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Report on Antonfn Prochazka's Doctoral Dissertation
Analysis in Danach spaces

A. Prochazka's doctoral dissertation adresses four different topics from Banach
space theory: the Radon-Nikodyrn property, C(K) spaces for scattered compact
spaces K, renormirig theory, and variatiorial principles. It consists in 4 indepen-
dent chapters, preceded by a general introduction.

Chapter 1 (the general introduction), is a detailed description of the results ol>
tairied by the author. Here, the necessary background, the underlying motivations
and tin: results themselves are very accurately presented.

In Chapter 2, the author studies a geometrical game originally introduced by J.
Maly and M. /eleny. Here is a general version of the game. Let (K,p} be a pseudo-
metric space, and let A be a collection of non-empty subsets of K covering K. The
game G(K,p,A} has two players, I and II. Player I starts the game by choosing a
point .TO € K, and II answers by choosing a set /t() e A containing xtt. Then I plays
a second point x\h x\ Ah II answers with a set A\ A containing x\, and so
on. Player II wins the game if the sequence (xn)M>o is p-Cauchy.

Especially interesting is the ca.se when K is a bounded subset of a real Banach
space X (wit)] the metric p induced by the norm) and A is one of the following
families: the family 'H(K) of all hyperplane sections of K, the family SC(K) of all
closed slices of K (sets of the form H D A', where? // is a closed half-space of X) and
the family S0(K] of all open slices of K. The original game of Maly and Zeleny is
G(K, H,(K}}, where K is the open euclidean ball hi the plane. It is easy to see that
the game G(K,S0(K)) is harder to win for player II than the game G(K,SC(K)),
which is in turn harder to win than G(A", H(/O). ITI a joint work with R. Deville
([DM]), we have shown that if K is closed and convex, then player II lias a winning
strategy in the game with open slices G(K, S0(K}} if and only if K has the Raclon-
Nikodym property; and that if the underlying Banaeh space X has a uniformly
convex enorining, then player II has a winning tactic in the game with closed slices
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G(K,$(.(K)), that is, a winning strategy where at each step n > 0, the slice Alt

played by II depends only on the last point xn played by I.
It was not at all clear for us whether player II still has a winning tactic in

G(K, SC(K)) assuming only that K has the RNP. A. Proehazka was able to show
that this is indeed the case. This is the main result of the chapter (Theorem 2.15),
whose proof is far from being just a routine elaboration on the methods of [DM].
Indeed, a key new idea is introduced, namely a notion of stability for "approxima-
tively winning" tactics which allows to define a truly winning tactic by an inductive
procechire. A very interesting complement to this result is that player II never has a
winning tactic in the game with open slices G(K,S0(K)) (Theorem 2.12), in strong
contrast with the existence of a winning strategy when K has the RNP. Moreover,
a game characterization of uniformly convex spaces is obtained (Theorem 2.31): a
Ranach space X has a uniformly convex renorming if and only if, for any e G (0, 1),
player II has a (winning) tactic t in the game G(13x,Sr) with "uniformy short e-
separated runs"; that is, any finite run (x0 , . . . ,xm) of the game where II follows the
tactic t and ||xi4 \ Xi\\ e for all i < in, has length m less than some positive num-
ber m(e). Here, the nice geometrical proof uses the main thwrem and G. Lancien's
characterization of uniform convexity in terms of the dcntability index of the space.
Finally, the chapter also contains a game characterization of Baire 1 functions (The-
orem 2.35): if (E, T) is a completely inetrizable topological space and Z is a normed
space, then a function / : E —> Z is Baire 1 iff player II has a winning strategy in the
game G(E, pf, T), where pf is tin; pseudo-metric defined by p f ( x , y) — ||/(aO —/(y)| |;
and if so, it is even possible to define a winning strategy such that,, for any outcome
(xn) of the game, the sequence (xn) is convergent (wrt r) and /(limxn) — lim/(xn).

The results of this chapter have; been published in the Proceedings of the AMS
(2009).

Chapter 3 is based on a joint paper with P. Hajek and G. Lancien (J. Math. Anal.
Appl. 2009). The main result (Theorem 3.10) is the exact, computation of the w*
dentability index of C(K] spaces, where- K is a countable compact space. Let us
recall the definition of this index. Let X be a real Banach space, and for any 6 > 0,
let us denote by d£ the set-derivation on w*-cornpact subsets of X* defined as follows:
d f ( K ) is obtained from K by removing all w*-o\>un slices of diameter less than e.

Then define inductively the sets d? (K) for any ordinal n in the usual way, and let

D*(X, e) be the least ordinal a such that de (Bx*) = 0, if there is any; otherwise, put,
D*(X,e) = 00. T\iew*-dt'.utabilityindexvfXisD*(X) := sup£>0 D*(X,e) (with the
convention that a < oo for any ordinal a). If iu*-open slices are replaced by u;*-operi
sets in the set-derivation process, the resulting ordinal index is the classical Szlc.nk
index of X, usually denotcxl by Sz(X). These indices arc* isomorphic invariants,
and their usefulness is due to the fact that their "finitness" characterizes Asplund
spaces (the spaces on which every continuous convex function has a dense G& set, of
differentiability points): D*(X) < oo iff Sz(X) < oo, iff X is an Asplund space.



For a countable compact space A', the Ssdenk index of C(K) has been comi)uted
by C. Samuel in the 198()'s. By Bessaga-Pelc/ynski's classification, the spaee C(K)
is isornorphic to C([0, uX']), where a is the unique ordinal such that uja < CB(K) <

(here, CB(K) is the Cantor- Bendixori index of K ) , and Sarmiel has shown that

In the present chapter, it is shown that, /J*((;([0,u/"ra])) = ujl+n+l for any count-
able ordinal a; in other words, /^(CX^u/""])) — a;""*'2 if a is a natural number and
D*(C([0,u""])) = uan if a > uj. The upper estimate D*(C([Q,u"a])) < a/*11 is
obtained by combining the inequalities D*(X) < Sz(L^{X}} (a result due to G. Laii-
cien) and Sz(L2(C([(), a/""]))) < u;3+"+1, the second one being proved by elaborating
on the ideas of a recent paper by Hajek and Laneien. Using Samuel's result and the
trivial inequality D*(X) > Sz(X), it follows easily that D*(C[(),u^]) = wa+1 when
a > u). The last part of the proof consists in treating separately the ease a < w.
Here, nice geometrical arguments are used.

Using the main theorem and a "separable reduction argument", a more general
result is in fact proved, namely the computation of D*(C(K)), where K is a compact
scattered topological space with countable Cantor- Bendixoii index.

Finally, it should be added that, besides their intrinsic interest, the results of
this chapter are also a step towards a better understanding of the links between the
S/,lenk index and the w* dentability index of Asplund spaces. More precisely, they are
related to the following general problem: to find the optimal function ifa : LO\ *• u>i
such that D*(X) < V;o(0 for every Bariaeh space X satisfying Sz(X) — £. The
existence of such a function VJo was established B. Bossard and G. Laneien using
descriptive set- theoretic tools, and M. Raja has obtained the explicit upper estimate
0o(£) < ^A The main result of this chapter gives the lower- estimate VAt(0 > w • £
when £ has the form uja ' x.

Chapter 4 is based on a joint paper with P. Hajek (submitted). It is partly moti-
vated by two open (and hard) problems in renorming theory: (1) if X is a Banach
space with a C*-smooth renorming (k € N U {oo}), is it possible to approximate any
equivalent norm on X by Cfc-smooth norms, uniformly on bounded sets? (2) if X is a
Banach space with a (^-smooth renorming and also with a locally uniformly rotund
(LUR) renorming, does it follow that X has an equivalent norm which is both Cl-
srnootb and LUR? Recall that a norm j| • || is said to be LUR if, whenever a sequence
(xn) in the unit sphere Sx ami a point x G Sx satisfy H^-^H — »• 1, it- follows that
ll^n "~ ^11 ~* ^- A much weaker form of Problem (1) is also open: (V) if X is Banach
space with both a (Jfc-smooth renorming and a LUR renorming, is it possible to find
an equivalent LUR norm on X which can be approximated by Cfc-smoot,b norms?

Problems ( 1') and (2) are purely non-separable in essence; it is well-known that
they both have a positive answer in the separable case. In fact, a theorem due to
D. McLauglilin, R. Poliquin, .]. Vanderwerff and V. Zissler answers both problems
simultaneously. Let us denote by (7\ the following property of a Banach spaee



X: there is an equivalent norm on X which is both LUR and C'-smooth and can
bo approximated by Cfc-smooth norms. Then, the theorem of McL-P-V-Z reads as
follows : if X is a separable Banach space with a Ck-smooth norm, then X has (Pk)-

The main result of the chapter (Theorem 4.17) is the following nonseparable version
of this theorem : Let X be a Banach space. Assume that X has a Ck-smooth norm, and
admits a projcctioual resolution of identity (PQ)w<a<fi such that each space (P(V |-i —
Pn)X has property (Pk)- Then X itself has (Pk)- (One may note here an obvious
formal similarity with a classical "glueing" result due to V. Zizler concerning LUR
renormings). The proof of this result is by far the most technical part of the thesis,
and it is indwd an impressive piece of work.

This theorem applies in particular to C([(), a]) for any ordinal a and k — oo (thanks
to well-known results of M. Talagrand and R. Haydon): thus, any space C([0, a]) has
property ("Poo) (Corollary 4.18). Another consequence is the following "abstract"
result (Theorem 4.19): Let (P) be a class of Banach spaces such that each X 6 (P)
has a Ck-smooth norm and admits a projcctional resolution of identity (Pa) with
(Pa t i - P<*)X € (P). Then each X e (P) has property (Pk). For example if X is
a Banach space with a Cfc-smooth norm and either X is a WCD space, or a WLD
space, or a C(A')-space where K is a Vaklivia compact, then X has (Pk) (Corollary
4.20).

The final chapter of the thesis is based on a joint paper with R. Deville (to appear
in .]. Funct. Anal.). It is centred around a "parametrised" version of the Devil lev
Godefroy-Zi/der variational principle.

Typically, a variatiorial principle is a statement of the following form: given a
reasonable real-valued / defined e.g. on a Banach space X, it is possible to find a
'"small perturbation" / + A which attains its infimum at some point v £ X (and in
fact a strong minimum: any minimizing sequence is convergent). When the function
/ depends on a parameter p, it is quite natural to ask whether the small perturbation
/ +Ap and the minimum vp can be chosen in a continuous way. Positive answers were
given recently by P. Georgiev ([G]) and L. Vesely ([V]) who were able to produce
parametrized versions of the well-known Borwein-Preiss variational principle (and
also gave several nice applications of these results). Here, the same work is done
with the D-G-Z principle.

The general setting is the following. One is given a Banach space X, a function
/ : X X II —* (—00, -foo], where fl is a topological space (the parameter space), and
a space T> of real-valued functions on X endowed with a norm || • \\r> (the admissible
"perturbing functions"). As already said, the objective is to find continuous maps
A : IT —> T> and v : IT —> X such that, for each p £ fl, the function / + Ap attains
its strong minimum at the point vp.

Of course, some "minimal" assumptions are needed. For each p e 11, the func-
tion /(-,/>) should be proper, lower semi-continuous and bounded below (the usual
assumptions in non-parametrized variational principles). The parameter space fl



"should" be at least paracompact, since OIK* is in fact looking for a "selection" result
and paracompactness is a natural assumption in that, area. For each x e X. the
function /(- ,x) should certainly be continuous on II. Finally, the space T> should
have the same kind of properties as the one appearing in the D-G-Z variational prin-
ciple. In fact, £> will be a convex cone of convex, nomiegative Lipschit/ functions on
X which is complete under the natural Lip norm, and rich enough (in a sense that
needs riot be made more precise hero).

Now, two other assumptions arc added: (1) for each p £ II, the function / H-»
f ( - , p ) should be convex', (2) for every bounded set B C X, the family of functions
{/(-, 3'}\ G B] should be equi-lsc on 0 (the obvious analogue of equicontinuity).
Under these assumptions (the minimal ones plus (1) and (2)), the main result of the
chapter (Theorem 5.18) reads as follows : Let A4 be, the, set of all continuous maps
A : II —* T> such that, for some continuous map v : O —* X, the function f + Ap

attains its strong minimum at vp for even) p G 0. Then M is residual in C(U,T)),
the space of all continuous maps from II to T) equipped with the fine topology.

Recall that the fine topology on C(II ,Z>) is generated by all "balls" of the form
#(A,e) = {0 G C(ri,Z>); ||0p - Ap|| < ejt for all p e II}, where e is a positive
('ontinuous function on II, and that C(H, T>) is a Baire space when endowed with this
topology. Needless to say, the proof of the main theorem is based on a Baire category
argument; but this argument is far from being straightforward.

The chapter does not contain applications of the main theorem. On the other hand,
there; is a very interesting discussion concerning assumptions (1) and (2), which are
also present in [G] and [V] (Section 5.4). At first sight, the very restrictive convexity
condition (1) is quite surprising in this context. However, it becomes natural if one
thinks of parametrized variational principles as selection theorems. In fact, both
(1) arid (2) are needed in order to prove a variant of Michael's selection theorem
(Lemma 5.8), which is a basic step towards the main theorem. Convexity is needed
in any Michael-type theorem, and (2) appears to be more ore less necessary to ensure
that the function p H-» inf^x J(x,p) 's Isc. Moreover, convexity also appears to be
technically crucial in the proof of several preliminary results. Still, one could argue
that these; are not good reasons, since; after all the proof of the main theorem may
not be the right one. However, several illuminating examples are given to show
that neither (1) nor (2) can be simply removed from the assumptions. Particularly
interesting is the observation that (2) cannot be weakened by considering compact
sets B only, relying as it does on a nice result about poinwise convergent sequences
of convex functions (Lemma 5.16).

Finally, some comments are; also offered concerning the; respective; ranges of appli-
cation of the main theorem given here; and those from [G] and [V]. The general idea
is that the; main theorem "essentially contains" the others, albeit riot formally. In
particular, in both [G] anel [V] it is required that the function p f—>• inf^x f ( x , p) is
locally lower bounded, whereas this assumption is entirely removed from Theore;in
5.18.
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The conclusion of this report should be obvious: this is definitely an excellent PhD
thesis, containing a lot of highly nontrivial interesting results. The proofs combine
an impressive technical ability with original and quite clever ideas, winch make this
thesis a very fine contribution to Barmen space theory. Finally, the level of exposition
is extremely high. A Prohazka is already a mature mathematician, and in light of
this manuscript, 1 have no doubt that he would also be an outstanding teacher.
Therefore, I am glad to strongly recommend the defense of his thesis.

E. Matheron


