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Introduction

The topic of this thesis lies on the crossroad of mathematics (geometry) and theoretical physics
(quantum field theory, string theory). Theories arising on the interface of these two sciences always
contribute significantly to development of both fields. As an example, we can mention mirror
symmetry or geometric Langlands program. Both themes are at present very active research
areas, which may bring interesting and surprising results.

The main theme is a study of Lie algebroid connections on fiber bundles, in particular, vector
bundles and principal fiber bundles, and a description of the moduli space of gauge equivalence
classes of flat linear Lie algebroid connections on a real or complex vector bundle over a connected
compact manifold for a wide class of Lie algebroids. The special case of this moduli space is the
moduli space of flat linear connections on a vector bundle over a connected compact manifold and
the moduli space of holomorphic structures on a complex vector bundle over a connected compact
complex manifold. These two examples playa very important role in geometry and quantum field
theory, therefore we describe them later in detail.

The concept of a Lie algebroid was first introduced by Jean Pradines in 1966-68 who, in
series of notes [1], [2], [3], [4], developed a Lie theory for Lie groupoids. The theory of Lie
algebroids got back into the center of interest in the late 1980s with the work of Almeida and
Molino [5] and the work of Mackenzie on theory of connections [6] . These works were devoted
almost exclusively to transitive Lie algebroids, and it was Weinstein [7] and Karasev [8], who
studied non-transitive Lie algebroids. The theory of connections was a strong motivation for the
Mackenzie's approach to Lie groupoid and alegebroid theory. A geometric approach to the theory
of connections on Lie algebroids was worked out by Fernandes in [9], [10]. Representations of Lie
algebroids were introduced first for transitive Lie algebroids by Mackenzie [6], and they appear in
a study of cohomological invariants attached to Lie algebroids. More details on relations between
Lie algebroids and Cartan's equivalence method can be found in [11], [12].

Moduli spaces arise naturally in classification problems in geometry. Typically, one has a set
whose elements represent algebra-geometric objects of some fixed kind and an equivalence relation
on this set saying when two such objects are identical a suitable sense . The problem then is to
describe the set of equivalence classes. One would like to give the set of equivalence classes some
structure of a geometric space (usually of a smooth manifold, a scheme or an algebraic stack). If
it can be don e, then one can parametrize such objects by introducing coordinates on the resulting
space.

The word moduli is due to Bernhard Riemann who used it as a synonym for parameters,
when he showed that the space of equivalence classes of Riemann surfaces of a given genus 9 (for
9 > 1) depends on 39 - 3 complex numbers. This is the reason why the moduli spaces were first
understood as spaces of parameters rather than as spaces of objects.

Vie have many basic but important examples of moduli spaces, e.g. the moduli space of
algebraic curves, moduli space of vector bundles, moduli space of algebraic varieties and many
others. \Ve proceed by describing two cases of moduli spaces in detail as mentioned above.

Given a connected compact manifold X and a compact Lie group G, the moduli space of prin­
cipal G-conncctions on a principal G-bundle P -4 X is the space M(P, G) = ,){(P, G)j Gau(P),
where '){(P, G) is the space of flat principal G-connections and Gau(P) is the group of gauge trans­
formations. The disjoint union of these moduli spaces over representatives for th e isomorphism
classes of principal G-bundles gives the moduli space M(X, G) of all flat principal G-connections
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-- Introduction 2

over X. Holonomy provides a mapping ,]{(P, G) -; Hom(7rl (X, xo), G) which, by Uhlenbeck com­
pactness, induces a homeomorphism

Hom(7rl (X, xo), G) jG ~ M(X, G),

called the Riemann-Hilbert correspondence.
This moduli spac e has a very close relationship to the Chern-Simons theory which is a 3­

dimensional topological field theory. The Chern-Simons theory leads to new topological invari­
ants of 3-manifolds, as was proposed by Edward Witten [13] in the late 1980s. The quantum
Chern-Simons invariants are closely related to the Jones invariants [14] of links which have many
applications in knot theory. These invariants can be approached by defining a vector space H:L
canonically associated to a closed (compact and without boundary) surface 1:. The underlying idea
behind the vector space 'HL is that of geometric quantization of a symplectic manifold M(1:, G).

Consider a complex vector bundle E over a connected compact complex manifold M and
denote by ,]{(M, E) the space of all holomorphic structures on E. Let Gau(E) be the group of
automorphism of E covering the identity on M. Then Gau(E) acts on ,]{(M, E) and we define the
moduli space M(M, E) = ,]{(M, E)j Gau(E) as the space of equivalence classes of holomorphic
structures on E.

The moduli space of holomorphic vector bundles over a connected compact complex manifold
has a very long history. Even the simplest possible case, when the manifold NI is a Riemann
surface, has been studied intensively for a long time. After the classification of holomorphic vector
bundles for genus 0 by Alexander Gronthendieck [15] and genus 1 by Michal Atiyah [16], vector
bundles on higher genus Riemann surfaces have been studied extensively with the fundamental
work of David Mumford [17] and of Narasimham and Seshadri [18], who introduced the concept
of stable vector bundles and constructed the moduli spaces which classify these bundles. In their
theorem Narasimhan and Sashedri identified the moduli space of stable vector bundles over a
compact Riemann surface with the moduli space of irreducible projective unitary representations
of the fundamental group of the surface. More details about the moduli space of holomorphic
structures can be found in [19].

These last two examples of the moduli spac es of flat Lie algebroid connections on a vector
bundle or on a principal fiber bundle over a connected compact manifold show that they have a
fundamental importance both for geometry and for quantum field theory. In fact, there is one
more example of the moduli space of this type which was the motivation for a study of the moduli
space of Lie algebroid connections. It is the moduli space of topological A-branes and B-branes,
see [20].

During last decades, a lot of attention was concentrated to the problem of a unified description
of different geometries. In 2002, Nigel Hichtin [21] introduced a concept of generalized complex
geometry, which was further developed by his students Marco Gualtieri [22] and Gil Cavalcanti
[23]. It contains complex and symplectic geometry as its ext remal special cases. It seems that this
unifying concept of t hese two geometries will play a central role in the understanding of mirror
symmetry [24] and geometric Langlands program [25].

Mirror symmetry is an example of a general phenomenon known as duality, which occurs when
two seemingly different physical systems are isomorphic in a non-trivial way. The non-triviality of
this isomorphism involves the fact that quantum corrections must be taken into account. There
are many forms of mirror symmetry and they are all closely related.

A mathematical explanation for this phenomenon is the homological mirror symmetry. It
is a mathematical conjecture formulated by Maxim Kontsevich at the International Congress of
Mathematicians in Zurich in 1994, see [26]. He considered mirror symmetry for a pair of Calabi­
YaH manifolds X and Y as an equivalence of the triangulated category D~Coh(X)) constructed
from the complex geometry of X and the other triangulated category Fuk(Y) constructed from
the symplectic geometry of Y and vice versa. The triangulated category D~Coh(X)) is a bounded
derived category of coherent sheaves on X and Fuk(Y) is the Fukaya category. Therefore the
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homological mirror symmetry conjecture can be formulated as

1)b(Coh(X)) ~ Fuk(Y),

Fuk(X) ~ 1)b(Coh(Y)),

where X and Y is a pair of mirror Calabi-Yau manifolds. In fact, this formulation could be
understood as a mathematical definition of a mirror pair of Calabi-Yau manifolds.

Another formulation relates two different two-dimensional topological field theories called A­
model and B-model. The topological A-model and B-model were originally introduced by Edward
Witten [27] in 1988 as the topological twisting of the N = (2,2) supersymmetric two-dimensional
conformal field theory. These models involve maps from a worldsheet ~ (Riemann surface) into a
target space M (usually a Calabi-Yau manifold). There are more general cases of a target space
than Calabi-Yau manifolds for which the N = (2,2) supersymmetric two-dimensional conformal
field theory exists. Such examples can be described in a very elegant way using generalized
complex structures as manifolds involving a generalized Kahler structure or bi-Hermitian structure
(first discovered by physicists investigating supersymmetric nonlinear sigma models, see [28]).
Riemann surfaces without boundary represent the worldsheet of closed strings, while in the case
of Riemann surfaces with boundary describe the worldsheet of open strings. In the second case, we
must introduce boundary conditions to preserve the supersymmery. These boundary conditions
correspond to objects called topological A-branes and B-branes. These topological branes in a
Calabi- Yau manifold M can be described through the generalized complex structure as a complex
vector bundle supported on some submanifold of M with a flat linear Lie algebroid connection on
this vector bundle. This concept was introduced by Marco Gualtieri in [20].

Moduli spaces of topological A-branes and B-branes playa crucial role in the so called SYZ
conjecture formulated by Andrew Strominger, Shing-Tung Yau and Eric Zaslow in [29]. This
picture relates the homological mirror symmetry of two Calabi- Yau manifolds X and Y to the
T-duality of dual special Lagrangian fibrations in X and Y. A special case of this fibration is the
Hitchin fibration in geometric Langlands program.

Our main results about Lie algebroid connections and moduli spaces of Lie algebroid connec­
tions are contained in the second and third chapter of this thesis.

In the first chapter some important definitions and notions are reviewed, for example the basic
definition of a real and complex Lie algebroid is given and also many examples of Lie algebroids are
mentioned, among others an example of the Atiyah algebroid, which is crucial for the definition
of Lie algebroid connections on principal fiber bundles, is described. Further, the notion of an
L-path is given. This is important for the concept of the parallel transport and for introducing
the holornomy group of a Lie algebroid connection. Because Lie algebroids can be understood
as generalized tangent bundles, the notions like forms, vector fields, de Rham differential are
generalized in a natural way. At the end a wide class of complex Lie algebroids coming from
generalized complex structures is presented together with the explanation of generalized complex
geometry and necessary tools.

The second chapter is devoted to the study of Lie algebroid connections on vector bundles
or linear Lie algebroid connections. After the definition is given, we prove some basic results
generalizing well-know facts about linear connections related with the curvature, covariant exterior
derivative. flat connections, Bianchi identity and others. \Ve continue by recalling the definition
of the group of gauge transformations of a vector bundle. We define an action of this group on
the space of Lie algebroid connections and introduce the notion of moduli spaces for Lie algebroid
connections. Some basic results about Lebesgue and Sobolev spaces are mentioned. We also
recall some well-know facts for elliptic complexes on compact manifolds. Then we define Sobolev
completions of these moduli spaces which allow us to give the moduli space the structure of a
geometric space. We prove that the irreducible linear Lie algebroid connection together with the
action of the reduced group of gauge transformations form (possibly non-Hausdorff) principal
fiber bundle. The last section is devoted to the study of the moduli spac e of smooth irreducible
flat Lie algehroid connections. It is proved that this moduli space has the structure of a smooth
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finite dimensional manifold near a smooth point and its dimension is the dimension of the first
Lie algebroid cohomology group. These results were partially published in [30] .

In the third chapter we describe the general concept of Lie algebroid connections on a fiber
bundle through the horizontal lift and we concentrate more on principal Lie algebroid connections
on principal fiber bundles. We generalize some results from the previous chapter which in fact
correspond to the special case (general linear group) in the choice of the structure group of a
principal fiber bundle. We define the concept of the covariant exterior derivative, the induced
linear Lie algebroid connection on an associated vector bundle and the parallel transport along
an L-path. The natural action of the group of gauge transformations of a principal fiber bundle
on the space of principal Lie algebroid connections is studied. The main result is the proof of the
isomorphism between the isotropy group of a principal Lie algebroid connection and the holonomy
group of a principal Lie algebroid connection.

The conclusion focuses at the further study of Lie algebroid connections. One possibility is a
generalization of the Riemann-Hilbert correspondence.



Chapter 1

Lie and Courant algebroids

1.1 Lie algebroids

Lie algebroids were first introduced and studied by J. Pradines [2], following the work by C. Ehres­
mann and P. Liberm ann on diffe rential qroupoids (late r called Lie groupoids ), as infinitesimal
objects for differential groupoids. Just as Lie algebras are the infinitesimal objects of Lie groups,
Lie algebroids are th e infinitesimal objects of Lie groupoids . They are generalizat ions of both Lie
algebras and tangent vect or bundles.

Definition 1. A real (complex) Lie algebroid (L ~ M, [" ·],a) is a real (complex) vector bundle
iT: L -----> M together with a real (complex ) Lie algebra bracket [" .J on the space of sections
r (M, L ) and a homomorphism of vector bundles a : L ----+ T M (a: L -----> T !vfc ) , called the anchor
m ap, covering the identity on Ai, i.e., the following diagram

L
a ) TM L

a ) T'Mr.

.j j... resp. .j 1'"
..\1 ) A;J 1\11 ) M

id ~1 idA!

commutes. Moreover , the anchor map fulfills
i) a( [~l , 6]) = [a (~d, a(6 )] resp. a([~l, 6]) = [a (~d , a(6) ]c

ii) [~ l , I6J= / [6,6] + (a(~dJ)6 , (the Leibniz rul e)
for all ~1.6 E r( M ,L) and 1 E cOC\M,JR) resp. 1 E C OO (lvI ,(C).

Definition 2. If (£1 -----> .M, [· ,· ]LI,aLJ and (£2 -----> A1' [" '] L2,aL2) are Lie algebroids, t hen a
vector bundle homomorphism I.{J : £1 -----> £2 covering the identity on M is a Lie algebroid mo rphism
if aL

2
0 I.{J = aLl and I.{J induces a Lie algebra homomorphism form XLI (lvl) to XL2(M) .

Before the continuing with the study of Lie algebroids, we would like to show that Lie algebroids
are interesting themselves. We look at equivalence problems in geomet ry. Elie Cartan observed
that many equivalence problems in geomet ry can be best formulated in te rms of cofra me fields.
He was able to come up with a method, now called Cartan 's equivalence method, to deal with
such problems.

A local version of Cartan 's formul ation of equi valence problems can be described as follows.
Consider a family of functions I i and cj ,k = -4,j defined on some nonempty open set X C JRn ,
where 1 ~ i, j . k ::; T , 1 ::; a ::; n (n, r are positive integers ).

artari's problem: find a manifold N, a coframe field {7]i}i'=l on N, and a smoot h mapping
h : N -----> X sat isfying

k _ 1 .k (h) i j
drl -"2 c·i. j 17 1\ 17 ,

5

(1.1)



--- Lie and Courant algebroids 6

Necessary conditio ns on the map h: N --> X to solve Cartan 's problem can be obtained as imme­
diate consequences of the fact that d2 = 0 and that {7]i} is a coframe field . An easy computation
gives

(1.2)

and

Unless these equatio ns are identities, they place restrictions on the range of h.

On t he other hand , if the above equations are identities on the functions f i
a and C~ , k' then one

might hop e to find realiz ations of (1.1) without placing any further rest rict ions on the range of h.
Cartan's condit ions can be reformulated into a more geometric form as follows. Consider a

trivializahle vector bundle L --> X of rk L = r over X and any local frame field {ei}f=1 for L over
X. If we define a vector bundle homomorphism a: L ---+ T X by

and a bilinear mapping [. , .J: I' (X, L ) x f (X , L) --> f(X, L ) by

r i hj ] _ ih} k i f a 8h
j

h}fa 8g
i

9 e 'i , ej - - 9 Cijek + 9 i -8 e } - } -8 e . ,, . x a x a

(1.4)

(1.5)

where gi, h j E C CO (X , lR), then the necessary cond it ions (1.2) and (1.3) are equivalent to t he fact
that (L ---+ X, [. , .j,a) is a Lie algebroid. More about the reformulation of Cartan 's equivalence
problems through Lie algebroids can be found in [11] and [12].

Now we express a Lie algebroid struct ure on a vector bundle 71': L ---+ M in local coordina tes.
For any x E M there exist s an open neighborhood U c M , a local chart (U,u ) on M and a vecto r
bundle chart (U, 1/J) on L . Then { ()~" }:=1 is a local frame field for T At over U and moreover there
exists a local frame field {eJr=1 for L over U. We define local st ructure functions f i

a and C~,k on
U, where 1 ::;i ,j, k::; r , 1 ::; a::; n, dim lY! = n, rkL = r , by

(1.6)

The requirement, t hat a is a Lie algebra homomorphism, is equivalent to the condit ion

afa afa
f b J fb i k f a

i 8ub - i aub = Ci ,} k »

while the Jacobi identity is equivalent to

(1.7)

(1.8)

These equat ions are ca lled the local structure equations.

Remark. Let A be a commutative IK-algebra1 with unit. We denote by Deroc (A ) the A-module
of IK-linear derivations of A. Recall tha t Deroc (A) is naturally a Lie algebra over lK with respect
to t he usual commutator.

A Lie-Rinehart "4-algebra is an A-module L endowed with a structure of a Lie algebra over
IK and with a morphism a : L ---+ Deroc (A ) of A-modules , called the anchor map, satisfying the
following axioms:

1The let ter lK. stands for t he field iR or C.



----- Lie and Courant algebroids 7

i) a([x, Y]L) = [a( x) ,a(y)] for x, Y E L , i.e. , a is a morphism of Lie algebras over lK,
ii) [x,fY]L = f[x,Y]L + (a(x)f)y for X,Y ELand f E A.

Consider the commutative JR.-algebra A = COO(M, JR.), then Der{R(A) is the Lie algebra of vector
fields on 1\!!. Afterwards the space of sections f(M, L) of a real Lie algebroid (L ~ NI, [" ']L,a) is
a Lie-Rinehart A-algebra.

In fact, Lie-Rinehart algebras are the algebraic counterparts of Lie algebroids, just as modules
over a ring are the algebraic counterpart of vector bundles.

Definition 3. Given a Lie algebroid (L ~ M, [. ,.J, a) over NI, a smooth path a : [0, 1] ~ L is an
L-path, if

d
a(a(t)) = dt 1I"(a(t)) (1.9)

for all t E [0, 1]. The smooth path y: [0, 1] ~ M given by 1 = 11" 0 a will be called the base path of
the L-path a . We denote by P(L) the set of all L-paths.

If T: [0,1]~ [0,1] is a smooth change of parameter, i.e., a diffeomorphism, and a: [0, 1] -+ L
is an L-path , then its reparametrization aT: [0, 1] ~ L given by aT(t) = T'(t)a(T(t)) is an L-path
and for T satisfying T(O) = 0 and T(l) = 1 is L-homotopic to the L-path a.

We say that two L-paths ao and a1 are composable, if 1I"(ao(1)) = 1I"(a1(0)). In this case we
define the concatenation of paths ao and a1 by

for a ::; t ::; !,
for 1< t ::; 1.

(1.10)

This is essentially the multiplication of L-paths. However it is not associative and a1 0 ao is only
piecewise smooth. One possibility around this difficulty is allowing for piecewise smooth L-paths.
Instead we choose a cutoff function T E COO(JR.) with the following properties:

i) T(t) = 0 for t ::; a and r(t) = 1 for t 2: 1,
ii) T'(t) > 0 for t E (0,1).

We now define t.he multiplication of composable L-paths by

a1 . ao = aI 0 ao, (1.11)

where ali and 0:1 are reparametrizations of ao and a1·

I"ow we can define an equivalence relation rv L on a manifold NI as follows. We say that x rv L Y
for ;"C , 'Y E M if there exists an L-path a, with the base path I, such that , (0) = x and , (1) = y.
An equivalence class of this relation will be called an orbit of L. In the case, when a is surjective,
i.e. , L is a transitive Lie algebroid, each connected component of M is an orbit of L .

1.2 Examples of Lie algebroids

Let us present now a few basic examples of Lie algebroids.

Example. (tangent bundles) One of the trivial examples of a Lie algebroid over N! is the tangent
bundle L = T.:U of 1\1, with the identity mapping as the anchor map and the Lie bracket of vector
fields as the Lie bracket.

Example. (Lie algebras) Any real (complex) Lie algebra {} is a real (complex) Lie algebroid over
a one-point manifold , with zero anchor map.

Example. (foliations) Let L C TAl be an involutive regular distribution on a manifold M. Then
L has a Lie algebroid structure with the inclusion as the anchor map and the Lie bracket is the
usual Lie bracket of vector fields. By the Frobenius theorem the distribution L gives a regular
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foliation on lVI. On the other hand to any regular foliation on M is associated an involutive regular
distribution and therefore a Lie algebroid over M.

Example. (bundles of Lie algebras) A bundle of Lie algebras is a vector bundle L -> M with
a skew-symmetric COO (lvI, IR)-bilinear mapping [".]: r(M, L) x f(M, L) -> r(M, L ), i.e., [".J (-=

f(M,}\2L* ® L), satisfying the Jacobi identity. If we define the anchor map by a(~) = 0 for
~ E r(lVI, L), then (L -> AI, [. , .J,a) is a Lie algebroid. On the other hand, any Lie algebroid with
zero anchor map is a bundle of Lie algebras. Because [6,16] = 1[6,6] + (a(6)J)6 = 1[6,6],
we obtain [" .J E r(M,}\2L* ® L).

Note that the notion of a bundle of Lie algebras is weaker than of a Lie algebra bundle, when
one requires that L is locally trivial bundle of Lie algebras (in particular, all Lie algebras Lx are
isomorphic).

Example. (vector fields) Lie algebroid structures on the trivial real line bundle over M are in a
one-to-one correspondence with vector fields on M. Given a vector field X E X(lvI), we denote by
Lx the induced Lie algebroid. As a vector bundle Lx = M x R Because r(lVI, Lx) ~ COO(M, IR),
the anchor map is given by the multiplication by X , i.e., a(J) = IX, and the Lie bracket of two
sections I,9 E r(.M, Lx) is defined by

[j , g] = I£x(g) - g£x(J). (1.12)

Example. (action Lie algebroids) Consider an infinitesimal right action of a real Lie algebra 9 on
a manifold lvI, i.e., a Lie algebra homomorphism (: 9 -> X(M). The usual situation is when we
have a right action r : M x G -> M of a Lie group G with the Lie algebra g. Then

d
(x(x) = TeTx·X = -d x. exp(tX) ,

t iD
(1.13)

where X E 9 and x E lvI, defines an infinitesimal right action of 9 on M. We define a Lie
algebroid 9 ~ AI, called the action Lie algebroid or the transformation Lie algebroid , by the
following way. As a vector bundle 9 ~ lvI = M x g, it is a trivial vector bundle over M, Seeing
that r( JH, 9 ~ .M) ~ COO (1'.1, g) , the anchor map is given by

a(J)(x) = (f(x)(x),

while the Lie bracket on sections is defined by

[I, g](x) = [j(x) ,g(x) ]g + ((f(x)9)(x) - ((9(X )J)( X).

The Lie bracket is uniquely determined by the Leibniz rule and the condition that

[cx , ey] = c[x,Y]

(1.14)

(1.15)

(1.16)

for all X, Y E g, where ex denotes the constant section of g.

Example. (two forms) For any closed 2-form w E Q2(M, IR), we define a Lie algebroid Lw as
follows. As a vector bundle Lw = T JH ffi (M x IR), the anchor map is the projection on the first
component, while the Lie bracket on sections r(lIf, Lw ) ~ X(M) EEl Coo(M, IR) is given by

[(X , J), (Y,g)] = ([X , YJ, £x(9) - £y(J) + w(X, Y)). (1.17)

Example. (Atiyah sequences) In 1957, Atiyah [16] constructed in the setting of vector bundles
the following key example of a Lie algebroid . Let (P,p, M, G) be a principal fiber bundle, then
there is an associated transitive Lie algebroid A(P) over M , called the Atiyah algebroid.

Theorem 1. Let (P, p, M; G) be a principal fiber bundle. If T: P x G -> P is the principal right
action then i : T P x G -; T P denotes the right action given by 1'9 = Tr9 .

i) The space TPjG of orbits of the right action f carries a unique smooth manifold structure
such that the quotient mapping q: T P -> T P jG is a surjective submersion.
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ii) p: TPIG --->!vI is a vector bundle in a canonical way, where j5 is given by

P ~M
p

and qu: TuP ---> (TPIG)p( tt) is a linear diffeomorphism for each u E P , moreover q is a
homomorphism of vector bundles.

iii) q: T P ---> T PIG is a principal G-bundle with the principal right action f .
iv) The following diagram

TP~

~ <,
PXMTPIG~TPIG

j jP

P ----~~ M
p

commutes, i.e., T P is a topological pullback.

Notation. We will denote T PIG by A( P) . We also define the smooth mapping T: P X M A( P ) --->

TP by T(Ux , Ux) = q;;;Cvx ). It satisfies T(U,q((u)) = ~u, q(T(Ux, 'Ux)) = 'Ux and T(Ux.g,'Ux) =
T(Ux ,IIX).g. The vector bundle A(P) ---> M is called the Atiyah bundle.

Proof. First of all we verify that the right action i : T P x G ---> T P is free and proper . Suppose
that C,u.gl = f,u ·g2, thenu.g, = 7T(~u ·gd = 7T(C,u·g2) = U.g2· Becau se the principal right action
r : P X G ---> P is free , the right action f is also free. Now let f,n·gn ---> e and f,n ---> f, in T P
for som e f,n, f" f,' E T P and gn E G. If we denote Un = 7T(f,n) , 'U = 7T(~) and u' = 7T(f,') then
lJn.gn = 7r(f,n.gn) ---' 7T(f,') = H' and Un = 7T(~n) ---> 7r(~) = 'IL, because 7T is continuous. But G acts
properly on P , hence gn has a convergent subsequence in G and thus f is proper. Immediately, from
the characterization of principal fiber bundles it follows that the orbit space T PIG is a smooth
manifold, the quotient mapping q: TP -> TPIG is a surjective submersion and q: TP ---> TP/G
is a principal G-bundle.

In the setting of the diagram in (ii) the mapping p o 7T is constant on orbit s of the action i ,
so p exists as a mapping. Because q : T P ---> T PIG is a fibered manifold and j5 0 q is smooth, we
obtain that p is also smooth.

Let (Uo , tpa ) be a principal bundle at las for P with transition functions <Po:{3 : Ua{3 ---> G and
let (U,} , 'ua ) be an atlas for M. We define X a: TP1p-l (U"l ---> TUo x TG ---> Uo x lRn x 9 x G by

Xo = (TUn X (Tp)-l) 0 T tpa: T IIp-l (un) ~ T(PIUJ -. TUa x TG -> Un X lRn
X 9 X G,

where Tp: 9 x G ---> TG is the right trivialization of TG given by Tp.(X ,g) = TePg·X. Then Xo.
is It diffeomorphism and the diagram

--~) UO' x G

commutes. For Xo 0 X~ 1: U n /J x JRn X 9 X G ---> U0.{3 X lRn x 9 x G we obtain

(X'l 0 X~ l )(X , v, X ,g) = (:1;, d(uo 0 'U',S1)(X, v ), J<Pa{3.((TU/3) -1(X, v )) + Ad( ipO' I3(X ))X, <Po./J( X).g),
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where 8t.po.{3 E n1(Uo.{3 , g) is t he righ t logarithmic derivative of 'Po.{3'
Now we define 'l/J;;I : Uo. x IRn x 9 -----; p- l (Uo. ) C TP/G by 'l/J;;l (x, V, X ) = q(X;;I(x,v, X, e)),

which is a fiber respecting mapping, i.e., t he following diagram

commutes. For each point q(~u ) in o::(x) there is exactly one X E 9 and one v E IRn such that the
orbit corresponding to t his point passes t hrough X;;I(x,v , X,e), i.e. , q(';u) = q(X;;l (x , v ,X,e)) .
Becau se Xo is a diffeomorphism, we can write ~u = X;;](x,v , X ,g) for a uniquely determined
u E jRn and X E g, wher e 'Po.(u ) = (x, g). Then

~.1'g -l. X~I (X , v , X , g) = Tcp ;; 1(x,g)rg-
1

0 T(x ,g ) t.p~1 0 ((T uaJ- 1 x Tp)(x , v, X ,g )

= T(x,g)(1'g-
1

0 t.p~ ])( (Tuo.) -1 (x, v), TePg.X)

= T(x ,g )('P~ l 0 '19 -
1
)((Tua)- I(x, v), TePg.X )

= T(x,e)'P;;] 0 T(x,g)(idu" x Pg-l)((Tuo.)-I(X, v), TePg.X )

= T(x .e ) 'P~1 ((Tua) - 1(x ,v), Tgpg- 1.TePg·X )

= X~](x,v,X,e) ,

where r: (Ua x G) x G -----; Uo x G is a right action given by '1((x,g'),g) = (x ,g'.g). Therefore
;; 1(x , . , .) : ~n X 9 -----; p-l (x ) is bijective, since the principal right action is free. Moreover »: 1 is

smooth with the invertible tangent mapping, so its inverse 'l/Ja : p-l (Ua) -----; Uo. x IRn x 9 is a fiber
respecting diffeomorphism. Furthermore

l/Jfi \ r: . v , X) = q(X;I(X,v, X , e) )

= q ( X~ 1(x, d(U a 0 'u~ I )(x , v), 6'Pa{3' ((Tuj3 )- I (x, v)) + Ad('Pa j3(x ))X, 'Pa{3 (x ).e))

= q(X~ 1(x ,d(Uo. 0 u fi 1 ) (x, v ),6'Poj3. ((T u{3) - I (z, v)) + Ad(t.po.{3 (X))X, e))

= 'l/J;; I(:r , d(uo. 0 Ufil )(X,v ), 8'Po.j3 . ((Tul~) - I(X, v )) + Ad (t.p o. {3 (x) )X ),

t hus (1/;0: 0 'l/J~ I ) (X , V, X) = (x, d(uo. 0 Ufil )(x , v) , 8'Pcr{3 .((TUj3)-I(X, v)) + Ad('Pa{3(x)) X), t herefore
(U0. , 'l/Ja ) is a vector bundle atlas for p: T P / G -----; M,

By definition of l/Jo. t he diagram

commutes. if we restrict XO on TuP t hen we obtain the diagram

p- l( p(U) ) -_) {p(u)} x IRn x 9
,]I"
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in which its lines are linear diffeomorphism, hence we conclude that qu: TuP -> p- l (p(u)) =
(T P/G)p(u) is a linear diffeomorphism.

Consider a homomorphism (7r, q) : T P -> P X M T PIG = p*(TP/ G) of vector bundles over P
covering the identi ty on P . Because (7r, q) is a linear isomorphism on fibers wit h the invertible
tange nt mapping, so (7r, q) is an isomorphism of vector bund les. The inverse is de noted by T : P X AI

T PIG ---> T P and given by T(U x , Vx ) = q;;x1(vx ) . •

Theorem 2. The sections of the Atiyah bundle A (P ) -> !VI associated to a pr incipal fiber bundle
(P, p, M, G) correspond to t he G-invariant vector field s on P , moreover we have an isomorphism
<P: f( l\1,A(P) ) ~ X(P )G of C OO(M,lR)-mod ules, where f~ = (J 0 p)~ for f E C OO(lvl , lR) and
~ E X(P) G.

PTOof. If E, E X(P )G th en we construct s~ E r(M,A(P )) in the following way. Because E, : P -> TP
is a G-equivariant mapping, the diagram

q

~ '» TP

'(

M ~A(P)
Se

P

pj

commutes for a uniquely determined mapping s~ : M ---> A (P). Further s~ 0 p = q 0 C, is a smooth
mapping and p: P ---> M is a fibered man ifold hence s~ is a smooth section.

If conversely S E r (M ,A(p)) we define c's E X(P )G by c's = T 0 (id » X M s): P ---> P X M lvI ->
P X.H A (P) ---> TP , i.e. , c'sCu) = T(U,s(p(u))) for U E P. This is a G-invar iant vecto r field since
~s(u.g) = T(U.g, s(p(u))) = T(U, s(p(u))).g = c,s(u).g by t he G-equivariance of T.

These two construct ions are inverse to each other since we have C,s (~ ) (u ) = T(U, s~(p(u))) =

T(IL.q (E,(U))) = E,(u) and S~ (s ) (p(u)) = q(c,s(u)) = q(T(U,s(p(u)))) = s(p(u )). •

Remark. The space of sections of A (P ) is isom orphic with t he space of G-invariant vector fields
on P , which is a Lie algebra, hen ce on sections f( !V!, A(P)) t here is a natural Lie alge bra struct ure

given by c'[SI.S2] = [c'SI' (~ ~ ] .

Because Tp is constant on orbits of the right ac tion r, t his follows from the fact that T'p 0 f 9 =

T (p 0 r9 ) = T'p, the diagram

T p
TP~T1VI

q id T M

'(

A(P )~TlvIp.

commutes for a uniquely det ermined smooth mapping P*: A (P ) ---> T !VI. Furthermore Tp is a
surj . tive mapping thus P* is also surject ive. Besides it is easy to see that 11. : A (P) -> T M is a
homomorphism of vector bundles over M covering the identi ty on AI , because P*I A(P)x : A(P)x --->

TI l\! is given by P* IA(P)r = Turp oq;;} for some U x E p- l (X) which is linear.

Now it remains to verify that (A(P) ---> AI, [" .],p * ) is a Lie algebroid. Using t he following

com mutat ive diagram

~ T pP " ,» TP ~T!lt[

pj ! jid",
M~A(P)~TM

ICNIHO',rNA T.-FYZ. fAK L Y
Mat m 'ekeoooeenl

83
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we get P*([Sl ,S2]) o p = TpO~[Sl , S 21 = Tpo [~sl1 ~s2 1 = [p*(s d, P*(S2)]o p, where we used the fact
that ~s and p*(s) are p-related vector fields, hence [~Sl1~S2] and [p*(sd ,P*(S2)] are also p-related
vector fields. Because p is surj ective, we obtain P*([Sl ,S2]) = [p*(sd ,P*(S2)]. Next we have

[SI, 1S2] °p = q 0 ~ [ 81 ,/82] = q 0 [~8 1' ~fS2] = q 0 [~8 1' hS2]

= q 0 (f[~81' ~S2] + (~Sl(])) ~S2)

= q ° f~[Sl ,8 21 + q 0 (~81(j 0 p) ~S2)

= q 0 ~J[81,S 2] + q ° (p*(sd1 °p) ~S2

= I[SI' S2] 0 p + q 0 ~(P,( S l)f) 8 2

= f [SI, S2 ]o p + (p* (sd 1)S2 o p,

where we used that for p-related vector fields ~8 and p; (s ) is sat isfied that ~8(j 0 p) = (p* (s)f) 0 p
for any 1 E COO(M, JR). Again, because p is surj ective, we get [sl,1s2] = 1[SI, S2 ]+ (P*(Sl)f) S2.
Because P» is surjective, we have proved that (A(P) ----> M , [. , .J, p*) is a transitive Lie algebroid.

Immediately from the definition of the verti cal bundle V P = ker Tp, we obtain the short exact
sequence

T p
0 -+ VP -+ TP -+ T'M -+ 0 (1.18)

of vector bundles. Since the vertical bundle V P is isomorphic to the trivial vector bundle P x g,

we get the short exact sequence

i Tpo-+ P x 9 ----+ TP -+ T'M -+ 0 (1.19)

of vector bundles, where i: P x 9 ----> VP '-----+ TP is given by i( u, X ) = Teru.X. If we define the
righ t act ion r: (P x g) x G ----> P x 9 through f((u ,X),g) = (7L. g,g- I. X), then i : P x 9 ----> TP is
a G-equivariant mapping. Therefore the following diagram

P x g~TP

qj ,q

ad(P ) ~A(P)
I.•

commutes for a un iquely determined smoot h mapping i * : ad(P ) ----> A (P). Hence we get the short
exact sequence

o-- ad(P) ~ A(P) ~ TAt -- 0 (1.20)

of Lie algebroids over M known as th e Atiyah sequence associa ted to a principal G-bundle P ,
where t he Lie bracket on r(M, ad(P)) is induced from t he given one on f(M, A(P) ). The smooth
sect ions of these bundles give rise to the short exact sequence

o -- ruv!,ad(P )) ~ r (M, A (P)) ~ f(M,Tl\lf) -- 0

of Lie algebras. It can he rewritten as

(1.21)

(1.22)

where Xvcrt (P)G is t he Lie algebra of vertical G-invariant vector fields (t he Lie algebra of in­
finitesim al gauge t ra nsformat ions) and X(P) G is the Lie algebra of G-invariant vector fields. The
xactness of the sequence (1.21) follows from the fact t hat the Atiyah sequence is closely related

to principal connect ions on a principal fiber bundle.
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Later we show that a principal connection can be described as a right splitting of the Atiyah
sequence , i.e., as a homomorphism 0" : TM -. A (P ) of vector bundles sat isfying P» 0 0" = idT M .

The curvat ure of the connection 0" E SV(M, A(P» is given by

for 6 ,6 E X(M) . Furthermore one can verify that Oa E rl 2 (M , A(P» . Because the sequence
(1.21) is exact and p*(rla(6 ,6» = 0, we obtain that there exists a uniquely determined Ra E

rl 2(At!,ad(P» such that i*(Ra (6 ,6 » = rl a(6 ,6) for all 6,6 E X(M) .
If L is a transitive Lie algebroid over M , then the associated short exact sequence

k
i ao-. er a -. L -. T M -+ 0 (1.23)

of Lie algebroids is called t he abstra ct Atiyah sequence. Note that not all abstract Atiyah sequence
come from sequences associated to a principal fiber bundle. Then we can define a connection on
L to be a right splitting of the above exact sequence (1.23) , i.e., a homomorphism 0" : TM -t L of
vector bundles satisfying a 0 0" = idT M. More about connections on transitive Lie algebroids can
be found in [6] and [31].

Example. (Poisson manifolds) Any Poisson structure on a manifold M induces, in a natural way,
a Lie algebroid structure on the cotangent bundle TtM of M, Let tt E I'(M; A2TM ) be a Poisson
bivector on M. which is related to the Poisson bracket by {j,g} = 7r(df,dg) . If we use the not ation

7r ~: T *M -t TAt! (1.24)

for the mapping defined by /3 ( 1r ~ ( a ) = 7r(a, /3) for a ,/3 E n1(A1, lR), then the Hamiltonian vector
field X I associated to a smooth function f on M is defined by X I = 7r ~ (df). The anchor map is
1rP and the Lie bracket is given by

(1.25)

This Lie algebroid structure on T*A1 is the unique one with the property that a(dj) = XI and
[df , cig] = d{f, g} for all J, g E COO (i\1, lR ). When 7r is nondegenerate, M is a symplectic manifold
and this Lie algebra structure of f (}\I,T *M) is isomorphic to that of f Ov!,T At!).

Example. (Nijenhius manifolds) Let M be a manifold with a Nijenhuis structure, i.e., a vector
valued l-forrn JV E D.l (JvI, Ti\I) with the vanishing Nijenhuis torsion. Recall that the Nijenhuis
torsion TN E 0 2 iM, TM) is defined by

T:v (X,Y ) = [N X ,N Y] -N[NX ,Y] -N[x,NY] +JV2[X,Y] (1.26)

for X , Y E .IU"!) , not e that TN = 1[N ,N] for the Frolicher-Nij enhuis bracket. A vector valued
l-forrn JV is called a Nijenhuis tensor if its Nijehnius torsion vanishes. To any Nijenhuis structure
JV, there is associated a new Lie algebroid structure on T'M, The anchor map is given by a(X) =

:V(X ), while the Lie bracket is defined by

[X ,Y]N = [NX, Y]+ [X ,JVY] - N [X,Y]. (1.27)

It is well known that powers of Nijenhuis tensors, considered as endomorphisms of the tangent
bundle, are Nijenhuis tensors. Also any complex structure :J on At! is a Nijenhuis tensor.

Example. (generalized Nijenhuis manifolds) Let (L -t M, [.,.J, a) be a Lie algebroid and let
.N: L -t L be a homomorphism of vector bundles covering the identity on M: such that its
Nij nhui s torsion vanishes, i.e.,

[N X ,N Y] -N[NX ,Y] -N[x,NY] + JV2 [X, Y] = 0 (1.28)
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for all X, Y E r(M, L). If we define the anchor map by aN(X) = (a 0 N)(X) and the Lie bracket
by

[X ,Y]N = [NX, Y] + [X,NY] -N[X,Y] . (1.29)

then this gives a new Lie algebroid structure on L.

Example. (trivial Lie algebroids) For any real Lie algebra g, we define a Lie algebroid Lg over a
manifold M by the following way. As a vector bundle Lg = T M ffi (M x g), the anchor map is the
projection on the first component and the Lie br acket on sections r( lVI, Lg ) ~ X(M) ffi COO (M, g)
is defined by

[(X ,J) , (Y,g)] = ([X, YJ, [I,g]),

where the bracket on sections r( lVI, M x g) ~ COO(M, g) is given by

[f ,g](x) = [I(x) ,g( x)]g.

(1.30)

(1.31)

Example. (jet prolongation of Lie algebroids) Let (L .!!..., M , [. , .J,a) be a Lie algebroid, then the
r-t.h jet prolongations FL of L for rENo has a unique Lie algebroid structure. The anchor map
is given by aJrL = 11"0 0 a, where 11"0 : FL ---+ L is th e canonical proj ection , while the Lie bracket is
uniquely determined by requiring that the r-th jet prolongation

r: r(lVI, L) ---+ f(lVI , FL) (1.32)

(1.33)

be a homomorphism of Lie algebroids. More about the relation of jet prolongation Lie algebroids
to Cartan's method of equivalence one can find in [12].

1.3 Differential geometry of Lie algebroids

Becau se we can think of a Lie algebroid as a generalized tangent bundle, we may use a similar
construct ion for it.

Consider a real (complex) Lie algebroid (L ~ M , [. , .J, a). A section of the vector bundle Ak L*
for k E No is called a k-form of L and th e space of all k-forms will be denoted by r21 (lV1) . Similarly
a section of the vector bundle Ak L for kE No is called a k-vector field of L and the space of all
k-vector fields will be denoted by xi (M) . Let 01 (A·'I) = {O} and 1:1 (lV'I) = {O} for k < 0, then
we denote by

r2i.(i\I) = EB n1 (M) resp. 1:i. (NI) = EB 1:1(1\.1)
kEZ k EZ

the graded vecto r space of all forms of L resp, of all multivector fields of L. For a real (complex)
vector bundle E ---+ M a section of the vector bundle Ak L* ® E is called E-valued k-form of L.
The sp ace of sections will be denoted by 0.1 (M, E).

The graded vector space 0.i.(M) has a natural struct ure of a graded commutative algebra via
the wedge product

(:...I 1\ T)(6 , ... , ~p+q) = ~L sign(a) . W(';O' (l ) , . . . , ~(T (p)) T(';O' (p +l ),"" ~O'(p+q) ), (1.34)
p.q. (T

where W E r2~.( "\J), T E r2l(Af) and ~l,' .. , '; p+ q E XdM).
Further t here is a differential operator dL : 0i.(M) ---+ O~+l(M) on the graded commut at ive

algebra ni. (Af) defined by

k

( (hw) (~o , .. . , ~k) = I)- l )i a(~i )w(~o, . .. ,€, ... ,(k)
i= O

+ L ( -l)i+jw( [~i,(jJ,(o' ''' '~ ' ''' '.€;'''' '~k ) (1.35)
05, ;<j 9
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for W E Di (.1\;1) and ';0 , . . . ,';k E X L(lvI). The differential operator de is called the Lie algebroid
differential of L or simply the de Rham differential of L. Besides for any '; E XL(M ) we define
the insert ion operator it : DL(l\rf) -; Di- 1(M') by

and the Lie deri vative £ t : D£( lV1) -; Di. (A1) thro ugh

k

(£fW)('; l , . . . , ';k) = a('; )w(6 , ·· · ,';k) - L W(';l , . . . , [';,';i ], . . . , ';k)
i = l

for wE Dl (M ) and ';,6 ,··· ,c'k E XL(M) .

Remark. As DL(.M ) is a graded commutative algebra , the space of all graded derivations

Der DL(M ) = EBDerkDi (M ),
kEZ

(1.36)

(1.37)

(1.38)

where DerkDL(i\tJ) is t he space of graded derivations of degree k , has a st ructure of a graded Lie
algebra wit h the Lie bracket defined by

(1.39)

for D 1 E DerklS1i(i\I ) and D2 E Derk2D£( .l\!I).

Lemma 1. T he insert ion operator it : D£( 1\-1) -; Di - 1(M) and the Lie derivat ive £ t : DL(M) -;
DL(lvI) have t he following pro perties:

i) if- (w 1\ T ) = 'it w 1\ T + (_ l) deg(w)w 1\ it T, i.e., it is a graded derivation od degree -1,

ii) £ f' (w 1\ T) = £ t w 1\ T + w 1\ £tT , i.e., £ t is a graded derivation od degree 0,
... ) [r L '1. ] ·L
111 I... ~ , I'1 = 1 [~ . '11'

iv) [£ t ,£~] = £~ " I l '
v) [i L iLl = 0

~ l ' I .

Proof. The proof goes along the same line as the proof of th is lemma for a linear connectio n, see
[32]. •

Lemma 2. The Lie algebroid differential dt. : DL(lvI) -; DL(Atf) has t he following properties:
i) ddw 1\ T) = dl.w 1\ T + (_l)deg (w)w 1\ dLT , i.e., dL is a graded derivation od degree 1,

ii) di. 0 dt: = ~ [dL ' dL ] = 0, i.e. , de is a differential ,
iii) [£k, d] = 0,
iv) [it ,d] = £t (Cartari's formul a).

Proof. The proof goes along t he same line as the proof of thi s lemma for a linear connec tion, see
~~ . .

Because d[. is a graded derivatio n of degree 1 and a different ial, i.e., dl = 0, the graded
commutative algebra DLP f) is a differential graded commut ative algebra. The cohomology of the
com plex

(1.40)

where r = rkL, called the Lie algebroid cohomology of L, we will denote by Hjj ArJ). It unifies de
Rham and Ch evalley- Eilenberg cohomologies. When L = TM , we obt ain HTM(lvI) = HdR(l\rI),
on the other hand when L = g, i.e. , L is a Lie algebraid over a one-point mani fold, we receive
H; (.M) = He (g. g). Furthermore because dL is a graded derivation of degree 1, t he Lie algebroid
cohomology H'L (M ) of L is a. graded comm utative algebra.
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Furthermore we can ask when is this complex an elliptic complex? For any f E c OO (M, JR) and
wE Dl(NI) we have

(ad(J)dL) w = ddfw) - fdL w = dLf /\ w - fdLw + fdL w = o,*(dJ) /\ w,

hence for the principal symbol ()l(d L ) we get

for every x E M and ~x E T;A1., i.e., the symbol is the exterior multiplication by o,*(dJ). Therefore
we obtain the Koszul complex

(1.41 )

where r = rkL, which is an exac t sequence if and only if o, *(~x ) =/: O. Thus, the differenti al complex
is elliptic if and only if the corresponding Koszul com plex is an exac t sequ ence for any x E M and
o=/: ~x E T'[M: in other words if and only if a*(~x ) =/: 0 for any x E M and 0 i= ~x E T;M.

If L ~ TAl is a real Lie algebroid, then the elipticity is equivalent to the requirement that
0,*: T*AI ---t L" is inj ective or that a : L ---t T'M is surject ive. For a complex Lie algebroid L ~ T Me
it corresponds to the requirem ent that o," IT-M: T tM '-' (T lviet ---t L" is inj ective.

Lemma 3. For a Lie algebroid (L ~ M , [" .J, a), the graded commutat ive algebra XL(M) of
multivector fields of L carries a structure of a Gerstenhaber algebra. The br acket [. ,.] of the Ger­
stenhaber alegebra, called an odd Po isson bracket or a Schouten bracket , generalizes the Schouten­
Nijenhius bracket of multivector fields on a manifold . The Schouten br acket is defined as the unique
extension of the Lie bracket [. , .] on X d!vI) on XL (!vI) satisfying

i) [f ,g] = 0 for 1, 9 E C OO (A'!, K) = X1(M) ,
ii) [~ , f] = - [1,~ ] = a(~)f for f E c OO (M, K ), ~ E Xd!vI),

iii) [11" , ()] = _ ( _1)(p-l)(q- 1) [(),1I" ] for 11" E Xj.(lvI) , a E Xl (M) ,
iv) [11" , a r. p] = [1I" , ()] /\ p + ( - 1)(p- l )Q() /\ [1I" , p] for rr E X~(M) , a E Xl (1vI) and p E XL (!vI) , i.e. ,

[11" , .] is a graded derivation of degree p -I on Xi(M).
Explicitly, for decomposable multivect.or fields rr = 6 /\ 6 /\ . . . /\ ~k , a = 'fIl /\ 'fI2 /\ ... /\ 71e with
~i' 'Ii E XdA!) and t e c (M,K ) we obtain

tlnd

k e
[11" , ()] = L L(-l) i+j [~i ' 'fI j] /\ 6/\ "'€''' /\ ~k /\ 'fIl /\" 'i}j"' /\ 71e

i = 1 j = 1

A'

[f , rr] = - i~f 1l" = L (- lr ( o,(~i ) J)~l /\ .. .€... /\ ~k,
i.= 1

(1.42)

(1.43 )

(1.44)

where i 'Yf: XiJ M) - X~-I (M) is the insertion operator , the adjoint of df r« : DL(M) - D~+l(M).

Proof. See [33]. •

Remark. There are different equivalent ways to define a Lie algebroid structure on a vector bundle
IT: L ---t M; eit her bv a Gerstenhaber algebra structure on Xi( NI) or by a graded derivation of
degree 1 on DL(M) t'hat is a differential. Even one can define a Lie algebroid structure on a vector
bundle rr : L _ M as t he superrnanifold ITL together with a homological vector field d-i. of degree
1. It is impor t ant th at di: is of degree 1 with respect to the natural Z-grading on functi ons on
ilL, in order to define a Lie algebroid structure on L.

Definition 4. A pair (L ---t Al' [" ']L, o,L;L" ---t Al, [' ,']L-,o,L') of Lie algebroids in duality is
culled a. Lie bialqebroid if (1£ is a derivation of the Schouten br acket L .]£" on Xi- (An, in the
sense t hat
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for all ~ , rJ E f (M , A· L*). This condit ion is sat isfied if and only if de- is a derivation of [. , ·]L.
Therefore the notion of Lie bialgebroids is self-dual, i.e. , (L ,L*) is a Lie bialgebroid if and only if
(L * , L) is a Lie bialgebroid.

1.4 Courant algebroids

The Courant bracket is a generalizat ion of the Lie bracket on sections of the tangent bundle to
the bracket on sect ions of the direct sum of the tangent bundle and the vector bundle of p-forms.

The case p = 1 was first introduced in it s present form by Thomas Courant in his dissertation
th esis based on his work with Alan Weinstein. They used it to define a new geometrica l structure
called the Dirac structure, which unifies the Poisson geomet ry and the presymplectic geometry
(t he geomet ry defined by real closed 2-form) by expressing each st ruc t ure as a maximal isotropic
subbundle of T 1vI EB T *!vI. The integr ability condition, namely that the subbundle be closed
under the Courant bracket, specializes to the usual integrability condit ions in t he Poisson and
presymplectic cases. The twisted version of the Courant br acket was introduced by Pavol Severa.

Complex version of the p = 1 Courant br acket plays an important role in the generalized com­
plex geometry introduced by Nigel Hitchin. This, like the previous example, unifies the complex
geometry on one side and the symplectic geometry on the ot her hand. Closure under the Courant
bracket is the integrability condit ion of a gener alized almost complex st ru cture.

Definition 5. A Courant algebroid (E ~ !vI,(-, ·), [·, ·], a) is a real vector bundle 1r: E -. M
together with a non-degenerate symmetric COO(M,1R)-bilinear form (- ,.) : f(M,E) x f(M, E) -.
C OO (!vI , IR), a bilinear mapping [. , .J: f(M, E) x f(M, E ) -. f(M, E ), called the Courant bracket,
and a homomorphism of vector bundles a: E -. T !vI, called the anchor map, over M covering the
identity on .."1 , i.e., the following diagram

E
a ) T1I4

.j jn »

M )M
idM

commutes. Moreover they fulfills
i) [el , [e2, e311 = [[e l ' e2], e3]+ [e2, [el, e3]]

ii) a([e l, e2]) = [a(ed ,a(e2)]
iii) [e l , j e2] = j[el ,e2] + (a(edJ)e2
iv) 0.( d (e2, e3) = ([C I ,e2],e3) + (e2' [el ,e3])
v) [el , ed = *o. '(d(el, el ))

for a.ll el , e2, e:JEf (M,E) and f E c oo (I'vI , IR ).

Remark. Note that the homomorphism a*: T *M -. E of vector bundles if defined by the formula

( o.*( ~ ) , e) = ~(o.( e)), (1.45)

where ~ E n1 (J\{ , 1R) and e E f(AI , E) .
If t he brack i t [. , .] was skew-symmetric, then (L ~ M, [. ,. J, a) has a structure of a real Lie

algebroid ; axiom v) indica tes that the failure to be a Lie algebroid is measured by the inner
product , which itself is invari an t under the adjoint action by axiom iv).

Lemma 4. Let (E ~ M, (- , '), [" .],0.) be a Courant algebroid , then we have 0.00.* = 0:

Proof From proper ty v) we get [el , e2] + [e2,el] = a*(d(el, e2)) for all ; 1,e2 E f(!vI ,Er ~rt~er
tog ther with property ii) we have [a(ed , o.(e2)]+ [a(e2),o.(el )] = (0. 00. )(d(el ,e2)) which impli es
that (a o o.* )(d( 11 2)) = O. The last equat ion is equivalent to the rela tion (a 0 a*)(dJ) = 0 for all



(1.46)
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f E C OO (1\!I, IR). This is because of the nondegener ation of the bilinear pairing. Hence it follows
that a 0 a * = o. •
D efin it io n 6. A Courant algebroid is called exact when the following sequence

0---+ T *jv[ !S E ~ T A1 ---+ 0

of vector bundles is an exact sequence.

Example. (standard Courant algebroid) A bas ic example is the so called st andard Courant al­
gebroid . As a vector bundle E = Ti\1 EEl T *fI;I, t he anchor map is the projection on t he first
component, the bilinear pairing is given by

1
(X + ~ , Y + TJ) = 2(~(Y) + TJ(X)),

while the Courant bracket is defined via

[X + ~, Y + TJ] = [X, Y] + .cxTJ - iyd~ ,

(1.47)

(1.48)

where X , Y E X(M) and C T/ E Ol (M, R). Moreover because a*(O = 2~ for ~ E Ol (M, IR) , we
obtain that E is an exact Courant algebroid.

Example. (twisted standard Co urant algebroids) For any closed 3-form H E 0 3 (fI;I, R), we define
a Courant algebroid EH as follows. As a vector bundle EH = T fI;I EEl T *j'vf, th e anchor map is the
projection on the first component, the bilinear pairing is given by

1
(X + ~, Y + T/) = 2 (';(Y ) + TJ (X )),

while the Courant bracket is defined via

(1.49)

(1.50)

where X, Y E X(M'") and .;, TJ E S1l iM; IR ). Anyway as in the previous case we have a*(';) = 2~ for
~ E S1 1 (.i\f, IR), therefore obtain that E H is an exact Courant algebroid.

In fact, it wa..s proved by P. Severa t hat each exact Courant algebroid is isomorphic to above
xample for any given dosed 3-form H E 0 3 (.1\-1, IR). Explicitly, the theorem says that the exact

Courant algebroids are classified by de Rham cohomology HJR (.M, JR.).

Rem ark . So given Cour ant bracket is part of a hierarchy of br ackets on sections of vector bundles
T Al ED N'T*l'l for p E No, defined by the similar formula as for p = 1

[X + a, Y + T] = [X ,Y ] + .cXT - i v da + i xi y F, (1.51)

where X. Y E X(;'1). a , T E S1P(Jf, IR) and F E S1P+ 2(lv[, JR) is a closed (p + 2)-form.

Example. (Lie bia lgebroids) Let (L ---+ M , [· '· ]L ,aL;L* ---+ l'vf,[· , ·]L· ,aL· ) be a Lie bialgebroid.
\Ve define a ourant algebroid E by the following way. As a vector bundle E = L EEl L *, t he anchor
map is given by a = (J,L + ac- , t he bilinear pairing is defined through

and t he Co urant bracket via

(X + .;, Y + T/ ) = ~ (~(Y) + TJ(X )) (1.52)

(1.53)

where X ,Y E r(AI, L) and ~,T/ E r(lU, L* ).
In a special case when the Lie algebroid Lis (T M ---+ AI , [. , .J, idT J'\1 ) and the Lie algebroid L* is

(T *l\{ ---+ _".1, [. , .]T"M , aT-M ), where ar-s: = 0 and the Lie bracket is zero . Then this construction
gives on T 1U $ T *.M a structure of the standard Courant algebroid.
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Example. (Lie algebras) Let (E -> M; (- ,' )0, [. ,']0, ao) be a Courant algebroid and let 9 be a
Lie algebra with an ad-invariant non-degenerate symmetric bilinear form (-, ')0 and with the Lie
bracket [', ']0' Then we define a st ruct ure of a Courant algebroid on the vector bundle Eo =

Eo EEl (lvI x g) as follows. The an chor map is given by a = ao 0 pr Eo ' Because r(1VI,Eo)
f(AtJ, Eo) EB COO (lvI, g) the Courant bracket is defined through

[e l + ft ,e2 + hl = [el ' e2]0 + £ ao(el )h - £ ao(e2)!1 + [ft , 12]0 + a~(dft, 12 )0'

and the bilinear pairing by

(1.54)

(1.55)

where el ,e2 E f (!'vf ,Eo) and ft ,h E COO iM, g). The the bracket on sect ions f (M,1VI x g)
C ?O (Al , g) is given by

(1.56)

and the bilinear paring by

(1.57)

where z E 1\1.

1.5 Generalized complex structures

A generalized complex geometry was introduced by Nigel Hit chin [21] and further developed by
his students Marco Gualtieri [22]' [20] and Gil Cavalcanti [23]. It contains complex and symplectic
geometry as its extremal special cases. Generalized complex structures give a wide class of complex
Lie algebroids.

Definition 7. Consider a Courant algebroid (E -> M, (- , '), [. , ,],a) then a maximal isotropic
subbundle L of E is called an almo st Dira c structure. If L is involutive, i.e., sect ions of L are
d osed under the Courant bracket , then an almost Dirac st ruct ure is said to be int egrable or simply
a Dirac structure.

Example. The contangent bundle T *M c T M EB T *M is a Dirac structure for any H-twisted
standard Courant algebroid with H E n~I( Al, IR) .

Example. The tangent bundle T A! C T 1V! EB T *lv! is an almost Dirac st ruct ure for any H -twisted
stand ard Courant algebroid and a Dirac structure only for st andard Courant algebroid .

Remark. If L is a Dira c struct ure , then the restriction of the Courant bracket on sect ions of L
gives a structure of a Lie algebroid on the vector bundle L. This follows from the fact that L is a
maximal isotropic subbundle.

Definition 8. A generalized almost. com plex stru cture on a Courant algebroid E is a vector
bundle automorphism :J: E -> E covering the identity on M such that J 2 = -idE and which is
orthogonal with resp ect to the inner product (pseudo-Euclidean structure).

Lemma 5. Let E be a Courant algebroid and J : E -> E a vector bundle automorphism covering
t he id enti ty on AI t hen the following condit ions are equivalent :

i) J2 = - id E and :J*:J = idE , i.e., (J (el ), .1(e2)) = (e l ' e2),
ii) .12 = - idE and :J'" = - .1, i.e., (.1(ed , e2) + (e l' .1(e2)) = 0,

where € l . C2 E f (AtJ, E ).

Proof. It follows immediately from the definiti on of :J*. •

As long as :J is a genera lized almost complex structure then we can extend :J by lineari ty
011 t he complexificat ion E of vector bundle E. Using the following isomorphism f(M, Ee) ~
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f(Ai, E) ® C we can write J c(el + i e2) = Jc(el) + i Jc(e2) for e l, e2 E f(M, E) , moreover Jc: is
an automorphism of the complex vector bundle Ee. Further on the complexification Ee is given
a vector bundle morphism -: Ee --. Ee by the relation el + i e2 = el - i e2 for el, e2 E r(M, E).
Note that this is an automorphism of the real vector bundle Ee not the complex vector bundle.
Immediately it follows that (-)2 = idEe-

Because J e is an automorphism of the complex vector bundle Ee , therefore there exists the
complex + i-eigenbundle L = ker(Je - i idEe) of the automorphism :le. On the other hand it
is quite easy to verify that L = ker(:le + i idEe)' Further because L is the +i-eigenbundle and
I is the -i-eigenbundle, hence L n L = O. Now if el,e2 are two sections of L, then (el ,e2)c =
(Jc(ed , Jc(e2))c = (ie l , ie2)c = -(el , e2)c , therefore L is a complex almost Dirac structure of
the complex Courant algebroid Ee. Moreover we know that L ff)L = Ee and furthermore from the
fact that L, L are isotropic complex subbundles and from whence that (-, .)c is a nondegenerate
bilinear form it follows that L* ~ L .

In fact, we have proved the following lemma which provides an equivalent definition of a
generalized almost complex structure on a Courant algebroid.

Lemma 6. A generalized almost complex st ruct ure on a Courant algebroid E is equivalent ly
given by a complex almost Dirac st ruct ure L c Ee such that L n L = a and L ff) L = Ee .

Remark. Similarly as in the complex geometry, a complex structure is an almost complex struc­
ture such that it satisfies some integrability condition. Therefore we define a generalized complex
structure as a generalized almost complex structure with some integrability condit ion.

Definition 9. A generalized complex structure on a Courant algebroid E is a generalized almost
complex structure J for which the complex +i-eigenbundle L c Ee is a complex Dirac structur e.

Accordingly as for a generalized almost complex structure there is an alternative definition of
a generalized complex structure expressed through +i-eigenbundle.

Lemma 7. A generalized complex structure on a Courant algebroid E is equivalently given by a
complex Dirac structure L c Ee such that L n L = a and L EB L ~ Ee.

The previous definitions are illustrated most clearly with two extremal cases of generalized
complex structures on H-twisted standard Courant algebroid TAl ff) T *M.

Example. (complex structures) Consid er the automorphism of TM ff) T *I\1 defined by

(
- J 0).J., = a J* ,

where J : T A! --. T A·! is a complex structure on AI. Then we get :l} = -idT M EBT* M and Jj =
- ..1;. The + i-eigenbundle L = T(l,O) M ff) T*(O,l) A! is int egrable if and only if J is integrable and
H (a.o) = O.

Example. (symplectic structures) Consider the automorphism of T 1\1! ttl T*M given via

-1)- w
a '

wher w E n2(A! , lR) (w : TM --. T*M) is a symplectic structure on M. Again, we have :l; =
-idTMe T'.\1 and the + i-eigenbundle L = {X - iw(X ); X E f (M,T Me} is integrable if and only

if H = a and dw = O.



Chapter 2

Linear Lie algebroid connections

2.1 Linear Lie algebroid connections

In this section we introduce the notion of linear Lie algebra id connect ions, i.e., Lie algebraid
connections on real (complex) vector bundles . The more general definition of Lie algebraid con­
nections on fiber bundles will be presented in Chapter 3. It is a natural generalizat ion of a linear
connection on vector bundles , sinc e Lie algebroids can be understood as generalized t angent bun­
dles. Therefore it is possible to use simil ar cons truct ions for linear Lie algebra id connections as
for linear connections.

Remark. vVe will use notation lK for the field JR of real or for the field C of complex numbers.

Definition 10. Let (L ----; AI, [. ,.J, a) be a real (complex) Lie algebraid and let E ----; M be a
real (complex) vector bundle. We denote the space of sect ions of the vector bundle AkL* ® E for
k E No by n1 (.1\1, E ) and sections will be called E-valued k-forms of Lor k-forms of L with values
in E. A linear Lie algebroid connection or an L-connection on a vector bundle E is a lK-linear
mapping

(2.1)

sat isfying Leibniz rule v(Js) = dLf 0 s + rvs for any f E COO (2\!I, lK) and s E n~(M, E).

Remark. For any ~ E .td.vI) we have a OC-linear mapping v'; : n~(M,E) ----; n'l(lvf,E) given by

(2.2)

for 8 E nVAf'. E), called the covariant deriuaiiue along S. Moreover it sat isfies

(2.3)

and

(2.4)

for all i e c (A'f, lK), (C:l ,6 E .tL(JI) and s E n7JM,E). Therefore a linear Lie algebroid
connection on a vector bundle E can be equivalently defined as a lK-bilinear mapping

v: XL( lvI) x n1(M, E) ~ n1(M, E),

(~, s) f-' \7.; 8

:.;a.tbfying (2.:~) and (2.4) for all ~ E XdM), .f E COO (lvI, lK) and 8 E n'l(Jvf ,E) .

21

(2.5)



(2.8)

(2.10)
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Tensorial operations on vector bundles may be extended naturally to vector bundles with L­
connections. More precisely, if E 1 and E2 ar e two vector bundles with L-connections \7E1 and \7E2,
then E 10 E2 has naturally induced L-connection \7E109E2 uniquely determined by the formula

\7{1 09E2(81 0 82 ) = \7t81 0 8 2 + 81 0 \7~E2 82 (2.6)

for all ~ E XL(M ), 8 1 E o.~(M, E 1 ) and 8 2 E o.~ (M, E 2 ) . If we are given a vector bundle E with
an L-connection \7E then the du al vector bundle E* has a natural L-connecti on \7E' defined by
the identity

L E' E
£~ (t, 8) = ( \7~ t , s ) + (t , \7~ s) (2.7)

for all ~ E XdM) , 8 E o.~(M, E) and t E o.~(M, E*), where (-,.) : o.~(M, E*) x o.VM, E) ---.
COO (1\11, OC) is the natural pairing. In particular , any L-connection \7E on a vector bundle E induces
an L-connection \78nd(E) on End(E) ::: E* 0 E by the rule

(\7fnd(E)T)8
= \7f(T s) - T(\7fs) = [\7f ,T ]s

for all ~ E XL(1\I/), T E o.~(..i\;[ , End(E)) and s E 0.~ ( 1\I1 , E).

For any vector bundle E the graded vector space 0.[,(M , E) is a gra ded o.L(M)-module through

where a E o.j) 1\1/), w E 0.1 (1\1, E) and 6 , ... ,~p+q E X d M) . The graded module homomorphisms
<f>: o.L( JI,E) ----- o.L(M, E) (so that <I>(a 1\ w) = a 1\ (_1)deg(<p) .deg(w)<I> (w)) coincide with the
mappings j.L( A.) for A E ni(A1, End(E)) , which are given by

1 ",.
(/L(A.) w)(6, . .. ,~p+q) = -'-I~ signto) . A(~C7 (I ) " . . '~C7 ( p )) w ( ~C7 (p+ l)" .. , ~e7{p+q) ) ,

p. q. C7

where ~1 ," " Ep+q E XL(J£) . Moreover, th e graded vector space o.L(1\I1, End(E)) has a natural
st ruct ure of a graded a..ssocia tive algebra via

(w 1\ T) (6 , . . . , ~p+q) = --1t L signfo) . (W (~C7 (I ) " .. ' ~C7 ( P ) ) 0 T(~C7 (p+ 1 ) " .. , ~C7(p+q»)) (2.11 )
p.q. C7

and a natural structure of a graded Lie algebra through

[W , Tj(~ l , .. . , ~p+q ) = --1t Lsign(O') . [w (~C7 (1 ) ' '' ' ' ~C7 ( p» ) , T (~C7(P+ l ) ' '' ' ' ~C7 (p+q » ) ], (2.12)
p. q: C1

where w E ni (Al,End(E)). T E n1Uv1, End(E) ) and 6 ,.· · ,~p+q E X d 1\l1)· Comparing these two
definitions we may write

[w,T] = W 1\ T - (_l)deg (w) degfr ) T 1\ w.

for w, T E 0L (AI,End(E)) .

Let \7 be an L-connection on a vector bundle E then the covariant exterior derivativ e

is defined by

k
V . '

(d W)(~O, El, ... ,Ed = L(-1r\7t i W (~0 '''' '~i , .. . , ( k)
i=O

(2.13)

(2.14)

k

+ L (-l) i+jw([(i,Ej], (0, ' .. .i; .. ,tj , ... , (k) , (2.15)

O~ i<j9
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where w E Dl(M, E) and ~o, .·., ~k E xL(M).

Lemma 8. The covariant exterior derivative d'il: DL(M, E) ---- D~+l(M, E) has the following
properties:

i) d'il(Dl(M,E)) c D1+ 1 (]\;[ ,E ),
ii) d'il ln~ (M.E) = \I,

iii) d'il(a /\ w) = dLa /\ w + (_l)deg (a )a /\ d'ilw for a E Di,(M) and w E Di,(M,E) (the graded
Leibniz rule),

'ilEnd\E ) [ 'ilEn d (E ) d () 'ilEnd(E)
iv) d w, T] = [d w, T] + (-1) eg w [w,d T] for w, T E Di,(M, End(E)) .

Proof Properties i) and ii) follows immediately from the definition.
iii) It suffices to investigate decomposable forms w = (3 08 for (3 E D1 (M) and 8 E DVM,E).
From the definition we obtain d'il((3 ® 8) = dL(3 0 8 + (-l)q(3/\ d'il8 . Afterwards for a E Dj)l\!I)
we have

d'il(a /\ (13 0 s)) = d'il((a /\ (3) 0 s) = dL(a /\ (3) 0 8 + (-l )p+q (a /\ (3) /\ d'il8

= (dLa /\ (3) 0 s + (-l)P(a /\ dL(3) 0 S + (- l )P+Q(a /\ (3) /\ d'ils

= dLa /\ ((3 0 s) + (-l)Pa /\ d'il((3 0 s).

iv) For decomposable forms w = 0'. 0 S, T = (30 t, where 8, t E D~(M,End(E)) , a E Dj)M) and
.B E D1(1\1), we have [a 0 s, (3 0 t] = (a /\ (3) 0 [8, t]. Hence we can write

d'ilE,UI( E ) [a 0 s, (3 0 t ]= d'ilE nU ( E ) ((a /\ (3) @ [8, t])

= dL(a /\ (3 ) 0 [s, t]+ (-1 )p+q(a /\ (3) /\ d'il E nd (E) [8, t]

= (dLa /\ (3) 0 [8, t] + (-l)P(a /\ dL(3 ) 0 Is, t]

+ (-1 )p+q (a /\ .6) /\ [d'il
E lld

( E ) s , t] + (-1 )p+q(a /\ (3) /\ Is, d'ilE n d ( E ) t]

= [dLa 0 s , (3 0 t] + (-l)P[a 0 s, dLf3 ® t] + (- l )p[a /\ d'ilEnd (E) S , (3 0 t]

+ (-l)p+q [a 0 8 , (3 /\ d'il E nd (E ) t]

= [d 'il E lld (E) (a 0 8), /30 t]+ (-l)P[(a ® 8), d'ilEnd(E ) ((3 0 t)],

'ilEnd ( E ) 'ilE nu (E' ) 'il E nd ( E)] • •
where we used t hat d [8, t] = [d 8, t] + [8, d t which follows from the classical
Jacobi identity for lK.-linear mappings on D~!, (Jil, E) , thus we are done . •

Lemma 9. Denote by A(E, L) the set of all L-connections on a vector bundle E. Then A (E, L)
is an affin space modeled on t.he vector space ni(M, End(E)) .

Proof \ Vi first prove t hat A (E , L) is non-empty. Because on any vector bundle E there exists a
connect ion 'V': DO(M ,E) n1 (1\I,E), we may define an L-connection \7 : n~ (lvI,E) ---- ni(M, E)
hy

V~8 = \la(Os

for ~ E .IL(A'/) a nd 8 E n~ (M,E). The rest of the proof is very simple. We need to verify that ,
if \7 and \7' ar two L-connectiolls , then (\7' - \I): n~(lil, E) ---- ni(M, E) is a COO (A'1, OC)-linear
mapping. But. w have (\I' - \I)(fs) = dLJ '~ 8 +J\I's - dLJ 0 8 - f\l 8 = J(\I' - \I )s hence there
exists a uniqu ly d termined a E n i(M, End(E)) such that \I' - \I = f-L (a) . •

Remark. Thus , if we fix some \1o in A(E.L) , we may write

A (E , L) = {\lo + f-L(a)j a E ni(1\I,End(E))}.

This description will permit us to define Sobolev completions of A (E, L) .

(2.16)
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Definition 11. If we are given an L-connection V on a vector bundle E , then the curvature
Rv E 01,(.1\;1, End(E)) of the L-connection V is defined by the formula

R\l(~,T/)s = '1~'1rls - \lr/'1~s - \I[~ ,l))S = ['1~, \I'I]s - '1[E ,1/1s, (2.17)

where ~,T/ E XdM) and s E 01(M,E) .

Remark. An L-connection with zero curvature is called the fiat L-connection. We will denote
the set of all fiat L-connections on a vector bundle E by 9{(E , L ).

Lemma 10. Let V be an L-connection on a vector bundle E, then

for all W E nL(M, E).

Proof. First we verify that R\l(~,T/)s = (d'V(d'Vs))(~,T/). This is a consequence upon the following
comput at ion

(d\l(d'Vs))(~ ,rl) = '1d(d'Vs)(T/)) - \I'I((d'Vs)(~)) - (d'Vs)([~,rl])

= '1~'1T/s - \1'1 \I~s - '1[~ ,rl ]S

= R\l(~ , T/)s

for all ~,T/ E XL(Al) and s E nVM, E). Further it suffices to investigate only decomposable forms
w = a ® s for a E n1 (M ) and S E n1 CNI, E). Afterwards , we can write

(d\l 0 d\l)(a @ s) = d'V (dLcx @S + (-l )ka 1\ d'Vs)

= 0 + (-l)k+ldLcx 1\ d'Vs + (-l)kdLa 1\ d'Vs + (_1)2ka 1\ (d'V 0 d\l)s

= a 1\ J1(R'V ) s

= J1(R'V) (a 0 s)

hence we have got d\l 0 d'V = J1(R'V) and this finishes the proof. •

Given an L-connection on a vector bundle E , the mapping \I: n1(M,E ) --> nUM, E) can be
extended to the following sequence of first order differential operators

o -> n~.(!vI,E) ~ n},(M,E) ~ . . .~ n'L(M,E) -> 0, (2.19)

where r = rk L. It is a differential complex if and only if the curvature R'V of the L-connection V

is zero (V is a fiat L-connection).
A natural question is when is this differential complex an ellipt ic complex? Let f E COO(M, R)

then we may write

for any w E n1(1v[,E) hence for the principal symbol (J"l(d'V) we obtain

(J"l (d'V)(~;£) = a*(~x) l\: (AkL* ® E) x --> (Ak+l L* @ E )x

for every x E M and ~.r E T;M, i.e., the symbol is the exterior multiplication by a*(~x). Therefore

we have the twisted K oszul complex

(2.20)

where r = rk L, which is an exact sequence, if and only if a*(~x ) =1= O. Thus, the differential
complex is elliptic if and only if th e corresponding twisted Koszul complex is an exact sequence
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for any x E M and 0 =F ~x E T;M, in other words if and only if a*(~x) =F 0 for any x E M and
o=F ~x E T;M.

If L ~ T M is a real Lie algebroid, t hen the elipt icity is equivalent to the requirement that
a*: T*!vI ---> L'" is injective or that a: L --+ TA1 is surj ective. For a complex Lie algebroid L ~ T!vIc
it corresponds to the requirement that a* IT' lVI: T *M '---+ (TiVIc)* --+ L* is injective, These are the
same condit ions as for the ellipticity of the complex (1.40). We will call this condit ion the ellipticity
condition for a Lie algebroid .

Lemma 11. If \7 is an L-connecti on on a vector bundle E t hen we have

\7 End ( E ) \7
d R =0. (2.21)

This is called the Bianchi identity for R\7.

Proof. For any 6,6,6 E XdM) we may write

\7 E n d ( E ) \7 \7 \7 \7 ](d R )(~1 ,6,6 ) = [\7~ !,R (6, 6 )] - [\76 ,R (6, 6)] + [\76, R (~1 ,6)

- R\7( [6,~2],6) + R\7([~1 , 6],6 ) - R\7([6,6]'~d

= L ([\7EI' [ \7~2 ' \76 ]] - [\7~I ' \7[6 ,6 J]) -L ([\7[EI,6J,\76 ] - \7[[~1 ,6],61)
cy k l cy k l

= - L [\7E!, \7[6 ,6 11 - L [\7[~1 '~2J ' \76 ]
cy k l cy k l

= 0,

where we used the classical .Jacobi identity for commutators of II{-linear mappings. •
Lemma 12. Consider two L-connections \7, \7' on a vector bundle E. There is a uniquely
determined a E nl,(M, End(E)) such that \7' - \7 = J1 (a ), Then

R\7' = R\7 + d\7End ( E ) a + a 1\ a

\7 \7 E n rt ( E ) 1 [ ]
= R + d a +"2 a, a .

(2.22)

(2.23)

Proof. The proof is a straightforward computation only. We have

•

R\7k,T/) = [ \7~ , \7:11- \7{C1/J

= [\7( + 0:(0, \71/ + a ery)] - ( \7[~ ,11 ] + a( [~, 1]]))
= [ \7~ , \71) ] - \7[C1/J+ [ \7~ , a(T/ )] - [\7,1' a( ~) ] - a([~ , T/]) + [a(O, aery) ]

= R\7(~ , T/) + \7EEnd(E)a(T/) - \71~nd (E ) a(O - a( [~ , 1]]) + [a (~ ) , a( ry)]

\7 E n d ( E ) ) ( )(C )
= R\7(~ , 17 ) + (d a ( ~, 1])+ o r. a <" ,1]

= R\7(~ , T} ) + (d\7End ( E ) a) ( ~, 1/) + ~[a , a] (~ , ry )

for all ~ , TJ E XL(i\1), so we are done,

Therefore, if we fix some fiat L-connection \70 E 1( (E , L ), then, using the result of Lemma 12,

we may write
\7 End (E)

J((E ,L) = {\70 + J.1.(a); a E nUM, End(E)), d 0 a +a 1\ a = O}. (2.24)

Thi d . . t' "1 1 lik ' the case of A(E L) will allow us to define Sobolev complet ionsus .escnp ion, SImI ar y 1em, ,
of J((E , L).
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2.2 Group of gauge transformations

Let E ~ M be a real (complex) vector bundle , then a vector bundle homomorphism is a smooth
mapping ip : E --'> E such that there exists mapping if... : M --'> M , the diagram

M ) M
s:

commutes and and for each x E M the mapping <Px = <P IEx : E x ----+ E tp (x) is lK-linear. Because
IT : E --'> 1vI is a fibered manifold and <P ° IT is smooth, we get that <P i s smooth. If we denote
by Aut(E) the group of vector bundle automorphism <p : E ----+ E then th e previous diagram
commutes for a un iquely det ermined diffeomorphism ip : M --'> M, Therefore we have a group
homomorphism from Aut(E) into th e group Diff(AJ)o f all diffeomorphism of M: The kernel
Gau(E) of this homomorphism is called th e group of gauge transformations and its elements are
called gauge transformations. Thus Gau(E) is the group of all vector bundle automorphisms
ip : E --'> E sat isfying IT ° <P = IT . Hence we have the following exac t sequence

{e} --'> Gau(E) --'> Aut(E) --'> Diff (M) (2.25)

of groups.
Furthermore we define the L ie algebra of gau ge transformations gau (E). As a vector space it

is D.1(M, End(E)) , while th e Lie bracket is given by

(2.26)

for 1'1,1'2 E D.1Uv!, End(E)).

The group of gauge tra nsformat ions Gau (E) has a left action on the space D.1(M,End(E))
given by

(2.27)

where <P E Gau(E) , w E D.1(M, End (E )) and ';1 , ' " , ';k E XdM) . Further this gives a left action
of the Lie algebra of gau ge transformations gau(E) on D.1(M, End(E)) via

(2.28)

for l' E gau (E) and w E 0.1 (iVI, End(E) ). So we have got representations of Gau(E) and gau(E)
on the graded vector space D.i,CM,End(E)).

Remark. Furthermore there is a left action of the group Aut(E) on the space of sections f (!vI, E)
defined by

- 1Cp , s =cpoS0if... '

where ip E Aut(E) and s E f(M, E ).

2.3 Change of connections

(2 .29)

Let (L --'> AI, [,, ·j,a) be a real (complex) Lie algebroid and E --'> M be a real (complex) vector
bundle. Further consider a gauge transformation cp and an L-connection V' on E. We define a
lK-bilinear mapping v«. :r.d A1) x 0.1 (M, E ) ----+ D.1(M ,E) by

V'ts = cp (Y'dcp - 1(S ))) (2.30)
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for any ~ E :tdM) and s E n~ (A1 , E ). Since we may write

\1t(fs) = <p( \1~ (<p- l (JS))) = <p ( \1~ (f<p- l( S)) )

= <p( (.ct J)<p - l(S) + j \1d <p-l (s)))

= (.ct J) s + j<p (\1~ ( <p- l (s ) ) )

= (.ct J) s + j\1t s

and moreover we have

\1;~ s = <p( \1f~(<p- l( S))) = <p(f \1d<p-l(S))) = j cp(\1d <p- l (s))) = j\1t s

for all ~ E :tdM ), j E COO (M, OC) and s E nV A1,E ), therefore \1'P is an L-connection on E .
As V 'P is an L-connecti on, we can define a natural left action of Gau (E) on the space A (E , L)

of L-connections by

(cp, \1 ) 1---4 <p . \1 = \1'P .

It is easy to see th at t his really defines a left action.

Remark. It would be possible to define a right action instead of a left act ion by

(2.31)

(2.32)

(2.33)

- 1

(\1,<p) 1---4 \1 . sp = \1'P .

This reverse the role of ip and cp- l in (2.31), but makes no difference in th e end .

Lemma 13. Let \1 be an L-connection on E. Then we have

RV
'" = Ad'P (R v )

for any gauge transformation sp E Gau (E).

Proof. It follows immedi ately t hat

Rv"'( . ) _ ['r7'P 'P ] 'P~ ,17 - v ~ , \11/ - \1[~ , 1/ ]

= ip 0 [ \1~, \11/] 0 <p - l - cp 0 \1[~ , 1/ J 0 <p- l

= sp 0 RV(~ , TJ) 0 <p- l

for all ~ , TJ E :t L iM ]. •

Because 9f(E , L ) is invariant under the action of Gau (E), as it follows from Lemm a 13, we
have t he action of Gau (E ) on the space of flat L-connections 9f(E , L ). Therefore we define t he
moduli space

13(E , L ) = A(E, L )/G au(E )

of gauge equivalence classes of L-connecti ons and the moduli space

M (E , L ) = 9f(E , L )/G au(E )

(2.34)

(2.35)

of gauge equivalence clas ses of flat L-connecti ons.

Now we take up the quest ion of reducib le connect ions. Given an L-connection \1 E A(E, L)
t hen the iso tropy subgroup or the stabilizer of \1 is the subgroup Gau (E)v of Gau(E ) t hat leaves
\1 fixed , i.e. ,

Gau( E) v = {cp E Gau(E ); cp ' \1 = \1} . (2.36)

Every such group contains the subgroup OC* · idE.

Definit io n 12. An L-connection \1 on a vector bundle E is called irreducible or sim ple, if
Gau(E)v = OC*·idE , otherwise \1 is called reducible. We deno te the set of irredu cible L-connecti ons
by A *(E , L) and the set of irreducible flat L-connections by 9f*(E , L ).

Lem m a 14. Let \1 be an L-connection on a vector bund le E over a compact manifold M . Then

the following are equivalent :



- ---------- Linear Lie algebroid connections 28

i ) Gau (E)'V = 1K*· id E,
ii) ker \7End(E) = IK . id E,

iii) ker \7End(E)ln1(M,End(E»O = {O}.

Proof Co nsider a gauge transform ation ip E Gau(E). Then the requirement ip - \7 = \7 mean s that
for any ~ E XL(AtI) we have ip 0 'V€ 0 <p-1 = \7€ and this is equivalent to ['V€, <p] = O. Therefore we
have got that .p E Gau(E )'V if and onl y if 'VEnd(E)<p = 0 and <p E Gau(E).

Sup pose th at <p E Gau(E )'V t hen 'VEnd(E)<p = 0 and, provided that ker \7End(E) = IK . idE, we
obtain sp = c id E for some e E K*. Hence we get Gau(E) 'V' c IK* · id E and because the converse
inclusion is t rivial, we have proved ii ) =} i).

To prove the opposite implication, we use the compactness of t he manifold M . Assume that
<p E keI' \7End(E). Because At! is compact, t here exists eE K (wit h lei sufficiently large) so t hat
c id E + <p E Gau(E). Moreover , \7End(E)(c- idE + <p ) = 0 and from the previous consideration, it
follows c·idE+<p E Gau(E)'V. Besides, if we sup pose Gau(E) 'V' = IK* ·id E , we obtain ker'V End(E) c
IK . id E. The converse inclu sion is trivial.

The equivalence of ii) and iii) immediately follows form th e definit ion of Q~ (M,End(E) ) O , so
this finishes the proof. •

From the fact that Gau (E)'V 'P = <p ' Gau(E) 'V . <p - 1 for all ip E Gau( E) and 'V E A (E , L), we
obtain t hat A*(E , L ) is invari ant und er the act ion of Ga u(E) and the same for JC*(E , L ). Thus we
can define , similarly as in (2.34) and (2.35), t he moduli space

13*(E, L ) = A*(E, L)/ Gau (E)

of ga uge equivalence classes of irreducible L-conn ecti ons and the moduli space

M*(E, L) = JC*( E , L)/ Gau (E)

(2.37)

(2.38)

of gauge equivalence classes of irreducible fiat L-connections.
Becau se I!(* . idE is a normal subgroup of Gau(E), we define t he reduced group of ga'uge trans­

formations Gau (£ )f by

Gau(£r = Gau(E)/IK* . idE' (2.39)

Then t he left action of Gau(E ) on A (E , L ) facto rs trough an act ion of the redu ced group of gauge
tr ansformations Gau(E Y since the group IK* . idE acts trivially on A(E, L ), similarly for JC(E, L ).
Therefore for t he moduli spaces (2.34) , (2.35) of L-connections we may write

13(£ , L ) = A (E , L)/ Gau (EY and M (E ,L) = ] {( E, L)/ Gau(EY (2.40)

and similarly for t he moduli spaces (2.37), (2.38) of irred ucible L-connections we have

13*(£ , L ) = A *(E , L )/ Gau(E r and M*(E, L ) = JC*(E, L)/Gau (EY. (2.41)

The set A*(E,L) of all irreducible L-connections is the max ima l subset of A (E ,L) on which t he
redu ced group of gauge t ra nsformations Gau(E)f acts freely, likewise for JC*(£ , L ).

If we an ' given a gauge transformation .p E Gau(E) and an L-connection 'V on a vector bundle

E, th en for the changed L-connecti on 'V'P we have

\7'P \7 \7End(E) - 1 _\7 _ 'VEnd(E){(') OI/) - l
v~ = V c + <p0 V c sp - V€ C -r 'r: ,

(2.42)

where ~ E XL(Al). T he last equali ty follows by differentiating the ident ity ip 0 <p -1 = idE. More
generally, if we fix some L-connection 'V and express another L-connection 'V' as \7' = 'V + J.1 (0'),
then

(2.43)



- - - - - - - - - - Linear Lie algebroid connections 29

hen ce, writing \7' <P = \7 + 11. (a 'P ), we obtain

a 'P(O = ip 0 \7~End ( E ) cp -l + cp 0 a(~) 0 cp- l

for ~ E :fdN!). This can be rewritten as

a 'P = cp 1\ \7 En d(E )cp-l + Ad'P (a )

= - \7 End(E )cp 1\ cp- l +Ad'P (a )

for cp E Gau(E).

2.4 Sobolev spaces and elliptic operators

(2.44)

(2.45)

(2.46)

(2.47)

(2.49 )

In t his sec t ion we introduce Leb esgue and Sobolev spaces on manifolds which are an important
framework for the const ruct ion of moduli spaces of Lie algebroid connect ions on fiber bundles (in
particular vector bundles and principal fiber bundles). More details ca n be found in [34] and [35].

Let (1\11, .9) be a Riemannian manifold and 7T: E ---> M be a real (complex) vector bundle
endowed with an Euclidean (Hermit ian) metric h. The metric 9 det ermines t he density vol(g) of
th e Riemannian metric g, even vol(g) induces a (regula r) Borel measure j.lg on M.

Definition 13. Let p E (1, + 00), then an LP-section of E ~ M is a Bor el measurabl e mapping
'1/) : AI ---> E , i.e.,lp- l (U ) is Borel measurable for any open subse t U C E , such t hat

i) 7T o ~, = idl\1 ,
ii) the fun ction x 1----+ 1'¢ (x )l ~ = Ih('IjJ(x), '¢(x))IP is int egrable with respect to t he Borel measure

Jig, i.e. , belongs to LP(M, JR).
We denote by LP(l\lf, E) th e vector space of equivalence classes of LP-sections with respect to the
equali ty almost everywhere . With regard to t he norm defined by

I

11 'ljJ llp = (!\;f 1 'l/)(x) l~ dj.lg ) P

is LP(M, E) it Banach space for any p E (1, + 00).

Denote now by \79 t he Levi- Civi ta connection of 9 and by \7h a connect ion compatible with
h. Further for eac h j E N we define \7j as t he compositio n

E: T* M @ E T "M 0 (j -1) 0E .

[(M, E )~ [( lVI,T *M ® E ) \l , .. . \l i f (NI ,T *M 0J 0 E ), (2.48)

where \7T *;\[ ® k 0 E for k E No denotes the connection on T*Nr~k 0 E induced by \7g and \7h
.

The metrics 9 and h induce metrics on each of the vector bundle T *A10J 0 E , hence we can
define t he spaces LP(M,T *M ®j 0 E ).

Definition 14. Let u E LP(M, E ) and v E LP(M, T *M ®j 0 E), then we say that \7j u = v weakly
if

r (v, cp) dj.lg = r (u, (\7j )*cp ) dj.lg
.1M JM

for all cp E f o(1\-1,T*!lI0J ® E), i.e. , sections with compact support , where (\7J )* is the form al

adjoint of \7j .
. For p E (1, + (0 ) and k E No we define the Sobolev space Lk ,P(M, E ) as t he space of sections

1/) E L P(1\1!, E) such that there exists 'ljJ j E LP(M, T*1'v!®J 0 E ) sat isfying \7J1jJ = 'ljJj weakly for all
j = 1,2, . . . , k, This is a Banach space with respect to t he norm

I

II" IIk.p~ (to I l vj"lI~r (2.50)
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where \l01/J = 1/J . The Banach spaces Lk,P(M, E ) are called the Sobolev spaces of sections.

The spaces Lk,P(lvI, E ) are separable, and for p > 1 t hey are reflexive. For p = 2 the spaces
Lk,2(M , E) are Hilb ert spaces with t he following scalar product

(2.51)

In t he special case p = 2 we will write f( M, E )k instead of Lk,2(A1, E ).

Denote by C" iM, E ) for T E No the vector space of C" -sections of a vector bundle E ---+ M. If
M is a compact manifold t hen Cr(M, E ) wit h the norm defined by

t:

111/Jllr = Lm~ l\lj 1/J 1
j=O

(2.52)

is a Banach space.

Remark. The Sobolev spaces Lk,P(M , E) depend on several choices: t he metrics on T M and E
and the connect ion on E . When M is non-comp act this dependence is very dramatic and has to
be seriously taken into consid eration.

Theorem 3. Let (A1, g) be a compact Riemannian manifold of d imension nand E ----> M be
a real (complex) vector bundle over M equipped with an Euclidean (Hermit ian) metric h and a
compat ib le connection \lit on E.

(i) The Sobolev space Lk,P(M , E ) does not depend on the metrics 09, h and on t he con nection v».
More pr ecisely, if g' is a different Riemannian metric on M and \lh' is anot her connect ion
on E com patible wit h some metric hi then

L~: , P (M E' g h \lh) = Lk,P(AJ E ' "I hi \lh' ), , , , , ,~ , , (2.53)

(ii)
(iii )

as sets of equivalence classes of sections an d the identi ty map ping between these two Ban ach
sp aces is cont inuous.
If 1 :S p < +00, then r (M , E ) is dense in Lk,P(M , E) .
(Sobolev embe dding t heorem) If ko - n. > k1 - !l and ko > k1 t henPo - PI -

Lko,Po(M, E ) c Lk I ,P I (lVI , E ) (2.54)

and t he embedding is cont inuous . Moreover if ko - ::a > k1 - ;1 and ko > k1 t hen the

embeddi ng LkO,PO(A1,E) '---' Lkl ,PI(M ,E) is compact .
(iv) (Lemma of Rellich) If k - ~ :::: T then

(2.55)

a nd the embe dding is continuous. In case we have strict inequ ality then t he embedding is
compact . In part icul ar, if one has 'P E Lk,P(M , E ) for some fixed p and all k :::: ko, then

'P E r (l\J,E).

Remark. Therefor e we have the following sequence of compac t emb eddings

and moreover from Rellich 's lemma it follows t hat

00

r (M, E ) = nLk,P(M , E )
k =O

(2.56)

(2.57)
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for all P E (1, + (0 ).

Theorem 4. (Sobolev multiplication theorem ) Let E 1 , E 2 , F be lK-vector bundles over a compact
manifold M of dimension n and

m: f(M,Ed x f(M,E2 ) --+ f(M ,F)

be a COO (!v[, ][()-bilinear mapping then m exte nds to a continuous mapping
(i) b

(2.58)

(2.59)

(ii)

(2.60)

if p' . k' > n , k > k' and k - ~ .2: k' - -? for p i= 1 (or k - n > k' - fit in the case p = 1),
(iii)

(2.61)

if p . k > n .

Theorem 5. (Left compos it ion lemma) Let E ,Ft, F2 be ][(-vector bundles over a compac t manifold
A/ of dimension n and f : F) --+ F2 a homomorphism of lK-vecto r bundles covering the identity on
AI, i.e., f E f(Al, Hom(F), F2 ) ) . Then f defines a mapping

(2.62)

given by

(2.63)

which extends to a differentiable mapping of Ban ach spaces

(2.64)

provided t hat p . k > n.

Theorem 6. Let E , F be ][(-vector bundles over a compact manifold M and P : f(M , E ) --+

[( AI, F ) be a ][(-linear differential operator of ord er e. Then P extends to a cont inuous lK-linear
mapping

(2.65)

for k .2: e.
Theorem 7. (Ellipt ic regularity) Consider a lK-vecto r bundles E , F over a compact man ifold
A/. Let P: fCM, E) -t f(M, F) be an ellipt ic ][(-linear differential operator of degree e. If for
If; E f( !vI, E)k one has Pkw E f( A'1 , E )k- H1 th en WE f (M , E )k+1 . Therefore Pkw E f(M , E)
impli es 'l/J E f(AI, E) by the Lemma of Rellich, and in parti cular we have ker Lk = ker L.

Next we consider a sequence of different ial operators

Do . ) D J D e- J I' ( ~ '1 E ) 00 --> f(M , Eo) -- f(M, E1 --} ... - - , I V. , e --} , (2.66)

where E are ][(-vector bundles over a compac t manifold M, and D, are ][(-linear differential
~

operators of degree r i- Let us assume that t his sequence is an elliptic complex , Le., D, 0 D i - 1 = 0
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for i = 1, 2, ... , e- 1 and for all x E M and °:/= ~x E T; M t he associated sequence of principal
symbols

(2.67)

is an exact sequence .
Denote t he cohomology of t his elliptic compex by Hi(E., D. ) for i = 0, 1, . . . ,e. Endow each

E, with an Eu clidean (Hermitian) metric hi and a compat ible connection \l il, . Furthermore let 9
be a Riem annian metric on M: Then we define the formal selfadjoint ellipt ic operators

(2.68)

of degree max{2r'i_l , 2ri} for i = 0,1 , . . . , e, where Di is a form al adj oint of D, and Dc.« , De are
zero operato rs . Because .6. i is an elliptic operator, the i -ili vector' space of harmonic sections

(2.69)

of t he elliptic complex (2.66) is finite dimensional for i = 0, 1, . . . , e.
Theorem 8 . Let Hi : [(AI , Ei ) -> 1{i(E. , D.) for i = 0, 1, . .. , ebe L 2-orthogonal projections.

i) There exist unique cont inuous linear operators Gi : [(M, Ed -> [(M, Ei ) for i = 0, 1, . . . , e
satisfying

(2.70)

and t he following commutation relation

(2.71)

Moreover G, is a pseudo-differential operator of degree min{ - 2ri-l, -2r;} , called the Green
operator associate d to .6.1 '

ii) T here are L 2-ort hogonal decompositi ons

[(AI , Ei ) = n'te..D. ) EEl im( Di- l 0 Di _l 0 G i ) EEl im(D7 0 D; 0 Gi ) ,

= Hi(E . , D. ) EEl im(G i 0 D i - 1 0 Di-l ) EEl im(G i EEl D ] 0 Dd ,

= Hi(E. , D. ) EB im Di - 1 EB im D'[,

= ker D j EB im D7,

= im D i - 1 EB ker D l ,

ker D, = H i(E . , D. ) EB im D i - 1 ,

• -i...ri ....l (E D ) ill . D*ker Di = I ~ ' • , • w lHl 1+ 1

of [(AI, EJ into the closed subspaces .
iii) There are natural isomorp hisms

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

between the i-th vecto r space of harmonic sect ions and the i-t h cohomology group for any
i = 0, 1, . . . , e. Furthermore we have dim H i (E. , D. ) < 00.

iv) Vve have decompositions

'1jJ = IhljJ + (D.i- l 0 D i- l 0 Gi)'l/J + (Di 0 D i 0 Gi)'l/J ,

= HiV-' + (G i 0 D i - l 0 D i- l )'l/J + (Oi 0 Di 0 Dd 'l/J

of 'ljJ E [( AI, E i ) ca lled the Hodge decompositions of 'l/J .

(2.80)

(2.81)



----------- Linear Lie algebroid connections 33

All operators extend to continuous linear mappings between appropriate Sobolev completions
tu«. Ei)k, i.e.,

Di ,k: f(M,Eih --- f (M,Ei+lh- r"

b..i,k: f(1'\1, Ei)k --- f(M , Ei)k-s il

D;.k: f(M, Eih --- f(M, Ei-dk-ri'

c,». f(M, Ei)k --- f(M, Ei)k+si,

(2.82)

(2.83)

where s, is the order of the differential operator ~i. Mor eover

ker ~i,k = ker ~i = 1-{i(E., D.) (2.84)

by elliptic regularity. All st atements in Theorem 8 rem ain true in we replace the spaces by t he
correct Sobolev completions, e.g. there are L2-orthogonal (not L~-orthogonal) decompositions

f(l\J[,Ei)k = 1-{i(E. , D.) EB im Di- 1 k+r _l EB im D * k+ .,
, }, 1., T 1

= ker Di,k EB im D1,k+ri'

= im D i-1 ,k+ri _ l EB ker D1,k

of f(!vi, Ei)k into closed subspaces.

2.5 Moduli spaces

(2.85)

(2.86)

(2.87)

Moduli spaces arise naturally in classification problems in geomet ry. Typically, one has a set whose
elements represent algebro-geomet ric obj ects of some fixed kind and an equivalence relation on
this set saying when two such obj ects are the same in some sense, and the problem is to describe
th e set of equivalence classes, One would like to give the set of equivalence classes some structure
of a geometric space (usually of a smooth manifold , a scheme or an algebraic stack). If it can be
done then one can parametrize su ch obj ects by introducing coordinates on the resulting sp ace.

The word moduli is due to B. Riem ann, who used it as a synonym for par ameters when he
showed that the space of equivalence classes of Riemann sur faces of a given genus 9 (for 9 > 1)
dep ends on 3g - 3 complex numbers. Moduli spaces were first understood as spaces of parameters
rather than as spaces of objects.

The moduli spaces (2 .~H), (2.35), (2.37 ) and (2.38) introduced in th e previous sect ion were only
sets of gauge equivalence classes of L-connections. In this part we define a geometric st ruct ure on
th ese sets.

From now on we will assume that AI is a connected compact manifold. To endow the sets of
ga uge equivalence classes of L-connections with some geometric st ruct ure it is most convenient,
and standard practise, to work in th e framework of Sobolev spaces.

Let (L M, [. , '], a) be a real (complex) Lie algebroid satisfying the ellipt icity condition and
let E AI be a real (complex) vector bundle. Further consider a Riemannian metric 9 on M and
denote by bs , hL an Euclidean (Hermit ian) metric on E , L respectively. These metrics induce
natural metrics on E* , End(E) :::::: E* (3) E , AA, L * 0 End (E) and others. The metric 9 on M defines
the density vol(g) of the Riemannian metric and even ind uces a (regular ) Borel measure /1g on M,
Therefore we can const ruct appropriate Sobolev complet ions defined in th e previ ous section. The
Hilb ert spaces L 2,lU"I,AkL* (3) End(E) ) will be denoted by nt(M,End(E) )e.

Furthermore note that the metric on End(E) :::::: E* 0 E induced by the metric hs on E is
given by

(fJ, h) = r tr(fJ 0 f~) d/1g (2.88)
./M

for fl. [z E n~(Al, End(E)), where * denotes the adj oint with respe ct to t i e. If we define t he

space n9JAf,End(E))O of traceless endomorphisms by

n1(1\;[, End(E))o = U E n1(M, End(E)); 1M tr(J) d/1g = O}, (2.89)
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then obviously we obtain

n~(!vI,End(E)) = D~(M, End(E))o EB x idE (2.90)

and the decomposition is L2-orthogonal with resp ect to (2.88). The orthozonal projection P of
o ° 0 b rDdM,End(E)) onto DdM, End(E)) is given by the following formula

(2.91)

where n = rk E and vol(M) is the volume of the manifold AI.

For e > ~ dim M and a fixed L-connection Yo in A(E, L), we define Sobolev completions
A(E, L)e of the space of L-connections, usin g (2.16) , as

A(E, L)" = {V'o + a; a E Di,(M, End(E))e} . (2.92)

Further a mapping x: A(E, L)e -----+ Dl(M, End(E)) " defined by X(V'o + a ) = a is a bijection and
therefore gives the set A(E, L )e a structure of a Hilbert manifold whose tangent space at V' is

T'VA(E, L)e = DUM, End(E))e. (2.93)

Sobolev completions of the group of gauge t ransformat ions Gau(E ) t ake a bit more work since
it can not be identified with the space of sections of any vector bundle, nevertheless Gau(E) c
nVA/, End(E)). In case e> ~ dim M , the Sobolev space D~(M, End(E))€+! consist s of continuous
sections! and , using the Sob olev mul tiplication theorem, we obtain that t he product <p . 1/J = <p 0 1/J
in D7. (A/, End(E)) can be extended to a continuous bilinear mapping

n~ (Al, End(E) )e+l x D~(Al, End(E))€+! -----+ D~ (M, End(E) )€+I' (2.94)

Therefore there exists a positive cons tat c such that I/ <p ' 1/JI I€+! :S c ll<pl le+ l ll1/J ll€+ l for all <p, '!/J E
D~(M, End(E))e+!. Now if we take a new equivalen t norm given by II . 1I ~ +1 = e ll · 11,,+1, then
the Banach space D9JM, End(E)) e+l is a Banach algebra with unit idE . Because the set of
invertible element s is an open subset in n~(M,End (E))€+1 and forms a topological group under
multiplication, we define Gau(E)€+! by

Gau(E) e+! = {if? E n9.(M,End(E))e+l; 34; E nVM,End(E ))€+j , <p .1/; = 1/J ' <p = idE}' (2.95)

Since Gau(E) e+! is an open subset in the Hilbert sp ace n~(M,End(E)) e+l , thus Gau(E)e+j is a
Hilbert manifold. In fact , one can easy show t hat Gau(E)€+1 is a Hilbert-Lie gro up with a Lie
algebra

gau(E) €+1 = n~(lvl , End(E)) e+l ,

where the Lie bracket is given by

(2.96)

(2.97)

(2.98)

for all ')'1,,2 E n~JAI,End (E)) e+l' .
The multiplication on the graded vector sp ace Di, (M, End( E )) defined by (2.11) extends, using

the Sobolev multiplication theorem , to a cont inuous bilinear mapping on the graded Hilbert space
0;.(11:1, End(E)h in the range k > ~ dim M. With this bilinear mapping

n~(M. End (E))k x n~.(M, End(E))k --t n~+q(M, End(E))k,

(<p, 1/J) f-+ <p , 1/; ,

1 Note that this is still true for e+ 1 > ~ dim M .
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niJl\!I, End(E))k is a graded associative algebra.
Using the formula (2.43), we extend the action of Gau(E) on A(E, L) to an action of Gau(E)e+l

on A(E, L)e via

(2.99)

where a E DUM, End(E))e, d'ilo: D~(M, End(E))e+l ---4 Di(M, End(E))e is a continuous exten­
sion of the linear operator d'il 0 defined on D~ (M, End(E)) and the multiplication - is an extension of
(2.11) to a continuous bilinear mapping n~(M,End(E) )e+l x DUM, End(E))e ---4 Di(M, End(E))e
eventually D~ (NI, End(E))e x DUM, End(E))e+l ---4 ni(M, End(E))e in the range e> ~ dim M.
Moreover in this range nUM,End(E))e is a topological n~(M,End(E))e+l-bimodule.

It is easy to see that this action is a smooth mapping of Hilbert manifolds and that, if 'V =
\70 + n E A(E, L)e is fixed, the mapping of Gau(E)e+l to A(E, L)e given by ip r----. tp. 'V has a
tangent mapping at idE equal to

_d'il : D~(i'vf, End(E))e+l ---4 n})i\!f,End(E))e,

where d'il is defined through

(2.100)

(2.101)

and [' , l DtUH, End(E))e x n~(ivf , End(E))e+l ---t DUM, End(E))e is a continuous extension of
(2.12) by Sobolev multiplication theorem in the range e> ~ dim M.

Furthermore the curvature of an L-connection \7 = 'Vo+o E A(E,L)e is defined , using (2.23),

by

(2.102)

where a E DUM,End(E))e , d'ilo: DUM, End(E))e ---4 ni(M, End(E))e-l is a continuous exten­
sion of the linear operator d'il 0 defined on ni(M , End (E)) and the bracket [. , .] is an extension of
(2 .12) to a continuous bilinear mapping nl(M,End(E))e x nUM, End(E))e ---4 ni(M, End(E))e
in the range e> ~ dim M .

It is easy to see that F : A(E,L)e ---t Di(M,End(E))e-l' defined by F('V) = R'il, is a smooth
mapping of Hilbert manifolds, and the tangent mapping

T'il F: n},(iVf,End(E))e ---4 Di (M, End(E))e-l

is given by

(2.103)

whore 'V = 'Va + a and 'Y E n},(Al, End(E))e.

Remark. For e > ~ dim j\;J we denote by }((E, L~e the space .of flat Sobole.v L-connections.
Because F: A(E, L)£ ---4 D1(A1, End(E))e-l is a contmuous mapping, }((E, L)e IS a closed subset
in A(E, L)e. Moreover, if we fix some flat L-connection \70 E :K(E, L), then

:K(E, L)e = {\70 + 0'; 0 E ni(Af, End(E))e, d'il° a + ~ [o, n] = O}. (2.104)

Furthermore, we need to show that }((E, L)e is invariant under the action of the group of gauge

transformations Gau( E)e+l.

Lemma 15. Let \7 = 'Va + 0: E A(E, L)£ be an L-connection then we have

(2.105)
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where Ad: Gau (E)e+l x nl(iVI, End (E ))e_l ----+ ni U\;I, End(E))e_1 is a cont inuous exte nsion of
(2.27) to the appropriate Sobolev spaces using the Sobolev multiplication theorem .

Proof If V = V o + a E A (E , L )e then R"V = R"Vo + d"Voa + a · a . Consider I f") E Gau(E ) then
h n _ n (d"V -I -I r e+ lwe ave cp . v - vo + cp. ocp ) + cp . a· ip . Therefore we can write

R"V'P = R"Vo + d"VO(cp. (d"V ocp - l) + cp. a . cp -l)

+ (cp . (d"V°<p- l) + cp. a . <p- l) . (cp . (d"V0<p -l) + cp . a . cp- l )

= R"Vo + (d"V° cp ) . (d"V°cp - l ) + cp. ((d"Vo 0 d"VO)cp-l ) + (d"Vocp) . a . cp - l

+ cp . (d"V0a ) ' <p - l _ cp . a . (d"V0 cp- l) + (cp. (d"Vocp - l) ) . (cp. (d"V0<p - l))

+ (cp. (d"V°cp-l)). (cp . a · cp- l ) + (cp . a . cp-l ) . (cp. (d"Vocp-l )) + (cp. a . cp-l) . (cp . a. cp- l)

= R"VO+ (d"V0cp) . (d"V0cp - l) + cp. [R "Vo, cp- l ] + (d"Vocp) . a . cp- l

+ cp . (d"V 0 a )' cp- l _ cp. a . (d"V 0cp- l) _ (d"V0cp) . (d"V0cp-l )

+ <p ' a· (d"V°cp - l ) - (d"V°cp ) . a· cp- l + cp . a. a . cp- l

= cp . R"Vo. <p- l + cp . (d"V0a) . cp - l + cp . a . a . <p - l

= cp. R"V · .p;

wher e we used t he fact t hat cp ' (d"V°cp- l) = _(d"V°cp) . cp-I and that (d"V o 0 d"VO) cp = [R"Vo , cp].•

Analogou sly to th e smooth case we define th e notion of irredu cibili ty of Sobolev L-connection.
A stabilizer Gau (E)l+l of any Sobolev L-connection contains the subgroup ]1(*. idE of Gau (E)f+l.
In case Gau(E)l+l = ]1(* . idE, we will say t ha t t he connections \l is irreducible; otherwise, V is
reducible. We can prove t he following characteriza tion of irreducibility.

Lemma 16. Let V E A (E , L )e be a Sobolev L-conn ect ion . Then t he following are equivalent :
i) Gau(E)Y+l = ]1(* . idE ,

ii) kerd"V = ]1( . idE,

iii) kerd"V I !1V Al , End ( E ) ) ~+l = {O} .

Proof The proof goes along the similar line as in Lemma 14. Let \l = V'0 + a be an L-connecti on
and conside r a ga uge transformation sp E Gau (E )P+ l. Note that the condit ion cp . V = V' means
that _d"Vo<p . <p- l + cp . a . cp-l = a. If we multiply this equat ion by cp from the right, we obtain
dVOcp + [a, cp] = 0 and using (2.101) we have d"Vcp = O. T herefore <p E Gau(E)l+l if and only if

dV<.p = 0 and cp E Gau(E)f+l .
Suppose that cp E Gau( E)Y+l t hen d"V<p = 0 and , provided t hat kerdv = ]1( . id E, we obtain

9 = c - id E for some c E ]1(* . Thus we get Gau(E)l+l C K* · ids and becaus e the converse inclusion
is trivial , we have proved ii) => i).

Now assume that cp E kerdv . Because n~ (i\;I,End(E) ) e+l with the norm II · IIe+l is a Banach
algehra with unit idE , for c E ]I( such th at Icl > IICP lle+ l we obtain c· id E + cp E Gau (E) e+l'
Furthermore dV(c . idE + 9 ) = 0 hence, from the previous consideration, we have c· idE + cp E

Gau(E) l+l' Mo reover if we suppose Gau(E) Y+ I = ]1(* . id E, we obtain kerdV' C ]1( . idE. Converse
inclusion is t rivia l, so we have proved the converse inclu sion .

The equivalence of ii) and iii) immediately follows form the definition of nVM,End(E)) ~+l'

so we are done. •

We will denote by A*(E, L)e the subset of A(E, L) e consist ing of irr educible L-connections and
similarly by :H*(E, L) e t he subset of :H(E, L)e containing irreducible flat L-conn ections. It follows
from the fact Gau(E)Y:l = cp. Gau(E)f+ 1. cp- I th at the .irr.educ~bi li ty of L-conne ction is invar~ant

under gauge transformations. In addition to JC(E , L )e IS invariant under ga uge tr ansformations

a'S well.
In analogy with (2.34), (2.35 ), (2.37) and (2.38) we define the moduli space

13(E, L)e = A (E, L) e/Gau(E )e+l and M(E, L )e = :H(E , L )e/G au(E)e+l (2.106)
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of L-connections and flat L-connections on E and similarly t he m oduli space

'B*(E, L) e = A *( E, L )e/ Gau(E) Hl and M*(E, L )e = J{*(E , L)e/G au(E)Hl (2.107)

of irreducibl e L-connections and irr edu cible flat L-connections on E . Each of these is ass umed to
have t he quotient topology and in the next we shall show that 'B*(E , L )e is open in 'B(E , L )e and
that M*(E , L) e is ope n in M( E, L )e. Furth ermore we will denote by

poss ibly by

Pe: A (E ,L)e --4 'B(E ,L)e

pe: A *(E ,L)e --4 'B*(E ,L)e

(2.108)

(2.109)

(2.110)

t he canonical projection.

For a E DUM, End(E) ) t he zero order operator ad( a)*: DUM, End (E)) --4 D~(M, End (E )),
defined as a formal adjoint of ad(a ) : D1UvI, End(E)) --4 DU M , End(E)) , ad (a)(')') = [a, ')'], with
respect to t he Hermitian metric on End(E) given by (h, h ) f---' tr( h 012), yields a mapping

nUlvI, End (E )) x nl,(M, End(E) ) --4 D~ (M,End(E) ) ,

(a,{3) f---' ad (o)" (,8),

which is C= (iVi, OC)-sesqu ilinear in t he first component and COO (M, OC)-linear in the second compo­
nent. This mapping can be extend by Sobolev mult iplicati on t heorem to a cont inuous sesquilinear­
linear mapping

nUM,End(E ))e x n 1(M ,End(E ))e --4 D~ (M,End(E) ) e

hence t he mapping ad(a)* : n U M , End (E ))e --4 n~ (M, End(E ))e for every a E n UM, End (E ))e
is cont inuous. Then for V = Vo + a E A (E ,L)e we may write

d\1 = d\1o + ad(a) 0 i , (2 .111)

where i : D~ (A[,End(E ) ) Hl --4 n O(M,End(E ))e is a compact embedding. Furthermore, we define

through

15 \1 : nU AI, End (E ))e --4 D2,(A,f, End (E ))e-l

15 \1 = 15\10 + i 0 ad(a )* ,

(2.112)

(2.113)

where i: n9JM,End(E ))e -t n O(M , End (E ))e-l is a compact embedding and 8\10 is a continuous
exten sion of formal adjoint of d\1o with respect to the Hermiti an metric on End(E ).

Lemma 17. For e> max{~dim M,l} the natural mapping

ic. 'B(E ,L) --4 'B(E ,L)e (2.114)

is injective.

Proof. Let V' = V' + 0: and V' = V'0+ 0:' be smoot h L-connections, and suppose we have a gauge
transformation <p °E Gau (E) Hl sat isfying <p ' V = V' , then fo: t he injectivity 0; !eit ~uffices to
show that ip is sm ooth. If we denote ,8 = a - 0: ', then th e requirement rp' V = V IS equivalent to

d\1<p = f3 . .p and we have

6.(<p ) = (15\1 0 d\1 )(<p) = 8\1(,8 · rp) .

If k > maxOdim AI,l}, t hen r.p E n 1 (M,End(E)) k impli es, ~y ,the S.~bolev multiPli~ation ~he­
orem, that ,8 . ip E DiJJ\;I,End(E)) k' becau se ,6 IS smooth. Since V' IS a smoot h L-connectlOn,
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th~ t~rm on th~ right hand side in the equation above belongs to nVM,End(E ))k_1 , and the
Ell:ptlC R~gulan~y (Lemma 7), applied to the ellipt ic operator ~ , gives 'P E D~(M,End(E)h+1'
Usm g the induction on k we get 'P E D~ (M, End(E )h for all k 2: e. From th e Lemma of Rellich
(T heorem 3) it follows that 'P is smooth. •

Lemma 18. Let \7 E A(E,L )e be an L-connecti on th en the operator

(2.115)

is a Fredholm operator for e> ~ dim M ,

Proof For \7 = \70 + a, we may write ~IX = 6'V 0 d'V = (o'Vo + i 0 ad( O')*) 0 (d'Vo + ad(O') 0 i).
Because adfo) 0 i and i 0 adfo )" are compact operators,

i 0 adf o )" 0 d'Vo+ o'Vo 0 ad(a) 0 i + i 0 ad(a)* 0 ad( O') 0 i

is also compact operator. The rest of the proof is to show that 6'V0 0 d'Vo is a Fredholm operator.
It is enough to show that o'Vo 0 d'Vo: nVM,End(E) ) -t DVM,End(E)) is an elliptic operator,
i,e., that the principal symbol 0'2(6'Vo 0 d'VO)(~x) : End (E)x -t End(E) x is an isomorphism for all
x E M and 0 i= ~x E T;M. Obviously,

0'2(0'Vo 0 d'V())(~x) = O' l (O'VO)(~x) 0 O'l(d'VO)(~x ) = -(O'l (d'V O )(~x ) )* 0 O'l (d'VO )(~x )

and this is an isomorphism if and only if 0'1 (d'V0)(~x) is an isomorphism. But 0'1 (d'V 0 )(~x)

a*(( ,) ®, i.e., th e symbol is the tensor multiplication by a* (~x ) , hence it is an isomorphism if
a · (~x ) i= O. Thus, 0'2(0'Vo 0 d'Vo) is an isomorphism for all x E M and 0 f= ~x E T;M if and only
jf a" is inj ective or equivalently if and only if a is surjective. This is true because L satisfies the
ellipt icity condit ion. •

Lemma 19. For any \l E A (E ,L) e we have an L2-orthogonal decomposition

(2.116)

for e> 1dim iVI.

Proof. Let \l = \70 + a be an L-connection and denote ~a = 0'V 0 d'V, From the previous lemma
we know that ~a is a Fredholm operator, thus dim ker ~a < 00 and im ~a is a closed subspace .
Therefore n9)1vI,End(E) )e+1 = ker ~o: @(ker ~IX ) ..L is an L2-orthogonal (not L~+l) decomposition
into dosed subspaces in n~ ( Al, End(E ))e+1 '

Furthermore, im~Cl is a closed sub space, thus ~O: I (ker~oY: (ker ~Cl) ..L -t im~Cl is a bijective
continuous linear op erator between Banach spaces, th erefore, using the Banach 's Op en Mapping
Theorem, Go. = (~a l (ker~o ) .L )-1 is a cont inuous linear operator. If X c ni(M,End(E) )edenotes
the dosed subspace given by X = ( 6 'V ) - 1 (im ~a), th en id lx - d'V 0 Go: 0 o'V/ x is a cont inuous
linear operator, Because ker d'V = ker ~Cl" we get im d'V = ker (id1x - d'V 0 Go. 0 0'V 1x ), therefore
imd'V is a closed subspace in Dl (M, End(E))e.

Thus we get an L2-orthogonal decomposition Di(M,End(E)) e= imd'V @(im d'V )..L into closed
subspaces. On the oth er hand for 'P E n~(M,End(E) ) f.+1 and'I/J E Di(M,End(E)) e we have
(d'V'P , 'lj; ) = ('P ,o'V'l/J), hence we obtain that (imd'V)..L = kero'V, •

Lemma 20. The set of irreducible Sobolev L-connectionsA*(E,L)e is an open subset in A(E, L )e
for f. > ~ d im AI.

P7'Oof Let \l = \70 + a be an L-connection. From Lemma 18 it follows that ~Cl = 0'V 0 d'V is a

Fredholm operator. Moreover, the mapping

A(E,L )e ~ [(D~(1'\;f , End(E ))f.+1 ,DVM,End(E)) e-d

given by \70 + Cl' ~ ~a is a continuous family of Fredholm operators, hence

\l0 +a 1---+ dim ker ~o:
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is an upper semicont inuous mapping from A (E , L )e to JR, see [:36]. Because we have ker dV '= ker ~o:

and dim ker dv
~ 1, hence the upper semicontinuity impli es that A *(E,L)e is an open subset.•

Remark. We have just proved that A *(E , L )e is an open subset in A (E , L )e. Because 'B(E , L )e is
assumed to have t he quotient topology and Pe 1('B*(E , L )e) = A *(E, L )e, we get that 'B*(E , L )e is
open in 'B(E , L )e.

Now, for V = V a + 0: E A (E, L )e and E > 0 we consider the Hilbert submanifold

O a ,t: = {Vo + 0: + (3; ,8 E ni(M,En d(E))e, 8v(3 = 0, 11(3lle < s } (2.117)

of the Hilber t manifold A (E , L )e. Because O a ,t: is a Hilbert manifold modeled on ker 8v , thus we
have

(2.118)

First note that if V E A *(E ,L )e, t hen we may take c small enough to ensure 0 o .e C A *(E , L )e,
since A *(E , L )e is open in A (E , L )e. Next , we define the reduced group of gauge transformations
Gau( E)f+1 by

(2.119)

Becau se lK*· id E is a normal Hilber t-Lie subgroup of Gau(E) £+ l , Theorem 9 bellow implies t hat
the reduced gro up of gauge transforma tions is a Hilbert-Lie gro up wit h the Lie algebra

where the Lie br acket descents from the one on gau(E )H1' Moreover , if

q: Gau( E )e+1 ---> Gau(E)e+1 = Gau(E )£+l / lK* . idE

(2.120)

(2.121)

denotes th e canonical projection , th en q is a smooth mapping and any mapping f: Gau(E)e+1 -)
X , where X is a smoot h Ban ach manifold, is smooth if and only if f 0 q: Gau(E)£+l -) X is
smoot h.

Theorem 9. Let G be a Banach-Lie group over IK. with Lie algebra g and suppose that N is a
norm al Ban ach-Lie subgrou p over if( of G with Lie algebra n. T hen GIN is a Banach-Lie gro up
over lK with Lie algebra gin in a unique way such that the quotient ma pping q: G -) GIN is
smoo th. Moreover , for any Ban ach manifold X a ma pping f : GIN ---> X is smooth if and only if

f 0 q is smoot h.

Proof. See [37], [38] and [39]. •

Theorem 10. 'B*(E, L )e is a locally Hausdorff Hilbert manifold and Pe: A *(E, L )e -) 'B*(E , L )e

is a principal Gau (E)f+1-bundle.

PTOof. Let v = V a + a be an irr educible L-connection. Consider the smoot h mapping of Hilber t

manifolds

WV : Gau(E)e+1 x O a ,t: -) A *(E, L )e,

wy(cp , Va + 0: + (3 ) = 'P ' (vo + a + ,6 ) ,

t hen th e tan gent mapping at (idE, \7) equa.ls to

T (idg ,v) 'lJ v : nVM, End (E ) )~+l EB ker 8
v

-) nUM,End(E))e,

(l ( id e ,V' ) Wv )("y,,B) = _d
v'"'( + (3 .

(2.122)

(2.123)

From Lemma 19 it follows tha.t T (ids .v ) \lJ v is surject ive. Moreover, becaus~ ~ .is a.ssumed to
be an irreducible L-connection , we obtain, using Lemma 16 , t hat T (id s ,v ) \lJ v 1S injective. Hence
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by t he Banach 's ope n mapping theorem T(idE,V' )'ltV' is an isomorphism. Ther efore t he inverse
functi on theorem for Banach manifolds implies t hat 'ltV' is a local diffeomorphism near (id E, \7).
Co nse que nt ly, there is an open neighborhood Ua of 'V in A *(E, L )e and an ope n neighborhood
HidE of idE in Gau (E )e+1 such that

(2.124)

is a diffeomorphism sufficiently small E > O.
Next we show t hat , for E small enough, the mapping Pa,e = Plo", .,, : Oa,e --t 'B *(E , L )e is

inject ive. We have to show that if for two eleme nts \70 + a + /31, \70 + a + /32 E 0 o .e t he re exists
a ga uge t ransformat ion <p E Gau(E)e+1 satisfying

(2.125)

then (i 1 = /32 . First observe t hat (2.125) is equivalent to

(2.126)

Further , becau se n1(M ,End( E))e+1 = ker dV' EB (ker dV' )l.. is an L 2-ort hogonal decomposition in t o
closed subs paces, we can write ip = c id E + <Po, where c E lK and 'Po E (ker dV') l... Moreover im dV'
is a close d subspace in nUM, End(E ))e, hen ce we obtain by the Banach' s ope n mapping theorem
t hat

(2.127)

is an isomor phism of Hilber t spaces. Therefor e it is lower bo unded operator , i.e., t here exists a
positi ve constant Cl such t hat

(2.128)

(2.130)

for all 1j; E (ker dV')l.. . T hus we may write

c l ll<polle+l :s; IIdV'<polIe = IldV'<p lle = 11<p ' /31 - /32 ' <pI le ::; 2 co' E ' (lc l· llid E IIe+ l + II<Polle+d ,
(2.129)

where we used t he fact t hat 111/1 · a il e::; CO · 11'I/) IIe+l lla lle and Iia . 1/1 1Ie :s; co ' Ila llell'l/J11e+1 for all
1/' E n1(M-,End (E ))e+ 1 and a E nU."I,End(E ))e. As a conseque nce we have

2 Co ' Icl . E
II 'Polle+1 :S; ~ 2 IlidElIe+ 1

Cl - co ' E

for E < ..sL
2
C

• If C = 0, t.hen we obtain immediately II<Po IIe+l = 0, thus sp = c id E + 'Po = 0 and t hisCo
is a cont rad ict ion . Because c i= 0, we get

(2. 131)

Since q- l(HidE) is open set. in Gau(E)e+l and id E E q-l (HidE), t here fore for E small eno ugh is <p

near id E in Gau (E)e+1' i.e. , ip E HidE ' And if we use that 'ltV' is inj ecti ve, we obtain /31 = /32.

Let Un .e = p(Oo,e;), t hen we have p-1(Ua,E.) = .-\(Gau( E )e+ l x Oa,e), where .-\: Gau(E) e+l x
A *( E, L )e -> A*(E, L )e is t he left action . From t he previous cons ide rations it follows t hat p- 1 (Uex,E.)
is open in A *(E,L)e, thus Uo: ,e is ope n in 'B*(E,L)e. Moreover Pex ,e: Oa,e --t Ua,e is a homeomor­
phism . The mapping

'ltV': Gau(E )e+l x Oa,e -> p- 1(Ua,eJ ,

'ltV' (<P , 'Vo + a + /3) = <p' (\70 + a + /3) (2 .132)



(2.133)
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is surjective because p-1(Uu,c) = >'(Gau(E)H1 x O\7,c), the injectivity follows from the previous
consideration and from the fact that the action of Gau(E)e+1 on A*(E, L)e is free. We will show
that it is in fact diffeomorphism of Hilbert manifolds.

For an arbitrary rp E Gau(E)e+1 we find an open neighborhood Wip of ip such that th e mapping
W\7I L ", _d W",) xo,<;, ,< is a diffeomorphism, where Lip-l is the left translation by rp- 1 in Gau(E)e+1'
In particular, we can take Wip = Lip(Mds) ' Therefore we have

W\7IW xO",< = Lip 0 W\7 0 (Lip - l X id .A(E,L)t)IW", X 0 0' ,< ,

which is a diffeomorphism.

Now to show that Pe: A*(E, L)e --t 13*(E, L )e is a principal Gau(E)e+l-bundle over a Hilbert
manifold , we only need to glue together the local charts au: Uu,c --t Ou,c, a u = p~,~. Consider
the smooth mapping

9\7 = pr o W~1: p-1(Uo: ,c) --t Gau(E)e+l'

where pr : Gau(E)e+1 x Ou ,c --t Gau(E)e+1 is the projection. Then for any V'

A (E, L)e with p(Vo + a') E Uo:,c we have

au(p(Vo + a')) = (9\7(Vo + a'))-1 . (Va + a' ).

Hence it is easy to see that over a 0' (Uu',c' n Uu,c) we have

(2.134)

Va + a' E

(2.135)

and this is clearl y smooth in (3.

2.6 Moduli spaces - local model

•

In this section we give a local description of the moduli space M(E, L) of fiat L-connections and
the moduli space M*(E, L) of irreducible fiat L-connections around a given point . We will adopt
to this sit uat ion the Kuranishi argument for describing the moduli space of complex structures
near a given one on a compact manifold and the moduli space of anti-self-dual connections on a
compact 4-manifold given by Atiyah , Hitchin and Singer , see [40].

The Kuranishi description provides local models of the moduli space, i.e. , it gives an explicit
description of the germ of the moduli space in a given point. This makes it possible to estimate
the dimension of th e moduli space in a given point, and pr ovides a simple smoot hness criteria.

Let (L --t M, [' , ·],a ) be a real (complex) Lie algebroid satisfying the elliptici ty condition and
E --t M be a real (complex) vector bundle . Further assume that M is a connecte d compact
manifold. Then to any fiat L-connection V on E is associated a fundam ental ellipti c complex
£(V) playing a cental role in the subsequent discussion.

Consider a sequence of linear differential op erators

o --+ n~(M,End(E))~ ni(M,End(E)) ~ ...~ nL(M,End(E)) --+ 0,

where r = rk L. Because R\7 = °and

\7End(E) \7 ] \7
R (~ , 'I]) "I = [R (~ , TJ) , "I = [R ,"1](';- , '1]) ,

(2.137)

(2.138)

a . \7 End(S)
where ~,TJ E XdM) and "I E nL(M, End(E)), we obtain R = 0. Further, using Lemma 10
and the fact that the Lie algebroid satisfies th e condit ion of ellipticity, we get that the sequence
(2.137) of differential operators is an ellipt ic complex, called the deformation com plex.

We will denote the cohomology of this ellipt ic compex by H i (E, V) for i = 0, 1, .. . , r . Endow E,
L with an Euclidean (Hermitian) metric hE, b-t. respectively. This gives an Euclidean (Hermitian)
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metric on each vector bundle AkL* (is) End(E). Furthermore, let 9 be a Riemannian metric on M.
Then we have the formal selfadjoint ellipt ic operat ors of second order

~i = 61 0 d1 + d1-1 0 6~1: n i (M, End(E) ) -7 ni O\1, End(E)) (2.139)

where 61 is a form al adjoint of d~ and d~l' d~ are zero oper ators. Besides the kernel of ~i

ici», \7) = {a E n1(M ,End(E)); ~ia = O} = kerd(' n kero~l (2.140)

is a finit e dimensional vector space for i = 0,1 , . .. , r and moreover there exists a natural isomor­
phi sm Hi(E, \7) -:c:= H i(E, \7) . Because all cohomology groups are finite dimensional vector spaces,
we may define the index of £(\7) by

r r

Ind£(\7) = I)-l)idimHi(E, \7) = 2:) -l )'idimker~i '
i=O i =O

(2.141)

A fund am ental result of the Hodge theory for the ellipt ic complex (2.137 ) is the Hodge decompo­
sit ion theorem , which st ates t hat there is an L2-orthogonal decomposition

(2.142)

Furthermore there exists a unique linear operator

called the Green op erator assoc iated to ~i , satisfying

idn~ (M,End ( E)) = prHi(E,V') + ~i 0 G, = pr'Hi (E,'V' ) + G, 0 ~i'

and the following commutation rela tions

(2.143)

(2 .144)

(2.145)

where Hi : ni,(Af, End(E)) -7 1{i(E , \7) for i = 0, 1, . . . , rare L2-orthogonal projecti ons. Moreover
G, is a pseudo-differential operator of degree -2. Further all associated operators d'[ , 6'[ , ~i , G,
can be extended to continuous linear operators between appropriate Sobolev completions, e.g.

and note that

d~k : nL(M, End(E))k -7 n~+l(AI,End(E)h-l '

6~k: DL(AI,End(E )h -7 n~-l(kI,End(E))k_l '

,0.i,k : nUM,End(E))k -7 nL(1\1, End(E) )k-2,

Gc» : nUAl,End(E ))k -+ nUM, End(E))k+ Z,

ker ,0.i,k = ker ~i = 1{i(E, \7).

(2.146 )

(2 .147)

(2.148)

(2.149)

(2 .150)

All statements in Theorem 8 remain true in we replace the spaces by the corr ect Sobolev comple­
tions, e.g. there are LZ-orthogonal (not Lk-orthogonal) decompositions

nL(M, End(E))k = 1{i(E, \7) EJj im di::-l ,k+1 EB im O~k+l '

= ker d~k EEl im 6~k+l '

= im d~l ,k+l EB ker 6~k

(2.151)

(2.152)

(2.1 53)

of Di(M,End(E))k into closed subspaces.

Remark. Note that HO(E, \7) = kerd~ = ker ~o, thus dim HO(E , \7) = 1, if \7 is an irreducible
L-connection and dim HO(E , \7) > 1 otherwise.
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Recall that if we fix some flat L-connection \70 E :J-C(E, L) then the Sobolev completions is
defined by

1
:J-C(E, L)e = {\7 0 + a; a E ai(M,End(E))e, d'l°a + 2" [a,a] = O}

for f > ~ dim M. Furthermore from the previous we know that the curvature

P : A(E, L )e ----+ n'iUvf,End(E)) e-l

(2.154)

(2.155)

defined by P(\70 +a) = d'l °a + ~ [a ,a J is a smooth m apping of Hilbert manifolds for f > ~ dim 1\11
and

,]{(E, L)e = p - 1(0). (2.156 )

Consider a smooth irreducible flat L-connection \l = \70 +a E :J-C"'(E , L ). Then from Theorem 10

we have that there exists a Hilbert submanifold O o:,e of A *(E, L )e for e > °small enough such
that PO: ,e = PelOn.e : Oa,e ----> Uo: ,e C 'B"'(E, L )e, where Uo: ,e = pe(Oa,e) in ope n in 'B*(E, L)e, is
a homeomorphism, (Oa,e is a slice to the Gau(E)f+l-orbits of the action of the group of gauge
t ransformat ions Gau(E)f+l on A*(E,L)e). Furthermore consider a closed subset

1 'V 'V 1 [ I5a .e = {\70 + Q + fJ; fJ E ndM,End(E))e, J fJ = 0, d fJ + 2" fJ,,8] = 0, I ,8 lle < e} (2.157)

of Oa,e. Because 5 Ct ,e C ,]{*(E , L )e, we obtain that PCt ,e : 5 0:,e ----+ Va,e = u,:x ,e n M*(E, L )e is a
homeomorphism on open subset in M *(E , L)e for f > ~ dim M + 1.

Now if we apply the Hodge decomposition (2.144) to the element dY,8 + ~ [,8, fJ] for fJ E

ai(M, End(E)e, we obtain

d~fJ + ~ [fJ ,,8] = pr1t2(E ,'V ) ( d~,8 + ~ [fJ , ,8]) + (r5~ 0 d~ 0 G2) (dYfJ + ~ [,8, ,8])

+ (d~ o 6~ o G2 )(d~,8 + 1[.8, ,8])

= 4pr1t2 (E ,'V) ([,8, fJJ) + 4(J~ 0 d:j 0 G2)([fJ, fJ ])

+ d~ ((J~ 0 G2 0 d~) ,8 + ~(6Y 0 G2)([,8, ,8])),

where we used that G 2 0 dy = dy 0 G! . Besides we have

J~ 0 G2 0 d~ = J~ 0 d~ 0 G1 = ~l 0 G1 - d'g o6-g 0 G1

1 d'V ;; 'V G
= icnt(M,End(E)), - prlt l(E,'V ) - 0 0 Uo 0 1,

therefore substituting this into the equation above, we ge t

d~ ,8+ ~ [(3, fJ ] = ~ pr1t2( E,'V )([,8, fJJ) + 4(J~ 0 d:j 0 G2)([fJ, fJJ)

+ d~(,8 + ~ (6Y 0 G2)([.8,fJ ]))·

From this L2-orthogonal decomposition we have

{

dY(,8 + 4(6y oG2)( [,8, fJ ])) = 0,

d~/J + ~ [/3, fJ] = °<¢=} (J~ 0 d:j 0 G2)([fJ , /3]) = 0,
pr')-t2 (E,'V)( [,8, ,BJ) = O.

Furthermore for the irreducible flat L-connection \7 we define the Kuranishi mapp ing

K'V: ni,CM,End (E)) e ----+ ni (M , End(E))e

(2.15 8)
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by the form ula

(2.159)

for /3 E nUA-f, End(E))e. It is a smooth mapping of Hilbert manifolds with the tangent mapping
T{j K", : nUAf, End(E ))/, -4 n1(M, End(E)) /, at /3 equals to

(2.160)

where "t E nUNf, End( E))e. Since ToK", = idnUM ,End(E»e' using the inverse function t heorem
for Banach manifolds, we immediately obtain that K", is a local diffeomorphism at O. Further we
define a subset

S, = {/3 E n U M,End(E ))/" 86/3 = 0, d~/3 + ~ [/3, /3] = 0,11/311 1' < s }
2

(2.161)

of n U M , End(E ))e for c > O.

Lemma 21. Let e-: max{ ~ dim M , I } t hen K",(Sc) c 1{l (E , V' ) and s, c ni Uv[, End( E)) .

Proof. The first observation is trivial, it is enough to show that d'{(I(",(13)) = 0 and 56(K",( /3)) = 0
for a E Sc, since 1{l (E , V' ) = kerdy n ker8<Y . We have 8't(K",( {3)) = 5't/3 = 0 furthermore, using
(2.158), we obtain dy(K",( /3)) = dy( /3 + ~ (5~ 0 Gz)([/3 , /3])) = o.

Co nsider {3 E S, and assume that /3 E n U Nf , End(E))k for k > ma.xg dim AI, I}. Because
b"1 (I( '" (/3) ) = 0, we get

The term on t he right hand side in the equation above belongs to n i(A1,End(E))k_1 ' and the
Ellip ti c Regular ity (Lemma 7), ap plied to the ellipt ic operator .6.1, gives /3 E nUAI, End( E)h+1 '
Using the induction on k we get /3 E n i(M , End(E ))k for all k 2: f . From the Rellich 's lemma
(T heorem 3) it follows that 13 is smooth, so we are done. •

Lemma 22. For e> ~ dim M + 1 the mapping je : M*(E , L) -4 M*(E , L )e is injec ti ve and has an
open image.

Proof. T he injectivity of je follows from Lemma 17 and the fact t ha t je(M*(E, L)) C M*(E,L)e.
Furth er let V' = V'0 + a be a smooth irreducible flat L-connecti on then from the previous consid­
eration there exists Sn,f. C JC*(E , L )e such that pe(Sn,f.) is an ope n neighbourhood of j e([V']) in
M*( E , Lk But from Lemma 21 we get S{u C JC*(E, L) t herefore we have pe(Sn ,c) C j e(M*( E, L )),
so we are done . •

Theorem 11. The moduli space M*( E , L ) of gauge equivalence classes of irreducible flat L­
con nections on E has a structure of a topological space such that for each [V'] E M*(E , L ) repre­
sented by V' = V'0 + a E JC*( E, L ) t here exist an open neighbourhood Un of [V'] in M*( E , L), an
ope n neighborhood On of 0 in 1{l(E , V') and a smooth mapping

(2.162)

called th e obstruction mapping, satisfying <1> (0) = 0 and

(2.163)

Thus Un is homeomorphic to a closed subset in an open subset in a finite dim ensional vector space .

Proof. Because the Kuran ishi mapping K", : D1 (1'\;1, End (E ))e -4 ni(M, End (E) )e is a local diffeo­
morphism at 0, t here exist open neighborhood s U,V of 0 in DU M , End (E ))e such t hat K"'lu : U -4

V is a diffeomorphism of Hilbert manifolds. We can take U = {/3 E n l U\;[, End(E ))e; 11/3lle < s }
for e > 0 small enough, therefore So. c u . Denote F = (I("'jU)- l : V -4 U. Because 1{l (E, V') is a
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closed subspace in ni(M,End(E ))eand 0 = VnH1(E, \7) is an open set in H 1(E, \7), therefore 0
is a Hilbert submanifold of nUA'i,End(E))e. If we define the obstruction map <1>: 0 --t H 2(E , \7)
by

<1> (r) = pr1i2 (E,V' ) ([F(r), F(r )]),

t hen <1> is a smooth mapping of Hilbert manifolds.
From the previous we have J{V(SEJ c V n H 1(E, \7) = O. It remains to show that Kv(St:) =

<1>-1(0). In case {3 ESt:, then we obtain (<1> 0 J{v)( {3) = pr1i2(E,V)([{3, {3]), using (2.158), we get
(<1> 0 J{v)({3) = O. On the other hand if, E <1>-1(0), then there exists a unique (3 E U satisfying
Kv({3) = , . Hence 0 = <1>(r) = (<1> 0 K v )(j3) = pr1i2(E,V' )([(3, {3]). Since, E H 1(E, \7), we get

0= df, = df(.8+ ~(8f o G2)( [{3,{3])) ,

0 = o'ly= 86{3·

Applying the Hodge decomposition (2.144) to the element ~ [(3, {3] and using t he above equ ations,
we obtain

d'[,.1 + ~ [{3 , (3] = df(3 + ~ (8~ 0d~ 0G2 ) ([{3, {3]) + ~ (df 08f 0G2 ) ([(3, (3]) + ~ pr1i2(E ,'V) ([{3, (3])

= ~(8~ o d~ oG2)([(3,(3]) = ~(8~ o d~ o G2) ([(3, (3]).

Denoting the left hand side of the equation above by 'l/J, we have

1 1
'If; = df{3 + 2 [(3, {3] = 2(o~ 0 d~ 0 G2 )([{3 , (3 ])

= ~(oi 0 c, 0 dn([,6 , (3 ]) = ~(o~ 0 G3)([df{3 , ,8]- [{3 ,df{3])

= ~(8i o G3 )(['l/J ,{3] - [(3, 7/1]) = (8~ o G:3) ([7/1 , (3]),

where we used that [[{3 , (3],{3] = O. Using the fact that there exists a positive constant c such that

11(8i oG3 ) 'P lle:S cll'Plle- 1,
for all sp E ni(A'!,End (E))e-1' we make the following est imat e

1I l/JIIe_1 :s II 'l/J IIe = II (6~ 0 G3 )(b ,1-1]) IIe :S e II['t/J ,{3]III'- 1 :S ell 17/1 II I'-1 II{311e < c'> E 117/1IIe- 1,

where cl is another positive constant and th e last inequality is provided that 11'l/J111'- 1 > O. If we
t ake E < t" th en we have 'l/J = O. Thus, together with 8"t13 = 0, we obtain that 13 E S t: .

Further because jl' : M*(E , L) --t M *(E , L)e is injective for all e> ~ dim M +1, so the mapping

jkel.ie(M'(E,L)) : j l'(M*(E , L)) --t jdM*(E, L) )

is bijective for e2: k > ~ dim AI + 1 since jki' 0 j e = j k' Moreover form Lemma 22 we know that jl'
has an open image, therefore for each \70 +a E ']{*(E, L) there exists c > 0 satisfying that ]31'(S; ,t:)
is an open neighbourhood of je( [\7 0 +a J) in j e(M*(E, L )). Furthermore from the previous we have

that the following mapping

, (S I', ) ( p~,.) - l , S I' ~ S I'~ J{ (S I' ) C Oe = VI' n H1 (E \7)PI' a,t: n,t: e V e c e "

where X~: S;, e: --t S; is given via X; (\70 + a + 13) = (3, is a homeomorphism. Since J{V' (S;) c
J{v(S:), for E sm all enough we have the following commutat ive diagram
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in which id1-i1(E,'\7) is a continuous map ping with respect to the norms 11 ·llk and 11 ·l leon 1{l (E , \7)
because all norms on a finite dimensional vector space are equivalent. On the ot her hand because
we can find E' ::; E such that [(dS; ,) c [('\7 (S! ), we obtain the following commutat ive diagram

pe(S; ,eJ > [(dSn

U" l - ' ! !'d"'E.Vl
Pk (S~ , c ' )~ [('\7 (S;, )

which gives that jkeIJe CM.*(E ,L) : j e(M*(E ,L )) -----t jk(M*(E , L )) is a homeomorphism .
T herefore we have proved that jkelj c(M*(E,L)): j e(M*( E, L )) -----t jdM *(E, L )) is a homeomor­

phism. Thus je gives a topology on M *(E ,L) which is independent on the Sobolev index f for
t » 4dim AI+1 and for each \7 = \7o+a t here exists an ope n neighbourhood Uo. = (je) - l(pe(S; ,c))
of [\7] homeomorphi c to <1> - 1(0) . •

Remark. Note that if dim 1{2(E , \7) = 0 then <1>-1 (0) = 0 0. ' Therefore M *(E ,L ) is at [\7] locally
homeomorphic to an open subset in 1{l (E , \7). Thus M *(E, L) has near th is point a st ructure of
a manifold of dim ension dim 1{ 1(E, L) .



Chapter 3

Principal Lie algebroid
connections

3.1 Lie algebroid connections

The theory of connect ions is a classical topic in different ial geomet ry. They provide an ext remely
important tool t o the st udy of geometric st ruct ures on manifolds.

Lie algebroid connections based on the notion of a horizontal lift were introduced by R. L. Fer­
nandes in [lOJ for the spec ial case of Poisson manifolds and in [9] for general Lie algebroids. It is
defined by analogy with an Ehresmann connection on an arbit rary fiber bundle. There are two
distinguished cases, linear connect ions on vector bundles and principal connect ions on principal
fiber bundles .

Definition 15. Let (L ~ lvI, [0, oj,a) be a Lie algebroid. A Lie algebroid connection on a fiber
bundle (E , p, lvI, S) with the standard fiber S is a homomorphism "l : p'L -+ T E of vector bundles
over E covering th e identity on E , which is hor izontal , i.e., the following diagram

L--~:> T !v!
a

commutes, where p'L is t he pullback

p

p
p*L--~) L

j ,
E --- ) M

of the vector bundle L by p. The vector bundle homomorphism "l is called the horizont al lift·
Depending on a structure of the fiber bundle E , we may require some addit ional conditions on

the horizontal lift n.

The subspace im "lu of TILE formed by all horizontal lift s is denoted by HuE, furthermore HE
is a smooth distribution on E called the horizontal distrib ution of the connection n. Note that
HE is not a regular distribution (a smooth dist ribut ion of constant rank) more and that th is
distribution does not define the Lie algebroid connection uniquely.

47
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In general , we have neither HuE n VuE = {O} nor TuE = HuE + VuE. As usual , a vector
~u E T"E will be called vertica l resp . horizontal, if it belongs to VuE resp. HuE.

Consider a fiber bundle (E, p, M , S). Then there are two equivalent descriptions of a connection
on the fiber bundle E eit her via a horizontal bundle or through a connection form.

i) A connect ion on the fiber bundle (E, p, M , S) is a vector valu ed l-forrn <I> E fl1 (E ,TE) such
that <I> 0 <I> = <I> and im <I> = V E , Le., <I> is a projection on the vertical bundle V E.

ii) A connection on th e fiber bundle (E, p, M , S) is a vector subbundle HE of t he tangent
bundle TE , ca lled the horizon tal bundle, such that TE = HE EB VE.

How t hese definitions of a connection on a fiber bundle are related to the definition of a Lie
algebroid connecti on on a fiber bundle?

Let (E , p, M , S) be a fiber bundle and consider a Lie algebroid connection 1] : p*TM -. TE
for the Lie algebroid (T!vl -. M , [. , .J, idT M ) . Then HE = im 1] is the horizontal distribution
of the connec t ion n, If ~u E HuE n V"E then t here exist s V x E TxlvI for x = p(u) satisfying
1]u (u ,vx ) = ~u ' From the commutative diagram

TM~TM
idTM

and from the fact that ~u E VuE we get 0 = Tup·~u = Tup·1]u(u, vx ) = Pu(u , vx ) = Vx' Therefore
~u = 0 and HuE n VuE = {O} . Let ~u E T"E and take the decomposition

then Tup. (~u - 7)u(U ,Tup.~u ) ) = O. Because fJu (1l, TlLP·~U ) E HuE and (~u - 1]u(u ,Tup·~u ) ) E VuE ,
we have proved that T"E = HuE EB v,tE . Hence HE is a vector subbundle of T E such that
T E = HE EB V E and for that reason 1] defines a connect ion on t he fiber bundle (E ,p, M, S) in the
sense of (ii) .

On the other hand if we are given a connection on th e fiber bundle (E ,p, M , S) in the sense
of (ii) then there exist s a unique Lie algebroid connect ion 1] : pt'TM -. T E such th at im 1] = HE.
Consider the homomorphism (7rE, Tp ): T E -. E x I'v! T M = p*TM of vector bundles over E
covering the identity on E . By definition we have ker (7rE , Tp) = V E , hence (7l'E , T p)IHE : HE -.
p*TJI is injective on fibers and by reason of dimensions it is a linear isomorphism on fibres .
Because (7rE, Tp) IH E is a smoo th bijection with the invertible t angent mapping, so its inverse is a
homomorphism of vector bundles. If we denote

then 77 satisfies Tp 0 Tl = Pand im 1] = HE. Thus 1] is a right inverse for (7rE ,Tp) . The uniqueness
follows from the following fact . If 1]1 and r12 are Lie algebroid connect ions on (E, p, M ,S) such
that imTJ1 = HE and im r12 = HE then im(r11 - 1]2) C HE. Because Tp 0 (1]1 - 1]2) = 0, we obtain
im(rJ1 - r12) C HEn V E, therefore we have 1]1 = 1]2 ·

These two constructions are inverse to each other therefore Lie algebroid connect ions on the
fiber bundle (E ,p, M; S) for the Lie algebroid (T!vI -. M, [. , .J, idTM ) are in a one-t o-one corre­
spondence with connections on th e fiber bundle (E, p, !vI , S) .

D e fin itio n 16 . Let X be a manifold with a right action r : X x G -. X of a Lie group G on X
and let 7l' : E -. X be a vector bundle over X. We say that E is a G-equivariant vect or bundle if
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we are given a right ac tion i : E x G ~ E of the group G on E sat isfying that

X ---~ X
rY

is an isomorphism of vector bundles for all 9 E G.

Definition 17. Consider a principal fiber bundle (P,p , M, G) with the principal right action
r : P x G ~ P and a G-equivari ant vector bundle 7r : E ~ P over P. We say tha t a vector bundle
atlas (Un, 'l/Jn ) for E is G-equivariant if Ua is a p-saturat ed set, i.e., Uo: = p- l( Vo:) for an open set
Vo: in !vI, and

(3.1)

for a ll u E Uo:, v E V and 9 E G. It is easy to see that for t ransition functions 'l/JQf3: Uaf3 ~ GL (V )
we get 'l/Ja f3Cu.g) = 'l/Jo:tj(u ), where V is the standard fiber of E.

Theorem 12. Let (P, p, M, G ) be a principal fiber bundle and let 7r: E ~ P be a G-equivariant
vector bundle with a G-equivariant vector bundle at las . Denote by f: E x G ~ E the right action
on E.

i) The space E IG of orbi ts of th e right action f carr ies a unique smooth manifold st ructure
such that the quotient map q : E ~ E I G is a surject ive submersion.

ii) f5 : E I G ~ M is a vector bundle in a canonical way, where f5 is given by

q ) EI G

I,
p

and q ll : E
lt
~ (EIG)p(u) is a linear diffeomorphism for each u E P , moreover q is a homo­

morphism of vector bund les.
iii) q : E ~ E IG is a principal G-bundle with the principal right action f .
iv) The following diagram

E~<: <,
P X MEIG ~EIG

1 I,
P - - +> M

p

commutes, i.e. , E is a to pological pullback.

Notation. We will denote EIG by Ee. We also define the smooth mapping T: P XM Ee ~ E by
T(Ux , ux ) = q;;;(vx )' It sat isfies T(U, q (~u ) ) = ~'U, q(r (ux, vx)) = Vx and r (ux·g,vx) = rCux, vx)· g.

Proof. First of all we verify tha t t he right action f : E x G ~ E is free an? ~roper: SuPP?se
t ha t ~/L .gl = f,lL.g2, t hen 'U.gl = 7r (~'U .gt} = 7r(f,u .g2) = U·g2 · Because the p~lllclpal n ght a~tlOn
r: P x G ~ P is free t he rizht act ion f is also free. Now let ~n ·gn ~ f, and ~n ~ ~ III E
for some ~n, f" f,' E E and gn bE G. If we denote Un = 7r(f,n) , U = 7r(f,) and u' = 7r(E,' ), then
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Un ·gn = Tr (~n ·gn ) ----.. Tr(e) = u' and Un = Tr(~n ) ----.. Tr(~) = u, because Tr is cont inuous. But G act s
properly on P , hence gn has a convergent subsequence in G and thus f is proper. Immedi ately,
from t he characterization of principal fiber bundles it follows that the orbit space E j G is a smooth
manifold , t he quoti ent map ping q: E ----.. E IG is a surjective submersion and q: E ----.. EjG is a
pr incipal G-b undle.

In the setting of t he diagram in (ii) t he mapping p OTr is constant on orbits of t he action i , so
p exists as a mapping. Because q : E ----.. E IG is a fibered manifold and pOq is smooth, we obtain
that p is also smooth.

Let (p- l (Un,), Xa) be a G-equivariant vector bundle at las for E. Assume, by shrinking Un if
necessary, t hat (Un, 'Pn ) is a principal bundle atlas for P wit h transition functi ons 'Pnfl : Unfl ----.. G.
We define »:': U« X V ----.. p-l(Un) C E IG by 'l/J;; l(X, V) = q(X;; l('P;; l(x,e ),v)), which is a fiber
res pecting mapping, i.e., t he following diagram

commutes. For each point q(~ux) in p- l(.1:) th ere is exactly one v E V such that the orbit
corresponding to this point passes through X;;l( <p;; l(x, e),v), i.e., q (~ux ) = q(X;;l( <p;;l(x, e),v)) .
Because Xu is a diffeomor phism, we can write ~ux = X;;l(<p;;l(X,g),v) for a uniquely determined
u E V, where 'P o: (ux ) = (x ,g) . Then

X: 1('P: 1(X,g) ,v) .g-1 = X~ l( 'P~ l(x,g) .g- l , V) = X~l(<p~l(x, e), v) ,

where we used the fact that Xn is a G-equivari ant chart . T herefore 'l/J;;l(x, ·) : V ----.. p- l(X) is
bijective, since th e prin cipal right action is free. Moreover v: 1 is smoot h wit h the invert ible
tangent mapping, so its inverse 'I/;a : p- l (Uo: ) ----.. U'; X V is a fiber respecting diffeomorphism.

Fur thermore

'1/;; 1(x ,v ) = q(X~ l ( 'P~ l(X , e), v))

= q ( X~l ( 'P~l (X , e), Xnfl ( <p~ l (x ,e)).v))

=q (X~ 1(<p;; l (x ,'Pnfl(x ).e), XO: {3 ('P~ 1(x, e)) .v))

= q ( X~ I ( 'P~l ( X , e).<Pafl(x ),Xo:{3 (<p~ 1 (X , e)).v))

= q(X~ l ('P~ l (X, e), Xafl ( <p~ l (x , e)).v))

= 1/1;:1(x , Xafl (ip~1(X, e)).v ),

thus Cl/Joo'l/J;; l )(.1:, v) = (x, Xo:rl ('P~l (x, e)).v), hence (Ua, 'l/Ja ) is a vecto r bundle atlas for p: E IG ----..
M . By definition of 'l/Jn the diagram

E1p- l (U", )
(<P n x id v)ox " ) Ua x G x V

q[ jpr

p-l(Un) .. Un X V
1jJ",
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commutes , if we restrict Xn on Eu t hen we obtain the diagram

Eu
(CPnxidv)oxo

.. {p(u)} x {g} x V

qj

1"p- l(p(U))
1/10

.. {p(u )} x V

in whi ch its lines are linear diffeomorphism, hence we conclude that qu: Eu ---t p-l(p(U))
(E IG )p(u) is a linear diffeomorphism.

Consider a homomorphism (1r ,q) : E ---t P X M ElG = p*(E IG) of vector bundles over P
covering the identi ty on P. Because (1r, q) is a linear isomorphism on fibers wit h t he inverti ble
tangent map ping, so (1r ,q) is an isomorp hism of vecto r bundles. The inverse is denoted by r : P x M

E IG ---t E and given by r (ux,vx) = q;~; (vx ). •

Theorem 13. The sect ions of t he vector bundle Ec ---t M correspond to the G-invariant sections
of the G-equi var iant vector bundle E ---t P , moreover we have an isomorphism <I>: f(M, Ec )~
f(P, E) c of COO( M, JR )-modules, where f~ = (j 0 p)~ for f E COO(M, JR) and C, E r(P, E )c .

Proof. If C, E I' (P, E )C then we construct s~ E r(M ,Ec) in the following way. Because ~: P ---t E
is a G-equivar ian t mapping, t he diagram

commutes for a uniquely determined mapping s~ : M ---t Ec . Further s~ 0 p = q 0 ~ is a smooth
mapping and p : P ---t A1 is a fibered manifold hence s~ is a smoo t h section.

If conversely S E f(M,Ec) we define ~8 E r(P,E)c by ~8 = r 0 (idp X M s ) : P ---t P XM

[\,I/ ---t P XAI Ec ---t E, i.e. , ~s (u) = r(u,s (p(u) )) for u E P. This is a G-invari ant section since
c,s(u.g) = r (u .g, S(p(1L))) = r (u, s(p(u))).g = c,s(u ).g by t he G-equivariance of r .

These two construct ions are inverse to each ot her since we have ~s (O (u ) = r (u, s~ (p (u ) ) ) =
r(11. , q(E, (u ))) = c,Cu) and S~(s)(p(1l)) = q(c,sCu)) = q(r (u , s(p(u)))) = s(p(u)) . •

Theorem 14. (i) Let (P ,p , jH , G) be a principal fiber bund le and zr : E ---t P be a G-equivari ant
vecto r bundle with a G-equivariant vector bundle at las . Consider a vector bundle q: F ---t N .
If we are given a homomorphism ip : E ---t F of vector bundles covering f: P ---t N satisfying
y (c,u.g) = y(E,u) and f( u .g) = f( u ), i.e., r.p 0 1'9 = r.p and f 0 r 9 = I , th en there exist s a unique

vecto r bundle homomorphism

such that ip = <pc 0 qE and f = i" 0 p.

(ii) Let (P,p ,M,G) and (P',p',1vl ',G') be principal fiber bundles. Consider a G-equivariant resp.
G'-equivari ant vector bundle 1r: E ---t P resp. tt": E' ---t P' with a G-equivari ant resp . G'­
equivariant vector bundle at las. Let <I>: G ---t G' be a homomorphism of Lie groups . If we are given
a homomorphism ip : E ---t E' of vector bundles covering f : P ---t P' such that r.p (c'u.g) = r.p(c'u)·<I> (g)
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and f(u .g) = f(u).<J>(g) , i.e., <p 0 fg = f <P(g) 0 <p and f 0 r g = '(<P (g ) 0 i , then there exists a unique
vector bundle homomorphism

Ec
<pc

'" EOI

,Ej [.E'
!v! ) M'

f G

such that qE' 0 sp = <pc 0 qE and p' 0 f = t" 0 p.

Proof We prove th e second part only, because (i) is a special case of (ii). Since sp is G-equivariant
and qE is surject ive , so th ere exists a unique mapping <pc such th at t he following diagram

E
<p

> E'

qE j jq E'

Ec
G

) EOI
<p

commutes. Moreover because qE : E ~ Ec is a fibered manifold and <pc 0 qE is smooth mapping,
thus <pc is also smooth. By the same argument we get th ere exists a uniquely determined smooth
mapping fC : A1 - M' sat isfying p' 0 f = f C 0 p. In fact f: P - P' is a principal fiber bundle
homomorphism. The rest of the proof is to verify that <pC : Ec ---- EOI is a homomorphism of

vector bundles covering fC. Because <p~ = q;(ux) 0 <Pur 0 (q;:J - l : (Ec)x - (Eol )fC (x ) is a linear

mapping, hence <pc is a homomorphism of vector bundles covering f G. •

The previous framework can be used to the construction of an associated vector bundle to a
principal fiber bundle.

Let (P, p, M ,G) be a principal fiber bundle and p: G ---- GL (V ) be a representation of G on a
finite dimensional vector space V. We consider the right action f: (P x V) x G ---- P x V given
by f ((u, v) ,g) = (u.g,g- l .V ) . With thi s right action the trivial vector bundle IT : P x V ---- P is a
G-equivariant vector bundle over P . Further let (Ua, <Pa ) be a principal bundle atlas for P then we
define a vector bundle atlas (p- 1(Ua), 'liJa) for P x V , where 'l/Ja : (P x V)lp - l (Uu ) ---- p-l (Ua) x V,
through

Because

I/Jc~ l ( U . g, V ) = (u.g, (prc(<pa (u.g)))- l .v)

= (u.g, g- l .(prc{<pa (u )))- l.v )

= (u, (prc(<pa(u))) - l .v) .g

= 'l/J;; l (u,V).g,

we get that (p-l(Ua.) , 'ljJa) is a G-equivariant vector bundle atlas for P x V . Using the cons tru ction
in Theorem 12 we obtain the associa ted vector bundle p: P <c V ---- M. Moreover by Theorem 13
we have [(!vI, P <o V) ~ f(P, P x V)c ~ COO(P, V)c.

There is another important example of this construction. Consider a prin cipal fiber bundle
(P,p, M, G) and a vector bundle IT: E ---- M. Then the pullback p*E = P X !vI E carries a natural
right action f : p'E x G ---- p'E of G defined by

r = r X id M idE: (P Xi\.o1 E) X G ~ (P x G) X ,V! E -4 P X !vI E . (3.2)
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Moreover pg = r 9 xidM idE : p'E ---t p'E is an isomorphism of vector bu ndles covering r 9 for all
9 E G, hence with this right action p*E is a G-equivariant vector bundle over P. Let (U(." Xo:) be
a vector bundle atlas for E , i.e., Xo: : E lUo ---t Uo: x V , and let (Uo:, <Po:) be a principal bundle atlas
f~r P then a vector bundle atlas (p-I(Uo: ), 'l/Jo:) for p'E, where 'l/Jo: : p*Elp- l (Uo ) ---t p-I (Uo,) X V, is
given by

Further

'l/J;; l (U.g,v) = (u.g, X;;l(p(U.g),v))

= (u.g, X;; l (p(u), v) )

= (u, x;; 1(p(u), v)).g

= 'l/J;; I(u,v).g,

hence (p-l( Uo,) , 'ljJo,) is a G-equivariant vector bundle at las for p*E . From t he characterizat ion of
principal fiber bundles and using the following commutative diag ra m

y
p --~) Arf

~E
/' /

q
p*E ---;.- p*E/G

I,
p

we get that p*E /G ---t M and E ---t M are isomorphic vector bundles over M: Furthermore we
have f(M, E)::= f(M,p*E/G) ::= f (P,p*E)G.

If we define the mapping j : c OO (P, g)G ---t X(P )G through

JUKu) = Terv..f(u), (3.3)

where 'U E P , for f E c OO( P, g)G then from t he following commutative diagram

we obtain
. n-.. P xg ,T,TP .

y o'!! = '!! 0 2* , (3.4)

where <I> T P : f(AI , A(P)) ---t X(P)G is a COO tM, II~.)-module isomor phism.

Co nsider a pr incipal fiber bund le (P,p, M ,G) and denote by r: P x G ---t P the princi pal righ t
act ion of G on P . Let (L ---t M, [. , .J, a) be a Lie algebroid then t he pullback p'L = P x M L carries
a natural right action P: p'L x G ---t p'L of G. Moreover p'L ---t P is a G-equivariant vect or bundle

and the vector bu ndle p*L/G ---t AI is isomorphic to L ---t M.

Definition 18. Let (L ---t M, [. , .J, a) be a Lie algebroid. A principal Lie algebroid connection on
a princi pa l fiber bundle (P,p, M, G) is a homomorphisms fJ: p*L ---t T P of vector bundles over P

covering t he identity on P such that
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i ) TJ is horizontal, i.e. the following diagram

L ~TMa

commutes,
ii) TJ is G-equivariant, i.e. Tr 9 0 T) = T) 0 1'9 for all 9 E G,

Note t hat a principal Lie algebroid connect.ion is a Lie algebroid connect ion which is G-equivariant.

By its G-equ ivariance , a principal Lie algebroid connection TJ on P defines a homomorphism
w,/ : L ~ A (P ) of vector bundles over M covering the identi ty on M, called the connection form
of TJ , sat.isfying p. 0 W7) = a. On t he ot her hand if W E SlL(M ,A (P )) is a connection form t hen
there exists a unique principal Lie algebroid connection T): p*L ~ T P with the given connection
form, i.e. , w7) = w. Using Theorem 14 it is defined by

(3.5)

Therefore t he re is a one-to-o ne correspondence between pr incip al Lie algebroid connections and
connection forms hence we will not disti nguish between t hem.

If 71 is a principal Lie algebro id connection t hen we define t he horizont al lift TJ~ E X(P) of
~ E Xd lvI) by

T/~ = 77 0 (idp X id u 0 ° (id»,») : p '::" P xM M -' P x M L -' TP. (3.6)

Because TJ is G-equ ivari ant , we have

('T/~)(u.g ) = TJ(u ,g,E,(p(u,q)) ) = T) ( u .g ,~ (p( u) ) ) = Tur
9'TJ (u, E, (p(u))) = Tu r 9 ·(TJE, )(u)

hence TJE. E X(P )G. Recall t ha t the C OO (lVI , lR)-module isomorphism <I?TP: r(M , A (P )) -t X(P )G
is given by

(3.7)

Thus we get, using (3,5) and (:3,7),

(7/0(U) = TJ (u,E,(p(u))) = TTP(u,W7)(E,) (p(u))) = <I?TP(W7) (O )(u),

t hus we have obtained the horizontal lift TJE. given by t he connec t ion form w,/, i.e. 'TIE, = <I?TP (w7) (~ ) ) '

Moreover 'TIE, and o.(E,) are p-related vector fields, since

(Tp 0 '1JE. )(u) = (Tp 0 1J)(u, E,(p(u))) = (a 0 ]3)(u ,~ (p(u ) ) ) = (o.(~) 0 p)(u) .

For a princip al Lie algebroid connection TJ wit h t he connect ion for m w" E Sli(M ,A (P )) we define

t.he curvature [orm n" E Sl i (M ,A(P )) by

Sl ,/(6 ,6 ) = [wl) (6 ),wl)(6) ] - w7) ( [6, 6 ]), (3.8)

where 6 ,6 E Xr(A1). We should verify t hat Sl 1) (E,1,J6) = j0.7) (6 ,6 ) for j E coo(.l\!I,lR ), bu t

0.,/(E.l, /6) = [w ,/(6 ),W7) (J6)] A(P) - w1)( [6, j 6 1d
= [w,/(6), j w,/(6 )]A(P) - WI)(J[E,l, 6 ]£ + (o.d6)J) 6)
= j[w,/(6 ),w,/(6)]A( P) + (o.A(p)(w,/(~ ) ))J) w,/(6) - j W7) ( [6 ,6 1d - (o.d6)J) w,/(6)

= j0.,/(6 ,6) + (aA(p)(w,/(6))f) w,/(6) - (ad6)f) w1/(6 )

= jn1)(E.l ,6) + ((P. ow,,)(E,d J) W'I(6 ) - (ad E,d J)w7)(6)

= j0.7) (6 ,6) ,
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where we used that p; a wry = a i. . For any wE n 1(J\.I,ad(P) ) we define i*(w) E nluvI,A(P)) by

(3.9)

where ~l "" ,~k E :£L(M) and similarly for w E n1 (1\1I ,A(P)) we define p*(w) E D,l(M,l'lvI)
through

p; (w)(~1 , . . . , ~k) = P* 0 w(6 ,... ,~k),

where 6 , . . . , ~k E XdM). Because

p* an1J(6 ,6 ) = p* a [wry (6 ),wry (6 )]A(P) - P* a w,/([6 ,6 1£)
= [p* a Wry(~d, p* a wry(6) ] - aL([6, 6] L)

= [aL(6 ), aL(6)] - aL([6, 6]L)
= 0,

(3.10)

there exists, using the exactness of the sequence (1.21), a unique R1J E n'7jlvI , ad(P )) such that
n,/ = 'i*(R ry ).

Notation. A principal Lie algebroid connection with zero curvat ure form is called fiat principal
Lie alqebroid connection. We will denote the set of all connection forms by A (P, L ) and the set of
all fiat connection forms by J((P,L).

Now we show a similar corres pondence between principal Lie algebroid connections and prin­
cipal connections as for Lie algebroid connect ions and connect ions.

Consider a principal fiber bundle (P,p, lvI,G). Then th ere are two equivalent descriptions of
a principal connection on a principal fiber bundle eit her via a horizontal bundle or through a
connection form .

i) A principal connection on t he prin cipal fiber bundle (P, p, M , G) is a vector valued l-forrn
l' E D1(P,T P) such that <I> 0 <I> = <I> , im <I> = V P and 1'1'9 a <I> = <I> a 1'1'9.

ii) A principal connect ion on th e prin cipal fiber bundle (P,p, lvI , G) is a vector subbundle H P
of the tangent bundle TP such that TP = HP $ VP and H1L.9P = T,.Lr 9 (H uP).

Let (P,p,!VI, G) be a principal fiber bundle and consider a principal Lie algebroid connection
r/ : pt'I'M --+ TP for the Lie algebroid (T lvI --+ lvI,[·,· ], idT,\,d· Therefore TJ defines a connect ion
on P given by the horizontal bundle H P = im TJ· Because TJ is G-equivariant , we ob tain HU.9P =
im TJU .9 = im (Tu1'9 a 'T)u) = Tur 9 (im TJu) = Tur9(HuP). Thus H P is G-invariant subbundle and
defines a principal connection on P in the sense of (ii).

On the other hand if we are given a principal connection on the principal bundle (P, p, lvI , G)
in the sense of (ii ) then there is a unique Lie algebroid connect ion TJ : p' T'M --+ TP given as

where (-rrp ,Tp): TP --+ p*TM. Because (7rp, Tp): TP -- pt'I'M is G-equivariant , i.e., (7r p, T p) a
1'1'9 = 1~9 a (7rp, Tp), and H P is G-invariant, thus n is also G-equivariant. These two const ruct ion

are inverse to each other.

Lemma 23. The set A (P, L ) of connection forms of principal Lie algebroid connections on a
principal fiber bundle (P, p,!vI , G) for the Lie algebroid (L -- M, [. , .J, a) is an affine space modeled

on the vector space nl(lvI,ad(P)).

Proof. We first prove that A(P, L) is non-empty. Because any principal fiber bundle admits a
principal connection, this gives an existence of a principal Lie algebroid connection TJ for the Lie
algebroid (TiH --+ AI, [. ,.J, idTM) with the connect ion form Wry ~ A(P, TM) . Now we define l-forrn
w E niUvI, A(P) ) by W = Wry 0 a. Since P* a w = P* a w7/ a a = IdTM 0 a = a, we have proved that

A(P, L) is non-empty.



--- - - - - - - P rincipa l Lie algebroid connections 56

The rest of t he proof is very simple. If WI and Wo are two connection forms t hen p. 0 (W I - wo) =
a - a = O. Because the following sequence

0----4 r(}vI,ad(P)) ~ r(M,A (P ))~ r( 1'vf,T M ) ---t 0

is exact, t here is a uniquely determined l-form 0:: E Oi(NI, ad(P)) such that WI - Wo = i.(o::).
Therefore A (P, L ) is an affine space modeled on 0 },(.I\I, ad (P )). •

R e m a r k . Thus, if we fix some Wo in A (P, L ), we may write

A (P,L) = {wo +i.(o::); 0:: E Ol (M,ad(P ))} . (3.11)

T his description will permit us to define Sobolev completions of A (P, L ).

We equip the graded vector spaces Di (M ,A (P )) in a canonical way with the st ructure of a
graded Lie algebra by

where W E O~VvI , A (P)), T E 01(M , A(P )) and ~l, '" , ~p+q E Xd M ). Furthermore, t he graded
vector space Dr. {1\tI ,A (P )) is a graded 0i (M)-module through

(3.13)

where 0:: E D~ (lvI) , w E 0 1(Ai,A(P )) and ~ I ,' " ,~p+q E Xd M ).

D efinition 19. Let (P,p, M ,G) be a principal fiber bundle and let (L ---.. M , [. , .J, a) be a Lie
algebroid , If T/ : p'L -+ T P is a principal Lie algebroid connect ion with t he connection form
w" E Di(M,A(P )) t hen we define t he exteri or deri vative dw1j : Oi(M,A(P)) ---.. D~+I (M,A(P ) )

by

k

( dw"w)(~o, . . . , ~k ) = 2:) -InW" (~i ) ' W (~0 "" ,€,... , ~k)l
;,=0

+ L (- I)i+jw( [~i, ~jJ, ~o, ,, .,€,,,. ,€,."' ~k)' (3.14)
O~i<j ~k

where W E Ot (.M, A (P )) and ~o, · .. , ~k E J:. d ivI).
If we denote by d: Oi (M ,A(P )) -> D~+ I (M,A(P) ) t he usual Chevalley differentia l given via

(dw)(eo , . .. ,~k) = L (- I)i+jw([~i, ~j J, eo, .. . .i: ... , (j, . .. , ~k), (3.15)
O~ i<j ~k

where W E 0t VI-I, A (P )) and ~o , . . . ,~k E J:. d M ), t hen t he covariant derivative dw" can be wri t t en

as

dw" = d + adw 1j ,
(3.16)

where ad w" is defined through adw"w = [w'/lw] for wE Ot (M ,A(P )).

T heo r em 15 . The covariant derivative (lw" has the following proper ties.
i) d

w
( 0:: /\ w) = di.o /\ W+ (_I)deg(Q)o:: /\ dw1jw for 0:: E Di (NI) and W E Oi(M , A (P)).

ii) dw::[W,T] = [dW1j W,T] + (_I )deg(w)[w,dw1j T] for w,T E Oi (M,A(P )), i.e ., dw" is a graded

derivation of degree 1.
iii) D - dw + 1. [w W 1 the Maurer- Cartan formula for the curvat ure form.

' I - '1 2 '1' '/'

I' V ) ("\ - '1 W - 1. [w Wry] t he curva t ure form.
~ " I - I. 'w 1j ' / 2 1/1 '
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v) dw,/J.r, = 0, the Bianchi identity.
vi) dw 0 dw = ado .1) 1) "1)

Proo]. i) It suffices to investigate decomposable forms W = (3 08 for 8 E nVA1,A(P)) and
(3 E (1)M). From the definition we obtain dW1) ((3 0 8) = dL(3 0 8 + (-l)q (3/\ dW1) 8. Afterwards for
a E n~ (M) we have

dW1) (a /\ ((3 08)) = dwr,((a /\ (3) 0 8) = dL(a /\ (3) 0 8 + (-l)p+Q(a /\ (3) /\ dW1)8

= (dLa /\ (3 ) 0 8 + (-l)P(a /\ dL(3) 0 8 + (-l)P+Q(a /\ (3) /\ dW1)8

= dLa /\ ((3 08) + (-l)Pa /\ dW1)((3 0 8).

ii) For decomposable forms W = a 0 8, T = (3 0t, where s.t. E O~(M,A(P)), a E O~(1vf) and
(3 E n1(M), we have [a 0 8,(3 0 t] = (a /\ (3) 0 [8,t]. Hence we can write

dW1) [a 0 S, (3 0 t] = dW1) ((a /\ (3) 0 [8,t])

= dL(a /\ (3) 0 [8, t] + (-1 )P+Q (a /\ (3) /\ dW1) [8,t]

= (dLa /\ (3) 0 [8, t] + (-l)P(a /\ dL(3) 0 [8, t]
+ (-1 )p+q (a /\ (3) /\ [dW1) 8, t] + (-1 )P+Q (a /\ (3) /\ [8, dW1) t]

= [dLa 0 8, (3 0 t] + (-1) P [a 0 8, dL(3 0 t] + (-1 )P [a /\ dW1) 8, (3 0 t]

+ (-l)p+q[a 0 8,(3/\ dw"t]

= [dwr,(a 0 8), (3 0 t] + (- 1)P [(a 0 8), dW 1) ((3 0 t)],

where we used dW 1) [8, t ] = [dw" S,t] + [s,dwr,t] which follows from the Jacobi identity, thus we are
done.
iii) Immediately from the definition we get

n,/(6,6) = [w,,(6 ),w,/(6 )] - w'I([6 ,6])

= ~[wr"w'/](6,6) + (dw'j)(6,6)·

iv) We have

O'I(6,~2) = [w'T) (6 ),w'1 (6 )] - w'1( [6,6 ])
= [w'j(6 ),wr, (6 )] - [w,/(6) ,w'1(6)] - w,/( [6, 6]) - [w'I(6), w'j(6)]

= (dw"wry)(6 ,6) - ~[w,/,wry](6,6).

v) Using (i), (iv) and (vi) we obtain

dW.,O'1 = dw,,(dw1)W'1 - ~ [w'/lwr, ])

=dw"dw1)w'j - ~ ([dw1)wry, w,,] - [Wry, dW1)wr,])

= ad01)Wry - [dw1)w,1' w'/]

= [dW 1) Wry ,W'l] - ~ [[w'/l Wry], Wry] - [dw1)w", Wry]

= 0,

where we used the fact that [[w,j,W'j],W'1 ] = o.
.) F" t if th t [f'I (C C) 8] - (d d 8)(6 6)· This is a consequence upon the following

V] irs we ven y .na Hr, <,,1, <,,2, - w" w" '

computation

(d
w,,(dw1)s))(6

,6) = [w'I(6 ), (dw1)s)(6)] - [w,,(6 ), (dw1)8)(6)]- (dw,,8)([6,6])

= [wry(6), [w,/(6), 8]] - [w,/(6), [Wr,(6), 8]] - [w,/([6, 6]), s]
= [[w,,(6 ),w,,(6)], 8] - [wT) ( [6 ,6]), s] = [[w,/(6 ),w,/(6)] - w,,([6, 6]), s]

= [n,/(6,6),s]



(3.17)
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for all 6 ,6 E x dM) and S E n~ (1\!I,A(P) ) . Because it suffices t o deal wit h decomposable form s
W = a 0 S for a E n1(M) and S E 08,,(M,A (P)) , we can write

dw"dwTj (a ® s) = dwTj(dLa ® s + (- l) ka 1\ dwTjs

= 0 + (-l )k+l dL a 1\ dwTjs + (- l) kdLa 1\ dwTjs + (_ 1)2ka 1\ dwTjdw" s

= a 1\ adoTjs

= ad o,,(a ® s)

hen ce we have got dWTj 0 dWTj = adnTj and t hus we are done. •

Consider a flat princip al Lie algebro id connection 7] with the connect ion form Wry. From the
previous t heore m we have dWTj [w, T] = [dwTj w,T]+ (_ l)deg (w) [w,dWTj T] for w,T E nHM,A (P) ), i.e.,
dWTj is a graded derivation of degree 1. Moreover becau se nry = 0, we get dWIJ 0 dWTj = O. Therefore
t he graded Lie algebra nt (NI, A (P ) with the Lie bracket given by (3.12) has a structure of a
differen tial graded Lie algebra.

Lemma 24. Consider two principal Lie algebroid connect ions 71, 'TJ' on a principal fiber bundle
(P, p, M; G ) for a Lie algebroid (L ---4 M , [" .J, a). If we denote wrl' - w71 = a E n U NI, A (P )) then

1
nryl = nrl + dW,/a + 2" [a,a] .

Proof. The proof is a st raight forward comp utation only. We have

n,,/(6 ,6) = [w'? ' ( ~d , wry'(6) ] - Wry '( [~I, 6])
= [wry (6 ) + a(6 ),w7,(6 ) + a(6)] - w,,([6, 6]) - a ( [~ I, 6 ])

= [w'I(6 ),wry (6 )] - wry ( [6, 6]) + [a ( ~ I ) , wry(6)] + [w,,(6 ),a(6)]

+ [a (~d , a(6)] - a( [6, 6 ])
= n'1 (~1,6) + [w'?(6),a(6 )] - [w'? (6 ),a(6 )] - a( [6,6 ]) + [a (6 ),a (6 )]

= n '1 ( ~1 ,6 ) + dwTj a + ~[a,a](~ 1 ,6)

•
Let (L ---4 1\1, [. , .J, a) be a Lie algebroid a nd let (P, p, M, G) be a principal fiber bundle. Con­

side r a principal Lie algebroid connectionn with the connection form wr/ · If p : G ---4 GL (lE) is a
representation of t he structure group G on a finit e dimensional vector space lE then the principal
Lie algebroid connecti on i t induces an L-connection 'V' : n~ (NI, E) ---4 nl,(M,E ) on t he associate d

vector bundle E = P x G E.
We defin e a bilinear mapping 'V' : Xd M) x nv NI ,E ) ---4 n~ (M ,E ) t hrough

(3.18)

where ¢ : f (AI, E ) ~ f (P, P X lE)G .z; COO( P, lE)G is a COO (ivI , IR)-module isomorp hism defined
in Theorem 14, 7]~ E X(P)G is t he horizont al lift of ~ E Xd M ) and S E n~ (M,E ). Becau se we

have 'V'f f,s = 1'Vf, 8 and since we may write

'Vf, (f s) = 1> - 1 ( (710 ¢ (f s)) = <p - I ( ( 7]~) ((f 0 p)1> (s) ))

= 1>- 1 ( (T]O (f 0 p)1> (S) + (f 0 p)(7]~) 1>(s))

= 1>-1 ((7]0(f 0 p)1>( s)) + 1>-1 ((f 0 p)(7]~)¢( S ))

= 1> - 1 ( ( (a(0 f) 0 p)1> (.5' )) + 11> -1 ((7]0 1>(s ))

= (a(~) f) 1> - 1 (1)(s)) + 11>- 1( (710(<P(S))

= (a(~) f)s + 1'V'f, S,
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so 'V: 0.~ (M, E) -----; 0.i(M ,E) is a linear Lie algeb ro id connection on the associated vector bundle
E, called t he induced L- connection.

Lemma 25. Let 77 be a principal Lie algebroid connect ion and let 'V : 0.~ ( 1V[, E) -----; 0.i(M, E)
be the induced connection on t he associ ated vector bundle E = P X G lEo Then the curvature
R\l E 0.1(M, End(E) and the connection form RrJ E 0.1(M, ad(P )) , where 0.rJ = i*(RrJ), are
related by

R\l (e1 ,6)s = - (p~T/ s)(6 , 6 ),

where pi: 9 -----; End(lE) is the derivative of t he representation p: G -----; GL (lE).

Proof. From the previous we get

(3.19)

R\l(~1 ,6) s = \7EI \7E2s - \7E2\7EI s - 'V[E I ,E2]S

= <1>- 1((776)( (776)<1> (s))) - <1>- 1((776 )((776 )<1> (s))) - <1>-1 ((77[6 ,6])<1> (s))

= <1>- 1([776, 776 ]<1> (s)) - <1>-1 ((77[e1, 6])<1>(s))

= <1> - 1(( [r)~1,776] - ''7 [6 ,6 ])<1> (s))

= <1>- 1(([<1>TP(W1) (6)) ,<1>TP(w1/(6))] - <1>TP(w1)([6,6])))<1>(s))

= <1>-1 ( (<1>TP ( [w'J (6 ) , w1) (~2 )]) - <1>TP (w,/( [6 ,6])))<1>(s))

= <1> -1 (<1>TP(0.1) (6, 6)) <1>(s))

= <1> -1 ((<1>TP 0 i* )(R'J (6 ,6) )<1>(s))

= <1>- 1((j 0 <1>P xg)(R'1(~1 , 6))<1>( s))

= - <1> - 1(pi (<1> Px g (R1) (6 ,6))) <1> (s))

= - (p~T/ s)(~1 ,6) ,

where we used (3.4) and (3.31). •

Lemma 26. Let n, 77' be two principal Lie algebroid connections and denot e by a E 0.i( lV!, ad(P ))
a uniquely determined l-forrn sa t isfying that WrJl - w1) = i*(O'). Then the corresponding induced
L-COllIH'ction \7, \7' on the asso ciated vector bundle E = P X G IE are related through

\7' = \7 - p~

where pi: 9 -----; End (lE) is the derivative of the representation p: G -----; GL (IE).

Proof. Using the definition of the induced L-connection, we obt ain

'V;'s = cI>-1 (<I>TP (Wl1 1 (~ ) )<1> (s ) )

= <1>-l (<I>TP (W1)(~) + i *(O' ) (~ )) <1> (s))

= <1>-l(<1>TP (wrJ (~ ))cI> ( s ) ) + <I> -l (<1>TP(i * (O') (O )<I>( s))

= 'VEs + <1> -l((cI>TP 0 i*)(O'(O)<1>(s))

= 'VEs + <1>-l ((j 0 <1>p xg)(O'(~))<1>( s))

= 'VEs - <I> -l (p' (<1>P Xg(O' (O) )<I>(s))

= \7Es - ( p~s)(E),

(3.20)

hence we have found how the induced L-connection changes . •

Let 77 be a principal Lie algebroid connection and ~sume that a E 0.t(M, ad(~)). Bec~use
P* oi* = 0, after an easy com put at ion we obtain p* (dwT/ z* (O') ) = O. Therefore there exists a unique

{3 E 0.1+ 1 (M, ad(P)) such that i*({3) = dWT/i* (O') .
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We can write

(di *(a)) (~o , . . . , ~k ) = L (-l)i+ji * (a) ([~i ' ~j],. " .t; .. ., ( j , . . . , ~k )
O ~i<j~ k

Further we have

k

<I>TP ( (adwT/i* (a )) (~o , .. · , ~d) = I)-l)i<I>TP ([W7) (~i ) ,i *(a ) (~o, ... , ~~, . . ' , ~k )])
i =O

k

= L(_l) i [<I>TP(W7) ( ~i) ) , <I>TP (i* (a)(~o, ... , ti '" . , ~k) )]
i=O

k

= L (- l ) i [ '7~i , (<I>TP 0 i*)(a(~o , . . . ,i.: ..,~k ) ) ]
i =O

k

= L (- l)i [17~i, (j 0 <I>P XB ) (a(~o , ... ,(i"'" ~k ) )]
i=O

k

=~(_l ) i '(( C,)(<I> PXB ( ( ,~ J 17<"2 a ~O" ", ~i , ... ,~k) ))) .

'i=O

This can be rewri tten as

k

(adw,J* (a ) )(~o, . .. , ~A,) = L (_1) i ((<I>TP)-1 0 j ) ( ( 17~d( <I>P X B(a (~o , . .. ,(i"' " ~k ) ) ) )
i=O

k

= L (-1)i(i* 0 (<I>P x B) - 1) ( ( 17~i) (<I> Px II (a( ~o, .. . ,i. .... , ~k ) ) ) )
; = 0

k

= L(-1 ) i i * ( (<I>P Xll)-1 ( (17~;) (<I> P Xll (a (~o , . .. , Ei " " , ~k))) ))

i=O

k

= I)-l)ii*(\7E i a (~o , . .. .i: ... , ~k ) ) .
; = 0

If we give this together, t hen we obtain

( dw"i * ( a)) (~o, ... , ~k ) = (adw" i*( a) )(~o , ... ,~k) + (di* (a)) (~o, . . . , ~k )

k

= I)-l ) i i * (\7Ei a (~o , ... ,Ei '''''~k ))
;= 0

+ L ( - l )i+j i*(a( [~i, ~j], .. . .i; .. .,{j" " '~k))
O~i <j~k

= i * (dV'a ) (~o , . .. , ~k ) ,

therefore we have

(3.21)

for a E n1(M, ad(P) ).

Let 17 and 17' be principal Lie algebroid connections on a principal fiber bundle (P, p, M , G)
for a Lie algebroid (L --+ M , [" ·], a). Then t here exists a unique a E ni(M,ad(P)) such that
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co' - W = i*(a). From Lemma 24 we have

f21)1 = f2 1) + dw'l i*(a) + ~ [i * (a ), i *(a) ]

but from t he previous result we obtain

f21)1 = f21) + i*(dV'a) + ~ i*([a, a]) = 0 1) + i*(dV'a + ~ [a ,a ]).

Therefore, if we fix some flat connect ion form WQ E J( (P,L ), then we may write

J((P,L ) = {wQ+ i* (a) ; a E f21 (M , ad(P)), dV'a + ~ [a ,a ] = O}. (3.22)

This desc ription, similarly as in the case of A (P,L ), will allow us to define Sobolev complet ions
of J( (P, L).

3.2 Group of gauge transformations

Let (P,p,lvl,G) be a pr incipal fiber bundle with the principal right action r: P x G ---7 P , t hen a
principal fiber bundle homomorphism is a smooth G-equivariant mapping <p : P ---7 P , i.e., <P 0 rg =

T
g

0 'P for all 9 E G. Then obviously the diagram

il l .. M

com mut es for a uniquely dete rmined smooth mapping If.. : M ---7 M, For each x E ]I;[ th e mapping
.,..~.r = <PIP, : Pc; ---7 Pep (.r. ) is G-equivariant and therefore a diffeomorphism. If we denote by Au t (P )
the group of all G-equivariant diffeomorphisms <p : P ---7 P th en the previous diagram commutes for
a un ique diffeomorphism ip : JH ---7 M. Hence we have a group homomorphism from Aut(P ) into
the group Diff (lvI) of all diffeomorphism of M: The kernel Gau (P) of this homomorphism is called
the group of gauge transformations. Thus Gau (P) is the group of all G-equivariant diffeomorphism
ip : P _ P satisfying p 0 sp = p. Therefore we get the following exact sequence

{e} ---7 Gau( P) ---7 Aut( P) ---7 Diff(M ) (3.23)

of groups .
Furthermore we define the Lie algebra of infinitesimal gauge transform ations gau( P ). As a

vector space it is the vector spaces of vert ical G-invariant vector fields Xvert (P )C, while the Lie
br acket is the Lie bracket of vector fields.

The group of gauge transformat ions and t he Lie algebra of infini tesim al gauge transformations
can be described by anot her equivalent ways. If we denote by

Ad P = P <c G (3.24)

the associated bundle for the act ion of G on itself given by the conj ugation th en sections of this

bundle can be identified with th e space

(3.25)

which is a <Troup under pointwise multi plication. If can be identified wit h th e group Gau (P).
For <p E G~u(P) we define f iP E COO (P, G)C by f ep = T 0 (idp, <p) , where T : P X M P ---7 G.
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Then f<p( 11, .g) = T(11,. g, <p(11, .g)) = g-l.T(11, , <p(11, )).g = conjj.., f <p (11, ), thus f <p is G-equivariant. If
conversely f E COO(P, G)G is given we define <P f E Gau(P) by <P f (11, ) = 11, .f (11, ). Because <P f( 11,.9) =
11,·g ·f(11,·g) = 11,.g.g- 1·f(11,) .g = <P f (11,)'9, we indeed get <P f E Gau(P) . These two const ruct ions
are inverse to each oth er since f <P f(11,) = T(11, , <Pf (11,)) = T(11, , 11,.f(11,)) = T(11, ,11,) .f(11,) = f ('11,) and
<P f", (11, ) = '11,·f<p (11,) = 11,.r(11,.<p('11,)) = <p (11,) .

Now let ~ E Xvert (P) = I' (P, V P ) be a vertical vector field then there is a uniquely determined
mapping ft; E C OO (P, g) via ~ (11, ) = Teru.fr:. (11, ). The mapping ft; is G-equivariant if and only if

Teru.ft;(11, ) = ~ ('11, ) = ((r9)* ~)( 11,) = Tu .gr9-1.~('11,.g)
-I - 1

= Tu.grg .Teru.g·f t=,( '11, .g) = Te(r9 0 ru.g).ft=,(11,)

= Te(ru 0 conjg) .ft;(11,) = Teru· Ad(g) .ft;(11,) ,

i.e., if and only if ~ E Xvert(P) G. Therefore we have the following isomorphism

Gau(P ) ~ COO (P,G)G ~ r(]\;I, Ad (P) )

of groups and isomorphism

(3.26)

(3.27)

of Lie algebras .

Let p : G ---> GL (lE) be a repr esentation of th e structure group G on a finit e dimension al vector
space lE . If E denotes the corresponding associated vector bundle P x G lE then there is a natural
left action of the gro up of gauge transfor mations Gau(P) on the vector space D1 (M, E) .

Consider a gauge transformation <P th en there exists an isomorphism <PE: E ---> E of vector
bundles over M covering th e identity on M defined by th e following diagram

<p Xid E
P x lE ---~ P xlE

qj

E---~.. E

which in a un ique way de termines <PIE. This gives a left act ion of Gau(P) on D1(lvI, E) t hrough

(3.28)

where 6 ,.. . , ~k E XL( lVI). This act ion can be describ ed otherwise. If <I>: f(.l\4 , E ) ---> C OO (P, JE )G
denotes a coo UvI, IR )-module isomorphism then for any <P E Gau(P) and S E r(M, E) we have
<1> (8) 0 <p-1 E COO(P, lE) G. Furthermore from the following commutative diagram

- 1 (idp ,<I> (s )) P JE <p x idri'P P xJEP .. P---?o X ..

pj I I jqp q

~ i
!vI ... Al .. E ~ E

idM s 'P 1i':

we get <1>( <p1E 0 s) = <I>(s) 0 <p- l . Th erefore the action (3.28) can be rewritten as

(p'P(W))(~l " " , ~k ) = <I>-1(<I>(w(6 , . . . , ~k ) ) 0 <p -1)

= <I>- 1(p(g<p )<I> (w(6, . .. , ~k ) ) ) ,

(3.29 )

(3.30)
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where in the last equality we used the fact that q> (s) 0 <p- 1 = P(9<p )<I> (s) following using the
G-equivari an ce of <I> (s ) and the definit ion of 9'1"

If p' : 9 --t End (lE) denotes the corresponding representation of t he Lie algebra 9 then for any
T E 0.'UPvl ,ad( P)) we define a graded 0.t (M)-module homomorphism p~: 0.t(M, E ) --t 0.t (M , E)
(so t hat p~ ( ex 1\ w) = ex 1\ ( _ l)deg(r) deg(w) p~(w) for ex E 0.t (M) and w E 0.t(M, E )) by

( p~(w) ) (6 , . . . ' ';P+ fJ )
1

= - '- I Lsign(a). q> - l (p' (<I> P XO (T(';o-( l) , . .. ,';a(p))))<I> (w(';o-(P+1 ), . .. ,';a(p+q)))) , (3.31)
p.q. a

where ';1, . . . ' ';P+fJ E XL(M). In case p' = ad then this gives t he st ructure of a graded Lie algebra
on 0t(NI , ad( P)) . Because the Lie algebra r(M, ad( P)) = D~ (!v[, ad( P)) is isomorphic to the Lie
algebra of gauge t ransforamt ions gnu(P) t hen (3.31) is a repr esent ation of gnu(P ) on Dt (lvI ,E).

Further we define a left action of the group of gauge transformat ions Gau(P ) on 0.1 (M, A (P ))
via

(3.32)

where ~1 ,'" , ';k E Xt{ M ).

Lemma 27. For any gauge t ra nsformation <p E Gau(P) we have

where i ;: Dj) Al, ad( P)) --t nt (M , A (P)).

P roof. For any w E n1(M, ad( P)) we have

(Ad<p( i . (w)))(6, .. . , ~k ) = ip ; 0 i.(w)(6, · ·· ,';k)

= (<I>TP) - l( <I>TP(<p* 0 (i*(w)(6 , . . . ,';k))))

= (<I>TP) --l(<p; l q>TP(i*(w)(';l, '" ,~k ) ) )

= (<I>TP)- l (<p ; l ((<I>TP 0 i.) (w(6, ,~k ) ) ) )

= (<I>TP)- l (T<p 0 ((j 0 <I>P x0)(w(6 , ,~k))) 0 <p- l )

= (<I>TP) - 1(j( (<I>P XO(w(6, . . . ,~k ) ) 0 <p- 1))

= (<I>T p) - 1(j (<I> P x 0 (<Po 0 w (.;1 , .. . , .; k ) ) ) )

= (<I>TP) - l ((<I>TP oi.) (<po ow(6"" , ~k)))

= (i.(Ad<p(w)))(6, . .. , ~k),

therefore we are done.

3.3 Geometry of principal Lie algebroid connections

(3.33)

•

Let (L --t AI , [., .J, a) be a Lie algebroid and consider a principa~ Lie algebroid connection 7]: p·L --t
T P with t he connect ion form W " , For any gauge transformation ip E Gau(P ) we define a homo­
morphism 7]<P : p*L -4 T P of vector bund les over P covering the ident ity on P by the following

commutative diagram

;p 1/
T - I

p*L - -* p·L ) T P <P ) TP

j j j j
P ... P ) P ) P,

'I' kIp <p- I
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where cjJ = <p X id M idj.: P x M L ---t P X M L. Because

Tp 0 riP T T -1 ' T ( -1) A T A A A ,'/ = p o <p 0 ""10 sp = p o ip 0 Tf 0 sp = p o Tf 0 ip = a 0 p 0 sp = a 0 p,

SO Tf 'P is a Lie algebroid connection. Moreover we have

Trg
0 Tf 'P = Trg

0 T<p-1 0 Tf 0 <p = T<p-1 0Tr g
0 rl 0 <p = T <p-1 0 Tf 0 fo g 0 <p

= T <p-1 0 Tf 0 cjJ 0 fog = rl'P 0 fog

hence Tf 'P is a principal Lie algebroid connect ion. It is easy to see that the corresponding connect ion
form is

(3.34)

where <p* = (T<p)G . Therefore we can consider a natural right act ion of the group of ga uge
transformations G au (P ) on the space A (P, L ) of connection forms given by

Remark. It would be possible to define a left action instead of a right action by

(<p,W) f-> <p ' W= ip; 0 W= Ad'P (w)

(3.35)

(3.36)

but it has no essent ial meaning,

Let <I>: f( lvI, A(P)) ----> X(P )G be a COO( M, IR)-module isomorphism given by Theorem 2. Fur­
ther consider s E f (1\1I, A (P) ) and ip E Gau(P) . Because (rg )* (<p - 1)*<I>(8) = (<p-1 )*<I>(8), i.e.,
(<p-1)*<I> (s) E X(p F and

q 0 (<p-1)*<I>(8) = q 0 T ip 0 <I>(8) 0 <p - 1 = <p* 0 q 0 <I>(8) 0 <p-1 = ip; 0 so p 0 <p-1 = ip; 0 s o p,

thus <I>( <p .. o s) = (<p -1)"'<I>(8). Now let 81 ,82 E f(Al,A(P)) then

[<p* 08 1,<p* 0 S2 ] = <I>-1 ([<I>(<p* 0 sd , <I>(<p* 0 82)]

= <I>-1 ([( <p-1) *<I> (8d , (<p-1 )*<I>( 82 )]

= <I>-l((<p-l)*<I>( [Sl ' 82]))

= ip; 0 [81,82]

and because p; 0 <p* = p*, so <p* : A (P ) ----> A(P) is an isomorphism of the Atiyah algebroid.

Lemma 28. Let "I be a principal Lie algebroid connect ion on P with t he connection form Wry and

the curvature form Dry. Then we have

for any <p E Gau(P),

PTOOf. It follows immediately that

n'1,,(6,6) = [Wry "' ( ~ 1 ) , wry ,, (6 ) ] -w1/",([6,6 ])

= [<p ; 1 0 W1/(6), <p ; 10 w1/(6 )] - <p;10 w1,([6, 6])

=<p;1 0 [wry(6) ,wry(6)]- <p;1 oW'1 ([6, 6 ])

= <p; 1 0 Dry(6,6)

for all 6 ,6 E XdAJ). So we are done.

(3.37)

•
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Because 9{(P, L ) is invariant und er th e act ion of Gau (P ), as it follows from Lemma 28, we
have the action of Gau(P) on the space of flat connec tion forms 9{( P, L ). Therefore we define the
moduli space

13( P, L ) = A (P, L )/ Gau(P )

of ga uge equivalence classes of connection forms and the moduli space

M (P,L) = 9{(P, L)/Gau (P)

(3.38)

(3.39)

of gauge equivalence classes of flat connection forms.

Theorem 16. Let TJ and TJo be principa l Lie algebroid connections on a principal fiber bund le
(P, p, lvI, G ) for a Lie algebroid (L -~ M , [. ,. J, a) . Further consider a gauge transformation ip E

Gau( P). Then there exists a uniquely determined a'P E n i,(M ,ad( P)) such that wrJ <P - w rJo =
i.(a'P) and is given by

(3.40)

where 0 E 0 1 (G, 9) is the Maurer-Cartan form of the Lie group G, a E ni(M,ad( P)) and satisfies

Wry - Wr/O= i*(a ).

Proof. We can wri te

Further from the previo us we know that <p :;:- l 0 WryO can be written as w1)O + i; ({3) for a uniquely
determined {3 E Oi(M,ad( P)). We have

<p;l oWl)o(O = (cI>TP) - l (q>TP(<p;l o Wr/o(O ) )

= (<I>TP) - l(<p*(<I>TP(wr/o( ';))))

= (q>TP) - l(T<p-l 0 <I>TP(W7)o(.;) ) 0 <p ).

Furth ermore if ~ E :I (P )c , t hen we get

( <p * ~)('U) = T"' (IL )<p - l.~ ( <p (U)) = T'P(u) <p - l .~(U .gcp(u)) = Tcp (u )<p- l .Tur9<p(u) ..;(u)

but because <p = r 0 (id P , g",) we obtain

. ) 'T' 'I (u) T 'd + T TT'l <P = T(u,g", (u»T 0 Tu(ld p , gcp = .L uT' '" ou l P g",(u)Tu 0 ugcp ·

Therefore we have

• T -1 T 9<p (u) C ( )(<p O (u) = cp(u)'P . uT . <., U

= Tcp(u )<p- l.(Tu <p - Tg<p (u)Tu 0 Tug",) .~(u)

= .;(u) - Tcp(u)<p-l.Tg<p(u) Tu .Tugcp. t,(u)

= t,(u ) - T,q <p (u)(<p- l 0 rU)'~Lg", ..;(U)

= t,(u) - Tq<p (u)(ru 0 \;l(u»)·Tugcp .~(U)

= '; (u ) - Teru.Tg<p (u)A,q;l (u) ·Tugcp. t,(u)

= ~(u ) - Teru . 81 e ft g", .~ (u) .

Denote by eE nl (G, g) the Maurer- Cartan form of the Lie group G, then for ~ E :I(P )c we get

(<p*~ ) =.; - j( (g;O)(O )·
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I we get this together we obtain

<p-; l oW1)o(O = ( <I>TP ) - l(<p* ( <I>TP (W1)o( ~ ) ) ) )

= (<I>TP)- l(<I>TP(W1)o(~)) - j((g~e)(<I>TP(W1)o(~)))))

= wr,o(O - ( <I> TP ) - l (j ( (g~e ) ( <I>TP(Wrlo(O ) ) ) )

= w1)o(~ ) - (i* 0 ( <I>P X 9 ) - 1 ) ((g~ e) ( <I>TP (W1)o( ~ ) ) ) )'

thus we are don e. •
Lemma 29. Let 7] be a principal Lie algebroid connection with the connect ion form wand let1)

ip E Gau(P) be a ga uge transformation. Then for 7] and 7]'" we get induced L-connections \7 and
\7'" on the associated vector bundle E = P X G IE related by

n'" -1"v I; = <PIE a v I; 0 <PIE , (3 .41)

where ~ E xdM) and <PIE : E ---+ E is a uniquely determined homomorphism of vector bundles via
q 0 (<p x idE) = <P,£ 0 q.

Proof. Denote by <I>: [(M, E) ---+ C OO (M, IE) a Coo (M, IR)-module isomorphism then we get

\7:s = <I> -l(<I>TP(w1)",(~))<I>( s)) = <I>-l(<I>TP(<p-;l 0 w1)(~))<I>(s))

= <I>-l(<I>TP(W1)(~ ))(<I>( s) a <p- 1) a <p )

= <I>-l (<I>TP (wr, (() )<I>(<PIE 0 s) a cp )

= <PiE 1
0 <I> -l (<I>TP (W., (~ ) )<I> ( <PE 0 s))

= <PiE 1 0 'VI; (<PIE 0 s),

th erefore we have obtained the tr ansformation rule for the induced L-connections.

3.4 Holonomy

•

Let (P, p , AI, G) be a principal fiber bundle and let (L ~ M , [". J, a) be a Lie algebroid. Consider
a principal Lie algebroid connect ion 71: p*L ---+ TP with the connection form w1) E Qi(M, A(P)).

If a : [0, 1] ---+ L is an L-path with the base path y : [0, 1] ---+ M th en for any Uo E P-y(O) there
exists a unique horizontal lift -::;: [0, 1] ---+ P of a sa tisfying the system

1(t ) = 7] (-::; (t ),a( t )) ,

-::; (0) = UQ .

(3.42)

(3.43 )

For the pro of see [10]. It is easy to see th at , = p o -::; , i.e. , -::; is a lift of , to P. Therefore we
can define a mapping Po:: P-y (O) ---+ P-y (l )' called the parallel transport along a with respect to the
conne .t ion 7], as follows. If UQ E P-y (O) then we define

(3.44)

where -::;(t) is the unique horizontal lift of a(t) with_-::; (O) = uC!.: . ..
Let -::;: [0, 1] ---+ P be a horizontal lift of ex then ,9 = 1'9 0,: [0, 1] ---+ P IS also a horizontal lift

of o . because

~ -::;9(t ) = T1'9.1(t ) = 1'r9.7] (-::; (t ),a (t )) = 7]( -::; (t).g ,a(t) ) = 7] (-::;9(t) ,a (t)) ,
dt

where we used th e fact that 71 is G-equivariant, i.e., 1'1'9 0 7] = 7] 0 f 9 . Now assume that -::; (0) = 1LO

th en -::;[/(0) = 'UQ.g and we get Po: (uQ.g) = -::;9( 1) = r 9 (::Y(1)) = Po: (uo) .g. Thus

Po: 0 1'9 = 1'9 0 Po:, (3.45)
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i.e., Po. : P"! (o) ----;. P"!(1) is a G-equivariant mapping and t herefore a diffeomorphism.

. C~nsider a di ffeomor phism T : [0, 1J ----;. [0, 1J and an L-p ath a : [0, 1J ---+ L with its rep arametriza­
~10n glv~n by a ~(t) = T'(t )a( r (t)) . Further if ::y : [0, 1] ---+ P is a horizont al lift of a t hen ::yT = ::y 0 r
IS a horizontal lift of aT, because

Now suppose t hat T(O) = 0 and r( l) = 1, i.e ., r is an orientation pr eserving diffeomorphism. In
case ::Y(O) = Uo t hen ~?(O) = Uo and we have

On t he othe r hand if r (O) = 1 and r (l ) = 0, i.e ., r is an or ientation non-preserving di ffeomorphism
t hen provided t hat ::Y(O) = Uo and ::Y( 1) = U1 we get

Because Pc< is a bijection, so Po.r = P;; 1. For any L-path a we will denote by a an L-path defined
by a(t ) = -a( l - t ). Fro m the previous we have Pa = (Po.)- 1.

Further if ao and a1 are composable L-paths, i.e. , 7f(ao( l)) = 7f (a1(0)), and a = a1 . ao, t hen
P,. = PC< l 0 Pa.o ' Let ::Yo be a horizont al lift of ao wit h 10(0) = Uo and 11 be a horizon tal lift of a1
with 11(0) = ::Yo(1). Then ::y : [0, 1] ----;. P defined by

1(t) = { ::Yo (2i ) for 0 :::; t < ~,
::Yl (2t - 1) for ~ :::; t :::; 1,

is a horizon t al lift of a = al ·ao = aI 0 ao, where r is any cuto ff funct ion. Because ::Y(O) = ::Yo(O) =
110, so

Moreover we see t hat Po. does not depend on a cutoff function r .

An L-path a for which the base path 'Y is a loop based at x , i.e, x = 'Y(0) = 'Y( 1) , will be
called an L-l oop based at x . For any L-loop a based at x we have a G-equivariant diffeomorphism

~\ : P; ---+ P.r: .
For fixed .1:0 E M we define t he holonom y qroup Hol (r), xo) c Diff(Pxo) as the group of all

P,,: Pro ---+ Pr.o for a any L-loop based at xo· If we consider only those L-loops which are L­
homotopic to t he constant trivial L-loop Oxo base d at Xo then we obtain the r-estricted holonom y

,q7'OUp Holo(77 , xo) ·
Let us fix Uo E P."f.O then t he elements r GCuo,PO' (uo)) E G for all L-loops based a t Xo form

a subgroup of the structure group G. We will denote it by Hol(w1/ , uo) and call it t he holonomy
qrou p. Restricting only to t he L-loops which are L-homotopic to the constant t r ivial £-loop Oxo

we get t he restricted holonomy group Holo(wry ,'uo),

Theorem 17. Let (P, p, M, G) be a principal fiber bundle and (L ~ M, [. , .J,a) be a Lie algebroid .
Consider a principal Lie algebroid connection 7] and fix Xo E !vI and Uo E Pxo'

i) We have an isomorphism Hol(w1) ' uo) -=::., Hol(7] , xo) given by

g r---> (11. f----' f
9
(u ) = 'uo.g.r GCuo,u)) with the inverse f f----' 9f = T

G
(uo, f (uo)).

ii) 'vVe have Hol( w1
/l 'uo.g) = con.ig -1 Hol(w'1 ' uo) and Holo(w1) ' uo·9) = conjg- l Holo(w1/l 11.0)'

iii) We have Hol(w1) , Pa. (uo)) = Hol(w1) , uo) and Holo(wT/l PO' (uo)) = Holo(w1) ' 'uo) for each L-path

0' with 7f(0'(0)) = :1;0 .
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Proo]. i) If 9 E Hoi(wr] , 'Uo) then there exists an L-Ioop 0 based at Xo such that rG( uo, Pa(uo)) = 9
or in oth~ words Pa(uo) =dLO .g. Because Ps is G-equiv~ri~nt , we get Pa(u ) = Pa (Uo.r~ (uo , u)) =
Pa(uo).r (uo,u) = uo·g.r (uo,u) = f g(u). Further It IS easy to see t hat 9 I---f f g IS a gro up
hom omorphism . T he rest of t he pro of follows from the defini t ion of Hol(wry, uo) and HoIC'l , xo) .
ii) This follows from t he propert ies of t he mapping r G and from the G-equivariance of t he parallel
trans port. Since we have

r G(uo.g, Pc< (uo.g)) = r G(Uo.9, Pc< (Uo) .9) = g-l .r G(uo, P,A uo) ).g.

iii) Denote UI = Pa (uo), then by definition 9 E Hol(wr}l ud if and only if 9 = r G(uI ,P(3 (ud ) for
some L-Ioop (3 based at Xl = 71"(0( 1)) = P(Ul) ' Moreover we have

Pa(uo·g) = Pa(uo).g = UI·g = P(3 (ud = P(3 (PO: Cuo)) ,

uo·g = ((po:)- l 0 P(3 0 Pa )(uo) = PQ .(3 .a (UO)

and t his is equivalent to 9 E Hol(wT) ' uo) . Furthermore (3 is L-hom otopic t o t he trivial constant
L-Ioop OXI based at Xl if and only if a . (3 . a is L-homotopic to t he trivial constant L-Ioop OXl
based at Xl , so we also have Holo(wry , Pa(uo)) = Holo(wry , uo) . •

Lemma 30. Let ip E Gau(P) be a gauge transformation and a be an L- path. If P;j and pt
denotes t he parallel transport along a wit h respect to the connection '1] and ry'P t he n

pry'" p ry
CP')'( l) 0 U = 0: 0 CP')' (O) ,

where , is t he base pat h of o ,

Proof. Let ;Y be a hori zont al lift of a with respect to t he con nection '1] t hen ;Y'P
horizont al lift of 0 with resp ect to the connection '1]'1' , as

(3.46)

~ ;Y'P(t) = Tcp-I.~ (t ) = T cp -I .'1] (;Y(t ), a(t)) = (Tcp- l 0 ry 0 <,Q)(cp- I(;Y( t) ),o(t)) = ry 'P (;Y'P(t ), a(t) ).
dt

Therefor e in case ;Y(O) = Uo E P')'(Q) we have

(cp~/l) 0 P:!)(uo) = cp-I(;Y( l)) = ;Y'P(1) = pt (;Y'P(O)) = p;:"'(cp-I (UO)) = (P2'" 0 cp~(~ ) ) ( 1LO ) '

thus we are done. •

From now on we will ass ume t hat (L ~ 1\;[, [" ·],a) is a t ransitive Lie algebroid, i.e., a: L ---+

T iH is sur jective, and that 1\11 is a connected manifold. Then M is an or bit of L , i.e., for any two
points :r , y E M t here exists an L-path a , with base path " such t hat , (0) = X and ,(1) = y.

Let (P, p, AI, G ) be a princip al fiber bu ndle and X Q E M. Then we consider t he group Gauxo(P) '
called the restricted g1'O'UP of gauge transformations, of t hose gauge transformations whi ch are
the identity on Pro' It is easy to see t hat t his group is a normal subgroup of the gro up of
gauge t ransformations Gau(P ). Further for any Uo E Px o we define a gro up homomorphism

.A ll O : Gau (P) ---+ G by

Because Auo is surject ive, we get an exact sequence

Auo { }{e} ---; Gauxo( P) --+ Gau(P) ---; G --+ e

(3.47)

(3.48)

of gro ups. Hence we have an isomorphism Gau(P )j Gauxo(P ) ~ G of gro ups.

Now we take up t he question of reducible connect ions. Given a princip al Lie algebroid connec­
t ion 71 then the stabilizer or t he isotropy subgroup of '1] is t he su bgroup Gau( P )TJ of Gau( P ) t hat

leavesn fixed , i.e.,

Gau(P) r] = {cp E Gau(P ); ry . ip = 71}· (3.49)



- - - - - - - - - - Principal Lie algebroid connections 69

Denote by Z (G) t he center of the struct ure group G. Then for any h E Z(G) we have r il E

Gau( P) and because 'r/ is G-equivariant we obtain r il E Gau(P)w T herefore any isotropy subgro up
Gau (P)1) contains t he subgrou p isomor phic to Z (G).

Definition 20. A principal Lie algebroid connection 'r/ wit h t he connection form w1) is called
irreducible, if Gau (P )1) = {r h ; h E Z (Gn ~ Z (G), otherwise 'r/ is called reducible. 1 Further we
will denote the set of all irreducib le connect ion forms by A *( P, L ) and the set of all irredu cible fiat
connection forms by J-C*(P, L ).

Lemma 31. The restricted group of gauge transformati ons Gauxo( P) acts freely on the space of
con nection forms A (P, L).

Proof. Let 'r/ be a principa l Lie algebroid connection and consider 'P E Gauxo(P ) satisfying 'r/ 'P = n.
Because AI is an orb it of L , for any x E lvI there exists an L-path a such t hat 1T(a(O)) = xo and
1T(a( l)) = x . Using Lemma 30 we obtain

P1) _ p TJ '" - P'''Px 0 Q - 'Px 0 Q - a 0 'Pxo '

T herefore we have 'Px = P~ 0 'Pxo 0 (p:n- l = p;J 0 (p;J) -1 = idp" because 'Pxo = id p xo ' T hus we
have pr oved t hat 'P = id p , hence Ga uxo( P ) act s on A (P, L ) freely. •

Theorem 18. Let (P,p, M; G) be a principal fiber bundle and (L ~ M; [" .J, a) be a Lie alge­
broid . Conside r a pr incipal Lie algebroid connection 'r/ and fix Uo E Pxo' Then Auo: Gau( P)1) ~
Zc( Hol(w1) ,uo)) is a group isomorphism.

Proof. F irst we prove that Auo: Gau(P )1) ---'> G is injective. Consider 'P l ,'P2 E Gau( P)1) such that
Auo('Pd = Auo('P2). Because Auo('Pl l

0 'Pz) = e, using exactness of the sequence (3.48) , we get
<P l 1 0 <P2 E GauXl/P) ' Furthermore we have 'r/ . ('Pl 1

0 'P2) = 'r/, but from Lemma 31 we know
that Gauxo( P) acts freely on A(P, L ) hence 'Pl 1

0 'P2 = id p . Thus Auo restricted on Gau( P)r/ is

injective.
Now for any 9 E Hol(w,/ , ua) there exists an L-loop a based at Xo sat isfying P;l(uo) = uo·g·

In case 'P E Gau( P) 1) then from Lemma 30 we obtain 'Pxo 0 P;l = p;J 0 'Pxo' T herefore we
have (<Pxo 0 P:1 )(uo) = 'P(uo .g) = 'P ('llo).g = UO· Auo('P)·g and (p;J 0 'Pxo )(uo) = P;J (UO·AlIo(<P )) =
I1Q .g.A71 o('P). Because the prin cipal right action G on P is free, from UO .Auo(<p) ·g = UO.g.Auo('P) we
obtain AUf)('P) .g = g.Auo('P) , i.e., Auo(<p) E Zc(Hol(w1) 'uo)),

To prove t he whole statement we need to verify that for any 9 E ZG(Hol(w7) ' uo)) t here exists
'P E Gau(P)7) satisfying Auo('P) = g. First we define 'Pxo : P7:0 ---> Pxo by 'Pxo (u ) = Uo .g.1'G(UO ,U)
for any 'I), E P r.o' Because <P.7:0 is G-equivar iant, we have <Pxo E Diff (Pxo)' Further for any
:1: E M t here exists an L-pat h a such that 1T(a(O)) = Xo and 1T(a( l)) = x. Hence we define
1 '1 : P ---'> P by I " = p7) 0 I " X 0 (pTI) -1. It is easy to see that 'Px is G-equivariant and thus
y x .r. x. y X Q Y 0 Q

<Px E Diff(Pr)' But we need to veri fy that this definition of <Px does not depend on the choice of
an L-path form XQ to z . Thus let (3 be another L-path satisfying 1T({3( 0)) = Xo and 1T( {3( 1)) = x .
Then p;; 0 'Pxo 0 (p;l) - 1 = p/1 0 'P.ro 0 (PJ) -1 if and only if 'Pxo 0 p~. (3 = n, 0 'Pxo · Becau sen, E Hol('l , xo), we have Pd.fJ (uo) = uo·h, where h E Hol(w7) , uo) . Further for any u E Pxo we

may write

(
i n 0 pIJ ,)(-u) = ('Pxo 0 P!!,r»(Uo.1'G(UO ,-U)) = ( 'Pxo(P~'f3(UO))) .TG(UO ' ·I),)
y .l 0 n ' /> o fJ

= ('Pxo(uo.h)) .1'G(UQ,U) = uo.g.h.1'G(UO,U)
G TJ ) G( )=uO .h.g.1' (uo, u) = (Po: .j3(UO .g) .1' Uo, U

= ( P~. //<P:ro(UO))) . 1'G(UO'U) = (Pd.fJ o 'Pxo)(Uo .1'G(-UO,U))

= (Pd./3 0 <Pxo )(u ),

th
J: • P ---> P is well defined. T hence we have constructed a G-eq uivariant mapping

, ereiore <px · .r x . ' diff hi
'P : P ---> P such that p o <P = p. We have to verify that ip IS a irreomor p Ism .

1 I
· I t l ' ir red ucible ' is som etimes used only for connections with maximal holonorny; such

In t he Itera t ure t Ie le rn
connections have in particu lar a t riv ial st ab ilizer .
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Let (Ua,'Pa) be. a princip~l bundle atlas for P with tran sitions functions 'Pa(3 : UO: (3 ~ G
and ass ume, by shrmkmg Ua If necessary, t ha t Uo. are contractible. Consider the local sect ions
So. E f (Uo. ,P) given by 'Pa(So. (X)) = (X, e). Because for x E Ua (3 we have

So. (x) ·'Pa(3 (x) = 'P~ I (x, e).'Po:(3(x) = 'P~I(X, e.'Pa(3(x)) = 'P~ I(X , e) = s(3(x),

thus so. .'Po.(3 = 8 (3 . Further for 'Pc< 0 'P 0 'P~ I : Uo.(3 x G ~ Uo.(3 x G we can write

Therefore to prove the smoothness of 'P it is enough to show that 'P 0 So. is a smooth local sect ion.
Now fix x E Urn because Ua is contract ible, thus there exists a smoot h homotopy T [0,1] x Uo. ~
Uo. su ch that ')'( O, y ) = y and ,( l, y) = x for all y E Uo.. Since a : L ~ 'I'M is surjective, there
exist s a smoot h mapping 0: : [0,1] x Uo. ~ L satisfying

d
a(o:(t,V)) = dt , (t, V) ,

i.e. , 0:(-, y): [0, 1] ~ L is an L-path with the base path ' (', y) : [0, 1] ~ !VI such th at 71" (0( 0,V)) = Y
and 71" (a(1 ,y)) = x. Further there exists a unique hor izont al lift ::y : [0, 1] x Uo. ~ P satisfying

::Y(t, y) = TJ (::Y(t ,V),a(t ,V))

::Y(O, y ) = So.(Y) ·

Now let j3 be an L-p ath from XQ to x . Thus for any y E Uc< we can wri te

P I) p 'l p'l p1J p 1J p 1J'Py = CiY 0 (3 0 'Pxo 0 [J 0 aY = CiY 0 'Px 0 nY

and we obtain

('P 0 So.)(Y ) = 'Py(So.(y)) = (P2y 0 'Px 0 P; y)(So.(Y)) = (P2y 0 'Px)(::Y( 1,V))

= P2y(::Y(1 , y )).TG (::Y( 1, V), 'Px(::Y(1, V))

= ::Y (O, y ).TG (::Y(1 ,V), 'Px (::Y(1,V))

= Sn(y ).TG (::Y(1, V), 'Px (::Y( l, V)) ·

Because 'Px : p.r. ~ P; is a smooth mapping, so 'P 0 Sa is also smooth. Therefore we have prove
the smoot hness of 'P. As 'P:;/ = P2y 0 'P; I 0 P; y, by the same argument we obtain t hat 'P -

1
0 Sa

is smoot h since cp; 1 is a smooth mapping. Therefore we have 'P E Gau(P) .

From the definition of 'P we get Auo('P) = TG
(1l 0, '1'(uo)) = TG (uo, 'Pxo(uo)) = g. The last

step is to verify t hat 'I}'" = TJ . For any x E M and ~x E Lx th ere exists an L-p ath a such tha t
;r(a (O) ) = :co, 11"(0(1)) = x and 0( 1) = ~x ' From Lemma 30 we obtain that 'Px 0 p:.;'P = P:'; 0 'Pxo
hut using t he definition of 'PI we have 'Px 0 P;j = P:'; 0 'P ,r.o' therefore we obtain

P I) " = P 1J
0. a '

Further for any U,r. E Po. th ere exist a unique 'uxo E Pxo and a uniqu e horizontal lift ::y, ::Y<p of
the L-path a with resp ect to TJ , ''1<P respectively satisfying ::Y(O ) = uxo and 1<p(0) = uxo ' Let
to E (0,1] and define a mapping T: [0',1] --: [O,~ ] by T(t)_::= to!: Then a T~JO'!l ." L gi:ren by
OT(t ) = too:(tot) is an L-p ath. If we define ,T = ')' 0 T ~nd '<P = '<P 0 T ~en ')' "<p IS a horizontal
lift of aT with respect to TJ, TJ <P respectively such th at , T( O) = Uxo and ,; (0) = Uxo ' Furthermore

be cause
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we get ;;';(to) = ;;';T( l) = ;;';~( 1) = ;;';",(to) for any to E (0, 1]. Moreover we have ;;';(0) = ;;,;",(0), thus
we get;;'; = ;;';'1' which implies

or in ot her words

T' (1(t ),a (t )) = 1'] 'P(1'P(t ),a(t )) = 1']'P(;;';(t),a(t))

for a ll t E [0,1 ]. In case t = 1 we get 11(1Lx,~x) = 1'] 'P(ux , ~x ), where U x = ;;';(1) and ~x = o (L).
Because 1Lx,~x were arb it rary we have proved t hat 1']'1' = 1'] . •

Let 17 be a principal Lie algebroid connection such that for some (equivalently any) 11,0 E Px a

we have Hol (w1) ' uo) = G. From t he previous theorem we obtain an isomorphism between the
isotropy gro up Gau( P)'1and Zc(Hol(w,l' uo)) = Zc (G ) = Z (G ) given by Aua(ep ) = TC(Uo,ep(uo)) .
Becau se {rh

; h E Z (G ) } c Gau(P)'I and A.ua({rh; h E Z (G)} ) = Z(G) , t hus we get Gau(P)1) =
{rh ; ti e Z(G)} , i.e ., 1'] is irredicible.

For example if G = SU(2) then the possibilities for the holonomy group are following. First ,
t he holonomy group can be SU(2) or SO(3). In both cases the centralizer is equal to t he center
Z (SU(2)) = Z2. Secondly, t he holonomy group may be U( 1) and the centra lizer is isomorphic to
U(l). Finally, t he holonomy group may be t rivial hence the cent ra lizer is equal to SU (2).

Remark. From th e fact t ha t Gau(P)1)'" = conj 'P-l Gau(P)'I for any gauge t ransformation sp and
any principal Lie algebroid connection 17, it follows tha t A *(P, L) is invari ant under th e act ion of
Gau(P) and the same for J( *(P, L ). Therefore we may define, similarl y like in (3.38) and (3.39) ,
the moduli space

PJ*(P,L) =A*(P,L)/G au(P) (3.50)

of gauge equivalence classes of irreducible principal Lie algebroid connections and the moduli space

M*(P, L ) = J(*(P, L )/ Gau(P)

of gauge equivalence classes of irredu cible flat principa l Lie algebroid connections.

Remark. If we define the reduced group of gauge transform ations Gau(PY by

(3.51)

(3.52)

then the right action of Gau(P) on A (P, L) factors trough an action of the red uced gro up of gauge
t ra nsformations Gau(p)r since {r'\ h E Z (G )} acts trivially on 'Y(E , L ), similar ly for 'X (P, L ).
The set A*(P, L) of all irreducible connection forms is t he maximal su bset of A(P, L ) on which the
red uced gro up of ga uge tra nsformations Gau( PY acts freely, likewise for 'X *(P, L ).



Conclusion

It seems that Lie algebroid connections on fiber bundles, in particular on vector bundles and princi­
pal fiber bundles could have very interesting applications in mathematics and physics. Something
was alr eady outlined in the introduction. vVe sketch one remarkable generalization of the well­
known fact for Lie algebroid connections which could be the next step in the subsequent work.

The twenty-first on the list of twenty-three problems presented by David Hilbert in 1900 was the
proof of the existence of linear differential equations having a pres cribed monodromic group. By the
monodromy group of a linear differential equation we get a representation ofthe fundamental group
of the base space. The problem asks for it converse: for any representation of the fundamental
group, is there an ordinary differential equation (with regular singularit ies) whose monodromy
representation coincides with the given one? (There exists several points of view in formulating
this problem more precisely.) This problem is commonly called the Riemann-Hilbert problem.

A generalization of this problem to higher dimensions is called the Riemann-Hilbert correspon­
den ce. Let X be a connected compact manifold and let G be a Lie group. A G-local system on
X is a principal fiber bundle (P, p, X, G) with a flat principal connection w. To any flat principal
connection w on P we can assign, using the Ambrose-Singer theorem, a group homomorphism
7l"t(X, xo) -> G. This is the monodromy representation given by the parallel transport. If we
denote by .cocc(X) the moduli space of G-local systems on X we get an isomorphism

Hornfjr, (X, xo), G)jG ~ .cocc(X),

called the Riemann-Hilbert correspondence. The moduli space on the left hand side is called
th e character variety. There is now a modern (D-module and derived category) version of the
Riemann -Hilbert correspondence, see [41], [42]' [43], [44] and [45]. This correspondence has many
applications and plays a significant role in the geometric Langlands program.

For a principal Lie algebroid connection on a principal fiber bundle we can define the parallel
transport and the holomony group as we saw in Chapter 3. A natural generalization is to replace
the right hand side of this correspondence by .coc~(X) the moduli space of G-local systems on
X for a fixed Lie algebroid L. A G-local system on X for the Lie algebroid L is a principal
fiber bundle (P,p, X ,G) with a flat principal Lie algebroid connection 1]. The left hand side then
should be replaced by equivalence classes of homomorphism from gL(xO) -> G, where gL is a Lie
groupoid over X associated to the Lie algebroid L , the so called Weinstein groupoid, and gL(xO)
is a. group over the corresponding point, see [46], [47].
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