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Astronomický ústav UK
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úvahu několik model̊u akrece. Energie emitovaného zářeńı je jiná než po-
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Abstract: In the present work we describe different cosmic systems that con-
tain the compact objects (neutron stars or black holes). The accretion of the
matter on the compact object is a main source of the radiation and that is
why we consider several models of accretion. The energy of emitted radiation
is different from the observed energy due to the gravitational redshift and
the Doppler shift. We are interested in the minimum and maximum values of
this change of emitted radiation. We show how to calculate these extremes
in Kerr metric by the help of the elliptic integrals assuming that the emis-
sion radius, the angular momentum of black hole, and the inclination angle
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Chapter 1

Introduction

The main source of the information about the space objects is the elec-
tromagnetic radiation from them, namely, the radiation spectrum and its
time variability. First, the sky was observed in the visible light. With the
development of telescopes we can reach beyond our Solar system, beyond
the borders of our Galaxy to the deep space. The visible light showed us
the planets in Solar system, the nebulas where new stars are formed, the
remnants of the supernovas, and the galaxies. The visible light gives us the
information about the morphology of the objects in space.

The cosmic systems do not shine only in the visible light, they radiate
also in other wavelength: radio, infra-red, ultra-violet, X-ray and gamma
radiation. We can recognize from the type, periodic variations and profiles of
the radiation the kind of the object, the ongoing processes, basic parameters
(e.g. the mass, the age, the periods, the temperature,...) and many other
characteristics of the system. That is why it is important to understand the
origin and characteristics of the radiation.

The compact objects and their radiation are main theme of my work.
In the following chapter we describe different systems where the compact
objects (neutron stars or black holes) are contained and what are their basic
properties. In the third chapter we summarize several models that describe
the origin of the radiation and what solution they give us.

In fourth chapter we summarize the Kerr metric as a fundamental math-
ematical framework to describe the null geodesics and to calculate the shift
of the frequency of the radiation. If we had an analytic procedure to find
the minimum and maximum of the shift (the range of spectral line) then we
could more simply find out the parameters of the compact object (the mass
and the spin of the black hole).

In the chapters 6-8 we see the results of this work, how the solution looks
like and how the minimum and the maximum of the shift depend on these
parameters: radius where the emission takes place, inclination angle of the
observer and angular momentum of the black hole.
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Chapter 2

Compact objects

2.1 The X-ray astronomy

The X-ray astronomy provides the essential information about the physical
processes and radiation mechanisms near compact objects (e.g. [7], [30]).
The X-rays from the space are completely absorbed by the Earth’s atmo-
sphere and that is why the astronomers need to carry out the measuring
instruments and to observe the X-ray sky from the space. Among the most
important result that the observed data brought was the discovery of X-ray
binaries systems. The primary component of this system is a neutron star
or a black hole and the companion star usually is a main sequence star.
The matter from the companion star accretes onto the compact object via a
stellar wind or via Roche lobe overflow. The gravitational potential energy
of the accreting matter is converted into an emission radiation from the sur-
face of compact object and from an accretion flow [13] and it is mostly in
X-ray range. Accretion stands also behind the energy liberation in the active
galactic nuclei. The study of this X-ray emission gives us a useful informa-
tion about the physics of the accretion and it is a system under physical
conditions that are unattainable on the Earth.

The first X-ray source outside the Solar system (in the Solar system it
is the Sun) was detected in July 1962, it was the source Sco X-1 in the
constellation Scorpio. Another source was discovered in the Crab Nebula in
1964 and the first extragalactic source was M 87 (the figure 2.1). More de-
tailed information are in [15], [10]. On December 12, 1970 NASA launched
the famous X-ray satellite UHURU [20]. UHURU discovered about one hun-
dred galactic and fifty extragalactic X-ray sources in the spectral range 2-20
keV in two years. Ones of these source are Hercules X-1 with a short X-ray
pulsation with the period of 1.24 s and the source Cyg X-1, a black hole
candidate.

In 1975 and 1976 was discovered (using the satellites ANS, SAS-3, OSO
7, 8) a new class of the X-ray sources, so called bursters. Their luminosity
rises in a few seconds to 1039 erg.s−1 and falls back to the original value after
about a minute. This repeats from few hours to several days.
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Figure 2.1: Spectrum of gas disk in active galaxy M 87.

The satellite HEAO-2 ([17]) gave us a first look to the central core of the
active galaxies, the European satellite EXOSAT discovered a quasi-periodic
oscillations in the light curves of X-ray binaries and allowed to understand
the nature of X-ray bursts. Another satellites were Japanese Ginga, German
ROSAT, NASA’s RXTE. The new generation satellites are ESA’s XMM and
NASA’s Chandra.

2.2 Active Galactic Nuclei (AGN)

Active galactic nuclei are objects that have a strong non-thermal nuclear
continuum emission and the radiation from their nucleus dominates. Some
of them exhibit powerful jets. The nuclear emission lines are not excited by
stellar continuum radiation and the nuclear continuum and emission lines
are variable. The total luminosity L lies in the range 1042−1047erg.s−1. More
information are involved in [24] and [25].

The AGN’s are divided into several groups depending on the inclination
of the observer:

Radio Galaxies (RGs): The compact source usually lies between two
extended radio structures in a form of lobes. The radio emission reaches
the distance of 10 − 1000 kpc. The RGs are divided into two subgroups:
Weak Radio Galaxies (WRGs) (L1.4GHz < 1025W/Hz) and Powerful Radio
Galaxies (PRGs) (L1.4GHz > 1025W/Hz).
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Quasars (QSOs): “quasi-stellar” extragalactic objects (angular size < 1”)
with broad emissions lines. About 10% quasars are “radio load” (L5GHz >
1025 W/Hz) and the rest “radio quiet”.

BL Lac objects: They are strong X-ray sources (L > 1047 erg.s−1) and
are highly variable in radio, optical and X-ray spectral regions. They have
any broad optical emission lines. Optical polarization is strong and variable.

Optically violent variables (OVVs): They are the same as BL Lac objects,
but with broad optical emission lines.

Blasars: A unifying term for BL Lac objects, OVVs and highly polarized
quasars.

Syefert 1 galaxies (Sy 1): Spiral galaxies with spectra contain permitted
emission lines with broad wings and narrower forbidden lines.

Syefert 2 galaxies (Sy 2): Spiral galaxies with equally wide permitted
and forbidden lines without broad wings.

Low ionization nuclear emission regions (LINERs): These objects have
strong lines of low ionization of some species (O I, S II, etc.).

Nuclear HII regions: Regions of ionized hydrogen in nuclei of many nor-
mal inactive galaxies.

Starburst galaxies: Strong IR radiation and they contain young stars.
There is a vary intense rate of star formation in these galaxies.

Luminous infrared galaxies: Galaxies luminous in the far infrared region
(L > 1045 erg.s−1). Intense IR emission may be due to dust radiation which
is initiated by an AGN or by intense stellar formation in the galaxy.

2.3 General characteristic and classification

of X-ray binaries

Because we have direct observational evidences, we suppose that the compact
X-ray sources are the binary systems with a compact object (a neutron star
or a black hole) accreting the gas from a nearby, normal companion star
and the gravitational potential energy of the gas is converting into X-ray
radiation [14], [16], [18]. The evidence is periodic eclipses of the X-ray source
by its companion, periodic Doppler shifts of the optical spectral lines of the
companion and of the pulsation period of the X-ray source and in some
cases heating of one face of the companion star by the X-ray source. Binary
periods are typically of the order of days. The most of the X-ray binaries
lays in the Galactic plane, we know about 200 binaries [32].

There are two different cases of the transfer of the mass from the pri-
mary to the compact secondary in X-ray sources: by Roche or tidal lobe
overflow, or by a stellar wind. In the case of Roche (the spin of the pri-
mary is synchronized with the binary rotation) or tidal (the primary is not
rotating significantly) lobe overflow the primary fills its first equipotential
(Roche or tidal lobe) and the material flows slowly from the primary over
the gravitational potential saddle point between the two stars (the inner
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Lagrangian saddle point L1) and is quickly captured by the compact object.
The mass loss rates are from 3×10−8 to 3×10−4M¯ yr−1 [12]. The captured
plasma forms an accretion disk around the compact star due to the angular
momentum.

In the case of the stellar wind the compact object gravitationally captures
the ejected plasma from the primary (O or B supergiants), but only a small
fraction of the ejected plasma (≤ 0.1%) is captured. The plasma has not
sufficient angular momentum to form an accretion disk and the accretion is
more or less spherical. The mass loss of the primary star is 10−7 − 10−6M¯
yr−1 and this leads to the accretion rate 10−9M¯ yr−1 [11].

The binaries are divided into two classes [5]: High Mass X-ray Binary
(HMXRB) and Low Mass X-ray Binary (LMXRB) depending up the ratio
between X-ray Lx and optical Lopt luminosity

ε =
Lx(2− 10keV)

Lopt(300− 700nm)
(2.1)

The ratio ε ≤ 10 is for HMXRB and ε À 10 for LMXRB. The HMXRBs
have a high optical luminosity because the companion star is a early-type
massive star (O or B star), while in the LMXRBs the companion star is
a low mass star (K-M star or white dwarf) and the optical luminosity is
mainly from the accretion disk.

2.4 High Mass X-ray Binaries (HMXRB)

These systems are very young objects (< 107 years). The companion star is
a star of population I and the second star is a neutron star with a strong
magnetic field (higher than 1012 G), or it is a black hole. The accretion is
formed by a strong stellar wind from the companion star. The accretion
can also be created by Roche lobe over-flow. The HMXRBs are divided
into two groups with respect to the spectral type of their companion: (i)
The companion fills its Roche lobe, is of spectral type less than B2 and has
evolved off the main sequence. The orbits are circular and the orbital periods
are less than 10 days. The mass transfer is mainly via the strong stellar wind.
(ii) The companion star is a B-emission (Be) star with emission lines (mainly
the Balmer series) that originate in circumstellar material that concentrate
in the equatorial plain of the star and is probably due to its rapid rotation.
The orbits are eccentric with long periods.

The periods of X-ray pulsations are from 69 ms to 24 min and depend on
the geometry of the system [26], [31]. For high luminosities (≥ 1037erg.s−1)
is the accretion geometry cylindrical; photons escape from the sides of the
high density post-shock accretion column. For the lower luminosities (≤
1037erg.s−1) is the infalling material decelerated only above the polar cap.
The photons escape from a thin layer on the neutron star surface in the
direction of the field line.
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Periodic changes are observed in the periodic X-ray pulsation, which
reflect spin-up or spin-down of the neutron star. If the inner disk rotates
faster than the magnetosphere then the angular momentum is transferred
to the neutron star and the pulsar is spined-up. If the inner disk rotates
slower than the magnetosphere then the pulsar is spined-down.

The X-ray spectra can be describe by a power law F (E) = AE−α, where
F (E) is the flux in photons cm−2.s−1 and the photon index α ∼ 1. At high
energies (15-20 keV) the power law is modified by an exponential cutoff.

Some examples of HMXRBs are Cyg X-1, Cen X-3, 2U 0900-40.

2.5 Low Mass X-ray Binaries (LMXRB)

These objects are very old systems (> 109 years) without a strong stellar
wind. The accretion is formed only if the companion star (of population II)
fills its Roche lobe. The neutron star has a weak magnetic filed (108 − 109

G). The optical luminosity of the companion star is much lower than the
luminosity of the accretion disk. The orbital periods are in the range from
11 min to 17 days.

In the LMXRB are observed X-ray eclipses, dips, optical brightness vari-
ations and type-I or type-II bursts. The eclipses are rare because of the small
size of the companion. The dips are sudden decreases of the source intensity,
which are probably due to material that accumulates above the disk plane
at the point, where the gas stream from the companion hits the accretion
disk.

Some examples of LMXRBs are Her X-1, Sco X-1, Cyg X-2, Cyg X-3,
GX 17+2.

Of course we don’t find only these types of binaries with these properties,
we can find single properties of HMXRBs and LMXRBs in one system, e.g.
the system can have a star without stellar wind and a compact object with
a strong magnetic field, etc. The dividing is only based on the ratio between
the luminosities.
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Chapter 3

Models of accretion

3.1 The standard model of accretion disks

The standard model of accretion disk describes a thin disk, where the gas
moves in an equatorial plane of the cylindrical co-ordinate system [27]. The
dynamics of the system is characterized by two conservation equations: mass
and angular momentum conservation, respectively the continuity equation
and the analogue of the Navier-Stokes equation

∂Σ

∂t
+

1

r

∂

∂r
(rΣvr) = 0 (3.1)

∂

∂t
(r2ΣΩ) +

1

r

∂

∂r
(r3ΣΩvr) =

1

2πr

∂Gt

∂r
, (3.2)

Here, Ω is an orbital frequency (for a Keplerian disk Ω ∝ r−3/2), vr is the
speed in the radial direction, Gt is the torque around an annulus and Σ is
the one-dimensional surface density due the azimuthal symmetric, Σ(r) =∫

ρ(r, z)dz, where ρ is the two-dimensional mass density. The nature of the
torque is unclear. However, current wisdom points to magnetorotational in-
stability as a likely mechanism [3]. The boundary conditions are different for
the binary systems and AGNs. In the first case the mass streams from the
companion star by Roche Lobe overflow through the inner Lagrange point
or the mass is flushed away by the stellar wind and joins onto the outer edge
of the disk. In the AGN’s case we have no knowledge of the source of the
material forming the disk.

By setting the time derivative of (3.1) to zero we obtain

Ṁ = −2πrΣvr, (3.3)

where the Ṁ presents a gas accreting rate onto a neutron star of mass Mx and
radius Rx. Assume that the accreting gas moves with the freefall velocity vff

and the magnetic field is negligible. When the gas reaches the stellar surface
the infall kinetic energy will be converted into heat and radiation. In steady
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state, the emergent luminosity Lx will be

Lx =
1

2
Ṁv2

ff =
GṀMx

Rx

. (3.4)

The efficiency ε of radiative emission is

ε =
Lx

Ṁc2
=

GMx

Rxc2
, (3.5)

where G is the gravitational constant. For typical neutron star it is ε ∼ 0.1
(for white dwarf ε ∼ 3 × 10−4, nonrotating black hole ε ∼ 0.06, rotating
black hole ε ∼ 0.4).

If we suppose that the radiation is emitted thermally as blackbody radi-
ation from the surface at temperature Tbb then the luminosity Lx is

Lx = 4πR2
xσT 4

bb. (3.6)

Here, σ is the Stefan-Boltzmann constant. For observed luminosities of 1037

erg.s−1 the equation gives Tbb ∼ 107 K for typical neutron star radii. The
accreting neutron stars with this luminosity are natural emitters of X-ray
radiation. If we set this luminosity in Eq. (3.4), we obtain the accretion rate
Ṁ ∼ 10−9M¯ yr−1.

Now we define the critical luminosity, so called Eddigton limit, an upper
limit to the luminosity of the system. The luminosity depends on the accre-
tion rate Ṁ and cannot grow ad infinitum. At high luminosities the accretion
rate is reduced by the large radiation pressure. The photons emitted by the
source interact with the falling matter through processes of scattering and
absorption.

Let us compute the upward force Fx exerted on infalling matter and
the gravitational force Fgrav. The infalling matter is ionized hydrogen and
the upward force is due to Thomson scattering off the electrons that then
interact with protons by their electrostatic force. Then the upward force Fx

is at the radius r

Fx =
LxσT

4πr2c
, (3.7)

where σT is the Thomson cross section a c the light speed. The gravitational
force Fgrav reacting on protons will be at radius r

Fgrav =
GMxmp

r2
. (3.8)

Now we will suppose that the forces will be in balance and we obtain then
the critical luminosity

LEdd =
4πcGMxmp

σT

= 1.3× 1037

(
Mx

M¯

)
erg.s−1 (3.9)
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Usually observed luminosities of X-ray binaries are between 0.01LEdd and
LEdd. The scientists observe sometimes the super-Eddington luminosities
L > LEdd. These can be due to a non steady state accretion, the abundance
oh heavy elements or a non-spherical geometry. The Eddington luminosity
can also be increased by the presence of a strong magnetic filed

σmf = σT

(
νme

eB

)2

= 8× 10−3σT

(
ν

10keV

)2 (
B

1013G

)−2

, (3.10)

where ν is the photon energy and e is an elementary charge. For a magnetic
field B of 1013 G the Eddington limit is two orders of magnitude higher.

Finally we say the results of the standard model. The first solution is
that the radiated energy close to the outer edge of the disk is greater then
the gravitational potential energy lost by the gas in the disk. The potential
energy from the inner regions is transported out with the angular momentum
and is radiated at larger radii. The second solution is that in entire disk is
half of the gravitational potential energy radiated away from the disk and
the rest of this energy is converted into kinetic energy of the gas.

3.2 The collisionless spherical accretion

In this section we describe a collisionless spherical accretion of identical par-
ticles of mass m finding themselves in a collisionless gas [33]. The accretion
is onto a central star of mass M and radius R. The particle distribution
function f(r,v, t) contains all information about the accretion gas. The def-
inition f(r,v, t)d3td3v determines the number of particles in the phase space
volume element d3td3v centered about r and v, at time t.

Next we define the particle number density

n(r, t) =
∫

f(r,v, t)d3v (3.11)

and the velocity dispersion

〈v2(r, t)〉 =
1

n(r, t)

∫
v2f(r,v, t)d3v. (3.12)

We can calculate the particle distribution function from the collisionless
Boltzmann equation or Vlasov equation

d

dt
f(r,v, t) =

∂f

∂t
+ v.∇rf + v̇.∇vf, (3.13)

where v = ṙ is the particle velocity along the coordinates r and v̇ is the
acceleration

v̇ = −∇Φ, (3.14)

where Φ is the gravitational potential

Φ = −GM

r
+ Φself , (3.15)
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where r is the distance to central star. Hereafter we will ignore the self-
gravity term Φself .

The distribution function f is a function only of the dynamical constants
of motion if the flow is stationary and function f is independent of time.
Extra for the spherical systems are only two constants of motion: the energy
E and the angular momentum J per unit mass, defined by

E =
1

2
v2 + Φ(r) =

1

2
v2

r +
1

2
v2

t −
GM

r
=

1

2
v2

r +
1

2

J2

r2
− GM

r
, (3.16)

J = rvt, (3.17)

where vr is radial and vt is transverse particles velocities. Specially for the
isotropic velocity distribution the distribution function f is independent of
J and the function f is a function only of energy E, f = f(E).

In this case the particle number density n (3.11) reduces to

n(r) = 4π
∫

v2fdv = 4π

∞∫

E=Φ

[2(E − Φ)]1/2f(E)dE (3.18)

and the velocity dispersion (3.12) to

〈v2(r)〉 =
4π

n(r)

∞∫

E=Φ

[2(E − Φ)]3/2f(E)dE. (3.19)

The moving particles with a critical value of angular momentum Jmin(E)
or less will be captured by the central star. For nonrelativistic particles
orbiting a Newtonian star of radius R it is

Jmin(E) =
[
2

(
E +

GM

R

)]1/2

(3.20)

and for nonrelativistic particles orbiting a compact object it is

Jmin(E) =
4GM

c
. (3.21)

The total rate of captured particles onto central mass is

Ṅtot = 8π2

∞∫

Φ(R)

Jmin(E)∫

0

fJdJdE (3.22)

and we calculate the mass rate as Ṁtot = mṄtot.
If we assume the unbound nonrelativistic particles with energies E > 0

then the rate Ṅ is

Ṅ(E > 0) = 4π2

∞∫

0

f(E)J2
min(E)dE (3.23)
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and the rate Ṁ(E > 0) = mṄ(E > 0) for nonrelativistic particles and
Newtonian star is

Ṁ(E > 0) = 2πGM2ρ∞v−1
∞

R

M

(
1 +

v2
∞R

2MG

)
(3.24)

and for a compact star when (Rc2)/(GM) < 8

Ṁ(E > 0) = 16π(GM)2ρ∞v−1
∞ c−2 (3.25)

or

Ṁ(E > 0) = 1.56× 10−23

(
ρ∞

10−24g.cm−3

) (
M

M¯

)2 (
v∞

10km.s−1

)−1

M¯yr−1,

(3.26)
where ρ∞ = mn∞, v∞ ¿ c and their values are at infinity.

From equations (3.18) and (3.19) when E > 0 yields

nE>0(r) = n∞

(
1 +

2GM

v2∞r

)1/2

(3.27)

and

〈v2(r)〉E>0 = v2(r) = v2
∞

(
1 +

2GM

v2∞r

)
. (3.28)

We furthermore define the particle temperature

TE>0(r) = T∞

(
1 +

2GM

v2∞r

)
(3.29)

and the accretion radius (the kinetic energy of particle is equal to its poten-
tial energy)

ra =
2GM

v2∞
. (3.30)

These last equations describe sufficiently the colisionless spherical accre-
tion, more detailed information are in [28].

3.3 The hydrodynamic spherical accretion

The hydrodynamic view of the spherical accretion is a natural way to de-
scribe the flow of particles onto compact objects, because there is an inter-
action between the particles.

Assume steady, spherical accretion of a gas onto a stationary, nonrotating
black hole of mass M , the gas flow is in the first approximation adiabatic
and the entropy loss due the radiation as a small perturbation. Define the
pressure as

P = KρΓ, (3.31)
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where K is a constant and Γ = const. is an adiabatic index characterizing
the gas. The sound speed a is given by

a =

√
dP

dρ
=

√
ΓP

ρ
. (3.32)

The gas has at infinity the density ρ∞, the pressure P∞ and the sound speed
a∞.

The flow is completely describe by two equations: the continuity equation

∇.ρu =
1

r2

d

dr
(r2ρu) = 0 (3.33)

and the Euler equation

u
du

dr
= −1

ρ

dP

dr
− GM

r2
, (3.34)

where u is the inward radial velocity (u > 0).
Integrating the continuity equation (3.33) we obtain accretion rate Ṁ

4πr2ρu = Ṁ = const. (3.35)

Define the critical or the transonic radius rs as the radius where the flow
speed equals the sound speed

rs =
(

5− 3Γ

4

)
GM

a2∞
(3.36)

and the sound speed at the transonic radius rs is

a2
s =

1

2

GM

rs

=
(

2

5− 3Γ

)
a2
∞. (3.37)

Institute the equation

ρ = ρ∞
(

a

a∞

) 2
Γ−1

(3.38)

to the equation (3.35) we obtain

Ṁ = 4πρ∞asr
2
s

(
a

a∞

) 2
Γ−1

= 4πλs

(
GM

a2∞

)2

ρ∞a∞, (3.39)

where

λs =
(

1

2

) Γ+1
2(Γ−1)

(
5− 3Γ

4

)− 5−3Γ
2(Γ−1)

. (3.40)

We can rewrite the equation (3.39) to the form

Ṁ = 4πλs(GM)2ρ∞a−1
∞ c−2 c2

a2∞
(3.41)
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and compare with the equation (3.25). We see that the hydrodynamical
accretion is larger than the collisionless accretion by the factor c2/a2

∞ (∼ 109

for typical ionized interstellar gas with a∞ ∼ 10 km.s−1).
Assume a pure hydrogen with Γ = 5/3 then the accretion rate is

Ṁ = 8.77× 10−16

(
ρ∞

10−24g.cm−3

) (
M

M¯

)2 (
a∞

10km.s−1

)−3

M¯yr−1. (3.42)

The boundary conditions at infinity u = 0, a = a∞, ρ = ρ∞ for the
equations (3.33) and (3.34) give us two solutions: subsonic λ < λs and
transonic λ = λs. For a star with hard surface (white dwarf or neutron star)
is the flow subsonic and for black holes is the flow transonic.

Finally there is question how large is the luminosity of radiation from
spherical accretion onto nonrotating black holes? Assume that the black hole
is at rest in a uniform ionized gas of pure hydrogen which has at infinity
density n∞ ∼ 1 cm−3 and temperature T∞ ∼ 104 K. The dominant mech-
anism are thermal bremsstrahlung and free-free emission. Then the careful
relativistic integration gives the luminosity

Lff = 1.2× 1021
(

n∞
1cm−3

)2 (
T∞

104K

)−3
(

M

M¯

)3

erg.s−1. (3.43)

This emission corresponds to the radiation of very hard X-rays and γ-rays.
Now we calculate the efficiency of this emission

ε =
Lff

Ṁc2
∼ 6× 10−11

(
n∞

1cm−3

) (
T∞

104K

)−3/2
(

M

M¯

)
. (3.44)

The efficiency for maximally rotating black hole will increase by 15% above.
The spherical accretion onto black holes is an inefficient in contrast to the
spherical accretion onto neutron star (ε ∼ 0.1) or to the disk accretion
onto black hole ε ∼ 0.05 − 0.42 that depends on the value of the angular
momentum and the direction of the gas relative to the hole, more detailed
information are in [28].

The standard thin disk and the hydrodynamical spherical accretion rep-
resent just two limiting cases. They capture the most basic features of the
accretion process. However there are circumstances when the assumptions of
both these approximations are not valid, and then more complicated accre-
tion models may occur: slim disk [2], advection dominated accretion flows
[23].

3.4 The interaction of an accretion matter

with a magnetic field

As we have seen, most of neutron stars have a strong magnetic field that
can interact with the accreting matter. If we assume that the magnetic
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field has bipolar structure then the magnetic pressure becomes larger when
the matter approaches the neutron star. At a specific radius the magnetic
pressure becomes dominant over the ram pressure of the infalling matter
and then the magnetic field forces the charged particles flow along magnetic
lines. This radius is called Alfvén radius rA.

Most of the emitted luminosity comes from the accretion columns formed
above magnetic poles. The magnetic axis usually is inclined with respect to
the rotation axis and that’s why the observer sees the emission from the
accretion column only when the magnetic axis meets the line of his sight.
This is the origin of pulsations visible in the spectral lines of highly magne-
tized compact objects. The pulsation gives us the information about the spin
of the compact object. The angular momentum of the accretion matter is
transferred to the compact object and changes the spin of the neutron star.
This variation of period can be measured and it gives information about the
accretion flow.
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Chapter 4

Photon propagation in Kerr
metric

4.1 Definition and properties of Kerr metric

The Kerr metric ([21], [9]) is both stationary and axisymmetric and describes
the gravitational field of the rotating black hole and depends only on two
parameters, the mass M of the black hole and its angular momentum per
unit mass a = J/M . The form of the Kerr metric in Boyer-Lindquist co-
ordinates (t, r, θ, φ) (c = G = 1) is

ds2 = −Σ
∆

A
dt2 +

A

Σ

(
dφ− 2ar

A
dt

)2

sin2 θ +
Σ

∆
dr2 + Σdθ2 (4.1)

or another form

ds2 = −
(
1− 2r

Σ

)
dt2− 4ar

Σ
sin2 θdtdφ+

A

Σ
sin2 θdφ2 +

Σ

∆
dr2 +Σdθ2, (4.2)

where
Σ = r2 + a2 cos2 θ, (4.3)

∆ = r2 − 2r + a2, (4.4)

A = (r2 + a2)2 − a2∆ sin2 θ, (4.5)

where we set M = 1 without the lose of generality.
For the case a = 0 the Kerr metric corresponds to a nonrotating black

hole that is described by Schwarzschild metric

ds2 = −
(
1− 2

r

)
dt2 +

(
1− 2

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (4.6)

and the solutions for a rotating black hole are only if a ≤ 1.
The horizons are roots of the equation ∆ = 0, the outer and inner hori-

zons:
rh = r+ = 1 +

√
1− a2, (4.7)
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r− = 1−
√

1− a2. (4.8)

The limiting values are rh = 2 and r− = 0 for a = 0 and rh = 1 and r− = 1
for a = 1 (maximally rotating black hole). In the Schwarzschild metric the
event horizon is identical to the stationary surface, gtt = 0, while in the Kerr
metric the stationary surface rs is described by another equation than the
horizon rh

rs = 1−
√

1− a2 cos2 θ. (4.9)

The stationary surface is called the static limit and the region rh < r ≤ rs

the ergosphere.
The minimum allowed radius of a stable circular equatorial orbit, so

called marginally stable orbit, is given by the roots of the equation

r2 − 6r ∓ 8a
√

r − 3a2 = 0. (4.10)

The roots are

rms = 3 + Z2 ∓ [(3− Z1)(3 + Z1 + 2Z2)]
1/2, (4.11)

where
Z1 = 1 + (1− a2)1/3[(1 + a)1/3 + (1− a)1/3], (4.12)

Z2 = (3a2 + Z2
1)1/2, (4.13)

where the upper sign refers to co-rotating and the lower to counter-rotating
orbits.

4.2 Null geodesics in Kerr metric

The path of photons (null geodesic) is completely described by three con-
stants of motion, the total energy E, the azimuthal angular momentum Lz

and Carter constant Q. We reduce the number of constants by re-normalizing
Lz and Q with respect to energy E

λ =
Lz

E
, (4.14)

q2 =
Q

E2
. (4.15)

Next the null geodesic must satisfy the Carter equation [8]

±
∫

r

dr√
R(r, λ, q2)

= ±
∫

θ

dθ√
Θ(θ, λ, q2)

, (4.16)

where

R(r) = r4 + (a2 − λ2 − q2)r2 + 2[q2 + (λ− a)2]r − a2q2 (4.17)
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and
Θ(θ, λ, q2) = q2 + (a cos θ)2 − (λ cot θ)2. (4.18)

Suppose the substitution µ = cos Θ, then we can rewrite the equation
(4.16) to the form

±
∫

r

dr√
R(r, λ, q2)

= ±
∫

µ

dµ√
Θ(µ, λ, q2)

, (4.19)

where
Θ(µ, λ, q2) = q2 + (a2 − λ2 − q2)µ2 − a2µ4. (4.20)

The roots of R(r) and Θ(µ) correspond to the turning points in radial
and latitudinal direction.

4.3 The roots of R(r)

The expression in the equation (4.17) is a polynomial of fourth order and
that’s why we can write it in the form R = (r − r1)(r − r2)(r − r3)(r − r4),
where r1, r2, r3, r4 are the roots of R(r) = 0. Before writing the roots in the
explicit form we define six expressions

A = (a2 − λ2 − q2), (4.21)

B = (a− λ)2 + q2, (4.22)

C = A2 − 12a2q2, (4.23)

D = 2A3 + 72a2q2A + 108B2, (4.24)

E =
1

3




(
D −√−4C3 + D2

2

) 1
3

+

(
D +

√−4C3 + D2

2

) 1
3


 , (4.25)

F =

√
−2

3
A + E (4.26)

and

D± = −4

3
A− E ± 4B

F
. (4.27)

Now we can write the roots of R(r) = 0

r1 =
1

2
F +

1

2

√
D−, (4.28)

r2 =
1

2
F − 1

2

√
D−, (4.29)

r3 = −1

2
F +

1

2

√
D+, (4.30)

r4 = −1

2
F − 1

2

√
D+. (4.31)
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Figure 4.1: The roots r1(λ, q2) (top left), r2(λ, q2) (top right), r2(λ, q2) (bot-
tom left), r2(λ, q2) (bottom right). All cases are shown for a = 0.5.

The roots r1 and r2 can be real or complex, while the roots r3 and r4 are
always real. r1 > r2 > r3 > r4 if the roots are real. The figure 4.1 shows
the behavior of the roots for a = 0.5. We see that r4 is always lower than
zero and the value of r3 is lower than the value of horizon event (equation
(4.7)), so they have no physical significance. Also we see that the roots r1

and r2 are not real for some pairs (λ, q2), but instead they are complex for
these pairs. Physically the roots r1 and r2 are the turning points of the null
geodesics.

4.4 The roots of Θ(µ)

The expression in the equation (4.20) can be rewritten as Θ(µ) = a2(µ2
− +

µ2)(µ2
+ − µ2), q2 > 0, where the roots are

µ2
+ =

1

2a2
{[(λ2 + q2 − a2)2 + 4a2q2]1/2 − (λ2 + q2 − a2)}, (4.32)

µ2
− =

1

2a2
{[(λ2 + q2 − a2)2 + 4a2q2]1/2 + (λ2 + q2 − a2)}. (4.33)

The roots are for q2 > 0 because all null geodesics that come through the
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Figure 4.2: The roots µ+(λ, q2) (left), µ−(λ, q2) (right). All cases are shown
for a = 0.5.

equatorial plane must satisfy this condition and in the following chapters we
assume these null geodesics.

The behavior of the roots is in the figure 4.2. One root takes always the
values in range (0-1) and physically is the turning point in the latitudinal
direction. The second one has no physically significance for us.
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Chapter 5

Photon energy shifts in Kerr
metric

5.1 The motivation and the goals

Relativistic iron line profiles provide a powerful tool to measure the mass of
the black hole, both in active galactic nuclei and Galactic black hole candi-
dates. They will also help to constrain the black hole spin once the quality of
data improves with future detectors. Stella [29] proposed the use of temporal
changes in the line profile following variations of the illuminating primary
source. Matt & Perola [22] proposed to employ, instead, variations of the
integrated line properties (equivalent width, centroid energy and linewidth).
Temporal variations of the flux and spectrum, caused by an orbiting spot or
a spiral wave, were also examined by various authors (see e.g. [19] for a re-
view). These methods are conceptually similar to the so called reverberation
mapping method, widely applied to optical broad lines in AGNs, however,
they have not yet provided many results in X-rays. This situation would be
highly desirable to improve because most of X-ray signal originates from the
inner regions of the accretion disc. This should change with future detectors
equipped with high collecting area. Then it will be most relevant to know
the expected energy range of iron line profiles, depending on the basic model
parameters - i.e., radius where the emission takes place, inclination angle of
the observer, and angular momentum of the black hole.

So our goal is to find a formula, where the input parameters would be
emission radius, inclination angle of the observer at infinity, and angular
momentum of the black hole, and the output would be minimum value and
maximum value of the change of the frequency of the radiation from the
surround of black hole. We use the Carter equation (which is a condition
that the null geodesics must satisfy) in the form of the elliptic integrals to
find out the searched formula.

If we find such formula then we could calculate retroactively the param-
eters of black hole from the knowledge of the observer’s position.
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5.2 The model

We will suppose the following model of a radiating ring with known radius
(e.g., re = rms, 6, 8, 10). The ring rotates in the equatorial plane (θe = π/2)
with the angular velocity

Ω =
1√

r3
e + a

, (5.1)

where a ∈ (0, 1) is the specific angular momentum of the black hole and
the ring radiates isotropically in its co-rotating frame. The photons come
from the ring to the observer located at infinity with the inclination angle
θo ∈

(
0, π

2

)
.

5.3 The ratio g between νobs and νem

The change of the emitting frequency νem is describe as the ratio g between
the emitting frequency and the observed frequency νobs

g =
νobs

νem

. (5.2)

We assume an emitting particle in Kerr metric. The four-velocity of this
source is u = ut(1, 0, 0, Ω) where

ut =
[
1− 2re

Σ
(1− aΩ sin2 θe)

2 − (r2
e + a2)Ω2 sin2 θe

]−1/2

(5.3)

and Ω is angular velocity of the particle. The observer is assumed to be
located at rest at infinity. Then the ratio g can be expressed as

g =
1

ut

1

1− λΩ
. (5.4)

It is interesting to show how the function g depends on λ, where the
values of function are in the interval (0, 2.0). The behavior is shown in the
figure 5.1 for a = 0.5, and in figure 5.2 for extreme a, there is no minimum or
maximum of the function g(λ), but we observe that the width of the spectral
line is finite and that’s why there must be minimum and maximum value
of the change of the frequency. To find them we need a condition for the
constant of motion λ that would give us all λ that would correspond to null
geodesics coming to the observer at infinite. This condition is the Carter
equation (4.16) or (4.19). If we find such values λ (or pairs λ, q2) then the
minimum value of λmin will correspond to the minimum value of gmin(λmin)
and the maximum value of λmax will correspond to the maximum value of
the gmax(λmax) (because the function g(λ) is monotonously increasing on
g(λ) ∈ (∞, Ω−1)).
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Figure 5.1: The function g(λ) for re = rms(= 4.233) (top left), re = 6 (top
right), re = 8 (bottom left) and re = 10 (bottom right). In all cases a = 0.5.

5.4 Definition scope of (λ, q2)

Before we write the solutions for the r-integral and θ-integral, we make
discussions about the turning points in the radial and latitudinal directions:
where they are complex, for which (λ, q2) the null geodesics go to the observer
and for which not, etc.

The null geodesic in the radial direction has two turning points r1, r2

if the roots are real, or has no one if they are complex. We can see in the
figure 4.1 that the turning point r1 takes the values larger than the radius
re of the ring for some (λ, q2). In this case the null geodesics can not reach
the infinity. Hence, only the null geodesics with the pairs (λ, q2), for which
r1 < re, can reach the infinity in the radial direction. These pairs are shown
in the figures 5.3 and 5.4 for different cases. If we suppose complex r1, r2

then we have no problem because these values have not physical sense and
the null geodesics can reach the observer in the radial direction.

The area, where the roots are complex, shifts to the negative values
of λ with increasing specific angular momentum a of the black hole. It is
evident because λ represents the azimuthal angular momentum of the ring
particles. In the case that the emitting radius re is larger than re = rms, e.g.
re = 6, 8, 10, then the area of the possible null geodesics is bigger.

The number of pairs (λ, q2) that correspond to the null geodesics that
reach the observer in the latitudinal direction depends on the inclination of
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Figure 5.2: The function g(λ) for a = 0.9 (left) and a = 0.998 (right) when
re = rms.

the observer. This dependence is shown in the figure 5.5. If the inclination
is small then there is a small area of (λ, q2) which correspond to the null
geodesics that reach the observer in latitudinal direction. If the inclination
is greater then the area is larger.
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Chapter 6

The r-integral and the
θ-integral

The solutions of the Carter equation of the null geodesics (equation 4.19)
can be expressed in forms of the elliptic integrals of the first kind, which are
defined as

F (ϕ, k) =

ϕ∫

0

dϑ√
1− k sin2 ϑ

(6.1)

and the complete elliptic integral, which is defined as

F
(

π

2
, k

)
= K(k) =

π
2∫

0

dϑ√
1− k sin2 ϑ

. (6.2)

The detailed information about the elliptic integrals are in [1], [6].

6.1 The r-integral without a transit through

a turning point, real roots

The solution of the r-integral of the null geodesic without turning point r1

in the radial direction

∞∫

re

dr√
R(r, λ, q2)

=

∞∫

r1

dr√
R(r, λ, q2)

−
re∫

r1

dr√
R(r, λ, q2)

(6.3)

is the elliptic integral of the first kind in the form

∞∫

re

dr√
R(r, λ, q2)

= gr[F (ϕo, kr)− F (ϕe, kr)], (6.4)

where

gr(λ, q2) =
2√

(r1 − r3)(r2 − r4)
, (6.5)
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Figure 6.1: The behavior of r-integrals, re = rms(= 4.233) (top left), re = 6
(top right), re = 8 (bottom left), re = 10 (bottom right). All cases are shown
for a = 0.5.

kr(λ, q2) =
(r2 − r3)(r1 − r4)

(r1 − r3)(r2 − r4)
, (6.6)

ϕo(λ, q2) = arcsin

(√
r2 − r4

r1 − r4

)
(6.7)

and

ϕe(λ, q2) = arcsin




√√√√(r2 − r4)(re − r1)

(r1 − r4)(re − r2)


 . (6.8)

We can see the behavior of the r-integrals for various emission radii and
a = 0.5 in the figure 6.1. The area, where the roots are complex (see figures
5.3 or 5.4), can not be expressed by the help of this elliptic integral. We use
for this area another form of elliptic integral that is in relevant section. The
area of (λ, q2) that solve the r-integral is larger for greater emission radii.
This rule is accepted for the next solution of the r-integral.
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Figure 6.2: The behavior of r-integrals, re = 6 (left), re = 8 (right). All cases
are shown for a = 0.5.

6.2 The r-integral with a transit through a

turning point, real roots

The solution for this case is analogous as for previous section. We can write
the r-integral with the turning point r1 in the radial direction as

∞∫

re

dr√
R(r, λ, q2)

=

∞∫

r1

dr√
R(r, λ, q2)

+

re∫

r1

dr√
R(r, λ, q2)

(6.9)

and the solution is

∞∫

re

dr√
R(r, λ, q2)

= gr[F (ϕo, kr) + F (ϕe, kr)], (6.10)

where gr(λ, q2), kr(λ, q2), ϕo(λ, q2) and ϕe(λ, q2) are the same as in the equa-
tions (6.5), (6.6), (6.7) and (6.8). The behavior of the r-integrals for various
emission radii and a = 0.5 is shown in the figures 6.2.

6.3 The r-integral, r1, r2 ∈ C, r3, r4 ∈ R
If we suppose that two roots are complex (r1, r2 ∈ C) and the other are real
(r3, r4 ∈ R) then we can express the complex roots in the form

r1 = u + iv (6.11)

and
r2 = u− iv, (6.12)

where u = 1
2
F , v = 1

2

√
−4

3
A− E − 4B

F
and A, B, E, F are defined in the

equations (4.21), (4.22), (4.25) and (4.21). Now we can write the solution of
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Figure 6.3: The behavior of r-integrals, re = 6 (left), re = 8 (right). All cases
are shown for a = 0.5.

r−integral
∞∫

re

dr√
R(r, λ, q2)

= gr[F (ϕo, kr)− F (ϕe, kr)], (6.13)

where

gr(λ, q2) =
1√
AB

, (6.14)

kr(λ, q2) =
(A + B)2 − (r3 − r4)

2

4AB
, (6.15)

ϕo(λ, q2) = arccos
[
A−B

A + B

]
, (6.16)

ϕe(λ, q2) = arccos

[
(A−B)re + r3B − r4A

(A + B)re − r3B − r4A

]
, (6.17)

A(λ, q2) =
[
(r3 − u)2 + v2

]1/2
(6.18)

and

B(λ, q2) =
[
(r4 − u)2 + v2

]1/2
. (6.19)

This solution can be used only for area of the pairs (λ, q2), where the
roots r1, r2 are complex (the area is shown in the figures 5.3 and 5.4). The
behavior of the solution is in the figure 6.3.

6.4 The θ-integral without a transit through

a turning point

The solution of the θ-integral without the turning point in the latitudinal
direction is the elliptic integral of first kind

µe∫

0

dµ√
Θ(µ, λ, q2)

=
gµ

a
F (ψ, kµ), (6.20)
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Figure 6.4: The behavior of θ-integrals, θe = 15◦ (top left), θe = 45◦ (top
right), θe = 60◦ (bottom left), θe = 80◦ (bottom right). All cases are shown
for a = 0.5.

where

gµ(λ, q2) =
1√

µ2
+ + µ2−

, (6.21)

kµ(λ, q2) =
µ2

+

µ2
+ + µ2−

, (6.22)

ψ(λ, q2) = arcsin




√√√√µ2
o(µ

2
+ + µ2−)

µ2
+(µ2

o + µ2−)


 . (6.23)

The behavior of the θ-integrals for various inclinations of observer and
a = 0.5 is shown in the figures 6.4. The area of all pairs (λ, q2) that solve
θ-integral is larger for greater inclinations of the observer.
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Figure 6.5: The behavior of θ-integrals, θe = 15◦ (top left), θe = 45◦ (top
right), θe = 60◦ (bottom left), θe = 80◦ (bottom right). All cases are shown
for a = 0.5.

6.5 The θ-integral with one transit through

a turning point

If we suppose that the null geodesic in latitudinal direction passes one times
trough the turning point µ+

µe∫

0

dµ√
Θ(µ, λ, q2)

= 2

µ+∫

0

dµ√
Θ(µ, λ, q2)

−
µe∫

0

dµ√
Θ(µ, λ, q2)

(6.24)

then the solution of θ-integral is

µe∫

0

dµ√
Θ(µ, λ, q2)

=
gµ

a
[2K(kµ)− F (ψ, kµ)], (6.25)

where gµ, kµ and ψ are defined in (6.21), (6.22) and (6.23).
The behavior of the θ-integrals for various inclinations of observer and

a = 0.5 is shown in the figure 6.5.
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Chapter 7

The graphical solution

We can use two techniques to find the minimum and maximum of the func-
tion g(λ). The first technique is the graphical solution (it will be presented
in this chapter) and the second is the technique by the help of the Lagrange
multipliers (it will be presented in the following chapter).

We have seen in the previous chapter that there are many solutions for
the Carter equation (null geodesics with turning points and without, the
turning points can be complex or real, etc.). We must take into account all
possible null geodesics (all pairs (λ, q2) that describe these geodesics) that
come to the observer and find between them the minimum and maximum
values of λ.

At first we show exemplary solution for re = 6, a = 0.5 and θe = 45◦,
then we shown how the solution changes for various re, a and θe.

7.1 An exemplary solution

The Carter equation (4.19) is equality of r-integral and θ-integral. If we plot
these integrals in a single two-dimensional graph then the intersection of the
two surfaces R(λ, q2) and Θ(λ, q2) with each other provides the solution of
all pairs (λ, q2) that describe the null geodesics coming to the observer. The
null geodesics in this case can be four: i) r-integral without transit trough
the turning point and θ-integral without transit trough the turning point,
ii) r-integral with transit trough the turning point and θ-integral without
transit trough the turning point, iii) r-integral without transit trough the
turning point and θ-integral with one transit trough the turning point, iv) r-
integral with transit trough the turning point and θ-integral with one transit
trough the turning point. Take a look at particular cases.

i) the r-integral without a transit through the turning point and θ-integral
without a transit through the turning point: The intersection of r-integral and
θ-integral is shown in the figure 7.1. We see that the intersection is a curve
that comes trough the region where the roots r1 and r2 (the turning points)
are complex (see figure 5.3 or 5.4). That’s why we must use the solution of
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Figure 7.1: The intersection of r-integral (blue) and θ-integral (red). The
intersection goes from λ ∼ −5 to λ ∼ 5. The null geodesics does not transit
through any turning point, re = 6, a = 0.5 and θe = 45◦.

r-integral for the complex roots for this region. The solution is shown in the
figure 7.2. These both solutions give us the total solution for this case.

ii) the r-integral with a transit through the turning point and θ-integral
without a transit through the turning point: In this case the intersection does
not exist how we could see in the figure 7.3.

iii) the r-integral without a transit through the turning point and θ-integral
with one transit through the turning point: The solution of this case is again
a intersection of the r-integral and θ-integral. We can see it in the figure
7.4. The intersection begins always there where the intersection from the
previous case ended. The solution of particular cases tie together.

iv) the r-integral with a transit through the turning point and θ-integral
with one transit through the turning point: The intersection is shown in the
figure 7.5. The curve of the intersection begins again where the previous
curve ended and finally the particular intersections create a pent curve of
all pairs (λ, q2) that describe null geodesics that come to the observer. The
conclusion that possible pairs (λ, q2) lie on the pent curve is also in the work
of Beckwith and Done [4], but they don’t specify what parts of the curve
correspond to possible null geodesics.

If we suppose the null geodesics that pass more than one times trough the
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Figure 7.2: The intersection of r-integral (blue) and θ-integral (red) for com-
plex r1 and r2. re = 6, a = 0.5 and θe = 45◦.

turning point in the latitudinal direction, we will find out that there in no
intersection between the r-integral and θ-integral. There are only three kind
of null geodesics that come to the observer at infinity, they are: i) without
a transit through the turning point in the radial and latitudinal direction,
ii) without a transit through the turning point in the radial direction and
with one transit through the turning point in the latitudinal direction, with
transit through the turning point in the radial and the latitudinal direction.
This is fall-out of the solution.

All these geodesics give us a range of values of λ. If we take a look at
the graphs (figures 7.1, 7.2, 7.4, 7.5), we can estimate the minimum and
maximum value of λ. It is approximately λmin ∼ −5 and λmax ∼ 5 and then
the values of g(λ) are gmin(λmin) ∼ 0.55 and gmax(λmax) ∼ 1.1 (for re = 6,
a = 0.5 and θo = 45◦).

7.2 Dependence of the solution on re

We can ask how does the solution change if we will assume greater emission
radius re. The answer is that the curve of possible pairs (λ, q2) is larger,
which means that there are more possible null geodesics that come to the
observer and the range of λ is greater. Although the range of λ is greater (and
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Figure 7.3: The r-integral and θ-integral. There is no intersection if we sup-
pose that the null geodesic transit through the turning point in radial di-
rection and does not in latitudinal direction. The graphs are for re = 6 and
θo = 45◦ (top left), re = 8 and θo = 45◦ (top right), re = 6 and θo = 15◦

(bottom left), re = 6 and θo = 80◦ (bottom right). The specific angular
momentum of black hole is a = 0.5 for all cases.

the range of q2), the change of the emission frequency is smaller, because the
effect of the gravitational redshift is smaller for greater re. The minimum
and maximum values are: gmin ∼ 0.55 and gmax ∼ 1.1 for ro = 6; gmin ∼ 0.6
and gmax ∼ 1.1 for re = 8; gmin ∼ 0.7 and gmax ∼ 1.1 for re = 8, others
parameters are a = 0.5, θo = 45◦.

It is also interesting that the null geodesics with the complex roots r1

and r2 do not exist for these larger re, but exist for small radii (e.g. rms).
Overall the range of λ increases for greater re, but the redshift effect is

smaller and contrariwise if the emission radius decreases to rms then range
of possible λ is smaller but the effect of the gravitational redshift increases.

7.3 Dependence of the solution on a

The increasing specific angular momentum a of the black hole does not
change visibly the range of λ, how we can see in the figure 7.6, we suppose
fixed re. But it does not mean that the minimum and maximum of g(λ) do
not change. The parameters a and re change the behavior of the function
g(λ), how it is shown in figures 5.1 and 5.2. The range of λ is same, but
the behavior of g(λ) differentiates and in the end we other minimum and
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Figure 7.4: The intersection of r-integral (blue) and θ-integral (red). The
intersection has two parts, one goes from q2 ∼ 25 to q2 ∼ 40 and second
goes from q2 ∼ 23 to q2 ∼ 34 The null geodesics transit through the turning
point in latitudinal direction, re = 6, a = 0.5 and θe = 45◦.

maximum of g(λ).
Special case is when we have emission radius re = rms. If we change

the specific angular momentum a then the rms must change too, because
rms depends on a (equation (4.11)). How we have seen in previous section,
the range of λ changes with emission radius, then for this case the range
of λ changes with a. If a increases then rms decreases and the range of λ is
smaller. We can remark in figure 5.2 that g(λ) takes the values smaller than
1 for extreme a with emission on rms. The effect of gravitational redshift is
greater than for larger re.

7.4 Dependence of the solution on θo

If the observer has a small inclination (e.g. θo = 15◦) then we should observe
mainly the gravitational redshift. If we suppose great inclinations, we should
observe redshift and blueshift. The graphical solution gives us the minimum
value λmin ∼ −2 and the maximum value λmax ∼ 2 that correspond to:
gmin ∼ 0.74 and gmax ∼ 0.88 for the inclination θo = 15◦ (re = 8, a = 0.5).
Assume θo = 15◦, re = 8, a = 0.5 then the minimum of g(λ) is gmin ∼ 0.5
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Figure 7.5: The intersection of r-integral (blue) and θ-integral (red). The
null geodesics transit through turning point in the radial and latitudinal
direction, re = 6, a = 0.5 and θe = 45◦.

and the maximum of g(λ) is gmax ∼ 1.35.
Another result is that for small inclination there are only two kinds of

null geodesics: without the turning point in radial and latitudinal direction,
without turning point in radial direction and with one transit in latitudinal
direction. If the inclination increase then appears third kind of the null
geodesic: with turning point in radial and latitudinal direction.
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Figure 7.6: The intersection between r-integral (without the transit through
the turning point) and θ-integral (without the transit through the turning
point), re = 6, θo = 45◦. The graphs are for the cases a = 0.1, a = 0.5,
a = 0.9 and a = 0.998.
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Chapter 8

The solution by the help of the
Lagrange multipliers

8.1 Lagrange multipliers

We will present in this chapter how to find the minimum and the maximum
of the function (5.4) by the help of the analytic procedure. The procedure
that we use is called Lagrange multipliers.

Lagrange multipliers are used to find the extremes of the function f(x1, .., xn)
where the variables (x1, .., xn) corresponding to extremes must fulfil the con-
straint g(x1, .., xn) = 0. We will suppose for the simplicity that the function
f(x1, .., xn) is f(x, y) and the constraint g(x1, .., xn) = g(x, y) = 0. Now
define the Lagrangian as

Λ(x, y, λ) = f(x, y)− λg(x, y), (8.1)

where λ is the Lagrange multiplier. The partial derivatives of the Lagrangian
must satisfy

∂

∂x
Λ(x, y, λ) = 0, (8.2)

∂

∂y
Λ(x, y, λ) = 0, (8.3)

∂

∂λ
Λ(x, y, λ) = 0. (8.4)

These are three equation for three unknown. If we solve them then we found
the x and y that correspond to the extremes of the function f(x, y) with a
constraint g(x, y) = 0.

8.2 The analytic procedure to find extremes

of ratio g(λ)

We looking for extremes of the function (5.4) with the constraint Carter
equation (4.19). Then the Lagrangian Λ is in the form (the Lagrange multi-
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plier λ is termed as α here)

Λ(λ, q2, α) =
1

ut

1

1− λΩ
− α

∞∫

re

dr√
R(r, λ, q2)

+ α

µo∫

0

dµ√
Θ(µ, λ, q2)

. (8.5)

Before we write the partial derivatives of the Lagrangian (8.5) we have
to tell which null geodesic we solve. We know that there are tree kind of null
geodesics (from the graphical solution) and now we write their Lagrangian
and its partial derivative.

i) The null geodesics without a transit through the turning points: The
lagrangian is in the form

Λ(λ, q2, α) =
1

ut

1

1− λΩ
− α

∞∫

r1

dr√
R(r, λ, q2)

+α

re∫

r1

dr√
R(r, λ, q2)

+ α

µo∫

0

dµ√
Θ(µ, λ, q2)

(8.6)

or in the form of the elliptic integrals of first kind that solve the r-integral
and θ-integral

Λ(λ, q2, α) =
1

ut

1

1− λΩ
−αgrF (ϕo, kr)+αgrF (ϕe, kr)+α

gµ

a
F (ψ, kµ), (8.7)

where grF (ϕo, kr) and grF (ϕe, kr) are defined in (6.4) for real roots and in
(6.13) for complex roots, gµ

a
F (ψ, kµ) is defined in (6.20).

The partial derivatives of the Lagrangian (8.7) are

∂

∂λ
Λ(λ, q2, α) =

1

ut

Ω

(1− λΩ)2
− α

∂

∂λ
[grF (ϕo, kr)]

+α
∂

∂λ
[grF (ϕe, kr)] + α

∂

∂λ
[
gµ

a
F (ψ, kµ)] = 0, (8.8)

∂

∂q2
Λ(λ, q2, α) =

α

{
∂

∂q2
[grF (ϕo, kr)− grF (ϕe, kr)− gµ

a
F (ψ, kµ)]

}
= 0, (8.9)

∂

∂α
Λ(λ, q2, α) = grF (ϕo, kr)− grF (ϕe, kr)− gµ

a
F (ψ, kµ) = 0. (8.10)

We see from the equation (8.9) that α = 0 or ∂
∂q2 [grF (ϕo, kr)−grF (ϕe, kr)−

gµ

a
F (ψ, kµ)] = 0. The Lagrange multiplier can not be zero, because the equa-

tion (8.8) has no solution for α = 0 and that’s why we suppose

∂

∂q2
[grF (ϕo, kr)− grF (ϕe, kr)− gµ

a
F (ψ, kµ)] = 0. (8.11)
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Now we have two equation (8.10) and (8.11) for two unknown λ and q2.
If we find these (λ, q2) then we found the values of λ that correspond to the
values of minimum and maximum of g(λ).

ii) The null geodesics with one transit through a turning point in latitu-
dinal direction: In this case the Lagrangian (8.5) is

Λ(λ, q2, α) =
1

ut

1

1− λΩ
− αgrF (ϕo, kr) + αgrF (ϕe, kr)

+α
2gµ

a
K(kµ)− α

gµ

a
F (ψ, kµ). (8.12)

If we use the procedure from the previous case, we obtain two equations

grF (ϕo, kr)− grF (ϕe, kr)− 2gµ

a
K(kµ) +

gµ

a
F (ψ, kµ) = 0 (8.13)

and

∂

∂q2
[grF (ϕo, kr)− grF (ϕe, kr)− 2gµ

a
K(kµ) +

gµ

a
F (ψ, kµ)] = 0. (8.14)

iii) The null geodesics with transits through the turning points in radial
and latitudinal direction: The Lagrangian (8.5) is

Λ(λ, q2, α) =
1

ut

1

1− λΩ
− αgrF (ϕo, kr)− αgrF (ϕe, kr)

+α
2gµ

a
K(kµ)− α

gµ

a
F (ψ, kµ). (8.15)

The resulting two equations are

grF (ϕo, kr) + grF (ϕe, kr)− 2gµ

a
K(kµ) +

gµ

a
F (ψ, kµ) = 0 (8.16)

and

∂

∂q2
[grF (ϕo, kr) + grF (ϕe, kr)− 2gµ

a
K(kµ) +

gµ

a
F (ψ, kµ)] = 0. (8.17)

Now we have all formulas to find out the extremes of the function g(λ)
(5.4).

8.3 The derivatives of the elliptic integrals of

the first kind

We need know the derivatives of the elliptic integrals to solve the equations
(8.10) and (8.11), (8.13) and (8.14), (8.16) and (8.17), but at first we define
some auxiliary terms

r′1 =
∂r1

∂q2
, r′2 =

∂r2

∂q2
, r′3 =

∂r3

∂q2
, r′4 =

∂r4

∂q2
, µ′− =

∂µ−
∂q2

, µ′+ =
∂µ+

∂q2
, (8.18)
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where r1, r2, r3, r4, µ+ and µ− are defined in (4.28), (4.29), (4.30), (4.31),
(4.32) and (4.33).

i) The derivative of grF (ϕe, kr) (6.4), (6.10) is for r1, r2, r3, r4 ∈ R
∂

∂q2
[grF (ϕe, kr)] = −GF (ϕe, kr) + gr

[
H + I

(
J − F (ϕe, kr)

2(kr − 1)

)]
, (8.19)

where

G =
(r2 − r4)(r

′
1 − r′3) + (r1 − r3)(r

′
2 − r′4)

[(r1 − r3)(r2 − r4)]3/2
, (8.20)

H =
− (r′1−r′4)

(r1−r4)
+

(r′2−r′4)

(r2−r4)
− r′1

(re−r1)
+

r′2
(re−r2)

2
√

β
√

1− β
√

1− (r2−r3)(re−r1)
(r1−r3)(re−r2)

β, (8.21)

I =

[
−r′1 − r′3

r1 − r3

+
r′2 − r′3
r2 − r3

+
r′1 − r′4
r1 − r4

− r′2 − r′4
r2 − r4

]
kr, (8.22)

J =
sin[2 arcsin

√
β]

4(kr − 1)
√

1− (r2−r3)(re−r1)
(r1−r3)(re−r2)

, (8.23)

and

β =
(r2 − r4)(re − r1)

(r1 − r4)(re − r2)
. (8.24)

ii) The derivative of grF (ϕo, kr) (6.4), (6.10) is for r1, r2, r3, r4 ∈ R
∂

∂q2
[grF (ϕo, kr)] = −GF (ϕo, kr) + gr

[
H + I

(
J − F (ϕo, kr)

2(kr − 1)

)]
, (8.25)

where

G =
(r2 − r4)(r

′
1 − r′3) + (r1 − r3)(r

′
2 − r′4)

[(r1 − r3)(r2 − r4)]3/2
, (8.26)

H =
− (r′1−r′4)

(r1−r4)
+

(r′2−r′4)

(r2−r4)

2
√

γ
√

1− γ
√

1− r2−r3

r1−r3

γ, (8.27)

I =

[
−r′1 − r′3

r1 − r3

+
r′2 − r′3
r2 − r3

+
r′1 − r′4
r1 − r4

− r′2 − r′4
r2 − r4

]
kr, (8.28)

J =
sin[2 arcsin

√
γ]

4(kr − 1)
√

1− r2−r3

r1−r3

, (8.29)

and

γ =
r2 − r4

r1 − r4

. (8.30)

iii) The derivative of grF (ϕe, kr) (6.13) is for r1, r2 ∈ C, r3, r4 ∈ R

grF (ϕe, kr) = −BA′ + AB′

2(AB)3/2
F (ϕe, kr) + (−G + HI), (8.31)
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where

G =
(σ + 1)(r1B

′ + r′1B + reB
′) + (σ − 1)(r2A

′ + r′2A− reA
′)

[(A + B)re −Br3 − Ar4]
√

1− σ2
√

1− kr(1− σ2)
, (8.32)

H = −(
A′

A
+

B′

B
)kr +

2(A + B)(A′ + B′)− 2(r3 − r4)(r
′
3 − r′4)

4AB
, (8.33)

I =
F (ϕe, kr)

2(1− kr)
+

sin[2 arccos σ]

4(kr − 1)
√

1− kr(1− σ2)
, (8.34)

σ =
(A−B)re + Br1 − Ar2

(A + B)re −Br1 − Ar2

, (8.35)

A′ =
2(r1 − u)(r′1 − u′) + 2vv′

2
√

(r1)2 + v2
, (8.36)

B′ =
2(r2 − u)(r′2 − u′) + 2vv′

2
√

(r2)2 + v2
. (8.37)

iv) The derivative of grF (ϕo, kr) (6.13) is for r1, r2 ∈ C, r3, r4 ∈ R

grF (ϕo, kr) = −BA′ + AB′

2(AB)3/2
F (ϕo, kr) + (−G + HI), (8.38)

where

G =
A′ −B′ − ω(A′ + B′)

(A + B)
√

1− ω2
√

1− kr(1− ω2)
, (8.39)

H = −(
A′

A
+

B′

B
)kr +

2(A + B)(A′ + B′)− 2(r3 − r4)(r
′
3 − r′4)

4AB
, (8.40)

I =
F (ϕe, kr)

2(1− kr)
+

sin[2 arccos ω]

4(kr − 1)
√

1− kr(1− ω2)
, (8.41)

ω =
(A−B)

(A + B)
, (8.42)

A′ =
2(r1 − u)(r′1 − u′) + 2vv′

2
√

(r1)2 + v2
, (8.43)

B′ =
2(r2 − u)(r′2 − u′) + 2vv′

2
√

(r2)2 + v2
. (8.44)

v) The derivative of gµF (ψ, kµ) (6.20), (6.24) is

∂

∂q2
[gµF (ψ, kµ)] = GF (ψ, kµ) + gµ

[
H + I

(
J − F (ψ, kµ)

2(kµ − 1)

)]
, (8.45)

where

G =
µ−µ′− + µ+µ′+
(µ2

+ + µ2
+)3/2

, (8.46)
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H =
−µ′− − µ′+ +

µ′++µ′−
µ++µ−√

δ
√

1− δ
√

1− µ2
o

µ2
−+µ2

o

δ, (8.47)

I = 2

[
µ′+
µ+

− µ−µ′− + µ+µ′+
µ2

+ + µ2−

]
kµ, (8.48)

J =
sin[2 arcsin

√
δ]

4(kµ − 1)
√

1− µ2
o

µ2
−+µ2

o

, (8.49)

and

δ =
µ2

o(µ
2
− + µ2

+)

µ2
+(µ2− + µ2

o)
. (8.50)

vi) The derivative of gµK(kµ) (6.24) is

∂

∂q2
[gµK(kµ)] = −GK(kµ) +

√
µ2− + µ2

+

µ2
+(1− kµ)

I

2
J, (8.51)

where

G =
µ−µ′− + µ+µ′+
(µ2

+ + µ2
+)3/2

, (8.52)

I = 2

[
µ′+
µ+

− µ−µ′− + µ+µ′+
µ2

+ + µ2−

]
kµ, (8.53)

J = E(kµ)− (1− kµ)K(kµ). (8.54)

E(kµ) is the complete elliptic integral of second kind that is defined as

E(k) =

π
2∫

0

√
1− k sin2 θdθ. (8.55)
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Chapter 9

Conclusion

Our main goal was to find the procedure (or an analytic formula) to de-
termine the extremes of the function g(λ) (5.4). The procedure was found
with the help of Lagrange multipliers. We obtained two equations (see the
previous chapter) whose solution provides searched extremes. Why do we
have two equations to calculate the extremes rather than a single formula
that we desired? The answer is evident, because the Carter equation (4.19)
depends on two parameters (λ, q2) (if we know other parameters re, θo and
a) and from this reason we have two equations for two unknowns. Unfor-
tunately these equations are so much complicated that can be solved only
numerically. It is a work for the future to create a program that will be able
to solve these equations.

The graphical solution is another way to find the extremes. The graphical
solution does not give accurate values but approximate. It does not matter,
because we can use this information to optimize the numerical code. More
important is that the graphical solution shows what null geodesics come to
the observer, and we found out that there are only three possibilities: without
a transit through the turning points, with a transit through the turning point
in latitudinal direction, and with a transit through the turning point in both
the radial and latitudinal directions. The number of types of null geodesics
depends on the inclination angle of the observer. For very small inclinations
there are only two null geodesics: without a transit through the turning
points, with a transit through the turning point in latitudinal direction, and
for larger inclinations there are already three kinds.

The dependence on an angular momentum of black hole, an emission
radius and an inclination angle of the observer is shown in the chapter 7
Graphical solution. We can see that the shift of the frequency very change
and that the wave length depends both on the parameters of system and on
the position of observer.
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