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Ústav teoretické fyziky
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Chapter 1

Introduction

In our present work we study the dynamics of money in exchange economy.
This topic belongs to a quite new interdisciplinary field called econophysics.
For those who are unfamiliar with the wide variety of problems econophysi-
cists deal with we will summarize here the most important problems and
their possible solutions.

Physics is a discipline with long history and highly sophisticated mathe-
matical methods which were often used by physicists earlier than by mathe-
maticians themselves. The methods developed primarily for the description
of physical systems could be used in many other fields of research. Especially
the approaches of statistical physics find many applications in areas like so-
ciology, computer science, finance and economics. Physical applications in
the two latter became so vast that it resulted in establishment of the new
specialization - econophysics.

A great deal of econophysics (but not all as we will see later) is based on
the simulations of economy and financial markets as a system of interacting
agents. These agent-based models stem from an idea that every market,
however complicated, is composed of elementary components (usually the
traders) whose interaction results in the dynamics of the financial market.
The background of this approach is quite obvious because real-life markets’
evolution is driven by the investors who buy and sell financial instruments
in order to achieve their goals. When the investors collectively buy then the
price increases and vice versa when the investors sell their shares the price
of the corresponding asset diminishes.

There are several general characteristics of a financial market which eve-
ry model should take into account. These characteristics are common for
all markets with no regard to type or location of the particular market. We
can say that they play the role of a certain arbiter for the proposed models.
For example it can be empirically observed that the distributions of returns
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CHAPTER 1. INTRODUCTION 6

(changes of the prices) exhibit power-law tails or that the volatility (devia-
tions of the prices) is strongly long-time autocorrelated. This phenomenon
is called volatility clustering. Another typical feature of the market is the
regular emergence of bubbles and their subsequent crashes. By chance we
live nowadays (2009) in one of these recurrent critical periods. In the follow-
ing text we present the most influential models in econophysics and compare
their features with the above mentioned stylized facts. For more information
about models of financial markets see [1].

The first numerical experiment dealing with the stock exchange market
was G. J. Stigler’s model [2], 1964, with agents who randomly place orders to
sell or to buy. The price of the stock is then calculated from the performed
trades. Even though the agents don’t follow any strategy, the stock price
fluctuates as in the real market and we can see the volatility clustering. The
distributions of the returns do not exhibit fat tails so we cannot take the
model too seriously but Stigler’s work was really pioneering and another
more successful simulations followed.

The first model dealing with crashes was proposed by Kim and Markowitz
[3]. In their paper the authors tried to explore the stock market crash
in 1987 when a sudden decrease of U.S. stock without any serious reason
in the form of a new information influencing the market occured. Most
economists blamed hedgers and portfolio insurers because it was thought
that they contributed to the crash by increasing volatility. For this reason
Kim and Markowitz attempted to investigate the relationship between hedg-
ing strategy and volatility with a simulated market containing two types of
investors, so called rebalancers and portfolio insurers. The rebalancers’ stra-
tegy is to keep one half of their wealth in stock and the other half in cash.
This strategy stabilizes the market because when the price is increasing the
traders sell stock to keep their wealth half to half and vice versa when the
price is decreasing. The aim of portfolio insurers is to preserve the wealth
at least on some minimal level (called floor). When the price is decreasing
the portfolio insurer sells his stock in order to keep more of his fortune in
riskless cash. This behaviour has evidently destabilizing effect. Although the
model doesn’t cover other important features of the crash and possesses a few
imperfections, it shows that portfolio insurance strategies have destabilizing
potential and could cause higher deviations of prices.

Kim and Markowitz used for the description of the behaviour of their
agents different complicated strategies commonly applied in real financial
markets. More recent models use much simpler rules of agents’ behaviour.
For example the approach proposed by M. Levy, H. Levy and Solomon [4]
derives the behaviour of the agents from the traditional economic theory of
utility which all participants of the market should maximize. Each agent
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dynamically allocates his whole wealth between two possible financial assets
- risky shares or riskless bonds - according to the recent changes of prices.
A random variable is added to the utility function in order to prevent the
system to get stuck which also corresponds with individual preferences of
each agent.

M. Levy, H. Levy and Solomon primarily attempted to answer questions
about the nature and mechanisms of bubbles and crashes (and also were
quite successful in explaining the crashes as a result of synchronous response
of the investors to the past evolution of the market and information they
were given) but the main problem of their model is that it lacks scaling laws
(power-law tails). This inconvenience was partly solved in extensions of the
model in [5] and [6].

Another interesting model which includes the emergence of scaling laws
was devised by Lux and Marchesi [7]. These authors divide the agents ran-
domly into 3 groups, the first group countains fundamentalists who regard
the price fluctuations as deviations from its intrinsic value, the second and
third group are chartists who believe they can guess the future prices from
the past price series and either buy or sell according to their “knowledge”.
The substantial ingredient of the model is that actions of the agents affect the
price changes which subsequently influence the ratio of agents in the groups.
The result is that the model is able to permanently generate bubbles, caused
by the overvaluation of assets, and market crashes.

The approach when agents act in bunches is surely a way to construct
a system with properties of the power-law tail. First references about this
phenomenom could be found for example in the sandpile model [8] which
structually resembles avalanches on a pile of sand when we add grains on the
top. The alternative to the sandpile model is the Cont-Bouchaud model [9]
closely related to the effects of bond percolation.

Not all econophysical articles are interested only in the financial mar-
kets. For example a remarkable strategy describing the behaviour of ants
was introduced by Kirman [10]. His stochastic model of binary choice si-
mulates how the ants act to maintain continual supply of food. This model
served Kirman as a paradigm for describing the behaviour of human agents
imitating each other (so-called zero inteligence model).

It is interesting to note that some researchers performed experiments on
humans. For example Jasmina Arifovic [11] simulated the market with the
help of a group of students and some basic market rules.

All the models described above deal with situations from relatively recent
history. On the contrary Sneppen and Donangelo introduced a model simu-
lating economy at its birth [12] and in our thesis we would like to reassume
their work, investigate it in depth and make some interesting extensions.



Chapter 2

Model of money emergence

Before money was established the usual mean of trade was barter, i.e. people
exchanged goods in their property for another goods they needed. This way
of trade is very ineffective for many reasons, especially because it makes
storing wealth very difficult. Consequently the ancient civilizations usually
used a very specific commodity as a mean of trade. This commodity was for
example gold, silver, diamont, different fruits, tulips and so on. Even until
the 1970’s the money in the USA were partially based on the gold standard
and up to this day the return to the gold standard is supported by many
economists, especially those following the Austrian school of economics. All
of these means of trade have common features like that they are very hard
to find or grow and that they are very durable. We can pose a question how
it is possible that so many people agreed on one preferred commodity and
what is the nature of the emergence of such a pattern in trading.

The literature concerning money emergence is quite voluminous. In this
work we will follow papers by Donangelo and Sneppen who draw their inspi-
rations from Yasutomi [13] and Kiyotaki and Wright [14]. Another contri-
bution to this theme was made for example by Jones [15]. Except the work
[12] we are going to investigate in more detail Donangelo and Sneppen also
wrote many other articles dealing with money emergence - we should at least
mention [16] and [17].

In the paper [12] called Self-organization of value and demand Donangelo
and Snepen simulate the early economy as a system of interacting agents who
desire to complete their portfolios with products they lack by bartering with
other traders. Beside this strategy they keep records about products which
were asked from them. In case pure barter trade is not possible, the agents
can buy products they already possess in their portfolios if the products
are significantly present in the list of previous demand. The product with
the greatest demand then plays the role of money, i.e. using money we are
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CHAPTER 2. MODEL OF MONEY EMERGENCE 9

able to buy anything we want to because every seller accepts money. It was
found out that the emergence of money is induced by the trading activity
itself without any forces outside the system or any special properties imposed
on the products. We will follow this direction and construct our model of
economy with similar conditions and patterns of behaviour which we will later
modify for better understanding of the nature of the emergence process.

2.1 Model description

We assume an economic system which will simulate an ancient civilization.
This system will be isolated without any wealth coming in or out and with
constant number of people (agents) who interact among themselves according
to given rules. We model the behaviour of the agents as very selfish because
they don’t cooperate among themselves and pursue their own goals. There
will be two kinds of a goal. First, each agent is envious and therefore if he
finds something the other agent has and he doesn’t, he attempts to make a
deal to obtain this desired commodity. The second reason for trade will be if
the agent doesn’t find anything interesting but on the other hand he has an
opportunity to buy something valuable and have this commodity prepared
for a future exchange of the first type. The second way of trade can be
interpreted as savings or delayed consumption.

The parameters of our simulated economy are the number of agents Nag,
the number of all different products in the system Npr which can be traded
with, the number of products each agent is given at the beginning Nun and
the length of memory Nmem which limits the agent’s local memory of trade
opportunities. It is important to stress that the agents remember every
attempt to trade and even unperformed trades are remembered. This feature
describes common behaviour of market participants and without it the model
loses its main properties.

The evolution of the system is fully governed by two matrices Mem and
Por, both of them depending on discrete time t ∈ N. Por is a portfolio mat-
rix with dimensions Nag ×Npr and it stores the information about what each
agent owns. Each row is therefore composed of frequencies of commodities
some agent possesses, Porij being the count of the j-th commodity for the
i-th agent. When two agents agree on a trade, the matrix Por changes in two
rows, in each row one element is increased by 1 unit and another one by 1
unit descreased. Mem is a matrix Nag ×Nmem which stores the information
about prior encounters and in the i-th row articles attempted to trade with
the i-th agent are saved.

The dynamics of the system is following. At first we fill the matrices Mem
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and Por with suitable random data. The matrix Por is filled with nonnegati-
ve whole numbers which must fulfil the condition

∑Npr

j=1 Porij = Nun for all i
if we want the wealth to be fairly distributed. The matrix Mem is filled with
numbers 0, 1, 2, ..., (Npr −1), each number represents one product. After this
initiation we take two randomly chosen agents and let them interact. The
trade is performed if both of them agree on the exchange. After the trade
they both erase the last item in their memory, remember the latest demand
and change their portfolios according to what each one bought and sold. In
this setting we enable the exchange of one commodity for another only which
is different from the original paper. If the agents don’t come to an agreement,
they only put the demand into their memory and nothing else happens. This
scheme we repeat and at each time step there is one attempt to trade until
we stop the run.

2.2 Simulation

The first thing we would like to know about the evolution of the system is
whether it reaches some kind of a stationary state. The initial conditions
are random because we don’t have any reason or an a priori pattern for
doing it otherwise. The system should reach some stable state independently
on the realization of the random varible building the initial distribution of
commodities in matrices otherwise the investigation of our problem wouldn’t
make any sense.

We can for example study whether the system has a steady quotient
between the first and the second way of trade after some time from the
initiation as in [12]. The result can be seen in Figure (2.1). It is evident
that after some time the quotient between the first and second kind of trade
becomes constant. This means that there is a constant probability that when
two agents meet, the trade will be of the second type for example.

The system evolves and each agent has some commodities loaded in his
memory. How could be recognized the most favourite commodity and how
should we measure such a thing? There could be many methods but the
following one seems to be the most appropriate. We find for each agent an
item which is most present in his memory and then select the item with
the ”money property” which most agents prefer. The number of agents who
prefer this money commodity we denote as Q, Q/Nag is apparently percentage
evaluation of the populality of the money commodity among the agents.

More precisely, let us define function of two variables g(i, k),
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Figure 2.1: The system tends to the stationary state with constant ratio
between money and barter trade. We set the parameters Nag = 20, Npr = 20,
Nmem = 40 and Nun = 40. As can be seen the system stabilizes very quickly
and the quotient between the money and barter exchange is approximately
0.75:0.25. For our setting of parameters it takes about 1000 iterations before
the system reaches its stationary state, for bigger number of agents and
products this unstable period would be of course much longer.

i ∈ {1, 2, .., Nag}, k ∈ {0, 1, .., Npr − 1},

g(i, k) ≡
∑

j

δ(Memij − k) (2.1)

where δ denotes the Kronecker symbol. Next we define function G(i)

G(i) = l if g(i, l) ≥ g(i, x) ∀x 6= l. (2.2)

The definition of G(i) is ambiguous and so if there are several variables
which fulfil the inequality we take the smallest one. Commodity l∗ which
occurs most frequently as the value of function G we call the commodity
with money property and number of agents who regard l∗ most valuable we
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denote as popularity index Q. Again, if there are several possibilities we take
as money the smallest l∗.

How the evolution of index Q looks like and how the money property
passes from one item to another one is shown in Figures (2.2) and (2.3). We
can notice the standard behaviour of the system. The initial state is random
and therefore the index Q (green line) is very low at the beginning. After
some time index Q increases due to trade activity of the agents who begin to
regard one item very valuable, the quotient Q/Nag can even reach one and
all agents can come to a full agreement about the money property. Later
index Q decreases due to the random turbulence caused again by the traders.
When it reaches some boundary, it enables another product to become more
valuable, to be the main mean of trade and therefore to gain money property.
Another rise of index Q follows and the whole course begins to repeat. It is
very interesting to notice that the change of the holder of money property is
accompanied by an abrupt decrease of popularity index Q. It will be shown
later that we are able to find out probability that after such a steep decrease
there will be a transition of money property.

2.3 Commodities heterogeneity

So far we have composed a system of agents with such a prescribed pattern
of behaviour that it matches up with our notion of a situation in real ancient
society. However, it is a little strange that the commodities in the system
are totally equal and each commodity can become valuable. Goods in the
real world differ in many aspects, for example the quantity of the commodity
available on the market is very important and thus we should investigate our
system supplied with such a feature. To see if it makes sense to add such
a new attribute, let one commodity (the 10-th) be rare, say half distributed
than other items, and see what effect it has. Two specimen of the evolution
with this new condition are presented in Figures (2.4) and (2.5). It is clear
that the rare commodity prevails over all other commodities and index Q
reaches its maximum and remains there. This means that the only way to
perform money trade is with goods #10. Figure (2.5) displays the same
sample evolution as in Figure (2.4), just supplied with a longer time period,
and confirms our suspicion that the deviation of Q is very low and never
leads to the change of money property.

Rare products therefore seem to be more valuable than products plen-
tifully represented in agents’ portfolios. To illustrate this proposition we
will define density function D(x) which will determine the probability of oc-
curence of commodities in agents’ portfolios and which enables us to model
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Figure 2.2: Establishment of money property and its evolution. The para-
meters we set Nag = 50, Npr = 50, Nmem = 100, Nun = 100. The role of
money plays at first commodity number 22, after that commodity number 14
whose dominance commodity number 27 disrupts with its two lower peaks.
At the end commodity number 22 is again most preferred. At one moment
the system is fully ordered with index Q equal to 50.

the uneven presence of commodities in the system. We will run our program
many times to obtain distribution of money property for all goods. Our
primary aim is to describe the dependence of the frequency plot on density
D(x).

Let us begin with the simpliest form of D(x) - linear function. We model
the rareness that we take commodity after commodity and let it be in the
system with probability D(x) which is dependent on the commodity number
x ranging from 0 to 49. We erase one unit of the chosen commodity with
supplementary probability 1 − D(x). The formula of D(x) could be for
example

D1(x) = 0.7 +
0.3x

Npr − 1
(2.3)

if we want to erase the first goods with number 0 with probability 0.3 and
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Figure 2.3: Establishment of money property and its evolution. The parame-
ters we set Nag = 200, Npr = 200, Nmem = 400, Nun = 400. Money property
is possessed by commodities number 104, 140 and 0, successively.

don’t want to erase the last item 49 at all. A slighter modification could be

D2(x) = 0.9 +
0.1x

Npr − 1
(2.4)

with evident interpretation of the line of smaller slope which doesn’t erase
the last item. Figure (2.6) shows the frequency plots of money property for
these two densities. In both cases we see that the more rare the commodity
is the more frequent it becomes money. In the first case the frequency plot
is fully ruled by commodities with smaller numbers and commodities with
higher numbers don’t occure at all. In the second case the frequency plot
is also dominated by commodities with smaller numbers but here also other
commodities are given a chance to become money. This is because the func-
tion D2(x) is not so steep. This indicates that the rate between the values
of D(x) is proportional to the occurence in the frequency plot.

Let us try another four functions D3(x), D4(x), D5(x) and D6(x)

D3(x) = 0.7 +
0.3ex

eNpr−1
(2.5)
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Figure 2.4: Agents prefer rare commodity #10. The parameters we set
Nag = 50, Npr = 50, Nmem = 100, Nun = 100. We can notice that after
leaving the initial random state there are several commodities with money
property but when index Q is increasing, the commodity number #10 domi-
nates. Index Q reaches its maximum after approximately 4500 trades.

D4(x) = 0.9 +
0.1ex

eNpr−1
(2.6)

D5(x) = 0.7 +
0.3

√
x

√

Npr − 1
(2.7)

D6(x) = 0.9 +
0.1

√
x

√

Npr − 1
. (2.8)

Frequency plots for density functions D3(x), D4(x) are shown in Figure (2.7).
These two density functions are exponentials and from their shapes we can
estimate that almost all commodities in the system are more or less equal
except a few latest ones which has proportionally much higher occurence
in agents’ portfolios. Therefore we can see such an abrupt change in the
behaviour of the curves near points 45.
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Figure 2.5: Small deviations of index Q in the case of rare commodity #10.
The parameters we set Nag = 50, Npr = 50, Nmem = 100, Nun = 100.

Functions D5(x) and D6(x) consist of square root and therefore contain a
few very rare elements at the beginning of the set of commodities. Because of
this property the frequency plots are much steeper from the beginning than
those for linear density functions as we can see in Figure (2.8).

2.4 Memory corrosion and its temperature

We have assumed so far that the memory of agents is perfect in the sense the
agents remember every trade attempted to be performed in the history until
the cut-off Nmem. One may find it strange that we have taken almost all
processes as random and the memory is modelled deterministically. In some
sense this arrangement resembles a thermodynamic system at zero tempe-
rature. After the agent performed a trade the memory ”freezes” and stays
the same until another chance for the trade comes. The alternative approach
would be to let the agents forget. We can take the inspiration in the Ising
model for magnets and introduce the concept of temperature into our sys-
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Figure 2.6: Frequency plots for densities D1(x) and D2(x). The parameters
we set Nag = 50, Npr = 50, Nmem = 100, Nun = 100. Plots are calculated
from 200 000 sample evolutions of length 50 000 trades. D1(x) is a steep
linear function and thus the probability of money occurence is much higher
for commodities with lower index than for the rest of the goods. D2(x) is
gentler than D1(x) so its plot begins on lower value at zero and gives a chance
even to the latest commodities.

tem. In statistical physics the probability of the state S with energy E at
temperature T is given by the Boltzmann distribution

P (S) =
e−E/kT

Z
(2.9)

where Z is the partition function and k the Boltzmann constant. We have
already seen that our system is usually in a state where the memory is do-
minated by only one commodity which is common to almost all agents. This
state is highly organized and we can call this state the ground state and assign
him zero energy. Let us introduce ”noise” into our system and say that when
we change 1 item in the memory of the agent, we have applied work to the
memory and its energy increased. In view of this we can say that the system
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Figure 2.7: Frequency plots for densities D3(x) and D4(x). The parameters
we set Nag = 50, Npr = 50, Nmem = 100, Nun = 100. Plots are calculated
from 200 000 sample evolutions of length 50 000 trades. The abrupt change
near point 45 is caused by the shape of the exponential density function
which quickly rises for the latest commodities.

has temperature T if we change 1 item in agent’s memory with probability
e−1/T at each step (this formula arises from Boltzmann distribution after
appropriate rescaling of constants, the units we take dimensionless). The
increase of temperature therefore causes the increase of agents’ lapses. In
Figure (2.9) we can compare the evolution at four differrent temperatures
0, 0.145, 0.221 and 0.62, successively. This picture shows that increasing
temperature disrupts the order in the system which is demonstrated by both
the lower value of coefficient Q and the unstability of the commodity with
money property. Just like in other physical systems the temperature here
causes greater disorder.
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Figure 2.8: Frequency plots for densities D5(x) and D6(x). The parameters
we set Nag = 50, Npr = 50, Nmem = 100, Nun = 100. Plots are calculated
from 500 000 sample evolutions of length 50 000 trades.

2.5 Probability of money transition

We can get the impression from Figure (2.2) that the trasition of money
property from one commodity to another happens at a specific value of Q. To
investigate if our notion is right we run the simulation many times and record
the values of index Q at which the commodity loses its money property. We
should incorporate the condition that this commodity has money property
long enough to follow the characteristic history in the shape of reverse ”U”
because we would like to avoid those unordered regions before another money
establishes. The resulting frequency plot we see at the first plot of Figure
(2.10) (minimal waiting time 10 000) and we can make the conclusion that
the loss of money property happens in a certain interval of index Q. If the
system drops for example into some state with Q = 22, then we have a 50
percent chance that the transition happens (supposing parameters of Figure
(2.10)).

When we decrease the prescribed minimum waiting time of duration of
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Figure 2.9: Higher temperatures disrupt the trade organization. The pa-
rameters we set Nag = 50, Npr = 50, Nmem = 100, Nun = 100. Notice the
decrease of index Q when temperature increases.
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Figure 2.10: The transition of money property occurs only when the value
of Q is around 22. The parameters we set Nag = 50, Npr = 50, Nmem = 100,
Nun = 100, number of performed trades is in the range of millions.
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index Q we see that the expected value of transition increases. The inter-
pretation could be that in the case of lower minimum waiting time there
might be two or more commodities strugling for the money property and
the drop of Q doesn’t have to be so significant in order to cause the loss of
money property. The important characteristic is that the frequency plot is
not substantially dependent on our choice of the minimum waiting time.

2.6 Correlation of waiting times

Another interesting question is whether two succesive waiting times of money
property are correlated. Can we for example claim that after some money
commodity lasted relatively long time, the subsequent money commodity will
have higher probability to last longer than usual? In order to answer this
question we record waiting times li of money commoditities which reaches
some minimum length and then plot points (li, li+1). If the waiting times
were correlated, we would observe the typical line intersecting the origin.
When we look at Figures (2.11) and (2.12), we don’t recognize such a line,
the data seem to be totally uncorrelated.

2.7 Distribution of waiting times

We can also draw the frequency plot of waiting times li, see Figure (2.13).
The data are plotted in the logaritmic scale and in this scale the frequencies
decrease for longer waiting times as a line with slope -1.8. This indicates that
the frequency plot of waiting times has the fat tail with coefficient 1.8, i.e.
it behaves like function 1/x1.8 for waiting times long enough. This could be
compared to a pure random walk whose coefficient is 1.5. We can therefore
conclude that our system behaves nontrivially.

2.8 Conclusion

In order to conclude this section we repeat that we have designed a few
basic rules for the behaviour of the agents and these rules we have applied to
our simulation. The evolution of the system exhibits the main characteristic
similar to that in [12], i.e. we can observe how the money emerges as a
result of trading activities of the agents. This proves that the concept of the
simulated market is robust as was already noticed by Sneppen and Donangelo
themselves.
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Figure 2.11: Waiting times of money property seem to be uncorrelated. The
parameters we set Nag = 20, Npr = 20, Nmem = 40, Nun = 40. For the
statistics it was performed 5 mil. trades and the data are plotted in the
logaritmic scale in order to recognize any possible pattern of dependance.
We ask for the waiting times to be at least 50 trades long in order that it
could be taken into account.

We made several significant modifications in both commodities and agents’
behaviour. When we deviate from the uniform distribution of commodities
in the system, then the commodities become unequal in the sense that more
rare commodities have higher probability of becoming money as was shown
in section (2.3). This result is not suprising because every commodity which
played the role of money in real-world early economies was very hard to find
and there was only small amount of it in circulation.

When we introduce temperature into the system and allow the agents to
forget, then the system becomes less ordered, behaves more chaotically and
at high temperatures the phenomenon of money emergence can totally dis-
appear. The indicator of this confusion is the low value of index Q. From the
economist’s point of view the temperature captures the individual deviation
from the rational decision-making based on the experience of each agent. We
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Figure 2.12: Waiting times of money property seem to be uncorrelated. En-
largement of Figure (2.11).

can say that if every agent deviated too much from the best trading strategy,
the money would never emerge.

In section (2.5) we discovered that as soon as some commodity attains
money property it loses its money position around certain value of index
Q whose distribution is shown in Figure (2.10). This transition is usually
preceded by an abrupt decrease of the popularity index Q which may, when
reduced to some value from the critical interval, lead to the end of one money
era. It would be worth the effort to collect data to which we could link our
model because in that case we would for example have the tool for finding
possible weak moments of the world’s leading currency (which is at present
the US dolar). We hope that this survey will be undergone sometimes in the
future.

The latest simulation analysis deals with the study of waiting times of
money property. We discovered that the waiting times of money duration
are uncorrelated and the frequencies of waiting times exhibit a tail with the
exponent 1.8 which indicates nontrivial behaviour.
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Figure 2.13: The frequency plot for waiting times li. The paremeters we set
Nag = 50, Npr = 50, Nmem = 100, Nun = 100. Both axes are plotted in
the logaritmic scale, in this scale the frequency of waiting times decrease as
1/x1.8.



Chapter 3

Analytical solution

In the simulations we had Nag agents who interacted between themselves
with the strategy we imposed on them. Now we would like to investigate the
system analytically. Our strategy will be to transcribe the if-then conditions
into mathematical equations and try to solve them. The main idea is to
observe the portfolio of just one agent called the representative agent and
the influence of other agents on the representative agent approximate by an
averaged “mean field”. With this approximation we can assume that the
evolution of our system is simililar to the evolution of the system with only
two agents - the representative agent and a rival who substitutes for the rest
of the original system.

3.1 Markov approximation

Denote by ~R one possible configuration of the portfolio of the representative
agent; that is when for example there are only two products and the agent
owns k-times the first product and n-times the second product, ~R is a two
dimensional vector (k, n). The coordinates of vector ~R will be denoted by

{ri}Npr

i=1 so if for example ri equals 4, then the representative agent owns 4

items of the i-th product. We see immediatelly that every vector ~R is a sub-
ject to the constraint

∑Npr
j=1 rj = Nun (Nun is the wealth of each agent) so its

l1 norm is always constant. It could be shown that using some basic combi-
natorial operations the number of all possible states card{~R} is

(

Nun+Npr−1
Npr−1

)

(trick with balls and dividers, see book [18], section 3.4). The composition of
agent’s portfolio changes in time and we can imagine this as a stochastic pro-
cess {Xt}, t ∈ N0, taking values in the set {~R} (hence {~R} is the state space
of {Xt}). In the simulations the value of Xi for some i depends strongly on
the history of the process but in our approximation with only two agents and

26
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no recorded history Xi depends only on the last realized value Xi−1. Thus the
problem possesses the Markov property and we can think of it as a Markov
chain with discrete time and the finite set of states. Moreover, the behaviour
of the agents is unvarying and so the chain is homogeneous. To complete
our analysis we must add that all states are persistent non-null because the
chain is irreducible (every state must be accessible from any state) and with
finite number of states. For more information about Markow chains see [20],
chapter 6.

3.2 Transition matrix

The homogeneous Markov chain is fully described by the transition matrix
w = card{~R} × card{~R}. Every trade consists of one purchase and one sale

and therefore the portfolio vector ~R changes at 2 positions in one step - the
i-th becomes bigger by 1 unit and the j-th becomes smaller by 1 unit. This
interchange could be described by the operator Lij :

Lij (r1, r2, . . . , ri, . . . , rj , . . .) ≡ (r1, r2, . . . , ri + 1, . . . , rj − 1, . . .) . (3.1)

Because we have constraints on the form of the vector ~R which can attain
only nonnegative integer values and its biggest value cannot exceed Nun,
operator Lij is defined on all those ~R’s for which the transformation Lij

~R
makes sense. We can also notice that Lij is a nonlinear operator. Probability

of transition from the state ~R to another state Lij
~R

w
(

~R → Lij
~R
)

= P
(

Xn+1 = Lij
~R|Xn = ~R

)

(3.2)

is supposed to be a function of values ri and rj only. This simplifies things a
lot and without this assumption the model would be practically unsolvable.
In fact the transition between any two elements from the state space depends
on all components of the vectors but the intuition tells us that the i-th and
j-th position play the crucial role.

3.3 Different means of trade

The agents will trade either because they both lack some product the other
agent owns (so called barter trade) or because the other agent has something
they imagine valuable, this case we call money trade. The third option is
the mixed barter-money or money-barter trade. The probabilities for each
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possibility will be as follows:

wBB

(

~R → Lij
~R
)

= δ(ri) × (1 − δ(rj)) × P0(rj) × (1 − P0(ri)) (3.3)

for barter-barter trade,

wMM

(

~R → Lij
~R
)

= (1 − δ(rj)) × m(ri) × m(rj) × (1 − P0(ri)) (3.4)

for money-money trade,

wMB

(

~R → Lij
~R
)

= (1 − δ(rj)) × P0(rj) × (1 − P0(ri)) × m(ri) (3.5)

for money-barter trade,

wBM

(

~R → Lij
~R
)

= (1 − δ(rj)) × m(rj) × δ(ri) × (1 − P0(ri)) (3.6)

for barter-money trade.
In these equations we have used δ(x) for the Kronecker delta

δ(x) =

{

1 if x = 0
0 else,

with P0(ri) we estimate probability that the representative agent with ri

units of some commodity will encounter an agent who doesn’t possess this
commodity. In order to calculate the value of P0(ri) we assume a big system
in which the total count of some product is approximately γ ≡ NunNag

Npr
and

the distribution of this one product among the agents is absolutely random.
The search for P0(ri) we can therefore link to the Maxwell-Boltzmann model
(Maxwell-Boltzmann model could be found for example in [18], section 3.3)
where distinguishable particles are deposited into boxes. In the limit when
the number of particles and boxes grow at the same rate we can analyti-
cally express the probability that there will be k particles in some box as
pk = λk

k!
e−λ where λ is the ratio between number of particles and boxes.

In this formula we recognize the well-known Poisson distribution. When the
representative agent owns ri units of some product, there are only γ−ri units
of the same product in the rest of the system and therefore in the application
for our model λ = γ−ri

Nag−1
and P0(ri) = p0 = e−λ.

The function m(rj) stands for the memory and its value tells us with what
probability the j-th commodity will be chosen as the article of trade during
money exchange. Memory in the simulations depends on Nmem previous
encounters but we have chosen Markow chain approach and thus we need an
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approximate formula which describes the memory on the basis of the actual
state. From the simulations we know that most of the time the system is
ordered and most agents’ memories are similar in the sense of index Q so
it is reasonable not to distinguish representative agent’s memory from the
memory of his rival. Next, the rival agent substitutes for all agents except one
and when this rival agent doesn’t have some commodity, from the condition
of wealth preservation it must be concentrated in the representative agent’s
portfolio. Concentration of one commodity implies higher demand for this
commodity on the basis of barter exchange and therefore we set m(ri) ≡
P0(ri). This assumption is very convenient and makes further calculations
much easier as will be seen later.

The origin of equations (3.3)-(3.6) is following. First take the probability
wBB. Because the trade has barter-barter property, we need to ensure that
the agent possesses the commodity he is supposed to sell and on the other
hand that he doesn’t possess the commodity he buys. For this reason we
used two Kronecker deltas. The term P0(rj)× (1−P0(ri)) tells us with what
probability the rival agent doesn’t have the j-th product so the representative
agent can sell and at the same time that the rival agent has the i-th product
so the representative agent can buy. The two probabilities P0(ri) and P0(rj)
are not independet because the agents possess constant quantity of products
and hence the number of one product influences the number of other product.
Then again, when there are a lot of products and agents, the influence is not
so strong and we can take the two random variables as independent and
assume that the probability density factorises. It is also important to note
that the sum of all probabilities of transitions beginning in one fixed state
~R is not equal to one. That is because in our approximation we take the
particular transition for granted and don’t count in other possibilities the
barter trade could also be possible. But we remind that the agents meet
randomly according to the uniform distribution and therefore the probability
of one state ~R turning into another state ~R

¯
is in the right ratio with the

probability of different state ~T turning into another different state ~T
¯
. At

the end of the calculation we will normalize all probabilities. Other types
of trade would be done in the same way with the use of memory function
m(ri) which models the memory of the agent from the current state of the
portfolio.

So now we are able to characterize the process as a Markov chain with
some initial distribution and the matrix of transition w = aBBwBB+aBMwBM+
aMBwMB + aMMwMM where the coefficients before w’s denote the probabili-
ties of occurence of the very type of trade. We can estimate these coefficients
from the simulation.
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3.4 Master equation

Vectors ~R are very instructive tool how to describe portfolios of the agents
but it is quite difficult to manipulate them. We will now introduce another
representation of the portfolios which simplifies further algebraic manipula-
tions.

Every ~R can be uniquely transformed into a matrix S which is a matrix
(Nun + 1) × Npr, every element in S is zero except Npr positions S

(

ri

i

)

with
the value of one. The symbol S

(

ri

i

)

denotes the element in the ri-th row and
i-th column, this notation will be useful in the following sections. Let pt(S)
denote the probability of state S at time t, then the matrix Πt defined as the
averaged occupancy of agent’s portfolio is

Πt =
∑

{S}

pt(S)S. (3.7)

This will be the basic quantity whose evolution will be investigated analyti-
cally. The elements of this matrix tell us probability that the representative
agent owns given number of some product at time t.

Now we would like to compute the derivative of Πt at some element
(

x
y

)

so we could be able to observe the dynamics of the system. When we look at
the equation above, we can differentiate the sum term by term and therefore
we need to know the time derivative of pt(S). This can be done easily with
equations (3.3)-(3.6). The probability increases when one state S ′ very near
S changes to S and on the contrary the probability decreases when S changes
to something else. In view of this we can write

dpt(S)

dt
=

∑

i6=j

w(Lij
~R → ~R)pt(Lij

~R) − w(~R → Lij
~R)pt(~R), (3.8)

in the equation we sum over all indices which make sense for given ~R. Thanks
to the unique equivalence between the representations ~R and S we can write
pt(~R) as well as pt(S) because we consider the same state, just in different
representations. By taking the derivative of Πt term by term and substituting
for ṗt(~R) we get

dΠ

dt

(

x

y

)

=
∑

S

∑

i6=j

[

w(Lij
~R → ~R)pt(Lij

~R) − w(~R → Lij
~R)pt(~R)

]

S

(

x

y

)

. (3.9)

We can notice that the composite operator LijLji is the identity on the set
of all possible states and because we sum over all states and all possible
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transitions we are able to rewrite the equation as

dΠ

dt

(

x

y

)

=
∑

S

∑

i6=j

w(~R → Lji
~R)pt(~R)(

̂
Lji

~R)

(

x

y

)

−
∑

S

∑

i6=j

w(~R → Lij
~R)pt(~R)S

(

x

y

)

(3.10)

Here the symbol
̂
Lji

~R represents the matrix form of Lji
~R and we again sum

over all possible states and indices. By changing the indices and factorizing
we get

dΠt

dt

(

x

y

)

=
∑

S

∑

i6=j

w(~R → Lij
~R)pt(~R)

(

̂
Lij

~R

(

x

y

)

− S

(

x

y

))

. (3.11)

Now let’s have a look what w means - it consists of four terms defined above.
Let us take the first term for the barter-barter trade. It tells us that the i-th
coordinate of ~R should be zero and the j-th coordinate non-zero. From what

was already said the parenthesis
(

L̂ijR
(

x
y

)

− S
(

x
y

)

)

is always zero except

these four cases

1. if S
(

x
y

)

= 1, x 6= 0, y = j and S
(

0
i

)

= 1, i.e. the representative agent
sells commodity y, we call this the donor case

2. if S
(

x
y

)

= 1, x = 0, y = i and S
(

0
j

)

= 0, i.e. the representative agent
buys commodity y, we call this the receiver case

3. if S
(

x
y

)

= 0, S
(

x+1
y

)

= 1, y = j and S
(

0
i

)

= 1, i.e. the donor case

4. if S
(

x
y

)

= S
(

1
y

)

= 0, S
(

0
y

)

= 1, y = i and S
(

0
j

)

= 0, i.e. the receiver case

This conditions have very clear interpretation. In the first case the element
of S with coordinates (x, y) is one, i.e. the representative agent owns x units
of product y and wants to sell it (thus x 6= 0, y = j), reminding we operate
with barter-barter trade the agent must not have the second product meant
for the purchase and thus S

(

0
i

)

= 1. In similar fashion we proceed in the
second case when the agent owns zero units of commodity y and wants to
buy it (position x = 0, y = i), subsequently he has to sell the commodity
number j and therefore he has to own it (condition S

(

0
j

)

= 0). The third

case shows the situation when the representative agent owns (x + 1) units of
product y and sells. That results in inserting one into position (x, y) where
was originally zero before the application of operator Lij . This operation is
again accompanied with the purchase of commodity i and thus S

(

0
i

)

= 1.
In the fourth case we receive commodity y and therefore we cannot own it.
Similar reasoning as before follows.
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The first two events gives -1 in the parenthesis and the last two events
gives 1 in the parenthesis. We will now try to compose the equations for
derivative of Πt at the first row of this matrix. At the first row x = 0 and
therefore we must use our prepared cases number 2 and 3. When we combine
them with the expression (3.3), we get

Π̇

(

0

y

)

=
∑

S

pt(S)
∑

i,j 6=y

(

−2S

(

0

y

)

+ 1

)

S

(

0

y

)

P0(i) (1 − P0(0))

(

1 − S

(

0

j

))

S

(

i

j

)

+

+
∑

S

pt(S)
∑

i6=y

(

−2S

(

0

y

)

+ 1

)(

1 − S

(

0

y

))

S

(

1

y

)

P0(1) (1 − P0(0))S

(

0

i

)

(3.12)

In the first term (second case) the expression P0(i) (1 − P0(0)) is taken from
(3.3), we have the receiver case with x = 0 and therefore ri = 0, the value

of rj we denoted by index i. Formula
(

−2S
(

0
y

)

+ 1
)

S
(

0
y

)

ensures condition

on position x = 0 and the sign −1, formula
(

1 − S
(

0
j

)

)

S
(

i
j

)

stands for the

condition S
(

0
j

)

= 0 and it enables to interact with other commodities with

one at the position
(

i
j

)

. The δ’s from equation (3.3) are already incorporated
in all cases. We sum over all row indices i and over all column indices j ex-
cept y because we forbid to trade the commodity for itself. The second term
was made similarly and according to the third condition but for reader’s con-

venience we will explain its structure. The term
(

−2S
(

0
y

)

+ 1
)(

1 − S
(

0
y

)

)

ensures S
(

x
y

)

= 0 and may take the only nonzero value +1 which is the value

of the parenthesis
(

L̂ijR
(

x
y

)

− S
(

x
y

)

)

. The term S
(

1
y

)

ensures S
(

x+1
y

)

= 1,

P0(1) (1 − P0(0)) again from equation (3.3), S
(

0
i

)

is the interaction with other
commodity during the trade. We again cannot trade the commodity for itself.

We see that S
(

x
y

)

S
(

x
y

)

= S
(

x
y

)

, the sums can be interchanged (finite num-

ber of states and indices), some of the sums vanish (for example S(
(

o
y

)

)S(
(

1
y

)

) = 0

always) and when we introduce the notation for the correlation function

R
(

(

x
y

)

,
(

w
z

)

)

R

((

x

y

)

,

(

w

z

))

=
∑

S

S

(

x

y

)

S

(

w

z

)

pt(S) (3.13)

we can write

Π̇

(

0

y

)

=
∑

i6=0,j 6=y

−R

((

0

y

)

,

(

i

j

))

P0(i)(1 − P0(0))+

+
∑

i6=y

R

((

1

y

)

,

(

0

i

))

P0(1)(1 − P0(0)).

(3.14)
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Now we have simplified the time derivative of matrix Π at the first row.
We must still divide following calculation into two branches: the second row
and the rest of the matrix. The conditions on the shape of matrix S expressed
in former four cases force us to do it so.

For the second row we need to use the first, third and fourth condition.
In the same manner as before we get

Π̇

(

1

y

)

=
∑

S

pt(S)
∑

i6=y

(

−2S

(

1

y

)

+ 1

)

S

(

1

y

)

P0(1) (1 − P0(0))S

(

0

i

)

+

+
∑

S

pt(S)
∑

i6=y

(

−2S

(

1

y

)

+ 1

) (

1 − S

(

1

y

))

S

(

2

y

)

S

(

0

i

)

(1 − P0(0))P0(2)+

+
∑

S

pt(S)
∑

i6=0,j 6=y

(

−2S

(

1

y

)

+ 1

) (

1 − S

(

1

y

))

S

(

0

y

)

P0(i) (1 − P0(0)) S

(

i

j

)

(3.15)

and in the notation of correlation functions

Π̇

(

1

y

)

=
∑

i6=y

−R

((

1

y

)

,

(

0

i

))

P0(1)(1 − P0(0))+

+
∑

i6=y

R

((

2

y

)

,

(

0

i

))

P0(2)(1 − P0(0))+

+
∑

i6=0,j 6=y

R

((

0

y

)

,

(

i

j

))

P0(i)(1 − P0(0))

(3.16)

From the first and third condition we get for x ≥ 2

Π̇

(

x

y

)

=
∑

i6=y

−R

((

x

y

)

,

(

0

i

))

P0(x)(1 − P0(0))+

+
∑

i6=y

R

((

x + 1

y

)

,

(

0

i

))

P0(x + 1)(1 − P0(0)).

(3.17)

3.5 Master equation for money-money trade

We have just finished the analysis of the barter-barter trade in the previous
section. Let us have a look at the money-money trade. Before we begin to
compose the equations we will first simplify the transition probability wMM(.)
by substituting for memory m(.) which we have set equal to P0(.)

wMM(~R → Lij
~R) = (1 − δ(rj)) × P0(ri) × (1 − P0(ri)) × P0(rj). (3.18)
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We can perform the same operations as we already did for the barter-barter

trade and again discuss the value of

(

̂
Lij

~R
(

x
y

)

− S
(

x
y

)

)

. The list of all pos-

sible nonzero values of the parenthesis is

1. S
(

x
y

)

= 1, x 6= 0, y = j, the donor case

2. S
(

x
y

)

= 1, y = i, the receiver case

3. S
(

x
y

)

= 0, S
(

x+1
y

)

= 1, y = j, the donor case

4. S
(

x
y

)

= 0, S
(

x−1
y

)

= 1, y = i, the receiver case.

These cases are easier than for the barter-barter trade and we need to dis-
tiguish only the first row and the rest of matrix S. The simplification is that
we don’t need to bother with commodity possession during the buying mode.
For the first row we must use the second and the third case so

Π̇

(

0

y

)

=
∑

S

pt(S)
∑

j 6=0,i6=y

S

(

0

y

) (

−2 + S

(

0

y

))

P0(0)(1 − P0(0))P0(j)S

(

j

i

)

+

+
∑

S

pt(S)
∑

i;j 6=y

S

(

1

y

)

P0(i)(1 − P0(i))P0(1)S

(

i

j

) (3.19)

and in the language of correlation functions

Π̇

(

0

y

)

=
∑

j 6=0,i6=y

−R

((

0

y

)

,

(

j

i

))

P0(0)(1 − P0(0))P0(j)+

+
∑

i;j 6=y

R

((

1

y

)

,

(

i

j

))

P0(i)(1 − P0(i))P0(1).

(3.20)

For other rows (x ≥ 1) we must use all scenarios

Π̇

(

x

y

)

=
∑

S

pt(S)
∑

i;j 6=y

S

(

x

y

) (

−2 + S

(

x

y

))

P0(i)(1 − P0(i))P0(x)S

(

i

j

)

+

+
∑

S

pt(S)
∑

i6=y,j 6=0

S

(

x

y

) (

−2 + S

(

x

y

))

P0(x)(1 − P0(x))P0(j)S

(

j

i

)

+

+
∑

S

pt(S)
∑

i;j 6=y

S

(

x + 1

y

)

P0(i)(1 − P0(i))P0(x + 1)S

(

i

j

)

+

+
∑

S

pt(S)
∑

j 6=0,i6=y

S

(

x − 1

y

)

P0(x − 1)(1 − P0(x − 1))P0(j)S

(

j

i

)

(3.21)
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and again with autocorrelation functions

Π̇

(

x

y

)

=
∑

i,j 6=y

−R

((

x

y

)

,

(

i

j

))

P0(i)(1 − P0(i))P0(x)+

+
∑

i6=y,j 6=0

−R

((

x

y

)

,

(

j

i

))

P0(x)(1 − P0(x))P0(j)+

+
∑

i,j 6=y

R

((

x + 1

y

)

,

(

i

j

))

P0(i)(1 − P0(i))P0(x + 1)+

+
∑

j 6=0,i6=y

R

((

x − 1

y

)

,

(

j

i

))

P0(x − 1)(1 − P0(x − 1))P0(j).

(3.22)

When we look at the transition probabilities (3.5) and (3.6) for tran-
sactions barter-money and money-barter more carefully, we notice that we
can save ourselves a lot of work. Because we set m(.) = P0(.), it holds
wBB(.) = wBM (.) and wMM(.) = wMB(.). Thus it is fully sufficient to calcu-
late with wBB and wMM only! Thanks to these very helpful identities we can
therefore immediately proceed to the next step.

3.6 Model simplification

Looking back at the equations we have expressed the time derivate of the
averaged occupancy Πt as a function of correlation functions of the second

order R
(

(

x
y

)

,
(

i
j

)

)

. This set of equations isn’t closed. We could have tried

to take the time derivative of correlation functions but we would only obtain
correlation functions of higher order (specifically up to the fourth order, for
more detail see Appendix A). With this approach we could go on and on but
the system would never close. The only way how to move forward is to apply
the approximation. In the following we use the Kirkwood approximation
(which could be found in [19]) and we approximate each correlation function
R(

(

x
y

)

,
(

w
z

)

) by Π
(

x
y

)

Π
(

w
z

)

. This would be true if (for example) the elements

(x, y) and (w, z) were independent. This scenario, evidently, is not fulfilled
because the elements influence each other but in the case of a big system
this dependence is not too strong and we can therefore hope that the error
induced by this approximatin is small enough.

To make the calculation easier we will try to find such a solution for which
all products are equally distributed first, i.e. the homogeneous solution for
which holds Π

(

i
x

)

= Π
(

i
y

)

for all x, y. To stress the independence from the

commodity number we use notation Π
(

i
.

)

. The differential equation for the
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barter-barter trade after all these simplifications looks

Π̇

(

0

.

)

=(Npr − 1)

Nun
∑

i=1

−Π

(

0

.

)

Π

(

i

.

)

P0(i)(1 − P0(0))+

+ (Npr − 1)Π

(

1

.

)

Π

(

0

.

)

P0(1)(1 − P0(0))

(3.23)

Π̇

(

1

.

)

= − (Npr − 1)Π

(

1

.

)

Π

(

0

.

)

P0(1)(1 − P0(0))+

+ (Npr − 1)Π

(

2

.

)

Π

(

0

.

)

P0(2)(1 − P0(0))+

+ (Npr − 1)
Nun
∑

i=1

Π

(

0

.

)

Π

(

i

.

)

P0(i)(1 − P0(0))

(3.24)

Π̇

(

x

.

)

= − (Npr − 1)Π

(

x

.

)

Π

(

0

.

)

P0(x)(1 − P0(0))+

+ (Npr − 1)Π

(

x + 1

.

)

Π

(

0

.

)

P0(x + 1)(1 − P0(0))

(3.25)

where x ≥ 2. For the money-money trade similarly

Π̇

(

0

.

)

=(Npr − 1)

Nun
∑

j=1

−Π

(

0

.

)

Π

(

j

.

)

P0(0)(1 − P0(0))P0(j)+

+ (Npr − 1)
Nun
∑

i=0

Π

(

1

.

)

Π

(

i

.

)

P0(i)(1 − P0(i))P0(1)

(3.26)

Π̇

(

x

.

)

=(Npr − 1)

Nun
∑

i=0

−Π

(

x

.

)

Π

(

i

.

)

P0(i)(1 − P0(i))P0(x)+

+ (Npr − 1)

Nun
∑

j=1

−Π

(

x

.

)

Π

(

j

.

)

P0(x)(1 − P0(x))P0(j)+

+ (Npr − 1)
Nun
∑

i=0

Π

(

x + 1

.

)

Π

(

i

.

)

P0(i)(1 − P0(i))P0(x + 1)+

+ (Npr − 1)

Nun
∑

j=1

Π

(

x − 1

.

)

Π

(

j

.

)

P0(x − 1)(1 − P0(x − 1))P0(j)

(3.27)

where x ≥ 1. The derivative of complete averaged occupancy will be some li-
near combination of the derivatives for barter-barter and money-money trade,
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the coefficient belonging to barter-barter trade we denote as α, the coefficient
belonging to money-money trade we denote as β.

Let us now investigate the equilibrium point, i.e. the solution which does
not change in time. We lay the derivative of the averaged occupancy equal to
zero and get a system of nonlinear difference equations with variables Π

(

i
.

)

,
i = 0, 1, .., Nun. Our goal in the next chapter will be of course the exact
solution to this system of equations.

3.7 Equilibrium

In the equations derived above sums and products of overaged occupancies
occure. We can notice that many of the sums are similar. In fact there are
only two types of sums which we denote by A and B

A ≡ (Npr − 1)

Nun
∑

i=0

Π

(

i

.

)

P0(i)(1 − P0(i)) (3.28)

B ≡ (Npr − 1)
Nun
∑

j=1

Π

(

j

.

)

P0(j). (3.29)

Next, because we deal with probabilities, the normalization condition must
be met. Therefore we can choose Π

(

0
.

)

= 1 and all the probabilities normalize
at the end of the calculation. With this choice we are able to eliminate the
product between the averaged occupancies. To make the equations more
simple let us introduce these three new symbols

θ(x) ≡ Π

(

x

.

)

P0(x)

f(x) ≡ 1 − P0(x)

σ ≡ (Npr − 1)(1 − P0(0))α.

After all these transformations the final equations look

0 = Π̇

(

0

.

)

= −αBf(0) + σθ(1) − βBP0(0)f(0) + βAθ(1) (3.30)

0 = Π̇

(

1

.

)

= − σθ(1) + σθ(2) + αBf(0) − βAσ(1)−

− βBθ(1)f(1) + βAθ(2) + βBθ(0)f(0)

(3.31)

0 = Π̇

(

x

.

)

= − σθ(x) + σθ(x + 1) − βAσ(x) − βBθ(x)f(x)+

+ βAθ(x + 1) + βBθ(x − 1)f(x − 1)

(3.32)



CHAPTER 3. ANALYTICAL SOLUTION 38

where again x ≥ 2. In equation (3.32) we obtain the relation between three
successive values θ(x−1), θ(x) and θ(x+1), this difference equation of second
order is equipped with initial conditions (3.30) and (3.31). Equation (3.32)
can be rewritten into a more suitable form

θ(x + 1) [σ + Aβ] = θ(x) [σ + Aβ + f(x)Bβ] − θ(x − 1) [f(x − 1)Bβ] . (3.33)

When we apply this relation at the term θ(x + k) for some natural k, we get

θ(x + k) =

k
∑

i=0

(

βB

σ + βA

)k−i
f(x + k − 1)!

f(x + i − 1)!
θ(x)−

−
k−1
∑

i=0

(

βB

σ + βA

)k−i
f(x + k − 1)!

f(x + i)!
f(x − 1)θ(x − 1)

(3.34)

where we have used this notation similar to the definition of factorials

f(x)!

f(y)!
= f(x).f(x − 1)...f(y + 1). (3.35)

The value of x ≥ 2 is arbitrary, we can set x = 2 a because k = 1, 2, ...,
then all θ(x) for x ≥ 3 are expressed as a function of θ(1) and θ(2). Equation
(3.30) gives us the value of θ(1)

θ(1) =
f(0)αB + βBf(0)P0(0)

σ + βA
. (3.36)

Substituting from (3.36) into (3.31) we obtain the value of θ(2)

θ(2) =
f(0)αB + βBf(0)P0(0)

(σ + βA)2
[σ + β(A + f(1)B)]−

− P0(0)f(0)βB + f(0)Bα

(σ + βA)
.

(3.37)

Substituting (3.36) and (3.37) into (3.34) with x = 2 gives us the final set of
equations

θ(2 + k) = −βBf(0)P0(0) + Bf(0)α

σ + βA

k
∑

i=0

(

βB

σ + βA

)k−i
f(2 + k − 1)!

f(2 + i − 1)!
+

+
f(0)αB + βBf0(0)P0(0)

σ + βA

[

σ + βA + βf(1)B

σ + βA

k
∑

i=0

(

βB

σ + βA

)k−i
f(2 + k − 1)!

f(2 + i − 1)!
−

−
k−1
∑

i=0

(

βB

σ + βA

)k−i
f(2 + k − 1)!

f(2 + i)!
f(1)

]

.

(3.38)



CHAPTER 3. ANALYTICAL SOLUTION 39

Every transformed averaged occupancy θ(x) = Π
(

x
.

)

P0(x) can be expressed
in terms of A and B. When we introduce another coefficient Z

Z ≡ B

σ + βA
, (3.39)

all θ’s can be expressed as functions of this coefficient

θ(0) = P0(0) (3.40)

θ(1) = Z(f(0)α + βf(0)P0(0)) (3.41)

θ(2) = Z2 (f(0)α + βf(0)P0(0))βf(1) (3.42)

θ(2 + k) = −Z (βf(0)P0(0) + f(0)α)
k

∑

i=0

(βZ)k−i f(2 + k − 1)!

f(2 + i − 1)!
+

+ Z (f(0)α + βf(0)P0(0))

[

(1 + Zβf(1))
k

∑

i=0

(βZ)k−i f(2 + k − 1)!

f(2 + i − 1)!
−

−
k−1
∑

i=0

(βZ)k−i f(2 + k − 1)!

f(2 + i)!
f(1)

]

.

(3.43)

Coefficient Z is the function of transformed averaged occupancies θ(x)
and these occupancies are on the other hand functions of input parameters
and Z. We have therefore come to a single equation in Z, its solution can
be substituted into (3.40)-(3.43) and after the change to original overaged
occupancies Π

(

x
.

)

and the normalization we obtain our desired solution.
It only remains to compute the values of coefficients α and β. From the

simulation we already know that the ratio between barter and money trades
is constant after the system stabilizes and therefore we can borrow these
coefficients obtained in the simulation and use them in our analytical calcu-
lation. For example, we obtained for the parameters Nag = 20, Npr = 20,
Nun = 40, Nmem = 40 values α = 0.5 and β = 0.5 (we included no trades in
α).

Unfortunately, we aren’t able to solve the equation in Z analytically. We
could obtain some polynomial equation but we aren’t able to express its
coefficients in a compact form. The problem is in the sum of terms f(2+k−1)!

f(2+i−1)!

which are very difficult to manipulate. Therefore we must try to solve the
equation numerically.

We tried to solve the equation with the help of the commercial program
MATLAB. We transform our equation into the form g(Z) = 0 and then let
the program to find such Z which set function g to zero. For this purpose
we have used built-in function fsolve. The procedure seemed to have big
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difficulties to find the solution for our problem. When we look at Figure
(3.1) we can guess why. As we can see the numerical representation of the
calculatin of function g is numerically unstable and cannot give us the value
of Z.

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5x 10
−15

Z

V
al

ue
 o

f f
un

ct
io

n 
g

The course of function g

Figure 3.1: The numerical representation of function g is unstable.

We have therefore no other option then to try to find Z another way.
We recall that at the beginning of this section we have assumed that the
distribution of commodities in the representative agent’s portfolio is the same
for all commodities. This implies that the expectation is the same for all
commodities. The agent is initially given Nun items of commodities, this
number is conserved, and there are in total Npr types of commodities in the
system. From this we conclude that the mean value of each distribution
should be Nun/Npr.

This additional condition which is the result of our earlier restrictions
can be easily incorporated into our calculations. When we investigate the
dependence of the mean of the equilibrium state distribution on Z, we find
that the mean is an increasing function of coefficient Z. This dependence
can be seen in Figure (3.2) where we have plotted the first few averaged
occupancies for different values of Z.
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When we take for example the system with input parameters Nag = 20,
Npr = 20 and Nun = 40, then the expectation should be equal to 2. This
happens when we choose Z = 0.167. Figure (3.3) pictures the occupancies
for such a choice of Z.
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Figure 3.2: The mean of the equilibrium distribution is an increasing function
of Z. Parameters were set Nag = 20, Npr = 20, Nun = 40, Nmem = 40. The
expectations are 0.08, 0.51, 1.14, 2.01 and 5.45, respectivelly to increasing Z.

3.8 Conclusion

The analytical approach is based on the description of one representative
agent and the mean field approximation for the rest of the system. The evo-
lution of the model we describe as a stochastic process with Markow property,
for quantities such as memory, which depend on the history of the process,
functions of the present state were devised and we hope that these func-
tions are good approximation of the original and more complicated history-
dependent process described in chapter 2. With the help of operator Lij

and probabilities of transition (3.3)-(3.6) we are able to construct differential
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Figure 3.3: The equilibrium state distribution. Parameters were set
Nag = 20, Npr = 20, Nun = 40 and Nmem = 40. We can notice that the
probability of having more than 4 items of some commodity is highly low.

equations of the first order for the averaged occupancies Π
(

x
y

)

. During the
calculation we used the Kirkwood approximation.

To make the calculations more simple and accessible we suppose that the
distribution function is common for all commodities. We are interested in the
equilibrium state so we lay all the derivatives equal to zero and the equations
take the form of difference equations with a parameter Z. We have solved
these equations and for the determination of Z we used the condition on the
mean value of the distribution which can be easily calculated from the input
parameters of the model. After normalization of the probabilities we obtain
the final shape of the distribution function of the equilibrium state shown in
Figure (3.3).



Chapter 4

Results summary

In our work we picked up threads of Donangelo and Sneppen’s paper [12]
which belongs to the area of econophysics. As well as the authors we have
devised a model of an early economy describing the emergence of money as
a result of trading activity of the agents. We have tried to investigate the
features of our model both by simulations and analytically.

Let us first summarize what were the outcomes of the simulations. Besides
already mentioned conclusion from [12] we have proved that for the emer-
gence of money some level of rational decision-making of all participants is
essential. Without it the system loses its interesting properties and becomes
chaotic. In order to describe the level of rationality we have introduced the
concept of temperature. We have clearly observed how gradual increase of
temperature from the zero level induced gradual erosion of agents’ memories
and therefore lower level of organization.

In the original paper the commodities were equally distributed throughout
the system and they had equal chance to become money. When we break this
symmetry and distribute the commodities unfairly throughout the system
then we can see that the rare commodity has higher potential to become
money than a commodity more frequently represented in the system. This
observation is in full agreement with our expectation because usually those
commodities which were hard to find became money in real early economies.

We have also discovered that the loss of money property happens when
the popularity index Q drops into a certain interval. This feature of our
model gives us the possibility to predict the future evolution of the system
and the sudden decrease of popularity might be the sign of an approaching
crash.

The waiting times between the emergences and collapses of money fea-
ture seem to be uncorrelated. The frequency plot of their occurencies decay
with power-law whose exponent is 1.8. Compared to the exponent of one-
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dimensional random walk 1.5 this indicates the nontriviality of our stochastic
model.

In the analytical section we have calculated the equilibrium state for the
homogeneous distribution of commodities. Our whole calculation was based
on the introduction of the representative agent, who is the only agent in the
system we observe, and mean field which subsitutes for the rest of the system.

We have approximated the evolution of the system with the help of Makov
property. The history dependent parts of the simulation we have substituted
by appropriate functions of present state. The dynamics of the system is
induced by the application of operator Lij on the state vector of the portfolio
~R. Another representation for the portfolio is the matrix form S

(

x
y

)

which
was very useful in the following calculations.

We compute the transition matrix of the Markov chain which we further
use in the derivation of our master equation. In order to close the set of
equations we apply the Kirkwood approximation and replace the correlation
functions by a simple product of two probabilities. In order to simplify the
equations we set the first probability equal to one and obtain the master
equation in the form of a system of linear differential equations of the first
order. We keep in mind that we must normalize all probabilities at the end
of the calculation. For simplicity we have confined ourselves to the set of
solutions for which all products are equally distributed.

We are interested in the equilibrium state so we lay all derivatives in
the master equation equal to zero and obtain the set of difference equations
which we have subsequently solved. For the determination of parameter Z
we use the condition on the mean value of the distribution function which
can be easily calculated from the input parameters.

The final shape of the distribution function of the equilibrium you can
see in Figure (3.3).

To sum up we have devised an economic system composed of interacting
agents which simulates the emergence of money in early economies. We have
explored several features of our model and all of them agree with our notion
of the processes in real early economies. We have supplied the simulations
with the analytical approach using the representative agent and mean field
approximation.

The emergence of money was a very important step in the developement
of human society and thus we find it very useful to investigate the nature of
this phenomenon. Although the model simulates the situation in distant past
it could reveal some economic relations applicable to present. For example,
it would be very interesting to discuss the connection between our model and
the regulations of the market. We have discovered that for the emergence of
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money no external forces are needed and it is the trade itself that induces
the observed organization. This result could be very tempting for those
economists who advocate liberal points of view.



Appendix A

Correlation functions of higher

order

We saw in section (3.4) that we can express the derivative of averaged occu-
pancy as a sum of two site correlation functions. If we don’t want to apply
immediately the Kirkwood approximation and would like to obtain a more
accurate solution, we need to investigate the derivate of these correlation
functions. When we look how the correlation function is defined, we realize
that a lot of work was already done. Following the procedure from equa-
tion (3.7) to equation (3.11), i.e. differentiating term by term, inserting the
derivative of pt(S), substituting and reordering the terms give the derivative
of R at some points (x, y) and (a, b)

dR

dt

((

x

y

)

,

(

a

b

))

=
∑

S

∑

i6=j

w(S → LijS)pt(S)

[

̂
Lij

~R

(

x

y

)

̂
Lij

~R

(

a

b

)

− S

(

x

y

)

S

(

a

b

)]

.

(A.1)

Again, there are only four cases when the square bracket is nonzero but
before we enlist these cases we should mention one very useful property

of the correlation function R
(

(

x
y

)

,
(

a
b

)

)

. Without loss of generality we can

assume that x = 0 because one of the positions in R
(

(

x
y

)

,
(

a
b

)

)

has always

its first coordinate zero as can be easily verified from all equations in section
(3.4). The same observation tells us that y 6= b and a 6= 0. The four cases
we are interested in are:

• S
(

x
y

)

= S
(

a
b

)

= 1, in this scenario either commodity y is the receiver

(the representative agent buys 1 item of y) or commodity b the donor
(the representative agent sells b)

• S
(

x
y

)

= 1, S
(

a
b

)

= 0, here S
(

x
y

)

S
(

a
b

)

equals zero and in order to make

the rest of the bracket nonzero S
(

a
b

)

must become one by means of
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operator Lij . Therefore in case a 6= 1 commodity b must be the donor,
in case a = 1 it can be either the donor or the receiver. Commodity
b cannot be interchanged with commodity y for apparent reason that
then S

(

x
y

)

would be zero and the construction would fail

• S
(

x
y

)

= 0, S
(

a
b

)

= 1, here commodity y must be the donor, S
(

1
y

)

has to
be one and we should avoid the interchange between y and b

• S
(

x
y

)

= S
(

a
b

)

= 0, here we must change both positions to one and this
is possible in the only way: a = 1, commodity b is the receiver and y
the donor (we remind that the trade is barter-barter only)

We will now write the equation for the derivative of R
(

(

x
y

)

,
(

a
b

)

)

and the ex-

planation how this was obtained from the four cases will be given afterwards.

Ṙ

((

x

y

)

,

(

a

b

))

=

∑

S

pt(S)
∑

i6=0,j 6=y

−S

(

x

y

)

S

(

a

b

)

(1 − P0(0))P0(i)S

(

i

j

)

+

+
∑

S

pt(S)
∑

i6=b

−S

(

x

y

)

S

(

a

b

)

P0(a)(1 − P0(0))S

(

0

i

)

+

+
∑

S

pt(S)S

(

x

y

)

S

(

a

b

)

P0(a)(1 − P0(0))+

+
∑

S

pt(S)
∑

i6=y,i6=b

S

(

x

y

) (

1 − S

(

a

b

))

S

(

a + 1

b

)

S

(

0

i

)

(1 − P0(0))P0(a + 1)+

+
∑

S

pt(S)
∑

i6=0;j 6=b,y

S

(

x

y

) (

1 − S

(

a

b

))

S

(

0

b

)

S

(

i

j

)

P0(i)(1 − P0(0))+

+
∑

S

pt(S)
∑

i6=y,i6=b

(

1 − S

(

x

y

))

S

(

a

b

)

S

(

1

y

)

S

(

0

i

)

(1 − P0(0))P0(1)+

+
∑

S

pt(S)

(

1 − S

(

x

y

))

S

(

0

y

)

S

(

1

y

)

(1 − P0(0))P0(1)

(A.2)

The first three rows are derived from the first condition, in the first term
commodity y is bought, in the second term commodity b is sold and the
third term is because we included one possibility twice.

The next two rows are for the second case. In the first term commodity
b is sold, in the second term b is bought (the second term is just for a = 1).

Another row is the third case and the last row is the last case (again, the
last term is valid just for a = 1).

It is clear how the equation would look like when transfered into the
language of correlation functions of the second, third and fourth order. More
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important is that the set of equations does not close. The derivative of
Π is a function of correlation functions of second order and the derivative
of the correlation functions of the second order depends on the correlation
functions up to the fourth order. It is obvious that we could go on and we
would get correlations of higher and higher order indefinitely. Again, in order
to avoid this we would approximate the correlation function of higher order
as a product of correlations of lower order. By doing this we would close the
system and we would obtain a more accurate solution than in the main text.

After the application of the Kirkwood approximation (the underlined
terms are for a = 1 only) we get

Ṙ

((

x

y

)

,

(

a

b

))

=

(1 − P0(0))



R

((

x

y

)

,

(

a

b

))







∑

i6=0,j 6=y

−P0(i)Π

(

i

j

)

+
∑

i6=b

−P0(a)Π

(

0

i

)

+ P0(a)







+

+ R

((

x

y

)

,

(

a + 1

b

))

∑

i6=y,b

P0(a + 1)Π

(

0

i

)

+ R

((

x

y

)

,

(

0

b

))

∑

i6=0;j 6=b,y

P0(i)Π

(

i

j

)

+

+ R

((

a

b

)

,

(

1

y

))

∑

i6=y,b

P0(1)Π

(

0

i

)

+ R

((

0

b

)

,

(

1

y

))

P0(1)



 .

(A.3)

For the money-money trade we would proceed similarly.



Appendix B

Linear stability analysis

In the chapter Analytical solution we have obtained the equilibrium for the
case of the homogeneous distribution of products. Here we would like to
outline the approach which could be used for the investigation of the stability
of this equilibrium.

Our master equation can be written in the compact form without refe-
rences to concrete elements as

Π̇ = F (Π) (B.1)

where F is a function operating on the elements of matrix Π. This mat-
rix equation can be expressed as a vector equation when we introduce new
notation ~Π which denotes the vector composed of colums of Π

~Π ≡
(

Π

(

0

1

)

, Π

(

1

1

)

, ..., Π

(

Nun

1

)

, Π

(

0

2

)

, ..., Π

(

Nun

Npr

))T

. (B.2)

We are interested in the stability of the equilibrium and therefore we need
to calculate the eigenvalues of the Jacobian matrix of F

DF (~Π) ≡ ∂F (~Π)

∂~Π
. (B.3)

We have calculated the equilibrium point for the homogeneous distribution
of products and because of this equivalence between products DF (~Π) will be
a block matrix with only two kinds of blocks with dimensions (Nun + 1) ×
(Nun + 1). In the blocks on the diagonal we differentiate the occupancy of
some product with respect to the occupancy of the same product and this
first block we denote as D (diagonal). Outside the diagonal we differentiate
some product’s occupancy with respect to the accupancy of another product.
This block we denote as N (nondiagonal).
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If the blocks were single entries, our task would be to find eigenvalues of
matrix M

M ≡











D N · · · N

N D
. . .

...
...

. . .
. . . N

N · · · N D











.

M is a symmetric matrix and therefore from the spectral theorem we know
that it can be diagonalized by an orthogonal matrix O whose columns are
perpendicular eigenvectors. From the shape of M it is clear that one eigen-
vector could be vector ~E1 which consists of one’s.

~E1 = (1, 1, ..., 1)T

The eigenvalue corresponding to this eigenvector is the sum of elements in the
row of M . Let us try vector ~E2 which is the simpliest vector perpendicular
to ~E1 we can think of

~E2 = (+1,−1, 0, ..., 0)T .

We can check that it holds M ~E1 = (D − N). ~E1 so ~E2 is also an eigenvector
with the eigenvalue (D − N). Now let us try to find another eigenvector

perpendicular to ~E1 and ~E2. Every vector with two first components equal
to one is perpendicular to ~E2. We calculate its third component in order to
be perpendicular to ~E1 and so obtained vector ~E3 is again an eigenvector
with the same eigenvalue as ~E2 has.

~E3 = (1, 1,−2, 0, ..., 0)T

This procedure could be generalized and we get the rule for the construction
of all other orthogonal eigenvectors ~E4, ~E5, ~E6, ..., eigenvalues coresponding
to these eigenvectors have the same value (D − N).

~E4 = (1, 1, 1,−3, 0, ..., 0, )T

~E5 = (1, 1, 1, 1,−4, 0, ..., 0, )T

~E6 = (1, 1, 1, 1, 1,−5, 0, ..., 0, )T

· · · = · · ·

We have discovered that matrix M can be diagonalized by orthogonal
matrix O (whose columns are vectors ~E1, ~E2, ~E3,...) and after the transfor-
mation the first entry on the diagonal is the sum of elements in the row of
M , the rest of elements on the diagonal have the same value D−N . Similar
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approach we can apply to block matrix DF (~Π) and the problem of finding

the eigenvalues of DF (~Π) reduces to the problem of finding eigenvalues of
much smaller matrices D − N and D + (Npr − 1)N .

To keep the notation transparent we will use symbol ∂Fi

∂xj
for the derivative

of the i-th occupancy with respect to the j-th occupancy. Whether we take
the derivate with respect to the same commodity or to other commodity, we
find out from the context (diagonal vs. nondiagonal block).

When we look at the equations in section 3.4 and imagine that the Kirk-
wood approximation is already performed, we can straightforwardly differen-
tiate. Thus the elements in D for the barter trade will be

∂F0

∂x0

=
∑

i6=0,j 6=y

−Π

(

i

j

)

P0(i)(1 − P0(0)) = −f(0)U2

∂F0

∂x1

=
∑

i6=y

Π

(

0

i

)

P0(1)(1 − P0(0)) = f(0)P0(1)U1

∂F1

∂x0

=
∑

i6=0,j 6=y

Π

(

i

j

)

P0(i)(1 − P0(0)) = f(0)U2

∂F1

∂x1
=

∑

i6=y

−Π

(

0

i

)

P0(1)(1 − P0(0)) = −f(0)P0(1)U1

∂F1

∂x2
=

∑

i6=y

Π

(

0

i

)

P0(2)(1 − P0(0)) = f(0)P0(2)U1

∂Fk

∂xk
=

∑

i6=y

−Π

(

0

i

)

P0(k)(1 − P0(0)) = −f(0)P0(k)U1

∂Fk

∂xk+1
=

∑

i6=y

−Π

(

0

i

)

P0(k + 1)(1 − P0(0)) = −f(0)P0(k + 1)U1

where k ≥ 2. In the equations above we use symbols U1 and U2

U1 ≡ (Npr − 1)Π

(

0

.

)

(B.4)

U2 ≡ (Npr − 1)
∑

i6=0

Π

(

i

.

)

P0(i) (B.5)

as we again take the advantage of the homegeneous distribution of products.
All other elements of the matrix except those listed above equal zero. For
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the nondiagonal block N of the barter trade we obtain

∂F0

∂x0
= Π

(

1

.

)

P0(1)f(0)

∂F0

∂xi

= −Π

(

0

.

)

P0(i)f(0)

∂F1

∂x0
= −Π

(

1

.

)

P0(1)f(0) + Π

(

2

.

)

P0(2)f(0)

∂F1

∂xi
= Π

(

0

.

)

P0(i)f(0)

∂Fj

∂x0

= −Π

(

j

.

)

P0(j)f(0) + Π

(

j + 1

.

)

P0(j + 1)f(0)

where i ≥ 1 and j ≥ 2. All other elements equal zero again.
When we now differentiate the master equation for the money trade from

section (3.5), we have for the elements of the diagonal block D

∂F0

∂x0
=

∑

j 6=0,i6=y

−Π

(

j

i

)

P0(0)(1 − P0(0))P0(j) = −f(0)P0(0)U2

∂F0

∂x1
=

∑

i;j 6=y

Π

(

i

j

)

P0(i)(1 − P0(i))P0(1) = P0(1)U3

∂Fk

∂xk−1

=
∑

j 6=0,i6=y

Π

(

j

i

)

P0(k − 1)(1 − P0(k − 1))P0(j) = P0(k − 1)f(k − 1)U2

∂Fk

∂xk

=
∑

i;j 6=y

−Π

(

i

j

)

P0(i)(1 − P0(i))P0(k) +

+
∑

i6=y,j 6=0

−Π

(

j

i

)

P0(k)(1 − P0(k))P0(j)

= −P0(k)U3 − f(k)P0(k)U2

∂Fk

∂xk+1

=
∑

i;j 6=y

Π

(

i

j

)

P0(i)(1 − P0(i))P0(k + 1) = P0(k + 1)U3

where k ≥ 1. Here we have introduced an additional symbol U3

U3 ≡ (Npr − 1)
∑

i

Π

(

i

.

)

P0(i)(1 − P0(i)). (B.6)
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It only remains to calculate the nondiagonal block N for the money trade

∂F0

∂x0
= Π

(

1

.

)

P0(0)f(0)P0(1)

∂F0

∂xi

= −Π

(

0

.

)

P0(0)f(0)P0(i) + Π

(

1

.

)

P0(i)f(i)P0(1)

∂Fj

∂x0
= −Π

(

j

.

)

P0(0)f(0)P0(j) + Π

(

j + 1

.

)

P0(0)f(0)P0(j + 1)

∂Fj

∂xi
= −Π

(

j

.

)

P0(i)f(i)P0(j) − Π

(

j

.

)

P0(j)f(j)P0(i) +

+Π

(

j + 1

.

)

P0(i)f(i)P0(j + 1) + Π

(

j − 1

.

)

P0(j − 1)f(j − 1)P0(i)

where i ≥ 1 and j ≥ 1. Again, all other elements are zero.
Now we have everything we need to for the construction of matrices D−N

and D + (Npr − 1)N . Unfortunatelly, the matrices are too complicated to
solve in pencil and it is inevitable to use suitable software. We tried to
solve the problem in the program MATLAB and all eigenvalues seemed to
have negative real parts which implies stability of our solution but deeper
investigation needs to be undertaken in the future.
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