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Introduction

The topic of this thesis lies on the crossroad of mathematics (geometry) and theoretical physics
(quantum field theory, string theory). Theories arising on the interface of these two sciences always
contribute significantly to development of both fields. As an example, we can mention mirror
symmetry or geometric Langlands program. Both themes are at present very active research
areas, which may bring interesting and surprising results.

The main theme is a study of Lie algebroid connections on fiber bundles, in particular, vector
bundles and principal fiber bundles, and a description of the moduli space of gauge equivalence
classes of flat linear Lie algebroid connections on a real or complex vector bundle over a connected
compact manifold for a wide class of Lie algebroids. The special case of this moduli space is the
moduli space of flat linear connections on a vector bundle over a connected compact manifold and
the moduli space of holomorphic structures on a complex vector bundle over a connected compact
complex manifold. These two examples play a very important role in geometry and quantum field
theory, therefore we describe them later in detail.

The concept of a Lie algebroid was first introduced by Jean Pradines in 1966-68 who, in
series of notes [1], [2], [3], [4], developed a Lie theory for Lie groupoids. The theory of Lie
algebroids got back into the center of interest in the late 1980s with the work of Almeida and
Molino [5] and the work of Mackenzie on theory of connections [6]. These works were devoted
almost exclusively to transitive Lie algebroids, and it was Weinstein [7] and Karasév [8], who
studied non-transitive Lie algebroids. The theory of connections was a strong motivation for the
Mackenzie’s approach to Lie groupoid and alegebroid theory. A geometric approach to the theory
of connections on Lie algebroids was worked out by Fernandes in [9], [10]. Representations of Lie
algebroids were introduced first for transitive Lie algebroids by Mackenzie [6], and they appear in
a study of cohomological invariants attached to Lie algebroids. More details on relations between
Lie algebroids and Cartan’s equivalence method can be found in [11], [12].

Moduli spaces arise naturally in classification problems in geometry. Typically, one has a set
whose elements represent algebro-geometric objects of some fixed kind and an equivalence relation
on this set saying when two such objects are identical a suitable sense. The problem then is to
describe the set of equivalence classes. One would like to give the set of equivalence classes some
structure of a geometric space (usually of a smooth manifold, a scheme or an algebraic stack). If
it can be done, then one can parametrize such objects by introducing coordinates on the resulting
space.

The word moduli is due to Bernhard Riemann who used it as a synonym for parameters,
when he showed that the space of equivalence classes of Riemann surfaces of a given genus g (for
g > 1) depends on 3g — 3 complex numbers. This is the reason why the moduli spaces were first
understood as spaces of parameters rather than as spaces of objects.

We have many basic but important examples of moduli spaces, e.g. the moduli space of
algebraic curves, moduli space of vector bundles, moduli space of algebraic varieties and many
others. We proceed by describing two cases of moduli spaces in detail as mentioned above.

Given a connected compact manifold X and a compact Lie group G, the moduli space of prin-
cipal G-connections on a principal G-bundle P — X is the space M(P,G) = H(P, G)/ Gau(P),
where H (P, G) is the space of flat principal G-connections and Gau(P) is the group of gauge trans-
formations. The disjoint union of these moduli spaces over representatives for the isomorphism
classes of principal G-bundles gives the moduli space M(X,G) of all flat principal G-connections
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Introduction 2

over X. Holonomy provides a mapping H(P,G) — Hom(m (X, z0),G) which, by Uhlenbeck com-
pactness, induces a homeomorphism

Hom(m (X, z0),G)/G ~ M(X,G),

called the Riemann-Hilbert correspondence.

This moduli space has a very close relationship to the Chern-Simons theory which is a 3-
dimensional topological field theory. The Chern-Simons theory leads to new topological invari-
ants of 3-manifolds, as was proposed by Edward Witten [13] in the late 1980s. The quantum
Chern—-Simons invariants are closely related to the Jones invariants [14] of links which have many
applications in knot theory. These invariants can be approached by defining a vector space Hx
canonically associated to a closed (compact and without boundary) surface 3. The underlying idea
behind the vector space Hy is that of geometric quantization of a symplectic manifold M(X, G).

Consider a complex vector bundle FE over a connected compact complex manifold M and
denote by H(M, E) the space of all holomorphic structures on E. Let Gau(E) be the group of
automorphism of E covering the identity on M. Then Gau(E) acts on H(M, E) and we define the
moduli space M(M, E) = H(M, E)/ Gau(FE) as the space of equivalence classes of holomorphic
structures on E.

The moduli space of holomorphic vector bundles over a connected compact complex manifold
has a very long history. Even the simplest possible case, when the manifold M is a Riemann
surface, has been studied intensively for a long time. After the classification of holomorphic vector
bundles for genus 0 by Alexander Gronthendieck [15] and genus 1 by Michal Atiyah [16], vector
bundles on higher genus Riemann surfaces have been studied extensively with the fundamental
work of David Mumford [17] and of Narasimham and Seshadri [18], who introduced the concept
of stable vector bundles and constructed the moduli spaces which classify these bundles. In their
theorem Narasimhan and Sashedri identified the moduli space of stable vector bundles over a
compact Riemann surface with the moduli space of irreducible projective unitary representations
of the fundamental group of the surface. More details about the moduli space of holomorphic
structures can be found in [19].

These last two examples of the moduli spaces of flat Lie algebroid connections on a vector
bundle or on a principal fiber bundle over a connected compact manifold show that they have a
fundamental importance both for geometry and for quantum field theory. In fact, there is one
more example of the moduli space of this type which was the motivation for a study of the moduli
space of Lie algebroid connections. It is the moduli space of topological A-branes and B-branes,
see [20].

During last decades, a lot of attention was concentrated to the problem of a unified description
of different geometries. In 2002, Nigel Hichtin [21] introduced a concept of generalized complex
geometry, which was further developed by his students Marco Gualtieri [22] and Gil Cavalcanti
[23]. It contains complex and symplectic geometry as its extremal special cases. It seems that this
unifying concept of these two geometries will play a central role in the understanding of mirror
symmetry [24] and geometric Langlands program [25].

Mirror symmetry is an example of a general phenomenon known as duality, which occurs when
two seemingly different physical systems are isomorphic in a non-trivial way. The non-triviality of
this isomorphism involves the fact that quantum corrections must be taken into account. There
are many forms of mirror symmetry and they are all closely related.

A mathematical explanation for this phenomenon is the homological mirror symmetry. It
is a mathematical conjecture formulated by Maxim Kontsevich at the International Congress of
Mathematicians in Zurich in 1994, see [26]. He considered mirror symmetry for a pair of Calabi-
Yau manifolds X and Y as an equivalence of the triangulated category DY Coh(X)) constructed
from the complex geometry of X and the other triangulated category Fuk(Y’) constructed from
the symplectic geometry of Y and vice versa. The triangulated category DY Coh(X)) is a bounded
derived category of coherent sheaves on X and Fuk(Y') is the Fukaya category. Therefore the
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homological mirror symmetry conjecture can be formulated as

DY Coh(X)) ~ Fuk(Y),
Fuk(X) ~ DYCoh(Y)),

where X and Y is a pair of mirror Calabi-Yau manifolds. In fact, this formulation could be
understood as a mathematical definition of a mirror pair of Calabi—Yau manifolds.

Another formulation relates two different two-dimensional topological field theories called A-
model and B-model. The topological A-model and B-model were originally introduced by Edward
Witten [27] in 1988 as the topological twisting of the N' = (2,2) supersymmetric two-dimensional
conformal field theory. These models involve maps from a worldsheet ¥ (Riemann surface) into a
target space M (usually a Calabi-Yau manifold). There are more general cases of a target space
than Calabi-Yau manifolds for which the N = (2,2) supersymmetric two-dimensional conformal
field theory exists. Such examples can be described in a very elegant way using generalized
complex structures as manifolds involving a generalized Kahler structure or bi-Hermitian structure
(first discovered by physicists investigating supersymmetric nonlinear sigma models, see [28]).
Riemann surfaces without boundary represent the worldsheet of closed strings, while in the case
of Riemann surfaces with boundary describe the worldsheet of open strings. In the second case, we
must introduce boundary conditions to preserve the supersymmery. These boundary conditions
correspond to objects called topological A-branes and B-branes. These topological branes in a
Calabi-Yau manifold M can be described through the generalized complex structure as a complex
vector bundle supported on some submanifold of M with a flat linear Lie algebroid connection on
this vector bundle. This concept was introduced by Marco Gualtieri in [20].

Moduli spaces of topological A-branes and B-branes play a crucial role in the so called SYZ
conjecture formulated by Andrew Strominger, Shing-Tung Yau and Eric Zaslow in [29]. This
picture relates the homological mirror symmetry of two Calabi-Yau manifolds X and Y to the
T-duality of dual special Lagrangian fibrations in X and Y. A special case of this fibration is the
Hitchin fibration in geometric Langlands program.

Our main results about Lie algebroid connections and moduli spaces of Lie algebroid connec-
tions are contained in the second and third chapter of this thesis.

In the first chapter some important definitions and notions are reviewed, for example the basic
definition of a real and complex Lie algebroid is given and also many examples of Lie algebroids are
mentioned, among others an example of the Atiyah algebroid, which is crucial for the definition
of Lie algebroid connections on principal fiber bundles, is described. Further, the notion of an
L-path is given. This is important for the concept of the parallel transport and for introducing
the holomomy group of a Lie algebroid connection. Because Lie algebroids can be understood
as generalized tangent bundles, the notions like forms, vector fields, de Rham differential are
generalized in a natural way. At the end a wide class of complex Lie algebroids coming from
generalized complex structures is presented together with the explanation of generalized complex
geometry and necessary tools.

The second chapter is devoted to the study of Lie algebroid connections on vector bundles
or linear Lie algebroid connections. After the definition is given, we prove some basic results
generalizing well-know facts about linear connections related with the curvature, covariant exterior
derivative, flat connections, Bianchi identity and others. We continue by recalling the definition
of the group of gauge transformations of a vector bundle. We define an action of this group on
the space of Lie algebroid connections and introduce the notion of moduli spaces for Lie algebroid
connections. Some basic results about Lebesgue and Sobolev spaces are mentioned. We also
recall some well-know facts for elliptic complexes on compact manifolds. Then we define Sobolev
completions of these moduli spaces which allow us to give the moduli space the structure of a
geometric space. We prove that the irreducible linear Lie algebroid connection together with the
action of the reduced group of gauge transformations form (possibly non-Hausdorff) principal
fiber bundle. The last section is devoted to the study of the moduli space of smooth irreducible
flat Lie algebroid connections. It is proved that this moduli space has the structure of a smooth



S S

R e e e

Introduction 4

finite dimensional manifold near a smooth point and its dimension is the dimension of the first
Lie algebroid cohomology group. These results were partially published in [30].

In the third chapter we describe the general concept of Lie algebroid connections on a fiber
bundle through the horizontal lift and we concentrate more on principal Lie algebroid connections
on principal fiber bundles. We generalize some results from the previous chapter which in fact
correspond to the special case (general linear group) in the choice of the structure group of a
principal fiber bundle. We define the concept of the covariant exterior derivative, the induced
linear Lie algebroid connection on an associated vector bundle and the parallel transport along
an L-path. The natural action of the group of gauge transformations of a principal fiber bundle
on the space of principal Lie algebroid connections is studied. The main result is the proof of the
isomorphism between the isotropy group of a principal Lie algebroid connection and the holonomy
group of a principal Lie algebroid connection.

The conclusion focuses at the further study of Lie algebroid connections. One possibility is a
generalization of the Riemann-Hilbert correspondence.
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Chapter 1

Lie and Courant algebroids

1.1 Lie algebroids

Lie algebroids were first introduced and studied by J. Pradines [2], following the work by C. Ehres-
mann and P. Libermann on differential groupoids (later called Lie groupoids), as infinitesimal
objects for differential groupoids. Just as Lie algebras are the infinitesimal objects of Lie groups,
Lie algebroids are the infinitesimal objects of Lie groupoids. They are generalizations of both Lie
algebras and tangent vector bundles.

Definition 1. A real (complex) Lie algebroid (L = M, [-,-],a) is a real (complex) vector bundle
m: L — M together with a real (complex) Lie algebra bracket [-,-] on the space of sections
['(M. L) and a homomorphism of vector bundles a: L — TM (a: L — TMcg), called the anchor
map, covering the identity on M, i.e., the following diagram

L—2'TM L—2 5 TM:
T ™  resp. ™ A
M— M M———- M
idng idas

commutes. Moreover, the anchor map fulfills

i) a([61,€2]) = [a(61), a(&2)] resp. a([€1,&2]) = [a(é1), a(&a)lc

ii) [€1, fé] = fl€1.&2] + (a(61)f)&2, (the Leibniz rule)
for all 5,6 € (M, L) and f € C®(M,R) resp. f € C®(M,C).
Definition 2. If (L, — M,[,"|r,,ar,) and (Ly — M, [, ]1,,ar,) are Lie algebroids, then a
vector bundle homomorphism ¢: L} — Lo covering the identity on M is a Lie algebroid morphism
ifar, oy = ar, and ¢ induces a Lie algebra homomorphism form X (M) to X.,(M).

Before the continuing with the study of Lie algebroids, we would like to show that Lie algebroids
are interesting themselves. We look at equivalence problems in geometry. Elie Cartan observed
that many equivalence problems in geometry can be best formulated in terms of coframe fields.
He was able to come up with a method, now called Cartan’s equivalence method, to deal with
such problems.

A local version of Cartan’s formulation of equivalence problems can be described as follows.
Consider a family of functions f® and c;k = —c}m defined on some nonempty open set X C R”,
where 1 < i,j.k <r, 1 <a<n (n,r are positive integers).

Cartan’s problem: find a manifold IV, a coframe field {n*};_; on N, and a smooth mapping
h: N — X satisfying

1 = : . :
dnft =S ety (n' Ay dh® = fE(R) (1.1)

(&2 ]
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Necessary conditions on the map A: N — X to solve Cartan’s problem can be obtained as imme-
diate consequences of the fact that d? = 0 and that {n‘} is a coframe field. An easy computation
gives

fa

Ox®

fa

FE(R) 505 (h) = F2(h) k- (h) = —ck (k) F2 () (12)

and

i
dcJ x

ac, acz
FEB) TR (k) 4 FE() S (k) + F2 () S22 1)
:_(c:‘n,](h)cké(h’)_*'cmk(h)c (h)+0me(h)0§~’,‘k(h))- (1.3)

Unless these equations are identities, they place restrictions on the range of h.

On the other hand, if the above equations are identities on the functions f* and c; x> then one
might hope to find realizations of (1.1) without placing any further restrictions on the range of h.

Cartan’s conditions can be reformulated into a more geometric form as follows. Consider a
trivializable vector bundle L — X of rk L = r over X and any local frame field {e;}]_; for L over
X. If we define a vector bundle homomorphism a: L — T'X by

0
alg'e) = 9'ff 5 (14)
and a bilinear mapping |-, -]: F(X LyxT(X,L) - T'(X,L) by
L oh? -, 0g
[gle'i»hjej]:—gzh] 1)6k+g fz or® €j — Jf;'la_f‘a—ei, (15)
where g', h/ € C®°(X,R), then the necessary conditions (1.2) and (1.3) are equivalent to the fact
that (L — X,{-,],a) is a Lie algebroid. More about the reformulation of Cartan’s equivalence

problems through Lie algebroids can be found in [11] and [12].

Now we express a Lie algebroid structure on a vector bundle m: L — M in local coordinates.
For any x € M there exists an open neighborhood U C M, a local chart (U, u) on M and a vector
bundle chart (U, ) on L. Then { B0 }n is a local frame field for TM over U and moreover there
exists a local frame field {e;}7_, for L over U. We define local structure functions f* and c k on
U,where1<i,j,k<r,1<a<n,dmM =n,rkL =7, by

; . 0
[ei.a 6]] == C?] eka a‘(e'i) = T 8ua ‘ (16)

The requirement, that a is a Lie algebra homomorphism, is equivalent to the condition

bOFF  wOfF _

fi Oub I Bub

while the Jacobi identity is equivalent to

,_)fk’ (17)

a@’” 3("" 8
Cu+<‘k11e+"]kcze+f7 +fk5 i By

.?TS

(

Q

These equations are called the local structure equations.
Remark. Let A be a commutative K-algebra! with unit. We denote by Derk(A) the A-module
of K-linear derivations of A. Recall that Derg(A) is naturally a Lie algebra over K with respect

to the usual commutator.
A Lie-Rinehart A-algebra is an A-module L endowed with a structure of a Lie algebra over

K and with a morphism a: L — Derg(A) of A-modules, called the anchor map, satisfying the
following axioms:

IThe letter K stands for the field R or C.
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1) a([z,y]r) = [a(z),a(y)] for z,y € L, i.e., a is a morphism of Lie algebras over K,
i) [z, fylr = flz,y]r + (a(z)f)y for z,y € L and f € A.

Consider the commutative R-algebra A = C*°(M, R), then Derg(A) is the Lie algebra of vector
fields on M. Afterwards the space of sections I'(M, L) of a real Lie algebroid (L — M, |-, ]1,a) is
a Lie-Rinehart A-algebra.

In fact, Lie-Rinehart algebras are the algebraic counterparts of Lie algebroids, just as modules
over a ring are the algebraic counterpart of vector bundles.

Definition 3. Given a Lie algebroid (L = M, [-,],a) over M, a smooth path a: [0,1] — L is an
L-path, if

a(a(t)) = - m(a(t)) (1.9)

for all ¢ € [0,1]. The smooth path 7: [0,1] — M given by v = mo a will be called the base path of
the L-path a. We denote by P(L) the set of all L-paths.

If 7: [0,1] — [0,1] is a smooth change of parameter, i.e., a diffeomorphism, and a: [0,1] — L
is an L-path, then its reparametrization a”: [0,1] — L given by a’(t) = 7(t)a(7(t)) is an L-path
and for 7 satisfying 7(0) = 0 and 7(1) = 1 is L-homotopic to the L-path «.

We say that two L-paths ap and a; are composable, if 7(ap(1)) = 7(a1(0)). In this case we
define the concatenation of paths ag and a; by

2000(2t) for0 <t

< 1
;oS (1.10)
200(2t —1) for 5 <t <1

(a1 ® ao)(t) = {
This is essentially the multiplication of L-paths. However it is not associative and a; ® o is only
piecewise smooth. One possibility around this difficulty is allowing for piecewise smooth L-paths.
Instead we choose a cutoff function 7 € C*°(R) with the following properties:
i) 7(¢) =0fort<Oand 7(t) =1fort > 1,

ii) 7(t) > 0 for t € (0,1).
We now define the multiplication of composable L-paths by

a1 Qg =a{®a6, (1.11)

where aff and af are reparametrizations of cg and a.

Now we can define an equivalence relation ~;, on a manifold M as follows. We say that z ~p, y
for x,y € M if there exists an L-path «, with the base path v, such that v(0) = 2 and y(1) = ¥.
An equivalence class of this relation will be called an orbit of L. In the case, when a is surjective,
i.e., L is a transitive Lie algebroid, each connected component of M is an orbit of L.

1.2 Examples of Lie algebroids

Let us present now a few basic examples of Lie algebroids.

Example. (tangent bundles) One of the trivial examples of a Lie algebroid over M is the tangent
bundle L = TM of M, with the identity mapping as the anchor map and the Lie bracket of vector

fields as the Lie bracket.
Example. (Lie algebras) Any real (complex) Lie algebra g is a real (complex) Lie algebroid over
a one-point manifold, with zero anchor map.

Example. (foliations) Let L C TM be an involutive regular distribution on a manifold M. Then
L has a Lie algebroid structure with the inclusion as the anchor map and the Lie bracket is the
usual Lie bracket of vector fields. By the Frobenius theorem the distribution L gives a regular
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foliation on M. On the other hand to any regular foliation on M is associated an involutive regular
distribution and therefore a Lie algebroid over M.

Example. (bundles of Lie algebras) A bundle of Lie algebras is a vector bundle L — M with
a skew-symmetric C*°(M, R)-bilinear mapping [-,-]: I'(M,L) x '(M,L) — I'(M, L), i.e., [,] €
(M, A2L* ® L), satisfying the Jacobi identity. If we define the anchor map by a(£) = 0 for
£ eI'(M,L), then (L — M,|[-,],a) is a Lie algebroid. On the other hand, any Lie algebroid with
zero anchor map is a bundle of Lie algebras. Because (&1, f&2] = f[€1,&2] + (a(&1)f)é2 = f[é1,&2],
we obtain [-,] € ['(M,A’L* ® L).

Note that the notion of a bundle of Lie algebras is weaker than of a Lie algebra bundle, when
one requires that L is locally trivial bundle of Lie algebras (in particular, all Lie algebras L, are
isomorphic).

Example. (vector fields) Lie algebroid structures on the trivial real line bundle over M are in a
one-to-one correspondence with vector fields on M. Given a vector field X € X(M), we denote by
Lx the induced Lie algebroid. As a vector bundle Ly = M x R. Because I'(M, Lx) ~ C*(M,R),
the anchor map is given by the multiplication by X, i.e., a(f) = fX, and the Lie bracket of two
sections f,g € I'(M, Ly) is defined by

[f.g] = fLx(g9) — 9Lx(f). (1.12)

Example. (action Lie algebroids) Consider an infinitesimal right action of a real Lie algebra g on
a manifold M, i.e., a Lie algebra homomorphism ¢: g — X(M). The usual situation is when we
have a right action 7: M x G — M of a Lie group G with the Lie algebra g. Then

d
Ex(g) =T X = T z.exp(tX), (1.13)

where X € g and z € M, defines an infinitesimal right action of g on M. We define a Lie
algebroid g x M, called the action Lie algebroid or the transformation Lie algebroid, by the
following way. As a vector bundle g x M = M x g, it is a trivial vector bundle over M. Seeing
that T'(M,g x M) ~ C*°(M, g), the anchor map is given by

a(f)(@) = () (), (1.14)
while the Lie bracket on sections is defined by
£y 9l(z) = [£(2), 9(2)]g + (Cp)9)(@) = (g (). (1.15)

The Lie bracket is uniquely determined by the Leibniz rule and the condition that
lex,ey] = cix,y (1.16)

for all X,Y € g, where cx denotes the constant section of g.

Example. (two forms) For any closed 2-form w € Q2(M,R), we define a Lie algebroid L, as
follows. As a vector bundle L, = TM & (M x R), the anchor map is the projection on the first
component, while the Lie bracket on sections I'(M, L) ~ X(M) ® C*°(M,R) is given by

(X, ), (Y, 9)] = (X, Y], Lx(g) — Ly (f) + w(X,Y)). (1.17)

Example. (Atiyah sequences) In 1957, Atiyah [16] constructed in the setting of vector bundles
the following key example of a Lie algebroid. Let (P,p, M,G) be a principal fiber bundle, then
there is an associated transitive Lie algebroid A(P) over M, called the Atiyah algebroid.

Theorem 1. Let (P, p, M, G) be a principal fiber bundle. If r: P x G — P is the principal right
action then 7#: TP x G — TP denotes the right action given by 79 = Tr9.
i) The space TP/G of orbits of the right action 7 carries a unique smooth manifold structure
such that the quotient mapping ¢: TP — TP/G is a surjective submersion.
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ii) p: TP/G — M is a vector bundle in a canonical way, where  is given by

TPF—sTP/O
us D
P——M

and qy: TuP — (TP/G)p, is a linear diffeomorphism for each u € P, moreover q is a
homomorphism of vector bundles.

iii) ¢g: TP — TP/G is a principal G-bundle with the principal right action 7.

iv) The following diagram

P xy TP/G—TP/G

m

commutes, i.e., TP is a topological pullback.

Notation. We will denote TP/G by A(P). We also define the smooth mapping 7: P x 5y A(P) —
TP by tlug, ) = q.;_,j(vﬁ. It satisfies 7(u,q(§u)) = &u, q(7(uz,vz)) = v, and 7(uy.g,vz) =
T(Ugz, vz).g. The vector bundle A(P) — M is called the Atiyah bundle.

Proof. First of all we verify that the right action 7#: TP x G — TP is free and proper. Suppose
that &,.g1 = &..92, then u.gy = m(€y.91) = 7(€..92) = u.g2. Because the principal right action
r: P x G — P is free, the right action 7 is also free. Now let &,.9, — & and &, — & in TP
for some &,,£.8’ € TP and g, € G. If we denote u, = 7(&,), u = 7(§) and v = 7(¢’) then
Up . Gn = T(En-gn) — (&) = v’ and u, = 7(€,) — 7(€) = u, because 7 is continuous. But G acts
properly on P, hence g, has a convergent subsequence in G and thus 7 is proper. Immediately, from
the characterization of principal fiber bundles it follows that the orbit space TP/G is a smooth
manifold, the quotient mapping q: TP — TP/G is a surjective submersion and q: TP — TP/G
is a principal G-bundle.

In the setting of the diagram in (ii) the mapping p o 7 is constant on orbits of the action 7,
SO P exists as a mapping. Because q: TP — TP/G is a fibered manifold and p o ¢ is smooth, we
obtain that p is also smooth.

Let (Us, o) be a principal bundle atlas for P with transition functions ¢q3: Uy — G and
let (Uq,uq) be an atlas for M. We define xo: TPp-1(1,) = TUa X TG — Uy X R™ x g x G by

Xa = (Tua x (Tp) ™) 0 Tpa: TPyp-1y) 2 T(Py,) = TUa X TG — Up x R" x g X G,

where Tp: g x G — TG is the right trivialization of TG given by T'p.(X,g) = Tepy.X. Then xa
is a diffeomorphism and the diagram

TPy X Uy xR xgx G

g Ua) —5—Ua %G

«@

commutes. For x, o Xgl: Usg X R x g x G — Uy X R™ x g x G we obtain

(Xe © X531 (@,0, X, 9) = (z.d(ua 0 uj")(@,v),00as.(Tus) " (z,v)) + Ad(Pap(2)) X, Pap(z)-9),
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where 6pq5 € 0 (Uap, g) is the right logarithmic derivative of @z
Now we define ¢;': Uy, x R® x g — p~1(U,) C TP/G by ¢, (z,v, X) = q(x3'(z,v, X,€)),
which is a fiber respecting mapping, i.e., the following diagram

=X

Uy xR" x g L>13_1(UC,‘)

pry

a1l

Ua

commutes. For each point q(&,) in p~!(z) there is exactly one X € g and one v € R™ such that the

orbit corresponding to this point passes through x;!(z,v, X,e), i.e., q(&) = q(x3'(z,v, X, €)).
Because X, is a diffeomorphism, we can write &, = x5'(z,v,X,g) for a uniquely determined
v € R™ and X € g, where ¢, (u) = (z,9). Then

-1 _ —1 _ _
T.r¢ x3'(z,v,X,9) = Tyo1(a9)"° 0 Tiz.gyPa’ © ((Tua) ™" x Tp)(z,v, X, g)

= Tiag)(r? 0 93" )(Tua) ™ (,0), Tepy-X)
-~ —1 —
= T(z,g) ((19;-1 o )((Tua) 1(x7 U)a Tepg'X)
= T(J:.e)(ro(_xl 0 T(z,q) (idy, x Pg"l)((TUa)—l(xv v), Tepg-X)
= T(a:.e)‘p;l ((Tua)_l(m, ’U)’ Tgpg“l . epg'X)
= X;l(.’lf,v, X? 6),
where 7: (Uy, x G) x G — U, x G is a right action given by 7((z,g’),9) = (z,9"g). Therefore
vz, -, ): R® x g — p~(z) is bijective, since the principal right action is free. Moreover 93! is
smooth with the invertible tangent mapping, so its inverse ¥ : p~1(Uy) — Uy x R™ x g is a fiber
respecting diffeomorphism. Furthermore
vy (v, X) = q(x5" (2,0, X, €))
= q(xz (@, d(ua 0 w3 ) (@, ), 80ap-(Tug) " (2,v)) + Ad(Pap(2)) X, pas(@).€))
= (X3 (@ At © 45 ")(,), 600p-((Tug) ™ (z,v)) + Ad(pap(2))X, €))
= 'd);l(:r! d(uq © u;l)(m’ v), 590&[3‘((Tu17)_1($’ v)) + Ad(ﬂoaﬂ(w))x)v

N N

thus (¢ 0 w;l)(x, v, X) = (z,d(uq 0 u[;l)(a:,v), 8pas-((Tug) Yz, v)) + Ad(pas(z))X), therefore
(Ua, ¥4) is a vector bundle atlas for p: TP/G — M.
By definition of ¥, the diagram

TPy ,) —=>Us x R* x g x G

P Ua) — Ua x R® x g

Yo

commutes, if we restrict xo on T, P then we obtain the diagram
«\.t\
Tu.P == {p(u)} x R™ x g X {g}

|

P (p(w)) —— {p(w)} x R™ x g

pr
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in which its lines are linear diffeomorphism, hence we conclude that q,: T,P — p '(p(u)) =
(TP/G)p(u) is a linear diffeomorphism.

Consider a homomorphism (m,q): TP — P X TP/G = p"(TP/G) of vector bundles over P
covering the identity on P. Because (7,q) is a linear isomorphism on fibers with the invertible
tangent mapping, so (, q) is an isomorphism of vector bundles. The inverse is denoted by 7: P X s
TP/G — TP and given by 7(uz,v:) = g3 (vz). é

Theorem 2. The sections of the Atiyah bundle A(P) — M associated to a principal fiber bundle
(P,p, M, G) correspond to the G-invariant vector fields on P, moreover we have an isomorphism
$: T'(M, A(P)) = X(P)C of C*(M,R)-modules, where f¢ = (f o p)¢ for f € C®(M,R) and
¢ € X(P)S.

Proof. If ¢ € X(P)® then we construct s¢ € I'(M, A(P)) in the following way. Because £: P — TP
is a G-equivariant mapping, the diagram

Pp—S TP
p q

commutes for a uniquely determined mapping s¢: M — A(P). Further s; op = g o £ is a smooth
mapping and p: P — M is a fibered manifold hence s¢ is a smooth section.

If conversely s € ['(M, A(P)) we define ¢, € X(P)® by & =7 o (idp Xp 8): P — P xpy M —
P xa A(P) = TP, ie., &(u) = 7(u,s(p(u))) for u € P. This is a G-invariant vector field since
€5(u.g) = 7(u.g, s(p(n))) = 7(u, s(p(u))).g = &(u).g by the G-equivariance of 7.

These two constructions are inverse to each other since we have &) (u) = 7(u, s¢(p(u))) =
7(u.q(€(w))) = £(u) and s¢(5)(p(w)) = 4(&s(w) = a(7(w, 5(p(w)))) = s(p(u))- &
Remark. The space of sections of A(P) is isomorphic with the space of G-invariant vector fields
on P, which is a Lie algebra, hence on sections I'(M, A(P)) there is a natural Lie algebra structure
given by €[81.82] = [631 ’E-‘iz]'

Because T'p is constant on orbits of the right action 7, this follows from the fact that Tpor9 =
T(por?d) = Tp, the diagram

e o TM

q idram
A(P) ——~TM

commutes for a uniquely determined smooth mapping py: A(P) — TM. Furthermore Tp is a
surjective mapping thus p. is also surjective. Besides it is easy to see that p.: A(P) - TM is a
homomorphism of vector bundles over M covering the identity on M, because p.j4(p), A(P), —
T, M is given by p.jap), = Tu,P° gy for some u; € p~1(z) which is linear.

k Now it remains to verify that (A(P) — M,[-,-],p.) is a Lie algebroid. Using the following
commutative diagram

BBt i . i S e It . e

€s Tp

g™ WM WA L WAULHT
Matematické oddéleni
Sokolovaks 83
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we get p.([s1,82]) op = Tpo &, sy = TPO [, &) = [Pu(51), Px(s2)] © p, where we used the fact
that £ and p,(s) are p-related vector fields, hence [£;,,&;,] and [p.(s1),p«(s2)] are also p-related
vector fields. Because p is surjective, we obtain p.([s1, s2]) = [p«(s1),p«(s2)]. Next we have
[s1,f52] 0P = q 0 Epsy pas) = 40 €015 €] = g0 €6y, s,

= q0 (fl€ors§an] + (€l ) €a2)

=go f&[sl,.sgl +go (631(f op) 532)

=q0&f[sy,55] T g0 (Px(51)f 0 p)&s,

= fls1,82] 0P+ @0 &(p.(s1) 152

= fls1,82] o p+ (p«(s1) f)s2 0 p,
where we used that for p-related vector fields &, and p.(s) is satisfied that £,(f op) = (p«(s)f)op

for any f € C°(M,R). Again, because p is surjective, we get [s1, fs2] = f[s1,82] + (p«(81)f)s2.
Because p. is surjective, we have proved that (A(P) — M, [-,-],p«) is a transitive Lie algebroid.

Immediately from the definition of the vertical bundle V P = ker T'p, we obtain the short exact
sequence

0—VP—TP2TM —0 (1.18)

of vector bundles. Since the vertical bundle V P is isomorphic to the trivial vector bundle P x g,
we get the short exact sequence

0— Pxg-TPI2TM —0 (1.19)

of vector bundles, where i: P x g — VP — TP is given by i(u,X) = T.r,.X. If we define the
right action 7: (P x g) x G — P x g through #((u, X),g) = (u.9,¢g7'.X), theni: Px g — TP is
a G-equivariant mapping. Therefore the following diagram

Pxg—sTP

q q

ad(P) —> A(P)

o

commutes for a uniquely determined smooth mapping i,: ad(P) — A(P). Hence we get the short
exact sequence

0 — ad(P) < A(P) 2% TM — 0 (1.20)

of Lie algebroids over M known as the Atiyah sequence associated to a principal G-bundle P,
where the Lie bracket on T'(Af,ad(P)) is induced from the given one on I'(M, A(P)). The smooth
sections of these bundles give rise to the short exact sequence

0 — D(M, ad(P)) <> T(M, A(P)) £ T(M,TM) — 0 (1.21)
of Lie algebras. It can be rewritten as
0 — Fvert(P)¢ — X(P)¢ 25 X(M) — 0, (1.22)

where X,er(P)€ is the Lie algebra of vertical G-invariant vector fields (the Lie algebra of in-
finitesimal gauge transformations) and X(P)C is the Lie algebra of G-invariant vector fields. The
exactness of the sequence (1.21) follows from the fact that the Atiyah sequence is closely related
to principal connections on a principal fiber bundle.
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Later we show that a principal connection can be described as a right splitting of the Atiyah
sequence, i.e., as a homomorphism o: TM — A(P) of vector bundles satisfying p, o 0 = idry,.
The curvature of the connection o € Q}(M, A(P)) is given by

Qo (&1,82) = [0(&1),0(£2)] — o([£1,&2])

for £;,&; € X(M). Furthermore one can verify that Q, € Q?(M, A(P)). Because the sequence
(1.21) is exact and p.(2,(&1,&2)) = 0, we obtain that there exists a uniquely determined R, €
QQ(JVI, dd(P)) such that i*(RU(§1,€2)) = Qa(ﬁl,fg) for all &1, € Z’E(M)

If L is a transitive Lie algebroid over M, then the associated short exact sequence

0 —kera > L% TM—0 (1.23)

of Lie algebroids is called the abstract Atiyah sequence. Note that not all abstract Atiyah sequence
come from sequences associated to a principal fiber bundle. Then we can define a connection on
L to be a right splitting of the above exact sequence (1.23), i.e., a homomorphism o: TM — L of
vector bundles satisfying a o ¢ = idras. More about connections on transitive Lie algebroids can
be found in [6] and [31].

Example. (Poisson manifolds) Any Poisson structure on a manifold M induces, in a natural way,
a Lie algebroid structure on the cotangent bundle T*M of M. Let m € T'(M, A2T M) be a Poisson
bivector on M, which is related to the Poisson bracket by {f, g} = 7(df,dg). If we use the notation

o T*M - TM (1.24)

for the mapping defined by 3(r¥*(a) = m(a, ) for a, 8 € Q' (M, R), then the Hamiltonian vector
field X s associated to a smooth function f on M is defined by Xy = 7t(df). The anchor map is
7f and the Lie bracket is given by

{Ctj] = E,ru(a)(ﬂ) - ﬁﬂn(ﬁ) (Ol) = dvr(a,ﬁ). (1.25)

This Lie algebroid structure on T*M is the unique one with the property that a(df) = X and
[df,dg] = d{f,g} for all f.g € C>°(M,R). When 7 is nondegenerate, M is a symplectic manifold
and this Lie algebra structure of I'(M, T*M) is isomorphic to that of I'(M,TM).

Example. (Nijenhius manifolds) Let M be a manifold with a Nijenhuis structure, i.e., a vector
valued 1-form N € Q}(M,TM) with the vanishing Nijenhuis torsion. Recall that the Nijenhuis
torsion Ty € Q2(M,TM) is defined by

Tv(X,Y) = [NX,NY] - NINX,Y] - N[X,NY] + N*[X,Y] (1.26)

for XY € X(M), note that Ty = %[N ,N] for the Frolicher-Nijenhuis bracket. A vector valued
1-form A is called a Nijenhuis tensor if its Nijehnius torsion vanishes. To any Nijenhuis structure
N, there is associated a new Lie algebroid structure on TM. The anchor map is given by a(X) =
N(X), while the Lie bracket is defined by

(X,Y]n = NX, Y]+ X, NY] - N[X,Y]. (1.27)
It is well known that powers of Nijenhuis tensors, considered as endomorphisms of the tangent
bundle, are Nijenhuis tensors. Also any complex structure J on M is a N ijenhuis tensor.

Example. (generalized Nijenhuis manifolds) Let (L — M, [-,],a) be a Lie algebroid and ¥et
N:L — L be a homomorphism of vector bundles covering the identity on M, such that its

Nijenhuis torsion vanishes, i.e.,

INX,NY] - NINX, Y] - NX,NY] + N*[X,Y] =0 (1.28)
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for all X,Y € I'(M, L). If we define the anchor map by an(X) = (a o N)(X) and the Lie bracket
by

(X, Y|y = NX, Y]+ [X,NY] - N[X,Y]. (1.29)
then this gives a new Lie algebroid structure on L.

Example. (trivial Lie algebroids) For any real Lie algebra g, we define a Lie algebroid L, over a
manifold M by the following way. As a vector bundle Ly = TM & (M X g), the anchor map is the
projection on the first component and the Lie bracket on sections I'(M, Ly) ~ X(M) & C>®(M, g)
is defined by

(X, ). (Y, )] ((X. Y], [f, g]), (1.30)

where the bracket on sections I'(M, M x g) ~ C>®(M, g) is given by
[, 9l(@) = [f(z), 9(z)],- (1.31)
Example. (jet prolongation of Lie algebroids) Let (L & M, [-,-],a) be a Lie algebroid, then the

r-th jet prolongations J"L of L for r € Ny has a unique Lie algebroid structure. The anchor map
is given by a -, = 7 o a, where mg: J'L — L is the canonical projection, while the Lie bracket is
uniquely determined by requiring that the r-th jet prolongation

57 T(M, L) — T(M, J'L) (1.32)

be a homomorphism of Lie algebroids. More about the relation of jet prolongation Lie algebroids
to Cartan’s method of equivalence one can find in [12].

1.3 Differential geometry of Lie algebroids

Because we can think of a Lie algebroid as a generalized tangent bundle, we may use a similar
construction for it.

Consider a real (complex) Lie algebroid (L = M, [-,],a). A section of the vector bundle A¥L*
for k € Ny is called a k-form of L and the space of all k-forms will be denoted by Q% (M). Similarly
a section of the vector bundle A¥L for k € Ny is called a k-vector field of L and the space of all
k-vector fields will be denoted by X% (M). Let Q¥ (M) = {0} and X§ (M) = {0} for k < 0, then
we denote by

QM) =P QE(M) resp. Xi( M) =P x5 (M) (1.33)
kel kEZ

the graded vector space of all forms of L resp. of all multivector fields of L. For a real (complex)

vector bundle E — M a section of the vector bundle A*L* ® E is called E-valued k-form of L.

The space of sections will be denoted by Q% (M, E).
The graded vector space Q} (M) has a natural structure of a graded commutative algebra via

the wedge product

(WATYEs - Eprq) = o Zslgn &) <wlEaprys s » 1 Eapy) T Eetpt s -+ » 1 Eotprta) )s (1.34)

where w € QP (M), 7 € Q% (M) and £;,. ... &ptq € XL(M). 1
Further there is a differential operator d: Q% (M) — Q7" (M) on the graded commutative

algebra 27 (M) defined by

k

(d[_LU')(f(). - ,Sk-) = Z(—l)'(l(f,)w(ﬁm . 7&7 SIS )gk)
4 Z 1)t w([€ 5] €0y - > Eir- e o s &gv - r Ek)  (1.35)

0<i<j<k
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for w € Q’Z(J\/I ) and o, ...,& € X(M). The differential operator dy, is called the Lie algebroid
differential of L or simply the de Rham differential of L. Besides for any £ € X, (M) we define
the insertion operator if: Q3 (M) — Q3= H(M) by

(igw) (1. -, k) = w(& &1, Ek) (1.36)

and the Lie derivative [,é: Q7 (M) — Q} (M) through

k
(LEw)(£,- .. &) = a(w(&i,. .-, € Z (€1, [6,&], .. &) (1.37)

for w € Q’Z(M) and §,&1,...,& € X (M).
Remark. As Q7 (M) is a graded commutative algebra, the space of all graded derivations

Der Qf (M) = €P Der; Q3 (M), (1.38)
keZ

where Der )7 (M) is the space of graded derivations of degree k, has a structure of a graded Lie
algebra with the Lie bracket defined by

(D1, Dy] = Dy o Dy — (—1)¥1%2D, 0 Dy (1.39)

for Dy € Dery, Q7 (M) and D, € Dery, 27 (M).

Lemma 1. The insertion operator z'é’: Q% (M) — Q3! (M) and the Lie derivative EEL: QM) —
27 (M) have the following properties:
i) ig(w AT)= 'ié‘.'u AT+ (—1)de8)y A ’ié’T, ie., zé“ is a graded derivation od degree -1,
ii) CL(./.) AT)= [Zé‘w AT+ wA Cé’T, ie., Eé‘ is a graded derivation od degree 0,
iii) [EE A= i‘[LE.n]‘
1\) [CL, [,L] = E[[é’,)] )

V) [lf ) 1]] - O
Proof. The proof goes along the same line as the proof of this lemma for a linear connection, see
(32]. &

Lemma 2. The Lie algebroid differential dy,: Qf (M) — Q (M) has the following properties:
i) dp(wAT) =dpwAT+(~1)98Ww AdpT, ie., dp is a graded derivation od degree 1,
ii) dp odp = §[dg,dL) =0, ie., dL is adlfferentlal
iii) [Cf,d] = 0
iv) [ig,d] = £§ (Cartan’s formula).

Proof. The proof goes along the same line as the proof of this lemma for a linear connection, see
(32]. &

Because d;, is a graded derivation of degree 1 and a differential, i.e., d% = 0, the graded
commutative algebra Qf (M) is a differential graded commutative algebra. The cohomology of the
complex

0 — QI(M) & QL (M) 25 . 2 Q7 (M) — 0, (1.40)

where r = rk L, called the Lie algebroid cohomology of L, we will denote by Hy (M ). It unifies de
Rham and Chevalley-Eilenberg cohomologies. When L = TM, we obtain Hy,, (M) = Hig (M),
on the other hand when L = g, i.e., L is a Lie algebroid over a one-point manifold, we receive
H3(M) = H*(g,g). Furthermore because d., is a graded derivation of degree 1, the Lie algebroid

cohomology H} (M) of L is a graded commutative algebra.
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Furthermore we can ask when is this complex an elliptic complex? For any f € C*°(M,R) and
w € Q% (M) we have

(ad(f)dr)w = dr(fw) — fdrw =drf Aw — fdrw + fdrw = a*(df) Aw,
hence for the principal symbol o;(d;) we get
o1(dr) (&) = a"(€)A: (AL)z — (AFF1LY),

for every x € M and &, € T;M, i.e., the symbol is the exterior multiplication by a*(df). Therefore
we obtain the Koszul complex

0 —— (A°L*%), 280, A1y, 2N, TGN pnpey L, (1.41)

where r = rk L, which is an exact sequence if and only if a*(€,) # 0. Thus, the differential complex
is elliptic if and only if the corresponding Koszul complex is an exact sequence for any z € M and
0 # & € T;M, in other words if and only if a*(§;) # 0 for any z € M and 0 # £, € TyM.

If L & TM is a real Lie algebroid, then the elipticity is equivalent to the requirement that
a*: T*M — L* isinjective or that a: L — TM is surjective. For a complex Lie algebroid L % T M¢
it corresponds to the requirement that a*p.p: T"M — (T'Mc)* — L* is injective.

Lemma 3. For a Lie algebroid (L = M,[-,-],a), the graded commutative algebra X$ (M) of
multivector fields of L carries a structure of a Gerstenhaber algebra. The bracket [-, -] of the Ger-
stenhaber alegebra, called an odd Poisson bracket or a Schouten bracket, generalizes the Schouten-
Nijenhius bracket of multivector fields on a manifold. The Schouten bracket is defined as the unique
extension of the Lie bracket [-,-] on Xy (M) on X7 (M) satisfying
i) [f,9] = 0 for f.g € C(M,K) = X%, (M),

i) 6. 1] = —[£,€] = a()f for f € C=(M,K), € € X1 (M)

iii) [r, 0] = =(=1)P~D-Vg 7] for 7 € X[ (M), o € X} (

iv) [m,oAp] = [m,a]Ap+(=1)P Vg Alr, p] for m € X7 (

(7.-] is a graded derivation of degree p — 1 on X7 (M).

Explicitly, for decomposable multivector fields 7 = §, A& A+ - A&k, 0 =1 A2 A=+ Amp with
&ivny € X (M) and f € C>*(M,K) we obtain

M),
M), 0 € X} (M) and p € X3 (M), ie.,

ko€
7, 0] :‘ZZ(’“I)HJ[&-’?J']/\&/\"'fi"'/\fk/\nl/\"‘7@""/\7]@ (1.42)

i=1 j=1

and
A-
(7] = —igm = Z(—l)i(a(&:)f)_l == o s Ko (1.43)
i=1

where if;f: X3 (M) — %371 (M) is the insertion operator, the adjoint of df A: Q7 (M) — Q3 (M).
Proof. See (33]. o

Remark. There are different equivalent ways to define a Lie algebroid structure on a vector bundle
m: L — M, either by a Gerstenhaber algebra structure on X7 (M) or by a graded derivation of
degree 1 on Q} (M) that is a differential. Even one can define a Lie algebroid structure on a vector
bundle 7: L — M as the supermanifold I1L together with a homological vector field dj, of degree
1. It is important that dj is of degree 1 with respect to the natural Z-grading on functions on
I1L, in order to define a Lie algebroid structure on L.

Definition 4. A pair (L — M, [, ]p.ar; L* — M,[-,"]L~,ar-) of Lie algebroids in dua'lity is
called a Lie bialgebroid if dr is a derivation of the Schouten bracket [-,-]- on X3.(M), in the

sense that
do[€, - = [doé, e + & dumle- (1.44)
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for all £&,m € I'(M,A®L*). This condition is satisfied if and only if dz+ is a derivation of [-, ] .
Therefore the notion of Lie bialgebroids is self-dual, i.e., (L, L*) is a Lie bialgebroid if and only if
(L*, L) is a Lie bialgebroid.

1.4 Courant algebroids

The Courant bracket is a generalization of the Lie bracket on sections of the tangent bundle to
the bracket on sections of the direct sum of the tangent bundle and the vector bundle of p-forms.

The case p = 1 was first introduced in its present form by Thomas Courant in his dissertation
thesis based on his work with Alan Weinstein. They used it to define a new geometrical structure
called the Dirac structure, which unifies the Poisson geometry and the presymplectic geometry
(the geometry defined by real closed 2-form) by expressing each structure as a maximal isotropic
subbundle of TM & T*M. The integrability condition, namely that the subbundle be closed
under the Courant bracket, specializes to the usual integrability conditions in the Poisson and
presymplectic cases. The twisted version of the Courant bracket was introduced by Pavol Severa.

Complex version of the p = 1 Courant bracket plays an important role in the generalized com-
plex geometry introduced by Nigel Hitchin. This, like the previous example, unifies the complex
geometry on one side and the symplectic geometry on the other hand. Closure under the Courant
bracket is the integrability condition of a generalized almost complex structure.

Definition 5. A Courant algebroid (E 5 M, (), [-,-],a) is a real vector bundle 7: E — M
together with a non-degenerate symmetric C*° (M, R)-bilinear form (-,-): I'(M,E) x ['(M, E) —
C>(M,R), a bilinear mapping [-,-|: ['(M, E) x I'(M, E) — I'(M, E), called the Courant bracket,
and a homomorphism of vector bundles a: £ — TM, called the anchor map, over M covering the
identity on M, i.e., the following diagram

E—2>TM

ida

commutes. Moreover they fulfills

i) [e1, [e2, €3]] = [[er, e2], ea] + [e2, [en, €3]]

ii) a(ler,e2]) = [a(e1),alez)]

iii) [(,’1,f€-_3] = f[(’l,t"_z] = ((I,(f’l)f)e‘z

iv) a(ey)(ez,e3) = ([e1,€2], e3) + (ea, [e1, €3])

v) [e1,e1] = %a‘((l(el.q))
for all ey, ez, e3 € (M, E) and f € C*(M,R).

Remark. Note that the homomorphism a*: T*M — E of vector bundles if defined by the formula
(a*(€), e) = &(ale)), (1.45)

where ¢ € Q1(M,R) and e € T(M, E).

If the bracket [-,-] was skew-symmetric, then (L I M,[,],a) has a structure of a real Lie
algebroid; axiom v) indicates that the failure to be a Lie algebroid is measured by the inner
product, which itself is invariant under the adjoint action by axiom iv).

Lemma 4. Let (E = M, (-,-),[-,"],a) be a Courant algebroid, then we have a o a® =0.

Proof. From property v) we get [eq, ez] + [e2,e1] = a*(d(e1, e2)) for all e, e3 € T(M, E) I?‘urt}%er
together with property ii) we have [a(e1), a(e2)] + [a(e2),a(e1)] = (ao af‘)(d(el, e2)) which implies
that (a o a*)(d(e1,e2)) = 0. The last equation is equivalent to the relation (a o a*)(df) = 0 for all



Rl b e

Lie and Courant algebroids 18

f € C*(M,R). This is because of the nondegeneration of the bilinear pairing. Hence it follows
that aoa* = 0. 'Y

Definition 6. A Courant algebroid is called ezact when the following sequence

0-TM2EESTM -0 (1.46)

of vector bundles is an exact sequence.

Example. (standard Courant algebroid) A basic example is the so called standard Courant al-
gebroid. As a vector bundle E = TM & T*M, the anchor map is the projection on the first
component, the bilinear pairing is given by

1
(X +6Y +n) = 5(6Y) + (X)), (1.47)
while the Courant bracket is defined via
(X +6Y +1] = [X, Y]+ Lxn — ivde, (1.48)

where X,Y € X(M) and &7 € Q'(M,R). Moreover because a*(§) = 2¢ for ¢ € Q(M,R), we
obtain that E is an exact Courant algebroid.

Example. (twisted standard Courant algebroids) For any closed 3-form H € Q3(M,R), we define
a Courant algebroid Ey as follows. As a vector bundle Ey = TM @& T*M, the anchor map is the
projection on the first component, the bilinear pairing is given by

(X +6Y +0) = 2 (€(F) +7(X)), (1.49)

while the Courant bracket is defined via
(X +&Y +ng= [X,Y] +Lxn —iyd€ +ixiy H, (1.50)

where X, Y € X(M) and &,n € Q}(M,R). Anyway as in the previous case we have a*(§) = 2¢ for
¢ € QY(M,R), therefore obtain that Ey is an exact Courant algebroid.

In fact, it was proved by P. Severa that each exact Courant algebroid is isomorphic to above
example for any given closed 3-form H € Q3(M,R). Explicitly, the theorem says that the exact
Courant algebroids are classified by de Rham cohomology H3z (M, R).

Remark. So given Courant bracket is part of a hierarchy of brackets on sections of vector bundles
TM & APT*M for p € Ny, defined by the similar formula as for p =1

(X +0,Y+7]=[X,Y]|+LxT —iydo +ixiyF, (1.51)

where X,Y € (M), 0,7 € QP(M,R) and F € QP*%(M,R) is a closed (p + 2)-form.

Example. (Lie bialgebroids) Let (L — Af,[,"|r,ar; L* — M,[-,-]z-,ar-) be a Lie bialgebroid.
We define a Courant algebroid E by the following way. As a vector bundle E' = L& L*, the anchor
map is given by a = ay, + ar-. the bilinear pairing is defined through

(X +6Y +1) = 5(EY) +(X)) (152

and the Courant bracket via
(X +&Y +nl = (X,Y]p + LEY =iy di-X +[Enlee + Lk —dpdeg,  (1.53)

where XY € (M, L) and &,n € I'(M, L*). ) . .
In a special case when the Lie algebroid L is (TM — M, [-,-],idras) and the Lie algebroid L* is
(T*M — M, |, -]7-rr,ar-pr), where ap-pr = 0 and the Lie bracket is zero. Then this construction

gives on TM @ T*M a structure of the standard Courant algebroid.
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Example. (Lie algebras) Let (E — M, (-,-)o, [, ]Jo,@0) be a Courant algebroid and let g be a
Lie algebra with an ad-invariant non-degenerate symmetric bilinear form (-, -) ¢ and with the Lie
bracket [-,-]g. Then we define a structure of a Courant algebroid on the vector bundle E; =
Eo & (M x g) as follows. The anchor map is given by a = ag o prg,. Because I'(M, E;) ~
['(M, Ep) ® C*°(M, g) the Courant bracket is defined through

le1 + f1, €2 + fa] = [e1,e2]o + Lag(er) f2 — Lag(en) f1 + [f1, f2lg + ad{df1, f2)g, (1.54)

and the bilinear pairing by

(e1 + fi,ea + f2) = (€1, e2)0 + (f1, f2)g, (1.55)

where e1,e2 € I'(M, Eo) and fi, fo € C*°(M,g). The the bracket on sections T'(M, M x g) =~
C™>(M,g) is given by

[f1, falg (@) = [f1(2), fa(@)], (1.56)
and the bilinear paring by
(f1, f2)a(z) = (f1(2), f2(T)) g, (1.57)

where r € M.

1.5 Generalized complex structures

A generalized complex geometry was introduced by Nigel Hitchin [21] and further developed by
his students Marco Gualtieri [22], [20] and Gil Cavalcanti [23]. It contains complex and symplectic
geometry as its extremal special cases. Generalized complex structures give a wide class of complex
Lie algebroids.

Definition 7. Consider a Courant algebroid (F — M.(-,-),[",],a) then a maximal isotropic
subbundle L of E is called an almost Dirac structure. If L is involutive, i.e., sections of L are
closed under the Courant bracket, then an almost Dirac structure is said to be integrable or simply
a Dirac structure.

Example. The contangent bundle 7"M C TM & T*M is a Dirac structure for any H-twisted
standard Courant algebroid with H € Q2 (M, R).

Example. The tangent bundle TM C TM & T*M is an almost Dirac structure for any H-twisted
standard Courant algebroid and a Dirac structure only for standard Courant algebroid.

Remark. If L is a Dirac structure, then the restriction of the Courant bracket on sections of L
gives a structure of a Lie algebroid on the vector bundle L. This follows from the fact that L is a

maximal isotropic subbundle.

Definition 8. A generalized almost complex structure on a Courant algebroid £ is a vector
bundle automorphism J: E — E covering the identity on M such that J? = —idg and which is
orthogonal with respect to the inner product (pseudo-Euclidean structure).

Lemma 5. Let E be a Courant algebroid and J: E — E a vector bundle automorphism covering
the identity on M then the following conditions are equivalent:

i) J2 = —idg and J*T = idg, ie., (J(e1), T(e2)) = (e1,e2),

ii) J2 = —idg and J* = -J, ie., (J(e1),e2) +{e1,T(e2)) =0,
where e1,e, € I'(M, E).

Proof. Tt follows immediately from the definition of J*. L

As long as J is a generalized almost complex structure then we can extend J by linearity

~

on the complexification Ec of vector bundle E. Using the following isomorphism I'(M, Ec) ~
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I'(M, E) ® C we can write Jc(ey +iez) = Je(er) + 1 Jc(ez) for eq,ex € T'(M, E), moreover Jg is
an automorphism of the complex vector bundle E¢. Further on the complexification E¢ is given
a vector bundle morphism ~: Ec — Eg¢ by the relation e; +ie3 = e; —ieg for e1,e2 € T(M, E).
Note that this is an automorphism of the real vector bundle F¢ not the complex vector bundle.
Immediately it follows that (7)? = idg,.

Because J¢ is an automorphism of the complex vector bundle E¢, therefore there exists the
complex +i-eigenbundle L = ker(Jc — iidg.) of the automorphism Jc. On the other hand it
is quite easy to verify that L = ker(J¢ + iid E.). Further because L is the +i-eigenbundle and
L is the —i-eigenbundle, hence L N L = 0. Now if e, e, are two sections of L, then (e, es)c =
(Tc(er), Tc(e2))c = (iey,iea)c = —(e1,e2)c, therefore L is a complex almost Dirac structure of
the complex Courant algebroid Ec. Moreover we know that L& L = E¢ and furthermore from the
fact that L, L are isotropic complex subbundles and from whence that (-, )¢ is a nondegenerate
bilinear form it follows that L* ~ L.

In fact, we have proved the following lemma which provides an equivalent definition of a
generalized almost complex structure on a Courant algebroid.

Lemma 6. A generalized almost complex structure on a Courant algebroid E is equivalently
given by a complex almost Dirac structure L C Eg¢ such that LN L =0and L& L = E¢.

Remark. Similarly as in the complex geometry, a complex structure is an almost complex struc-
ture such that it satisfies some integrability condition. Therefore we define a generalized complex
structure as a generalized almost complex structure with some integrability condition.

Definition 9. A generalized complex structure on a Courant algebroid E is a generalized almost
complex structure J for which the complex +i-eigenbundle L C E¢ is a complex Dirac structure.

Accordingly as for a generalized almost complex structure there is an alternative definition of
a generalized complex structure expressed through +i-eigenbundle.

Lemma 7. A generalized complex structure on a Courant algebroid E is equivalently given by a
complex Dirac structure L C E¢ such that LN L =0and L& L ~ Ec.

The previous definitions are illustrated most clearly with two extremal cases of generalized
complex structures on H-twisted standard Courant algebroid TM & T"M.

Example. (complex structures) Consider the automorphism of TM & T*M defined by

—-J 0
»7]:(0 ,]*)‘

where J: TM — TM is a complex structure on M. Then we get J? = —ldrmer-m and J; =
—~J;. The +i-eigenbundle L = THOM & T+ M is integrable if and only if J is integrable and
HBO) _ .

Example. (symplectic structures) Consider the automorphism of TM & T™M given via

0 -w!
j“:(w 0 )’

where w € Q2(M,R) (w: TM — T*M) is a symplectic structure on M. Again, we have T =
—idrarer-ar and the +i-eigenbundle L = {X —iw(X); X € I'(M,TMc} is integrable if and only
if H =0 and dw = 0.



Chapter 2

Linear Lie algebroid connections

2.1 Linear Lie algebroid connections

In this section we introduce the notion of linear Lie algebroid connections, i.e., Lie algebroid
connections on real (complex) vector bundles. The more general definition of Lie algebroid con-
nections on fiber bundles will be presented in Chapter 3. It is a natural generalization of a linear
connection on vector bundles, since Lie algebroids can be understood as generalized tangent bun-
dles. Therefore it is possible to use similar constructions for linear Lie algebroid connections as
for linear connections.

Remark. We will use notation K for the field R of real or for the field C of complex numbers.

Definition 10. Let (L — M, [ ,:],a) be a real (complex) Lie algebroid and let £ — M be a

real (complex) vector bundle. We denote the space of sections of the vector bundle A*L* ® E for
k € No by Q5 (M, E) and sections will be called E-valued k-forms of L or k-forms of L with values

in E. A linear Lie algebroid connection or an L-connection on a vector bundle E is a K-linear
mapping

V: QY (M,E) — Q} (M, E) (2.1)

satisfying Leibniz rule V(fs) =dpf @ s + fVs for any f € C*°(M,K) and s € Q0 (M, E).
Remark. For any £ € X (M) we have a K-linear mapping V: QY (M, E) — QY (M, E) given by

Ves = i (Vs) (2.2)
for s € QY (M, E), called the covariant derivative along . Moreover it satisfies
Ve(fs) = (LEf)s + fVes (2.3)
and
Ve+6:5 = Ve 8 + Vi, 8, Vies = fVes (2.4)

for all f € C®(M,K), £,61,& € X1(M) and s € Q9 (M, E). Therefore a linear Lie algebroid
connection on a vector bundle E can be equivalently defined as a K-bilinear mapping

V: XL(M) x Q) (M,E) — Q) (M, E),
(& 8) — Ves (2.5)

* satisfying (2.3) and (2.4) for all € € X(M), f € C®(M,K) and s € Q% (M, E).

21
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Tensorial operations on vector bundles may be extended naturally to vector bundles with L-
connections. More precisely, if E; and E; are two vector bundles with L-connections VZ1 and V&2,
then F; ® E5 has naturally induced L-connection VZ1®F2 uniquely determined by the formula

VEE1®E2 (31 ® 8g) = VEElsl ®S2+851 @ VEE282 (2.6)

for all £ € Xp(M), s1 € Q2(M, E1) and s2 € QY (M, E3). If we are given a vector bundle E with
an L-connection VZ then the dual vector bundle E* has a natural L-connection VZ" defined by
the identity

L, s) = (VEt, s) + (£, VEs) (2.7)

for all £ € ¥.(M), s € QY (M,E) and t € QY (M, E*), where (-,-): Q) (M, E*) x Q) (M,E) —
C*°(M,K) is the natural pairing. In particular, any L-connection VE on a vector bundle E induces
an L-connection VE"4(E) on End(E) ~ E* ® E by the rule
(VBT = VE(T's) - T(VEs) = [VE, T)s (2.8)
for all £ € X, (M), T € Q%(M,End(E)) and s € Q% (M, E).
For any vector bundle E the graded vector space Q7 (M, E) is a graded Q7 (M )-module through
(a A w)(&lv .. €D+Q) p' ! Z Slcn (ga(l)a v 7£a(p))w(§a'(p+l)7' o 7€a(p+q))v (29)

where a € QF (M), w € Q) (M,E) and &1,...,&p4¢ € X1(M). The graded module homomorphisms
¢: Q3 (M, E) — QL(M, E) (so that ®(a Aw) = a A (—1)d&(®) dee@)d(w)) coincide with the
mappings u(A) for A € QF (M, End(E)) which are given by

(,U,(A)Cu‘) (fl, at £p+q p' I Z blgn 50’(1)7 & 95 fg(p)) w(ﬁa(p+1), & wris 7£a(p+q))’ (2.10)

where &1,...,€p4q € XL(M). Moreover, the graded vector space Q% (M,End(F)) has a natural
structure of a graded associative algebra via

@ ATYE - Epta) = ,,Zagn (@Eary- -+ Eotp) © TEotpanys - o)) (211)

and a natural structure of a graded Lie algebra through

[w, T](§1,- -1 €ptq) = s ,Zﬁlgn ) - [W(€oqys- - -+ Eom))s T(Eatpt1)s -+ + » Ealra)) ]y (2.12)

where w € QP (M,End(E)), 7 € Qf (M,End(E)) and &1, -, &p+q € X (M). Comparing these two
definitions we may write

7] = w A T (—1yleE)des) - p (2.13)
for w, 7 € Q} (M,End(E)).
Let V be an L-connection on a vector bundle E then the covariant exterior derivative
d¥: Q% (M, E) — Q3T (M, E) (215
is defined by

k

(%) (€0, E1, -+, &k) = 3 (—1) Vew(€os- -+ ir---26k)

i1=0

o Z (_1)i+jw([€'iy£j]1€05"-aéi’---,éj,-..,gk), (215)
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where w € Q% (M, E) and &, ...,& € XL(M).

Lemma 8. The covariant exterior derivative dV: Q% (M, E) — Q3™ (M, E) has the following
properties:
i) d¥(9% (M, E)) C Q5H(M, ),
it) d¥i00 M.y =V,
i) d¥(aAw) = draAw + (—1)%e@aq A d% for o € Q3 (M) and w € Q3 (M, E) (the graded
Leibniz rule),

iv) dvEnd(E) [w T] _ [dvEnd(E)
b

w, 7] + (—1)des(@) [w,dvEnd(E) 7| for w, 7 € Q} (M, End(E)).
Proof. Properties i) and ii) follows immediately from the definition.
iii) It suffices to investigate decomposable forms w = 3 ® s for 8 € QI (M) and s € Q) (M, E).
From the definition we obtain dV(3® s) = d B3 ® s + (—1)?8 A dVs. Afterwards for a € QF (M)
we have
dV(aA(B®s)) =dY((aAB)®s)=dr(aAB)®s+ (—1)PT(anB)Ad's
=(deaAB)®@s+ (-1)P(andLB) @s+ (—1)PT(anB)AdYs
=dian (B®s)+(=1)Parnd’(8® s).

iv) For decomposable forms w = a ® s, 7 = 3 ® t, where s,t € Q} (M,End(E)), a € QF (M) and
B € Qi(M), we have [a®s,3®t] = (a A B) ® [s,t]. Hence we can write

dVEnd(E) [a ® s, J @ t] _ dVEnd(E) ((a A ﬂ) ® [S,t])
—di(anB)® s, 1] + (=1 (aAB) AdY " [s, 1]
= (draAB)®@[s,t]+ (—1)P(aAdLB) ® [s,1]
+(=1)Pa A B AV s 8 + (1P A B) A s, dY ]
— dia®s, A0t +(-1)Pla®s,dLBRt] + (~1)Pland” 5,001
L (=1)PHa®s, BAdY ]
= @77 (0 ®s), 301 + (~1F[(a®s),dY (B&t)],
where we used that dV=""" [s,t] = [dV"""" s, ] + [s, dV™" 1] which follows from the classical
Jacobi identity for K-linear mappings on Q¢ (M, E), thus we are done. [ )

Lemma 9. Denote by A(E, L) the set of all L-connections on a vector bundle E. Then A(E, L)
is an affine space modeled on the vector space Qj (M,End(E)).

Proof. We first prove that A(E, L) is non-empty. Because on any vector bundle E there exists a
connection V: Q°(M, E) — Q(M, E), we may define an L-connection V: Q% (M,E) - Q1 (M,E)
by

Vs = Va(o)$

for £ € X, (M) and s € Q9 (M, E). The rest of the proof is very simple. We need to verify .that,
if V and V' are two L-connections, then (V' — V): Q) (M, E) — Q} (M, E) is & C>(M,K)-linear
mapping. But we have (V' —V)(fs) =d.f®s+ fV's— drf®s— fVs = f(V'—V)s hence there

exists a uniquely determined a € Q} (M, End(E)) such that V' -V = pla). ')
Remark. Thus, if we fix some Vp in A(E, L), we may write
A(E,L) = {Vo + p(a); a € QL (M,End(E))}. (2.16)

This description will permit us to define Sobolev completions of A(E,L).
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Definition 11. If we are given an L-connection V on a vector bundle E, then the curvature
RY € Q2 (M,End(E)) of the L-connection V is defined by the formula,

Rv(é: n)s = VeVys =V, Ves — Viens = [Ve, Viyls — Vien$) (2.17)

where £, € X(M) and s € Q3 (M, E).

Remark. An L-connection with zero curvature is called the flat L-connection. We will denote
the set of all flat L-connections on a vector bundle E by H(E, L).

Lemma 10. Let V be an L-connection on a vector bundle F, then
(dVodVYw = pu(RY)w (2.18)

for all w € Q8 (M, E).

Proof. First we verify that RY(£,n)s = (dV(dVs))(&,n). This is a consequence upon the following
computation

(d¥ (d%s)) (&, m) = Ve((dVs)(m)) — Vi ((d75)(€)) — (ds)([€, m])
= V5Vns = anﬁs = v[E,W]S
= RV(§7T))S

for all £, € X.(M) and s € Q% (M, E). Further it suffices to investigate only decomposable forms
w=a®s for a € Q% (M) and s € QY (M, E). Afterwards, we can write
(@ odV)(a®s)=dY(dra®s+ (~1)*a AdYs)
=04 (=D dpandYs + (1) draAdYs + (-1)%a A (dVodY)s
=aAu(RY)s
= w(RY) (a®s)
hence we have got dVodV = pu(RV) and this finishes the proof. [
Given an L-connection on a vector bundle E, the mapping V: Q9 (M, E) — Q} (M, E) can be
extended to the following sequence of first order differential operators

v
0 — QO(M, E) L QL (M, E) &5 ... 5 Q1 (M, E) — 0, (2.19)

where r = rk L. It is a differential complex if and only if the curvature RY of the L-connection V

is zero (V is a flat L-connection). o N
A natural question is when is this differential complex an elliptic complex? Let f € C*°(M,R)

then we may write
(ad(f)dV)w = d¥(fw) — fd*w =drf Aw + fd% — fd¥w = a(df) Aw
for any w € Qk (M, E) hence for the principal symbol o1(dV) we obtain
o1(d¥) (&) = a’(€x)A: (AL @ E)y — (AT L7 @ E);

for every z € M and &, € T:M, i.e., the symbol is the exterior multiplication by a*(€;). Therefore
we have the twisted Koszul complex

0 (A°L* @ E), S8 2B (AL g B) ——0, (2.20)

where 7 = rk L, which is an exact sequence, if and only if a*(€;) # 0. Thus, the differential
complex is elliptic if and only if the corresponding twisted Koszul complex is an exact sequence
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for any x € M and 0 # &, € T;M, in other words if and only if a*(¢,) # 0 for any z € M and
0#E& €T;M.

If L & TM is a real Lie algebroid, then the elipticity is equivalent to the requirement that
a*: T*M — L* is injective or that a: L — TM is surjective. For a complex Lie algebroid L -+ TM¢
it corresponds to the requirement that a* . : T*M — (TMc)* — L~ is injective. These are the
same conditions as for the ellipticity of the complex (1.40). We will call this condition the ellipticity
condition for a Lie algebroid.

Lemma 11. If V is an L-connection on a vector bundle F then we have

VEnd(E)

d RY =0. (2.21)

This is called the Bianchi identity for RV.
Proof. For any &1,€2,&3 € X, (M) we may write

@V P RY) (€1, 62, €5) = [Ve,, R¥(€2,€3)] — [Vea» R¥(61,63)] + [Vey, R¥(1, E2)]
— RY([&1,&), &) + RY([61, &3], &2) — RY([€2,63), 1)

=> (Ve [Ver» Vesl] = [Vers Viga ga1]) — > ([View 21> Vea] = Vites al,gal)

cykl cykl
== Z [VEL ) v[fzfs]] - Z [V[Eh&]’ Vﬁs]
cykl cykl
=),
where we used the classical Jacobi identity for commutators of K-linear mappings. '

Lemma 12. Consider two L-connections V,V’ on a vector bundle E. There is a uniquely
determined a € Q} (M,End(E)) such that V' — V = p(c). Then

RV =RV +d"V"""a+ana (2.22)

=RY+d"" o+ % (o, al. (2.23)

Proof. The proof is a straightforward computation only. We have

Rv’(g’ 77) = [Vé, V1/7] - v[’g,n]
= [Ve + o(€), Yy + ()] — (Vi) + ((&:7])
—= [VE, Vn] — V[{.TI] e [Vg, Q(TI)] - [Vn, a(E)] - a([gan]) e [a(ﬁ)aa(rlﬂ
= RY(&,n) + VE"Pa(n) - VP a(€) — (&, m]) + [ad€), ()]
= RY(E,n) + @V a) (&) + (@A) (€ n)
= RY(&,n) + (77 @) (6m) + e al(6m)

for all £&,n € X (M), so we are done. &

Therefore, if we fix some flat L-connection Vo € H(E, L), then, using the result of Lemma 12,

we may write

End(E)
54(E, L) = {Vo + p(e); a € 0} (M,End(E)), d¥°" "o +aha=0} (2.24)

This description, similarly like in the case of A(E, L), will allow us to define Sobolev completions
of H(E,L).
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2.2 Group of gauge transformations

Let E 5 M be a real (complex) vector bundle, then a vector bundle homomorphism is a smooth
mapping ¢: E — FE such that there exists mapping p: M — M, the diagram

7

E E

M M

commutes and and for each x € M the mapping ¢, = ¢|g, : Ez — E,(;) is K-linear. Because
n: E — M is a fibered manifold and ¢ o 7 is smooth, we get that ¢ is smooth. If we denote
by Aut(E) the group of vector bundle automorphism ¢: E — E then the previous diagram
commutes for a uniquely determined diffeomorphism ¢: M — M. Therefore we have a group
homomorphism from Aut(E) into the group Diff(M) of all diffeomorphism of M. The kernel
Gau(FE) of this homomorphism is called the group of gauge transformations and its elements are
called gauge transformations. Thus Gau(F) is the group of all vector bundle automorphisms
p: F — FE satisfying m o ¢ = w. Hence we have the following exact sequence

{e} — Gau(F) — Aut(E) — Diff (M) (2.25)

of groups.
Furthermore we define the Lie algebra of gauge transformations gau(E). As a vector space it
is QY (M,End(E)), while the Lie bracket is given by

[l =mov2—v2om (2.26)

for 1,72 € Q4 (M,End(E)).

The group of gauge transformations Gau(E) has a left action on the space Qf (M, End(FE))
given by

(Adw(w))(ély SRoHs 16/&:) =4 Ow(glv ke 75/6) o 99_‘1) (227)

where ¢ € Gau(E), w € Q¥ (M,End(E)) and &,,...,& € XL(M). Further this gives a left action
of the Lie algebra of gauge transformations gau(E) on Qk (M, End(E)) via

ad, () = [r.] (2.28)

for v € gau(E) and w € Q% (M,End(E)). So we have got representations of Gau(F) and gau(E)
on the graded vector space Q% (M,End(E)).

Remark. Furthermore there is a left action of the group Aut(E) on the space of sections I'(M, E)
defined by

Lp-s:cposog_l, (2:29)

where ¢ € Aut(E) and s € I'(M, E).

2.3 Change of connections

Let (L — M,[-,-],a) be a real (complex) Lie algebroid and £ — M be a real (complex) vector
bundle. Further consider a gauge transformation ¢ and an L-connection V on E. We define a
K-bilinear mapping V¥: X1 (M) x Q9 (M, E) — Q) (M, E) by

Vs = p(Ve(#™H(s)) (2.30)
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for any £ € X1 (M) and s € Q) (M, E). Since we may write
VE(fs) = o(Ve(e ™1 (f5))) = o(Ve(Fo™'(5)))
= o((LENP™(s) + V(0™ (5)))
= (LEf)s + fo(Ve(p™(s)))
(LEF)s+ FVEs

and moreover we have
Vies = o(Vie(w™(5)) = o(fVe(9™(s))) = fo(Ve(p™'(s))) = FV¢s

for all € € X (M), f € C®°(M,K) and s € QF (M, E), therefore V¥ is an L-connection on E.
As V¥ is an L-connection, we can define a natural left action of Gau(FE) on the space A(E, L)
of L-connections by

(0, V) > -V = V®. (2.31)

It is easy to see that this really defines a left action.
Remark. It would be possible to define a right action instead of a left action by

1

(V,p) » V.- o=V* . (2.32)
This reverse the role of ¢ and ¢! in (2.31), but makes no difference in the end.
Lemma 13. Let V be an L-connection on E. Then we have
RY" = Ad,(RY) (2.33)
for any gauge transformation ¢ € Gau(E).
Proof. It follows immediately that
R¥(Em) = V¢, Vi1 = Vig
=0 [Ve, Vylop
=poRY(En) oy
for all £,n € X (M). )

Because H(E, L) is invariant under the action of Gau(E), as it follows from Lemma 13, we
have the action of Gau(E) on the space of flat L-connections H(E, L). Therefore we define the

moduli space

-1 -]

— 8 Vig, | 50

B(E, L) = AE, L) [Gau(E) (2.34)
of gauge equivalence classes of L-connections and the moduli space
M(E, L) = H(E, L)/Gau(E (2.35)

of gauge equivalence classes of flat L-connections.

Now we take up the question of reducible connections. Given an L-connection V € A(E, L)
then the isotropy subgroup or the stabilizer of V is the subgroup Gau(E)y of Gau(E) that leaves

V fixed, i.e.,
Gau(E)v = {¢ € Gau(E); ¢ -V =V} (2.36)

Every such group contains the subgroup K*-idg.
Definition 12. An L-connection V on a vector bundle E is called irreducible or simple, if
Gau(E)y = K*idg, otherwise V is called reducible. We denote the set of irreducible L-connections

by A*(E, L) and the set of irreducible flat L-connections by H*(E, L).
Lemma 14. Let V be an L-connection on a vector bundle E over a compact manifold M. Then

the following are equivalent:
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i) Gau(E)y =K*-idg,
ii) ker VERd(E) — K .idg,
iii) ker VE“d(E)mg(M,End(E))O = {0}.

Proof. Consider a gauge transformation ¢ € Gau(F). Then the requirement -V = V means that
for any £ € X (M) we have ¢ o Ve 0 ™! = V¢ and this is equivalent to [V, ¢] = 0. Therefore we
have got that ¢ € Gau(E)y if and only if VE4E), = 0 and ¢ € Gau(E).

Suppose that ¢ € Gau(E)y then VEr(E)y =  and, provided that ker VEM(E) = K . idg, we
obtain ¢ = ¢-idg for some ¢ € K*. Hence we get Gau(E)y C K*-idg and because the converse
inclusion is trivial, we have proved ii) = i).

To prove the opposite implication, we use the compactness of the manifold M. Assume that
¢ € ker VEr(E)  Because M is compact, there exists ¢ € K (with |c| sufficiently large) so that
c-idg + ¢ € Gau(E). Moreover, VE"E)(¢.idg + ¢) = 0 and from the previous consideration, it
follows c-idg +¢ € Gau(E)y. Besides, if we suppose Gau(E)y = K*-idg, we obtain ker VEr(E)
K -idg. The converse inclusion is trivial.

The equivalence of ii) and iii) immediately follows form the definition of QY (M, End(E))", so
this finishes the proof. ®

From the fact that Gau(E)vs = ¢ - Gau(E)y - ¢! for all p € Gau(FE) and V € A(E, L), we
obtain that A*(E, L) is invariant under the action of Gau(E) and the same for H*(E, L). Thus we
can define, similarly as in (2.34) and (2.35), the moduli space

BYE, L) = ATE, L) /Gay(E) (2.37)
of gauge equivalence classes of irreducible L-connections and the moduli space
MY(E, L) = 7(E, L) [qau(E) (2.38)

of gauge equivalence classes of irreducible flat L-connections.
Because K* - id g is a normal subgroup of Gau(E), we define the reduced group of gauge trans-

formations Gau(E)" by
Gau(E)" = Gau(E) /= . iq,.. (2.39)

Then the left action of Gau(E) on A(E, L) factors trough an action of the reduced group of gauge
transformations Gau(E)" since the group K* -idg acts trivially on A(E, L), similarly for H(E, L).
Therefore for the moduli spaces (2.34), (2.35) of L-connections we may write

B(E,L) = AE, L)/Gau(E)r and  M(E,L) = H(E D) /Gau(E)r (2.40)
and similarly for the moduli spaces (2.37), (2.38) of irreducible L-connections we have
B*(E, L) = A(E, L)/Gau(E)r and  MY(E,L)=HI(E, L)/Gau(E)r' (2.41)

The set A*(E, L) of all irreducible L-connections is the maximal subset of A(E, L) on which the
reduced group of gauge transformations Gau(E)" acts freely, likewise for H*(E, L).

If we are given a gauge transformation ¢ € Gau(E) and an L-connection V on a vector bundle
E, then for the changed L-connection V¥ we have

5 End(E - ¢
VEPIVE+@OV§:1)(1(E)@ 1:v£¥v£n( )(Poﬂﬂ 1’ (242)

where ¢ € X (M). The last equality follows by differentiating the identity ¢ o ap*llz idg. More

2 X ,
generally, if we fix some L-connection V and express another L-connection V' as V' =V + p(a),
then

Vi = Vet oo Ve PpT Hpoal§)ep (2.43)
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hence, writing V'Y = V + u(a¥), we obtain

af(€) = 0o Vi P 1 4 poa(€) op! (2.44)

for ¢ € X, (M). This can be rewritten as
af = AVERE) o=l L A () (2.45)
= —YErdB) 5 A 1 4 Ad,(a) (2.46)

for ¢ € Gau(E).

2.4 Sobolev spaces and elliptic operators

In this section we introduce Lebesgue and Sobolev spaces on manifolds which are an important
framework for the construction of moduli spaces of Lie algebroid connections on fiber bundles (in
particular vector bundles and principal fiber bundles). More details can be found in [34] and [35].

Let (M,g) be a Riemannian manifold and 7: £ — M be a real (complex) vector bundle
endowed with an Euclidean (Hermitian) metric h. The metric g determines the density vol(g) of
the Riemannian metric g, even vol(g) induces a (regular) Borel measure i, on M.

Definition 13. Let p € (1, +00), then an LP-section of E > M is a Borel measurable mapping
¥: M — E,ie., ¥ 1(U) is Borel measurable for any open subset U C E, such that
i) moy =idpy,
ii) the function z — |¢(x)| = |h(1(x),¥(x))|P is integrable with respect to the Borel measure
lg, i.e., belongs to LP(M,R).
We denote by LP(M, E) the vector space of equivalence classes of LP-sections with respect to the
equality almost everywhere. With regard to the norm defined by

il =/ (@) (2.47)

is LP(M, E) a Banach space for any p € (1, +00).
Denote now by V9 the Levi-Civita connection of g and by V" a connection compatible with
h. Further for each j € N we define V7 as the composition

gT*MRE VT*M®(1"”®E

(M, E) Y5 (M, T*M ® E) I(M,T"M® ® E), (2.48)

where VT™M®*®E for k € Nj denotes the connection on T*M®* ® E induced by V¥ and i
The metrics ¢ and h induce metrics on each of the vector bundle 7™M ®J @ E, hence we can

define the spaces LP(M,T*M®’ @ E).

Definition 14. Let u € LP(M, E) and v € LP(M,T*M®) @ E), then we say that V/u = v weakly

if

/ (v, ) dug = / (u, (V7)) dug (2.49)
JM M

for all ¢ € [o(M,T*M® ® E), ie., sections with compact support, where (V7)* is the formal

adjoint of V7. |
For p € (1,400) and k € Ny we define the Sobolev space Lk"’.(M_, E) as the space of sections
\ € LP(M, E) such that there exists 1; € LP(M,T*M® ® E) satisfying V/1) = 1; weakly for all

j =1,2,...,k. This is a Banach space with respect to the norm
k _ 5
[[#llk.p = <Z||vw||g) :
Jj=0

(2.50)
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where V9% = 1. The Banach spaces LFP(M, E) are called the Sobolev spaces of sections.

The spaces L¥P(M, E) are separable, and for p > 1 they are reflexive. For p = 2 the spaces
L¥2(M, E) are Hilbert spaces with the following scalar product

k
(b, )k = (V7%, V) dpsg. (2.51)
; ;}/M p) du

In the special case p = 2 we will write I'(M, E)y, instead of L*?(M, E).

Denote by C™(M, E) for r € Ny the vector space of C"-sections of a vector bundle £ — M. If
M is a compact manifold then C"(M, E) with the norm defined by

[[llr = ) max|V/y| (2.52)
=0

is a Banach space.

Remark. The Sobolev spaces L¥?(M, E) depend on several choices: the metrics on TM and E
and the connection on E. When M is non-compact this dependence is very dramatic and has to
be seriously taken into consideration.

Theorem 3. Let (M,g) be a compact Riemannian manifold of dimension n and E — M be
a real (complex) vector bundle over M equipped with an Euclidean (Hermitian) metric h and a
compatible connection V" on E.
(i) The Sobolev space L¥?(M, E) does not depend on the metrics g, k and on the connection V*.
More precisely, if ¢’ is a different Riemannian metric on M and V*' is another connection

on F compatible with some metric i’ then
L*P(M, E; g,h, V") = LEP(M, E; o' B, V") (2.53)

as sets of equivalence classes of sections and the identity mapping between these two Banach
spaces is continuous.

(ii) If 1 < p < +o00, then T'(M, E) is dense in L*P(M, E).

(iii) (Sobolev embedding theorem) If ko — 2= > k1 — - and ko > k) then

LkoPo(M E) C L¥P (M, E) (2.54)

and the embedding is continuous. Moreover if kg — p% >k — p% and ko > k; then the

embedding L*o-Po (M, E) — L*¥1P1(M, E) is compact.
(iv) (Lemma of Rellich) If k — % > r then

L¥?(M,E) Cc C"(M,E) (2.55)

and the embedding is continuous. In case we have strict inequality then the embedding is
compact. In particular, if one has ¢ € LEP(M, E) for some fixed p and all k > ko, then

p e '(M,E).
Remark. Therefore we have the following sequence of compact embeddings
T(M,E)C ... LF*(M,E) = ...« L"*(M, E) — L**(M, E) = L*(M, E) (2.56)

and moreover from Rellich’s lemma it follows that

T(M,E) = (] L**(M, E) (2.57)
k=0
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for all p € (1, +00).

Theorem 4. (Sobolev multiplication theorem) Let Ey, E2, F be K-vector bundles over a. compact
manifold M of dimension n and

m: T(M, E\) x (M, Ey) — (M, F) (2.58)
be a C°°(M,K)-bilinear mapping then m extends to a continuous mapping
(i)
m: L*P\ (M, E)) ® L**P2(M, Ey) — L*P(M, F) (2.59)
provided that p1,pe # 1, k1, ko >k, p1 - k1, pa- ko <n and ky — pﬁl + ko — pﬁ >k — %,
(if)
m: L*P(M, E1) ® L**7 (M, Ey) — L¥"? (M, F) (2.60)
if p’ - k' >n, k >k and k—22k - S forp#1(ork—n>Fk - o in the case p = 1),
(iii)
m: L*?(M, Ey) ® L*P(M, Ey) — L*P(M, F) (2.61)
ifp-k>n.

Theorem 5. (Left composition lemma) Let E, Fy, F; be K-vector bundles over a compact manifold
M of dimension n and f: F; — F5 a homomorphism of K-vector bundles covering the identity on
M, ie., f e (M, Hom(Fy, F3)). Then f defines a mapping

f«: T(M,Hom(E, F1)) — I'(M,Hom(E, F3)) (2.62)
given by
felg) =Ffop (2.63)
which extends to a differentiable mapping of Banach spaces

f.: LFP(M, Hom(E, Fy)) — L*P(M,Hom(E, F»)) (2.64)

provided that p- k > n.

Theorem 6. Let F,F be K-vector bundles over a compact manifold M and P: I'(M,E) —
[(M, F) be a K-linear differential operator of order ¢. Then P extends to a continuous K-linear

mapping

Py: LF?(M,E) — L¥=%P(M, E) (2.65)

for k > ¢.

Theorem 7. (Elliptic regularity) Consider a K-vector bundles E, " over a compact manifold
M. Let P:T'(M,E) — I'(M,F) be an elliptic K-linear differential operator of degree ¢. If for
¥ € T(M, E)i, one has Pyyy € T(M, E)x_e41 then ¥ € I'(M, E)g4+1. Therefore P,y € I'(M, E)
implies 1 € ['(M, E) by the Lemma of Rellich, and in particular we have ker Ly = ker L.

Next we consider a sequence of differential operators

D¢

0 — T(M, Eo) 25 T(M, E1) 2 , T(M, Ey) — 0, (2.66)

where E, are K-vector bundles over a compact manifold M, and D; are K-linear differential
operators of degree r;. Let us assume that this sequence is an elliptic complez, i.e., DioD;_1 =0
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fori=1,2,..., -1 and for all z € M and 0 # &, € T:M the associated sequence of principal
symbols

7(Do)(éz) o(D1) (e Dr_1)(Es
0 (Bp)y 20, gy, HOWGa), | oD e), vy,

0, (2.67)

is an exact sequence.

Denote the cohomology of this elliptic compex by H*(E,, D,) for i = 0,1,...,¢. Endow each
E; with an Euclidean (Hermitian) metric h; and a compatible connection V*:. Furthermore let g
be a Riemannian metric on M. Then we define the formal selfadjoint elliptic operators

Ai = D:‘ o D/L' =+ Di——l o D;—l . P(M, EL) =¥ F(M, El) (268)

of degree max{2r;_;,2r;} for i =0,1,...,¢, where D} is a formal adjoint of D; and D_y, D, are
zero operators. Because A; is an elliptic operator, the i-th vector space of harmonic sections

H'(E., Do) = {¢ € (M, E;); Aitp = 0} = ker D; Nker D}_; (2.69)

of the elliptic complex (2.66) is finite dimensional for : = 0,1,...,¢.

Theorem 8. Let H,: I'(M, E;) — H'(E,, D,) for i = 0,1,...,¢ be L2-orthogonal projections.
i) There exist unique continuous linear operators G;: I'(M, E;) — I'(M, E;) for i = 0,1,...,¢
satisfying

idrve) = Hi+ 840Gy = Hi + G0 Ay (2.70)
and the following commutation relation
H;0Gi=G;oH;, D;oGi=Giy10D;, DjoGit1=G;oDj. (2.71)

Moreover G; is a pseudo-differential operator of degree min{—2r;_, —2r;}, called the Green

operator associated to A;.
ii) There are L?-orthogonal decompositions

T(M, E;) = H'(E,, Do) ® im(D;—1 0 D}_; 0 G;) ®im(D} o D; 0 Gy), (2.72)
= H'(E,, Do) ®im(G;0oDi_y 0 Dj_,) ® im(G; ® D} o D;), (2.73)

= H'(E., Do) @ im D;_; & im D}, (2.74)

= ker D; & im D}, (2.75)

=im D;_1 ® ker D;, (2.76)

ker D; = H(E., Do) ®im D;_1, (2.77)
ker D} = H'*Y(E,, D.) ®im D}, (2.78)

of I'(M, E;) into the closed subspaces.
iii) There are natural isomorphisms

H'(E,, Do) ~ H'(E., D,) (2.79)
between the i-th vector space of harmonic sections and the i-th cohomology group for any

i =0,1,...,¢ Furthermore we have dim H*(Es, De) < 00.
iv) We have decompositions

W = Hip + (Di—y 0 Dj_y 0 Gi) + (Dj o Di 0 Gi)¥, (2.80)
— Hypp + (Gio Dimy o DIy )¢+ (Gio Df o D)y (2.81)

of ¥ € T(M, E;) called the Hodge decompositions of .
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All operators extend to continuous linear mappings between appropriate Sobolev completions
I'(M, E;), ie.,

Dig: T(M,E)r — (M, Eiy1)k—r,, Diy: D(M,E)x —» T(M,E;_1)k—r,, (2.82)

Aig: T(M,Ey)g — T(M, E;)g—s,, Gik: T(M, E)x — T(M, E)i4s,, (2.83)
where s; is the order of the differential operator A;. Moreover

ker A; = ker A; = H*(E,, D,) (2.84)

by elliptic regularity. All statements in Theorem 8 remain true in we replace the spaces by the
correct Sobolev completions, e.g. there are L%-orthogonal (not L2-orthogonal) decompositions

F(M, Ez‘)k: = H%E., D.) @ im Di—l,k+7‘i71 @ im D;(,k,-%-'r‘i? (285)
= ker Dy & im D} ., (2.86)
= i Di—l,k+ri,1 @ ker D;k: (287)

of I'(M, E;)y into closed subspaces.

2.5 Moduli spaces

Moduli spaces arise naturally in classification problems in geometry. Typically, one has a set whose
elements represent algebro-geometric objects of some fixed kind and an equivalence relation on
this set saying when two such objects are the same in some sense, and the problem is to describe
the set of equivalence classes. One would like to give the set of equivalence classes some structure
of a geometric space (usually of a smooth manifold, a scheme or an algebraic stack). If it can be
done then one can parametrize such objects by introducing coordinates on the resulting space.

The word moduli is due to B. Riemann, who used it as a synonym for parameters when he
showed that the space of equivalence classes of Riemann surfaces of a given genus g (for g > 1)
depends on 3g — 3 complex numbers. Moduli spaces were first understood as spaces of parameters
rather than as spaces of objects.

The moduli spaces (2.34), (2.35), (2.37) and (2.38) introduced in the previous section were only
sets of gauge equivalence classes of L-connections. In this part we define a geometric structure on
these sets.

From now on we will assume that M is a connected compact manifold. To endow the sets of
gauge equivalence classes of L-connections with some geometric structure it is most convenient,
and standard practise, to work in the framework of Sobolev spaces.

Let (L — M,[-,],a) be a real (complex) Lie algebroid satisfying the ellipticity condition and
let E — M be a real (complex) vector bundle. Further consider a Riemannian metric g on M and
denote by hg, hy an Euclidean (Hermitian) metric on E, L respectively. These metrics induce
natural metrics on £*, End(E) ~ E* Q F, A*L* @ End(FE) and others. The metric g on M defines
the density vol(g) of the Riemannian metric and even induces a (regular) Borel measure p, on M.
Therefore we can construct appropriate Sobolev completions defined in the previous section. The
Hilbert spaces Lu(lu. A*L* @ End(E)) will be denoted by Q’Z(M, End(E)),. ‘ .

Furthermore note that the metric on End(E) ~ E* ® E induced by the metric hg on E is

given by
TR A a(fyo 53) (2.88)

for fy, f2 € Q9 (M,End(E)), where = denotes the adjoint with respect to hg. If we define the
space Q9 (M, End(FE))° of traceless endomorphisms by

00 (M, End(E))° = {7 € (M End(E)); [ tr(f)diag =0}, (2.89)

M
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then obviously we obtain
Q) (M,End(E)) = Q% (M,End(E))° ® K - idg (2.90)

and the decomposition is L2-orthogonal with respect to (2.88). The orthogonal projection p, of
Q9 (M,End(E)) onto QY (M, End(E))° is given by the following formula

w() =1 = i (] w0 ) 1, (2.91)

where n = rk £ and vol(M) is the volume of the manifold M.

For ¢ > %—dim M and a fixed L-connection Vy in A(FE, L), we define Sobolev completions
A(E, L), of the space of L-connections, using (2.16), as

A(E,L)e = {Vo+ a; a € QL (M,End(E)),}. (2.92)

Further a mapping x: A(E, L), — Q} (M,End(E)), defined by x(Vo + a) = « is a bijection and
therefore gives the set A(E, L), a structure of a Hilbert manifold whose tangent space at V is

TvA(E, L)y = Q} (M,End(E)),. (2.93)

Sobolev completions of the group of gauge transformations Gau(E) take a bit more work since
it can not be identified with the space of sections of any vector bundle, nevertheless Gau(E) C
Q% (M,End(E)). In case ¢ > % dim M, the Sobolev space Q9 (M, End(E))s+1 consists of continuous
sections! and, using the Sobolev multiplication theorem, we obtain that the product ¢ -9 = po)
in Q%(Af ,End(FE)) can be extended to a continuous bilinear mapping

00 (M, End(E))es1 x Q9 (M, End(E))e41 — Q9 (M, End(E))e41. (2.94)

Therefore there exists a positive constat ¢ such that [|¢ - ¥||e41 < c||@]|e+1]|¥||e41 for all ¢, €
Q% (M,End(E))¢;1. Now if we take a new equivalent norm given by || - |[;,; = ¢|[ - [[e+1, then
the Banach space QY (M,End(E))¢s1 is a Banach algebra with unit idg. Because the set of
invertible elements is an open subset in Q¢ (M, End(E))¢41 and forms a topological group under
multiplication, we define Gau(E)¢y1 by

Gau(E)es1 = {¢ € QO (M,End(E))es1; 3% € Q2 (M,End(E))e1, ¢ ¥ =% - ¢ =1idg}. (2.95)

Since Gau(E)¢4 is an open subset in the Hilbert space Q9 (M,End(E))e+1, tbus GaU(Ej)g+1 is.a
Hilbert manifold. In fact, one can easy show that Gau(E)¢4; is a Hilbert-Lie group with a Lie

algebra
gau(E) ey = Q7 (M, End(E))e41, (2.96)

where the Lie bracket is given by

Vvl =72 — Y2 m (2.97)

for all v1,v2 € Q0 (M,End(E))es1- :
The multiplication on the graded vector space Q7 (M, End(E)) defined by (2.11) extends, using

the Sobolev multiplication theorem, to a continuous bilinear mapping on the graded Hilbert space
Q7 (M,End(E))x in the range k > 1 dim M. With this bilinear mapping

QP (M,End(E))x x Q7 (M,End(E))x — QP*Y(M,End(E))x,
(p,¥) @Y, (2.98)

!Note that this is still true for £+ 1 > %dim M.
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Q3 (M,End(E)) is a graded associative algebra.
Using the formula (2.43), we extend the action of Gau(E) on A(E, L) to an action of Gau(E )41
on A(E, L), via

- V=¢p-(Vot+ta)=Vo+p- - (dp ) +p-a ¢!, (2.99)

where a € Q} (M,End(E))e, dvo: Q9 (M,End(E)) g1 — O} (M,End(E)), is a continuous exten-
sion of the linear operator dV° defined on QY (M, End(E)) and the multiplication - is an extension of
(2.11) to a continuous bilinear mapping Q% (M, End(E))s+1 x QL (M, End(E)), — Q} (M, End(E)),
eventually Q9 (M,End(E)), x Q} (M,End(E))esy — Q) (M,End(E)), in the range ¢ > 3 dim M.
Moreover in this range Q1 (M, End(E)), is a topological Q9 (M, End(E))+1-bimodule.

It is easy to see that this action is a smooth mapping of Hilbert manifolds and that, if V =
Vo +a € A(E, L), is fixed, the mapping of Gau(E)e+1 to A(E, L), given by ¢ + -V has a
tangent mapping at idg equal to

—dV: Q% (M,End(E))es1 — Q5 (M, End(E))e, (2.100)
where dV is defined through
dVy = dVoy + [a, 7] (2.101)
and [-,-]: QL (M,End(E))e x Q2 (M,End(E))e1 — Q (M, EDd(E))z is a continuous extension of
(2.12) by Sobolev multlphcatlon theorem in the range 8 > = d1m M.
Furthermore the curvature of an L-connection V = Vo +a € A(E, L), is defined, using (2.23),
by
RY = RVota — RVo 4 gVoq 4 % [, al, (2.102)

where a € Q1 (M,End(E)),, d¥°: Q}(M,End(E)), — Q7 (M, End(E))-1 is a continuous exten-
sion of the lmedr operator d¥° deﬁned on Q} (M,End(E)) and the bracket [-, ] is an extension of
(2.12) to a contmuous bilinear mapping QL(M End(E)) x Q1 (M,End(E)); — Q} (M, End(E))e

in the range ¢ > £ dim M. -
It is easy to see that F: A(E,L)¢ — 93 (M,End(E))e-1, defined by F(V) = RY, is a smooth

mapping of Hilbert manifolds, and the tangent mapping

T F: QL (M,End(E))e — Q3 (M,End(E))e-1

Is given by

(To F)(y) = A"y + [o,7] = ™, (2.103)

whore V = Vg + a and v € QL (M, End(E))e-

Remark. For ¢ > dxm M we denote by H(E,L)e the space of flat Sobole.v L-connections.
Because F': A(E, L)p — Q% (M,End(E))e-1 18 a continuous mapping, H(E, L), is a closed subset
in A(E, L)s. Moreover, if we fix some flat L-connection Vo € H(FE, L), then

50(E, L)e = {Vo + a; a € O} (M, End(E))e, 470+ 3 ! Ja,a] = 0}, (2.104)

Furthermore. we need to show that H(E, L), is invariant under the action of the group of gauge

transformations Gau(E)e41.
Lemma 15. Let V = Vo + a € A(E, L)¢ be an L-connection then we have

RV’ = Ad,(RY), (2.105)
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where Ad: Gau(E)e+.1 x Q2 (M,End(E))p—; — Q7 (M,End(E)),1 is a continuous extension of
(2.27) to the appropriate Sobolev spaces using the Sobolev multiplication theorem.

Proof. If V.= Vo +a € A(E, L), then RY = RVo + dVoq + a - . Consider ¢ € Gau(E)¢4+1 then
we have ¢ -V =V + ¢ (dVop™ ) + ¢ a- ¢!, Therefore we can write

RV = RY° +d%(p- (70 ) +p-a-p7h)
(@ (@™ ) +o-a-o™) (o (@0 ) 4o a- o)
= B +(d%9) - (d%™) + o (470 0 d70)p™) + () - - 7!
+¢-(d7°a) o7 —pra- (@707 + (p- (d70p7Y) - (- (A0 7))
+(@ (d7 ™)) (pa- o)+ (pra ) (0 (@79 ) + (9ol (pra )
=RV + (dV°9p) - (@™ ) + ¢ [RY°, 7] + (d7°9) - &~ ™
+-(dV0a) o7 —p a- (dV0ph) — (dV0p) - (dV0p!)
+<p-a-(dv°<p‘l)—(dvow)'a'SO—lJr‘SD‘a'a"P“l

:QO‘RVO'(,Q_I“"‘(p'(dV()a)'(p-1+(p'a'a'(p—1

:SORVQP,

where we used the fact that ¢ - (dVop™1) = —(dV°y) - ¢! and that (dV° 0 dV0)p = [RV0 ©]. &
¥ ¥

Analogously to the smooth case we define the notion of irreducibility of Sobolev L-connection.
A stabilizer Gau(E)yY, ; of any Sobolev L-connection contains the subgroup K*-idg of Gau(E)ey ;.
In case Gau(E)y,, = K*- idg, we will say that the connections V is irreducible; otherwise, V is
reducible. We can prove the following characterization of irreducibility.

Lemma 16. Let V € A(FE, L); be a Sobolev L-connection. Then the following are equivalent:
i) Gau(E)fv+l =K* idg,

ii) kerd¥Y = K- idg,

iii) ker d¥ o0 (arEnacene, , = {0}
Proof. The proof goes along the similar line as in Lemma 14. Let V = Vj + «a be an L-connection
and consider a gauge transformation ¢ € Gau(E)e41. Note that the condition ¢ - V = V means
that —dYop - o=l + v -a-p~! = . If we multiply this equation by ¢ from the right, we obtain
dVop + [a, ¢] = 0 and using (2.101) we have dVyp = 0. Therefore ¢ € Gau(E)eVH if and only if
Vo =0 and ¢ € Gau(E) 4.

Suppose that ¢ € Gau(E)ev+1 then d¥p = 0 and, provided that kerdV = K -idg, we obtain
© = ¢-idg for some ¢ € K*. Thus we get Ga,u(E)XLl ¢ K*-idg and because the converse inclusion
is trivial, we have proved ii) = i).

Now assume that ¢ € kerdV. Because 9 (M,End(E))¢41 with the norm [[ - |[;,, is a Banach
algebra with unit idg, for ¢ € K such that |¢] > ||¢[[;,; we obtain ¢-idg + ¢ € Gau(E)e41.
Furthermore d¥(c - idg + ) = 0 hence, from the previous consideration, we have ¢-idg + ¢ €
Gau(E)Y, . Moreover if we suppose Gau(E)),, = K* -idg, we obtain ker dV C K-idg. Converse
inclusion is trivial, so we have proved the converse inclusion.

The equivalence of ii) and iii) immediately follows form the definition of Q9 (M,End(E))Y, ;,
S0 we are done. o

We will denote by A*(E, L), the subset of A(E, L), consisting of irreducible L—Canections and
similarly by H*(E, L) the subset of H(E, L), containing irredu(.:xf.)l‘e flat L—connect}ons.. I't follpws
from the fact Gau( E)y:l = - Gau( E)EVH .~ ! that the irr'educ1.b1hty of L-connection is mvar'lant
under gauge transformations. In addition to H(E, L), is invariant under gauge transformations

as well. .
In analogy with (2.34), (2.35), (2.37) and (2.38) we define the moduli space

B(E,L)eZA(E,L),,/G%(E)M and M(E,L)e:ﬂ‘C(E,L)e/Gau(E)gH (2.106)
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of L-connections and flat L-connections on E and similarly the moduli space

BYE, L), = AY(E, L)e/Gau(E)py, and  MX(E, L), = H(E, L)e/gau(E) (2.107)

£+1

of irreducible L-connections and irreducible flat L-connections on E. Each of these is assumed to
have the quotient topology and in the next we shall show that B E, L), is open in B(E, L), and
that M*(E, L), is open in M(E, L),. Furthermore we will denote by

pe: A(E,L)e — B(E, L), (2.108)
possibly by
pe: ANE, L), — BE, L), (2.109)

the canonical projection.

For a € Q] (M,End(FE)) the zero order operator ad(a)*: Q} (M,End(E)) — Q9 (M, End(E)),
defined as a formal adjoint of ad(a): QF (M, End(E)) — Q} (M,End(FE)), ad(a)(y) = [a, 7], with
respect to the Hermitian metric on End(E) given by (f1, f2) — tr(f1 o f5), yields a mapping

Q1 (M,End(E)) x Q} (M,End(E)) — Q% (M,End(E)),
(o, B) = ad(a)™(8), (2.110)
which is C*° (M, K)-sesquilinear in the first component and C*° (M, K)-linear in the second compo-

nent. This mapping can be extend by Sobolev multiplication theorem to a continuous sesquilinear-
linear mapping

Qb (M,End(E))¢ x Q' (M,End(E)), — Q} (M,End(E)),

hence the mapping ad(a)*: Q} (M, End(E)), — Q9 (M,End(E)), for every a € Qp (M,End(E)),
is continuous. Then for V = V + a € A(E, L), we may write

dV =dV° +ad(a) o4, (2.111)
where i: QY (M,End(E))er1 — QO(M,End(E)), is a compact embedding. Furthermore, we define
§V: QL (M,End(E))e — Q7 (M,End(E)),—1 (2.112)

through
8V =46V0 +ioad(e)*, (2.113)

where i: Q% (M, End(E)), — Q°(M,End(E))¢-1 is a compact embedding and ¢V is a continuous
extension of formal adjoint of dV° with respect to the Hermitian metric on End(E).

Lemma 17. For ¢ > max{% dim M, 1} the natural mapping

je: B(E,L) — B(E, L)e (2.114)

is injective.
Proof. Let V = Vo +a and V' = Vg + o be smooth L-connections, and suppose we have a gauge
p+1 satisfying ¢ -V = V', then for the injectivity of j, it suffices to

transformation ¢ € Gau(E) _ .
i’ ( o, then the requirement ¢ - V = V' is equivalent to

show that ¢ is smooth. If we denote 8 = o —
dVp = B3 - p and we have

Alp) = (870d")(@) =07(8- ).

(M,End(E)), implies, by the Sobolev multiplication the-

If k > max{Lldim M,1}, then ¢ € Q9 .
b : Lbecause 3 is smooth. Since V is a smooth L-connection,

orem, that 8- € Qi (M, End(E)),
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the term on the right hand side in the equation above belongs to Q9 (M,End(E))k_1, and the
Elliptic Regularity (Lemma 7), applied to the elliptic operator A, gives © € Q% (M, End(E))g41.
Using the induction on k we get ¢ € QY (M,End(E))y, for all k > ¢. From the Lemma of Rellich
(Theorem 3) it follows that ¢ is smooth. [ )

Lemma 18. Let V € A(E, L), be an L-connection then the operator
8V 0dY: QF (M,End(E))er1 — Q9 (M, End(E))e-1 (2.115)

is a Fredholm operator for ¢ > %dim M.

Proof. For V = Vo + , we may write Ay = dVodY = (6V° +i o ad(a)*) o (dV° + ad(a) o 7).
Because ad(a) o and i o ad(a)* are compact operators,

ioad(a)*odv + V0 oad(a)oi+ioad(a)* oad(a)oi

is also compact operator. The rest of the proof is to show that §V° 0 dV° is a Fredholm operator.
It is enough to show that 6V o dVo: Q9 (M,End(E)) — Q% (M,End(E)) is an elliptic operator,
i.e., that the principal symbol 2(6V° 0 dV°)(¢,): End(E), — End(E), is an isomorphism for all
z € M and 0 # &, € TyM. Obviously,

72(6Y° 0dV0) (&) = 01(8V°)(&s) 0 01 (dV0) (&) = — (01 (dV0) (&) 0 01 (dV°) (&)

and this is an isomorphism if and only if o1(dV?)(¢;) is an isomorphism. But o(dV°)(£;) =
a™(§;) ®, i.e., the symbol is the tensor multiplication by a*(£;), hence it is an isomorphism if
a*(€;) # 0. Thus, 69(dV° 0dV?) is an isomorphism for all z € M and 0 # &, € T;M if and only
if a* is injective or equivalently if and only if a is surjective. This is true because L satisfies the

ellipticity condition. &

Lemma 19. For any V € A(E, L), we have an L%-orthogonal decomposition

QL (M,End(E))e = imd¥ @ kerd" (2.116)

for ¢ > %dim M.

Proof. Let V = V + a be an L-connection and denote A, = §VodV. From the previous lemma
we know that A, is a Fredholm operator, thus dimker A, < oo and im A,, is a closed subspace.
Therefore QO (M, End(E))es1 = ker Ay & (ker Aq)* is an L?-orthogonal (not L7, ;) decomposition
into closed subspaces in Q9 (M, End(E))e+1-

Furthermore, im A, is a closed subspace, thus A kera )t (ker A+t — im A, is a bijective
continuous linear operator between Banach spaces, therefore, using the B?nach’s Open Mapping
Theorem, Go = (Aa|(ker An)* )~ is a continuous linear operator. If X C Q (M, End(E)), d'enotes
the closed subspace given by X = (6V)~!(imA,), then idjx —dY¥ 0 Gy 00V x 1; a continuous
linear operator. Because kerd"V = ker A,, we get im dV = ker(idx — dVoGyod |x ), therefore

imdV is a closed subspace in Q} (M,End(E)).. e e e T
Thus we get an L2-orthogonal decomposition Q; (M,End(E))¢ = im dl @ (imd" )~ into closed
subspaces. On the other hand for ¢ € QY (M,End(E))e1 and ¥ € Q7 (M,End(E))¢ we have

(@Y, ) = (p, V), hence we obtain that (im dV)t = keréV. &
Lemma 20. The set of irreducible Sobolev L-connections A*(E, L)e is an open subset in A(E, L),
for £ > 1 dim M.

Proof. Let V = V + « be an L-connection. From Lemma 18 it follows that A, = §VodY is a
Fredholm operator. Moreover, the mapping

A(E, L) — L(,(M,End(E))e+1, QL (M, End(E)) 1)
given by Vo + @ — A, is a continuous family of Fredholm operators, hence

VO + o — dim ker Aa
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is an upper semicontinuous mapping from A(E, L), to R, see [36]. Because we have kerdV = ker A,
and dimkerdV > 1, hence the upper semicontinuity implies that A*(E, L), is an open subset. &

Remark. We have just proved that A*(E, L), is an open subset in A(E,L). Because B(E, L), is
assumed to have the quotient topology and pe_l(ﬁ*(E,L)g) = AXE, L), we get that BX(E, L), is
open in B(E, L),.

Now, for V =V, +a € A(E, L), and ¢ > 0 we consider the Hilbert submanifold
Oae ={Vo+a+8; 8€QL(M,End(E)),, 6V8 =0, ||8l|e < €} (2.117)

of the Hilbert manifold A(E, L),. Because O, . is a Hilbert manifold modeled on ker§V, thus we
have

Ty(Og.e) = kers"V. (2.118)

First note that if V € A% E,L),, then we may take £ small enough to ensure O, . C A%E, L)y,
since A*(E, L) is open in A(FE,L),. Next, we define the reduced group of gauge transformations
Gau(E)j, , by

Gau(E),, = Gau(E)er1/K= . iq - (2.119)

Because K*- idg is a normal Hilbert—Lie subgroup of Gau(E)¢41, Theorem 9 bellow implies that
the reduced group of gauge transformations is a Hilbert-Lie group with the Lie algebra

gau(E)p,, = Q) (M,End(E))¢;1, (2.120)
where the Lie bracket descents from the one on gau(FE)g+;. Moreover, if
q: Gau(E)ey1 — Gau(E)y,; = Gau(E)er1/kx . i, (2.121)

denotes the canonical projection, then g is a smooth mapping and any mapping f: Gau(E)j, , —
X, where X is a smooth Banach manifold, is smooth if and only if f o q: Gau(E)ey1 — X is

smooth.

Theorem 9. Let G be a Banach-Lie group over K with Lie algebra g and suppose that N is a
normal Banach-Lie subgroup over K of G with Lie algebra n. Then G//N is a Banach-Lie group
over K with Lie algebra g/n in a unique way such that the quotient mapping ¢: G — G/N is
smooth. Moreover, for any Banach manifold X a mapping f: G/N — X is smooth if and only if

f o q is smooth.

Proof. See [37], [38] and [39)]. ]
Theorem 10. B*(E, L) is a locally Hausdorff Hilbert manifold and p,: A*(E,L)e — BX(E,L),
is a principal Gau(E)j, ,-bundle.

Proof. Let V = Vj + a be an irreducible L-connection. Consider the smooth mapping of Hilbert

manifolds

VAVR Gall(E);_H X OQ,E —=b .A*(E,L)g,
‘I’v(%vo*}-a*—ﬂ) =<P'(V0+CY+,3), (2.122)

then the tangent mapping at (idg, V) equals to
Tidp.vy ¥y Q% (M, End(E))¢; @ kerd” — Qp(M,End(E))e,
(Thde. o) ¥v) (1, B) = —dvy + 8. (2.123)

From Lemma 19 it follows that T(ag,v)¥v is surjective. Moreover, because V is assumed to

be an irreducible L-connection, we obtain, using Lemma 16, that T(ia,,v) P is injective. Hence
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by the Banach’s open mapping theorem T(i4, v)¥v is an isomorphism. Therefore the inverse
function theorem for Banach manifolds implies that Uy is a local diffeomorphism near (idg, V).
Consequently, there is an open neighborhood U, of V in A*E, L), and an open neighborhood
Nidg of idg in Gau(E)j, , such that

Uy: Nidg X One = Uy (2.124)

is a diffeomorphism sufficiently small & > 0.

Next we show that, for £ small enough, the mapping pa. = Do, .: Oae — B(E,L)e is
injective. We have to show that if for two elements Vo + a + 51, Vo + a + B2 € O, . there exists
a gauge transformation ¢ € Gau(FE)yy satisfying

p-(Vo+a+B1)=Vo+a+ b, (2.125)
then (31 = (2. First observe that (2.125) is equivalent to
Ao = - 01— B . (2.126)

Further, because Q¢ (M, End(E))s+1 = ker dV @ (kerdV)* is an L2?-orthogonal decomposition into
closed subspaces, we can write ¢ = c-idg + o, where ¢ € K and g € (kerdV)L. Moreover im d¥
is a closed subspace in Q} (M, End(F)),, hence we obtain by the Banach’s open mapping theorem
that

dV: (kerdV)t — imdY (2.127)

is an isomorphism of Hilbert spaces. Therefore it is lower bounded operator, i.e., there exists a
positive constant ¢; such that

1d¥¢lle > ea|w]]es (2.128)
for all ¥ € (kerd¥)*. Thus we may write

eillolles1 < [1d%olle = [d lle = [l B1 — B2 ¢lle < 2¢o- € - (lef - |lidglles1 + [|wolles1),
(2.129)

where we used the fact that [ - alle < co - ||¥l|e+1]le]e and [|a - Pl < co - [|a||e]|]|e+1 for all
Y € Q%(ﬂ/[, End(E))ey: and a € Q} (M,End(FE))e. As a consequence we have

2¢o-lc| €

|l@olle+1 < llidg|[es1 (2.130)

c1—2c¢y- €
for e < . If ¢ = 0, then we obtain immediately ||@o||¢+1 = 0, thus ¢ = ¢-idg + ¢ = 0 and this
is a contradiction. Because ¢ # 0, we get

1 2¢p-€

|
- —idglert = = llwolle+1 <

e Ic]

—|]id . .
2 {ldalers (2.131)

Since ¢! (N4, ) is open set in Gau(E)e41 and idg € ¢7' (Mg, ), therefore for ¢ small enough is ¢
near idg in Gau(E)}, |, i.e., ¢ € Midg. And if we use that ¥y is injective, we obtain 31 = (.

Let Uy . = P (Oa.c), then we have p~' (Ua,e) = MGau(E)ey1 X Oq,c), where X Gau(E)pqq x
AXE, L)y — A%(E, L) is the left action. From the previous considerations it follows that p~! (Uy )
is open in A*E, L)g, thus U, is open in B*(E, L);. Moreover py.c: One — Uy is a homeomor-
phism. The mapping

\I/VZ Gau(E);+1 X Oa,e = ﬁ_l(ua,s)a
q’v((p,Vo-i-a-f—,B):(P'(Vo—FO!-*-ﬂ) (2.132)



Linear Lie algebroid connections 41

is surjective because p~!(Uy.c) = AM(Gau(E)er1 x Oy ), the injectivity follows from the previous
consideration and from the fact that the action of Gau(E)j, ; on A*(E, L), is free. We will show
that it is in fact diffeomorphism of Hilbert manifolds.

For an arbitrary ¢ € Gau(E)j, ; we find an open neighborhood W, of ¢ such that the mapping
\pv“w*‘ (W,)x Oy 1S a diffeomorphism, where L,-1 is the left translation by ¢ !in Gau(E)j, -

In particular, we can take W, = L,(N,q,). Therefore we have
qlVlWxO(,‘s = Lap o \IJV o (L‘p—-l X idfl(E,L)l)IquXOa.s’ (2133)

which is a diffeomorphism.

Now to show that p,: AXE,L); — B*(E, L), is a principal Gau(E)j, ;-bundle over a Hilbert
manifold, we only need to glue together the local charts o4: Une — Oa, 0o = Pgr. Consider
the smooth mapping

gv = Ppro kllel; ﬁ_l(ua,s) . Gau(E);+1’ (2134)

v«zhere pr: Gau(E)j, ; x O — Gau(E)j,, is the projection. Then for any V' =Vy+d €

A(E, L) with p(Vo + a') € Uy, we have
oa(P(Vo +a')) = (gv(Vo+ o))~ - (Vo + ). (2.135)
Hence it is easy to see that over o4 (Up e MUy ) we have
(Gaoo ) Vo+a +8) =0a(d(Vo+a' +8) =(9v(Vo+a' +8)7" - (Vo+a +5), (2.136)

and this is clearly smooth in 3. a

2.6 Moduli spaces — local model

In this section we give a local description of the moduli space M(E, L) of flat L-connections and
the moduli space M*(E, L) of irreducible flat L-connections around a given point. We will adopt
to this situation the Kuranishi argument for describing the moduli space of complex structures
near a given one on a compact manifold and the moduli space of anti-self-dual connections on a
compact 4-manifold given by Atiyah, Hitchin and Singer, see [40].

The Kuranishi description provides local models of the moduli space, i.e., it gives an explicit
description of the germ of the moduli space in a given point. This makes it possible to estimate
the dimension of the moduli space in a given point, and provides a simple smoothness criteria.

Let (L — M,[-,-],a) be a real (complex) Lie algebroid satisfying the ellipticity condition and
E — M be a real (complex) vector bundle. Further assume that M is a connected compact
manifold. Then to any flat L-connection V on E is associated a fundamental elliptic complex
E(V) playing a cental role in the subsequent discussion.

Counsider a sequence of linear differential operators

0 — Q% (M,End(E)) “% QL (M, End(E)) > ... 45 Q7 (M,End(E)) — 0,  (2.137)
where r = rk L. Because RV = 0 and

RV (¢, n)y = [RY(& 1), 7] = [RY,7](€,n), (2.138)

where £,7 € X, (M) and v € QY (M,End(E)), we obtain RV = 0. Further, using Lemma 10

and the fact that the Lie algebroid satisfies the condition of ellipticity, we get that the sequence
(2.137) of differential operators is an elliptic complex, called the deformation complexz.

We will denote the cohomology of this elliptic compex by H*(E, V) fori = 0,1,...,r. Endow E,
L with an Euclidean (Hermitian) metric hg, hz, respectively. This gives an Euclidean (Hermitian)
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metric on each vector bundle A*L* @ End(E). Furthermore, let g be a Riemannian metric on M.
Then we have the formal selfadjoint elliptic operators of second order

A;=06Y0dY +dY 067 : QL (M,End(E)) — Q% (M,End(E)) (2.139)
where §Y is a formal adjoint of dY and dY,,dY are zero operators. Besides the kernel of A,
HY(E,V) = {a € Q¥ (M,End(E)); Aja =0} = kerdY Nkerdy (2.140)

is a finite dimensional vector space for i = 0,1,...,r and moreover there exists a natural isomor-
phism H*(E,V) ~ H*(E, V). Because all cohomology groups are finite dimensional vector spaces,
we may define the indez of £(V) by

Ind&(V) = i(—l)" dim HY(E,V) = i(-ni dim ker A;. (2.141)

1=0 =0

A fundamental result of the Hodge theory for the elliptic complex (2.137) is the Hodge decompo-
sition theorem, which states that there is an L?-orthogonal decomposition

QY (M,End(E)) = HY(E,V) @ imdy_, ®im4d, . (2.142)
Furthermore there exists a unique linear operator
Gi: Q5 (M,End(E)) — Q% (M, End(E)), (2.143)
called the Green operator associated to A;, satisfying
idgs (M,End(E)) = PTai(E,v) T Di 0 Gi =PIy vy + Gio A (2.144)
and the following commutation relations
HioG;i=GioH;, dY oGi=Giy10dy, 6 0Giy1=Gi06, (2.145)

where H;: Q) (M,End(E)) — H'(E, V) fori =0,1,...,r are L?-orthogonal projections. Moreover
G;is a pseudo—dlfferentlal operator of degree —2. F\xrther all associated operators dY, 87, A;, G;
can be extended to continuous linear operators between appropriate Sobolev completions, e.g.

d.V . QY (M, End(E));, — Qi (M, End(E))s_1, (2.146)
: Q5 (M,End(E))x — Q1 (M,End(E))x_1, (2.147)
A,-,‘k: QY (M,End(E)), — Q% (M, End(E))x_a, (2.148)
Gix: QY (M,End(E))x — Q% (M,End(E))g42, (2.149)
and note that
ker A, ; = ker A; = HY(E, V). (2.150)

All statements in Theorem 8 remain true in we replace the spaces by the correct Sobolev comple-
tions, e.g. there are L2-orthogonal (not L?%-orthogonal) decompositions

Q% (M,End(E))x = HY(E,V) @imd)_; 441 DIm &y, (2.151)
—kerd GBlmOz ki1 (2.152)
= IIIl di—l,k+1 @ ker 5i,k (2.153)

of Q% (M,End(E)) into closed subspaces.

Remark. Note that H°(E,V) = kerdy = ker A, thus dim H°(E, V) = 1, if V is an irreducible
L-connection and dim H°(E, V) > 1 otherwise.
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Recall that if we fix some flat L-connection V, € H(E, L) then the Sobolev completions is
defined by

H(E,L)e ={Vo+a; a € Q(M,End(E)),, d¥oa + = [a o) =0} (2.154)

for ¢ > %dim M. Furthermore from the previous we know that the curvature
F: A(E,L)y — Q3 (M,End(E))e_1 (2.155)

defined by F(Vo+a) =d¥°a+ [a,a] is a smooth mapping of Hilbert manifolds for £ > 7 dim M
and

H(E,L), = F~1(0). (2.156)

Consider a smooth irreducible flat L-connection V =V +«a € H(E, L). Then from Theorem 10
we have that there exists a Hilbert submanifold O, . of AXE, L), for € > 0 small enough such
that pae = (0., Oae — Uae C B(E, L), where Uy . = pe(Oa,c) in open in BYE, L), is
a homeomorphism, (O, ¢ is a slice to the Gau(E)¢;-orbits of the action of the group of gauge
transformations Gau(F)g41 on A*(E, L)s). Furthermore consider a closed subset

Sae={Vo+a+p3; feQl(MEnd(E)), 6V8=0,d 8+ = [ﬁ B1=0,|18lle<e} (2.157)

of One. Because Sy C HX(E, L), we obtain that pae: Sae — Vae = Uae N MH(E, L) is a
homeomorphism on open subset in M*(E, L), for £ > %dim M +1.
Now if we apply the Hodge decomposition (2.144) to the element dY3 + %[ﬁ,,@] for B €
Q} (M,End(E),, we obtain
dYB + (8, 8] = pras (.0 (dYB + 518, 8) + (65 0 dy 0 G2)(dYB + 3 (8, 5])
+(dY 04Y 0 G2)(dYB + 38, 5))
= %PIW(E v) (18, A]) + ‘(‘5v ody 002)([575])
+dY (Y 0 GaodY)B+ 5(67 0 G2)([8,8))),

where we used that G 0 dY = dY o G. Besides we have
51voG20d1v :51VodvoG1 Ay oGp — dovo(S(YoGl
: vV sV
= idgt (M,End(EY)e — PTH1(E,v) — do © 95 © G,
therefore substituting this into the equation above, we get

dY 3+ L18,8] = 3 prae(e,v) (6, 8]) + 2 (85 ody o G2)([8,8])
+d"(ﬁ+ (67 o G2)([8, B]))-

From this L2-orthogonal decomposition we have

dY(B+ L(6Y 0 G2)((8,8))) =
dV3+ [/3 8] =0 <= < (6 o dY o G2)([B,8]) =0, (2.158)
Pry2(g.v) (6, 8]) = 0.

Furthermore for the irreducible flat L-connection V we define the Kuranishi mapping

Ky: QL (M,End(E)); — QL(M,End(E)),
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by the formula

Ko (B) =B+ 3 (67 0G2) (8. ) (2159)

for 8 € Q} (M,End(E)),. It is a smooth mapping of Hilbert manifolds with the tangent mapping
T3Kv: Qp(M,End(E)), — Q} (M,End(E)), at 3 equals to

TsKvy =7+ (67 0 G2)([8,7]), (2.160)

where v € Q} (M,End(E)),. Since ToKy = idq1 (M End(E)),> Using the inverse function theorem
for Banach manifolds, we immediately obtain that Ky is a local diffeomorphism at 0. Further we
define a subset

S. = {8 € Q4(M,End(E))e, 656 =0, dTB + 3 [6,6] =0, ||8lle < ) (2.161)

of Q} (M,End(E)), for € > 0.
Lemma 21. Let £ > max{3 dim M, 1} then Kv(S.) C H'(E,V) and S. C Q} (M, End(E)).

Proof. The first observation is trivial, it is enough to show that dY(Kvy(8)) = 0 and 6§(Kv(3)) = 0
for o € S,, since HY(E, V) = kerdy Nkerdy. We have 0y (Kv(8)) = 633 = 0 furthermore, using
(2.158), we obtain dY(Kv(8)) = dY(8+ 1 (6Y o G2)([3,8])) = 0.

Consider 3 € S. and assume that 8 € Q! (M,End(E)); for k > rna.x{%dim M,1}. Because
A1(Kv(8)) = 0, we get

AG = -g (A1 087 0 Ga)([B, 5)).

The term on the right hand side in the equation above belongs to Qi(M ,End(E))k—1, and the
Elliptic Regularity (Lemma 7), applied to the elliptic operator Ay, gives 8 € Q} (M,End(E))x4,.
Using the induction on k we get 8 € Q} (M,End(E))x for all ¥ > ¢. From the Rellich’s lemma

(Theorem 3) it follows that [ is smooth, so we are done. o

Lemma 22. For ¢ > %dim M + 1 the mapping jg: M*(E, L) — M*E, L), is injective and has an
open image.

Proof. The injectivity of j, follows from Lemma 17 and the fact that j,(M*(E,L)) C M*E, L),.
Further let V = V 4+ a be a smooth irreducible flat L-connection then from the previous consid-
eration there exists S, . C H*(E, L), such that p,(Sa,) is an open neighbourhood of j,([V]) in
M*(E, L)¢. But from Lemma 21 we get So . C H*(E, L) therefore we have p¢(Sa,c) C je(M*(E, L)),
so we are done. &
Theorem 11. The moduli space M*(E, L) of gauge equivalence classes of irreducible flat L-
connections on E has a structure of a topological space such that for each [V] € M*(E, L) repre-
sented by V = Vo + a € H*(E, L) there exist an open neighbourhood U, of [V] in M*E, L), an
open neighborhood O, of 0 in H!(E, V) and a smooth mapping

®: 0, — H3(E,V), (2.162)

called the obstruction mapping, satisfying ®(0) = 0 and
Uy ~ D 1(0). (2.163)

Thus U,, is homeomorphic to a closed subset in an open subset in a finite dimensional vector space.

Proof. Because the Kuranishi mapping Kv: Q} (M, End(E)), — Qf (M, End(E)), is a local diffeo-
morphism at 0, there exist open neighborhoods U,V 0f 0 in Q} (M,End(E)), such that Kyuy:U —
V is a diffeomorphism of Hilbert manifolds. We can take U = {8 € Q1 (M,End(E))e; ||Bl]e < €}
for € > 0 small enough, therefore S C /. Denote F' = (Kgju)~':V — U. Because H!(E, V) is a
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closed subspace in Q} (M, End(E)), and O = VAH!(E, V) is an open set in H'(E, V), therefore O
is a Hilbert submanifold of Q} (M, End(E)),. If we define the obstruction map ®: O — H*(E, V)
by

D(7) = pryze,v) ([F(7), F(7)]),

then ® is a smooth mapping of Hilbert manifolds.

From the previous we have Ky (S:) C VN HY(E,V) = O. It remains to show that Kv(S;) =
®~'(0). In case 3 € S, then we obtain (® o Kv)(8) = pryz(g v)([3,8]), using (2.158), we get
(® o Kv)(8) = 0. On the other hand if v € ®1(0), then there exists a unique 3 € U satisfying
Ky (B) =~. Hence 0 = ®(7) = (® 0 Kv)(8) = pryz(g,v) (18, 8]). Since v € H(E, V), we get

0 = &gy = 858

Applying the Hodge decomposition (2.144) to the element %[6, A] and using the above equations,
we obtain

dy s + % 8, 8] = dYB + %(%v ody o G2)([8,8]) + %(dlv o8y 0 G2)([8,8) + % pryz(g,v) (6, B])

— L (67 0 0 Ga) (18.8)) = 2 (6F 0df 0 G) (15,6

Denoting the left hand side of the equation above by 1, we have
it 1
b =dYB+ 5 (8,8 = 5 (65 o df 0 Ga)([8,4)
1 1
= 5(55 °0Gyody)(18,8]) = 5(52V o G3)([dYB, 8] - 18, dYA)

= —;-(65 o Ga)([#, B8] — [8,%]) = (85" 0 Gs)([w, B]),
where we used that [[3, 3], 3] = 0. Using the fact that there exists a positive constant ¢ such that
1657 0 Ga) plle < ellelle-1,
for all ¢ € Q% (M, End(E))e-1, we make the following estimate
NWlle—r < [[lle = 1185 © G3) (1. BDlle < el Bllle-1 < €Il lle-allBlle < - € [[Wl]e-1,

where ¢ is another positive constant and the last inequality is provided that [|¥|[¢—1 > 0. If we
take £ < %, then we have 1 = 0. Thus, together with 63 = 0, we obtain that 3 € S..

Further because jo: M*(E, L) — M*(E, L)¢ is injective for all £ > 2 dim M +1, so the mapping
FreljeovteLy) : JeVM(E, L)) — jr(MY(E, L))

is bijective for ¢ > k > %dim M + 1 since jie © je = jk. Moreover form Lemma 22 we know that j,
has an open image, therefore for each Vo +a € H*(E, L) there exists € > 0 satisfying that ﬁg(Sg,e)
is an open neighbourhood of je([Vo +¢]) in je(M*(E, L)). Furthermore from the previous we have

that the following mapping

(4 -1 K4
pa(st ) T se Xa, gt Ko, g (st c Of = VENHI(E, V),

where x&: S§€ — & is given via Yo(Vot+ta+B3) =0 1sa homeomorphism. Since Ky (Sf) C
Ky/(SF), for € small enough we have the following commutative diagram

pe(SE ) — Kv(S7)

]keL |idH1(E.V>

pi(SE ) — Kv(SF)
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in which idy1 (g, v) is a continuous mapping with respect to the norms ||- || and ||-||¢ on H!(E, V)
because all norms on a finite dimensional vector space are equivalent. On the other hand because
we can find €’ < ¢ such that Kv(S¥) C Kv(S!), we obtain the following commutative diagram

De(S5,c) —= Kv(SY)

(jke)_lT 11‘1%1(5&')

P(Sh o) — Kv(8)

which gives that jie;,ov~2,L)): Je(M(E,L)) — jx(M*E, L)) is a homeomorphism.

Therefore we have proved that jie;,v=(g,0)): Je(MXE, L)) — jx(M*E, L)) is a homeomor-
phism. Thus 7, gives a topology on M*(E, L) which is independent on the Sobolev index ¢ for
¢ > % dim M +1 and for each V = V+« there exists an open neighbourhood U, = (jg)_l(ﬁg(Sg'E))
of [V] homeomorphic to ®~1(0). [ )

Remark. Note that if dim H?(E, V) = 0 then ®~1(0) = O,. Therefore M*(E, L) is at [V] locally
homeomorphic to an open subset in H!(E, V). Thus M*(E, L) has near this point a structure of
a manifold of dimension dim H!(E, L).



Chapter 3

Principal Lie algebroid
connections

3.1 Lie algebroid connections

The theory of connections is a classical topic in differential geometry. They provide an extremely
important tool to the study of geometric structures on manifolds.

Lie algebroid connections based on the notion of a horizontal lift were introduced by R. L. Fer-
nandes in [10] for the special case of Poisson manifolds and in [9] for general Lie algebroids. It is
defined by analogy with an Ehresmann connection on an arbitrary fiber bundle. There are two
distinguished cases, linear connections on vector bundles and principal connections on principal

fiber bundles.
Definition 15. Let (L = M,[-,-],a) be a Lie algebroid. A Lie algebroid connection on a fiber

bundle (E,p, M, S) with the standard fiber S is a homomorphism 7: p*L — T'E of vector bundles
over E covering the identity on E, which is horizontal, i.e., the following diagram
'L —>TE
p 1
commutes, where p*L is the pullback
P
p*L — L

E M

of the vector bundle L by p. The vector bundle homomorphism 7 is called the horizontal lift.
Depending on a structure of the fiber bundle E, we may require some additional conditions on

the horizontal lift 7.

The subspace im 7, of T, E formed by all horizontal lifts is denoted by H, E, furthermore HE
is a smooth distribution on E called the horizontal distribution of the connection 7. Note that
HE is not a regular distribution (a smooth distribution of constant rank) more and that this

distribution does not define the Lie algebroid connection uniquely.

47
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In general, we have neither H,E NV, F = {0} nor T,F = H,E + V, E. As usual, a vector
&, € T, FE will be called vertical resp. horizontal, if it belongs to V, E resp. H,E.

Consider a fiber bundle (E,p, M, S). Then there are two equivalent descriptions of a connection
on the fiber bundle E either via a horizontal bundle or through a connection form.

i) A connection on the fiber bundle (E,p, M, S) is a vector valued 1-form ® € Q!(E,TFE) such
that o ® = ® and im® = VE, ie.,  is a projection on the vertical bundle V E.

ii) A connection on the fiber bundle (E,p, M, S) is a vector subbundle HE of the tangent
bundle TF, called the horizontal bundle, such that TE = HE & VE.

How these definitions of a connection on a fiber bundle are related to the definition of a Lie
algebroid connection on a fiber bundle?

Let (E,p, M, S) be a fiber bundle and consider a Lie algebroid connection n: p*TM — TFE
for the Lie algebroid (TM — M,[-,],idra). Then HE = imn is the horizontal distribution
of the connection 7. If & € H,E NV, E then there exists v, € T, M for x = p(u) satisfying
Nu(u, vy) = &,. From the commutative diagram

pTM —'~TE
b Tp

TM ——TM

idrar

and from the fact that &, € V,E we get 0 = T,p.&y = Tup. (4, vz) = Pu(u,vz) = vy Therefore
€, =0and H ENV,E = {0}. Let &, € T, E and take the decomposition

Eu = 77u(U, Tupfu) = (fu . Wu(U, Tupﬁu))

then T, p.(§u — Mu(u, T.p.£u)) = 0. Because 1 (w, Tup-€u) € Hy E and (§u — Mu(u, Tup-€u)) € UE,
we have proved that T,F = H,E ©® V,E. Hence HE is a vector subbundle of TE such that
TE = HE &V E and for that reason 7 defines a connection on the fiber bundle (E,p, M, S) in the
sense of (ii).

On the other hand if we are given a connection on the fiber bundle (E,p, M, S) in the sense
of (ii) then there exists a unique Lie algebroid connection n: p*T'M — TE such that imn = HE.
Consider the homomorphism (7z,Tp): TE — E x3 TM = p*TM of vector bundles over E
covering the identity on E. By definition we have ker (mg, Tp) = V E, hence (76, Tp)\wE: HE —
p*TAl is injective on fibers and by reason of dimensions it is a linear isomorphism on fibres.
Because (7g, Tp) g is a smooth bijection with the invertible tangent mapping, so its inverse is a
homomorphism of vector bundles. If we denote

n=((rg,Tp)ug)”': P'TM - HE - TE

then 7 satisfies Tpon = p and imn = HE. Thus n is a right inverse for (g, T'p). The uniqueness
follows from the following fact. If 71 and 72 are Lie algebroid connections on (E,p, M, S) such
that imn, = HE and imn, = HE then im(n; —n2) C HE. Because Tpo (n; —n2) = 0, we obtain

im(n, —ne) C HE N VE, therefore we have 71 = na. . ' .
These two constructions are inverse to each other therefore Lie algebroid connections on the

fiber bundle (E,p, M, S) for the Lie algebroid (TM — M, |[,-],idrm) are in a one-to-one corre-
spondence with connections on the fiber bundle (E,p, M, S).

Definition 16. Let X be a manifold with a right action r: X x G — X of a Lie group G on X
and let 7: E — X be a vector bundle over X. We say that E is a G-equivariant vector bundle if
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we are given a right action 7: E' x G — E of the group G on F satisfying that

S

rd

is an isomorphism of vector bundles for all g € G.

Definition 17. Consider a principal fiber bundle (P,p, M,G) with the principal right action
r7: P x G — P and a G-equivariant vector bundle 7: £ — P over P. We say that a vector bundle
atlas (Uq, %o ) for E is G-equivariant if U, is a p-saturated set, i.e., U, = p~*(V,) for an open set
Vo in M, and

d);l(u.g,v) = w;l(u,v).g (3.1)

for all u € U,, v € V and g € G. It is easy to see that for transition functions ¥,z: Uap — GL(V)
we get Yas(u.g) = Yap(u), where V' is the standard fiber of E.

Theorem 12. Let (P,p, M,G) be a principal fiber bundle and let 7: E' — P be a G-equivariant
vector bundle with a G-equivariant vector bundle atlas. Denote by 7#: E x G — E the right action
on E.
i) The space E/G of orbits of the right action 7 carries a unique smooth manifold structure
such that the quotient map ¢: E — E/G is a surjective submersion.
ii) p: E/G — M is a vector bundle in a canonical way, where p is given by

E—YsE/G

|
|

p

and q,: E, — (E/G)pu) is a linear diffeomorphism for each u € P, moreover ¢ is a homo-

morphism of vector bundles. )
iii) ¢: E — E/G is a principal G-bundle with the principal right action 7.

iv) The following diagram
E q
NN

Pxy E/G—=E/G

Ul

commutes, i.e., F is a topological pullback.

Notation. We will denote E/G by Eg. We also define the smooth mapping 7: P Xy Eq¢ — E by
T(uz,vz) = q7t(vz). It satisfies 7(u, q(€w)) = &u> (T (ug, vz)) = vz and 7(Uz-g, Vz) = T(Uz, Vz).g-

Proof. First of all we verify that the right action 7: E x G — E is free anfi proper. Suppgse
that £,.91 = £,.g2, then w.gr = 7(&u-g1) = 7(€y.92) = u.ge. Because the pl:mmpal right ao':tlon
r: Px G — P is free, the right action 7 is also free. Now let &n.9n — & ancli £n —>/§ in £
for some &,,€,&' € E and g, € G. If we denote up = (&), u = w(§) and «' = 7w(¢’), then
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Un.-gn = T(&n-gn) — 7(€') = v’ and u, = 7(€,) — w(€) = u, because 7 is continuous. But G acts
properly on P, hence g, has a convergent subsequence in G and thus 7 is proper. Immediately,
from the characterization of principal fiber bundles it follows that the orbit space E/G is a smooth
manifold, the quotient mapping q: E — E/G is a surjective submersion and ¢q: £ — E/G is a
principal G-bundle.

In the setting of the diagram in (ii) the mapping p o 7 is constant on orbits of the action 7, so
P exists as a mapping. Because ¢: ¥ — E/G is a fibered manifold and p o g is smooth, we obtain
that p is also smooth.

Let (p7'(Ua), Xa) be a G-equivariant vector bundle atlas for E. Assume, by shrinking U, if
necessary, that (Us,, ¢, ) is a principal bundle atlas for P with transition functions @ag: Ussg — G.
We define ¢, !: Uy x V — p~1(U,) C E/G by ¢ (z,v) = q(x53 ' (05 (z,€),v)), which is a fiber
respecting mapping, i.e., the following diagram

1

Ua x V —22 o 5=1(U,)

Pry

il

Ua

commutes. For each point g(€,,) in p~!(z) there is exactly one v € V such that the orbit
corresponding to this point passes through x5 !(¢51(z,€),v), ie., q(éu,) = a(xa' (05" (z,€),v)).
Because Yo is a diffeomorphism, we can write &,, = x5'(¢3'(2,9),v) for a uniquely determined
v € V, where ¢p4(uz) = (x,9). Then

- | 1

Gl ez (@, 9),v).97" = x5 wa (@, 9).97"v) = xa (05 (z, €),v),

where we used the fact that y. is a G-equivariant chart. Therefore ¥3;'(z,-): V. — 5~ '(z) is
bijective, since the principal right action is free. Moreover g 1 is smooth with the invertible
tangent mapping, so its inverse ¥ : pY(Uy) — U, x V is a fiber respecting diffeomorphism.
Furthermore

w5 (x,v) = q(x5 (95 (z,€),v))
= q(x3' (95 (z: €), Xas(p5 ' (2, €)) V)
= q(x3 (93 (2, Pap (@) €), Xap (9 (2, €))-0))
= q(xz (93 (=, €)-Pap(T); Xap(@s ' (z,€)).0))
= q(x2 (93 1(x, €), Xap(pp' (2, €)) 1))

= 1/’(:1(-’5, Xa/.?(('pgl(x7 6)).’0),

thus (wuow;‘)(m, v) = (z, Xa;i(‘PEI($7 ¢)).v), hence (Uq, ¥a) is a vector bundle atlas for p: E/G —
M. By definition of 1, the diagram
By —22 02 U x G x V

q pr

ﬁ_l(Ua) ™ 9U-()g X V
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commutes, if we restrict x, on E, then we obtain the diagram

(paxidy)oxa

E, {p(w} x {g} x V
P (p(w) ———— {p(w)} x V

in which its lines are linear diffeomorphism, hence we conclude that ¢,: E, — p~!(p(u)) =
(E/G)pw) 1s a linear diffeomorphism.

Consider a homomorphism (m,q): E — P Xy E/G = p(E/G) of vector bundles over P
covering the identity on P. Because (7,¢) is a linear isomorphism on fibers with the invertible
tangent mapping, so (7, q) is an isomorphism of vector bundles. The inverse is denoted by 7: P x p;
E/G — E and given by 7(uz,vs) = ;. (vz)- [ )

Theorem 13. The sections of the vector bundle Fg¢ — M correspond to the G-invariant sections
of the G-equivariant vector bundle E — P, moreover we have an isomorphism ®: ['(M, Eg) —
I'(P, E)S of C*°(M,R)-modules, where f¢ = (f o p)¢ for f € C®(M,R) and ¢ € T(P, E)°.

Proof. If € € T(P, E)® then we construct s¢ € ['(M, E¢) in the following way. Because £: P — E
is a G-equivariant mapping, the diagram

P—* . E
P q
M —— Eg

commutes for a uniquely determined mapping s¢: M — Eg. Further s¢ op = qo§ is a smooth
mapping and p: P — M is a fibered manifold hence s¢ is a smooth section.

If conversely s € I'(M, Eg) we define £ € T'(P, E)C by &, = 7o (idp xp 8): P — P xy
M — P xuy Ec — E, ie., &(u) = 7(u,s(p(u))) for u € P. This is a G-invariant section since
€o(u.g) = 7(u.g, s(p(u)) = 7(u, s(p(u))).g = & (u).g by the G-equivariance of .

These two constructions are inverse to each other since we have &y¢)(u) = 7(u, s¢(p(w))) =
T(u, q(€(u))) = &(u) and se(s) (p(1)) = q(6s(u)) = a(7(u, s(p(w)))) = s(p(w))- L
Theorem 14. (i) Let (P, p, M,G) be a principal fiber bundle and 7: E — P be a G-equivariant
vector bundle with a G-equivariant vector bundle atlas. Consider a vector bundle ¢: F¥ — N.
If we are given a homomorphism ¢: E — F of vector bundles covering f: P — N satisfying
2(£u-9) = @(&,) and f(u.g) = f(u), ie, por? = pand for? = f, then there exists a unique
vector bundle homomorphism

G

Eq —2—>F
P q
M-———>N

such that p = 9€oqf and f = fCop.

(ii) Let (P,p, M,G) and (P',p, M " G') be principal fiber bundles. Consider a Q—equivariant resp.
(-equivariant vector bundle 7: E — P resp. n': B/ — P’ with a G-equivariant resp. G'-
ndle atlas. Let ®: G — G’ be a homomorphism of Lie groups. If we are given

equivariant vector bu .
of vector bundles covering f: P — P’ such that ¢(€..9) = ¢(&u).®(g)

a homomorphism ¢: E — E’
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and f(u.g) = f(u).®(g), ie., por¥ =7*9 o0 and ford = r®@ o f, then there exists a unique
vector bundle homomorphlsm

oG
Eq¢ ——E/,

p” 2

M M’

fG
such that qEI o =¢%o0q¥ and pof=fCop.

Proof. We prove the second part only, because (i) is a special case of (ii). Since ¢ is G-equivariant
and ¢ is surjective, so there exists a unique mapping ¢ such that the following diagram

E E’

EG 7 E/G’
commutes. Moreover because ¢£: E — Eg is a fibered manifold and ¢ o ¢F is smooth mapping,
thus ¢ is also smooth. By the same argument we get there exists a uniquely determined smooth
mapping f¢: M — M’ satisfying p’ o f = f¢ op. In fact f: P — P’ is a principal fiber bundle
homomorphism. The rest of the proof is to verify that ¢“: Eg — El, is a homomorphism of
vector bundles covering f¢. Because ¢$ = Q}E(,u,) 0@y, 0 (¢F ) : (Eg)e — (Egi) o (s is a linear
mapping, hence ¢ is a homomorphism of vector bundles covering f&. o

The previous framework can be used to the construction of an associated vector bundle to a

principal fiber bundle.

Let (P,p, M,G) be a principal fiber bundle and p: G — GL(V') be a representation of G on a
finite dimensional vector space V. We consider the right action 7: (P x V) x G — P x V given
by #((u,v),g) = (u.g,g~".v). With this right action the trivial vector bundle 7: P x V — P is a
G-equivariant vector bundle over P. Further let (U,, ¢4) be a principal bundle atlas for P then we
define a vector bundle atlas (p~1(Us),%q) for P x V, where ¥ : (P X V) -1,y — p~ 1 (Ua) x V,
through

Ya(u,v) = (4, pre(palu)).v).
Because

¥ (u.g,v) = (w.g, (pralpalu.g) )

= (u.9,9" " (pra(palu))) ™ v)
= (u, (pre(palw)) ™ v).9
= 7 (u,v).9,

we get that (p~1(Ua), ¥a) is a G-equivariant vector bundle atlas for P x V. Using the construction
in Theorem 12 we obtain the associated vector bundle p PxqaV — M. Moreover by Theorem 13

we have I(M, P xg V) ~T'(P, P x V)€ ~ C=(P,V)C.

There is another important example of this construction. Consider a principal fiber bundle
(P,p, M,G) and a vector bundle 7: E — M. Then the pullback p*F = P X E carries a natural
right action #: p*E x G — p*E of G defined by

f“:TXidMidEl(PXME)XG:—)(PXG) xuy E — Pxpy E. (32)
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Moreover 79 = 79 Xiq4,, idg: p"E — p*E is an isomorphism of vector bundles covering 79 for all
g € G, hence with this right action p*E is a G-equivariant vector bundle over P. Let (U, Xa) be
a vector bundle atlas for E, i.e., xoa: Ejy, — Ua x V, and let (Uy, o) be a principal bundle atlas
for P then a vector bundle atlas (p~!(Uy,), ¥a) for p*E, where Yo : p*Ejp-1(v,) — p N Uq) x V, is
given by

Palte, &) = (s, Pry(xalés)))-
Further
vt (u.g,v) = (u.g, x5 ' (p(u.g),v))
= (u.g, x5 ' (p(w), v))

- (uv X;l(p(u)a v))‘g
- w;l(u7’v)'ga

hence (p~'(Ux),%a) is a G-equivariant vector bundle atlas for p"E. From the characterization of
principal fiber bundles and using the following commutative diagram

we get that p"E/G — M and E — M are isomorphic vector bundles over M. Furthermore we
have I'(M, E) ~T(M,p'E/G) ~T(P, p'E)°.

If we define the mapping j: C>°(P,g)¢ — X(P)¢ through
3(F)(u) = Tery-f(u), (3.3)
where u € P, for f € C®°(P,g)¢ then from the following commutative diagram

p 8o ) b TP

" |
M p ad(P) — A(P)
we obtain
jodP*8 = TP o4, (3.4)

where ®77: T'(M, A(P)) — Z(P)C is a C*°(M,R)-module isomorphism.

Consider a principal fiber bundle (P, p, M, G) and denote by r: P x G — P the principal right
action of G on P. Let (L — M, [-,-],a) be a Lie algebroid then the pullback p*L = P X s L carries
a natural right action 7: p"Lx G — p*L of G. Moreover p’L — Pis a G-equivariant vector bundle

and the vector bundle p*L/G — M is isomorphic to L— M.

Definition 18. Let (L — M, [,:],a) be a Lie algebroid. A principal Lie algebroid connection on
a principal fiber bundle (P,p, M, G) is a homomorphisms 7: p *[, — TP of vector bundles over P

covering the identity on P such that
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i) n is horizontal, i.e., the following diagram
p’L—" TP
b Tp
L——TM

commutes,
ii) n is G-equivariant, i.e., Tr9on=mno79 for all g € G.
Note that a principal Lie algebroid connection is a Lie algebroid connection which is G-equivariant.

By its G-equivariance, a principal Lie algebroid connection 7 on P defines a homomorphism
wp: L — A(P) of vector bundles over M covering the identity on M, called the connection form
of n, satisfying p, o w, = a. On the other hand if w € Q} (M, A(P)) is a connection form then
there exists a unique principal Lie algebroid connection n: p*L — TP with the given connection
form, i.e., w, = w. Using Theorem 14 it is defined by

= TTP o (ldP Xidas w"?): P XM L—-P XM 'A(P) — TP (35)

Therefore there is a one-to-one correspondence between principal Lie algebroid connections and
connection forms hence we will not distinguish between them.

If 5 is a principal Lie algebroid connection then we define the horizontal lift n§ € X(P) of
Ee X (M) by

né =no (idp X idas f)o(idp,p): PLPXM M -— P xy L —TP. (36)

Because n is G-equivariant, we have
(n€)(u-g) = n(u.g,&(p(u.g))) = n(u.g,€(p(u))) = Tur? . n(w, §(p(u))) = Tur?.(n&)(u)

hence n¢ € X(P)C. Recall that the C*°(M, R)-module isomorphism ®77: T'(M, A(P)) — X(P)¢
is given by

7P (s)(u) = 77 (u, (s 0 p)(u)) (3.7)
Thus we get, using (3.5) and (3.7),
(1) (u) = 1w, E(p(w))) = 777 (u, wn(€)(p(w))) = @77 (w(€))(w),

thus we have obtained the horizontal lift 7€ given by the connection form w,, i.e., n§ = " (wn(8)).
Moreover n¢ and a(€) are p-related vector fields, since

(Tponé)(u) = (Tpon)(u,&(p(w)) = (aop)(u,&(p(u)) = (a(§) o p)(u).
For a principal Lie algebroid connection 7 with the connection form w, € Q} (M, A(P)) we define
the curvature form 1, € Q2 (M, A(P)) by
0, (€1, €2) = [wn(&1),wy(€2)] — wn([€1, €2]) (3.8)
where &1, &5 € X (M). We should verify that Q, (€1, f&2) = [Q(&1,&2) for f € C°(M,R), but
Q) (&1, f&) = [wal(&r), wn(f€2)]ap) — wall€rs FElL)

)
= [wy(&1), fwn(€2)]acpy — wn(fl€1, &alr + (aL(61) ) €2)
= flwn(Er)s wn(E) acpy + (@acp)(wn(€0)) ) wn(€2) = fwn([€1 &2lr) — (az(§1)f) wn(E2)

= fQ, (€1, &) + (aap)Wn(€)f) wa(é2) — (ar(61)f) wn(&2)
= fQ,(&1, &) + (P o wy)(€1) ) wy(é2) — (ar(€1)f) wn(é2)

= fQ'q(gl, 62)1
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where we used that p, ow, = ay. For any w € Q% (M, ad(P)) we define ix(w) € Q% (M, A(P)) by

i*(“”)(&h"'ﬂ&k) :i*ow(fh---»&k)a (39>

where §y,..., & € X.(M) and similarly for w € Q% (M, A(P)) we define p«(w) € QF (M, TM)
through

Pu(w)(€1s- oo, k) = puow(n, ..., &), (3.10)
where £1,...,& € XL (M). Because

Px © 80 (€1,62) = P 0 [wy(€1),wn(€2)] 4Py — Px 0 wy([€1, €2)L)
= [Px o wy(&1), px 0 wy(&2)] — ar([€1,&2)L)

= lar(§1),aL(&2)] — ar([1,&2]L)
=,

there exists, using the exactness of the sequence (1.21), a unique R, € Q2 (M, ad(P)) such that
0 = By

Notation. A principal Lie algebroid connection with zero curvature form is called flat principal
Lie algebroid connection. We will denote the set of all connection forms by A(P, L) and the set of
all flat connection forms by H(P, L).

Now we show a similar correspondence between principal Lie algebroid connections and prin-
cipal connections as for Lie algebroid connections and connections.

Consider a principal fiber bundle (P,p, M,G). Then there are two equivalent descriptions of
a principal connection on a principal fiber bundle either via a horizontal bundle or through a

connection form.

i) A principal connection on the principal fiber bundle (P, p, M, G) is a vector valued 1-form
® e QYP,TP) such that Po® =®, im®=VPand Trio® =PoTr9.

ii) A principal connection on the principal fiber bundle (P, p, M, G) is a vector subbundle HP
of the tangent bundle TP such that TP = HP ® VP and H, ;P = T,r9(H,P).

Let (P,p, M,G) be a principal fiber bundle and consider a principal Lie algebroid connection
n: p*TM — TP for the Lie algebroid (M — M, [-,-],idrar). Therefore n defines a connection
on P given by the horizontal bundle HP = im7. Because 7 is G-equivariant, we obtain H, ;P =
imny g = im (Tyrd on,) = Tyrf(imn,) = T,r9(H,P). Thus HP is G-invariant subbundle and
defines a principal connection on P in the sense of (ii).

On the other hand if we are given a principal connection on the principal bundle (P, p, M, G)
in the sense of (ii) then there is a unique Lie algebroid connection n: p*TM — TP given as

n= ((Wpan)““]P)_l : p*TM — HP ~ TP?

where (7p,Tp): TP — p*TM. Because (7p,Tp): TP — p*TM is G-equivariant, i.e., (mp,Tp) o
Tr9 =179 o(mwp,Tp), and HP is G-invariant, thus 7 is also G-equivariant. These two construction

are inverse to each other.
Lemma 23. The set A(P, L) of connection forms of principal Lie algebroid connections on a
principal fiber bundle (P, p, M, G) for the Lie algebroid (L — M, [-,],a) is an affine space modeled
on the vector space Q} (M, ad(P)).

Proof. We first prove that A(P, L) is non-empty. Because any princ_ipal fiber bundle admits a
principal connection, this gives an existence of a principal Lie algebroid connection 7 for the Lie
algebroid (TM — M, [, -], idram) with the connection form wy, € A(P,TM). Now we define 1-form
W E Q}I(A/I, A(P)) by w = wyoa. Since pyow = ps 0wy 0oa =lidry 0a = a, we have proved that

A(P, L) is non-empty.
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The rest of the proof is very simple. If w; and wp are two connection forms then p, o (w; —wp) =
a —a = 0. Because the following sequence

0 — T'(M, ad(P)) < T(M, A(P)) 25 (M, TM) — 0

is exact, there is a uniquely determined 1-form a € Q} (M, ad(P)) such that w1 — wp = i.(a).
Therefore A(P, L) is an affine space modeled on Q} (M, ad(P)). ®

Remark. Thus, if we fix some wg in A(P, L), we may write
A(P,L) = {wo + i.(); a € Q} (M, ad(P))}. (3.11)

This description will permit us to define Sobolev completions of A(P, L).

We equip the graded vector spaces Q} (M, A(P)) in a canonical way with the structure of a
graded Lie algebra by

1
[w, T](£17 sie sy §p+q) = p,_q' Z sign(a) ' [w(fa(l)v see 7€a(p)>’ T(ga(p+1)7 s ,fa(pﬁ—q))]’ (3'12)

where w € QF (M, A(P)), 7 € Q¥ (M, A(P)) and &y, ...,&4+q € X(M). Furthermore, the graded
vector space (M, A(P)) is a graded Q} (M)-module through

1
(@ Aw)(&ry-- - &ptq) = gl Zsign(o) ol€o(r)r- -1 €a (@) WEo(pt1)s- - - 1 €o(pra))s (3.13)

where a € QF (M), w € Q1 (M, A(P)) and &1, .,&pt+q € XL(M).

Definition 19. Let (P,p, M,G) be a principal fiber bundle and let (L — M, [-,:],a) be a Lie
algebroid. If 5: p*L — TP is a principal Lie algebroid connection with the connection form
wy € QL (M, A(P)) then we define the exterior derivative d.,: Q3 (M, A(P)) — Q3TH (M, A(P))
by

k

(Ao @)(E0r -+ E8) = 3 (~ 1) [wn(E)s (60, - - -+ Eis - E)]

=0

+ 3 (DMl ko oG a o ER) (319)

0<i<j<k

where w € Q% (M, A(P)) and &, ..., & € XL(M). . o .
If we denote by d: Q} (M, A(P)) — QZ“(M,A(P)) the usual Chevalley differential given via

(d,u})(fo,...,&k) = Z (—1)i+jw([§iv£j]7€0a---,é’ia---aéjvﬂwgk)? (315)
0<i<j<k
where w € Q& (M, A(P)) and &, .-, &k € X (M), then the covariant derivative d.,, can be written
as

dw” = d + a«dwﬂ, (3.16)

where ad,,, is defined through ad,,w = (wy,w| for w € Qf (M, A(P)).

Theorem 15. The covariant derivative d,, has the following properties.
i) dy, (@ Aw) =dLaAw+ (—1)dee@q A dy,,w for a € Q) (M) and w € QZ(M, -A(P))
ii) do, [w, 7] = [dwﬂw,T] + (—l)deg(“’)[w,dwnT] for w,7 € Q) (M, A(P)), ie., du, is a graded
derivation of degree 1.
iit) Q, = dwy, + 3wy, wy], the Maurer—
iv) Qp = du,wy — L [wn,wn], the curvature form.

Cartan formula for the curvature form.
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v) dy, S = 0, the Bianchi identity.
vi) dg, od,, = adq,.

Proof. 1) It suffices to investigate decomposable forms w = B ® s for s € Q9 (M, A(P)) and
B € Q7 (M). From the definition we obtain d,, (8®s) = dL.B® s+ (—1)98 A d,, s. Afterwards for
a € QY (M) we have

Qo (@A (B® 8)) =du,((aAB)® 8) =dr(aAB) @ s+ (—1)PY(aAB)Ndy,s
= (dLa AB) ® s+ (~1)P(a AdiB) ® s + (—1)7 (A B) A du, 8
=dran(B®s)+ (—1)PaAd,, (8®s).

ii) For decomposable forms w = a ® s, 7 = 3 ®t, where s,t € Q3 (M, A(P)), a € QF (M) and
B e Qi (M), we have [a®s,8®t] = (e A B) ®|[s,t|. Hence we can write

do, [0 ® 5,881t =d,,(aAB)®[st])
=di(aAB)®[s,t] + (-1)P 9 (aAB) Ad,, [s,t]
= (dra A B)® [s,t] + (=1)P(a A dLB) ® [s,1]
+ (=1)PT(a A B) Ady, s, ] + (=1)PT9(a A B) Als, du,1]
=[da®s,00t+ (—1)Pla®s,dB@t]+ (—1)PlaAd,,s, B D]
+ (=1)PMa® s, 5/\dw,t]
= [du, (@ ®5), B&t] + (-1)P[(a ® 5), du, (B ®1)],

where we used d,,, [s,t] = du,, 5, t] + [s,d,t] which follows from the Jacobi identity, thus we are

done.
iii) Immediately from the definition we get

Qn(fl,&) = [wn(fl)vwn(&)] — wn([€1,€2])
= %[wmwn](glv£2) ol (d‘*’n)(gl,&)-

iv) We have
(€1, &2) = [wn(€1), wn(&2)] — wn([€1,62])

= [Wn(ﬁl)a‘-‘-"n(@)] - [wn(ﬁz)»wn(&)] "wn([gl’gﬂ) - [wn(&l)’ wn(f?)]
= (dw,wn) (€1, €2) — Lwn, wyl(€1, €2)-
v) Using (i), (iv) and (vi) we obtain
dwnﬂn = dwn(dwnwn - %[Wﬂvwﬂ])
= du,, ey Wy — %([dwnwmwn] ~ [wy, du,wy])
= adq,wy — [du, Wn, wn]
= [dw.,wmwn} - %[[meann] - [dwnwnv“’n]
=10,
where we used the fact that [[wy,wy],wy| =0 o '
vi) First we verify that [Q,(&1,&2), 8] = (dw, d, 8)(€1,&2). This is a consequence upon the following

computation

(du, (du,8)) (€15 €2)

[wi(€1), (duy 8)(€2)] — [wn(€2), (duy 8)(E0)] = (dw,5)([€1,€2])
[wn(€1), [wn(€2), 8]] — [wn(€2), [wn(€0), s]] — [wn([€1,€2]), 8 ]

= [[wy(E1)s wn(€2)]s 8] = (€1, &), 8] = [lwn(&1) s wy(62)] — wy([€1, €2]), 8]
= [

QU 61762 ]



Principal Lie algebroid connections o8

for all £1,&s € XL (M) and s € QY (M, A(P)). Because it suffices to deal with decomposable forms
w=a®s for a € Qf(M) and s € Q (M, A(P)), we can write
Qi (@ ® 8) = dy,, (dpa® s+ (—1)*a A i, 8
=0+ (-1)f*dia nd,, s + (~DFdra Ady, s + (~1)*a Ad,, do, s
= aAadg,s
= adg,(a® s)

hence we have got d,, o d,, = adq, and thus we are done. ®

Consider a flat principal Lie algebroid connection n with the connection form w,. From the
previous theorem we have d,, [w, 7] = [d,,w, ] + (—1)dee(«) [w,dy, 7] for w, 7 € Q} (M, A(P)), ie.,
d., is a graded derivation of degree 1. Moreover because (), = 0, we get d,,, od,, = 0. Therefore
the graded Lie algebra Q9 (M, A(P) with the Lie bracket given by (3.12) has a structure of a
differential graded Lie algebra.

Lemma 24. Consider two principal Lie algebroid connections 7,7’ on a principal fiber bundle
(P,p, M,G) for a Lie algebroid (L — M, [-,],a). If we denote w,y — w, = a € Q} (M, A(P)) then

1
Qi =& 4y 00+ — [a, a). (3.17)

Proof. The proof is a straightforward computation only. We have

527) (El ) 82) [w’f]/(&l )7 “}77/( )] - wn ([61 ) 62])

= [wn(€1) + a(é1), wn(&2) + al€2)] — wn([&1,&2]) — (€1, &2])
= [wn(€1),wn(&2)] — wn([1,&2]) + [a(€1), wn(&2)] + [wn(&1), a(€2)]
+ [a(&1), a(€2)] — a([61,&2])

(€1, €2) + [wn(&1), a(€2)] — [wn(2), a(&1)] — (€1, &2]) + [@(&r), (&2)]
= Q-¢’1(§1»£2) + dwna + 35 [a'a](gl’&)

for all &;,82 € XL (M). ]

Let (L — M,[-,],a) be a Lie algebroid and let (P,p, M,G) be a principal fiber bundle. Con-
sider a principal Lie algebroid connection 7 with the connection form w,. If p: G — GL(E) is a
representation of the structure group G on a finite dimensional vector space E then the principal
Lie algebroid connection 7 induces an L-connection V: QY (M, E) — Q1 (M, E) on the associated

vector bundle £ = P x¢ [E. . .
We define a bilinear mapping V: X5,(M) x Q} (M, E) — Q7 (M, E) through

Ves = O 1((1€)®(s)) = @71 (@77 (wy(€))2(5)), (3.18)

where ®: I'(M,E) = I'(P, P x E)¢ = C™(P, E)¢ is a C°°(M,R)-module isomorphism defined
in Theorem 14, n¢ € X¥(P)¢ is the horizontal lift of € € X, (M) and s € Q% (M, E). Because we

have Vyes = fVes and since we may write

Ve(fs) = @ ((n€)®(fs)) = 2 () ((f o )<I><e)>)
= ¢ ((nf)(fop)@(S)H fop)(nE)®(s))
= o~ ((né)(f o p)B(s)) + @7 ((f Op)(né)‘I)(S))
— &~ (((a(&)f) op)®(5))+f¢’ H((ne)®(s))
— (a(&) )2 (@(s)) + fOH((mE)(2(5))
= (a(&)f)s + [Ves,
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so V: Q9 (M, E) — QL (M, E) is a linear Lie algebroid connection on the associated vector bundle
E, called the induced L-connection.

Lemma 25. Let n be a principal Lie algebroid connection and let V: Q% (M,E) — Q} (M, E)
be the induced connection on the associated vector bundle E = P xg E. Then the curvature
RY € Q2(M,End(E) and the connection form R, € Q2 (M,ad(P)), where Q, = i.(R,), are
related by

RY(£1,8)s = —(p,8)(£1,62), (3.19)

where p’: g — End(E) is the derivative of the representation p: G — GL(E).

Proof. From the previous we get

RY(1,€2)s = Ve, Viy s — Vi, Vieys — Vg, 5213
— <I>‘1((n51)((n§2)‘1>(s))) ~H((né2) (€ ) (s))) — @~ ((nlér, &2])2(3))
~H([né1,n&2)®(s)) — (77[51,62]
= &~ (([n€1, k2] — 77[51,52])@(3))
H(®TP (wy(€1)), BTF (wn(82))] — T (wn([€1,€2))))2(5))
L@ ([wy (1), wn(&2)]) = BT (wn([€1,&2])))B(5))
LOTP(Qp(£1,62))2(5))
H(®TF o) (Rn(£1,€2))2(s))
((j o @F*8)(Ry(&1,£2))2(s))
=~ (p/ (@8 (Ry(&1,62)))2(s))
— (PR, 8)(€1,62),

where we used (3.4) and (3.31). [ )

Lemma 26. Let 7,7’ be two principal Lie algebroid connections and denote by a € Q} (M, ad(P))
a uniquely determined 1-form satisfying that w, — wy = ix(ca). Then the COIreSpondmg induced
L-connection V, V' on the associated vector bundle E = P x¢ E are related through

=0
=P~
=A™
=P~
=P

1

V' =V —p, (3.20)

where p’: g — End(E) is the derivative of the representation p: G — GL(E).

Proof. Using the definition of the induced L-connection, we obtain

Vis = 21 (7F (w,(€)2(5))
= ( TP(wn(é)H*(a)( £))2(s)
BTF (wn(€))8(s)) + &7 12T (14 () (§))2(5))
_vgsw L(@TF o) (a(é))@(s))
= Ves + @7H((j 0 @77®)(a(€))2(5))
= Ves — 07 (0 (@7 (A£)))2(5))
= Ves — (Pa8)(6)
found how the induced L-connection changes. )

and assume that a € Q% (M, ad(P)). Because
(dw, ix()) = 0. Therefore there exists a unique

hence we have

Let 1 be a principal Lie algebroid connection
p.oi. = 0, after an easy computation we obtain p.

Be Q’E‘Ll(]u, ad(P)) such that i.(58) = duo, e (@0)-
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We can write

(di*(a))(ﬁo, GiEC »Ek) = Z (—l)”ji*(a)([fi,fj], T »éia Do ’éj, tiowm ,fk)
0<i<j<k

= Z ('_1)i+ji*(a([§i7§j]a""éia"'aéj""agk))-

0<i<i<k

Further we have

k

7" ((adu,ix()) (0, - €)) = D (1T ([wy (&), inl) (E0s - -, E)])

1=0

k
=D ()@ (wn (&), ®TF (in(@) (o, -, iy, )]
1=0

k

= (vl)i[nfﬁ((I)Tpoi*)(a(fm'"’éia--"gk))]

(—1)[n&i, ( 0 F"®) (o, ..., &y - - . E1)))]

It
- M- §

(_I)L]((T]él)((ppxg(a(é()v cen 3513 ce 75/6))))

This can be rewritten as

Pl

(=1)((@T") ™ 0 i) (€N (@T 7B (o, -, iy -1 Ek))))

(]

(adw, iu())(So, -1 &k) =

=0

(=1) (i 0 (7% ") (&) (@7 *¢ (s - -, &ir - - €k))))

~

k
>
i=0
k
= (=D)AL (@79 T (ne) (@7 (lCos -1 &ir- -1 Ek)))))
=0
k
S~ (VeolCos - a5 68))-

(s (0)) €01 €)= (8o (@) (01 1 &) + (din(@)) (6o &)
k ~
= Y (D iu(Vealbor- - v )
=0
+ Y Dl b E))
0<i<j<k

= i*(dva)(§0, e 3 )gk)a

therefore we have

Ay in(@) = i4(d%0)

for a € Q% (M, ad(P)).

(3.21)

Let  and ' be principal Lie algebroid connections on a principal fiber bundle (P,p, M, G)
for a Lie algebroid (L — M, [-,],a). Then there exists a unique a € Q} (M, ad(P)) such that
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w' —w =1,(a). From Lemma 24 we have

Qe =Dy + dy, () + % fiula), i)

but from the previous result we obtain

1
Qy = Qy +iu(dVa) + 5 ([ al) = +ix(dVe + ! a, al).

51
Therefore, if we fix some flat connection form wy € H(P, L), then we may write
1

H(P, L) = {wo + i(); a € Q} (M, ad(P)), d%a + z [a,a] = 0}. (3.22)
This description, similarly as in the case of A(P, L), will allow us to define Sobolev completions
of H(P, L).
3.2 Group of gauge transformations
Let (P,p, M,G) be a principal fiber bundle with the principal right action r: P x G — P, then a

principal fiber bundle homomorphism is a smooth G-equivariant mapping ¢: P — P, i.e., pord =
r9 o for all g € G. Then obviously the diagram

p—*% .p

M— M
¥

commutes for a uniquely determined smooth mapping p: M — M. For each z € M the mapping
£r = \p,: Pr — P, is G-equivariant and therefore a diffeomorphism. If we denote by Aut(P)
the group of all G-equivariant diffeomorphisms ¢: P — P then the previous diagram commutes for
a unique diffeomorphism : M — M. Hence we have a group homomorphism from Aut(P) into
the group Diff(M) of all diffeomorphism of M. The kernel Gau(P) of this homomorphism is called
the group of gauge transformations. Thus Gau(P) is the group of all G-equivariant diffeomorphism
¢: P — P satisfying p o ¢ = p. Therefore we get the following exact sequence

{e} — Gau(P) — Aut(P) — Diff(M) (3.23)

of groups.
Furthermore we define the Lie algebra of infinitesimal gauge tmnsformatzons gau(P). As a
vector space it is the vector spaces of vertical G-invariant vector fields Xyere(P)C, while the Lie

bracket is the Lie bracket of vector fields.
The group of gauge transformations and the Lie algebra of infinitesimal gauge transformations
can be described by another equivalent ways. If we denote by

AdP=PxgG (3.24)

the associated bundle for the action of G on itself given by the conjugation then sections of this
bundle can be identified with the space
C=(P,G)¢ = {f € C®(P,G); f(u.g) = conjg-1 f(u)} (3.25)

which is a group under pointwise multlphcation. If can be identified with the group Gau(P).
For ¢ € Gau(P) we define f, € C*(P, G)¢ by fp = 7o (idp,p), where 7: P xp P — G.
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Then f,(u.g) = 7(u.g9,0(u.g)) = g7 .7 (u, o(u)).g = conj,—1 fo(u), thus f, is G-equivariant. If
conversely f € C®(P,G)¢ is given we define ¢f € Gau(P) by ps(u) = u.f(u). Because py(u.g) =
u.g.f(u.g) = wg.97 . f(u).g = @f(u).g, we indeed get s € Gau(P). These two constructions
are inverse to each other since f, (u) = 7(u,f(u)) = 7(u,u.f(u)) = 7(u,u).f(u) = f(u) and
01, () = u.folu) = wr(usp(u)) = olu).

Now let £ € Xyert(P) = (P, VP) be a vertical vector field then there is a uniquely determined
mapping fe € C*°(P,g) via {(u) = Tory.fe(u). The mapping fe is G-equivariant if and only if

Toru-fo(u) = €(u) = ()" €)(w) = Tugr® ™ £(ug)
= Tougr? Torug fe(ug) = To(r? " oryy).fe(u)
= Te(ry o conj,). fe(u) = Tery. Ad(g). fe(u),
Le., if and only if € € Xyer(P). Therefore we have the following isomorphism
Gau(P) ~ C®(P,G)% ~ I'(M, Ad(P)) (3.26)
of groups and isomorphism
Zyert(P)€ ~ C®(P, g)% ~ T(M, ad(P)) (3.27)

of Lie algebras.

Let p: G — GL(E) be a representation of the structure group G on a finite dimensional vector
space E. If E denotes the corresponding associated vector bundle P x E then there is a natural
left action of the group of gauge transformations Gau(P) on the vector space Q% (M, E).

Consider a gauge transformation ¢ then there exists an isomorphism ¢g: E — E of vector
bundles over M covering the identity on M defined by the following diagram

w Xidg

PxXxE——PxE

£ E

¥E
which in a unique way determines yg. This gives a left action of Gau(P) on QF (M, E) through
(pw(w))(flv"'agk) :SOEOw(glv"-vfk)a (328)

where &1,...,& € X.(M). This action can be described otherwise. If ®: I'(M, E') — R P EE
denotes a C>®(M,R)-module isomorphism then for any ¢ € Gau(P) and s € I'(M, E) we have
®(s) o=t € C°(P,E)€. Furthermore from the following commutative diagram

™! p (idp,®(s)) PxE pxidg PxE

P

X
|
q
/
E

K] P

E

/\/f——i—”f

|
P
J
M
dum

we get ®(pg o s) = P(s) o o~ 1. Therefore the action (3.28) can be rewritten as

(P @) (€L -, &) = BT (@W (&1, -, &) 097" (3.29)
= &7 (p(90)2(w(E1s-- -1 8k))) (3.30)
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where in the last equality we used the fact that ®(s) o ™! = p(g,)®(s) following using the
G-equivariance of ®(s) and the definition of g,,.

If p': g — End(E) denotes the corresponding representation of the Lie algebra g then for any
7 € QF (M, ad(P)) we define a graded Q3 (M)-module homomorphism pr: Q3 (M, E) — QL (M, E)
(so that pf (@ Aw) = a A (—1)de8(M) des(w) i/ () for o € Q7 (M) and w € Q} (M, E)) by

(p;(w))(&l, o2 €pyq)
1
= a1 2.58n(0) - 2 (P (@7 (T(Er )y o)W rnys - orra)))s (3:31)

where £1,...,6p+q € X (M). In case p’ = ad then this gives the structure of a graded Lie algebra
on 9 (M, ad(P)). Because the Lie algebra I'(M,ad(P)) = Q9 (M, ad(P)) is isomorphic to the Lie
algebra of gauge transforamtions gau(P) then (3.31) is a representation of gau(P) on Q3 (M, E).

Further we define a left action of the group of gauge transformations Gau(P) on Q¥ (M, A(P))
via
(Ady(w)) (€1, - -+, €k) = pxow(ér, .-, &k), (3.32)
where £1,...,& € X (M).
Lemma 27. For any gauge transformation ¢ € Gau(P) we have
Ad, 04, = i, 0 Ad,,, (3.33)
where i.: Q% (M,ad(P)) — Qf (M, A(P)).
Proof. For any w € Q% (M, ad(P)) we have
(Ady(Gu(@))) (€15 - -1 &k) = Px 0 i (W) (€15 -, Ek)

= (®TF) 1@ (pu 0 (in(w)(€1y - - -, Ek))))

= (®TF) (@7 (6u (W) (€1 - -, €k)))

= (®TF) e (@7 0 i) (W (61 k)

= (@TF) 1 (Tpo ((jo @) (w(rs-- &) 0 ™)

= (®TP) (@7 *% (w1, -, &k)) 0™ h))

= (®TP) 71 (j(@F*8(pg 0 (&1 - - Ek))))

= (@TF)~1((@TF 0in)(pg ow(€r,- -, &)

= (Z*(Adip(w)))(glv ?§k),
therefore we are done. [ )
3.3 Geometry of principal Lie algebroid connections
Let (L — M,[-,],a) be a Lie algebroid and consider a principal Lie algebroid connection n: p*L, —

TP with the connection form w,. For any gauge transformation ¢ € Gau(P) we define a homo-

morphism n¥: p*L — TP of vector bundles over P covering the identity on P by the following

commutative diagram

N o —1
oL —* > p'L —2 TP Y > TP

P,

p———>P——P

idp gp“l
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where ¢ = ¢ Xiq,, idr: P x5 L — P %7 L. Because

Tpon? =TpoTp lonop=T(pop )onop=Tponop=aopop=aop,

so n¥ is a Lie algebroid connection. Moreover we have

1

Trion? =Tr90Tp tonop=To ltoTrionop=Tp lonorfop

=Tp lonopord =nfoid

hence n¥ is a principal Lie algebroid connection. It is easy to see that the corresponding connection
form is

Whe = o to W (3.34)

where ¢, = (Tp)®. Therefore we can consider a natural right action of the group of gauge
transformations Gau(P) on the space A(P, L) of connection forms given by

(w,0) > w-p=p;ow=Ad,-1(w). (3.35)
Remark. It would be possible to define a left action instead of a right action by
(p,w) > p-w=p,ow = Ady(w) (3.36)

but it has no essential meaning.

Let ®: T'(M, A(P)) — X(P)¢ be a C>°(M, R)-module isomorphism given by Theorem 2. Fur-
ther consider s € ['(M, A(P)) and ¢ € Gau(P). Because (r9)*(¢~1)*®(s) = (¢~ 1)*®(s), i.e.,
(p~1)*®(s) € X(P)¢ and

(10(4,9—1)*(1)(8)=qOTgOO‘I>(S)O(,D—1:(p*Oqu)(S)O(p—l:gp*o.sopogo—lz(p*ogop,

thus ® (. 0 s) = (¢~ 1)*®(s). Now let 51,52 € ['(M, A(P)) then
[‘P* o 31790* o 82] = (I)—l([(b((p* © 81)7 (I)(QD* o 32)]
=7 ([(7 1) B(s1), (97 1)* B(s52)]
=7 (™) ®([s1, 52]))
= Px © [31752}
and because p. © Q. = Px, SO Py A(P) — A(P) is an isomorphism of the Atiyah algebroid.

Lemma 28. Let 7 be a principal Lie algebroid connection on P with the connection form w, and
the curvature form §2,,. Then we have

Qe = Ady-1() (3.37)

for any ¢ € Gau(P).
Proof. It follows immediately that
Qn*’(fbf?) = [wn\"(fl)vwn“’(&)] - Wn“’([fbfz])
= [pr L owy(€r)s oyt own(€2)] — 9 o wy([€1, &2])
= ‘P:l ° ["‘)n<§l)vwn(f2)] - ‘P;—l Own([gl,fﬂ)
= ;' o Qy(&1,62)

for all £1,& € X (M). So we are done.
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Because H(P, L) is invariant under the action of Gau(P), as it follows from Lemma 28, we
have the action of Gau(P) on the space of flat connection forms 3 (P, L). Therefore we define the
moduli space

B(P, L) = AP L)[Gay(P) (3.38)
of gauge equivalence classes of connection forms and the moduli space
M(P, L) = FUP L)/qau(p) (3.:39)

of gauge equivalence classes of flat connection forms.

Theorem 16. Let n and ny be principal Lie algebroid connections on a principal fiber bundle
(P,p, M,G) for a Lie algebroid (L — M, [-,],a). Further consider a gauge transformation ¢ €
Gau(P). Then there exists a uniquely determined o € Q}(M,ad(P)) such that wye — wy, =
i.(a¥) and is given by

a¥(€) = —(@7) T (50 (277 (wnil€)))) + g © (8), (3.40)

where 6 € Q'(G, g) is the Maurer—Cartan form of the Lie group G, o € Q} (M, ad(P)) and satisfies
Wy — Wy = ().

Proof. We can write
Waye = 90:1 o ((“)770 + i*(a)) = 90:1 0 Wny + @« 0 i*(a)
= o owny +ix(pg 0 Q).

Further from the previous we know that ¢! o w,, can be written as w,, + i.(3) for a uniquely
determined 3 € Q! (M, ad(P)). We have

o7 own(€) = (BTF)TH@TP (9! ownl€)))

= (@T7) 7 (" (@7 (wnil€)))

= (®TP)"H(Tp ™" 0 @TF (wyyf€)) © ).
Furthermore if & € X(P)¢, then we get

(™€) (w) = Tppuy e~ E(p(w) = Toquyp ™" £(u-go(w)) = Tpyp ™" Tur® ™ £(u)
but because ¢ = 7 o (idp, g,) We obtain
T = Thu o )" © Tulidp, 9p) = Tur®e™ o Tuidp + Ty, 7w © Tugy-

Therefore we have

(&) (u) = Tga(u)@—l.ﬂﬂ‘g“’(u).f( )
= tp(u)@_l.(Tu(P - T o (u)Tu OTugw) é( )

= £(u) = Tpw? " TowTu-Tude-E(w)
=€(u) — Ty, )( “lory).Tuge&(u)
= £() — Ty ) (Tu © Xgz1(uy)- Tugio-E(w)
=§(u) = Ter Tgv(u)’\ 2 () Tuge-€(u)
= £(u) — Teru-6"" g £(u).

_Cartan form of the Lie group G, then for £ € X(P)¢ we get

(7€) = € — 5({g50)(€))-

Denote by 6 € Q}(G, g) the Maurer
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I we get this together we obtain

(

07 owny(€) = (BTF) T (" (TP (wno(6))))

)"H®TE (wnl€)) — 3 ((g50)(BTF (wno(€)))))
o(€) = (@TFY 1 (5((930) (2T F (wnol€)))))

o(€) = (ix 0 (@7X) TN ((g50)(BTP (wno(€)))),

thus we are done. a

— (HTP
_ (aTP

(

®
0]
n
n

Lemma 29. Let 1 be a principal Lie algebroid connection with the connection form w, and let
¢ € Gau(P) be a gauge transformation. Then for n and n® we get induced L-connections V and
V¥ on the associated vector bundle F = P xg E related by

V¢ =g o Ve o, (3.41)
where £ € X (M) and gg: E — FE is a uniquely determined homomorphism of vector bundles via
go (¢ xidg) = progq.

Proof. Denote by ®: I'(M, E) — C*(M,E) a C*(M,R)-module isomorphism then we get
®(s)) = 1@ (o5 o wn(€))2(s))

B(s) o) 0 p)

®(pg 0 5) 0 )

wy(£))® (g © 3))

3

Vs = @71 (®TF (wne(€
=0 H(®TF (wy(€)
=&~ (@ (wy(€)
_ (pil O®—1(@TP
Z%El oVe(peos

)
)
)
(
)
therefore we have obtained the transformation rule for the induced L-connections. o

3.4 Holonomy

Let (P,p, M,G) be a principal fiber bundle and let (L X M, [,],a) be a Lie algebroid. Consider
a principal Lie algebroid connection n: p*L — TP with the connection form w, € Q} (M, A(P)).

If a: [0,1] — L is an L-path with the base path ~: [0,1] — M then for any up € Py(o) there
exists a unique horizontal lift 5: [0,1] — P of a satisfying the system

F(t) = n(F(t), alt)), (3.42)
7(0) = uo. (3.43)

10]. It is easy to see that v = po ¥, i.e., 7 is a lift of v to P. Therefore we

For the proof see | ‘
called the parallel transport along o with respect to the

can define a mapping Po: Py0) — £5(1)» :
connection 7, as follows. If ug € Py(0) then we define

Pa(uo) = (1), (3.44)
where 3(#) is the unique horizontal lift of a(t) withj(()) = uo- . . .
Let /7y(':)[0, 1] — P be a horizontal lift of & then ¥9 =719 07: [0,1] — P is also a horizontal lift
of . because
4 F9(t) = Tro A (t) = Tron(F(t), o) = n(F(t).g,a(t)) = n(¥4(t), a(t)),
dt

where we used the fact that 7 is G—equivaiiant, ie., Tr
then 390) = uo.g and we get P.(uo.9) =7%1) = r9(3(1)) =

PaOT‘q:T‘qOPay (345)

90n=mnord. Now assume that 5(0) = ug
P,(up).g. Thus
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i.e., Pa: Pyo) = Pyq) is a G-equivariant mapping and therefore a diffeomorphism.

Consider a diffeomorphism 7: [0,1] — [0,1] and an L-path a: [0,1] — L with its reparametriza-
tion given by a’(t) = 7/(t)a(7(t)). Further if ¥: [0,1] — P is a horizontal lift of & then 3™ = o 7
is a horizontal lift of ", because

d _ 2
3 /@) =) = Tt)nGF(r (1), a(7(1)) = n(F(t), (1))

Now suppose that 7(0) = 0 and 7(1) = 1, i.e., 7 is an orientation preserving diffeomorphism. In
case Y(0) = up then ¥7(0) = up and we have

Par(uo) =77(1) = (7(1)) = ¥(1) = Pa(uo).

On the other hand if 7(0) = 1 and 7(1) = 0, i.e., 7 is an orientation non-preserving diffeomorphism
then provided that ¥(0) = up and F(1) = u; we get

Por (u1) = 77(1) = F(7(1)) = 7(0) = uo = Py *(w1).

Because P, is a bijection, so P,» = P;!. For any L-path o we will denote by & an L-path defined
by @&(t) = —a(1 — t). From the previous we have Py = (Py) L.

Further if crg and o are composable L-paths, i.e., 7(ap(1)) = m(a1(0)), and a = a; - ap, then
P, = P,, o0 P,,. Let ¥y be a horizontal lift of ap with 40(0) = uo and 71 be a horizontal lift of a;
with 31(0) = Jo(1). Then ¥: [0,1] — P defined by

St = {%(21&) for 0

Lt
AT(2t —1) for 3 <t <

is a horizontal lift of @ = a1 -ap = o] ®af, where 7 is any cutoff function. Because ¥(0) = ¥5(0) =
ug, SO

Pyo(ug) = 5(1) = F1(1) = Pay (71(0)) = Pay (30(1)) = Pay (Pe (u0)-

Moreover we see that P, does not depend on a cutoff function 7.

An L-path o for which the base path v is a loop based at z, i.e, z = 7(0) = (1), will be
called an L-loop based at z. For any L-loop « based at x we have a G-equivariant diffeomorphism
170: Px —> Pr 5

For fixed zo € M we define the holonomy group Hol(n, z0) C Diff(Px,) as the group of all
P,: P,, — Py, for a any L-loop based at zo. If we consider only those L-loops which are L-
homofopic to the constant trivial L-loop 0g, based at Zo then we obtain the restricted holonomy
group Holg(n, o).

Let us fix up € Py, then the elements 7¢(uo, Pa(uo)) € G for all L-loops based at zo form

a subgroup of the structure group G. We will denote it by Hol(wy, uo) and call it the holonomy

group. Restricting only to the L-loops which are L-homotopic to the constant trivial L-loop O,

we get the restricted holonomy group Holg(wn, uo).

Theorem 17. Let (P,p, M, G) be a principal fiber bundle and (L = M, |-, ], a) be a Lie algebroid.
Consider a principal Lie algebroid connection 7 and fix o € M and up € Py,.
i) We have an isomorphism Hol(w,, o) — Hol(n, zo) given by

g— (ur fo(u) = ug.g.7¢ (uo,u)) with the inverse frgr= 7% (uo, f(uo))-

Wy, o) and Holo(wy, ug.g) = conj,—1 Holo(wy, up).

b W wa.q) = conj,—1 Hol(
ii) We have Hol(wy, uo g) = conjg-1 o Polm)) = Holo(w o) for each L-path

iii) We have Hol(wy, Pa(uo0)) = Hol(wy, uo) and Holo
a with m(a(0)) = 2o -
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Proof. 1) If g € Hol(wy, uo) then there exists an L-loop « based at xg such that 7€ (ug, Pa(to)) = g
or in other words P, (up) = ug.g. Because P, is G-equivariant, we get Py (u) = Py (uo.7¢ (uo, u)) =
P, (u0).mC (ug,u) = u9.9.7%(ug,u) = fo(u). Further it is easy to see that g — f, is a group
homomorphism. The rest of the proof follows from the definition of Hol(wy, uo) and Hol(n, o).
ii) This follows from the properties of the mapping 7¢ and from the G-equivariance of the parallel
transport. Since we have

7% (u0.9, Pa(110.9)) = 7% (10.9, Pa(u0).g) = 977 (uo, Pa(u0)).g.

iii) Denote u; = P, (uo), then by definition g € Hol(w,,u;) if and only if g = 7€ (u;, Ps(u1)) for
some L-loop (3 based at z; = 7w(a(1)) = p(u1). Moreover we have
Pa(uo.9) = Pa(uo).g = u1.9 = Pa(u1) = Ps(Pa(uo)),
ug.g = ((Pa) ™' 0 Pg 0 Py )(uo) = Pa-p-a(uo)
and this is equivalent to g € Hol(w,, up). Furthermore 8 is L-homotopic to the trivial constant

L-loop 0, based at z; if and only if & - 3 - o is L-homotopic to the trivial constant L-loop 0,
based at z,, so we also have Holp(wy,, Pa(uo)) = Holp(wn, uo). '

Lemma 30. Let ¢ € Gau(P) be a gauge transformation and a be an L-path. If P? and PJ°
denotes the parallel transport along o with respect to the connection 7 and 7¥ then

@1y © P1” = P o 0y, (3.46)

where « is the base path of a.

Proof. Let 5 be a horizontal lift of a with respect to the connection n then 7% = plo¥isa

horizontal lift of o with respect to the connection 7%, as
L FAt) = Te~ L 4(t) = T~ " (A1), at)) = (Te ™ ono @)(¢™ (7(t), alt) = ¥ (F¥(t), a(t)).
Therefore in case ¥(0) = ug € Py () we have

(97 0 PN (uo) = 97" (F(1)) = F41) = PI"(340)) = PI"(¢ ™ (wo)) = (P 0 @ p)) (o),

thus we are done. 'y

From now on we will assume that (L = M, [-,-],a) is a transitive Lie algebroid, i.e., a: L —
TM is surjective, and that M is a connected manifold. Then M is an orbit of L, i.e., for any two
points z,y € M there exists an L-path a, with base path v, such that v(0) = z and y(1) = y.

Let (P, p, M,G) be a principal fiber bundle and zo € M. Then we consider the group Gau,(P),
called the restricted group of gauge transformations, of those gauge transformations which are
the identity on P,,. It is easy to see that this group is a normal subgroup of the group of
gauge transformations Gau(P). Further for any uo € P,, we define a group homomorphism

Ayt Gau(P) — G by
Mo () = 76 (w0, 0(0)) = g (wo)- (3.47)

Because A, is surjective, we get an exact sequence
/\U.
{e} — Gaugy(P) — Gau(P) — G — {e} (3.48)

of groups. Hence we have an isomorphism Gau(P)/ Gaugy(P) =~ G of groups.

Now we take up the question of reducible connections. Given a principal Lie algebroid connec-
tion 7 then the stabilizer or the isotropy subgroup of n is the subgroup Gau(P), of Gau(P) that

leaves 7 fixed, i.e.,
Gau(P), = {y € Gau(P); n-¢ = n}- (3.49)
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Denote by Z(G) the center of the structure group G. Then for any h € Z(G) we have r* €
Gau(P) and because 7 is G-equivariant we obtain 7* € Gau(P),,. Therefore any isotropy subgroup
Gau(P), contains the subgroup isomorphic to Z(G).

Definition 20. A principal Lie algebroid connection 7 with the connection form w,, is called
irreducible, if Gau(P), = {r"; h € Z(G)} ~ Z(G), otherwise 7 is called reducible.! Further we
will denote the set of all irreducible connection forms by A*(P, L) and the set of all irreducible flat
connection forms by H*P, L).

Lemma 31. The restricted group of gauge transformations Gau,(P) acts freely on the space of
connection forms A(P, L).

Proof. Let n be a principal Lie algebroid connection and consider ¢ € Gau,,(P) satisfying n¥ = 7.
Because M is an orbit of L, for any € M there exists an L-path a such that 7(a(0)) = zo and
7(a(1)) = z. Using Lemma 30 we obtain

waPQZS%OP&'v:PgO%O-

Therefore we have ¢, = P o @, o (P1)~! = P1o (P1)~! =idp,, because p;, = idp, . Thus we
have proved that ¢ = idp, hence Gau,(P) acts on A(P, L) freely. &

Theorem 18. Let (P,p, M,G) be a principal fiber bundle and (L = M, [-,-],a) be a Lie alge-
broid. Consider a principal Lie algebroid connection 1 and fix ug € Pg,. Then A,,: Gau(P), —
Zc(Hol(wy,u0)) is a group isomorphism.

Proof. First we prove that \,,: Gau(P), — G is injective. Consider @1, p2 € Gau(P), such that
Auo (P1) = Aug(p2). Because /\uo(gol_l o @y) = e, using exactness of the sequence (3.48), we get
o1 o gy € Gaug(P). Furthermore we have 7 - (p7' 0 p2) = n, but from Lemma 31 we know
that Gau,,(P) acts freely on A(P, L) hence @7t ops = idp. Thus Ay, restricted on Gau(P), is
injective.
Now for any g € Hol(wy, uo) there exists an L-loop « based at zo satisfying P (up) = uo.9.
In case ¢ € Gau(P), then from Lemma 30 we obtain @z, 0 P} = PJ 0 @y, Therefore we
have (2, 0 P7)(uo) = ¢(u0.9) = @(10)-9 = 0-Muo().g and (P © ¢u,)(uo) = P(uo-Aue(0)) =
0.g-Au, (¢). Because the principal right action G on P is free, from ug. Ay, ().g = Q-G Ay, () We
obtain Ay, (©)-9 = g-Muo (@), 1€, Ao () € Zg(Hol(wy, up))- .
To prove the whole statement we need to verify that for any g € Zg(Hol(wy,u0)) therc? exists
» € Gau(P), satisfying Ay, () = g. First we define ¢z, Poy — Prg by ¢z (u) = 0.9.77 (uo, )
for any u € P,,. Because @, is G-equivariant, we have ¢, € Diff(P,). Further for any
r € M there exists an L-path a such that 7(a(0)) = 2o and m(a(l)) = z. Hence we define
0z Py — Pp by oz = Plowg, o (P(?)—l. It is easy to see that ¢, is G-equivariant and. thus
p. € Diff(P,). But we need to verify that this definition of ¢y does not depend on t:he. choice of
an L-path form o to . Thus let 3 be another L-path satisfying 7(8(0)) = zo and m(5(1)) = x.
Then P70 @y, 0 (P1)™! = Pjo gy, © (Py)~" if and only if @z, 0 P 3 = P, 50 ¥z, Because
P! . € Hol(n, z9), we have P 5(uo) = ug.h, where h € Hol(wy, uo). Further for any u € Py, we
may write
&
(‘P.T-o 2 Pg, )(u) = (‘Pxo o P‘;'.B)(uo.TG(Uo,’UJ)) = ((’0‘7'0 (Pgﬁ(uO)))T (uo,u)
= (cpmo(uo.h)).TG(uo,u) = ug.9.h.7¢ (ug, u)
= ug.h.g.7% (uo, u) = (Pg.g(uo-g))-TG(onu)
7 G
= (Pg.ﬂ 2 9%0)(“)7

Thence we have constructed a G-equivariant mapping

; 0.: P. — P, is well defined. .
g to verify that ¢ is a diffeomorphism.

©: P — P such that pop =p- We have

ometimes used only for connections with maximal holonomy; such

11 the literature the them Yirreducible’ 1s S
connections have in particular a trivial stabilizer.
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Let (Ua,®a) be a principal bundle atlas for P with transitions functions @as: Usg — G
and assume, by shrinking U, if necessary, that U, are contractible. Consider the local sections
Sq € I'(Uq, P) given by ¢4 (sq(z)) = (z, ). Because for z € Uap we have

Sa(Z).pap(z) = apgl(x,e).apo,g(x) = w;l(ac, e.pap(x)) = cpEl(:c, e) = sg(x),

thus so.9a3 = s3. Further for p, 0 po cpglz Uap X G — Uyp X G we can write

(a0 owzh)(z,g) = (vaop)(e;'(2,€).9) = (Yo © ¢)(s8(z).9) = Palp(ss()).9)-

Therefore to prove the smoothness of ¢ it is enough to show that ¢ o s, is a smooth local section.
Now fix z € U,, because U, is contractible, thus there exists a smooth homotopy v: [0,1] x Uy, —
Uq such that v(0,y) = y and ¥(1,y) = z for all y € U,. Since a: L — TM is surjective, there
exists a smooth mapping a: [0,1] x U, — L satisfying

afalt,9) = 3 1(t.y),

i.e., a(-,y): [0,1] — L is an L-path with the base path ¥(-,y): [0,1] — M such that 7((0,y)) =y
and m(a(1,y)) = z. Further there exists a unique horizontal lift 7: [0, 1] x Uy, — P satisfying

%(t, y) =n(3(t, v), alt,y))
’7(0,;1/) = Sa(y)'

Now let 3 be an L-path from zo to z. Thus for any y € U, we can write

¢y:P£yoPgowrooPgoP2y ZngOgonP;’y

and we obtain

(9 0 50) () = 0y (5a(y)) = (Pay 0 9z 0 Py )(sa(y)) = (Pav © 0z)(¥(1,9))
= P2,(3(1,9)).7¢ (L, v), o= (3(1, )
=5(0,9)-7¢ (71, 9), ¢=(3(1, 1))
= 54(4).-79(F(L, 1), 0= (3(1,9))-

Because ¢,: P, — P, is a smooth mapping, s0 ¢ 0S4 is also smooth. Therefor'e we have ?rove
the smoothness of . As ;1 = Pgy © ¢z 1o PJ,, by the same argument we obtain that ¢ ™" 0 sq
is smooth since ;! is a smooth mapping. Therefore we have ¢ € Gau(P).

From the definition of ¢ we get Ayy(p) = 76 (uo, p(up)) = TG(z.Lo,goxo(uo)) = g. The last
step is to verify that n¥ = n. For any z € M and & € L, there e?usts an L—pathwa such that
7(a(0)) = zo, m(a(1)) = z and a(1) = &. From Lemma 30 we obtain that @, o PJ" = FJ o ¢z,

but using the definition of ¢, we have @z o Pl = Pg 0 ¢z, therefore we obtain
P =Pl

Further for any u, € P; there exist a unique Uz, E. Px'o an~d a unique horizental lift 7, 7, of
the L-path a with respect to 7, n¥ respectively satisfying ¥(0) = ua, a:d T (0) = Uz Llft
to € (0,1] and define a mapping 7: _0,‘1] - {0,13)] by T(t)~7_= tot. Ther;la ;T[O,Avlr] = thlyen t){
a(t) = too(tot) is an L-path. If we define ¥ =907 ajd Yo =V OT Efn U 15 a O}flzon ;
lift of a™ with respect to 7, n¥ respectively such that ¥7(0) = ug, and 7(0) = ug,. Furthermore
because

%]
7
Pg‘r =Pa71
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we get Y(to) = ¥7(1) = F7(1) = F,(to) for any to € (0,1]. Moreover we have 7(0) = 7,(0), thus
we get ¥ = v, which implies

or in other words

n(7(t), a(t)) = NV (t), alt)) = n*(3(2), o(2))

for all t € [0,1]. In case t = 1 we get n(uz, &) = n¥(ug, &), where u, = J(1) and &, = a(1).
Because u;,{,; were arbitrary we have proved that n¥ = n. [

Let n be a principal Lie algebroid connection such that for some (equivalently any) ug € Py,
we have Hol(wy,,uo) = G. From the previous theorem we obtain an isomorphism between the
isotropy group Gau(P),, and Zg(Hol(wy,u0)) = Zg(G) = Z(G) given by Ay, (¢) = 76 (uo, ¢(uo)).
Because {r"; h € Z(G)} C Gau(P), and A, ({r"; h € Z(G)}) = Z(G), thus we get Gau(P), =
{r*; h € Z(G)}, i.e., n is irredicible.

For example if G = SU(2) then the possibilities for the holonomy group are following. First,
the holonomy group can be SU(2) or SO(3). In both cases the centralizer is equal to the center
Z(SU(2)) = Zy. Secondly, the holonomy group may be U(1) and the centralizer is isomorphic to
U(1). Finally, the holonomy group may be trivial hence the centralizer is equal to SU(2).

Remark. From the fact that Gau(P),. = conj,-1 Gau(P), for any gauge transformation ¢ and
any principal Lie algebroid connection 7, it follows that A*(P, L) is invariant under the action of
Gau(P) and the same for H*(P,L). Therefore we may define, similarly like in (3.38) and (3.39),
the moduli space

B(P,L) = AP L) [Gay(P) (3.50)
of gauge equivalence classes of irreducible principal Lie algebroid connections and the moduli space
M(P, L) = WP, L) [Gay(P) (3.51)

of gauge equivalence classes of irreducible flat principal Lie algebroid connections.

Remark. If we define the reduced group of gauge transformations Gau(P)" by
Gau(P)" = Gaw(E)/(ph. e 7(G)}s (3.52)

then the right action of Gau(P) on A(P, L) factors trough an action of the reduced group of gauge
transformations Gau(P)" since {r"; h € Z(G)} acts trivially on P(E,L), similarly for H(P, L).
The set A*(P, L) of all irreducible connection forms is the maximal subset of A(P, L) on which the
reduced group of gauge transformations Gau(P)" acts freely, likewise for H*(P, L).



Conclusion

It seems that Lie algebroid connections on fiber bundles, in particular on vector bundles and princi-
pal fiber bundles could have very interesting applications in mathematics and physics. Something
was already outlined in the introduction. We sketch one remarkable generalization of the well-
known fact for Lie algebroid connections which could be the next step in the subsequent work.

The twenty-first on the list of twenty-three problems presented by David Hilbert in 1900 was the
proof of the existence of linear differential equations having a prescribed monodromic group. By the
monodromy group of a linear differential equation we get a representation of the fundamental group
of the base space. The problem asks for it converse: for any representation of the fundamental
group, is there an ordinary differential equation (with regular singularities) whose monodromy
representation coincides with the given one? (There exists several points of view in formulating
this problem more precisely.) This problem is commonly called the Riemann—Hilbert problem.

A generalization of this problem to higher dimensions is called the Riemann-Hilbert correspon-
dence. Let X be a connected compact manifold and let G be a Lie group. A G-local system on
X is a principal fiber bundle (P, p, X, G) with a flat principal connection w. To any flat principal
connection w on P we can assign, using the Ambrose-Singer theorem, a group homomorphism
m1(X,z9) — G. This is the monodromy representation given by the parallel transport. If we
denote by Locs(X) the moduli space of G-local systems on X we get an isomorphism

Hom(m, (X, z0),G)/G ~ Locg(X),

called the Riemann-Hilbert correspondence. The moduli space on the left hand side is called
the character variety. There is now a modern (D-module and derived category) version of the
Riemann-Hilbert correspondence, see {41], [42], [43], [44] and [45]. This correspondence has many
applications and plays a significant role in the geometric Langlands program.

For a principal Lie algebroid connection on a principal fiber bundle we can define the parallel
transport and the holomony group as we saw in Chapter 3. A natural generalization is to replace
the right hand side of this correspondence by Locé(X ) the moduli space of G-local systems on
X for a fixed Lie algebroid L. A G-local system on X for the Lie algebroid L is a principal
fiber bundle (P, p, X,G) with a flat principal Lie algebroid connection 1. The left hand side then
should be replaced by equivalence classes of homomorphism from G%(zg) — G, where G is a Lie
groupoid over X associated to the Lie algebroid L, the so called Weinstein groupoid, and G (zo)
is a group over the corresponding point, see [46], [47].
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