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modelu

Autor: Jakub Kocák
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ptylovému modelu, kde bodová interakcia medzi kanálmi je sprostredkovaná delta po-
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ptylová T matica sa separuje na ortogonálny, priamy a rezonančný člen. Diskutuje sa
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help and time spent to guide me through this subject and to overcome obstacles hidden
in details.

I would also like to thank to my family and friends for their mental and material
support.

iii



Contents

Introduction 2

1 The brief introduction to the scattering theory 3
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Time-dependent scattering theory . . . . . . . . . . . . . . . . . . . . . 4
1.3 Time-independent scattering theory . . . . . . . . . . . . . . . . . . . . 8

2 Delta potential and one-channel scattering 12
2.1 Solution of Schrödinger equation – sewing method . . . . . . . . . . . . 12

2.1.1 Scattering states . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Solution of Lippmann–Schwinger equation . . . . . . . . . . . . . . . . 14
2.3 Matrix elements of the scattering operator S . . . . . . . . . . . . . . . 15

2.3.1 Eigenphases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Delta function potential and two-channel scattering 18
3.1 Solution of Lippmann–Schwinger equation . . . . . . . . . . . . . . . . 18
3.2 Matrix elements of the scattering operator S . . . . . . . . . . . . . . . 20

3.2.1 Eigenphases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Poles of the S matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Theoretical description of resonances 36
4.1 Projection-operator formalism . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Orthogonal scattering . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Resonant scattering . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Application of formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Orthogonal scattering . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Direct scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Resonant scattering . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.4 κ-dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.5 Eigenphases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Conclusion 46

A Appendices 47
A.1 The matrix elements of the free Green’s operator Ĝ0(z) . . . . . . . . . 47
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Introduction

Scattering experiments are useful and essential tool of modern physics. They are used
in many fields (e.g. particle, nuclear, atomic or molecular physics) and have found wide
range of applications in other disciplines too (e.g. crystallography, nuclear medicine).
The common element of scattering experiments is collision of particles. The nature of
the collision depends on the energy. The low-energy collision usually leads to only one
possible outcome – single-channel (elastic) scattering. For higher energies the range
of possible outcomes is often more interesting (more complex) and we can get more
than one configuration – multichannel scattering. Another interesting often observed
phenomenon are resonances – the rapid and sharp chance of scattering quantities (e.g.
scattering probability) in small interval of energies (Figure 1). They can be often
understood as temporary capture of particle into quasi-bound state.

In this thesis we will study simple exactly solvable one-dimensional1 two-channel
scattering model, where we can observe threshold behaviour (common in multichannel
scattering, Figure 1) and resonances. The interaction between two channels is pointlike
and is ensured by Dirac delta ”function” potential (also called delta potential).

The first chapter serves as a short introduction to time-dependent and time-inde-
pendent formalism of the quantum scattering theory. Bulk of terminology and basic
structure is rephrased from or inspired by [6].

The chapter number two is dedicated to same one-dimensional model with delta
potential only restricted to one channel. It mainly serves as simpler problem to show
instructive application of the framework, but also as reference model without coupling.

The third chapter contains complete solution of the one-dimensional two-channel
scattering model and studies influence of parameters on threshold and resonant beha-
viour. Mutual relation between resonance and poles of the S matrix in complex k-plane
is discussed.

In the fourth chapter we have applied projection-operator formalism to separate
background and resonant terms of on-shell T matrix. This separation is commonly
used in molecular physics to generalize Born-Oppenheimer approximation for electron-
scattering resonance states (e.g. in [1] or [4]). The formalism is outlined in [3] or in
[2].
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Figure 1: The resonant (green line) and threshold (red line) behaviour.

1The scattering in spherical potential can be transformed into one-dimensional scattering.
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1. The brief introduction to the
scattering theory

In this chapter we will make a short introduction to the quantum scattering theory1.
The terminology, the notation and the basis structure of the scattering theory have
been adapted from Taylor’s publication [6], where these can be found in more details.
In general, the scattering theory is wide framework describing scattering experiments.
The scattering experiment is (usually a deliberate) collision of (accelerated) particle(s)
with a static target (particle(s) with negligible kinetic energy, e.g., atoms) or with
another (accelerated) particle(s).

The scattering theory has two main tasks:

1. Prediction. The input variables of the experiment (type and kinetic energy of
particles, type of target. . . ) are known and can be controlled by experimentalist.
The correct scattering theory should provide prediction of probability2 of cer-
tain output variables of the experiment (kinetic energy of outgoing particles, the
scattering angle. . . ) or observation of various phenomena (e.g., resonance and
threshold effects).

2. Analysis. Oppositely to the previous task the output variables of the experiment
and the nature of interactions are known (and possibly some input variables).
The scattering theory should provide information about ingoing particles or about
target (type of particles, kinetic energy. . . ). In general the difficulty of this task
depends on amount of known information.

This thesis will be dealing with the first task.

1.1 Preliminaries

In formalism of spectral decomposition the eigenvectors of Hermitian operator (or set
of operators called complete set of commuting observables (CSCO)) form orthonormal
basis of the corresponding Hilbert space H . In the scattering theory it is convenient3

to work with the momentum eigenvectors |p〉.4 In position representation they can be
expressed as5,6,7

〈x|p〉 = (2π)−
1/2 eipx . (1.1)

1In the whole thesis the scattering is described on the level of the non-relativistic quantum mechanics.
2The scattering theory of our interest is based on quantum mechanics, therefore the probabilistic

interpretation is in the nature of this theory. We cannot predict results of experiment, we can only
determinate the probability for all possible results.

3The convenience will arise in the second property of the scattering operator Ŝ.
4The vector |p〉 can also be denoted as vector |p, p̂〉 by the magnitude p := |p| and unit vector

p̂ := p
p

of momentum vector p, specifically in 1D as |p, s〉, where s := sgn(p) = ±1 is the direction of
the momentum.

5In our thesis we will be dealing only with one-dimensional scattering, hence everywhere the dimen-
sionality is equal to 1. But whole concept of the scattering theory is independent of dimensionality and
can be performed without this specification.

6In suitable units we can choose ~ = 1.
7Even though we work in one dimension, we preserve the vector notation for momentum to make

difference between the momentum p (real number) and the magnitude of the momentum p (non-negative
number).
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The momentum eigenvectors |p〉 are improper vectors (non-square-integrable).8

If some operator B̂ := f(Â) is defined as some function9 of the other operator, they
have same eigenvectors

Â|n〉 = an|n〉 =⇒ B̂|n〉 = f(an)|n〉 . (1.2)

1.2 Time-dependent scattering theory

Typically a single scattering experiment can be roughly divided into three phases:

1. several particles are in large separation from each other (so they don’t interact
with each other) approaching on collision course,

2. collision and interaction of particles,

3. particles flying away to large separation from each other.

To define more precisely the basic terminology of the scattering theory we will
choose the simplest scattering experiment: the scattering of a single spinless particle
by fixed potential (e.g., the potential of atom) also known as potential scattering.10,11

We assume time-independent Hamiltonian of single particle Ĥ(t) = Ĥ

Ĥ = T̂ + V̂ ,

where T̂ is operator of kinetic energy and V̂ operator of potential energy. The system
at the instant t is described by a state vector |ψ(t)〉, which satisfies the time-dependent
Schrödinger equation with the formal solution

i
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 =⇒ |ψ(t)〉 = e−iĤt︸ ︷︷ ︸

=:Û(t)

|ψ〉 , (1.3)

where Û(t) is the evolution operator and |ψ〉 has meaning of the state vector at the
time t = 0 (|ψ(0)〉 = |ψ〉 ∈H ).12

The Hamiltonian Ĥ can be divided into Hamiltonian of free particle Ĥ0 (the free
Hamiltonian) and the interaction potential V̂

Ĥ = T̂︸︷︷︸
=:Ĥ0

+V̂ . (1.4)

In the infinite time limit t → ±∞ (both before and after the collision) the motion
of the particle is determined by free Hamiltonian Ĥ0 and there exist incoming (|ψin〉)
and outgoing (|ψout〉) particle asymptotes.13

8The handling of improper vectors is same as of proper vectors, but every mathematical treatment
must be underpinned by rigorous justification. In general, we will treat them same and we will note
every difference from proper vectors if such occurs. Especially in scattering theory there are statements
which hold for any square-integrable vector, but are false for improper vectors.

9We can define the operator B̂ other way around on eigenvectors of the operator Â. Then the only
condition for the function f is to be defined on eigenvalues an.

10Since the elastic scattering of two particles described in their center-of-mass frame of reference is
equivalent to the scattering of a single particle by a fixed potential, this scattering problem is also
important in two-particle scattering theory.

11The terminology can be generalised for more complicated systems. Our objective is to become
familiar with terminology using also intuition based on classical mechanics.

12When we talk about real physical states of scattering particle, we will think of them as wave
packets.

13This is not true for any arbitrary potential. Mathematics: The potential V̂ must satisfy conditions,
which ensure the existence of the infinite time limit. Physics: When the particle (wave packet) is
localised in large distance from target atom, the potential vanishes and does not affect the particle.
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The motion of free particle is described by a state vector |ψin/out(t)〉, which satisfies
the time-dependent Schrödinger equation with the formal solution

i
d

dt
|ψin/out(t)〉 = Ĥ0|ψin/out(t)〉 =⇒ |ψin/out(t)〉 = e−iĤ0t︸ ︷︷ ︸

=:Û0(t)

|ψin/out〉 , (1.5)

where Û0(t) is the free evolution operator and |ψin/out〉 has analogous meaning as before
in equation (1.3).

Mathematically, the incoming/outgoing asymptote |ψin/out(t)〉 approaches the state
evolution |ψ(t)〉 in the limit14

lim
t→∓∞

||ψin/out(t)− ψ(t)|| = 0 . (1.6)

This concept can be illustrated schematically as shown in Figure 1.1.15

|ψ〉

Û(t)|ψ〉

|ψin〉

Û0(t)|ψin〉

|ψout〉

Û0(t)|ψout〉

target atom

Figure 1.1: The asymptotes |ψin/out(t)〉 of the orbit |ψ(t)〉 in the scattering of a single spinless
particle by fixed atom.

The interaction time in scattering experiment is usually short (≈ 10−10 s), thus we
can only measure the free motion of particles before and after collision (|ψin(t)〉 and
|ψout(t)〉). Therefore the basic task of scattering theory is to determine relationship
between states |ψin〉 and |ψout〉.16 This relation is given by the scattering operator Ŝ.
From condition (1.6) it also follows that the state |ψ〉 is linearly related to states |ψin/out〉
by operators called the Møller operators Ω̂±.

Ŝ : H →H Ω̂+ : H →H Ω̂− : H →H

|ψin〉 → |ψout〉 |ψin〉 → |ψ〉 |ψout〉 → |ψ〉

We can ”move” along the dashed lines and bold line in Figure 1.1 by acting the
free evolution operator Û0(t) and the evolution operator Û(t) respectively. Hence we
can properly define the Møller operators Ω̂± and the scattering operator Ŝ using the
evolution operators as shown in Figure 1.2 as17

Ω̂± := lim
t→∓∞

Û(t)+Û0(t) Ŝ := Ω̂+
−Ω̂+ . (1.7)

The properties of the Møller operators:

14As already pointed out, the existence of the limit depends on the potential V̂ . For not fast enough
decreasing potential (e.g. Coulomb potential) the limit does not exist. For potential satisfying so called
the asymptotic condition(s) there exists the limit for any state vector |ψ〉 ∈H .

15The figure can be understand in terms of classic mechanics [quantum mechanics] as an orbit of

pointlike particle r(t) [Û(t)|ψ〉] with asymptotic orbits rin/out(t) [Û0(t)|ψin/out〉] – straight dashed lines
– in real space R3 [Hilbert space H ] with a marked positions r(0), rin/out(0) [states |ψ〉, |ψin/out〉] in
certain instant.

16One could argue that the whole free motion is described by whole orbits |ψin(t)〉 and |ψout(t)〉, not
by states |ψin〉 and |ψout〉. But the orbits are uniquely determined via formula (1.5) thus our approach
is valid.

17It is convenient to note Û(t)+ = Û(−t).
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|ψ〉

|ψin〉 |ψout〉

lim
t→−∞

Û0(t)

lim
t→+∞

Û(t)

lim
t→+∞

Û0(t)

lim
t→−∞

Û(t)

Ω̂+ Ω̂−

Ŝ

target atom

Figure 1.2: Definition of the Møller operators Ω̂± and the scattering operator Ŝ.

1. Orthogonality theorem. For potential V̂ satisfying the asymptotic condition:
R+ ⊥ B and R− ⊥ B. (We denote R± as the range of the Møller operator
Ω̂± and B as subspace of bound states.)

2. Asymptotic completeness. If R+ = R− =: R, then the scattering theory is called
asymptotically complete.18 The Møller operators map from space H (space of
asymptotes) onto the subspace R (space of scattering states).

|ψ〉︸︷︷︸
∈R

= Ω̂+ |ψin〉︸︷︷︸
∈H

= Ω̂− |ψout〉︸ ︷︷ ︸
∈H

(1.8)

3. Isometry. The Møller operators are defined as limit of product of unitary oper-
ators, consequently they preserve the norm. But unlike the unitary operator19

(which maps H onto H ) the Møller operators maps H onto R. Therefore

Ω̂+
±Ω̂± = 1̂H , Ω̂±Ω̂+

± = 1̂R .

which implies isometry on H (and unitarity on R).20

4. Intertwining relation.21

ĤΩ̂± = Ω̂±Ĥ0 (1.9)

The properties of the scattering operator Ŝ:

1. Unitarity. The scattering operator is unitary operator. This follows directly from
definition (1.7) and asymptotic completeness (1.8).22

Ŝ+Ŝ = ŜŜ+ = 1̂

2. Eigenvalues. Eigenvalues of the scattering operator Ŝ lie on the unit circle:23

Ŝ|ψsn〉 = sn|ψsn〉 =⇒ |sn| = 1 sn =: e2iδn , δn ∈ R ,
18This directly implies that Hilbert space can be written as the direct sum: H = R ⊕B.
19Unitarity: Û+Û = Û Û+ = 1̂.
20The operators Ω̂+

± have similar (but not the same) property called coisometry on H (preserving
the norm, mapping from R to H ).

21The result can be proved in 3 steps: proving expression eiĤtΩ̂± = Ω̂±eiĤ0t from definition of the
Møller operators (1.7), Taylor expansion of previous expression at t = 0 and comparison of both sides
term by term.

22The operator Ω̂+ is isometric operator from H onto R, the operator Ω̂+
− is coisometric operator

from R onto H , so their composition is unitary operator from H onto H .
23This is property of any unitary operator.

〈ψsn |ψsn〉 = 〈ψsn |1̂|ψsn〉 = 〈ψsn |Ŝ
+Ŝ|ψsn〉 = s∗nsn〈ψsn |ψsn〉 =⇒ |sn| = 1 ,

where eigenvectors have non-zero norm (eigenvectors cannot be zero vector).
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where we can define real-valued quantity δn called eigenphase or phase shift.
There is ambiguity in the definition of phase shift δn up to additional multiple of
π. The factor 2 is added for quantity δn to represent conventional phase shift.24

3. Conservation of energy.25

Ŝ+Ĥ0Ŝ = Ĥ0
Ŝ⇐⇒
Ŝ+

[Ŝ, Ĥ0] = 0 (1.10)

This relation can be understood as follows: Energy measured on incoming (|ψin〉)
and outgoing (|ψout〉) asymptote is equal (we measure energy with free Hamilto-
nian Ĥ0).

Ein := 〈ψin|Ĥ0|ψin〉 = 〈ψin|Ŝ+Ĥ0Ŝ|ψin〉
|ψout〉=Ŝ|ψin〉

========== 〈ψout|Ĥ0|ψout〉 =: Eout

It is convenient due to commutation relation (1.10) to choose the eigenvectors
of the free Hamiltonian Ĥ0 for the orthonormal basis. Equation (1.2) for free

Hamiltonian Ĥ0 = p̂2

2 implies that

Ĥ0|p〉 =
p2

2︸︷︷︸
=:Ep

|p〉 . (1.11)

4. Matrix elements.26 From matrix elements of (1.10) it follows that

0 = 〈p′|[Ŝ, Ĥ0]|p〉 = (Ep′ − Ep)〈p′|Ŝ|p〉 ,

which implies that the matrix element 〈p′|Ŝ|p〉 is zero for Ep′ 6= Ep and can be
written as27

〈p′|Ŝ|p〉 = δ(Ep′ − Ep)× remainder . (1.12)

With no scattering potential (Ĥ = Ĥ0) the scattering operator is pure identity
operator Ŝ = 1̂, hence it is useful to look at the scattering operator in the form
Ŝ = 1̂ + R̂, which can be written with respect to (1.12) as28

〈p′|Ŝ|p〉 = δ(p′ − p)− 2πiδ(Ep′ − Ep)t(p′ ← p) , (1.13)

where have defined the on-shell T matrix t(p′ ← p).29

24It can be shown, that the free asymptotic solution 〈x|ψin/out〉 and the full solution 〈x|ψ〉 synchron-
ised at the origin x = 0 are in the limit x → ±∞ shifted by phase shift δn. This is the origin of the
term.

25This can be proved using the intertwining relation (1.9).

ŜĤ0 = Ω̂+
−Ω̂+Ĥ0

(1.9)
= Ω̂+

−ĤΩ̂+ =
(
ĤΩ̂−

)+
Ω̂+

(1.9)
=
(

Ω̂−Ĥ0

)+
Ω̂+ = Ĥ0Ω̂+

−Ω̂+ = Ĥ0Ŝ

26When we talk about matrix elements 〈p′|Ŝ|p〉 and processes with incoming (p) and outgoing (p′)
momentum, the vectors |p〉 are improper (so they do not represent any physical state), but we can
imagine sequence of wave packets 〈p|ψj〉 with mean momentum p and gradually smaller and smaller
variance in momentum space.

27This relation expresses the conservation of energy before and after the scattering experiment.
28The arbitrary prefactor −2πi is chosen for later convenience.
29The term ”on-shell” means that it is defined only on the energy shell Ep, only for momenta p′ and

p which correspond to same energy Ep′ = Ep because of the term δ(Ep′ −Ep). Based on this definition
it would make no sense to talk about values of T matrix for p′ and p, where Ep′ 6= Ep. Later on we

will define T̂ operator whose matrix elements 〈p′|T̂ |p〉 will be naturally defined for every momenta p′

and p and it will coincide with the on-shell T matrix elements.
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1.3 Time-independent scattering theory

Up to now we have discussed scattering theory based on the terminology of the time
evolution operators Û(t) and Û0(t) and derived operators (Ω̂±, Ŝ and t(p′ ← p)).
The direct calculation from definitions for given system is impractical for analytic
calculation. But there is approach which provides time-independent framework which
is more convenient for practical calculation.

The useful tool to define for algebraic formulation of the scattering quantities is
Green’s operator (in mathematics often called resolvent). The Green’s operator Ĝ(z)
and the free Green’s operator Ĝ0(z) are defined as

Ĝ(z) :=
(
z − Ĥ

)−1
, Ĝ0(z) :=

(
z − Ĥ0

)−1
(1.14)

for any complex z, if the inverse exists.30 According to spectral decomposition the set
of eigenvectors of the (free) Hamiltonian Ĥ (Ĥ0) can form orthogonal basis {|E,α〉}31,
thus using (1.2) the (free) Green’s operator Ĝ(z) (Ĝ0(z)) can be expressed as

Ĝ(z) =
∑
α

∑∫
E

dE
|E,α〉〈E,α|
z − E

. (1.15)

Therefore we can see, that Green’s operators Ĝ(z) and Ĝ0(z) are well-defined and
analytic operator32 everywhere except for z equal to eigenvalues (Figure 1.3).

Re(z)

Im(z)

z−plane

Re(z)

Im(z)

E1 E2 E3

z−plane

Figure 1.3: Analyticity of the free Green’s operator Ĝ0(z) (left) and the Green’s operator

Ĝ(z) (right) in z-plane.

For operator Ĝ(z) there are isolated poles (E < 0, the bound states) and continuous
cut from 0 to +∞ (E > 0, the scattering states). The operator Ĝ0(z) is analytic for
every z except for continuous cut from 0 to +∞.

Because of the relation between the Hamiltonian Ĥ and the free Hamiltonian Ĥ0

Ĥ = Ĥ0 + V̂

the Green’s operators Ĝ(z) and Ĝ0(z) are intertwined. From definitions (1.14) we
obtain

Ĝ0(z)−1 = Ĝ(z)−1 + V̂ .

In order to get rid of the inverses we will act with operator Ĝ0(z) on the left [right] and
Ĝ(z) on the right [left] and we will gain operator relation(s) relating operators Ĝ(z)
and Ĝ0(z) called Lippmann-Schwinger equation for Ĝ(z).

Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂ Ĝ(z) , Ĝ(z) = Ĝ0(z) + Ĝ(z)V̂ Ĝ0(z) . (1.16)

30We allow complex values of z, because it turns out that the complex analysis is useful tool of
modern scattering theory.

31For instance, in 3D the CSCO
{
Ĥ0, L̂

2, L̂z
}

forms orthonormal basis {|E, l,m〉}.
32The operator is analytic, when for any 2 state vectors the matrix element 〈φ|Ĝ(z)|ψ〉 is analytic

function of the complex variable z.
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We introduce the operator T̂ (z)33

T̂ (z) := V̂ + V̂ Ĝ(z)V̂ . (1.17)

From definition it is clear that the operator T̂ (z) has the same analyticity as the oper-
ator Ĝ(z). From definition (1.17) and (1.16) we get operator identities

Ĝ0(z)T̂ (z) = Ĝ(z)V̂ , T̂ (z)Ĝ0(z) = V̂ Ĝ(z) , (1.18)

and from the first identity and definition (1.17) we obtain Lippmann-Schwinger equation
for T̂ (z)34

T̂ (z) = V̂ + V̂ Ĝ0(z)T̂ (z) .

In the following lines we will attempt to develop time-independent scattering theory
for basic terms in time-dependent theory. We will begin with the Møller operators Ω̂±

Ω̂±|ψ〉 = lim
t→∓∞

Û(t)+Û0(t)|ψ〉

and operator identity (for continuously differentiable operator Â(t))

Â(t) = Â(0) +

∫ t

0
dτ

dÂ

dτ
(τ) .

For the operator Â(t) = Û(t)+Û0(t) we get35

Â(0) = eiĤ0e−iĤ00 = 1̂ ,
dÂ

dt
(t) =

d

dt

(
eiĤte−iĤ0t

)
= iÛ(t)+V̂ Û0(t) .

33From analogy of pairs Ĥ and Ĥ0, Ĝ(z) and Ĝ0(z) . . . , it would be natural to define the free operator

T̂0(z), but it is clear that would be pure zero operator 0̂. Similarly, the free scattering operator Ŝ0

would be the unit operator 1̂.
34This equation is more useful than definition, because we usually do not know matrix elements of

the Green’s operator Ĝ(z) for certain Hamiltonian, but we do know matrix elements of the free Green’s

operator Ĝ0(z) (more appendix A.1).
35It is instructive to recall

Û(t) = e−iĤt , Û(t)+ = eiĤt , Û0(t) = e−iĤ0t , Û0(t)+ = eiĤ0t .
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leading to36

Ω̂±|ψ〉︸ ︷︷ ︸
=:|ψ±〉

= |ψ〉+ i lim
t→∓∞

=:|φ(t)〉︷ ︸︸ ︷∫ t

0
dτ Û(τ)+V̂ Û0(τ)|ψ〉︸ ︷︷ ︸

=:|χ(τ)〉

,

Now we will use trick and introduce so called dumping factor38∫ ∓∞
0

dτ |χ(τ)〉 = lim
ε→∓0

∫ ∓∞
0

dτ e−ετ |χ(τ)〉 .

Using furthermore the momentum expansion of the state vector |ψ〉 39

|ψ±〉 = |ψ〉+ i lim
ε→∓0

∫
R

dp

∫ ∓∞
0

dτ e(−ε−iEp+iĤ)τ

:::::::::::::::::::::

V̂ |p〉ψ(p)

= |ψ〉+

∫
R

dp Ĝ(Ep ± i0)V̂ |p〉ψ(p) . (1.20)

36Justification of the existence of the limit: The existence of the limit is equivalent to convergence
of the integral as the sequence |φ(t)〉 in ∓∞, in the Hilbert space equivalent to Cauchy convergence
condition ∥∥φ(t)− φ(t′)

∥∥ t,t′→∓∞−−−−−−→ 0 ⇐⇒

∥∥∥∥∥
∫ t′

t

dτ |χ(τ)〉

∥∥∥∥∥ t,t′→∓∞−−−−−−→ 0 .

The stronger condition (from triangular inequality) is
∫ t′
t

dτ ‖χ(τ)‖ t,t′→∓∞−−−−−−→ 0, which is Cauchy condi-

tion for Cauchy sequence
∫ t
0

dτ ‖χ(τ)‖ in the space of real numbers R (also Hilbert space with multiplic-
ation as the inner product). As we have mentioned a moment ago, this is equivalent to the convergence
of
∫ ∓∞
0

dτ ‖χ(τ)‖ <∞. We retrieve |χ(τ)〉∫ ∓∞
0

dτ
∥∥∥Û(τ)+V̂ Û0(τ)ψ

∥∥∥ =

∫ ∓∞
0

dτ
∥∥∥V̂ Û0(τ)ψ

∥∥∥ <∞
and for Gaussian function37〈x|ψ(x0, σ)〉 = exp

[
− (x−x0)2

2σ2

]
we obtain

∓
∫ ∓∞
0

dτ
∥∥∥V̂ Û0(τ)ψ

∥∥∥ ≤̇ 2.622σ2

(∫
R

dx |V (x)|2
)1/2

< +∞ =⇒
∫
R

dx |V (x)|2 < +∞ .

This is only the necessary condition for the potential (we have used some inequalities). The sufficient
condition (called asymptotic condition) is weaker. We assume that, this condition is fulfilled and
consequently the limit exists.

37It is important to highlight this: If the sequence is convergent for Gaussian function, it is also
convergent for any finite linear combination of Gaussian functions. And any function of L 2(RN ) can
be replaced by finite linear combination of Gaussian functions with arbitrary accuracy.

38Justification of dumping factor: We proved convergence and absolute convergence of the integral∫ ∓∞
0

dτ |χ(τ)〉. Due to Lebesgue’s dominated convergence theorem, it is allowed to interchange limit and
integration if there exists dominating integrable function. The function ‖χ(τ)‖ is integrable (absolute
convergence) and dominating

1 ‖χ(τ)‖ ≥ e−ετ ‖χ(τ)‖ =
∥∥e−ετχ(τ)

∥∥ ,
therefore interchange is justified

lim
ε→∓0

∫ ∓∞
0

dτ e−ετ |χ(τ)〉 =

∫ ∓∞
0

dτ lim
ε→∓0

e−ετ |χ(τ)〉 =

∫ ∓∞
0

dτ |χ(τ)〉 .

39The underwaved was evaluated as∫ ∓∞
0

dτ e(−ε−iEp+iĤ)τ =

 e(−ε−iEp+iĤ)τ(
−ε− iEp + iĤ

)
∓∞

0

(1.14)
========
z=Ep−iε

=− iĜ(Ep − iε) . (1.19)
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Without the dumping factor, we would get stuck on two spots: evaluation of under-
waved integral (1.19) (the upper limit does not vanishes, it oscillates) and analyticity of
the free Green’s operator (Figure 1.3, it is not defined for Ep ≥ 0). Hence introduction
of the dumping factor was inevitable and at the same time rigorous.

We denote (as for proper vectors |ψ〉) two improper vectors40

|p±〉 := Ω̂±|p〉 ,

which coincidently are eigenvectors of the Hamiltonian Ĥ (the scattering states)

Ĥ|p±〉 = ĤΩ̂±|p〉
(1.9)
= Ω̂±Ĥ0|p〉 = EpΩ̂±|p〉 = Ep|p±〉 .

From (1.20) we conclude

|p±〉 = |p〉+ Ĝ(Ep ± i0)V̂ |p〉 . (1.21)

Using the same technique for the scattering operator41 Ŝ we get for matrix elements
〈p′|Ŝ|p〉

〈p′|Ŝ|p〉 = δ(p′ − p)− 2πiδ(Ep′ − Ep) 〈p′|T̂ (Ep + i0)|p〉︸ ︷︷ ︸
t(p′←p)

, (1.22)

which link relationship between the operator T̂ (z) and the on-shell T matrix t(p′ ← p).
From definition (1.17) we obtain

T̂ (Ep ± i0)|p〉 (1.17)
= V̂

[
1̂ + Ĝ(Ep ± i0)V̂

]
|p〉 (1.21)

= V̂ |p±〉 . (1.23)

This leads to two convenient42 formulas:

• the first one for the on-shell T matrix t(p′ ← p)

t(p′ ← p) = 〈p′|V̂ |p+〉 = 〈p′ − |V̂ |p〉 , (1.24)

• the second one called Lippmann-Schwinger equation for |p±〉43

|p±〉 = |p〉+ Ĝ0(Ep ± i0)V̂ |p±〉 . (1.25)

40The Møller operators are defined at H , thus proper definition is

|ψ〉 =

∫
R

dpψ(p)|p〉 =⇒ |ψ±〉 = Ω̂±|ψ〉 =

∫
R

dpψ(p) Ω̂±|p〉︸ ︷︷ ︸
=:|p±〉

.

41More detailed procedure can be found in the literature, e.g. Taylor (2006) [6].
42The convenience is evident. The scattering system is specified directly by the potential V̂ , the

Lippmann-Schwinger equation for |p±〉 provides implicit solution for scattering states |p±〉 (the matrix
elements of the free Green’s operator are known, more at appendix A.1). Using (1.24) we have directly

the on-shell T matrix, thus the matrix elements of the scattering operator Ŝ.
43In (1.21)

Ĝ(Ep ± i0)V̂ |p〉 (1.18)
= Ĝ0(Ep ± i0)T̂ (Ep ± i0)|p〉 (1.23)

= Ĝ0(Ep ± i0)V̂ |p±〉 .
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2. Delta potential and
one-channel scattering

Before we solve the two-channel scattering problem, it would be instructive to solve
simpler scattering problem (one channel) with two different methods.

First, we calculate eigenvectors for given Hamiltonian Ĥ and then we determinate
the on-shell matrix elements of T operator. From theory we know direct relationship
(1.22) between matrix elements of the on-shell T operator 〈k, s′|T̂ (Ek + i0)|k, s〉 and
the scattering operator 〈k, s′|Ŝ|k, s〉.

For one-channel one-dimensional scattering problem we assume that the state of
particle |ψ〉 ∈H is represented (in position representation) by square-integrable wave
function ψ(x) ∈ L 2(R). We assume time-independent Hamiltonian of single non-
relativistic particle of mass m as (expressed in position representation)

Ĥ = − ~2

2m

d2

dx2
+ V (x) .

By choosing suitable units we can reduce multiplicative constants in equation. This
is equivalent setting ~ = 1 and m = 1. Our model system will contain Dirac delta
function potential (usually shortened as delta potential), thus

Ĥ = −1

2

d2

dx2︸ ︷︷ ︸
Ĥ0

+λδ(x)︸ ︷︷ ︸
V̂

,

where λ is parameter of potential strength.
From (1.1) and (1.11) we have eigenvectors |k,±〉 of the free Hamiltonian Ĥ0 with

non-negative energy (Ek ≥ 0)

〈x|k, s〉 =
1√
2π

eiskx Ĥ0|k, s〉 =
k2

2︸︷︷︸
Ek

|k, s〉 , (2.1)

representing free particle moving right (|k,+〉) or left (|k,−〉) along the positive x
coordinate axis, where k > 0 is the magnitude of momentum and s = ±1 is the
direction of momentum.

2.1 Solution of Schrödinger equation – sewing method

In the first place, we will briefly describe main idea of the sewing method.
Systems with delta potentials can easily be solved because potential is zero almost

everywhere. In these intervals we get solution of time-independent Schrödinger equation
for Hamiltonian without potential (free particle). We need to ”sew” (”glue”) these
particular solutions in points {aj}, where delta potential δaj (x) := δ(x−aj) has origin.
This is accomplished by fulfilling two conditions:

1. Continuity of wave function. The wave function ψ(x) is continuous everywhere

lim
x→a−j

ψ(x) = ψ(aj) = lim
x→a+j

ψ(x) . (2.2)
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2. Step discontinuity in the derivative. The derivative of the wave function ψ′(x)
has step discontinuity at x = aj

1

lim
x→a+j

ψ′(x)− lim
x→a−j

ψ′(x) = 2λψ(aj) . (2.3)

Now more detailed solution is provided for our specific case. In the intervals I− :=
(−∞, 0) and I+ := (0,+∞) we solve time-independent Schrödinger equation for free
particle for function ψ(x)2

(
Ĥ − E

)
|ψ〉 〈x|

=⇒ −1

2

d2ψ

d2x
(x)− Eψ(x) = 0 .

Solving homogeneous linear ordinary differential equation (ODE) we attain general
solution ψ(x)3

−1

2
z2 − E = 0 =⇒ z1,2 = ±Λ =

{
±
√
−2E ,E < 0

±i
√

2E ,E > 0

ψ(x) = c1±ez1x + c2±ez2x , x ∈ I± (2.4)

2.1.1 Scattering states

For positive energy (E > 0) we define k =
√

2E. In the scattering theory we choose
these boundary conditions: c1− = 1, c2− = r, c1+ = t, c2+ = 0.4

Applying boundary conditions (2.2) and (2.3) (where aj = 0) for general solution
(2.4) we obtain

(2.2) =⇒ 1 + r = ψ(0) = t
(2.3) =⇒ (ikt− ik0)− (ik1− ikr) = 2λψ(0)

}
=⇒


r = − λ

λ− ik
t = − ik

λ− ik

,

and the complete solution ψ(x) /∈ L 2(R) is

ψ(x) =

{
e+ikx − λ

λ−ike−ikx , x ≤ 0

− ik
λ−ike+ikx , x ≥ 0

, (2.5)

for energy E = Ek.

1 The second condition arises from the formal integration of time-independent Schrödinger equation
in the ε-neighbourhood (aj − ε, aj + ε) for ε > 0∫ aj+ε

aj−ε
dx Ĥψ(x) =

∫ aj+ε

aj−ε
dx

(
−1

2
ψ′′(x) + λδaj (x)ψ(x)

)
︸ ︷︷ ︸

− 1
2
[ψ′(x)]

aj+ε

aj−ε
+λψ(aj)

= E

∫ aj+ε

aj−ε
dxψ(x)︸ ︷︷ ︸

O(ε)

.

Using limit ε→ 0+ we achieve desired result.
2Eigenfunctions ψ(x) of the Hamiltonian Ĥ does not have to be (and indeed for E ≥ 0 they will

not be) from space L 2(R).
3Solution of ODE is defined on open intervals I± therefore it is not defined in x = 0.
4 This choice is motivated by following reasoning. We are looking for solution with only one incoming

wave (and outgoing waves with some amplitudes). Incoming waves are eikx for x < 0 and e−ikx for
x > 0. Outgoing waves are e−ikx for x < 0 and eikx for x > 0. One constant can be chosen without
restrain, because any quantum state |ψ〉 is represented by ray in Hilbert space {a|ψ〉|a ∈ C \ {0}} (or
alternatively one multiplicative constant is determined by normalization). We choose c1− = 1 and
c2+ = 0. Remaining constants are relabelled c2− = r (reflection), c1+ = t (transmission).
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2.1.2 Bound states

So far we did not treat the case, when energy is negative (E < 0). General solution (2.4)
has problem with the parts, which in limit (x→ ±∞) diverge. This is in contradiction
with normalizability. Thus we choose c2− = c1+ = 0.

From sewing conditions (2.2) and (2.3) (where aj = 0) for general solution (2.4) we
retrieve

(2.2) =⇒ c1− = ψ(0) = c2+

(2.3) =⇒ (−Λc2+)− (Λc1−) = 2λψ(0)

}
=⇒

{
c1− = c2+ =: N

Λ = −λ .

We got for given potential one bound state and only for negative parameter λ < 0.
The wave function of the bound state ψ(x) ∈ L 2(R) is5

ψ(x) = Neλ|x| =
√
−λeλ|x| ,

with energy

Ebound = −λ
2

2
.

2.2 Solution of Lippmann–Schwinger equation

Alternatively and more quickly, the scattering problem can be solved using Lippmann–
Schwinger equation for |p±〉6 (1.25) in the position representation (using insertion of
the spectral decomposition of the unit operator 1̂)

〈x|(k, s)±〉 = 〈x|k, s〉+

∫
R

dx′〈x|Ĝ0(Ek ± i0)|x′〉〈x′|V̂ |(k, s)±〉 . (2.6)

From (A.7) we know

〈x|Ĝ0(Ek ± i0)|x′〉 = ± 1

ik
e±ik|x

′−x| ,

and term 〈x′|V̂ |(k, s)±〉 is straightforward

〈x′|V̂ |(k, s)±〉 = λδ(x′)〈x′|(k, s)±〉 . (2.7)

Applying these changes into the equation (2.6) and using equation (2.1) (notation:
ψ±k,s(x) := 〈x|(k, s)±〉) we get

ψ±k,s(x) =
1√
2π

eiskx ± λ

ik
e±ik|x|ψ±k,s(0) ,

where undetermined implicit constant ψ±k,s(0) is determined by setting x = 0

ψ±k,s(0) =
1√
2π
± λ

ik
ψ±k,s(0) =⇒ ψ±k,s(0) = ∓ 1√

2π

ik

λ∓ ik
.

The complete solution then is

ψ±k,s(x) =
1√
2π

[
eiskx − λ

λ∓ ik
e±ik|x|

]
, (2.8)

for energy E = Ek.
Notice that the solution ψ+

k,+(x) of Lippmann–Schwinger equation (2.5) and the
solution ψ(x) of Schrödinger equation (2.8) differs only by multiplicative constant 1/

√
2π

(consequence of different normalization).The other solutions ψ±k,s(x) are equivalent to
the solution ψ(x) of Schrödinger equation with different boundary conditions.

5The normalization constant N was determined using normalization condition 〈ψ|ψ〉 = 1.
6In three dimensional scattering the Møller operators Ω̂± related plane wave |p〉 to two improper

vectors |p±〉. In one dimensional scattering the corresponding notation for the plane wave is |k, s〉 and
for two improper vectors |(k, s)±〉.
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2.3 Matrix elements of the scattering operator S

As it has been shown in the first chapter (1.22) and (1.24), the matrix elements of the
scattering operator Ŝ can be expressed as7,8

〈k′, s′|Ŝ|k, s〉 = δ(k′ − k)

[
δs′s −

2πi

k
〈k, s′|V̂ |(k, s)+〉

]
︸ ︷︷ ︸

=:Ss′s(Ek)

,

where Ss′s(Ek) is called S matrix.
Using the same trick (insertion of the unit operator 1̂) we obtain for S matrix

Ss′s(Ek) = δs′s −
2πi

k

∫
R

dx〈k, s′|x〉〈x|V̂ |(k, s)+〉 (2.7)
=

= δs′s −
2πi

k
λψk,s′(0)∗ψ+

k,s(0) = δs′s −
λ

λ− ik
(2.9)

The situation is symmetrical about the origin x = 0, hence Ss′s(Ek) = S−s′−s(Ek)
and we need only to evaluate Ss′s for one incoming direction (s = +1). The result-
ing probability of transmission T := |S++(Ek)|2 and probability of reflection R :=
|S−+(Ek)|2 as function of k are

T (k) =
k2

λ2 + k2
, R(k) =

λ2

λ2 + k2
,

and expressed in terms of dimensionless energy ε := 2Ek
λ2

as

T (ε) =
ε

1 + ε
, R(ε) =

1

1 + ε
.

Easy check gives us total probability equal to T (Ek) +R(Ek) = 1. We can see, that for

any λ the energy can be rescaled into the units λ2

2 and in terms of T (Ek) and R(Ek)
there is only one delta potential one-channel scattering model without any parameters.

7The term δ(Ek′ −Ek) from (1.22) can be expressed in terms of k and k′: The free Hamiltonian Ĥ0

has orthogonal bases |E,α〉 and |k, α〉 normalized to Dirac delta function as follows

|E,α〉 : 1̂ =
∑
α

∫
E

dE|E,α〉〈E,α| δ(E′ − E) =
∑
α

〈E′, α|E,α〉 ,

|k, α〉 : 1̂ =
∑
α

∫
k

dk|k, α〉〈k, α| δ(k′ − k) =
∑
α

〈k′, α|k, α〉 .

The improper vectors |Ek, α〉 and |k, α〉 differ only by some normalization constant N(k, α)

|Ek, α〉 = N(k, α)|k, α〉 .

Using substitution E = k2

2
we can transform one spectral decomposition of unit operator to other one

dE|E,α〉〈E,α| = dk

∣∣∣∣dEdk
∣∣∣∣︸ ︷︷ ︸

k

|N(k, α)|2|k, α〉〈k, α| = dk|k, α〉〈k, α| .

We get formula for normalization constant N(k, α) (determined up to phase, we chose real non-negative
constant)

N(k, α) =
1√
k
.

and for the term δ(Ek′ − Ek) we get

δ(Ek′ − Ek) =
∑
α

〈Ek′ , α|Ek, α〉 =
1√
k′k

∑
α

〈k′, α|k, α〉 =
1√
k′k

δ(k′ − k) =
1

k
δ(k′ − k) .

8The on-shell matrix elements of T operator can be evaluated as 〈k′, s′|V̂ |(k, s)+〉 or

〈(k′, s′)− |V̂ |k, s〉. We chose the first option.
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Figure 2.1: The probability of transmission T (Ek) and the probability of reflection R(Ek) as
a function of energy of particle Ek.

We can notice that transmission and reflection is not influenced by the sign of the
parameter λ and the scattering properties are same for delta potential well (λ < 0) and
delta potential barrier λ > 0 of the same |λ|.

2.3.1 Eigenphases

In order to find the eigenphases δn, we need to find eigenvalues of S matrix. We
notice that the parity operator P̂ commutes with the full Hamiltonian [Ĥ, P̂ ] = 0,
therefore situation is same for the unitary operator [Û(t), P̂ ] = 0, the Møller operators
[Ω̂±, P̂ ] = 0 and also for the scattering operator [Ŝ, P̂ ] = 0. Therefore we can choose
common set of eigenfunctions. The parity operator P̂ has 2 eigenvalues λ = ±1 and 2
types of eigenfunctions: even (λ = +1) and odd (λ = −1).9 The symmetry adapted
linear combinations of the functions 〈x|k, s〉 are

〈x|ψ1〉 :=
1√
2

(
1√
2π

eikx +
1√
2π

e−ikx
)

=
1√
π

cos(kx) ,

〈x|ψ2〉 :=
1√
2

(
1√
2π

eikx − 1√
2π

e−ikx
)

=
i√
π

sin(kx) .

The change-of-basis matrix Q and the inverse matrix Q−1 are10

Q =
1√
2

(
1 1
1 −1

)
Q−1 = Q+ =

1√
2

(
1 1
1 −1

)
.

The new S matrix S′(k) in the new basis is

S′ = QSQ−1 =
1√
2

(
1 1
1 −1

)
1

λ− ik

(
−ik −λ
−λ −ik

)
1√
2

(
1 1
1 −1

)
=

(
−λ+ik
λ−ik 0

0 1

)
.

9This can be shown simply from the property P̂ 2 = 1̂.
10For unitary matrix the inverse is Q−1 = Q+.
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This gives us two eigenphases11

δ1(k) ≡ 1

2
arg

(
−λ+ ik

λ− ik

)
≡ arctan

(
k

λ

)
+
π

2
(mod π) , δ2(k) ≡ 0 (mod π) .

(2.10)
The momentum dependence of the eigenphases δ1(k) and δ2(k) have been plotted

in Figure 2.2 with respect to modulo π ambiguity.
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Figure 2.2: The eigenphases δ+1 (k) (for λ > 0), δ−1 (k) (for λ < 0) and δ2(k) as a function of
magnitude of momentum of particle k.

In the second case, the delta potential is ”invisible” for the sine wave 〈x|ψ2〉. The
boundary conditions (2.2) and (2.3) are full-filled for any λ, thus presence (λ 6= 0) or
absence (λ = 0) of the delta potential does not change the solution.12

In the scattering theory of spherical potentials, the problem can be transformed
into one-dimensional radial Schrödinger equation and in the low-energy limit there
is defined quantity called scattering length a.13 The meaning: At low energies the
differential cross section is dσ

dΩ = a2. The scattering length a appears in the low-energy
limit of eigenphase δ(k) as (from Taylor (2006), p. 194 [6])

δ(k)
k→0−−−→

(
n0 +

1

2

)
π − ak . (2.11)

For our model we get

δ1(k)
k→0−−−→ π

2
+
k

λ
=⇒ a1 = − 1

λ
. (2.12)

11To be complete for λ = 0: δ1(k) ≡ 0 (mod π).
12In general, we know from the boundary conditions (2.2) and (2.3) that is true for any wave function

with zero magnitude in the origin and continuous first derivative in the origin.
13This quantity can be defined for any orbital quantum number l, but only for l = 0 is it has the

dimension of length.
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3. Delta function potential and
two-channel scattering

In the second chapter we have shown approach how to solve one-channel scattering
problem. As the title of chapter suggests, we will be dealing with two-channel scattering
problem with delta function potential using same method.

For two-channel one-dimensional scattering problem we assume that the state of
particle |ψ〉 ∈H ⊕H ≡H ⊗C2 is represented (in position representation) by ordered

pair 〈x|ψ〉 =

(
ψ1(x)
ψ2(x)

)
of two square-integrable wave functions ψ1,2(x) ∈ L 2(R).

We made the same assumptions about the Hamiltonian (time-independent non-
relativistic Hamiltonian of single spinless particle in one dimension with local delta
potential) and about units (~ = 1 and m = 1), thus

Ĥ = −1

2

d2

dx2
+

(
0 0
0 W

)
︸ ︷︷ ︸

Ĥ0

+

(
a c
c∗ b

)
δ(x)︸ ︷︷ ︸

V̂

, (3.1)

where W is the energy difference of channels and a, b, c are parameters of the potential.
Since the Hamiltonian is a self-adjoint operator, elements of main diagonal a, b are real
a, b ∈ R and off-diagonal elements are mutually the complex conjugate.

The free Hamiltonian Ĥ0 in every channel has same form as one-dimensional free
Hamiltonian (except for additional constant W ). Therefore using (1.1) and (1.11) the
eigenvectors of the free Hamiltonian Ĥ0 are

〈x|kn, s, n〉 =
1√
2π

eisknx
(
δ1n

δ2n

)
︸ ︷︷ ︸

=:ên

Ĥ0|kn, s, n〉 =

(
k2
n

2
+Wδ2n

)
︸ ︷︷ ︸

E

|kn, s, n〉 , (3.2)

for particle in n-th channel with the magnitude of momentum kn > 0 and the direction
of momentum s = ±1.

While working on this thesis, we have found the article from Exner (1991) [5] about
equivalent two-channel scattering model. The model is solved on positive x-axis R+ and
the delta-potential interaction is realised by mathematically more rigorous self-adjoint
extension. The correspondence between out notation and notation of the article is
following

W ↔ E, a/
√

2↔ a, b/
√

2↔ b, c/
√

2↔ c,
√

2x↔ r .

3.1 Solution of Lippmann–Schwinger equation

We will use already familiar procedure starting with Lippmann–Schwinger equation for
|p±〉

〈x|(kn, s, n)±〉 = 〈x|kn, s, n〉+

∫
R

dx′〈x|Ĝ0(E ± i0)|x′〉〈x′|V̂ |(kn, s, n)±〉 . (3.3)

The term 〈x|Ĝ0(E ± i0)|x′〉 for two-channel scattering is analogous to (A.7) and
(A.9)

〈x|Ĝ0(E ± i0)|x′〉 =

(
1
±ik1 e±ik1|x−x

′| 0

0 1
K2

eK2|x−x′|

)
, (3.4)
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where

K2 = K2(E ± i0) :=

{
±ik2 , E ≥W
−κ2 ,W > E ≥ 0

,

and k1 =
√

2E, k2 =
√

2(E −W ) and κ2 =
√

2(W − E).

As before, the term 〈x′|V̂ |(kn, s, n)±〉 is simple to express

〈x′|V̂ |(kn, s, n)±〉 = δ(x′)

(
a c
c∗ b

)
〈x′|(kn, s, n)±〉 . (3.5)

By inserting the terms (3.4), (3.5) and (3.3) and simpler notation1 we obtain(
ψ±1 (kn,s,n)(x)

ψ±2 (kn,s,n)(x)

)
=

ên√
2π

eisknx+

+

(
1
±ik1 e±ik1|x| 0

0 1
K2

eK2|x|

)(
a c
c∗ b

)(
ψ±1 (kn,s,n)(0)

ψ±2 (kn,s,n)(0)

)
.

(3.6)

Again, the undetermined implicit constants ψ±1 (kn,s,n)(0) and ψ±2 (kn,s,n)(0) are de-
termined from equation for x = 0

(3.6)
=⇒
x=0

(
ψ±1 (kn,s,n)(0)

ψ±2 (kn,s,n)(0)

)
=

[(
1 0
0 1

)
−
( 1
±ik1 0

0 1
K2

)(
a c
c∗ b

)]−1
ên√
2π

.

For the invertible matrix 2× 2 the inverted matrix is

M−1 =

(
A B
C D

)−1

=
1

detM

(
D −B
−C A

)
, detM = AD −BC , (3.7)

assuming non-zero determinant (detM 6= 0). Using formula (3.7) we get(
ψ±1 (kn,s,n)(0)

ψ±2 (kn,s,n)(0)

)
= − 1√

2π∆±

(
±ik1(b−K2) −cK2

∓ic∗k1 K2(a∓ ik1)

)
ên , (3.8)

where ∆± := (a∓ ik1)(b−K2)− |c|2.
As we have seen in the second chapter (2.9), for the matrix elements of the scattering

operator S we need only the value of wave function ψ±1,2 (kn,s,n)(x) at x = 0.

1

(
ψ±1 (kn,s,n)

(x)

ψ±2 (kn,s,n)
(x)

)
:= 〈x|(kn, s, n)±〉
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3.2 Matrix elements of the scattering operator S

Analogously to the one-channel we can define two-channel S matrix S(s′n′)(sn)(E) as2,3

S(s′n′)(sn)(E) := δs′sδn′n −
2πi√
knkn′

〈kn′ , s′, n′|V̂ |(kn, s, n)+〉 .

After the insertion of the identity operator Î we get

S(s′n′) (sn)(E) = δs′sδn′n −
2πi√
knkn′

∫
R

dx〈kn′ , s′, n′|x〉〈x|V̂ |(kn, s, n)+〉 (3.5)
=

= δs′sδn′n −
2πi√
knkn′

(
ψ1 (kn′ ,s

′,n′)(0)

ψ2 (kn′ ,s
′,n′)(0)

)+(
a c
c∗ b

)(
ψ+

1 (kn,s,n)(0)

ψ+
2 (kn,s,n)(0)

)

Using (3.2) and (3.8) we obtain

S(s′n′) (sn)(E) = δs′sδn′n +
i

∆+

√
knkn′

Mn′n , (3.9)

where M is matrix 2× 2 defined as

M :=

(
a c
c∗ b

)(
ik1(b−K2) −cK2

−ic∗k1 K2(a− ik1)

)
=

(
ik1(D − aK2) ck1k2

c∗k1k2 k2(iD + bk1)

)
,

where D := ab− |c|2.4

For c = 0 we obtain

S(s′n′) (sn)(E) = δs′sδn′n −
( a

a−ik1 0

0 b
b−ik2

)
, (3.10)

2As in one-channel chase the free Hamiltonian Ĥ0 has orthogonal bases |En, α, n〉 and |k, α, n〉

|E,α, n〉 : 1̂ =
∑
α

∫ +∞

0

dE|E,α, 1〉〈E,α, 1|+
∑
α

∫ +∞

W

dE|E,α, 2〉〈E,α, 2| ,

|kn, α, n〉 : 1̂ =
∑
α

∫ +∞

0

dk1|k1, α, 1〉〈k1, α, 1|+
∑
α

∫ +∞

0

dk2|k2, α, 2〉〈k2, α, 2| .

The improper vectors |E,α, n〉 and |kn, α, n〉 differ only by normalization constant N(kn, α, n)

|E,α, n〉 = N(kn, α, n)|kn, α, n〉 .

Using substitutions E =
k21
2

and E =
k22
2

+ W we can transform one spectral decomposition of unit
operator to other one

dE|E,α, n〉〈E,α, n| = dkn

∣∣∣∣ dE

dkn

∣∣∣∣︸ ︷︷ ︸
kn

|N(kn, α, n)|2|kn, α, n〉〈kn, α, n| = dkn|kn, α, n〉〈kn, α, n| .

We get formula for normalization constant N(kn, α, n) (determined up to phase, we chose real non-
negative constant)

N(kn, α, n) =
1√
kn

.

and for the term δ(E′ − E) we get

δ(E′ − E) =
∑
α,n

〈E′, α, n|E,α, n〉 =
1√
k′nkn

∑
α,n

〈k′n, α, n|kn, α, n〉 .

3As before, we can use 〈kn′ , s′, n′|V̂ |(kn, s, n)+〉 or 〈(kn′ , s′, n′)− |V̂ |kn, s, n〉. Both options lead to
the same result. We chose the first one.

4The term δ(E′ − E) in (1.22) allows for elements with energy E ≥W to specify K2 as ik2.
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which agrees with the one-channel scattering result (2.9).
As before, the task is symmetrical about x = 0 (S(s′n′) (sn)(E) = S(−s′n′) (−sn)(E)),

thus it is necessary to evaluate only for one direction, for instance s = +1. We define the
probability of transmission [reflection] from the n-th channel to the n′-channel Tn′n(E)
[Rn′n(E)] as5

Tn′n(E) := |S(sn′) (sn)(E)|2 , Rn′n(E) := |S(−sn′) (sn)(E)|2 .

Our interest is focused on situation with particle incoming in the first channel (n = 1).
We can notice that T21(E) and R21(E) are same. This is expectable, because

coupling between two channels is provided by the delta potential, which effectively
mediates only the value of wave function in the origin x = 0, but nothing else (not even
the direction of the incoming particle).6 Thus the solution in the second channel must
be symmetrical.

As verification of the unitarity of S matrix we can check probability conservation.

T11(E) +R11(E) + T21(E) +R21(E) = 1 .

For W > E > 0 we get∣∣∣∣1− D + aκ2

∆+

∣∣∣∣2︸ ︷︷ ︸
T11

+

∣∣∣∣D + aκ2

∆+

∣∣∣∣2︸ ︷︷ ︸
R11

+ 0︸︷︷︸
T21+R21

=
|−ik1(b+ κ2)|2 + |D + aκ2|2

|D + aκ2 − ik1(b+ κ2)|2
= 1 ,

where in the last step we just need to notice that there is the sum of squares of imaginary
and real part of some complex number in the numerator and there is the square of
the absolute value of the same complex number in the denominator (the Pythagorean
theorem).

For E > W we get∣∣∣∣1− D − iak2

∆+

∣∣∣∣2︸ ︷︷ ︸
T11

+

∣∣∣∣D − iak2

∆+

∣∣∣∣2︸ ︷︷ ︸
R11

+2

∣∣∣∣c∗√k1k2

∆+

∣∣∣∣2︸ ︷︷ ︸
T21+R21

=

=

[
(k1k2)2 + (bk1)2

]
+

[
D2
::

+ (ak2)2

. . . . . .

]
+ 2|c|2k1k2[

D2
::

+ (−2Dk1k2) + (k1k2)2

]
+

[
(bk1)2 + 2abk1k2 + (ak2)2

. . . . . .

] = 1 .

This model has 5 real parameters: W , a, b and c = |c|eiφ. But it is possible
to express energy in the units W and rescale variable x → x√

W
, which is equivalent

setting W = 1. Also the phase φ of the constant c does not occur in terms of Tn′n(E)
and Rn′n(E).7 The delta potential two-channel scattering model has 3 free parameters:
a, b and |c|.

To get better insight we plotted the energy dependence of the probabilities Tn′1(E)
and Rn′1(E) for a few values. Colour coding of curves is explained in Figure 3.1. T (E)
and R(E) represent the scattering for uncoupled case (see (3.10)), the background
scattering8

5It is important to note, that this holds only for open channels. For instance, for W > E > 0 matrix
elements S(s′2) (+1) are technically non-zero, but from the energy point of view the second channel is
closed.

6This can be illustrated in the 2D plane. The first and the second channel can be identified with x
axis and y axis, respectively. The particle incoming from the positive x axis has same probability to
go to the positive and to the negative y axis.

7The phase φ only shifts the phase of the outgoing waves, thus it does not affect the probability.
Also the phase of c can be eliminated by the suitable choice of phases of base vectors ê1 and ê2.

8This background scattering is different from the background scattering in the projection-operation
formalism.
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Figure 3.1: The energy dependence of the probabilities Tn′1(E) and Rn′1(E) for parameters:
a = 1, b = 1, |c| = 0.6 with marked threshold energy W = 1 (dashed line) and the probabilities
T (E) and R(E) of one-channel scattering for λ = a for comparison (equivalent to no coupling
|c| = 0).

Rough insight into the effects of parameters. In every row of Figure 3.2 we
change the value of one parameter, while the others are fixed. In the first row, we
can see that the parameter a determines increasing and decreasing rate of T (E) and
R(E) respectively, relatively to the threshold energy W = 1. In the second row, we
observe that the parameter |c| determines strength of coupling (for |c| = 0 there is
no interaction) and affects the magnitude of cusps. The common behaviour in this
two-channel model is the presence of cusps around threshold E = W = 1 (typical
threshold behaviour). This phenomenon can be more or less seen in every figure for
any settings of parameters (only for the trivial uncoupled case |c| = 0 this effect is not
present). In the third and fourth row, we see that parameters b and |c| determine the
presence (both), position (mainly b; the 3rd row) and width (mainly |c|; the 4th row)
of resonances. The resonances will be studied in more detail in the following section as
analytical properties of S matrix.
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Figure 3.2: The energy dependence of the probabilities Tn′1(E) and Rn′1(E) for various
settings of parameters with marked threshold energy W = 1 (dashed line) and the no-coupling
probabilities T (E) and R(E).
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3.2.1 Eigenphases

As already seen in the previous chapter for the one-channel model, the commutativity
of the parity operator P̂ and the full Hamiltonian Ĥ ([Ĥ, P̂ ] = 0) helps to find the
eigenphases δn (eigenvalues of S matrix). In the same manner this commutativity im-
plies commutative relation [Ŝ, P̂ ] = 0 and we can choose common set of eigenfunctions.
The symmetry adapted linear combinations of the functions 〈x|kn, s, n〉 are

〈x|ψ1〉 :=
1√
2

(
1√
2π

eik1x +
1√
2π

e−ik1x
)
ê1 =

1√
π

cos(k1x)ê1 ,

〈x|ψ2〉 :=
1√
2

(
1√
2π

eik1x − 1√
2π

e−ik1x
)
ê1 =

i√
π

sin(k1x)ê1 ,

〈x|ψ3〉 :=
1√
2

(
1√
2π

eik2x +
1√
2π

e−ik2x
)
ê2 =

1√
π

cos(k2x)ê2 ,

〈x|ψ4〉 :=
1√
2

(
1√
2π

eik2x − 1√
2π

e−ik2x
)
ê2 =

i√
π

sin(k2x)ê2 .

We must not forget that the dimensionality of the S matrix depends on the energy:
for W > E > 0 it is 2× 2, for E > W it is 4× 4. When the second channel is closed,
we will use for base only first two symmetry adapted functions 〈x|ψi〉.

The change-of-basis matrix Q and the inverse matrix Q−1 are

Q =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 Q−1 = Q+ =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 .

The new S matrix S′ in the new basis is

S′ = QSQ−1 =



(−D−aκ2−ik1b−ik1κ2
+D+aκ2−ik1b−ik1κ2 0

0 1

)
,W > E > 0

−D−k1k2−ik1b+ik2a
+D−k1k2−ik1b−ik2a 0 2ic

√
k1k2

+D−k1k2−ik1b−ik2a 0

0 1 0 0
2ic∗
√
k1k2

+D−k1k2−ik1b−ik2a 0 −D−k1k2+ik1b−ik2a
+D−k1k2−ik1b−ik2a 0

0 0 0 1

 , E > W

.

For the case W > E > 0 the corresponding eigenphases are

δ1(k1) ≡ 1

2
arg

(
−D − aκ2 − ik1b− ik1κ2

+D + aκ2 − ik1b− ik1κ2

)
(mod π), δ2(k1) ≡ 0 (mod π) .

As before, for the sine waves 〈x|ψ2〉 and 〈x|ψ4〉 the potential is ”invisible” and the
corresponding eigenphases δ2(k1) and δ4(k1) are zero for any energy E

δ2(k1) ≡ 0 (mod π), δ4(k1) ≡ 0 (mod π) .

For the case E > W the task of finding the eigenvalues is not complete and using
the standard technique (characteristic polynomial) leads to quadratic equation. The
corresponding eigenphases are9

δ1/3(k1) ≡ 1

2
arg

(
−D − k1k2 ∓ sgn(b)i

√
(k1b− k2a)2 + 4|c|2k1k2

D − k1k2 − ik1b− ik2a

)
(mod π) .

9The term sgn(b) is present, so the eigenphase δ1(k1) is continuous at threshold k1 =
√

2W .
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For no coupling c = 0 we get eigenphases corresponding to one-dimensional case
(2.10)

δ0
1 ≡

1

2
arg

(
−a− ik1

a− ik1

)
(mod π), δ0

2 ≡ 0 (mod π) ,

δ0
3 ≡

1

2
arg

(
−b− ik2

b− ik2

)
(mod π), δ0

4 ≡ 0 (mod π) .

To understand better the eigenphases we plotted the k1-momentum dependence of
the eigenphases δi(k1) for a few values. In Figure 3.3 we can see common key for all
plotted dependences.
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h
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δ2/4(k)
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Figure 3.3: The eigenphases δi(k1) for parameters: a = 1, b = 1, |c| = 0.6 with marked
threshold momentum k1 =

√
2W (dashed line) and no-coupling eigenphases δ0i (k1) for compar-

ison (pale lines).

In Figure 3.4 we get same rough insight based on the eigenphases into the effects
of parameters as before in Figure 3.2 based on the probabilities. The resonances can
be seen as the rapid changes in eigenphase and they are directly linked to quick +π
change, which graphically means shift to the next π-wide strip (modulo π ambiguity of
eigenphase; the third and the fourth row of Figure 3.4).

As before in the one-channel scattering model, we can define in the low-energy limit
scattering length a and using the relation (2.11) we get

δ1(k1)
k1→0−−−→ π

2
+

b+
√

2W

D + a
√

2W
k1 =⇒ a1 = − b+

√
2W

a(b+
√

2W )− |c|2
.

For no coupling c = 0 we can see agreement with the one-channel relation (2.12).
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3.3 Poles of the S matrix

From theory (for instance Taylor (2006), chapter 13 ”Resonances” [6]) we know, that
if we extend the matrix elements of the scattering operator Ŝ from function of real
variable k1 ≥ 0 to analytic function of the complex variable k1, then the poles of the S
matrix correspond to some important states of the system.

Analytic functions have an important property: If two analytic functions coincide
on some line segment, then they coincide everywhere.10 This allows us unique analytic
continuation of any analytic (differentiable) function defined on some line segment
of real axis into complex plane. From (3.9) we know matrix elements S(s′n′) (sn)(k1)

as functions of non-negative real k1. They are differentiable on intervals (0,
√

2W )
and (

√
2W,+∞) and can be analytically continued into k1-complex plane. We can

see the problem in point +
√

2W , where locally we have square-root-like behaviour√
2W − k2

1, which brings the analytic continuation into two Riemann sheets. In other
words, the point +

√
2W is the branch point and the analytically continued function

will be multifunction (multi-valued function).
If we take the relation (3.9) as the definition of the analytic continuation and replace

K2 with multifunction ∓
√

2W − k2
1, this fulfills the Cauchy–Riemann conditions in

whole k1-complex plane (both sheets) except for zeroes of ∆+(k1) (poles) and points
±
√

2W (branch points).
The poles on the positive imaginary axis (Re(k1) = 0, Im(k1) > 0) correspond to

bound states, poles on the negative imaginary axis (Re(k1) = 0, Im(k1) < 0) are called
virtual states and the poles in The lower half-plane (Re(k1) 6= 0, Im(k1) < 0) usually
correspond to resonances.

From (3.9) we can see, that poles of the S matrix are zeroes of ∆+(k1) (the sign ±
depends on the sheet)

∆+(k1) = (a− ik1)

(
b±

√
2W − k2

1

)
− |c|2 .

The condition for roots can be rewritten as

∆+(k1)(a, b, |c|) = 0 ⇐⇒ Re(∆+(k1))(a, b, |c|) = 0 ∧ Im(∆+(k1))(a, b) = 0 .

The condition Im(∆+(k1)) = 0 is independent of the parameter |c|. We can plot
the solution of the condition Im(∆+(k1)) = 0 for fixed parameters a and b and plot
the solution of the condition Re(∆+(k1)) = 0 for various values of the parameter |c|.
Intersections of the plotted curves are wanted poles of the S matrix. In the Figures
from 3.6 to 3.12 in the upper halves we have plotted for various parameters a and b
solutions of equation Im(∆+(k1)) = 0 in two Riemann k1-sheets and for given |c| (from
0 to 1.6 with step 0.1) the solutions of equation Re(∆+(k1)) = 0; in the lower halves
we have plotted scattering quantities (the scattering probabilities Tn′1(E) and Rn′1(E),
the eigenphases δi(k1)) to demonstrate their relation to poles of the S matrix.

3.3.1 Phenomena

1. The dark green lines trace the movement of the poles with increasing parameter
|c|. Their structure changes with parameters a and b: no intersection point
(the left Riemann sheet of Figures from 3.6 to 3.9, the right Riemann sheet
of all Figures from 3.6 to 3.12), 1 intersection point (borderline case, the left
Riemann sheet of Figure 3.10) and 2 intersection points (the left Riemann sheet

10More precisely: If two analytic functions on some domain (simply connected open subset of the
complex plane) are same on some line segment of the domain, they are same on the domain.
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(3.11)

Figure 3.5: The solution of the equation (3.11) and the number of intersection points on the
first and the second Riemann sheet (N1, N2) in different regions divided by the solution.

of Figures 3.11 and 3.12). Further exploration uncovers that the borderline case
of one intersection point happens for parameters a and b satisfying the equation
(3.11).11,12 The solution of such parameters a and b is plotted in Figure 3.5. The
convex curve divides plane on the no intersection point region (above the curve)
and the 2 intersection point region (under the curve) on the first Riemann sheet.
Similarly, the concave curve divides plane on the 2 intersection points region
(above the curve) and the no intersection point region (under the curve) on the
second Riemann sheet.

2. We can see in the Figures from 3.6 to 3.9 that with increasing parameter |c| the
virtual state becomes the bound state, which can be observed in the change of the
limit eigenphase difference δ1(0)− δ1(+∞) by value +π.13

3. The poles of the S matrix in the lower half-plane usually linked to resonances
do correspond to resonant behaviour in scattering quantities (rapid changes, e.g.
Figure from 3.8 to 3.11), but this model also provides counter-examples. For
instance in Figure 3.12 the probabilities Tn′1(E) and Rn′1(E) or the eigenphases
δi(k1) do not have rapid changes or any other similarities with resonant behaviour.
This usually happens to poles further from real axis.

In the figure 3.6 for a = 1 and b = 1 we can see virtual state, which with increasing
|c| becomes bound state.

11We note that, we have chosen threshold W = 1 and the parameter W is redundant. We can always
rescale: W → 1, E → E

W
, x→ x√

W
, a→ a√

W
, b→ b√

W
and c→ c√

W
.

12The solution for a = 1 is b = ±
√
−9− 3× 2

2
3 (−11 + 5

√
5)

1
3 + 3× 2

2
3 (11 + 5

√
5)

1
3 ≈ ±1.29989,

which is in a good agreement with the chosen value c = −1.3 in Figure 3.10.
13This can be understood in analogy to one-channel case as the implication of Levinson’s theorem (for

instance Taylor (2006), p. 227 [6]). When the virtual state becomes the bound state, then the difference
δ(0) − δ(+∞) changes by constant +π. However for proper interpretation (explaining discrepancies
like ”why this happens only for some eigenphases”, ”meaning of the number n0” and so on) we would
need the generalized Levinson’s theorem for the multichannel scattering. This is beyond the scope of
this footnote, this thesis and maybe even the universe itself.
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Figure 3.6: The upper half: Solutions of Im(∆+(k1)) = 0 (dark green bold lines) and
Re(∆+(k1)) = 0 (coloured lines, parameter |c| from 0 to 1.6 with step 0.1) on two Riemann
sheets for a = 1 and b = 1. The lower half: The energy dependence of the probabilities Tn′1(E)
and Rn′1(E) and k1-dependence of the eigenphases δi(k1) for various settings of parameters.
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Figure 3.7: The upper half: Solutions of Im(∆+(k1)) = 0 (dark green bold lines) and
Re(∆+(k1)) = 0 (coloured lines, parameter |c| from 0 to 1.6 with step 0.1) on two Riemann
sheets for a = 1 and b = 0.1. The lower half: The energy dependence of the probabilities Tn′1(E)
and Rn′1(E) and k1-dependence of the eigenphases δi(k1) for various settings of parameters.
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Figure 3.8: The upper half: Solutions of Im(∆+(k1)) = 0 (dark green bold lines) and
Re(∆+(k1)) = 0 (coloured lines, parameter |c| from 0 to 1.6 with step 0.1) on two Riemann
sheets for a = 1 and b = −0.1. The lower half: The energy dependence of the probabilit-
ies Tn′1(E) and Rn′1(E) and k1-dependence of the eigenphases δi(k1) for various settings of
parameters.
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Figure 3.9: The upper half: Solutions of Im(∆+(k1)) = 0 (dark green bold lines) and
Re(∆+(k1)) = 0 (coloured lines, parameter |c| from 0 to 1.6 with step 0.1) on two Riemann
sheets for a = 1 and b = −1. The lower half: The energy dependence of the probabilities Tn′1(E)
and Rn′1(E) and k1-dependence of the eigenphases δi(k1) for various settings of parameters.
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Figure 3.10: The upper half: Solutions of Im(∆+(k1)) = 0 (dark green bold lines) and
Re(∆+(k1)) = 0 (coloured lines, parameter |c| from 0 to 1.6 with step 0.1) on two Riemann
sheets for a = 1 and b = −1.3. The lower half: The energy dependence of the probabilit-
ies Tn′1(E) and Rn′1(E) and k1-dependence of the eigenphases δi(k1) for various settings of
parameters.

33



−2 −1 0 1 2
Re(k1)

−2

−1

0

1

2

Im
(k

1
)

−2

−1

0

1

2

Im
(k

1
)

−2 −1 0 1 2
Re(k1)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
|c|

0

1/2

1

0 1 2 3

a = 1, b = −1.4, c = 0.1

E 0

1/2

1

0 1 2 3

a = 1, b = −1.4, c = 0.2

E 0

1/2

1

0 1 2 3

a = 1, b = −1.4, c = 1.0

E

−π

−π
2

0

+π
2

+π

0 1 2 3

a = 1, b = −1.4, c = 0.1

k1
−π

−π
2

0

+π
2

+π

0 1 2 3

a = 1, b = −1.4, c = 0.2

k1
−π

−π
2

0

+π
2

+π

0 1 2 3

a = 1, b = −1.4, c = 1.0

k1

Figure 3.11: The upper half: Solutions of Im(∆+(k1)) = 0 (dark green bold lines) and
Re(∆+(k1)) = 0 (coloured lines, parameter |c| from 0 to 1.6 with step 0.1) on two Riemann
sheets for a = 1 and b = −1.4. The lower half: The energy dependence of the probabilit-
ies Tn′1(E) and Rn′1(E) and k1-dependence of the eigenphases δi(k1) for various settings of
parameters.
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Figure 3.12: The upper half: Solutions of Im(∆+(k1)) = 0 (dark green bold lines) and
Re(∆+(k1)) = 0 (coloured lines, parameter |c| from 0 to 1.6 with step 0.1) on two Riemann
sheets for a = 1 and b = −2. The lower half: The energy dependence of the probabilities Tn′1(E)
and Rn′1(E) and k1-dependence of the eigenphases δi(k1) for various settings of parameters.

35



4. Theoretical description of
resonances

In this chapter we will apply projection methods to separate the resonant scattering
(sharp, rapid energy dependence) and the background scattering (smooth energy de-
pendence) in scattering quantities, namely T matrix. Resonances (in this approach)
are naturally understood as the effect of the interaction between the continuum of open
channel(s) and quasi-bound state(s) of closed channel(s).1 First, we will develop brief
insight to the theory, then we will use formalism to our model.

4.1 Projection-operator formalism

As mentioned before, near the resonance energy the particle is trapped into unstable
quasi-bound state (of a closed channel) and subsequently released. The mechanism
causes the rapid changes of cross sections in energy dependence. This leads us to the
idea of separation the Hilbert space H into the space of quasi-states Q and remaining
space of non-resonant continuum P.

H = P ⊕Q

To achieve the separation of vectors and operators according to these subspaces, we
introduce (orthogonal) projection operators P̂ and Q̂ projecting onto the subspace P
and Q respectively.

P̂ : H →P Q̂ : H → Q P̂ + Q̂ = 1̂

P̂ 2 = P̂ P̂+ = P̂ Q̂2 = Q̂ Q̂+ = Q̂ P̂ Q̂ = Q̂P̂ = 0

We recall the splitting of the full Hamiltonian Ĥ into free Hamiltonian Ĥ0 and
potential V̂ (1.4) and corresponding Lippmann-Schwinger equation for |p±〉 (1.25).

Ĥ = Ĥ0︸︷︷︸
T̂

+V̂ |p±〉 = |p〉+ Ĝ0(Ep ± i0)V̂ |p±〉

In the same fashion we can do for Hamiltonians T̂PP
2, ĤPP and Ĥ.3

T̂PP = T̂ + (T̂PP − T̂ ) |pP
0 ±〉 = |p〉 + Ĝ0(Ep ± i0)(T̂PP − T̂ )|pP

0 ±〉 (4.1)

ĤPP = T̂PP + (ĤPP − T̂PP ) |pP±〉 = |pP
0 ±〉+ ĜP

0 (Ep ± i0)(ĤPP − T̂PP )|pP±〉 (4.2)

Ĥ = ĤPP + (Ĥ − ĤPP ) |p±〉 = |pP±〉+ ĜP(Ep ± i0)(Ĥ − ĤPP )|p±〉 (4.3)

1One could understand the approach as a strict mathematical technique without any physical weight,
but for the key element (the choice of the quasi-bound state(s) space Q) there is no mathematical
formalism, only physical intuition. Incorrect choice could add false resonance peaks in background and
resonant part. On the other hand, we should point out, that only rough estimate is necessary, because
the small errors are corrected within the formalism.

2We introduce the notation ÂXY := X̂ÂŶ .
3This is justified only for potentials satisfying the asymptotic condition. The potential (ĤPP−T̂PP ) =

V̂PP is full potential V̂ (for which we assume, that the asymptotic condition is fulfilled) restricted onto

subspace P, thus condition is fulfilled. For potentials (T̂PP − T̂ ) = −T̂1Q − T̂Q1 + T̂QQ and (Ĥ − ĤPP ) =

Ĥ1Q+ĤQ1−ĤQQ and for the subspace Q equal to the linear span of finite number of quasi-bound states
(square-integrable functions) the asymptotic condition is also fulfilled.
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The vectors |p〉, |pP
0 ±〉, |pP±〉 and |p±〉 are improper eigenvectors (asymptotes) of

Hamiltonians T̂ , T̂PP , ĤPP and Ĥ respectively. Therefore the vectors |pP±〉 represent
the non-resonant continuum. Similarly, the operators Ĝ0(z), ĜP

0 (z), ĜP(z) and Ĝ(z)

are Green’s operators of Hamiltonians T̂ , T̂PP , ĤPP and Ĥ respectively. It can be shown
that the vectors |pP

0 ±〉 and |pP±〉 are orthogonal to subspace Q4

Q̂|pP
0 ±〉 = Q̂|pP±〉 = 0 =⇒ P̂ |pP

0 ±〉 = |pP
0 ±〉 , P̂ |pP±〉 = |pP±〉 .

Using two-potential formula5 twice we can separate the on-shell T matrix t(p′ ← p)
into three terms

t(p′ ← p) = 〈p′|ĤPP − T̂ |pP+〉︸ ︷︷ ︸
=:tbg(p′←p)

+ 〈p′P−|Ĥ − ĤPP |p+〉︸ ︷︷ ︸
=:tres(p′←p)

= 〈p′|T̂PP − T̂ |pP
0 +〉︸ ︷︷ ︸

=:tortho(p′←p)

+ 〈p′P0 −|ĤPP − T̂PP |pP+〉︸ ︷︷ ︸
=:tdir(p′←p)

+ 〈p′P−|Ĥ − ĤPP |p+〉 .

Because the vectors |pP±〉 represent the non-resonant continuum, the first term is
often referred to as background scattering tbg(p′ ← p), which implies that the remaining
term is responsible for resonant scattering tres(p

′ ← p). The background term can be
split into two terms usually called orthogonality scattering6 tortho(p′ ← p) and direct
scattering7 tortho(p′ ← p). Usually one needs only separation into two terms: the
background (non-resonant) and the resonant term.

First, to achieve this separation, we choose the subspace Q as linear span of M
orthonormal proper vectors {|χn〉}Mn=1. From the theory of spectral decomposition

the eigenvectors of the Hamiltonian Ĥ: proper vectors |n〉 (the bound states from
subspace B) and improper vectors |p±〉 (the scattering states from subspace R), form
the orthonormal basis.

H = B ⊕R
〈n′|n〉 = δn′n
〈k′±|k±〉 = δN (k′ − k)
〈n|k±〉 = 0

1̂ =
∑
n

|n〉〈n|︸ ︷︷ ︸
1̂B

+

∫
RN

dk|k±〉〈k±|︸ ︷︷ ︸
1̂R

In the same fashion, we can write for the subspaces Q and P.

H = Q ⊕P
〈χn′ |χn〉 = δn′n
〈k′P±|kP±〉 = δN (k′ − k)
〈χn|kP±〉 = 0

1̂ =
M∑
n=1

|χn〉〈χn|︸ ︷︷ ︸
1̂Q=Q̂

+

∫
RN

dk|kP±〉〈kP±|︸ ︷︷ ︸
1̂P=P̂

4For the vector |pP
0 ±〉 as eigenvector we can write

EQ̂|pP
0 ±〉 = Q̂E|pP

0 ±〉 = Q̂T̂PP |pP
0 ±〉 = Q̂P̂︸︷︷︸

0

T̂ P̂ |pP
0 ±〉 = 0 .

Similarly we can write for |pP±〉.
5Two-potential formula. (Taylor (2006), p. 270-271 [6]) If the full potential V̂ is equal to sum of

two potentials V̂ = V̂1 + V̂2, then we can write for the on-shell T matrix t(p′ ← p)

t(p′ ← p) = 〈p′|V̂1|p1+〉+ 〈p′1−|V̂2|p+〉 ,

where |p1±〉 are improper eigenvectors of Hamiltonian Ĥ0 + V̂1 (i.e. the solutions of Lippmann-
Schwinger equation).

6Coming from orthogonal separation of asymptote space H into P and Q.
7As direct scattering without any trapping into quasi-bound states.
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4.1.1 Orthogonal scattering

As shown in Domcke’s article (1983) [3], it is possible to solve8 the orthogonal scattering
in closed form. We start with Lippmann-Schwinger equation for |pP

0 ±〉 (4.1) with the

potential (T̂PP − T̂ ) = −T̂1Q − T̂Q1 + T̂QQ and using Q̂|pP
0 ±〉 = 0 we get

|pP
0 ±〉 = |p〉+ Ĝ0(Ep ± i0)(−��̂T1Q − T̂Q1 +�

�T̂QQ )|pP
0 ±〉

= |p〉 −
M∑
n=1

Ĝ0(Ep ± i0)|χn〉〈χn|T̂ |pP
0 ±〉 .

The solution is obtained in closed form9

|pP
0 ±〉 = |p〉 −

M∑
n=1
m=1

Ĝ0(Ep ± i0)|χn〉A(Ep ± i0)−1
nm〈χm|p〉 , (4.4)

where A(z)−1 is inverted M ×M matrix of M ×M matrix A(z) defined as A(z)nm :=
〈χn|Ĝ0(z)|χm〉. Using the same steps with the on-shell T matrix tortho(p′ ← p) and
closed form of 〈χn|T̂ |pP

0 +〉 we get

tortho(p′ ← p) = −
M∑
n=1
m=1

〈p′|χn〉A(Ep + i0)−1
nm〈χm|p〉 . (4.5)

In same fashion the free Green’s operator ĜP
0,PP (z) in subspace P is obtained

ĜP
0,PP (z) = Ĝ0(z)−

M∑
n=1
m=1

Ĝ0(z)|χn〉A(z)−1
nm〈χm|Ĝ0(z) . (4.6)

The off-diagonal terms ĜP
0,PQ(z) and ĜP

0,QP (z) are from definition zero and the free

Green’s operator ĜP
0,QQ(z) in subspace Q is simply z−1Q̂.

4.1.2 Resonant scattering

It is possible to express the resonant scattering T matrix tres(p
′ ← p) without using full

scattering continuum |p±〉 and instead to use background scattering continuum |pP±〉
(e.g. in [2]). From the definition of the resonant scattering T matrix tres(p

′ ← p) for
the potential (Ĥ − ĤPP ) = ĤQQ + ĤQP + ĤPQ and using Q̂|p′P±〉 = 0 we get

tres(p
′ ← p) = 〈p′P−|�

��ĤQQ +�
��ĤQP + ĤPQ|p+〉 = 〈p′P−|P̂ ĤQ̂|p+〉 .

In order to get rid of the term Q̂|p+〉, we will project the Lippmann-Schwinger equation
for |p±〉 (4.3) into subspaces P and Q

P̂ |p±〉 = P̂ |pP±〉︸ ︷︷ ︸
|pP±〉

+P̂ ĜP(Ep ± i0)(�
��ĤQQ +�

��ĤQP + ĤPQ)|p±〉 , (4.7)

Q̂|p±〉 = Q̂|pP±〉︸ ︷︷ ︸
0

+Q̂ ĜP(Ep ± i0)︸ ︷︷ ︸
(Ep±i0)−1

(ĤQQ + ĤQP +�
��ĤPQ )|p±〉 , (4.8)

8To find the scattering vectors |pP
0 ±〉, on-shell T matrix tortho(p′ ← p) and the Green’s operator

ĜP
0 (z).
9After acting with 〈χi|T̂ from the left on the equation we get solvable matrix equation for

〈χn|T̂ |pP
0 ±〉

M∑
m=1

〈χk|Ĝ0(Ep ± i0)|χm〉︸ ︷︷ ︸
Akm(Ep±i0)

〈χm|T̂ |pP
0 ±〉 = 〈χk|p〉 .
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where we used fact, that the Green’s operator ĜP(z) is diagonal with respect to sub-
spaces P and Q, therefore ĜP

PQ(z) = ĜP
QP (z) = 0 and ĜP

QQ(z) = z−1Q̂. We substitute

in the second equation (4.8) the term P̂ |p±〉 from the first equation (4.7) and we get
equation for Q̂|p±〉 with the solution

Q̂|p±〉 =
[
(Ep ± i0)− ĤQQ − ĤQP ĜP(Ep ± i0)ĤPQ

]−1
ĤQP |pP±〉 .

Using this result we can write the resonant scattering T matrix tres(p
′ ← p) as

tres(p
′ ← p) = 〈p′P−|ĤPQ

[
(Ep + i0)− ĤQQ − ĤQP ĜP(Ep + i0)ĤPQ

]−1
ĤQP |pP+〉 .

(4.9)
Even though this formula looks horribly clumsy, it can be broken down into three

matrix element evaluated on subspace Q. We define the discrete states’ Hamiltonian
Hmn, discrete-states-continuum coupling V ±m,p and complex level-shift matrix Fmn(z)
as

Hmn := 〈χm|Ĥ|χn〉 ,

V ±m,p := 〈χm|Ĥ|pP±〉 ,

Fmn(z) := 〈χm|ĤĜP
PP (z)Ĥ|χn〉 =: ∆mn(z)− i

2
Γmn(z) ,

where ∆mn(z) is real part of level-shift matrix Fmn(z) and Γmn(z) is (up to multiplic-
ative constant −1/2) imaginary part of level-shift matrix also called width10.

Applying the formalism for subspace Q of one normalised discrete state |χ1〉 sim-
plifies the inverse of a M ×M matrix in (4.9) to inverse of a number and we get

tres(p
′ ← p) =

(V −1,p′)
∗V +

1,p

E −H11 − F11(Ep + i0)
=

(V −1,p′)
∗V +

1,p

[E −H11 −∆11(Ep + i0)] + i
2Γ11(Ep + i0)

.

(4.10)
If the resonance is sharp, then the energy dependence of functions V ±1,p, ∆11 and Γ11

is negligible and we have obtained Breit-Wigner resonance formula with the resonance
energy Er = H11 +∆11 (the position of the peak in energy spectrum) and the resonance
width Γ = Γ11 (the full width at half maximum of the peak).

4.2 Application of formalism

Now we will apply developed formalism to out model in regime of narrow resonance
(b < 0 and |b| � |c|). Explanation at the level of physical intuition: In the case of no
coupling between channels (|c| = 0) the channels are isolated and cannot influence each
other. Iff b < 0, there is bound state in the second channel (as seen in subsection 2.1.2)
with the wave function

〈x|ψ〉 =
√
−beb|x|ê2 (4.11)

and the energy

Ebound = W − b2

2
. (4.12)

Now we do small perturbation, we allow coupling |b| � |c| > 0. For energies
W > E ≥ 0 the first channel is opened and the second one is closed. The bound state
in the second channel will become quasi-bound state. This gives us second restriction

10The origin of the term and reason of the factor −1/2 become obvious later, when we will show
connection to Breit-Wigner resonance formula.
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−
√

2W < b < 0, otherwise the bound state of the unperturbed Hamiltonian would stay
the bound state of the full Hamiltonian.

After this analysis the choice of subspace Q becomes quite straightforward: linear
span of M = 1 normalized vector |χ1〉

〈x|χ1〉 =
√
κe−κ|x|ê2 , (4.13)

where κ > 0 is parameter, ideally κ = −b. Later on we can test, how the choice of
parameter κ (and consequently the choice of subspace Q) can affect the separation of
on-shell T matrix t(p′ ← p).

We have calculated the energy of the state |χ1〉 in the full Hamiltonian Ĥ (equation
(A.14)) and plotted its κ-dependence in Figure 4.1. We can notice that the energy H11

will be same for the full Hamiltonian Ĥ restricted only to the second channel. The state
|ψ〉 from equation (4.11) is the ground state of this restricted Hamiltonian with energy
Ebound – equation (4.12). From the variational principle we know that the energy H11

of the state |χ1〉 is always greater or equal than the energy of the ground state Ebound

with equality for κ = −b (Figure 4.1).

W − 1
2b

2

W

0 −b −2b
κ

H11(κ)

H11 = 〈χ1|Ĥ|χ1〉 = W +
1

2
κ(κ+ 2b) .

Figure 4.1: The κ-dependence of energy H11 of the discrete state |χ1〉 with marked threshold
energy W (black line).

4.2.1 Orthogonal scattering

The orthogonal scattering have been solved in closed form. We only need to calcu-
late for chosen subspace Q three matrix elements 〈χ1|kn, s, n〉, 〈x|Ĝ0(E ± i0)|χ1〉 and
〈χ1|Ĝ0(E ± i0)|χ1〉 (Appendix A.2.1) and insert expressions into equations (4.4), (4.5)
and (4.6) (for z = E ± i0).

〈x|(kn, s, n)P
0 ±〉 = 〈x|kn, s, n〉 −

〈x|Ĝ0(E ± i0)|χ1〉〈χ1|kn, s, n〉
〈χ1|Ĝ0(E ± i0)|χ1〉

(3.2)(A.11)
=

(A.10)(A.12)

=
ên√
2π

eisknx − δ2n
ê2√
2π

2κ2

(2κ∓ ik2)(κ± ik2)2

(
κe±ik2|x| ± ik2e−κ|x|

)
(4.14)

tortho(kn′ , s
′, n′; kn, s, n) = −〈kn

′ , s′, n′|χ1〉〈χ1|kn, s, n〉
〈χ1|Ĝ0(E + i0)|χ1〉

(A.10)
=

(A.12)

= −
(

0 0
0 1

)
ik2κ

3

π(2κ− ik2)(κ+ ik2)2
,

〈x′|ĜP
0,PP (E ± i0)|x〉 = 〈x′|Ĝ0(E ± i0)|x〉 − 〈x

′|Ĝ0(E ± i0)|χ1〉〈χ1|Ĝ0(E ± i0)|x〉
〈χ1|Ĝ0(E ± i0)|χ1〉

(A.11)
=

(A.12)

= 〈x′|Ĝ0(E ± i0)|x〉−

− 2κê2ê
+
2

K∗2 (κ+K2)2(2κ−K2)

(
κeK2|x′| +K2e−κ|x

′|
)(

κeK
∗
2 |x| +K∗2e−κ|x|

)
(4.15)
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4.2.2 Direct scattering

Even though we do not possess any closed form general solution of direct scattering,
we can for our special Hamiltonian apply familiar procedure of solving Lippmann-
Schwinger equation used in sections 2.2 and 3.1.

We start with Lippmann-Schwinger equation for |(kn, s, n)P±〉 from (4.2) (in pos-
ition representation, insertion of the unit operator)11

〈x|(kn, s, n)P±〉 = 〈x|(kn, s, n)P
0 ±〉+

∫
R

dx′〈x|ĜP
0,PP (E ± i0)|x′〉〈x′|V̂ |(kn, s, n)P±〉 .

As we have already experienced, for the on-shell T matrix tdir(p
′ ← p) we would

need only terms 〈x = 0|(kn, s, n)P
0 ±〉 and 〈x = 0|ĜP

0,PP (E ± i0)|x′ = 0〉. From (4.14)
and (4.15) for x = x′ = 0 we get

〈0|(kn, s, n)P
0 ±〉 =

(
1 0
0 γ±

)
ên√
2π

,

〈0|ĜP
0,PP (E ± i0)|0〉 =

(
1
±ik1 0

0 1
K2
− 2κ(κ+K∗2 )

K∗2 (κ+K2)(2κ−K2)

)
=

( 1
±ik1 0

0 1
L2

)
,(4.16)

where

L2 = L2(E ± i0) :=

{
±ik2ρ± , E ≥W
−κ2 − 2κ ,W > E ≥ 0

,

where for convenience we have defined γ± := ±ik2(κ∓ik2)
(2κ∓ik2)(κ±ik2) and ρ± := (2κ∓ik2)(κ±ik2)

4κ2∓ik2(κ±ik2)
.

Following same steps as before, we get implicit equation

〈x|(kn, s, n)P±〉 = 〈x|(kn, s, n)P
0 ±〉+ 〈x|ĜP

0,PP (E ± i0)|0〉
(

a c
c∗ b

)
〈0|(kn, s, n)P±〉 ,

where the undetermined implicit constants 〈0|(kn, s, n)P±〉 are solved from equation
for x = 0

=⇒
x=0

〈0|(kn, s, n)P±〉 =

[(
1 0
0 1

)
−
( 1
±ik1 0

0 1
L2

)(
a c
c∗ b

)]−1(
1 0
0 γ±

)
ên√
2π

.

Using (3.7) we get

〈0|(kn, s, n)P±〉 = − 1
√

2π∆̃±

(
±ik1(b− L2) −cL2γ±
∓ic∗k1 L2(a∓ ik1)γ±

)
ên , (4.17)

where ∆̃± := (a∓ ik1)(b− L2)− |c|2.
For the direct on-shell T matrix tdir(kn′ , s

′, n′; kn, s, n) 12 we can write

tdir(kn′ , s
′, n′; kn, s, n) =

∫
R

dx〈(kn′ , s′, n′)P
0 −|x〉〈x|V̂ |(kn, s, n)P+〉 =

= 〈(kn′ , s′, n′)P
0 −|0〉

(
a c
c∗ b

)
〈0|(kn, s, n)P+〉 =

= − 1

2π∆̃+

(
ik1(D − aL2) ck1k2γ+ρ+

c∗k1k2γ+ρ+ k2(iD + bk1)γ2
+ρ+

)
.

11

ĜP
0 (z) P̂ V̂ P̂︸ ︷︷ ︸

ĤPP−T̂PP

|pP±〉 =
(
ĜP

0,PP (z) +���
�

ĜP
0,QP (z)

)
V̂ P̂ |pP±〉︸ ︷︷ ︸

|pP±〉

= ĜP
0,PP (z)V̂ |pP±〉

12

tdir(p
′ ← p) = 〈p′P0 −|ĤPP − T̂PP |pP+〉 = 〈p′P0 −|P̂ V̂ P̂ |pP+〉 = 〈p′P0 −|V̂ |pP+〉
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4.2.3 Resonant scattering

From theory in the subsection A.14 we know that key matrix elements to calculate
the resonant scattering T matrix tres(p

′ ← p) are discrete state energy H11 (calcu-
lated in Appendix A.2.2, equation (A.14)), discrete-state-continuum coupling V ±1,(kn,s,n)

(calculated in Appendix A.2.2, equation (A.15)) and complex level-shift matrix F11(z).
To calculate the last one we start with Lippmann-Schwinger equation for ĜP(z)

(1.16) projected to subspace P on both sides leading to

ĜP
PP (z) = ĜP

0,PP (z) + ĜP
0,PP (z)V̂ ĜP

PP (z) .

For spatial matrix elements 〈x′|ĜP
PP (z)|x〉 we get integral equation

〈x′|ĜP
PP (z)|x〉 = 〈x′|ĜP

0,PP (z)|x〉+

∫
R

dy δ(y)〈x′|ĜP
0,PP (z)|y〉Λ〈y|ĜP

PP (z)|x〉 ,

where Λ =

(
a c
c∗ b

)
. We already have experience with this type of integral equation

(sections 2.2, 3.1 and subsection 4.2.2), so we just skip familiar procedure (implicit
equation for 〈x′|ĜP

PP (z)|x〉, set x′ = 0, express and insert 〈0|ĜP
PP (z)|x〉) and we get

〈x′|ĜP
PP (z)|x〉=〈x′|ĜP

0,PP (z)|x〉+ 〈x′|ĜP
0,PP (z)|0〉Λ

[
1̂−〈0|ĜP

0,PP (z)|0〉Λ
]−1
〈0|ĜP

0,PP (z)|x〉 .

Fortunately we will need only spatial matrix element 〈0|ĜP
PP (E + i0)|0〉, for which the

above expression reduces to

〈0|ĜP
PP (E + i0)|0〉 =

[
1̂− 〈0|ĜP

0,PP (E + i0)|0〉Λ
]−1
〈0|ĜP

0,PP (E + i0)|0〉 =

= − 1

∆̃+

(
b− L2 −c
−c∗ a− ik1

)
.

Inserting to equation (A.17) we get

F11 = − κ

∆̃+

[
(a− ik1)(κ+ b)2 − |c|2(2κ+ L2 + b)

]
.

We are mostly interested in the case W > E ≥ 0. From equation (4.10) we get

tres =
(V −1,(kn′ ,s′,n′)

)∗V +
1,(kn,s,n)

E −H11 − F11(E + i0)
=

k2
1κ|c|2

π∆+∆̃+

.

We can verify whether the orthogonal, direct and resonant on-shell T matrix add
up to total the scattering on-shell T matrix t(kn′ , s

′, n′; kn, s, n)

t = tortho + tdir + tres

= 0− ik1 [D + a(κ2 + 2κ)]

2π∆̃+

+
k2

1κ|c|2

π∆+∆̃+

= − ik1(D + aκ2)

2π∆+
,

which is in agreement with the total scattering on-shell T matrix t(kn′ , s
′, n′; kn, s, n)

(deduced from S matrix (3.9))

t(kn′ , s
′, n′; kn, s, n) = − 1

2π∆+

(
ik1(D − aK2) ck1k2

c∗k1k2 k2(iD + bk1)

)
.
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4.2.4 κ-dependence

To observe the κ-dependence of the separation first we plot the on-shell T matrix
elements for ideal value κ = −b (Figure 4.2). The background on-shell T matrix is the
sum of the orthogonal and the direct, but the orthogonal matrix element tortho,11 is
zero. We can see that the separation of the total on-shell T matrix t11 (rapid changes
around the resonance energy Er ≈ 0.5) to the background scattering term tbg,11 (smooth
behaviour) and the resonant term was successful. We can notice that, while the overall
on-shell T matrix elements (thus also S matrix elements) are continuous everywhere,
the separated terms have one discontinuity at threshold energy W . This is caused by
the discontinuity of the function L2 defined in (4.16).
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Figure 4.2: The energy dependence of absolute value of the background (tbg), resonant (tres)
and total (t) on-shell T matrix element t11 for parameters: a = 1, b = −1, |c| = 0.1 (the 1st
graph); a = 1, b = −1, |c| = 0.3 (the 2nd graph); κ = −b = 1 with marked threshold energy
W = 1 (dashed line).

In the Figure 4.3 we can see how the parameter κ affects the separation of the
scattering terms. Two effects are observed: in the wide range of values (〈0.6, 2.5〉) the
parameter has minimal if none influence on the separation, which corresponds to fact,
that one only needs to estimate the subspace Q roughly; for some values (≈ 〈0, 0.5〉)
there appears the second, fake resonance peak with corresponding opposite peak in
direct scattering. For κ = 0 the resonant term is zero and t11 = tbg,11, therefore as we
approach this value the separation is worse and worse.
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Figure 4.3: The dependence of absolute value of the direct and resonant on-shell T matrix
element t11 on the parameter κ (from 0.2 to 2.5 with step 0.1; idealy κ = −b = 1.0) for
parameters: a = 1, b = −1, |c| = 0.1 (the 1st graph); a = 1, b = −1, |c| = 0.3 (the 2nd graph),
with marked threshold energy W = 1 (dashed line).

4.2.5 Eigenphases

For scattering in full potential we calculated corresponding eigenphases (subsection
3.2.1). We can analogically assign to background and resonant on-shell T matrix cor-
responding S matrix and consequently eigenphases.13 But to achieve separation of
eigenphases, we cannot directly use relation (1.13). The background scattering is scat-
tering in potential ĤPP−T̂ and corresponding background S matrix Sbg and background
eigenphases δbg (the eigenvalue e2iδbg) can calculated from background on-shell T mat-

13We can also define orthogonal, direct and resonant S matrices and eigenphases, but there is no
need to divide background term into two terms.
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rix as14

Sbg = 1̂− 2πitbg .

To preserve unitarity of resonant S matrix and to get simple additive separation of
eigenphases, we define altered resonant T matrix t̃res

t̃res = S−1
bg tres ,

and corresponding resonant S matrix Sres and resonant eigenphases δres

Sres = 1̂− 2πit̃res .

For S matrices defined like this we can write15

S = SbgSres , δ = δbg + δres .

−π

−π
2

0

+π
2

+π

0.0 0.5 1.0 1.5 2.0

ei
g
en

p
h

a
se

k1

−π

−π
2

0

+π
2

+π

0.0 0.5 1.0 1.5 2.0

b
ac

k
gr

ou
n

d
ei

ge
n

p
h

as
e

k1

−π

−π
2

0

+π
2

+π

0.0 0.5 1.0 1.5 2.0

re
so

n
an

t
ei

ge
n

p
h

as
e

k1

−π

−π
2

0

+π
2

+π

0.0 0.5 1.0 1.5 2.0
k1

−π

−π
2

0

+π
2

+π

0.0 0.5 1.0 1.5 2.0
k1

−π

−π
2

0

+π
2

+π

0.0 0.5 1.0 1.5 2.0
k1

Figure 4.4: Separation of eigenphases δ1(k1) (violet), δ2/4(k1) (orange) and δ3(k1) (pink)
to background δbg,i(k1) and resonant δres,i(k1) eigenphases for parameters: a = 1, b = −1,
|c| = 0.1 (left side); a = 1, b = −1, |c| = 0.3 (right side); κ = −b = 1.

From given background and resonant on-shell T matrices we calculated correspond-
ing S matrices and using same technique as before (subsections 2.3.1 and 3.2.1) we
calculated eigenphases δbg,i(k1) and δres,i(k1) for i ∈ N4

1. The k1-dependence of separ-
ated and total eigenphases for ideal parameter κ = −b was plotted in Figure 4.4.

We can see, that separation of the background (smooth without rapid changes)
eigenphase δbg and the resonant (step-like) eigenphase δres for ideal choice of parameter
κ was successful.

14When calculating we need to be careful to put the normalization term 1/
√
knkn′ in the right place.

15The second equation applies for one-dimensional matrices.
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Conclusion

In conclusion we would like to summarise achieved results. At first we solved Lippmann-
Schwinger equation for one-dimensional two-channel scattering model with delta po-
tential and calculated scattering improper eigenvectors, the S matrix and eigenphases.
Out of 5 parameters W , a, b, |c| and φ the model has 3 free parameters a, b and |c|.
We were mostly focused on the most interesting situation with particle incoming in
the first channel. The parameter a determines increasing and decreasing rate for un-
coupled (”background”) scattering. The parameter |c| determines strength of coupling
and the magnitude of threshold effects (cusps). The parameters b and |c| determine
the presence (both), position (mainly b) and width (mainly |c|) of resonances.

The further analysis of the poles of the S matrix in complex k-plane (two Riemann
sheets) shows their mutual relationship with resonances and bound states. Also the
change of virtual state to bound states is observed as the change of the limit eigenphase
difference δ1(0)− δ1(+∞) by value +π.

Then we applied the projection-operator formalism to explicitly and analytically
separate scattering on-shell T matrix to background and resonant part. In the wide
range of values of parameter κ (the choice of discrete state) the separation holds with
very minimal alternations. Also we managed to separate eigenphases into background
and resonant eigenphases.

This model can serve as simple toy model for effects, which occurs in more com-
plicated and complex calculations (e.g. electron – molecule collisions).
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A. Appendices

A.1 The matrix elements of the free Green’s operator
Ĝ0(z)

For our purposes we need to find the matrix elements of the free Green’s operator Ĝ0(z)
for one-dimensional Hamiltonian Ĥ0.1

We recall the definition (1.14) of the free Green’s operator Ĝ0(z)

Ĝ0(z) :=
(
z − Ĥ0

)−1
,

and using property (1.2) we get the full set of eigenvectors |p〉

Ĝ0(z)|p〉 =
1

z − Ep
|p〉 . (A.1)

For the momentum matrix elements of the free Green’s operator 〈p′|Ĝ0(z)|p〉 it is
straight-forward

〈p′|Ĝ0(z)|p〉 =
1

z − Ep
〈p′|p〉 =

1

z − Ep
δ(p′ − p) .

For the spatial matrix elements of the free Green’s operator 〈x′|Ĝ0(z)|x〉 using the
spectral decomposition of the unit operator 1̂ we obtain (compare the middle term to
(1.15))

〈x′|Ĝ0(z)|x〉 = 〈x′|Ĝ0(z)1̂|x〉 =

∫ +∞

−∞
dp〈x′|Ĝ0(z)|p〉〈p|x〉 (A.1)

=

(A.1)
=

∫ +∞

−∞
dp
〈x′|p〉〈p|x〉
z − Ep

(1.1)
=

1

2π

∫ +∞

−∞
dp

eip(x
′−x)

z − Ep
(1.11)

=
1

π

∫ +∞

−∞
dp

eip(x
′−x)

2z − p2
.

To evaluate the integral we need to use basic tools of complex analysis: Cauchy’s residue
theorem2 and Jordan’s lemma4.

1Same procedure can used for multi-dimensional case, the trick is to use the spherical coordinate
system with ẑ = p̂.

2Cauchy’s residue theorem. Let

• Ω ⊂ C be simply connected3open subset of the complex plane,

• {pj}Nj=1 ∈ Ω be finite points of subset Ω,

• f(p) be analytic function on Ω \ {pj}Nj=1,

• γ be closed path in Ω \ {pj}Nj=1,

then ∮
γ

dp f(p) = 2πi

N∑
j=1

ind(γ, pj)res(f, pj) , (A.2)

where ind(γ, pj) is winding number (the total number of times that path γ travels counterclockwise
around the point pj) and res(f, pj) is resudue (the coefficient c−1 in the Laurent series of function f(p)

at the point pj , f(p) =

+∞∑
−n=∞

cn(p− pj)n).

31. Every two points of the set are connected with continuous path in this set.
2. Every path between two fixed points can be continuously transformed into any other path.
4Jordan’s lemma. Let

• CR :=
{
Reiφ|φ ∈ 〈0, π〉

}
be semicircular contour of radius R > 0 lying in the upper half-plane,
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A.1.1 Non-negative energy (E ≥ 0)

First, we are interested in the matrix elements of the limit operator Ĝ0(Ep ± i0) :=

lim
ε→+0

Ĝ0(Ep±iε) (in other words for non-negative energy). The function f(p) := eip(x
′−x)

2z−p2

as function of the complex variable p has 2 simple poles (for |z| > 0, which is always the
case5) at points p1 = +p̃(z) and p2 = −p̃(z), where p̃(z) :=

√
2z. It can be rewritten

into the form

f(p) =
eip(x

′−x)

2z − p2
=

eip(x
′−x)

2p̃(z)

(
1

p+ p̃(z)
− 1

p− p̃(z)

)
. (A.4)

We distinguish three cases:

1. (x′ − x) > 0. Let R > |p̃(z)| > 0 be radius and choose closed contour γ as seen
in Figure A.1. The contour γ := γ1 + γ2 consists of two path: γ1 – semicircle of
radius R from the point +R to −R, γ2 – straight line along the real axis from
point −R to +R.

Re(p)

Im(p)

+R−R

+p̃(z)

−p̃(z)

γ1

γ2

γ := γ1 + γ2

p−plane

Figure A.1: The contour of integration γ in complex p-plane.

Now we will look at Cauchy integral of function f(p) over the contour γ:∫
CR

dp f(p) +

∫ +R

−R
dp f(p)

γ:=γ1+γ2
========

∮
γ

dp f(p)
(A.2)
= 2πi

2∑
j=1

ind(γ, pj)res(f, pj) .

(A.5)

From Figure A.1 we know ind(γ, p1) = 1 and ind(γ, p2) = 0 and from the ex-

pression (A.4) we can see values of the residues res(f, p1) = − eip1(x
′−x)

2p̃(z) and

res(f, p2) = eip2(x
′−x)

2p̃(z) .∫
CR

dp f(p) +

∫ +R

−R
dp f(p) = − πi

p̃(z)
eip̃(z)(x

′−x)

• f(p) = eiapg(p) be continuous complex function with a positive parameter a > 0 defined at CR,

then ∣∣∣∣∫
CR

dp f(p)

∣∣∣∣ ≤ π

a
max
φ∈〈0,π〉

∣∣∣g (Reiφ
)∣∣∣ . (A.3)

5

|z| =
(
E2
p + ε2

)1/2 ≥ ε > 0
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Now we are interested in limit R→ +∞.

lim
R→+∞

∫
CR

dp f(p) +

∫ +∞

−∞
dp f(p) = − πi

p̃(z)
eip̃(z)(x

′−x)

Using Jordan’s lemma (A.3) for g(p) = 1
2z−p2 and a = (x′ − x) we get

lim
R→+∞

∣∣∣∣∫
CR

dp f(p)

∣∣∣∣ (A.3)

≤ lim
R→+∞

π

(x′ − x)
max
φ∈〈0,π〉

∣∣∣∣ 1

2z −R2e2iφ

∣∣∣∣ =

= lim
R→+∞

π

(x′ − x)

1

R2 − 2|z|
= 0 ,

what directly implies

lim
R→+∞

∫
CR

dp f(p) = 0 (A.6)

and we obtained required result∫ +∞

−∞
dp f(p) = − πi

p̃(z)
eip̃(z)(x

′−x)

2. (x′ − x) = 0. We follow exactly same procedure as in the previous case and
end up with same result for (x′ − x) = 0. Only argumentation for zero integral

lim
R→+∞

∫
CR

dp f(p) will be different.

lim
R→+∞

∣∣∣∣∫
CR

dp f(p)

∣∣∣∣ =
∥∥∥ p=Reiφ

dp=Rieiφdφ

∥∥∥ = lim
R→+∞

∣∣∣∣∫ π

0
dφ f

(
Reiφ

)
Rieiφ

∣∣∣∣ ≤
≤ lim

R→+∞

∫ π

0
dφ
∣∣∣f (Reiφ

)
Rieiφ

∣∣∣ ≤ lim
R→+∞

∫ π

0
dφ max

φ∈〈0,π〉

∣∣∣f (Reiφ
)∣∣∣R =

= lim
R→+∞

∫ π

0
dφ

R

R2 − 2|z|
= lim

R→+∞

πR

R2 − 2|z|
= 0

3. (x′ − x) < 0. Firstly we substitute p′ = −p∫ +∞

−∞
dp f(p) =

∥∥∥ p′=−p
dp′=−dp

∥∥∥ = −
∫ −∞

+∞
dp′

e−ip
′(x′−x)

2z − p′2
=

∫ +∞

−∞
dp′

eip
′[−(x′−x)]

2z − p′2
,

which leads to the same integral as in the first case for [−(x′ − x)] > 0, therefore
the result is ∫ +∞

−∞
dp f(p) = − πi

p̃(z)
eip̃(z)[−(x′−x)] .

Result for all three cases can put into single formula∫ +∞

−∞
dp f(p) = − πi

p̃(z)
eip̃(z)|x

′−x| ,

which gives us

〈x′|Ĝ0(z)|x〉 = − i

p̃(z)
eip̃(z)|x

′−x| .

At last, we need to proceed limit lim
ε→+0

Ep ± iε := Ep ± i0, what can be done using

Figure A.1. For +ε > 0 the value +p̃(z) approaches value +p̃(z)→ +p (densely dashed
arrow), for −ε < 0 the value +p̃(z) approaches value +p̃(z) → −p (loosely dashed
arrow).

The final result is

〈x′|Ĝ0(Ep ± i0)|x〉 = ± 1

ip
e±ip|x

′−x| . (A.7)
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A.1.2 Negative energy (E < 0)

Second, we will evaluate the spatial matrix elements of the operator Ĝ0(E) for negative
energy E.6 For negative energy we define κ(E) :=

√
−2E. As before, the function f(p)

has 2 simple poles at points p1 = +iκ(E) and p2 = −iκ(E), thus we can f(p) rewrite
as

f(p) =
eip(x

′−x)

2E − p2
=
−ieip(x′−x)

2κ(E)

(
1

p+ iκ(E)
− 1

p− iκ(E)

)
. (A.8)

In the same fashion as before, we distinguish three cases:

1. (x′ − x) > 0. Let R > κ(E) > 0 be radius and choose the same closed contour γ
as previously (Figure A.2).

Re(p)

Im(p)

+R−R

+iκ(E)

−iκ(E)

γ1

γ2

γ := γ1 + γ2

p−plane

Figure A.2: The contour of integration γ in complex p-plane.

Again we will express the Cauchy integral of function f(p) over the contour γ
(A.5). From Figure A.2 we get ind(γ, p1) = 1 and ind(γ, p2) = 0 and from the

expression (A.8) we deduce values of the residues res(f, p1) = ie−κ(E)(x′−x)

2κ(E) and

res(f, p2) = −ie+κ(E)(x′−x)

2κ(E) . Proceeding the limit R→ +∞ and using the result of

Jordan’s lemma (A.6) we get∫ +∞

−∞
dp f(p) = − π

κ(E)
e−κ(E)(x′−x) .

2. (x′−x) = 0. Same procedure as before leading to the same result for (x′−x) = 0.
Argumentation for zero semicircle integral is same as for non-negative energy.

3. (x′ − x) < 0. Using same substitution as for non-negative energy we obtain the
same result for [−(x′ − x)] > 0.

Putting all cases into single formula gives us∫ +∞

−∞
dp f(p) = − π

κ(E)
e−κ(E)|x′−x| =⇒ 〈x′|Ĝ0(E)|x〉 = − 1

κ(E)
e−κ(E)|x′−x| . (A.9)

6According to analyticity of the free Green’s operator Ĝ0(z) (Figure 1.3) for non-negative energy
we had to use limit, but for negative energy the limit is equal to defined operator for real z as we will
see.
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As we can see in Figure A.2 the whole process with limits lim
ε→+0

E ± iε would lead

to the same result. Either for +ε > 0 (densely dashed arrows) or for −ε < 0 (loosely
dashed arrow)

〈x′|Ĝ0(E ± i0)|x〉 = 〈x′|Ĝ0(E)|x〉 .

A.2 Computation of matrix elements in projection-ope-
rator formalism

In this appendix we will outline ways, how the matrix elements in projection-operator
formalism have been evaluated. In general, the technique involves: insertion of unit
operator (1̂ =

∫
R dx|x〉〈x|), insertion of already known matrix elements and evaluation

of a simple integral (integration with delta function δ(x) or exponential7 e−α|x−x0|).

A.2.1 Orthogonal scattering

〈χ1|kn, s, n〉 =

∫
R

dx〈χ1|x〉〈x|kn, s, n〉
(4.13)

=
(3.2)

= ê+
2 ên

√
κ

2π

∫
R

dx e−κ|x|+isknx = δ2n

√
κ

2π

2κ

κ2 + k2
2

(A.10)

〈x|Ĝ0(E ± i0)|χ1〉 =

∫
R

dx′〈x|Ĝ0(E ± i0)|x′〉〈x′|χ1〉
(3.4)
=

(4.13)

=

√
κê2

K2

∫
R

dx′eK2|x−x′|−κ|x′| =
2
√
κê2

K2(κ2 −K2
2 )

(
κeK2|x| +K2e−κ|x|

)
(A.11)

〈χ1|Ĝ0(E ± i0)|χ1〉 =

∫
R

dx〈χ1|x〉〈x|Ĝ0(E ± i0)|χ1〉
(A.11)

=
(4.13)

=
2κê+

2 ê2

K2(κ2 −K2
2 )

∫
R

dx
(
κe(K2−κ)|x| +K2e−2κ|x|

)
=

2(2κ−K2)

K2(κ−K2)2
(A.12)

7The integral with exponential e−α|x−x0| is split into two integrals over two intervals (−∞, x0〉 and
〈x0,+∞), which are simple.
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A.2.2 Resonant scattering

〈x|Ĥ|χ1〉
(4.13)

=
(3.1)

(
cδ(x)

−1
2

d2

dx2
+W+bδ(x)

)√
κe−κ|x|=

(
cδ(x)

−1
2κ

2+κδ(x)+W+bδ(x)

)√
κe−κ|x|=

=
√
κ

(
c

b+ κ

)
δ(x) +

(
−1

2
κ2 +W

)
〈x|χ1〉 (A.13)

H11 = 〈χ1|Ĥ|χ1〉 =

∫
R

dx〈χ1|x〉〈x|Ĥ|χ1〉
(4.13)

=
(A.13)

=

∫
R

dx

[
(b+ κ)δ(x) +

(
−1

2
κ2 +W

)]
κe−2κ|x| = W +

1

2
κ2 + bκ (A.14)

V ±1,(kn,s,n) = 〈χ1|Ĥ|(kn, s, n)P±〉 =

∫
R

dx〈χ1|Ĥ|x〉〈x|(kn, s, n)P±〉 (A.13)
=

=

∫
R

dx δ(x)
√
κ
(
c∗ b+ κ

)
〈x|(kn, s, n)P±〉+

(
−1

2
κ2 +W

)
((((

(((
((

〈χ1|(kn, s, n)P±〉 (4.17)
=

= −
√

κ

2π

1

∆̃±

(
∓ik1c

∗(L2 + κ) L2γ±
[
(a∓ ik1)(b+ κ)− |c|2

])
ên (A.15)

〈x|ĜP
PP (E + i0)Ĥ|χ1〉 =

∫
R

dy〈x|ĜP
PP (E + i0)|y〉〈y|Ĥ|χ1〉

(A.13)
=

=

∫
R

dy δ(y)〈x|ĜP
PP (E + i0)|y〉

√
κ

(
c

b+ κ

)
+

+

(
−1

2
κ2 +W

)
(((

((((
(((

〈x|ĜP
PP (E + i0)|χ1〉

(4.17)
= 〈x|ĜP

PP (E + i0)|0〉
√
κ

(
c

b+ κ

)
(A.16)

F11 = 〈χ1|ĤĜP
PP (E + i0)Ĥ|χ1〉 =

∫
R

dx〈χ1|Ĥ|x〉〈x|ĜP
PP (E + i0)Ĥ|χ1〉

(A.16)
=

=

∫
R

dxδ(x)
√
κ
(
c∗ b+ κ

)
〈x|ĜP

PP (E + i0)Ĥ|χ1〉+

+

(
−1

2
κ2 +W

)
((((

(((
((((

(
〈χ1|ĜP

PP (E + i0)Ĥ|χ1〉
(A.16)

=

= κ
(
c∗ b+ κ

)
〈0|ĜP

PP (E + i0)|0〉
(

c
b+ κ

)
(A.17)
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