {6, 7, 8} have thickness two according to Beineke [5] it is unknown if
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any of these graphs admits a 0-bend 2D orthogonal drawing. Wood [31]
conjectured that K5,7 and K6,6 do not admit such drawings.

5.2.2 Representation Index of Bipartite Graphs

The representation index of all complete bipartite graphs is known. We have
RI(K1,2) = RI(K2,2) = 1 + 1/2 and RI(K2,n) = 2, n > 2 by Lemma 14 and
Lemma 15.

The complete bipartite graphs K3,n, n ≥ 3 are not planar. Therefore,
RI(K3,n) > 2 by Lemma 14. Cobos et al. [9] prove that RI(K3,n) ≤ 2 + 1/2,
see Figure 39a. Hence, RI(K3,n) = 2 + 1/2.

Cobos et al. [9] also show that RI(K4,4) > 2+1/2. Hence, RI(Km,n) = 3,
m ≥ n ≥ 4 because every bipartite graph has a 3D rectangle visibility
drawing, see Figure 39b.

(n − 1)×
(height 2)

(height 1)

(height 1)

(height 1)

(height 2)

(height 2)

n×

m×

(a) (b)

Figure 39. (a) RI(K3,n) ≤ 2 + 1/2 (b) RI(Km,n) ≤ 3

5.3 Multipartite Graphs

If a complete graph Kn has a visibility drawing then any graph with at most
n vertices has a weak visibility drawing of the same type. This is the reason
why the visibility drawings of complete graphs have received a wide attention.
The results proved for complete graphs can be applied on all sufficiently small
graphs. Unfortunately, these results don’t give us much information about
drawing of large graphs.

We must study other classes of graphs if we are interested in drawing of
large graphs. The previous section presents several results regarding bipar-
tite graphs. Štola [26] generalizes this approach and focuses on multipartite
graphs. He studies the following question: What is the maximum integer
k such that every k-partite graph has a drawing of the specified type? He
introduces a multipartite number of a type of drawing.
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Definition 16. A multipartite number of the given type of drawing is the
maximum k ∈ IN such that every k-partite graph has a drawing of that type.
We say that the multipartite number is infinite when every multipartite graph
has such a drawing.

Štola [26] determines the multipartite number for several types of drawing,
see Table 5.

v d b multipartite number

1 1 0 1
2 ≥ 2 ∞

1 2
0 1

3 ≥ 1 ∞
≥ 3 0 3

2 2 ≥ 1 ∞
0 1

3 0 ∈ [22, 42]
3 3 ≥ 1 ∞

0 ∈ [22, 42]
rectangle visibility drawing 8

Table 5. The multipartite number of the d-dimensional b-bend orthogonal
drawing by v-dimensional boxes

Every k-colorable graph is a k-partite graph. Hence, if k is a multipartite
number of some drawing and G is a graph then it is sufficient to find a k-
coloring of G to show that this graph has a drawing of this type. For example,
it is sufficient to find a 22-coloring of a graph to show that this graph has
a 0-bend 3D orthogonal drawing.
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6 Conclusion

Section 2 describes a general approach that can be used to determine the
maximum length of a sequence without (some type of) a forbidden subse-
quence of the specified length. We show that this approach is applicable on
monotone and unimodal subsequences. Moreover, we derive a formula uk(n),
k ≤ 5 for the maximum length of a sequence of k-tuples without a unimodal
subsequence of length n.

It is not surprising that we are not able to provide a closed formula for
uk(n) for a general k. Lemma 9 and Lemma 11 show that we would solve the
longstanding Dedekind problem otherwise. Nobody has been able to provide
a closed formula for uk(3) or uk(4). Even the value of u9(3) = u8(4) = D9 is
not known yet.

The theory of unimodal subsequences has applications in the 3D visibility
drawing by rectangles. It provides a foundation for the improvement of the
upper bound on the size of a complete graph with a 3D visibility drawing by
rectangles. Theorem 5 moves this bound from 55 to 50. This result allows us
to lower also the upper bound on the size of a complete graph with a 0-bend
3D orthogonal drawing. Fekete and Meijer [16] prove that no complete graph
with more than 183 vertices admits such a drawing while Theorem 12 shows
that the largest complete graph with a 0-bend 3D orthogonal drawing has at
most 168 vertices.

We believe that Lemma 19 can be used for further improvement of these
bounds. Our upper bounds are based on Lemma 19(iii) only while all five
conditions of this lemma must hold simultaneously. It remains an open prob-
lem how to combine these conditions to obtain a better bound.

We prove several upper bounds on the size of a complete graph with (some
type of) a 3D visibility drawing by equal regular n-gons in Section 4.1. If

• the polygons in the drawing form a short-distance set and

• the sequence of their first coordinates is monotone

then the complete graph has at most n/2 + 1 (resp. cn) vertices for n even
(resp. odd) according to Lemma 26 (resp. Lemma 28). If we start to remove
these conditions then the upper bound increases quadratically (in each step)
by Erdős-Szekeres theorem [13] and Lemma 24. Therefore, the maximum size
of a complete graph with a 3D visibility drawing by regular n-gons is O(n4),
see Theorem 9. This result is a significant improvement of the previously
known exponential bound

(
6n−3
3n−1

)− 3 ≈ 26n from [24].
The initial upper bound (with the both mentioned conditions satisfied)

is tight for n even according to Lemma 32 and has the correct (linear) order
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for n odd by Lemma 34. On the other hand, we believe that the quadratic
increase of the upper bound during removal of these conditions is rough.
There is probably a potential for further improvement.

Section 4.2 provides the best known lower bounds on the maximum size
of a complete graph with a 3D visibility drawing by equal regular n-gons.
Theorem 10 increases the lower bound for 2k-gons from 2k +1 to 2k +3 and
Theorem 11 moves the lower bound for (2k + 1)-gons from 2k + 2 to 4k + 6.
These bounds are based on a simple combination of stair-like configurations
of polygons. It would be interesting to find out whether there are more
complex combinations that lead to better lower bounds.
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[24] Štola, J.: 3D visibility representations of complete graphs. In: Liotta, G.
(ed.) GD 2003. LNCS, vol. 2912, 226–237. Springer, Heidelberg (2004)
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