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Chapter 1

Introduction

The first proton-proton (pp) interactions at higher energies were observed in the CERN
Intersecting Storage Rings (ISR), the world’s first hadron collider, in 1971. Many
interesting experiments have been performed since that time. The purpose of all these
experiments is to learn more about structure of fundamental particles. A number of
remarkable properties were discovered.

In the following the attention will be devoted mainly to elastic proton-proton inter-
actions. Two of four fundamental interactions (forces) play significant role in such a
case - the electromagnetic and the strong interactions.

First of them, the electromagnetic, is also called the Coulomb interaction. Protons,
as charged particles with electric charge +e, are repelled mutually by this interaction.
The second interaction, the strong interaction, is attractive and is called hadronic or
nuclear because this strong interaction sticks together different nucleons (i.e., protons
and neutrons) in a nucleus. The strong interaction is short-ranged in contrast to the
Coulomb interaction which is regarded as long-ranged. Hadronic force overcomes the
electric repulsion between protons in the nucleus.

Elastic scattering is in principle the most simple scattering where the same incident
particles come out after the collision. Characteristics of these processes such as cross
section depend only weakly on energy. On the other hand the average number of
produced particles in inelastic collisions and corresponding cross section depend strongly
on energy. The elastic collisions represent always a significant part of processes at any
energy. There is, however, a smaller part of inelastic processes that exhibit similar
energy behavior. They are denoted as diffractive processes. One assumes that one
particle or both the incident particles are brought in the collision to an excited state
which decays then into several secondary particles, all moving in original direction. One
speaks about single or double diffraction. The majority of the rest of collision events
are denoted as non-diffractive inelastic. In contrast to diffractive ones, they are strong
energy dependent and the final secondary particles have large transverse momenta.

In spite of the fact that since 1971 many experimental data have been gathered there
is no reliable theory of pp (resp. p̄p) diffractive processes. There are only several different
models which more or less well describe present experimental data on phenomenological
grounds.

To learn more about the structure of fundamental particles it is necessary to improve
and extend present experimental data of diffractive processes. This is one of the main
purpose why new Large Hadron Collider (LHC) is being built now at European Organ-
ization for Nuclear Research (CERN). It will provide high intensity proton collisions
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CHAPTER 1. Introduction

with center of mass energy up to 14 TeV.
The six LHC experiments will study what will occur if the corresponding LHC

beams collide. One of them is TOTEM (TOTal Elastic and diffractive cross section
Measurement) experiment that will be devoted mainly to study of elastic processes.
As discussed in Letter of Intent in 1997 [1], the TOTEM experimental programme was
proposed to measure (see also [2] and [3])

• the total proton-proton cross section with an absolute error of 1 mb
by using the luminosity independent method. It requires simultaneous
measurement of pp elastic scattering at low momentum transfer and of
the total inelastic rate.

• elastic scattering in the largest possible interval of four-momentum
transfer −t ≈ p2ϑ2 from the Coulomb region −t ≈ 10−3 GeV2 up to the
nuclear region −t ≈ 10 GeV2

• the diffractive dissociation, including single and double diffraction

This thesis consists of two parts: study of background in the TOTEM RPs and
theoretical description of elastic pp and p̄p scattering together with an analysis of ex-
perimental data obtained earlier with use of two phenomenological models of hadronic
amplitude. The first part has been done during the stay of the author of this thesis at
CERN in summer 2008 [4].

The TOTEM RP system is essential for detection of diffractive protons. However,
detection of diffractive protons (signal) is always accompanied by other particles (back-
ground). To achieve the goals of the TOTEM experiment good knowledge of the proton
background is, therefore, important for developing background suppression algorithm.
In Chapter 2, we will firstly present briefly TOTEM RP system essential for detec-
tion of diffractive protons. Then we will use an existing simulation of a pp-induced
background at β∗ = 0.5 m optics to show which particles may enter RPs. The re-
sponse of TOTEM RP silicon detectors for the most important background particles
will be demonstrated with use of TOTEM RP simulation and reconstruction software.
The study of the response of the RP silicon detectors is one of the first steps towards
developing a background suppression algorithm which is in general very complicated
task.

Chapter 3 is devoted to the theoretical description of pp (resp. p̄p) elastic scattering
which is essential for reaching the challenging TOTEM goals. We will present two
formulas for complete elastic amplitude FC+N(s, t) which determines elastic differential
cross section and takes into account both the Coulomb and hadronic interactions. The
first one (historically older) is West and Yennie formula and the second is general
formula derived on the basis of the eikonal model. We will also introduce the elastic
hadron scattering amplitude in the impact parameter space.

In Chapter 4, we shall go back to pp (resp. p̄p) experimental data obtained earlier
at energy of 52.8 GeV (resp. 541 GeV). We will discuss two different models of elastic
hadronic amplitude FN(s, t): the model with constant hadronic phase and that pro-
posed by Brazil group. Some consequences of the models also in the impact parameter
space will be shown. Similar analyses for different models of hadronic amplitude were
done, e.g., in [5] or [6].

To perform all the necessary fits newly developed program written in C++ will be
used. It is used in fitting a hadronic amplitude FN(s, t) to measured pp or p̄p elastic

12



differential cross section at given energy and computes some other physically significant
quantities introduced in Chapter 3.
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Chapter 2

Roman Pot background studies

Detection of diffractive protons (signal) is always accompanied by other particles (back-
ground). To achieve the goals of the TOTEM experiment good knowledge of the proton
background is important. In this chapter we will briefly introduce TOTEM RP system
essential for detection of diffractive protons. After that, we will take advantage of an
existing simulation of pp-induced background to show which particles may be produced
at the Interaction Point 5 (IP5) and which ones may enter RPs detectors. Finally, we
will demonstrate the response of TOTEM RP silicon detectors for the most important
background particles with use of TOTEM RP simulation and reconstruction software.
The study of the response of the RP silicon detectors is one of the first steps towards
developing an effective background suppression algorithm.

2.1 TOTEM Roman Pot system

Diffractive protons at hight energies are scattered to very small angles in the beam
pipe. If the beam has not stable position and shape (before stabilization) then it is
necessary to hold detectors far from the beam. After stabilization of the beam the
detectors may be moved near to the beam. To detect particles in the beam pipe the
detectors are placed in movable beam insertions - called Roman Pots (RPs) so that the
detectors inside the RPs can be moved near or far from the beam. They are placed
inside a secondary vacuum vessel (called a pot) and moved into the primary vacuum of
the machine through vacuum bellows. The primary vacuum is then preserved against
an uncontrolled out-gassing of the detector’s materials by a thin window.

To detect protons as close to the beam as possible novel planar silicon detectors
with so-called Current Terminating Structure (CTS) have been developed, see [7]. All
TOTEM RP silicon detectors have the CTS on one edge which faces the beam. The
CTS collects the current generated in the highly damaged region at the cut edge and
so avoids its diffusion into the sensitive volume. The active volume starts already at
≈ 50 µm from the physical edge. This is the reason why this kind of detectors is called
“edgeless”. Each detector has 512 strips with pitch of 66 µm. The strips in the detectors
are at angle of 45◦ with respect to the edge facing the beam.

Each TOTEM RP will be equipped with a stack of 10 edgeless silicon strip detectors.
Half of them will have their strips oriented at angle of +45◦ with respect to the edge
facing the beam, and the other half at angle of −45◦. The measurement of each track
projection in five planes is advantageous for the reduction of uncorrelated background
via programmable coincidences, requiring, e.g., collinear hits in a majority of the planes

15



CHAPTER 2. RP background studies

and so selecting only particles at small angles with respect to the beam axis.
To reconstruct protons in very forward region from both sides of the IP5, TOTEM

uses RP system which is symmetric with respect to IP5. TOTEM RP system consists
of 4 RP stations, 2 stations on both sides of IP5 at distances of ±147 m and ±220 m,
see Fig. 2.1. A RP station is an ensemble of 2 RP units, each unit consists of two
vertical and one horizontal RPs. The TOTEM RP system has thus 24 RPs in total.

RP147 RP220

Figure 2.1: The LHC beam line on the “right” side of the Interaction Point 5 (IP5) and the
TOTEM RP stations at distances of 147 m (RP147) and 220 m (RP220).

2.2 Background in the Roman Pots

The RP silicon detectors will not detect only diffractively scattered protons at IP5 in-
teresting for the TOTEM experiment (signal) but they will also detect a lot of other
particles (background). Good knowledge of the background at all RP stations plays,
therefore, an important role in the development of the background suppression al-
gorithms.

One may distinguish three kinds of machine-induced background in RPs (see [8]):

• The beam halo consisting of beam protons that were lost from their design orbits
and were not caught by the collimation system.

• The beam-gas background caused by shower particles created by collisions
between protons and gas molecules which are present in the beam pipe.

• The beam-beam (pp) background which is caused by generic inelastic proton-
proton collisions in IP5 producing a great number of particles in the forward
direction. The produced particles may propagate through the LHC ring to the
RP stations and even further. On their way along the beam line they may also
collide with machine elements and create secondary showers.

2.3 Simulation of background in the Roman Pots

To study the background in the RPs one may start with its simulation. One may gen-
erate same diffractive events (signal) and mix them with non-diffractive events (back-
ground) to simulate actual experiment.

This kind of simulation was made by V. Talanov in CERN. It is based on generic
p-p interactions at energy of

√
s = 14 TeV in IP5. The particles created in IP5 are

16



2.3 Simulation of background in the RPs

transported to RP147 and RP220 at β∗ = 0.5 m optics so that the interaction with all
machine elements is included. β∗ is the value of betatron function at IP5. Only the
pp-induced background was taken into account. A simulation of the response of RP
strip detectors is not included in this simulation (we will extend this simulation in the
next sections).

The simulation is available at the CASTOR1 in the directory
/castor/cern.ch/user/t/talanov/Public/2007. Mainly following three files containing
simulated events were used:

• IP5
This file contains diffractive as well as non-diffractive events produced from the
primary p-p collisions (106 events) at energy of

√
s = 14 TeV in IP5. The cut

on pseudo-rapidity2 |η| > 7.8 corresponding to the aperture of TAS absorber is
included, see Fig. 2.1. The events were generated using the Monte Carlo event
generator DPMJET. Only the “right” part of the p-p source, particle entering
LSS5R (right side of Long Straight Section (LSS) of the interaction point IP5),
was taken into account.

• RP147
This file corresponds to the previous one. The particles produced at IP5 are
then transported through the LHC ring to the RP147 station; interactions with
all machine elements (see [7] and [9]) are included. This file contains particles
recorded at a scoring plane at the start of the space reserved for TOTEM between
the TAN absorber and the dipole magnet D2 at 148.63 m, see Fig. 2.1. Only
particles within a radius of r < 4 cm around the beam position were recorded.
This corresponds to the size of the LHC beam pipe. This sample of protons
contains protons created in interaction with machine elements as well as protons
transported directly without interaction from IP5.

• RP220
This file was created in a similar manner as the previous one, just the scoring
plane was at 214.252 m (in front of RP220).

Hundreds of plots were produced with the aim to understand the simulations. For
this purpose a standalone program written in C++ using ROOT [10] libraries has been
made. It reads events from the simulation and selects particles with chosen character-
istics.

The distribution of particle types at IP5 is ploted in Fig. 2.2. We may see that
pions, protons and neutrons are the most produced particles at IP5. The distribution
of particle types entering RP147 and RP220 taking into account geometrical acceptance
of three detectors is shown in Fig. 2.3. These distributions of particle types at RP147
and RP220 are more interesting for our background studies. Mainly photons (dominant
component), electrons, positrons and pions entering RP147 and RP220 strip detectors.
All characteristics (angular distribution, hit distribution, energy distribution,. . . ) of
electrons are very similar to positrons. Similarly, the characteristics of π+ are practically
the same as characteristics of π−.

1CASTOR stands for CERN Advanced STORage manager
2The pseudo-rapidity η is defined by η ≡ − log(tan(ϑ/2)), where ϑ is the forward angle
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Figure 2.2: Distribution of particles at IP5 (3662661 particles).
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Figure 2.3: Distribution of particles at (a) RP147 and (b) RP220 taking into account the
geometrical acceptance of two vertical and one horizontal RP detectors.
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2.3 Simulation of background in the RPs

Proton hit distributions at RP147 and RP220 are shown in Fig. 2.4. Only the hits
within the geometrical acceptance of the silicon detectors are displayed. Majority of
protons (both at RP147 and RP220) would be detected in the horizontal detectors.
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Figure 2.4: Hit distribution of protons at (a) RP147 and (b) RP220 taking into account the
geometrical acceptance of two vertical and one horizontal detectors. The circle with radius 4 cm
represent the beampipe (x and y axises have different scaling). Positive value of x corresponds
to the direction from the center of the LHC ring. Positive value of y corresponds to up direction.

It is worth to mention that there are also primary neutral particles in the acceptance
of the RP147 and RP220 directly from IP5. This is one of two open questions relating
to the simulations. The second open question is the existence of two separated groups
in the angular distribution of electrons, positrons and photons at RP147, see Fig. 2.5.
The particles from the left group have higher energy than the particles from the right
group.
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Figure 2.5: Angular distribution of electrons at
RP147. Direction cosine is defined by dcx = ~p.~x

p
where ~p is the momentum of a particle and the dir-
ection ~x corresponds to the direction from the cen-
ter of the LHC ring. Similarly for direction cosine
dcy, see also the legend of Fig. 2.4.
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CHAPTER 2. RP background studies

2.4 TOTEM RP simulation and reconstruction

chain

To study the response of the RP silicon strip detectors for particles from the previous
simulation we may create a “source” module containing these particles and plug it to
the TOTEM simulation and reconstruction chain.

We may divide the simulation part in our case into two steps. The first step consists
of simulation of deposition of the energy of a particle from the source module entering
the RP strip detectors. This simulation is done by Geant4. The second step contains
digitalization, i.e., conversion of the energy to the strip hits.

This simulation of strip hits can be afterward taken as an input to the TOTEM
RP reconstruction chain which is schematically shown in Fig. 2.6, see [11].

Simulation
input
(1a)

Testbeam

data

(1b)

LHC
experimental

data
(1c)

RP Cluster
building

(3)

RP spatial
points

(4)

RP pattern
recognition

(5)

RP track
fitting

(6)

Proton

reconstruction

(7)

Reconstruction
software of

other
detectors

(T1, T2, CMS...)
(8)

TOTEM
physics

reconstruction
and analysis

(9)

Ideal or real
RP geometry

(2a)

LHC
optics
model
(2b)

Figure 2.6: Work flow diagram of the TOTEM RP reconstruction software.

The TOTEM RP reconstruction chain is the same for simulated input (1a), testbeam
data (1b) or real LHC experimental data (1c). The strip hits are transformed into
strip cluster (3) and then converted, with the help of geometry information (2a), into
spatial points (4). The pattern recognition module (5) is responsible for finding the
proton track candidates from the spatial points. The road search algorithm is applied
to find the candidates approximately parallel to the beam. The RP track candidates
are fitted by the straight line (6). Finally, the aim of the proton reconstruction modules
(7) is determination of the proton tracks in the RP (local reconstruction) or finding the
proton kinematics at IP5 (global reconstruction). This reconstruction is different for
different LHC optics model (2a).

If information from other TOTEM detectors (8) is added to information obtained
from the RPs detectors then the TOTEM physics reconstruction and analysis (9) can
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be done. The physics quantities (cross sections, differential cross sections,. . . ) are
reconstructed in this stage. For description of all mentioned modules in details see [11].
One of the quantities which can be reconstructed and further analyzed is proton-proton
elastic differential cross section. One of the possible analyzes of elastic differential cross
section measured earlier at the ISR will be done in Chapter 4.

2.5 Detectors response

Only a part of the reconstruction chain, as far as the RP track fitting module (6),
was used for a particle from the source to see the response of the RP silicon detectors.
The study of the response of the RP silicon detectors is one of the first steps towards
developing a background suppression algorithm.

To study the response of the detectors we introduce the number Nt of particles with
a successfully reconstructed and fitted track (“valid” track) in at least one of the RPs
at 147 m or 220 m (each RP station consists of 6 RP units). Similarly we introduce
quantity Nh with the same meaning but instead of valid tracks we consider just valid
hits.

Some statistics based on successfully reconstructed and fitted tracks (“valid” tracks)
for the most important particles (protons, photons, neutrons, electrons, positrons and
pions, see Fig. 2.3) are shown in Tab. 2.1. The number N in Tab. 2.1 stands for the
number of all particles of a given type, i.e., number of all particles of given type which
enter RP147 or RP220 station.

Particle
RP147 station RP220 station

Nt

N
Nh

N
Nt

N
Nh

N

p 3910
13060

= 0.30 4183
13060

= 0.32 3222
10971

= 0.29 3762
10971

= 0.34

γ 6643
341613

= 0.019 47833
341613

= 0.14
1833
36547

= 0.05 6461
36547

= 0.18

n 14
1705

= 0.0082 223
1705

= 0.13 9
591

= 0.015 68
591

= 0.12

e− (e+) 7134
19231

= 0.37 12751
19231

= 0.66 232
3682

= 0.063 1413
3682

= 0.38

π− (π+) 2592
4880

= 0.53 3316
4880

= 0.68 127
253

= 0.50 178
253

= 0.70

Table 2.1: Valid tracks and hits at RP147 and RP220. Number Nt (Nh)
denotes number of particles of a given type with at least one valid track (hit) at
RP147 or RP220. Number N stands for total number of particles with given type
entering RP147 or RP220.

We see from Tab. 2.1 that the number of valid hits Nh for proton is nearly the same
as the number of valid tracks Nt at both of the RP stations. The same holds also for
pions. However, number of valid tracks Nt for electrons (positrons) at RP220 is much
less then at RP147; moreover, it is much less then the number of valid hits Nh at RP220.
The mean energy of electrons and positrons differs significantly at RP147 (≤ 50 GeV)
and at RP220 (few GeV). The energy of protons and pions at RP147 as well as RP220
is generally much higher (up to 7 TeV) than the energy of electrons. Electrons behave
in the same manner as positrons and pions with positive charge behave similarly as
pions with negative charge, as has been already mentioned in previous sections. On the
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CHAPTER 2. RP background studies

contrary, relatively very few neutral particles (photons and neutrons) have at least one
valid track (just few percent). The RP silicons detectors detect better charged particles
than neutral particles.
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Chapter 3

Two-Body Elastic Scattering

This chapter is devoted to the theoretical description of pp (resp. p̄p) elastic scattering
which is essential for reaching the challenging TOTEM goals. We will present two
formulas for complete elastic amplitude FC+N(s, t) which determines elastic differential
cross section and takes into account both the Coulomb and hadronic interactions. The
first one (historically older) is West and Yennie formula and the second is general
formula derived on the basis of eikonal model. We will also introduce the elastic hadron
scattering amplitude in the impact parameter space.

3.1 Kinematics

In this thesis, to describe kinematics of particles we will employ commonly used form-
alism of four-momentum (see [12] or [13])

P = (E, ~p) (3.1)

where E is total energy of a particle and ~p is its three-momentum. We will use natural
units (~ = c = 1). Scalar product of these four-momentums is defined as follows

P 2 = gµν p
µpν = E2 − ~p2 (3.2)

where the metric tensor gµν is gµν = diag(+1,−1,−1,−1) Due to our choice of natural
units ~ = c = 1 the energy E and magnitude of ~p (which we will denote by p) have the
same units GeV.

A special case of two-body reaction is the elastic scattering

1 + 2→ 1′ + 2′ (3.3)

where the two scattering particles remain in the same state but in a different kinematic
configuration. The four-momentum of the ith incoming (outgoing) particle is denoted
by Pi (P ′i ) for i = 1, 2 (see Fig. 3.1 in the case of center of mass system CMS).

The kinematics of the given process is fully described by two independent variables.
It is possible to choose these two parameters among the three Mandelstam variables,
defined as
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CHAPTER 3. Two-Body Elastic Scattering

P2

P
′
1

P1

P
′
2

ϑ

Figure 3.1: Two-body elastic scattering in center of mass system.

s = (P1 + P2)2, (3.4)

t = (P1 − P ′1)2, (3.5)

u = (P1 − P ′2)2. (3.6)

We shall use s and t as it is common. It is further convenient to choose center of
mass system, because the variable s is the square of the total center of mass energy of
colliding particles and the variable t is the squared momentum transfer in this reference
frame. In case of pp elastic scattering, which we are interested in, the magnitude of
three-momenta of incoming and outgoing particles in CMS are the same (denote them
by p, resp. p′) and they have equal masses m. The relations between the CMS scattering
angle ϑ and three-momentum p (see Fig. 3.1) and variables s and t are

s = 4(p2 +m2) (3.7)

t = −2p2(1− cos ϑ). (3.8)

We see from the last relation (3.8) that

− 4p2 ≤ t ≤ 0, (3.9)

i.e., the value of t is not positive and its minimal value tmin is −4p2, in contrast to
s which is always positive because it is the total center of mass energy of colliding
particles. The value of tmin may be expressed also as

tmin = −s+m2 (3.10)

In high energy limit (i.e., for s→∞) the mass m can be neglected in formulas (3.7)
and (3.10).

In the relativistic theory the elastic differential cross section of two particles may be
defined in Mandelstam variables s and t as follows (see [13])

dσ(s, t)

dt
=

π

sp2
|F (s, t)|2 (3.11)

where we have introduced scattering amplitude F (s, t) in s and t variables. High-energy
elastic scattering of nucleons is realized not only due to the strong interaction but in the
case of charged hadrons also as the result of the Coulomb interaction. The Coulomb
and nuclear scattering can be characterized by common differential cross section that
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3.2 West-Yennie formula

may be measured. Elastic differential cross section of charged nucleons is being then
currently described with help of a complete elastic scattering amplitude denoted as
FC+N(s, t); F (s, t) in Eq. (3.11) being substituted by this amplitude. In the following
we will introduce two different formulas of FC+N(s, t), having been used in the past.

3.2 West-Yennie formula

First formula (historically older) of the complete amplitude FC+N(s, t) is commonly
written as the sum of hadronic amplitude FN(s, t) and Coulomb amplitude FC(s, t)
(known from QED) which are mutually bound with the help of relative real phase
αφ(s, t) as follows (Bethe formula [14])

FC+N(s, t) = FC(s, t)eiαφ(s,t) + FN(s, t) (3.12)

where α = 1/137.036 is the fine structure constant. The complete amplitude FC+N(s, t)
is not, therefore, mere sum of hadronic and Coulomb amplitude. West and Yennie
(WY) [15] applying the method of Feynman diagram technique (one photon exchange)
derived further in the case of charged point-like particles and of high energy limit (i.e.,
for s → ∞) for the relative phase function φ(s, t) the formula being now used in the
form

φ(s, t) = ∓

ln

(
−t
s

)
−

0w

−4p2

dt′

|t− t′|

(
1− FN(s, t′)

FN(s, t)

) (3.13)

where the upper (lower) sign corresponds to the scattering of nucleons with the same
(opposite) charges. It means that at the given energy the t-dependence of the relative
phase between the Coulomb and hadronic amplitudes is determined practically by the
t-dependent hadronic component FN(s, t) entering into the integrand of Eq. (3.13).
Practically the same result were obtained by Locher [16] at the same time.

Adding two electric form factors f1(t) and f2(t) describing the same electric structure
of the both colliding hadrons into the Coulomb amplitude one may write

FC(s, t) = ±αs
t
f1(t)f2(t). (3.14)

The authors of [15] further assumed

(i) the influence of spins of all the particles involved may be neglected;

(ii) the t-dependence of the modulus of the elastic hadron amplitude is purely expo-
nential in the whole kinematically allowed region of momentum transfer t, i.e.,

∣∣FN
WY (s, t)

∣∣ ∼ eBt/2 (3.15)

where parameter B is so-called “diffractive slope”.

(iii) The quantity ρ defined as ratio of the real to imaginary parts of the elastic hadron
amplitude is t-independent in the whole kinematically allowed region of momentum
transfer t.
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Only then the mentioned authors were able to calculate integral (3.13) analytically

φ(s, t) = ∓
[
ln

(
−Bt

2

)
+ γ

]
(3.16)

where γ = 0.577215 is Euler’s constant and derive for the complete amplitude (3.12)
the simplified formula

FC+N
WY (s, t) = ±αs

t
f1(t)f2(t)eiαΦ +

σtot
4π

p
√
s (ρ+ i)eBt/2. (3.17)

which should hold only for small values of |t|. The parameter σtot is the total nuclear
cross section which involves also inelastic interactions. The optical theorem

σtot(s) =
4π

p
√
s
=FN(s, t = 0) (3.18)

was also employed to derive the simplified WY formula. The second term on the right
hand side of Eq. (3.17) represents the hadronic amplitude FN

WY (s, t).
As to the mentioned assumptions, the first assumption (i) has been discussed in [17]

or [18]. According to these papers the spin effects have negligible impact in the case
of forward elastic hadron pp scattering in ISR energy range of

√
s , i.e., from 23.5 GeV

to 62.5 GeV, and in all high-energy elastic hadron scattering. The first assumption (i)
seems, therefore, not to represent practically any important limitation.

On the other hand the second and third assumptions (ii) and (iii) are much more
important, see, e.g., [19]. The purely t-dependence of hadronic amplitude

∣∣FN
WY (s, t)

∣∣
determines according to Eq. (3.11) the corresponding differential cross section dσN

dt

∣∣∣
WY

and approximately corresponds to observed experimental data for the pp elastic scat-
tering at the ISR energies (where the diffractive structure - existence of diffractive
minimum - has been experimentally confirmed) only for t running from the forward
direction to diffractive minimum. The purely exponential t-dependence can not de-
scribe diffractive structure and so it is without any doubt in contradiction to high
energy elastic nucleon experimental data.

In the standard analysis of experimental data, the simplified WY formula (defined
by Eqs. (3.16) and (3.17)) has been used for the analysis of differential cross section
data in the interference region only (i.e., in the case of elastic nucleon scattering for
|t| . 0.01 GeV2 at present high energies). For higher values of |t| it is believed that
the influence of Coulomb scattering can be - on the basis of the WY simplified for-
mula - completely neglected and another formulas exhibiting different t-dependence
of hadronic amplitude FN(s, t) (non pure exponential dependence of the modulus and
non-constant ratio of real to imaginary part of the hadronic amplitude) are commonly
used.

Thus, the whole t-dependence of elastic scattering has been described with the
help of two quite different formulas, which represents a significant shortage. However,
the simplified WY formula represents a greater disadvantage when already the relative
phase φ(s, t) between the Coulomb and hadronic amplitude given by the original integral
formula (3.13) is taken already as real; the ratio ρ(s, t) has to be t-independent [20].

We may also define t-dependent diffractive slope by

B(s, t) =
d

dt

[
ln

dσN

dt

]
=

2

|FN(s, t)|
d

dt

∣∣FN(s, t)
∣∣ . (3.19)

26



3.3 Elastic amplitude in the eikonal model

and t-dependent ratio

ρ(s, t) =
<FN(s, t)

=FN(s, t)
. (3.20)

Both the two quantities depend only on the elastic hadronic amplitude FN(s, t) and
so they characterize hadron scattering. They are t-independent in the simplified WY
formula where the modulus of hadronic amplitude

∣∣FN
WY (s, t)

∣∣ is purely exponential
and also the ratio of the real to imaginary parts of hadronic amplitude is t-independent
(assumptions (ii) and (iii)).

So, if a hadronic amplitude FN(s, t) has not a purely exponential modulus or a
constant ratio of the real to imaginary parts then there is no reason to require for
quantities σtot, ρ(s, t = 0) and B(s, t = 0) (fully determined by hadron amplitude) the
values to be the same as those of parameters σtot, ρ and B obtained from the simplified
WY formula (3.17).

Let as stress again that the theoretical assumptions used in the derivation of simpli-
fied WY amplitude FC+N

WY (s, t) are not fulfilled by the experimental data and its current
application in this way can be hardly justified. And this is one of the reasons why a
more general formula removing these discrepancies and valid in the whole kinematically
allowed region of momentum transfer t should be used for analysis of the experimental
data.

3.3 Elastic amplitude in the eikonal model

Both theoretical as well as experimental deficiencies of models of elastic nucleon scat-
tering based on WY approach may be removed, if one starts from the eikonal model,
see [5].

The elastic scattering amplitude may be defined with the help of Fourier-Bessel
(FB) transformation according to Glauber [21] or Islam [22, 23] in the eikonal model
as

F (s, q2 = −t) =
s

4πi

∫
Ωb

d2b ei~q.
~b[e2iδ(s,b) − 1] (3.21)

where Ωb represents the two-dimensional Euclidean space of the impact parameter ~b,
the vector ~q is defined as ~k − ~k′ and eikonal δ(s, b) is proportional to

δ(s, b) ∼
∞∫
b

V (s, r)rdr√
r2 − b2

. (3.22)

Potential V (s, r) corresponds to potential between particles at individual correspond-
ing positions during their motions. Eq. (3.22) holds for energy-dependent spherically
symmetric potential V (s, r) that might be generally complex. Due to Eq. (3.21) the
complete elastic amplitude FC+N(s, t) of two charged and spinless nucleons is fully
determined by the total eikonal δC+N(s, b). Taking into account the Eq. (3.22) for
eikonal the total eikonal δC+N(s, b) is given by the sum of individual eikonals δC(s, b)
and δN(s, b) for the Coulomb and hadronic eikonals

δC+N(s, b) = δC(s, b) + δN(s, b). (3.23)
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Eq. (3.23) is in agreement with the additivity of potentials, i.e., Coulomb and hadronic
potential, and with linearity of potential V (s, r) in expression (3.22). The complete
elastic amplitude of charged nucleons in the eikonal model may be thus rewritten as

FC+N
eik (s, q2 = −t) =

s

4πi

∫
Ωb

d2b ei~q.
~b[e2i(δ(s,b)C+δ(s,b)N ) − 1] (3.24)

The Coulomb and hadronic elastic scattering (the elastic differential cross section) is
fully determined by the total eikonal δC+N(s, b). Due to Eq. (3.22) the “interference”
between the Coulomb and hadronic interactions follows thus from the mere sum of
corresponding potentials.

One may further write

FC+N
eik (s, t) = FC(s, t) + FN(s, t) + F I(s, t)

= FC(s, t) + FN(s, t) +
s

4πi

∫
Ωb

d2b ei~q.
~b[e2iδ(s,b)C − 1][e2iδ(s,b)N − 1] (3.25)

where we have introduced interference term F I(s, t). We will use this relation in
Chapter 4 to show how much important is the interference of the Coulomb and hadron
interaction.

According to the authors of [5] it is possible further to derive from Eq. (3.24) for
the complete elastic amplitude the following relation

FC+N
eik (s, t) = ±αs

t
f1(t)f2(t) + FN(s, t)[1∓ iαG(s, t)] (3.26)

where

G(s, t) =

0∫
tmin

dt′
{

ln

(
t′

t

)
d

dt′
[f1(t′)f2(t′)]− 1

2π

[
FN(s, t′)

FN(s, t)
− 1

]
I(t, t′)

}
(3.27)

and

I(t, t′) =

2π∫
0

dΦ′′
f1(t′′)f2(t′′)

t′′
; (3.28)

here t′′ = t+ t′ + 2
√
tt′ cos Φ′′. The minimal kinematically allowed value tmin in (3.27)

equals −s + 4m2 (see relation (3.10)). The upper (lower) sign in (3.26) corresponds
again to the scattering of particles with the same (opposite) charges. Formulas (3.26),
(3.27) and (3.28) should hold generally for any s and t with the accuracy up to terms
linear in α. This is one of the differences between the general eikonal formula (3.26)
and the simplified WY formula defined by Eqs. (3.16) and (3.17) which was derived
only for small values of |t|. Moreover, the general eikonal formula was derived without
any restriction on hadronic amplitude FN(s, t) (and so the function G(s, t) may be
generally complex). The WY formula contains assumption of purely exponential mod-
ulus of FN(s, t) and constant ratio ρ(s, t) of the real to imaginary parts of FN(s, t), see
Section 3.2.
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The first term αs
t
f1(t)f2(t) in Eq. (3.26) is the Coulomb scattering amplitude FC(s, t)

(see Eq. (3.14)). The expression in the last bracket of Eq. (3.26) may be regarded as
the first term in the Taylor series expansion of the exponential e∓iαG and one can write
within the same precision

FC+N
eik (s, t) = FC(s, t) + FN(s, t)e∓iαG(s,t). (3.29)

This formula for complete elastic amplitude is similar to Eq. (3.12) with the relative
phase φ(s, t) between the Coulomb and hadron amplitude. The relative phase φ(s, t) is
taken always as real but the function G(s, t) may be generally complex.

To express proton form factors f1(t) = f2(t) in the case of pp or p̄p scattering in the
large region of t we can employ t-dependent Borkowski’s electric proton form factors

f1(t) = f2(t) =
4∑
j=1

gj
wj − t

(3.30)

where parameters gj and wj entering into the form factors have been extracted from
the measured electron-proton elastic scattering cross sections (see [24]). The integral
I(t, t′) defined by Eq. (3.28) can be now determined analytically (see [17] or [5]) as
follows

I(t, t′) =
4∑

j,k=1

gjgkWjkIjk (3.31)

where for j 6= k

Ijk = 2π

[
(Pj − 1)2√

Pj (Pj − Pk)(Pj − U)
+

(Pk − 1)2

√
Pk (Pk − Pj)(Pk − U)

+

+
(U − 1)2

√
U (U − Pj)(U − Pk)

] (3.32)

and

Ijj = 2π

[
(Pj − 1)(3Pj + P 2

j − U − 3PjU)

2P
3/2
j (Pj − U)2

+
(U − 1)2

√
U (U − Pj)2

]
. (3.33)

It holds further that

Pj =
wj + (

√
−t +

√
−t′ )2

wj + (
√
−t −

√
−t′ )2

, U =

(√
−t +

√
−t′√

−t −
√
−t′

)2

(3.34)

and

Wjk =
1

[wj + (
√
−t −

√
−t′ )2][wk + (

√
−t −

√
−t′ )2][

√
−t −

√
−t′ ]2

. (3.35)

Formula (3.26) for the complete elastic scattering amplitude is convenient for any t
dependence of hadronic amplitude FN(s, t) without any limitation. It can be either used
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for the analysis of differential cross section data at all values of t simultaneously in a
unique way if the hadronic amplitude FN(s, t) is suitably parametrized. Or, the formula
(3.26) can be also used for the determination of the differential cross section data at
any values of t if the hadronic amplitude FN(s, t) is specified within the framework of
some phenomenological model description.

In Chapter 4 we will use the general eikonal formula (3.26) for an analysis of two
different models of hadronic amplitude FN(s, t).

3.4 Elastic hadron amplitude and the impact para-

meter space

The complex hadron scattering amplitude FN(s, t) can be characterized by two real
functions, the modulus

∣∣FN(s, t)
∣∣ and the phase ζN(s, t), in this way

FN(s, t) = i
∣∣FN(s, t)

∣∣ e−iζN (s,t). (3.36)

Due to Eqs. (3.36) and (3.20)

tan ζN(s, t) = ρ(s, t). (3.37)

This implies that constant quantity ρ(s, t) is equivalent to constant hadronic phase
ζN(s, t).

If the hadron amplitude FN(s, t) is known then the elastic cross section σel(s) may
be evaluated with use of the elastic hadronic differential cross section (3.11) (F (s, t) in
Eq. (3.11) being substituted by hadronic amplitude FN(s, t)) as

σel(s) =

0∫
tmin

dσN

dt
dt. (3.38)

The inelastic cross section is then defined as

σinel(s) = σtot(s)− σel(s). (3.39)

where the total cross section is given by the optical theorem (3.18).
To derive distribution of elastic and inelastic collisions in the impact parameter

space we may start from the unitarity equation as was done in [25]. According to van
Hove [26] the elastic hadron amplitude FN(s, t) is linked to all production amplitudes
T (s, t, . . . ) by unitarity condition

=FN(s, t) =
p

4π
√
s

∫
dΩ′FN∗(s, t′)FN(s, t′′) +Ginel(s, t) (3.40)

where

dΩ′ = sinϑ′dϑ′dΦ′ (3.41)

t′ = 2p sin
ϑ′

2
(3.42)

t′′ = 2p sin
ϑ′′

2
(3.43)

cosϑ′′ = cosϑ cosϑ′ + sinϑ sinϑ′′ cos Φ′. (3.44)
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Variables ϑ, ϑ′, . . . are angels defining the corresponding momentum transfers squared t,
t′ and t′′ in the CMS andGinel(s, t) is the so-called inelastic overlap function representing
summation over all possible production (inelastic) states as well as the integration over
all other kinematical variables.

The elastic hadron scattering amplitude hel(s, b) in the impact parameter space at
finite energies may be defined by FB transformation of the elastic hadron scattering
amplitude

∣∣FN(s, t)
∣∣ (see [23] and [25])

hel(s, b) = h1(s, b) + h2(s, b)

=
1

4p
√
s

0∫
tmin

FN(s, t)J0(b
√
−t )dt+

1

4p
√
s

tmin∫
−∞

λ(s, t)J0(b
√
−t )dt,

(3.45)

where the first term represents the contribution of the FB transformation of FN(s, t)
from the physical region of t and the second one represents the contribution of a complex
function λ(s, t) in the unphysical region of t. The functions λ(s, t) should fulfill some
other conditions [22] to guarantee the existence of FB transformation of FN(s, t) at
finite energies. Only the first term is present in Eq. (3.45) in the case of nucleon-
nucleon scattering at infinite energies (and tmin = −∞), see Eq. (3.10). Function J0 in
Eq. (3.45) is Bessel function of zeroth order which is defined as

J0(x) =
1

2π

2π∫
0

eixcosϕdϕ. (3.46)

Similarly, the inelastic overlap function in the impact parameter space may equal

ginel(s, b) = g1(s, b) + g2(s, b), (3.47)

where g1(s, b) is the contribution of the FB transformation of inelastic overlap function
Ginel(s, b) from the physical region of t and g2(s, b) represents the contribution from
unknown real function µ(s, t) = Ginel(s, t) in the unphysical region of t. Similarly as in
the case of function λ(s, t), the functions µ(s, t) should fulfill also some other conditions
to guarantee the existence of FB transformation of Ginel(s, t) at finite energies. The
unitarity equation (3.40) in the impact parameter space can be further rewritten as

=h1(s, b) = |h1(s, b)|2 + g1(s, b) +K(s, b), (3.48)

where

K(s, b) =
1

16π2s

0∫
tmin

dt1

0∫
tmin

dt2F
N∗(s, t2)FN(s, t1)

×
[
J0

(
b

2p

√
−t1(4p2 + t2)

)
J0

(
b

2p

√
−t2(4p2 + t1)

)
− J0(b

√
−t1 )J0(b

√
−t2 )

]
.

(3.49)

The correction function K(s, b) vanishes at b = 0 and b→∞. It holds further
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∞∫
0

bdb =h2(s, b) =

∞∫
0

bdb g2(s, b) =

∞∫
0

bdb K(s, b) = 0. (3.50)

Only the non-negative function |h1(s, b)|2 in Eq. (3.48) is standardly interpreted as
distribution function of elastic processes in the impact parameter space (so-called elastic
profile function). The other two functions =h1(s, b) and g1(s, b) may be negative for
some values of b and so they can not be interpreted as distribution function of any
process. However, the integrals of the functions =h1(s, b), |h1(s, b)|2 or g1(s, b) over all
possible impact parameter values represent the total, elastic and inelastic cross sections
[22]. One may ask whether it is possible to modify Eq. (3.48) so that it has a form

htot(s, b) = |h1(s, b)|2 + ginel(s, b), (3.51)

where htot(s, b) (ginel(s, b)) is distribution function of total (inelastic) processes in the
impact parameter space. It must hold

8π

∞∫
0

bdb htot(s, b) = σtot(s) (3.52)

and

8π

σtot

∞∫
0

bdb b2htot(s, b) = 〈b2(s)〉tot. (3.53)

The total mean-square 〈b2(s)〉tot will be defined in the following. To obtain Eq. (3.51) we
may introduce a real function c(s, b) in the impact parameter space, add this function
to the both sides of Eq. (3.48) so that

htot(s, b) = =h1(s, b) + c(s, b), (3.54)

ginel(s, b) = g1(s, b) +K(s, b) + c(s, b). (3.55)

The real function c(s, b) can not be an arbitrary function but it must fulfill following
conditions and requirements

1. it should bring both the function htot(s, b) (and also ginel(s, b)) to be non negative
for all values of b;

2. it must preserve the value of total cross section σtot(s) in Eq. (3.52), i.e., it must

hold
∞∫
0

bdb c(s, b) = 0;

3. and similarly it must not change the value of 〈b2(s)〉tot, i.e., it must hold
∞∫
0

bdb b2c(s, b) = 0.

If the distribution of elastic processes |h1(s, b)|2 has (for given s value) its maximum
at impact parameter b = 0, i.e., for head-on collisions of two particles, we speak about
“central” behavior of elastic collision. In the case when this distribution has maximum
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3.4 Elastic hadron amplitude and the impact parameter space

at some b > 0 we denote this situation as “peripheral” behavior of elastic collision. The
given behavior depends mainly on the t-dependence of phase ζN(s, t).

If the distribution function of total, elastic and inelastic collisions in the impact
parameter are known then one may evaluate mean-squares of impact parameter for
corresponding processes. We may define mean-square of the impact parameter in the
case of elastic processes as

〈b2(s)〉el =

∞∫
0

bdb b2 |h1(s, b)|2

∞∫
0

bdb |h1(s, b)|2
. (3.56)

Similarly, we may define 〈b2(s)〉tot and 〈b2(s)〉inel in the case of total and inelastic
collisions. Moreover, according to [25] the mean-squares of all the processes may be
derived directly from the t-dependent elastic hadron amplitude FN(s, t) without trying
establish the whole profiles.

The elastic mean-square 〈b2(s)〉el defined by (3.56) can be rewritten as a sum of two
terms

〈b2(s)〉el = 〈b2(s)〉mod + 〈b2(s)〉ph

=

4
0∫

tmin

dt|t|
(

d
dt

∣∣FN(s, t)
∣∣)2

0∫
tmin

dt |FN(s, t)|2
+

4
0∫

tmin

dt
∣∣FN(s, t)

∣∣2 |t| ( d
dt
ζN(s, t)

)
0∫

tmin

dt |FN(s, t)|2

(3.57)

where the contributions of the modulus and of the phase are separated and both are
non-negative. The first term 〈b2(s)〉mod may be derived using only the modulus of the
hadronic amplitude FN(s, t) while the second term 〈b2(s)〉ph is influenced also by the
hadronic phase ζN(s, t).

Similarly, the total mean-square 〈b2(s)〉tot can be evaluated with use of FN(s, t) as

〈b2(s)〉tot = 4

(
d
dt

∣∣FN(s, t)
∣∣

|FN(s, t)|
− tan ζN(s, t)

d

dt
ζN(s, t)

)∣∣∣∣∣
t=0

. (3.58)

To derive 〈b2(s)〉inel we may multiply unitarity equation (3.51) by b3 and integrate over
all possible impact parameter values b:

∞∫
0

bdb b2htot(s, b) =

∞∫
0

bdb b2 |h1(s, b)|2 +

∞∫
0

bdb b2ginel(s, b). (3.59)

Taking into account definitions of corresponding 〈b2(s)〉 and the fact that integrals of
distribution function over all possible values of b represent corresponding cross section
one can further obtain

σtot(s)〈b2(s)〉tot = σel(s)〈b2(s)〉el + σinel(s)〈b2(s)〉inel. (3.60)

The cross sections σel, σtot and σinel as well as mean-squares 〈b2(s)〉tot and 〈b2(s)〉el in
Eq. (3.60) are derived using only the hadron amplitude FN(s, t), see Eqs. (3.38), (3.18),
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CHAPTER 3. Two-Body Elastic Scattering

(3.39), (3.58) and (3.57). Eq. (3.60) allows, therefore, to evaluate also 〈b2(s)〉inel on the
basis of FN(s, t).

Moreover, all terms in Eq. (3.60) are positive, and so one can derive also the following
upper bounds of mean squares of impact parameters for elastic and inelastic processes:

〈b2(s)〉el ≤ 〈b2(s)〉tot
σtot(s)

σel(s)
≡ 〈b2(s)〉boundel ; (3.61)

〈b2(s)〉inel ≤ 〈b2(s)〉tot
σtot(s)

σinel(s)
≡ 〈b2(s)〉boundinel . (3.62)

As it follows from the experiment σel < σinel the bound for elastic processes is much
higher than that for inelastic ones.

3.5 Luminosity at the LHC

The luminosity L is a constant quantity which in elastic processes bounds together a

differential counting rate
dNC+N

el

dt
, the number of counts dNel per unit of time in a small

interval around momentum transfer dt divided by dt, with the corresponding complete
elastic differential cross section

dNC+N
el

dt
= Ldσ

dt
. (3.63)

The normalization factor (factor of proportionality) L has units of (area)−1(time)−1.
The luminosity L is one of the basic parameters of every accelerator which describes
how effectively the accelerator performs. Experimentally, the luminosity at the LHC is
planed to be determined at the t lying inside the interference region 6 × 10−4GeV2 <
|t| < 10−3GeV2 where both the Coulomb and hadron interactions have to be taken into
account.

The elastic differential cross section dσC+N

dt
defined by Eq. (3.11) is determined

with the help of the complete elastic scattering amplitude FC+N(s, t), which can be
calculated at small values of t either according to the WY simplified approach or by
the eikonal more precise approach.

To measure σtot and the luminosity L simultaneously TOTEM plans to take also
the advantage of optical theorem (3.18), see [7]:

Lσ2
tot =

16π

1 + ρ2(s, t = 0)

dNel

dt

∣∣∣∣
t=0

(3.64)

With additional relation

Lσtot = Nel +Ninel (3.65)

one obtains a system of 2 equations which can be solved for σtot and L independently
of each other:
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σtot =
16π

1 + ρ2

dNel

dt

∣∣∣
t=0

Nel +Ninel

, (3.66)

L =
1 + ρ2

16π

(Nel +Ninel)
2

dNel

dt

∣∣∣
t=0

(3.67)

Hence the quantities to be measured or taken from external theoretical predictions are
the following:

• The inelastic rate Ninel consisting of non-diffractive minimum bias
events (∼ 65 mb at LHC) and diffractive events (∼ 18 mb at LHC)
which will be measured by TOTEM inelastic telescopes T1 and T2.

• The total nuclear elastic rate Nel measured by the Roman Pot Sys-
tem.

• The nuclear part of the differential counting rate extrapolated

to t = 0, i.e.,
dNel

dt

∣∣∣
t=0

.

• Quantity ρ(s, t) extrapolated to t = 0.
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Chapter 4

Analysis of experimental data

In this chapter, we will analyze and discuss some consequences of two phenomenological
models of hadronic amplitude FN(s, t), that have been used already earlier. Because
there is not any reliable theory of elastic processes, the only way how to establish the
hadronic amplitude is to parameterize it and then fit it to measured data. The model
with constant hadronic phase and that proposed by Brazil group will be discussed.
We shall go back to pp (resp. p̄p) experimental data obtained earlier at energy of
52.8 GeV (resp. 541 GeV) that is represented by the measured elastic differential cross

section dσ(s,t)
dt

. To demonstrate some consequences of choice of hadronic amplitude
FN(s, t) the newly developed program (as already mentioned) written in C++ will be
made use of. It is used in fitting a hadronic amplitude FN(s, t) to measured pp or p̄p
elastic differential cross sections at given energies with use of the eikonal formula (3.26)
for the complete amplitude FC+N

eik (s, t) and computes some other physically significant
quantities introduced in previous chapter.

4.1 Model of hadronic amplitude with constant

hadronic phase

The assumption of constant (t-independent) quantity ρ(s, t) (see definition (3.20)) in
the whole region of kinematically allowed values of t is contained in the simplified
WY formula (3.17) for complete amplitude FC+N

WY (s, t) (see Section 3.2). However, this
assumption can not be tested with the use of simplified WY formula, because this
formula may hold only for very small values of |t|. In the following we shall use the
eikonal formula (3.26) for the complete amplitude FC+N

eik (s, t) which is valid in the whole
region of kinematically allowed values of t and we shall test the assumption of constant
quantity ρ(s, t).

The aim will be to find out whether it is possible to fit measured elastic differential
cross section under the assumption of constant quantity ρ(s, t) and to show also the
consequences in the impact parameter space (see Section 3.4) of this assumption.

We will denote the corresponding nuclear amplitude by FN
A (s, t). Since the had-

ronic amplitude FN(s, t) is complex function we may parameterize two real functions,
the phase ζN(s, t) and the modulus

∣∣FN(s, t)
∣∣, see Eq. (3.36), or real <FN(s, t) and

imaginary =FN(s, t) part of the hadronic amplitude. Both approaches are equivalent.

Due to Eq. (3.37) we may express the phase ζNA (s, t) corresponding to hadronic
amplitude FN

A (s, t) as
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CHAPTER 4. Analysis of experimental data

ζNA (s, t) = ζ0 (4.1)

where ζ0 is a free parameter. The modulus of hadronic amplitude
∣∣FN

A (s, t)
∣∣ may be

parametrized as∣∣FN
A (s, t)

∣∣ = (a1 + a2t)e
b1t+b2t2+b3t3 + (c1 + c2t)e

d1t+d2t2+d3t3 . (4.2)

This choice of the parameterization of
∣∣FN

A (s, t)
∣∣ was used already in [5] and it is suffi-

ciently flexible to describe measured differential cross section.
We will perform two fits, denoted by Fit A1 and Fit A2, of the hadronic amplitude

FN
A (s, t) to experimental data. All the free parameters of FN

A (s, t) will be fitted to
experimental data represented by elastic differential cross section for pp scattering at
energy of 52.8 GeV (Fit A1) and also for p̄p scattering at energy of 541 GeV (Fit A2)
so that both the Coulomb and hadronic interaction will be taken into account.

4.2 Brazil model of hadronic amplitude

The second phenomenological model of FN(s, t), which we will denote by FN
B (s, t), was

proposed by Brazil group in [27] where the real and imaginary part of the hadronic
amplitude was parameterized in the case of pp scattering at energy of

√
s = 52.8 GeV

as

<FN
B (s, t) = µ

2∑
j=1

αje
βjt (4.3)

=FN
B (s, t) =

5∑
j=1

αje
βjt (4.4)

where

µ =
ρ(s, t = 0)

α1 + α2

5∑
j=1

αj. (4.5)

The parameters αj and βj are real free parameters. The parameter ρ(s, t = 0) at energy
of
√
s = 52.8 GeV equals 0.078 in [27] and it really corresponds to the ratio of <FN

B (s, t)
to =FN

B (s, t) at t = 0. Very similar parameterization is possible to find also in [28].
The value 0.078 of the parameter ρ(s, t = 0) was determined on the basis of the

simplified WY formula, i.e., under the assumptions that both the quantities B(s, t)
and ρ(s, t) in the whole region of kinematically allowed values of t are constant (t-
independent), see definitions (3.19) and (3.20). However, both quantities B(s, t) and
ρ(s, t) corresponding to the hadronic amplitude FN

B (s, t) are t-dependent (non-constant)
and so there is no reason to require the value of ρ(s, t = 0) to be 0.078.

Moreover, the authors of [27] selected the differential cross section data above the
region of −t > 0.01 GeV2 and neglected possible influence of Coulomb interaction at
higher values of |t|. We will use the differential cross section data also for −t < 0.01 and
employ interference formula (3.26) to take also the Coulomb interaction into account,
see next section.
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4.3 Fitting procedure

We will present a fit, denoted by Fit B, of the hadronic amplitude FN
A (s, t) to

measured elastic differential cross section at energy of
√
s = 52.8 GeV and the aim will

be to take also the Coulomb interaction in to account and to show some consequences in
the impact parameter space, similarly as in the case of previous model of the hadronic
amplitude FN

A (s, t).

4.3 Fitting procedure

To perform all the three fits mentioned in the two previous sections and to take both
the Coulomb and hadronic interaction into account for all values of t we will start from
formula (see Eq. (3.11))

dσ(s, t)

dt

∣∣∣∣
eik

= Cnorm
π

sp2

∣∣FC+N
eik (s, t)

∣∣2 (4.6)

where the formula (3.26) for the complete elastic amplitude FC+N
eik (s, t) (in eikonal ap-

proach) will be applied to. The parameter Cnorm corresponds to one percent systematic
error of measured cross section and it will be newly fitted within the bounds from 0.99
to 1.01 in the case of pp scattering at energy of

√
s = 52.8 GeV. In the case of p̄p at

energy of
√
s = 541 GeV it will be fixed at value Cnorm = 1.

To determine function FC+N
eik (s, t) we shall use t-dependent Borkowski’s electric pro-

ton form factors (3.30), with parameters gj and wj taken from [24], for the form factors
f1(t) = f2(t) involved in Eq. (3.26). The integral I(t, t′) in (3.26) will be analytic-
ally computed with use of formula (3.31). Now, if we have expression for proton form
factors, we may employ one of the models of hadronic amplitude FN

A (s, t) or FN
B (s, t)

and so fully determine the r.h.s. of Eq. (3.26) for the complete amplitude FC+N
eik (s, t),

i.e., elastic differential cross section dσ(s,t)
dt

∣∣∣
eik

.

We will analyze and discuss the fits of pp experimental data of the measured elastic
differential cross section dσ(s,t)

dt
in region of −t from 0.00126 GeV2 to 9.75 GeV2 (243

points) taken from [29] and [30]. We will also discuss p̄p elastic differential cross section
in region of −t from 0.000875 GeV2 to 2.13 GeV2 (227 points) taken from [31].

As the experimental p̄p differential cross section at energy of 541 GeV was meas-
ured in different experiments and at different partially overlapping momentum transfer
regions they had to be properly normalized. Corresponding normalization factors have
been introduced as additional free parameters and in the final stage of optimization
they were taken as constants. The overall normalization factor was then determined
from the normalization condition

σtot(1 + ρ2) = (63.3± 1.5) mb (4.7)

which was used also in [5].
All the free parameters of FN

A (s, t) will be fitted to elastic differential cross section
dσ(s,t)

dt
for pp scattering at energy of 52.8 GeV (Fit A1) and also for p̄p scattering at

energy of 541 GeV (Fit A2). The t-dependence of
∣∣FN

A (s, t)
∣∣ (see (4.2)) is extrapolated

with a constant positive value of a slope at momentum transfer lower then -9.75 GeV2

in the case of pp data and -2.13 GeV2 for p̄p data to suppress raising of the modulus
for grater values of |t|. Practically the same results presented in next sections may be
obtained also with constant extrapolation, so the value of this slope is not essential.
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CHAPTER 4. Analysis of experimental data

To fit all the free parameters of FN
B (s, t) the values of free parameters taken

from [27] were used as initial values and fitted to experimental data with the use

of interference formula (3.26) for FC+N
eik (s, t) (Fit B). We use normalization dσN

dt
=

π
∣∣FN

B (s, t)
∣∣2 for FN

B (s, t). This normalization differs from normalization of FN
A (s, t)

(dσN

dt
= π

sp2

∣∣FN
A (s, t)

∣∣2, see Eq. (3.11)) but it is the same as in [27].

To perform all the three fits new program written in C++ was developed. It is used
in fitting a hadronic amplitude FN(s, t) to measured pp or p̄p elastic differential cross
section at given energy with use of Eq. (4.6) and computes some other physically sig-
nificant quantities. This new program re-implements many functions from FORTRAN
programs developed in Ref. [5] in an object-oriented way and so its functionality may
be easily extended. The numerical precision of the new C++ program is comparable to
the FORTRAN programs. It uses ROOT libraries [10] and may be implemented also
in the TOTEM software as a part of analysis module, see module (9) in Fig. 2.6.

The numerical minimization of the chi-square (χ2) values has been performed in
all cases with the help of the Minuit2 minimization package [32] which is part of
ROOT [10]. Minuit2 is a new object-oriented implementation, written in C++, of
the popular FORTRAN MINUIT minimization package [33]. The corresponding stat-
istical errors of the free parameters were determined by the HESSE procedure (class
ROOT::Minuit2::MnHesse).

In the following sections we will present new results of the fitting of the two phe-
nomenological models of the elastic hadronic amplitude FN

A (s, t) and FN
B (s, t) presented

in previous section.

4.4 Differential cross section

Values of all fitted parameters of the hadronic amplitude FN
A (s, t) in the case of pp

(Fit A1) and p̄p (Fit A2) differential cross sections can be found in Tab. 4.1. In the case
of Fit A2 we have put a2 = c2 = 0. Similarly, values of all fitted parameters of FN

B (s, t)
(Fit B) are in Tab. 4.2.

The elastic differential cross section corresponding to Fit A1, Fit A2 or Fit B is
plotted in Fig. 4.1. Hadronic elastic differential cross section given by just the corres-
ponding hadronic amplitude FN

A (s, t) or FN
B (s, t), see Eq. (3.11), is for higher values of

t practically the same as the complete elastic differential cross sections for all the fits.

It is possible to fit both pp and p̄p experimental differential cross section at energy
of 52.8 GeV, resp. 541 GeV, by hadronic amplitude FN

A (s, t) (Fit A1 and Fit A2), i.e.,
under the assumption of constant quantity ρ(s, t). In the case of Fit B (at energy
of 52.8 GeV) the value of corresponding reduced chi-square χ2/DOF (total chi-square
divided by number of degrees of freedom) is smaller than for Fit A1, even thought the
complete elastic differential cross section seems to differ significantly at −t > 9 GeV2.

Fits very similar to Fit A1 and Fit A2 with the same parameterization (4.2) of the
modulus of hadronic amplitude FN(s, t) but with different parameterization of hadronic
phase ζN(s, t) have been done in [5]. The phase ζN(s, t) was parameterized in [5] as

ζN(s, t) = ζ0 + ζ1

∣∣∣∣ tt0
∣∣∣∣κ eνt + ζ2

∣∣∣∣ tt0
∣∣∣∣λ (4.8)

in “general phase” (without any restriction), or as
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4.4 Differential cross section

ζN(s, t) = arctan
ρ0

1−
∣∣∣ t
tdiff

∣∣∣ (4.9)

where tdiff corresponds to a diffractive minimum (so-called “standard phase”). The
values of χ2/DOF corresponding to Fit A1 and Fit A2 with constant phase are grater
then the values of χ2/DOF corresponding to the analogous fits in [5] with general
and standard phase (both t-dependent). The only exception is the value of χ2/DOF
corresponding to Fit A2 which is comparable to the analogous fit with standard phase.
Neither of the parameterizations FN

A (s, t) or FN
B (s, t) give better χ2/DOF than the

parameterization in general case introduced in [5].

Fit A1 Fit A2

Data pp p̄p

FN(s, t) FN
A (s, t) FN

A (s, t)
√
s [GeV] 52.8 541

Cnorm 0.996 ± 0.013 1

ζ0 0.0648 ± 0.0051 0.1128 ± 0.0066

a1 12139 ± 56 1888000 ± 2800

a2 [GeV−2] 10800 ± 100 0

b1 [GeV−2] 5.787 ± 0.020 8.234 ± 0.036

b2 [GeV−4] 3.130 ± 0.054 4.89 ± 0.16

b3 [GeV−6] 1.329 ± 0.036 5.11 ± 0.20

c1 60.9 ± 9.9 3.05 ± 0.52

c2 [GeV−2] -0.4 ± 5.8 0

d1 [GeV−2] 0.837 ± 0.063 -15.33 ± 0.25

d2 [GeV−4] -0.0430 ± 0.031 -10.10 ± 0.19

d3 [GeV−6] -0.0056 ± 0.0024 -2.001 ± 0.062

χ2/DOF 673.316/231 279.927/218

Table 4.1: Values of free parameters in FN
A (s, t), Fit A1 and

Fit A2. Symbol χ2/DOF means total chi-square divided by number
of degrees of freedom.
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Fit B

Data pp

FN(s, t) FN
B (s, t)

√
s [GeV] 52.8

ρ(s, t = 0) 0.078

Cnorm 0.994 ± 0.011

α1 [GeV−2] -0.02133 ± 0.00079

α2 [GeV−2] 1.130 ± 0.028

α3 [GeV−2] 3.665 ± 0.016

α4 [GeV−2] -3.062 ± 0.015

α5 [GeV−2] 7.041 ± 0.024

β1 [GeV−2] 0.7971 ± 0.0083

β2 [GeV−2] 17.04 ± 0.39

β3 [GeV−2] 2.2763 ± 0.0043

β4 [GeV−2] 2.1628 ± 0.0041

β5 [GeV−2] 5.771 ± 0.021

χ2/DOF 484.391/232

Table 4.2: Values of free parameters in FN
B (s, t),

Fit B. Values of free parameters in FN
B (s, t) at en-

ergy of 52.8 GeV. Symbol χ2/DOF means total chi-
square divided by number of degrees of freedom.
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Figure 4.1: Complete elastic differential cross section corresponding to (a) Fit A1 (FN
A (s, t),

pp,
√
s = 52.8 GeV), Fit B (FN

B (s, t), pp,
√
s = 52.8 GeV) and (b) Fit A2.
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4.5 Interference between the Coulomb and hadron scattering

4.5 Interference between the Coulomb and hadron

scattering

To show how much important is the interference of the Coulomb and hadron interaction
we may use Eq. (3.25) with interference term F I(s, t). The importance of this term for
elastic differential cross section given by Eq. (4.6) may be represented by fraction

f(s, t) =

∣∣FC+N
eik (s, t)

∣∣2 − ∣∣FC(s, t)
∣∣2 − ∣∣FN(s, t)

∣∣2
|FN(s, t)|2

. (4.10)

This fraction is plotted in Fig. 4.2 and is not negligible also around diffractive dip in the
case of Fit A2 and Fit B. This is characteristic also for many other models of hadronic
amplitude FN(s, t), not only for the models FN

A (s, t) and FN
B (s, t) (see, e.g., [5]). The

neglection of the Coulomb interaction for higher values of |t| can be, therefore, in the
case of same models not straightforward.
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Figure 4.2: Interference ratio f(s, t) given by Eq. (4.10). (a) solid line corresponds to
Fit A1 (FN

A (s, t), pp,
√
s = 52.8 GeV) and dashed line corresponds to Fit B (FN

B (s, t), pp,√
s = 52.8 GeV). (b) Fit A2 (FN

A (s, t), p̄p,
√
s = 541 GeV).

4.6 Quantities B and ρ

If we compare Fit A1 and Fit B both at the same energy of
√
s = 52.8 GeV, we see that

the corresponding t-dependent diffractive slopes B(s, t), i.e., the hadronic moduluses∣∣FN(s, t)
∣∣ (see definition (3.19)) are similar, see Figs. 4.3 and 4.4. The corresponding

hadronic phases ζN(s, t) differ significantly - one phase is constant (Fit A1) and the
second one is t-dependent (Fit B), see Fig. 4.5. However, the change in the interval −t ∈
(0, 0.8GeV2) is practically negligible, a stronger change begins only at −t ≈ 0.8 GeV
and can not influence the value of root-mean-square of elastic profile

√
〈b2(s)〉el , see

Section 4.8. The dashed lines delimit the values of exhibited quantities within the
statistical errors.

The hadronic modulus
∣∣FN(s, t)

∣∣ influences much more significantly the value of dσ
dt

,
and so the value of χ2, than the hadronic phase ζN(s, t). This fact is also known from
[5].

43



CHAPTER 4. Analysis of experimental data

)2 (GeV-t

0 0.5 1 1.5 2 2.5 3 3.5 4

)
-2

 (
G

eV
B

(t
)

-5

0

5

10

15

(a) Fit A1 (FN
A (s, t), pp,

√
s = 52.8 GeV)

)2 (GeV-t

0 0.5 1 1.5 2
)

-2
 (

G
eV

B
(t

)
-2

0

2

4

6

8

10

12

14

16

(b) Fit A2 (FN
A (s, t), p̄p,

√
s = 541 GeV)

Figure 4.3: Diffractive slope B(s, t) given by Eq. (3.19) and corresponding to (a) Fit A1 and
(b) Fit A2.
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4.7 Comparison of the eikonal and WY formulas

To show the difference between the differential cross section dσ
dt

∣∣
eik

(see Eq. (4.6)) com-

puted with use of more general formula (3.26) for complete elastic amplitude FC+N
eik (s, t)

and the differential cross section dσ
dt

∣∣
WY

= π
sp2

∣∣FC+N
WY (s, t)

∣∣2 computed with use of the

simplified WY formula (defined by Eqs. (3.16) and (3.17)) we will calculate the t-
dependence of ratio

R(t) =

∣∣∣∣∣ dσ
dt

∣∣
eik
− dσ

dt

∣∣
WY

dσ
dt

∣∣
WY

∣∣∣∣∣ . (4.11)

To compute this quantity we need to know parameters σtot, ρ and B involved in the
simplified WY formula. We will use the values of these parameters derived in [34] from
experimental data, see Tab. 4.3. The ratio R(t) is plotted in Fig. 4.6.

Data pp p̄p
√
s [GeV] 52.8 541

σtot [mb] 42.38 ± 0.15 62.2 ± 1.5

ρ 0.077 ± 0.009 0.135 ± 0.007

B [GeV−2] 12.87 ± 0.14 15.52 ± 0.07

Table 4.3: The values of the parameters involved in the
simplified West-Yennie formula (3.17).
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Figure 4.6: Ratio R(t) defined by Eq. (4.11). (a) solid line corresponds to Fit A1 (FN
A (s, t),

pp,
√
s = 52.8 GeV) and dashed line corresponds to Fit B (FN

B (s, t), pp,
√
s = 52.8 GeV). (b)

Fit A2 (FN
A (s, t), p̄p,

√
s = 541 GeV).

Our results plotted in Fig. 4.6 show that if an approach of the luminosity determ-
ination (see Chapter 3.5) is based on the estimation of simplified WY formula then the
luminosity would be burdened by a non negligible systematic error. It was shown in [35]
that the luminosity determination at the LHC (pp scattering at energy of

√
s = 14 TeV)
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would be burdened by a systematic error approaching the value of 3.5÷4% which over-
comes the luminosity determination at the LHC planned to 1 - 1.5 %; see [1], [2] and [3].

4.8 Impact parameter space

It has been already mentioned that hadronic phase ζN(s, t) may influence the differential
cross section dσ

dt
only weakly but it may have important consequences in the impact

parameter space. It has been shown in [25] that the hadronic phase may lead to
peripheral as well as central behavior of elastic collisions (see also Section 3.4). In the
models analyzed in this thesis this impact parameter structure has been central where
the distribution of elastic processes |h1(s, b)|2 has (for given s value) its maximum at
impact parameter b = 0, i.e., for head-on collisions of two particles.

The elastic proton profile function |h1(s, b)|2 as well as function g1(s, b) (part of
the inelastic overlap function Ginel(s, b)) and =h1(s, b) (part of the total distribution
function), see Eq. (3.45) and (3.47), corresponding to Fit A1, Fit A2 and Fit B are shown
in Fig. 4.7 and Fig. 4.8. The dashed lines again delimit the values of all the profiles
within the statistical errors. We may see from the given graphs that both the models
of hadronic amplitude FN

A (s, t) and FN
B (s, t) lead to the range of hadronic interaction

around ≈ 2.5 fm.
As to the pp scattering at energy of 52.8 GeV the distribution function corresponding

to hadron amplitude FN
A (s, t) with constant hadronic phase (Fit A1) are very similar

to the distribution functions corresponding to Brazil hadronic amplitude FN
B (s, t) with

t-dependent hadronic phase (Fit B).
The correction function K(s, b) given by Eq. (3.49) and corresponding to all three

fits is plotted in Fig. 4.9. The function K is negligible in all cases in comparison to the
corresponding function g1.
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Figure 4.7: Impact parameter profile functions corresponding to Fit A1 and Fit A2, see
Eqs. (3.45) and (3.47).
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tions corresponding to Fit B (FN

B (s, t), pp,
√
s =

52.8 GeV), see Eqs. (3.45) and (3.47).
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Values of the total, elastic and inelastic cross sections and root-mean-squares√
〈b2(s)〉 determined on the basis of t-dependent hadronic amplitude FN

A (s, t) or
FN
B (s, t) (see Chapter 3) and corresponding to all three fits are given in Tab. 4.4.

Values of quantities ρ(s, t = 0) and B(s, t = 0) may be found also in Tab. 4.4.
The contributions of the phase 〈b2(s)〉ph to 〈b2(s)〉el (see Eq. (3.57)) corresponding

to hadronic amplitude FN
A (s, t) are zero because this amplitude contains assumption of

constant hadronic phase. In the case of Fit B with hadronic amplitude FN
B (s, t) the

value of 〈b2(s)〉ph is also quite negligible with respect to the contribution of the modulus
〈b2(s)〉mod. In both models the value of 〈b2(s)〉el is determined practically only by the
corresponding modulus of hadronic amplitude.

The values of root-mean-squares
√
〈b2(s)〉inel corresponding to all three fits are

greater than
√
〈b2(s)〉el ; i.e., the elastic hadron scattering resulting from both models

is more central than inelastic hadron scattering.
It follows from Eqs. (3.61) and (3.62) that some upper bounds exist for elastic and

inelastic mean-squares. The inelastic upper bounds 〈b2(s)〉boundinel are practically saturated
in both studied models, while values of elastic mean-squares 〈b2(s)〉el lie significantly
lower then corresponding values of 〈b2(s)〉boundel . Similar result can by obtained also if
the hadronic phase is parameterized according to Eq. (4.9) which also leads to central
behavior of elastic hadron collisions, see [25].

Fit A1 Fit A2 Fit B

Data pp p̄p pp

FN(s, t) FN
A (s, t) FN

A (s, t) FN
B (s, t)

√
s [GeV] 52.8 541 52.8

ρ(s, t = 0) 0.0648 ± 0.0054 0.11627 ± 0.00010 0.078

B(s, t = 0) [GeV−2] 13.297 ± 0.045 16.4821 ± 0.0020 14.20 ± 0.13

σtot [mb] 42.70 ± 0.21 62.71 ± 0.18 42.83 ± 0.21

σinel [mb] 35.23 ± 0.16 49.53 ± 0.11 35.37 ± 0.15

σel [mb] 7.46 ± 0.13 13.201 ± 0.087 7.460 ± 0.021

〈b2(s)〉el [fm2] 0.4599 ± 0.0027 0.5712 ± 0.0086 0.4594 ± 0.0025

〈b2(s)〉mod [fm2] 0.4599 ± 0.0027 0.5712 ± 0.0086 0.4580 ± 0.0025

〈b2(s)〉ph [fm2] 0 0 0.001272 ± 0.000065√
〈b2(s)〉el [fm] 0.6782 ± 0.0020 0.7557 ± 0.0032 0.6778 ± 0.0018√
〈b2(s)〉tot [fm] 1.0176 ± 0.0017 1.1325 ± 0.0025 1.0560 ± 0.0049√
〈b2(s)〉inel [fm] 1.0758 ± 0.0017 1.2133 ± 0.0022 1.1196 ± 0.0053

〈b2(s)〉boundinel [fm] 1.2549 ± 0.0047 1.6244 ± 0.0052 1.350 ± 0.012

〈b2(s)〉boundel [fm] 5.923 ± 0.097 6.095 ± 0.061 6.404 ± 0.092

Table 4.4: Values of physically significant quantities corresponding to Fit A1, Fit A2 and
Fit B.
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Chapter 5

Conclusion

The presented thesis deals with two kinds of problems. The first one is contained in
Chapter 2 and has been worked out during the stay of the author of this thesis at
CERN. It is a part of studies concerning the response of the RP silicon detectors
and representing one of the first steps towards developing a background suppression
algorithm. The first insight into the proton background from the beam-beam interac-
tions at β∗ = 0.5 m has been obtained on the basis of detector response simulation.
To see the response of the RP silicon detectors some statistics based on successfully
reconstructed and fitted tracks for the most important particles from the simulation
(protons, photons, neutrons, electrons, positrons and pions) have been presented.

The other part represents then some new results concerning two phenomenological
models of elastic hadron amplitude and their consequences in the impact parameter
space. The first model of hadron amplitude FN

A (s, t), which has been studied, contains
the assumption of constant hadronic phase (i.e., constant quantity ρ(s, t)) in the whole
region of kinematically allowed values of t. The second model of hadronic amplitude
FN
B (s, t) (Brazil model) represents one of the present models with the hadronic phase

that exhibits some stronger t-dependence. Both models have been fitted to experi-
mental data represented by measured pp elastic differential cross section at energy of
52.8 GeV (Fit A1 and Fit B). In the case of FN

A (s, t) additional fit at energy of 541 GeV
(p̄p scattering) has been done (Fit A2). To take both the Coulomb and hadron interac-
tion into account in the whole region of kinematically allowed values of t, the eikonal
formula (3.26) for the complete elastic amplitude FC+N

eik (s, t) has been used. The influ-
ence of the assumption of constant quantity ρ(s, t) (involved in all approaches based on
the simplified WY formula) have been thus tested also for greater values of t.

Althought the hadronic amplitudes FN
A (s, t) and FN

B (s, t) exhibit very different
t-dependences of hadronic phase ζN(s, t) (one being constant and the second rather
strongly t-dependent) they have similar effect on the description of elastic differential
cross section. Choice of parameterization of modulus of hadronic amplitude

∣∣FN(s, t)
∣∣ is

thus much more significant in describing experimental data of differential cross section
compared to parameterization of hadronic phase ζN(s, t).

It is commonly assumed that Coulomb scattering plays a role in a narrow region of
small |t| values only, while at all higher |t| values it may be fully neglected. However,
the interference ratios f(s, t) corresponding to Fit A2 and Fit B have an anomaly before
and around the diffractive dip as we can see in Fig. 4.2. This effect shows that in the
case of same models the Coulomb interaction may be non negligible also for higher
values of |t|.
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Our results plotted in Fig. 4.6 show then that also the luminosity can be burdened
by a non negligible systematic error if an approach of the luminosity determination is
based on the estimation of simplified WY formula.

The hadronic amplitudes FN
A (s, t) and FN

B (s, t) result in very similar behavior also
in the impact parameter space. Both phenomenological models lead to central behavior
of elastic collisions that may be hardly regarded as fully physical. The values of root-
mean-squares

√
〈b2(s)〉inel corresponding to all three fits are greater than

√
〈b2(s)〉el ;

i.e., the elastic hadron scattering resulting from the two models is more central than
inelastic processes.

To perform all fits and more importantly to systematize different models and ap-
proaches describing elastic pp or p̄p scattering new program written in C++ has been
developed. It may be used in fitting a hadronic amplitude FN(s, t) to measured pp or
p̄p elastic differential cross section at given energy and for computing some other phys-
ically significant quantities. This new program re-implements many functions from
FORTRAN programs developed in Ref. [5] in an object-oriented way and so its func-
tionality may be easily extended.
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Acronyms

CERN European Organization for Nuclear Research

LHC Large Hadron Collider being build at CERN

ISR Intersecting Storage Rings

TOTEM TOTal Elastic and diffractive cross section Measurement; one of the LHC
experiments

CTS Current Terminating Structure

RP Roman Pot

IP5 Interaction Point 5

RP147 RP station at distances of +147 m from the IP5

RP220 RP station at distances of +220 m from the IP5

LSS Long Straight Section

CASTOR CERN Advanced STORage manager
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[18] V. Kundrát and M. Lokaj́ıček, Mod. Phys. Lett. A 11 (1996) 2241.

53

http://root.cern.ch


References
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