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Abstract: Chosen molecular representation is one of the key parameters of vir-
tual screening campaigns where one is searching in-silico for active molecules with
respect to given macromolecular target. Most campaigns employ a molecular rep-
resentation in which a molecule is represented by the presence or absence of a
predefined set of topological fragments. Often, this information is enriched by
physiochemical features of these fragments: i.e. the representation distinguishes
fragments with identical topology, but different features. Given molecular repre-
sentation, however, most approaches always use the same static set of features
irrespective of the specific target. The goal of this thesis is, given a set of known
active and inactive molecules with respect to a target, to study the possibilities
of parameterization of a fragment-based molecular representation with feature
weights dependent on the given target. In this setting, we are given a very gen-
eral molecular representation, with targets represented by sets of known active
and inactive molecules. We subsequently propose a machine-learning approach
that would identify which of the features are relevant for the given target. This
will be done using a multi-stage pipeline that includes data preprocessing us-
ing statistical imputation and dimensionality reduction, application of subspace
clustering in the molecular feature space, and finally analysis and scoring of the
results. This information will then be fed into the molecular representation and
used in further virtual screening campaigns.
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1. Motivation: Drug Discovery
and Virtual Screening

As the processing power of modern computers increases exponentially[2], the in-
dustries and domains that utilize these more powerful machines becomes ever
more diverse. The field of chemistry, in particular, provides many rich appli-
cations of both traditional and modern tools from mathematics and computer
science. These applications have become so manifest that a new domain known
as Chemoinformatics [3] has risen both in academia and industry.

The field of cheminformatics brings with it a novel way to observe and con-
duct research regarding natural chemical phenomenon. In traditional chemical
studies, especially quantum chemistry, molecules are observed in the context of
electrons or nuclei, or in the context of the classical molecular model using atoms
and bonds. [I] Certain branches of chemical informatics, however, bring in tools
from mathematics and computer science to employ a different representation
when describing molecules: these branches represent molecules as discrete points
in a chemical or molecular space defined by certain descriptors or features. We
can, for example, consider one set of such descriptors to be topological fragments-
intramolecular fragments that represent different subgraphs of a 2-D graph rep-
resentation of the molecule. We could then represent molecules as combinations
of such fragments and therefore one specific representation of molecules in the
chemical space could be a bit vector that indicates whether a particular topolog-
ical fragment occurs in a molecule or not. Another representation of molecules
in the chemical space could be via the values of specific physio-chemical fea-
tures exhibited by the molecule. These features can range from simple molecular
characteristics such as the number of atoms that make up the molecule to more
complex intramolecular metrics such as the amount of aromatic atoms or bonds
present. Such representations are interesting from a computational standpoint
because they abstract a lot of the hidden intricacies of the traditional quantum
chemical model. These branches of cheminformatics allow us to reason about
chemical interactions with the abstraction of the chemical space with respect to
various descriptors or features, rather than reasoning from a more fundamental
level as quantum chemistry dictates.

One of the most powerful and intriguing applications of this new view of the
structure and relationship between various molecules in the chemical space is
known as wvirtual screeming, a shift in the methodology used in pharmaceutical
studies during the drug discovery process. In the pharmaceutical industry, the
early stages of the discovery process rely heavily on finding potential reactants to
specific macromolecular targets as leads; these leads are then taken into further
stages of the drug discovery pipeline, eventually leading to clinical trials and a
release of a new product or drug. [4] Before the advent of modern computing,
the most sophisticated way of uncovering these leads was through a technique
known as wet-lab high-throughput screening (HTS)[4], a relatively expensive and
time-consuming method when considered in the context of our modern computing
power. HTS uses advanced software and robotics to perform controlled exper-
iments on macromolecular targets in large labs usually found only in industry.



Due to the state-of-the-art technology involved, developing and maintaining such
a laboratory is a costly operation; therefore a search for more cost-efficient so-
lutions became the main priority for practitioners of HT'S[4]. As a result of this
search and the aforementioned computational advances, the new trend of in silico
or wvirtual screening established itself in the domain of drug discovery. Virtual
screening uses known information about the behavior and chemical structure of
targets and employs computer software to automate the process of searching for
potentially active molecules with respect to this target. Virtual screening has
been used in practice with numerous reported successes. [4] VS is usually used
in conjunction with HTS: practitioners first use VS to lower the initial amount
of potential candidate reactants to solely a high-likelihood subset, and then pass
this subset onto the HT'S stage, where this subset is further pruned to reveal the
true active molecules. Therefore, even though at present VS is not used exclu-
sively in the drug discovery process, it greatly reduces the amount of potential
candidates so that HT'S becomes much more economically viable.

Put succinctly, the VS process requires software that can learn the reactive
behavior of a macromolecular target molecule, based on the structure of the
target or the target’s prior interactions with other molecules - labeled active if
they react with the target, or inactive if they don’t react with the target. As
mentioned before, the chemical structure of molecules can either be viewed from
a more fundamental subatomic perspective or from the more combinatorial and
computational viewpoint of the chemical or molecular space. Consequently, one
new approach to designing software that can shed light on the reactive behavior
of a candidate is a method based on descriptors in the chemical space, and in
particular, the topological fragment descriptors mentioned earlier. In this paper,
we design and implement a novel machine learning pipeline that will understand
the reactive behavior of a target macromolecule-based solely on in-depth analysis,
using fragment descriptors, of prior active and inactive molecules with respect to
the target.

Compound Database

Pre-Processing
Virtual

Screening

Figure 1.1: A visualization of the virtual screening process, wherein compounds
in a chemical database are first preprocessed and then subsequently filtered using
numerous possible techniques to determine viable candidates for HT'S. (Source:
Drug Discovery and Development Magazine [25])



2. Related Work and Our
Approach

In this paper, we will introduce a new virtual screening technique that combines
two separate chemical descriptors that in their own right can be used in virtual
screening: topological fragment descriptors and physio-chemical feature descrip-
tors. Topological fragment descriptors, as mentioned before, will help identify
our molecules in the combinatorial chemical feature space, where each molecule
can be represented by a bit vector where each coordinate is an indicator variable
as to the presence or absence of a certain fragment of that molecule; for a vi-
sual representation of these intramolecular fragments, the reader is encouraged
to look at Figure 2.1, The reader should also note that these topological frag-
ments themselves can be considered as smaller molecules encompassed within a
larger one. Feature descriptors, on the other hand, are physio-chemical proper-
ties of the molecule - e.g. the number of atoms, the number of aromatic bonds,
etc. Various research endeavors have been conducted in the realm of topological
fragments and their physio-chemical feature descriptor values in the context of
virtual screening; these approaches can be categorized into the two broad cate-
gories of Structure Based Virtual Screening and Ligand Based Virtual
Screening.
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Figure 2.1: A single molecule is represented by a bit vector constructed by con-
sidering the different constituent intramolecular fragments within the molecule.
Note that each of these topological fragments are also considered molecules them-
selves. [30]

Structure-based virtual screening methods use the structure of a given macro-
molecular target to rank and filter a chemical database for activity with respect
to that target. An example of such a structure based approach is the use of un-
desirable pharmacodynamics of the candidate molecules in the database. Phar-



macodynamics is the study of complementary spatial relationships between the
bonding sites of two molecules - in our case a given target and a candidate reac-
tant. The filtering is done using 3D Pharmacophores and is based on undesirable
fragments (structural alerts) present in some candidate molecules that affect the
structural integrity of the bonding site of the candidate molecule with respect to
the bonding site of the given target [I]. Our research focuses less on the 3D struc-
tural pharmacophore attributes of the topological fragments within a molecule,
and more on the physiochemical features of these fragments.

Oftentimes, however, the structure of the target is simply not available.
Ligand-based virtual screening, therefore, does not focus on the structure of a
given macromolecular target, but rather on the utilization of pre-existing experi-
mental data about prior active molecules with respect to this target to filter and
rank the chemical database. Ligand-based methods, therefore, focus less on the
target molecules themselves, and rather place more emphasis on the molecules
that have reacted to these targets in experiments conducted beforehand. Ligand-
based virtual screening can, therefore, be thought of as similarity searching of
a molecular database; similarity searches of a molecular database are based on
the intuitive hypothesis that molecules with a similar structure will have similar
reactive behavior. The notion of similarity can be measured both in 2D and 3D,
but the 2D metrics are very relevant to our research as they use the notion of a
molecular fingerprint. These molecular fingerprints are a type of description of
the molecule using the presence or absence of topological fragments (similar to
our bit vector representation of the molecule), and lead to a very intuitive search
of the database. We can, given a prior known active molecule and its fingerprint,
for example, search the database for other molecules with similar fingerprints.
Such a procedure has been shown to lead to a subset of the database with a high
concentration of active molecules.[I] Our ligand-based approach, however, differs
from existing similarity search-type algorithms, because although we use topolog-
ical fragment descriptors, we use also the physio-chemical feature descriptors of
these fragments. Once again, this combination of fragments and features proves
to be a powerful training dataset in virtual screening applications.

2.1 A Dynamic Method

Of the two types of virtual screening methods mentioned in the prior section,
our research falls under the category of Ligand Based Virtual Screening meth-
ods. Our work aims to, for any given macromolecular target and a list of prior
active molecules and inactive molecules with respect to this target, determine
dynamically the key physiochemical feature descriptors and their re-
spective value ranges that differentiate active molecules vs. inactive
molecules with respect to the target. Therefore, the user of our algorithms
can gain a fundamental understanding of the structure of an active molecule be-
cause he/she can identify the key feature descriptors that contribute to activity,
as well as their ideal value range within active molecules. The search for further
actives and by extension the ideal structure of an active molecule, therefore, be-
comes much easier due to the ability to constrain the search to molecules that
exhibit similar values in the key features. Therefore, after running our pipeline
for any particular target, we obtain a machine learning model that contains the



aforementioned key features and their corresponding ideal intervals. A user can
then use this model to filter their molecular database accordingly so that he/she
is left with solely active molecules with respect to the target. Such a process is
macromolecular target independent, meaning it can be applied to new targets
without change; this leads to a powerful dynamic scheme across targets.

2.2 Machine Learning and Virtual Screening

We take a moment to observe some of the constituents of our ligand based method:
the algorithm needs to understand the underlying structure of an active based
solely on prior observed data - a task that can be considered challenging even for
a human expert. Such understanding, however, is nowadays possible: along with
newfound computing power we have also developed algorithms that may utilize
this power to allow computers to analyze data, and moreover learn automatically
different trends and patterns, both salient and latent, found within the data.
These new algorithms fall under the general category of Machine Learning or
Artificial Intelligence algorithms - algorithms that allow computer software to
learn from existing data and perform a specific task on new data without being
explicitly programmed. In our context of virtual screening, this task could be
defined, for example, as using prior reaction information to classify new reactants
into categories of active or inactive. For readers already familiar with machine
learning, this problem can be formulated as a discrete classification problem and
can be solved in numerous ways - for example using the statistical technique
of logistic regression. Such classification techniques and other methods from
machine learning and statistics have been applied by researchers and in industry
with successful results. [5]

The tools we will borrow from the fields of machine learning and artificial
intelligence, however, will be different from the traditional discrete classification
algorithms that could be used to solely classify new candidate reactants into
active or inactive categories. Rather, the tools we will employ enable us to learn
the much more profound ideal structure of an active molecule. More
concretely, our virtual screening pipeline will not only be able to filter the chemical
database for actives, as do other algorithms, but will also be able to output a set
of key physicochemical features and their corresponding ideal value ranges that
are exhibited within most of the active molecules.

2.3 The Bayesian Approach

One already explored approach to the dynamic problem mentioned in the prior
paragraph is the use of the Naive Bayes classifier, pioneered by Hoksza and Skoda.
[277] Put briefly, the Bayesian approach utilizes Bayes’ rule to determine the prob-
ability that a molecule, represented by a list of physio-chemical feature vectors for
each of its fragments, belongs to the active class with respect to a macromolecular
target. This probability is computed based on prior information given about the
molecules which were active or inactive with respect to the target, and the feature
values of their constituent topological fragments. For example, for a new candi-
date molecule m, one can compute the probability that each of the fragments f



of m belong to an active molecule based on the fragments of prior known active
molecules; he or she can then take the mean of these probabilities to obtain the
probability that m itself is active. By ordering the molecules according to the
aforementioned activity probability, the Bayesian approach is quite successful in
sorting a database of molecules according to activity for a dynamic target, and
therefore we will use this method as one of our benchmarks when evaluating the
approach developed in this paper. More will be said about the Bayesian approach
in the sections pertaining to experimental evaluation.

2.4 Owur Approach: Subspace Clustering

2.4.1 The Molecular Fragment Feature Space

As mentioned many times before, each molecule contains several topological frag-
ments, and each of these fragments can be described by a vector containing the
values of its physiochemical features. Therefore, as introduced in the Bayesian
approach, a single molecule can be represented by several vectors in the R? space
(where d is the total amount of physiochemical features), with each vector repre-
senting one of its topological fragments.

Looking again to our ligand-based virtual screening pipeline, we are aiming to
find the key physiochemical features and their ideal value ranges that correspond
highly with activity for a specific target; we then use a new candidate molecule’s
fragments’ similarity in these key physiochemical ranges to our existing ideal
ranges to sort the molecular database according to activity. We present a formal
definition of these notions below:

Key Feature. A feature k; in the molecular physio-chemical feature space
is a known as a key feature if for some integer «, and real numbers (; and ~;,
it holds that every active molecule contains at least o fragments whose value for
the key feature k; falls in the interval [3; — v, B; + vi]. The number « is known
as the key feature threshold, and [; and 7; are known as the key feature center
and key feature range respectively, for feature k;. The interval [3; — 7;, B; + il is
known as the ideal interval or the ideal value range of key feature k;.

In order to find these key features and their ideal intervals, we first employ
the following informal hypothesis:

Hypothesis For each key feature k; and its corresponding ideal interval [3; —
vi, Bi+7il, every active molecule contains at least one topological fragment vector
f whose value for feature k;, denoted by fi,, is in the ideal interval. Every
fragment of every inactive molecule, on the other hand, has a value for feature k;
that is outside the ideal value range.

The above hypothesis assumes that «, the key feature threshold, is 1 in our
problem setting. It also assumes that none of the fragment vectors of the in-
active molecules exhibit feature values for the key features that fall in the ideal
value ranges. The logic behind the second assumption is that since the inactive
molecules don’t exhibit the observed bonding behavior with respect to the target,
all of their fragments take on values for the key features that display no obvious
pattern, unlike some specific active fragments whose values lie within the ideal
interval. All of these assumptions indeed are quite strong, but they will greatly
simplify our problem setting.



2.4.2 Subspace Clustering in the Molecular Feature Space

The intuitive notions presented in the prior section can be formalized by the use
of subspace clusters.

Before elaborating on the definition of a subspace cluster, we assume that the
reader is generally aware of the notion of a cluster in the Euclidean space. There
are various different, but related, definitions of clusters; indeed, these definitions
actually aid in explaining the logic behind the many algorithms that aim to find
them within some point set P in R%. For our purposes, we will use a density
based definition.

Definition: Cluster. Let P be a set of points in R%. A cluster C C P in R¢
is a collection of points such that each point p in C' has p neighbors py, ... pl,_; € C
in a ball of radius €, where € is the neighborhood size and p is the density threshold.

Definition: Subspace Cluster. Let P be a set of points in R?, and let the
d dimensions be defined by the set D = dim, ... dimg. A subspace cluster C' C P
is a collection of points such that for some S C D, each point x € C contains
it neighbors at distance e in each projection of D to the one-dimensional space
defined by s, for all s € S.

When considering the notion of a clustered set of points, therefore, a subspace
cluster does not take into account the amount of neighbors in an e-ball around a
point in the whole space RY, but rather considers only the amount of points in
some e-ball in the dimensions s € S specific to the subspace cluster. Moreover,
note that we specify clearly that S C D in our definition of the subspace cluster,
meaning that S # D; in this manner, we ensure that a subspace cluster should
occur only in a proper subspace of R%.

Figure provides an intuitive visual representation and succinct explanation
of the role of subspace clusters in the molecular feature space.
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Figure 2.2: The difference between subspace clusters and regular clusters can
be seen in the above image. Notice that the two regular clusters C; and C,
are clustered along all the axes, whereas the subspace cluster SC} is clustered
only along the red and green axes, with the values of the points in the blue
axis fairly dispersed. One can imagine these 3 axes as different physiochemical
features in the molecular feature space, and the points as vectors representing the
values of the different features for each topological fragment of various molecules.
Therefore, if SC; has a sufficiently high concentration of topological fragments
found in active molecules, we can hypothesize that the value ranges of SC; in
the features corresponding to the red and green axes are a strong indication of
activity, whereas the feature corresponding to the blue axis has a marginal effect
on activity. In other words, the red and green axes represent key features, while
the blue axis does not.

2.4.3 Pure and Diverse Subspace Clusters

It doesn’t suffice to just find all the subspace clusters in the molecular feature
space; rather, we must find subspace clusters that are pure - that is, they contain
mostly fragments from active molecules. The key features can then be identified
based on the dimensionality of these detected subspace clusters. A typical exam-
ple of an impure cluster is one consisting of topological fragments corresponding
to 3-carbons; 3-carbons can be found in virtually any molecule, both active and
inactive, and therefore clusters containing many instances of this fragment from
various molecules will naturally be impure.

In addition to being pure, the observed clusters should also have fragments
from warious active molecules. Indeed, if we uncover a subspace cluster that
contains fragments from solely one active molecule, it may just be due to some
intramolecular feature value pattern within the molecule itself. By contrast, a
subspace cluster that contains fragments from many active molecules is diverse
enough that it could be an indicator of a latent structure in a general active
molecule.

The crux of the previous paragraph is that we are looking for subspace clusters
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in the molecular feature space that satisfy a few necessary conditions in order for
them to be deemed significant in our studies. We present these conditions in a
concise and formal manner below, by adding a definition:

Definition. Significant Molecular Subspace Cluster. We call a sub-
space cluster C' found in the molecular feature space over d dimensions a sig-
nificant cluster - or a non-degenerate cluster - if it satisfies the following three
conditions. Otherwise, we call it a insignificant cluster or also a degenerate clus-
ter.

Condition 1: Diversity Let f; ... f,, be the fragments corresponding to the
n fragment feature vectors that C' contains. Then f; ... f, belong to £ unique
active molecules. (C is also then known as a diverse molecular subspace cluster).

Note 1: Observe that in the definition of diversity we allow our diversity
threshold k to remain a variable; this is done purposefully, as we want the user
of the system to be able to control the level of diversity of the clusters himself or
herself simply by adjusting k.

Condition 2: Purity Let A be the set of fragments that occur only in
the active molecules, I be the set of fragments that occur only in the inactive
molecules, and C'y be the set of fragments whose corresponding fragment feature

vectors are contained in the cluster C'. Then it holds that % >p. (C

is also then known as a pure molecular subspace cluster).

Note 2: Just as in the diversity threshold, observe that we parametrize the
purity threshold p.

A question the reader may certainly have is as to why we even need the con-
dition of purity to ensure we obtain significant clusters, when one could just find
subspace clusters within solely the fragments of the active molecules, and exclude
the fragments of the inactive molecules; these subspace clusters, after all, will
surely be pure. The reason is that many fragments found in the active molecules
can also be found in some of the inactive molecules - there is no molecular barrier
stopping the occurrence of a topological fragment in both an active molecule and
an inactive molecule. Therefore a subspace cluster that occurs within the active
fragments could also occur within the inactive fragments, and such a subspace
cluster does not lead to any deeper molecular insight about the ideal structure of
an active and therefore must not be considered. We, therefore, want to find the
subspace clusters within the combined active and inactive fragments, and then
prune these found subspace clusters using the purity condition above to ensure
that they truly occur only within the active fragments.

Our presentation of the virtual screening pipeline will be organized as follows:
Cleaning and combining large molecular datasets will detail the procedures for
cleaning noisy molecular data, as well as the data structures involved in repre-
senting and manipulating fragment feature vectors in the molecular feature space.
These cleaning and data manipulation steps are necessary, as the raw input to
our algorithm will be a list of prior known actives and prior known inactives of
a specific macromolecular target, their respective topological fragments, and the
feature vectors of these topological fragments. As with all large data sets, this
collection of molecular information will need a thorough preprocessing procedure
before machine learning algorithms can be applied on it.

The Subspace Clustering Approach chapter will explore in detail the various
possible subspace clustering algorithms in virtual screening, as well as the chosen
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algorithmic method within our research.

FEzxperimental Results will evaluate our approach on various target macro-
molecules, as well as compare the results from our subspace clustering method to
those obtained from the Bayesian method.

Finally, Conclusions and Future Work will explore the implications of our
results, as well as possible improvements and further follow-up work in future
research endeavors.
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3. Cleaning and Combining
Large Molecular Datasets

The raw molecular data needed for our algorithms is obtained from various online
resources; the known active and inactive molecules with respect to each target
were obtained from the PubChem Database[26], while the physiochemical feature
descriptors for various fragments are obtained from the PaDEL Database.[10]
As mentioned towards the end of the prior chapter, the raw input data to our
machine learning pipeline requires preprocessing and denoising in order for it to
be in a suitable form for machine learning algorithms; this section will explore in
detail techniques that can be applied in the molecular feature space for not only
cleaning data, but also for sequestering the valuable data from the redundant or
even counterproductive data.

We first describe formally the chemical data that we are provided as inputs
to our pipeline, in list format:

1. Two subsets A; and I; of M. Subset A; will be known as the actives or
ligands with respect to a specific target ¢, and the subset I; will be known as the
1actives or decoys with respect to t. The set A; contains a set of molecules that
have shown prior reactivity with respect to ¢, and similarly the set I; contains a
set of molecules that have shown prior inactivity with respect to t.

2. For any molecule m in the set A; and [;, we are given a topological fragment
mapping. This fragment mapping maps the molecule to its constituent toplogical
fragments, which, once more, are just constituent molecules f;... f, that are
contained in m.

3. For any of the topological fragments mentioned in point 3., we are given
the physiochemical feature mapping that maps the fragment to its corresponding
physiochemical feature values in the molecular feature space.

3.1 The Fragment-Feature Matrix

As a prequel to the discussion of our data cleaning and combining pipeline, we
will first present the most important data structure that will be employed in our
research in order to effectively represent the complex assortment of molecular
data presented in the prior section: the Fragment Feature Matrix.

As its name suggests, the Fragment Feature Matrix, or FFM for brevity
reasons, is a matriz. The rows of the FFM will be the physiochemical feature
vectors for the various fragments of the active or inactive molecules w.r.t. our
target molecule t. The entry F'F'M,;, for example, will be the j-th feature value of
the i-th fragment. Therefore, the matrix can be perceived as simply a collection
of physiochemical feature vectors; this simple structure, however, proves to a
powerful way to represent complex data about the inner fragment structures of
the numerous molecules provided as input to our pipeline.

We will initially create two separate FFM structures for the fragments of
the active molecules and the inactive molecules; this is due to the fact that we
would like to perform our imputation procedure on the fragments of the active
molecules and inactive molecules separately so that any chemical structure unique

13



to only the fragments of the active molecules is maintained after the procedure.
After proper processing and imputation of the separate FFM structures, they will
be combined to form one encompassing FFM to perform our future algorithmic
procedures on. For a clearer depiction of this procedure, please see Figure [3.1

Input FFM, Matrix Input FFM, Matrix

a,

Inactives ’ Preprocessing

l Actives’ Preprocessing
fi . ) ...

ai

Im

Final Combined FFM
Matrix

£
a,

Figure 3.1: A visual depiction of the creation of the singular FFM containing
fragment vectors of both of the active molecules and inactive molecules. We are
initially given two separate matrices that contain either active fragment feature
vectors (aj ...a,) or analogously inactive fragment feature vectors (iy...i,,) as
rows; the two matrices are then preprocessed and imputed separately via the
procedures introduced in the subsequent paragraphs. The resulting pre-processed
matrices have columns that represent features fi ... f; C fi... fx that are deemed
the most significant features during our processing of the matrices. Finally, the
two matrices are combined or concatenated to form the final FFM for both the
active and inactive fragments.

3.2 Constant Feature Removal

The first step of the data cleaning pipeline is a small but important step within
the grand theme of molecular data purification. One of the primary problems
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that we observe in our fragment feature matrices - albeit one that easy to solve
- is the abundance of columns with the same values in every component. This
signifies that some physiochemical features in our database attain the same values
for every topological fragment. This is, for most features, never the case in the
physical world, and therefore we assume with good reason that this is due to some
error during the storage and prior processing of the data. In this situation we
don’t design any complex or clever algorithms: we simply remove the columns of
the fragment feature matrices that correspond to the features that attain constant
values across all fragments. To the best of our knowledge, no other intuitive and
yet effective scheme exists to rectify such constant-valued features, and therefore
our simple removal method seems to be the optimal way to deal with such a
degenerate scenario.

3.3 Imputation of the Fragment Feature Matrix

Assuming the removal of all the constant-valued features from the fragment fea-
ture matrices, the key data purity problem whose effects we aim to mitigate
is the fact that we occasionally encounter values for specific features that are
not numbers, whereas all of the physiochemical feature values we use are rep-
resented by numerical values. For example, certain features of some fragments,
according to the inputted molecular database, have values such as — or simply a
blank. The reason for these corrupted feature values is presumably because no
data was available on these features for particular fragments, and therefore non-
numerical characters have been inputted to signal that these values are missing.
These values obviously cannot appear in our final FFM because it would cause
various errors later on in the pipeline when our algorithms try and operate on
non-numerical values. Missing data is indeed a common occurrence in the world
of data analysis, and there have been whole papers published on how to deal with
this occurrence. In this paper, however, we will keep the discussion focused solely
on the methods we choose to deal with the lack of data in our specific use-case
in the molecular feature space, and refer the reader to other resources (e.g. [12])
for a more detailed discussion of the topic in general. We would like to focus on
one method in particular that we chose to deal with the sporadic non-numerical
feature values: data imputation.

In general, data imputation consists of inferring the value of a particular
instance of missing data based on the value of other present and ideally related
instances. Imputing missing observations based on related observation values
gives us a reasonably satisfactory estimate for the missing instance’s true value
since we use observations that are similar in our inference procedure.

As the reader will see below, the process of imputation may also leave us
with specific features that are degenerate; put roughly, these are features which
exhibit so much missing data across fragments that we simply cannot infer about
and impute them and have no choice but to label them as degenerate. Such
degenerate features are subsequently removed from the fragment feature matrices
altogether.

We will now separate our discussion of the fragment feature matrix structures
into a dichotomous discussion regarding two separate feature matrices F'F'M 4 and
FFM; - the FFM for the fragments of the active molecules and the fragments of
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the inactive molecules, respectively.

The following imputation procedure is therefore split into two steps: we will
first impute F'F'M 4, and using particular metadata pertaining to this imputation
procedure - such as the set of degenerate features found in FFM, - we will
subsequently impute F'FM;.

3.3.1 Imputation Step 1: Imputing FF My

Our imputation strategy in the molecular feature space for the FFM matrix
containing only the active molecules is as follows: let us assume that the missing
value is, without loss of generality, that of feature d; in fragment f of active
molecule ag. In order to impute this feature, we first take the set of fragments
F,, ... F,, of each active molecule ay .. .a, and then compute the median of the
feature d; for each set of fragments separately. If the computation of the median
Md,; for some active molecule a; fails (i.e. if some of the fragments in this
molecule also attain a non-numerical value for feature d;), then we simply move
on to the next active molecule a; and re-attempt the computation of the median
Md,, . Finally, we take this set of medians Mdy,, ... Md,, that were able to
be computed, and compute a final global feature median value Mdy;yq;, over
this set of active molecule medians for feature d;. We then set the global feature
median as the value of our original missing feature instance d; in fragment f of
the molecule ag. One final degenerate case we must consider is when atleast one
fragment in every active molecule has a non-numerical value for the feature d;
under consideration, in which case Mdy,, ... Md,, are all undefined and hence
the global feature median cannot be computed. In this scenario, we consider
this feature a degenerate feature and remove the column corresponding to this
feature from FFM,4.

The rationale behind the - admittedly rather complex - imputation strategy
is that we are looking for key features within fragments of active molecules.
The values of these features should not vary very much between some specific
fragments of the active molecules - they should all fall within the ideal interval.
Therefore, if we find a missing instance of a feature value for a fragment of an
active molecule, a reasonable strategy would be to find the median for this feature
over all fragments of all active molecules, and set this median as the value of the
missing instance. By utilizing the median, we are striving to maintain any key
feature value trends present in the actives’ fragments when we impute the missing
feature value. Of course, this may lead to some data contamination as certain
unrelated fragments that don’t contain any trend amongst the key features may
start exhibiting similar values for these features, simply because they have all
been imputed with a common median taken across all fragments of the actives.
However, this is a calculated risk we take in order to detect as many veracious key
features as possible at the risk 