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Chapter 1

Introduction

Credit risk management is concerned with the risk of failing to comply with a contracted
liability. This research area investigates methodologies to incorporate credit risk in
asset prices and pursues the development of hedging instruments that offer protection
against losses due to credit risk. Credit-linked securities are also used as a means to
transfer credit risk. Our main goal is to present the most important mathematical
tools that are used for the risk neutral valuation of defaultable claims, which are also
known under the name of credit derivatives. The examples of credit derivatives are
defaultable bonds, options on defaultable bonds, credit default swap (CDS), baskets
of credit-linked securities, collateralised debt obligation (CDO), etc. Further examples
of credit derivatives can be found in J.P. Morgan & The RiskMetrics Group [1999].
Pricing models see the debt as a defaultable zero—coupon bond or as some structure
build from it. Hence the main issue is how to price a defaultable zero—coupon bond.
There are three main quantitative approaches for credit risk management and pricing of
credit derivatives: the structural models, the reduced form models and the incomplete
information models.

This thesis has the following structure. Chapter 2 is devoted to the properties of
Structural and Reduced form models (in particular intensity-based models) with empha-
size to the information set which is assumed to be known by market participants for both
models. Structural models use the evolution of the structural variables of a firm, which
typically are the value of assets and debts, in order to identify the time of default. De-
faults are endogenously generated which carry the information provided by the structural
variables. On the other hand, reduced form models use market information regarding
the firms’ credit structure and do not consider any information provided by the balance
sheets. An advantage of such models though is that they are usually more tractable than
structural models and easier to calibrate to real data. There is in particular one class
of models that has attracted much attention: the so-called intensity-based models. Here
default is triggered off by a jump process defined in terms of a default intensity.

There also exist some hybrid models that try to integrate both, the structural and the



reduced—form approach. While avoiding their shortcomings, they pick the best features
of both models. These models are presented in Chapter 3. The idea here is to convey
information carried by the firm’s state (structural model) into the default intensity of an
intensity-based model.

In Chapter 4 an alternative reduced form model, based on the amount and precision of
the information received by market participants about the firm’s credit risk, is presented.
In this framework the market filtration is modelled explicitly and it is not simply assumed
as a given.




Chapter 2
Classical Credit Risk Models

For credit risk modelling, in particular, for the pricing of credit derivatives there are two
main approaches: Structural models and Reduced form models. From an information
based perspective the difference between these two models is in the information known
by the modeler.

Notation and Market Assumptions

Let assume a continuous time model with time period [0, 7], where T' > 0 is a fixed
finite date. We consider a probability space (2, F,P) together with a filtration F =
{F;,t € [0,T]} satisfying the usual conditions.! Here P is the statistical (real-world)
probability measure and the filtration F is the information known to the modeler that
evaluates the credit risk of a firm. We assume a generic firm which borrows funds in
the form of a defaultable zero-coupon bond with the face value 1 and the maturity date
T and that is the only liability of the firm. The price of such a bond at time ¢t < T
is denoted by D(t,T). A default-free zero-coupon bonds of all maturities are traded
as well. The price at time ¢ of the unit default-free zero-coupon bond with maturity
date T is denoted by P(t,T). The default-free short term interest rate process, denoted
by r;, follows an F-progressively measurable process. Markets for the firm’s bond and
the default-free bonds are supposed to be arbitrage free. Consequently the existence of
an equivalent risk-neutral measure Q is ensured, in the sense that all discounted bond
prices follow martingales under the measure QQ with respect to the filtration F. Here the
discount factor at time ¢ is equal to exp|— f(f rsds]. Markets need not be complete, so
the probability measure Q may not be unique.

Pricing Building Blocks
The saving account, denoted by B, is given by the usual expression

t
B, = exp [/ Ts ds] : (2.0.1)
0

!That is, IF is right-continuous and F, contains all F-null sets.
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2.1 Structural Models

for every t € RT. From the theory of risk neutral pricing we know that an arbitrage
free price m(X) of a contingent claim paying off X at time 7" > ¢, where X is an
Fr-measurable random variable, is given by formula

m(X) = BiEqg [B;'X|F] . (2.0.2)

For an introduction to risk neutral pricing we refer to Baxter & Rennie [1996], Shreve
[2004], or Musiela & Rutkowski [2005]. Using this formula, the arbitrage free price at
time t of the unit default-free zero-coupon bond with maturity date T is given by

P(t,T) = BEg [B'|F] . (2.0.3)

Let us consider a defaultable zero-coupon bond with maturity 7" and face value 1 which
in case of default at time 7 < T generates the recovery payment of R € [0, 1], that is
paid at maturity time 7. Then, using (2.0.2) the arbitrage free price of the defaultable
zero-coupon bond is given by

D(t,T) = B, Eq [Br' (Lir>my + Rlr<ry)| 7]
= BiEq [B7'(1— (1= R)lz<ry)|F]
= P(t,T) — B;Eq [Br'(1 = R)1{<1})|F] (2.0.4)

Sometimes, bonds with face value different than 1 will be mentioned. A bond with face
value K is exactly the same as K standard bonds with face value 1. The price of such a
bond at time ¢ < T is denoted by K(t,7) = K D(t,T).

If we fix ¢t and T we can see that the defaultable zero-coupon bond has a higher
yield to maturity. The difference between the yield on a defaultable zero-coupon bond
YP(t,T) and the yield of an otherwise equivalent default-free zero coupon bond Y (¢, T')
is called the credit spread, denoted by S(t,T'), and is given by

S(T) = Y2(4,T) - YP(1,T) _In (jl?(_t’tT)) In (;(_t,?))

1 D(t,T)
——T_tln(P(t’T)). (2.0.5)

2.1 Structural Models

Structural models originated with the paper of Merton [1974] who applied the Black &
Scholes [1973] option pricing theory to the modeling of a firm’s debt. This was the first
credit risk model for a single firm. These models link the credit quality of a firm and
the firm’s economic and financial situation. In structural models the evolution of the
structural variables is used and one makes explicit assumptions about the dynamics of
firm’s assets, its capital structure and its debt and share holders. The market value of the
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2.1 Structural Models

firm is the central source of uncertainty and the firm defaults if its assets are insufficient
according to some measure. In this situation, the firm’s liabilities can be seen as an
option on the total value of firm’s assets.

From an information based perspective structural models assume that the modeler
has complete information similar to the information held by the firm’s manager. Thus
the modeler has continuous-time observations of all the firm’s assets and liabilities.

Structural models typically assume that the firm’s asset value {V;,t > 0} follows a
diffusion that stays non-negative, i.e.

dVi
Vi
where W; is a standard Brownian motion under the measure P, and p and o are Borel-
measurable functions on R?; suitably chosen so that the expression (2.1.6) is well defined
(see, e.g., Karatzas & Shreve [1988], Protter [2004], Revuz & Yor [1999]). The function p
represents the mean rate of return on assets and the function o is the volatility coefficient.
We suppose that modeler’s information set contains the natural filtration of the firm’s
asset value process. Hence G, :=o(V, : s <t) C F;.
In structural models, the default time 7 is ussually defined as the first hitting time
of the firm’s assets value process {V;,t > 0} to a certain prespecified default barrier L,
determined by the firm’s liabilities, i.e.

T=inf{t >0:V, < L,}. (2.1.7)

= u(t, Vi) dt + o(t, V) dVV,, (2.1.6)

The default barrier represents some breach of a debt contract. The barrier itself could
be a stochastic process. The information set then must be augmented such that it
encompasses this stochastic process. So in this case we have G, = o(Vj, Ls : s < t). Here
the default time is a predictable stopping time 2, since firm’s value process is assumed
to be a diffusion, hence the underlying filtration is generated by a standard Brownian
motion. As a result, in the structural models default does not come as a surprise, which
makes the models generate very low short-term credit spreads. This is contradicted by
the empirical evidence. The default time is determined by the value of the firm process
and default triggering barrier, hence it is given endogenously within the model. In these
models we do not need to specify recovery rates. They arise from the model as the
remaining value of the firm’s assets.

2.1.1 Merton’s Model

In Merton [1974] the standard conditions for the continuous time Black-Scholes market
are assumed. These are the inexistence of transaction costs, taxes, or problems with

2 A stoping time is a non-negative random variable such that the event {7 <t} € F, for all t € [0, 7.
A stopping time is predictable if there exists a sequence of stopping times {7,}, -, such that 7, is
increasing, 7,, < 7 on {7 > 0} for all n, and lim, oo 7, = T a.s.




2.1 Structural Models

indivisibilities of assets; an unrestricted borrowing and lending of funds at the same rate
of interest; trading in assets takes place continuously in time; short-sales of all assets,
with full use of proceeds, is allowed; the value of the firm is invariant to its capital
structure (Modigliani-Miller theorem). The capital structure consists of an equity £ and
a debt D. Thus the total value of the firm’s assets V' at time ¢ is given by

Vi=Ei+ Dy. (2.1.8)

In the original paper of Merton it is assumed that the short-term interest rate r is
constant. This model assumes that the firm’s value process V follows a difussion process
under the risk-neutral measure @Q that remains non-negative with constant volatility
parameter ¢ and drift (r — ¢), i.e.

i _ (r —c)dt + o dW2, (2.1.9)
Vi

where the constant ¢ represents the total payout ratio by the firm per unit time to
either bondholder or shareholders if positive, and it is an inflow of capital to the firm if
negative. The process W is a standard Brownian motion under Q. It can be shown by
[t0’s formula that

1
V, = Voexp | (r — ¢ — 5az)t +odW2| . (2.1.10)

The debt is represented by a zero-coupon bond with maturity 7" and the face value K,
hence D, = K (t,T).

In this model default can only happen at the debt’s maturity time 7. The firm
defaults if the firm’s assets value process at the time of maturity 7' is less than the face
value K of the firm’s debt. In this case the ownership of the firm will be assigned to
bondholders. So they receive the remaining value of assets V. In total they suffer the loss
equal to K — V. If there is no default, so Vi is enough to redeem the debt, bondholders
receive amount K and shareholders receive remainder amount Vr — K. Therefore the
default time 7 is a discrete random variable which can be expressed as

T =T Nvpcxy + 00 Lyvp>ky, (2.1.11)

where 14y is the indicator function of the event A and 0 - oo = 0. It also follows that
for the payoff of the defaultable zero-coupon bond at maturity we have

min(Vp, K) = K — (K — Vp)™, (2.1.12)
where 27 = max(z,0) for every z € R, and for the payoff of the equity we have
(Vp — K)T. (2.1.13)

Thus the firm’s equity can be seen as a call option on firm’s assets and the defaultable
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2.1 Structural Models

zero-coupon bond as a difference of the value of a default-free zero-coupon bond with
face value K (i.e KP(t,T)) and the value of a put option P, on the firm’s assets with
strike K and maturity 7. Therefore for every 0 < ¢t < T the price of the defaultable
zero-coupon bond K (t,T') is given by Black-Scholes type formula
K(t,T)=KP(,T)- P,
= Vie T=0 (—dy(t)) + KP(t, T)® (dy(t)), (2.1.14)

where

ln(

==

B ) +(r—c+%02)(T—t)
(1) = T ’
do(t) = di(t) — oVT =1, (2.1.16)

and ® denotes the cumulative distribution function of a standard normal distribution,

i.e. 1 x 2
P(z) = — e 2 dy.
( ) \ 2T /_OO 4

The conditional probability of default is the probability that the firm’s assets value
at maturity Vp will be below K. Using (2.1.10) we have

pe=Q (Vr < K|F)

=Q (U(Wg—WtQ)<ln(%) — (r—c—%aQ) (T—t)|]-"t>

= (—ds(t)), (2.1.17)

(2.1.15)

since W2 — W2 is normally distributed with zero mean and variance (T — t).

The expected loss Eg [L] on the loan computed at time 0 under the risk-neutral
probability Q is equal to the expected pay—off of the put option on the firm’s value with
strike K, i.e.

Eq [L] :=Eq [(K - V2)"]

) /OO (K e [(T —om eI+ aﬁx}y

o0

1 x?
\/ﬁexp [—?] dx
—d2(0) 1 (x — oV/T)?
N mexp [——2 dx
= K®(—dy(0)) — Voexp [(r — ¢)T] ®(—dy(0) — oV T). (2.1.18)
An essential feature of Merton’s model is that the default time 7 is a predictable

stopping time with respect to filtration generated by the firm’s asset value process V. It
is announced by an increasing sequence of FV - stopping times, e.g.

— K®(~dy(0)) — Voexp [(r — )T

Tn:inf{tET—l:V}<L}, (2.1.19)
n

with the usual convention that inf ) = oco.




2.1 Structural Models

Distance to Default
To determine the actual probability of default we suppose that the firm’s asset value
process V under the real-world probability P satisfies

W _ (n—c)dt +odW/, (2.1.20)
Vi
where 11 € R represents the mean rate of return on assets, o > 0 is the constant volatility,
c is as above, and W7¥ is a Brownian motion under P. Calculation in the same manner
as in (2.1.17) implies that

P (r < T|F,) = ®(—d(t)), (2.1.21)

(
where the distance to default at time t, denoted by d(t), is defined as
() + (ume—do) (Tt

d(t) = —— . (2.1.22)

It measures, in terms of o/ — t, the distance of the expected firm’s assets total value
from the default point K.

Extensions of Merton’s Approach

Many extensions to Merton’s model have been done. A brief survey of papers devoted to
various applications of the original Merton approach and to its extensions can be found
in the Section 2.4 of Bielecki & Rutkowski [2002].

2.1.2 First-Passage Model

In Merton’s model the default may only occur at maturity. The firm value then can fall
to almost nothing and default is not triggered. Hence Black & Cox [1976] extended this
approach to allow default prior to maturity if the firm’s assets value process V; falls below
some prespecified default barrier L;. In this situation the firm’s bondholders have the
right to force the firm to bankruptcy or to reorganize the firm. The default barrier may
be endogeneously or exogenously given with respect to model, and it may be a constant,
a deterministic, or a random process.

In the original paper of Black & Cox [1976], the firm’s assets value process V is
assumed to follow a difussion process under the risk-neutral measure Q that remains
non-negative with the constant volatility parameter o and drift (r — ¢), i.e.

dvy

A =(r—c)dt+ UthQ, (2.1.23)




2.1 Structural Models

where the constant ¢ > 0 is representing the payout ratio. The short-term interest rate
is supposed to be a constant r. In the first-passage model the default time is defined as

7 = min(7, 72), (2.1.24)
where 77 is the same as the Merton’s default time, i.e.
7 =T Lpy<ky + 00 Livp>ky, (2.1.25)
and 7 is the first hitting time of the default barrier, i.e.
o =inf{t € (0,T):V; < L4}, (2.1.26)

where we assume that the infimum of an empty set is equal to co. Hence even if the
firm’s assets value process does not fall below the barrier and if assets are below the
bond’s face value at maturity, the firm defaults.

Here we will assume that the default barrier is the face value of the bond discounted
at a constant discount factor v > r. This condition guarantees that the payoff to the
bondholders at 7 never exceeds the face value of the debt discounted at a risk-free rate.
For the default barrier we have then

Ly = Ke T, (2.1.27)

In this situation for the event {V; < L;} we have

1
{(Vi <Li}= {VoeXp {(T —c— 502)15 +oWR2| < Ke_'Y(T_t)}
1 K
= {eXp {(r —c—g5o0t =t oWR2| < 7Oe—vT}
Q K _ T
= qvttoWs <In{ e ), (2.1.28)
0

where v = r —c— 102 —~. Let m; denotes the running minimum of the process l/t—i—O'WtQ,

2
i.e.
my = min (vt + o W2). (2.1.29)

0<s<t

Using Girsanov’s theorem and the reflection principle, one can prove that for every
t > 0 the joint probability distribution of the Brownian motion X; := vt + JWtQ under
the probability measure Q and its running minimum m; is given by the formula

Q (X, >x, m>y)=0> <_i—:;g”t> —exp B”ﬂ o <2y ;f/;r ”t> . (2.1.30)




2.1 Structural Models

This result and proof can be found in, e.g. Musiela & Rutkowski [2005] (Corollary B.4.3),
or Bielecki & Rutkowski [2002] (Lemma 3.1.3). Differentiating with respect to x leads to

0Q (Xg > x, mp > vy) 1 (—x—l—VT) 1 epFVy] (2y—x+ut>
=— X D e

o ) U\/Tgp T T U\/E(Q 1.31)

Consequently, differentiating with respect to z and y, for the joint probability density
funtion of (Xr, mr), one can write

—2(2y — x) 2vy 2y —x +vT

fxpmr(T,y) = Sy P { = } @ ( T ) . (2.1.32)

Therefore for the default probability, using (2.1.28) and (2.1.30), we have

Q(r<T)=Q (min(ry,7) <T)
Il—Q(T1>T, 7'2>T)

=1-Q (VT > K, mp>In (Eew))
Vo

=1-Q yT+aW$21n Ee’VT ,mp > In EeﬂT
Vo Vo
~In (e ) 07 # o (m(fem) ot
1@( n Ve v +(£ 'YT>UT® n Ve v

oV'T Vo ovT

K —~T 2v K —~T
e >—I/T +<K VT)?,Q(I) ln(voe v )—H/T
oVT
K\ _ 2(p—) K _
(B () )
oVT
(2.1.33)

where yp =r—c— %02. This default probability is higher than the corresponding default
probability in the Merton’s model (2.1.17), which is obtained if we put L, = 0.
In our case firms defaults iff there exists ¢ < T such that V; < L;. It is equivalent

to the situation when m; < In (%e"yT> =: In K. If the default occurs bondholders take

control over the firm and they receive the remaining assets Vp. Otherwise they receive
the face value K. Hence for the payoff of the defaultable bond at maturity we can write

KT, T)=K—(K—-Vp)" +(Vp - K)+]1{mt<lnf(}
=K — (K = Vp)" + Ve (X = K) " 1y iy

10



2.1 Structural Models

This is equivalent to a portfolio which consists of a default-free zero-coupon bond with
maturity 7" and face value K, a short European put option on the firm’s assets with
strike K and maturity 7', and a long European down-and-in call option on the firm’s
assets with strike K and maturity 7. Consequently

K(0,T) = KP(0,T) — Py + Vpe""DIC,. (2.1.34)

where P, is the put option value at time zero and DICj is the price of the European
down-and-in call option on the exponential process eX” with stike K at time zero. In
the first-passage model bonds are worth at least as much as in the Merton’s model. Here
bondholders have additionally a barrier option on the firm’s assets that becomes active
if the firm defaults before the maturity 7. Thus for the defaultable bond price at time
zero we can write

K(0,T) = KM(0,T) + Voe'" DIC,, (2.1.35)

where K*(0,T) is the value of the defaultable bond in Merton’s model at time zero
(2.1.14). For the valuation of the second term note that the expression

X —\ +
(e = K) ﬂ{mt<lnf§'}
is non-zero on the set

D={Xr>IK, mi<lnK}. (2.1.36)

Hence we can write
DIC) = P(0.T)Eq | (¢ = K) " 1g,, 0]
= P(0,7) [Eq [eX"1(p)] — KQ (D)]
= P(0,7T) |:/D € fxpme (2, y) dzdy — K/ Sz mr (T, y)dxdy} (2.1.37)

Using (2.1.31), for the first term in the square brackets in (2.1.37) we can write

]1 ::/e:CfXT,mT(xuy)dIdy
D

[2vIn K /°° . 1 2InK —x+ T q
=exp | —— e x
P L o? In K 0'\/_('0 U\/T

2yan]/ [ (2an—x—|—yT)2] d
= ex ————exp |z — T
P mE V2ro?T P 20°T

T 2
= exp 5(02 + 2v) + Ml K}

/°° 1 [ (ZE—<02T+21HK+VT))2:|
X ————exp |— > dzx
InK V 27T02T 20— T

= K% 2exp E(a? + 21/)} o (m K +a(1/\/T+ ‘72)T) .

(2.1.38)
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2.1 Structural Models

For the second term in the square brackets in (2.1.37) using (2.1.30) we have

l_(/ fxpme (2, y)dedy

KQ (XT>1nK, mT<1n_f()
K [Q (XT >1n_f() -Q (XT >InK, mp > lnf()]
|

(R o (BT o [ ()
g (hlf\j__yT) (2.1.39)

As a consequence of (2.1.35) and (2.1.37) for the price of the defaultable bond at time
zero in this model we have

l\J

Kot

K(0,T) = Voe~T® (—hy) + K P(0,T)® <h1 - a\/T)

+KPO.Tjexp | % (- 7))

Vo
(%exp [T (0% +2v — 27)} d (h2 + aﬁ) — cb(hQ)) : (2.1.40)
where
hy = n (3¢) + ;’“LV)T +oVT, (2.1.41)
. ln<§0> + v—y)T 2142
9 = O—ﬁ s 1.
V:r—c—%a2—7. (2.1.43)

For the pricing formulas of barrier options we refer to Section 6.6 in Musiela & Rutkowski
[2005] or Hull [2006].

Extensions and Shortcomings

More generally, if the default time is given by (2.1.7), and furthermore we assume the
stochastic interest rate and that the value of the barrier process is paid at maturity time
T, then the value of the firm’s debt can be written as

T
K(0,T) =Eqg {exp {— / Ts ds] (Llgr<ry + Klamy) | - (2.1.44)
0
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2.2 Reduced Form Models

As the models for stochastic interest rates in the structural models literature have been
used followings

the Vasicek model dry = (0 — ary) dt + o, th, (2.1.45)
the generalized Vasicek model dry = (0(t) — a(t)ry) dt + o,.(t) AW, (2.1.46)
the Cox-Ingersoll-Ross model dry = (0 — ary) dt + o./1¢ th, (2.1.47)

where Wt(@ and Wt are correlated Brownian motions, so that ththQ = pdt, and
pe—1,1].

First-passage models have also been extended to account for debt subordination,
strategic default, stochastic default barrier, bankruptcy costs, taxes, jumps in the firm’s
assets value process, etc. The first passage model supposes that bondholders take con-
trol over the firm immediatelly when firm’s assets value process falls below the default
barrier. In practice, bankruptcy codes let firms reorganize and operate for a period of
time. The creditor takes control over the firm’s assets if the firm value does not rise.
If restructuring is succesful the firm recovers from bankruptcy and continues operat-
ing. Thus the firm defaults after its asset’s value process spends a given time below the
barrier. For these models see Section 2.3 (Excursion approach) in Giesecke [2004a] or
Section 2.4 (Liquidation process models) in Elizalde [2005b]. For more structural models
and pricing of derivatives we refer to Part I in Bielecki & Rutkowski [2002].

One of the general problems of structural models is that it is difficult to deal effec-
tively with the multiplicity of situations that can lead to default. In particular, default
of sovereign state, credit card default, and corporate default would all require different
treatments. Thus structural models are viewed as unsatisfactory as a basis of practi-
cal modelling. Especially for n'"-to-default swaps and collateralised debt obligations.
Another problem is the analytical complexity which is increased by involving stochastic
interest rates or endogeneous default thresholds. It makes it difficult to get closed form
expressions for the value of debt, equity or for the default probability. This forces us to
employ numerical methods. The total value of the firm’s assets cannot be easily observed
and is not a tradeable security.

2.2 Reduced Form Models

Reduced form models originated with the papers of Jarrow & Turnbull [1995], Jarrow
et al. [1997], Lando [1998], and Duffie & Singleton [1999]. In this approach firm’s
assets and its capital structure are not modelled at all. Reduced form models do not
address directly why a firm defaults. This approach was developed precisely to avoid
modelling unobservable asset value process. An advantage of such models is that they
are usually more tractable than structural models and easier to calibrate to real data.
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2.2 Reduced Form Models

Here the dynamics of default are given exogenously, directly under a pricing probability
Q, through a default rate, or default intensity. The default time is characterized as the
first jump time of a point process. The most common are used a Poisson process, an
inhomogeneous Poisson process or a Cox process. The default time is ussually a totally
inaccesible stopping time 3. This implies the non-zero short-term credit spreads.

The values of credit-sensitive securities can be calculated as if they were default-free,
using a credit risk adjusted interest rate, i.e. the risk-free interest rate plus risk-neutral
default intensity.

From an information based perspective reduced form models are based on the infor-
mation set available to the market. This information set typically includes only partial
observations of the firm’s assets and liabilities.

We can distinguish between the reduced form models that are concerned with the
modelling of default time and the reduced form models that are concerned with migration
between credit rating classes.

2.2.1 Intensity-Based Models

In the intensity-based models default is triggered off by a jump process defined in terms
of a default intensity. Let us assume that default time 7 is an Q-a.s. positive random
variable, i.e. 7:Q — R and Q (7 > 0) = 1. We define the default process by

N, = i<y (2.2.48)

This is a point process with one jump of size one at the default time. It is obvious
that the process N, is a right-continuous non-negative submartingale with Ny = 0. From
Doob-Meyer decomposition we know that there exists an increasing process A™ such that
N — A™ becomes a martingale (see, e.g., Karatzas & Shreve [1988], Protter [2004], Revuz
& Yor [1999]). The unique process A” is often called compensator. Let assume that A
is the hazard rate of the random variable 7 which has a cumulative distribution function
F(t) = Q (7 <t) which is assumed to be differentiable at ¢ > 0, i.e.

Qt<T<t+h|lr>1t)

A= 1}1&1 .
B dF(t) 1
o dt 1-F(1)
dln(1 — F(t))
= (2.2.49)
Then for A™ we have i~ .
A7 :/ Ag ds :/ Al ds. (2.2.50)
0 0

3A stopping time 7 is a totally inaccessible stopping time if for every predictable stopping time ¢ it
holds that Q (1 =¢ <o00) =0
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2.2 Reduced Form Models

A non-negative process A is called the default intensity. If the default intensity \; is
constant (resp. deterministic, resp. random) then the process NV, is a Poisson process
(resp. a time inhomogeneous Poisson process, resp. a Cox process) stopped at its first
jump, so at the default time 7. For the default time we can write

T=inf{t>0: N, > 0}. (2.2.51)

1. Poisson Process

In the Poisson process model for N, the default intensity is constant, and the default
time 7 has an exponential distribution with parameter A. For the risk-neutral probability
of default prior to time 7" in this case we have

Q(r<T)=1—exp[-AT]. (2.2.52)

2. Time Inhomogeneous Poisson Process

In this case, the default intensity is assumed to be a function of time. The time depen-
dency can be estimated from historical market data or can be given exogenously. The
default probability we have

Q(r<T)=1-Q(N,=0)=1—exp {_/OTMs)dS] (2.2.53)

3. Cox Process

Here the modeler observes the filtration generated by the defaut time 7 and a vector
of economy variables X;, where the default time is a stopping time generated by a Cox
process Ny = 1{;<; with the intensity process A(Xy), i.e. G =o(7, X, : 5 <t) C F.

In the Cox process setting it is assumed that there exists a d-dimensional background
Markov process { X, t € [0,T]} that represents economic variables, either state (observ-
able) or latent (unobserved)?. These are thought of as risk factors that drive the intensity.
Given also is a function X : R — R which is assumed to be nonnegative and continuous.
The default intensity then is of the form

A = A(XD). (2.2.54)

This function A has to be chosen such that A(t) := fot Asds < 00 as. fort € [0,7]. A
Cox process is a point process where conditional on the information set generated by

4Given the probability space (£2,F,Q) together with a filtration F = {F;,¢t > 0}, an F-adapted
process X is a Markov process with respect to [ if

Eq [f(X0)|Fs] = Eq [f(X0)[Xs] as. wrt. Q,

for all s such that 0 < s < ¢ and for every bounded function f(x). Here f may depend on t as well.
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2.2 Reduced Form Models

the state variables X; over the whole time interval, i.e o(X, : s < T), the conditioned
process is an inhomogeneous Poisson process with intensity A(X;). For the conditional
survival probability under Cox processes we have

t t
Q (7 > t|(Xs)o<s<t) = exp [—/ )\(Xs)ds} = exp {—/ As ds} ) (2.2.55)
0 0
and for the default probability hence we have

Q (1 <T)=Eq [Eq [Nr = 1[(Xs)o<s<r]]
=1-Eq [Eq [Lrs>)|(Xs)oss<r]]

T
=1-Eg {exp {—/ As ds” . (2.2.56)
0
Affine Intensity Models

In many financial applicatons that are based on a state process a useful assumption is
that the state process is affine.

A Markov process X with some state space E C R? is called an affine process if for any
v € R? its conditional characteristic function is of the form

E [e"™|X,] = expa(t — s,iv) + B(t = s,iv) - X,] | (22.57)

for some coefficients (-, iv) and §(-,iv). If we take the state space E to be R” x R4
for n € [0,d], then we say that X is regular provided the coefficients «(-,iv) and 5(-,iv)
of the characteristic function are differentiable and their derivatives are continuous in
zero. The mathematical theory related to affine processes can be found in Duffie et al.
[2003] for the time homogeneous case and in Filipovic [2005] for the time inhomogeneous
case.

1. Affine Diffusion Model An affine diffusion is a solution of the stochastic differen-
tial equation of the form

dX, = p(Xy) dt + o(X,) dW2, (2.2.58)

where W2 is a standard Brownian motion in R? under the measure Q and coeffi-
cients are affine functions of the state variables, i.e.

pu(x) =a+ Bx (2.2.59)
where a is a vector of constants in R? and B € R*? is a matrix of constants, and

(o(z)o"(2)), = (C);; + (D), - (2.2.60)
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2.2 Reduced Form Models

where €' € R and D € R?™*¢ are matrices of constants. Furthermore, let \(z)
be also affine in z, i.e.

for \g € R and A\; € R% Then there exists functions a(t) and 3(t) such that the
default probability (2.2.56) is exponentially affine in the initial state X, i.e.

Q(r<T)=1—-expla(T)+5(T) Xo]. (2.2.62)

These functions can be in some cases calculated explicitly as the solutions to a
system of ordinary differential equations, called a generalized Riccati equation (see,
e.g., Duffie [2005], Filipovic & Mayerhofer [2009] ).

Example 2.2.1. Assume that £ = R, A(z) = z, u(x) = cu — cx for constants
p € Rand ¢ > 0, and o?(x) = o2 for a constant ¢ > 0 then we obtain the
Ornstein-Ulhenbeck (Vasicek) process, i.e.

dX; =c(p—X;) dt + o dW2, (2.2.63)

then for the coefficient functions a(T") and G(7T') in (2.2.62) we have (see, e.g. Shreve
[2004] )

B(T) = —# (2.2.64)
a(T) = u(B(T) = T) + (T “23(T) + 1_%) . (2.2.65)

Example 2.2.2. Let assume that state space E = RT and o%(z) = o2z for a
constant ¢ > 0. Let pu(z) and A(z) be the same as in the previous example. Then
we obtain the square-root diffusion also known as the Feller (Cox-Ingersoll-Ross)

process, i.e.
dX, = c(p—X,) dt + o/ X, dW2. (2.2.66)

If we assume that X, > 0 and 2cp > o2, which is sometimes called the Feller-
condition, then the process X stays almost surely strictly positive. In this case, for
the coefficient functions a(7") and G(7) in (2.2.62) we have

_ 2" 1)
B(T) = TR IO r T (2.2.67)
2cp 2vez (1)
a(T) = = In I 27) , (2.2.68)

where v := /% + 202.
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2.2 Reduced Form Models

2. Affine Jump-Diffusion Model We can extend previous case including unexpected
jumps, which model the arrival of news in the economy. Hence we assume that the
risk factor X is the solution of the stochastic differential equation of the form

dX, = u(X,) dt + o(X,) dW2E + dJ, (2.2.69)

where I/VtQ is a standard Brownian motion in R¢ under the measure Q, both
coefficients 1 and oo? are affine functions of the state variables, and J is a pure
jump process with arrival intensity {+(X;) : ¢ > 0} which is affine in X, as well, i.e.

k() = Ko + K1 - T, (2.2.70)

for kg € R and x; € R?. Conditional on the path of X, the jump times of .J are the
jump times of a Poisson process with time varying intensity {x(X;) : 0 < s <t},
and the size of the jump of J at time T is independent of {X,:0 < s < T} and
has the probability distribution j. More details can be found in Duffie et al. [2003]
or in Duffie et al. [2000]. If we asume that the default intensity is given by (2.2.61)
then the default probability is exponentially affine in the initial state X, i.e.

Q(r<T)=1—exp|a(T)+ B(T) - X0, (2.2.71)

where the coefficients o and ( again solve a system of Riccati ordinary differential
equations given in Duffie et al. [2000].

Example 2.2.3. A special example of (2.2.69) is the basic affine process with state
space E = R*, A(z) = =, p(z) = ¢ — cx for constants p € R and ¢ > 0, and
o?(x) = o2z for a constant o > 0, satisfying

dX, = c(p—X,) dt + o/ X, dW2 +dJ,, (2.2.72)

where J is a compound Poisson process °, independent of W@ | with iid exponential
jumps. The Poisson arrival intensity satisfies x(x) = k and the jump distribution
7 is exponential. The coefficient functions are provided in Appendix A.5 in Duffie
& Singleton [2003].

Valuation of the Defaultable Claims

Firstly, let us assume the case of a Poisson process, so that the default intensity A is
constant. We also suppose that recovery in the case of default is equal to zero and that
interest rate r is constant. In this case, for the defaultable zero-coupon bond price at
time zero, using (2.2.52), we have

D(0,T)=B:'(1-Q(7 <T)) =exp[—(r+ NT]. (2.2.73)

5A compound Poisson process has jumps at iid exponential event times, with iid jump sizes.
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2.2 Reduced Form Models

Thus, as we mentioned above, the value of the defaultable zero-coupon bond can be
calculated as if this bond were default-free using a credit risk adjusted interest rate, i.e.
the risk-free interest rate r plus risk-neutral default intensity A. This analogy extends
to more complicated credit derivatives.

A general credit linked security is specified by the amount C7 which is paid at ma-
turity 7" if no default occurs prior to 7', and recovery payment which investors receive
precisely at default time 7 in the case of default. This recovery payment is modeled as
a bounded stochastic process R, with Ry = 0 for s > T'. This specification of recovery
payment covers all possible ways of treatment of recovery payments considered in the
literature. Various recovery schemes are treated below.

If Cr =1 and R is nontrivial, this security is a defaultable zero-coupon bond. For
Cr = (St — K)*™ and nontrivial R, this security is a vulnerable call option on S with
strike K. That is an option contract in which an option writer may default on his
obligation. For Cp nontrivial and R = 0, this security represents a single fee payment
at maturity time T in a default swap, which may be considered as some type of debt
insurance contract. The list of credit linked securities can be found in sections 1.1-1.3 of
Bielecki & Rutkowski [2002].

Let us assume the case of a Cox process for the intensity. Furthermore we assume
that interest rates are stochastic and can be expressed as r, = f(X;) for some bounded
measurable function f : RY — [0,00), and that Cr = g(X7) for some bounded measur-
able function g : R — R, where X is a Markov process as in the case 3. on page 15.
Then, using (2.0.2), the price of the defaultable claim at time zero is given by

Co = EQ [B;lCT]I{T>T}} + ]EQ [B;lRT]l{TST}]

=Eq [Eq [B7' Crlsnl(Xs)ocs<r]] +Eq [Eq [By ' Rellrer|(Xs)ocs<r]] -
(2.2.74)

Taking out what is known (see Williams [1991], 9.7(j)) in the first term, and denoting
p(u) the conditional density of 7 at u given the path (X)o<s<r for all u € [0, 7], i.e.

p(u) = g (T < u|(Xs)o<s<r) = Au€Xp {— /Ou As ds] , (2.2.75)

in the second term (note that in the Cox process framework this density exists), the price
of the defaultable claim (2.2.74) can be expressed as

CO = EQ [BEICTEQ []]-{T>T}|(XS)0§S§TH + EQ |:/ B;lRu]l{ugT}p(u) dU:|
0

= Eq {C’Texp {— /0 ' (Fu + ) du” +Eg [ /O ' RuAuexp [— /0 " e+ 2) ds] du] ,

(2.2.76)

providing that all technical conditions, which ensure finiteness of the expectations, are
satisfied (see Lando [1998], Proposition 3.1).
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2.2 Reduced Form Models

Recovery Rates

The recovery payment R in the case of default is usually specified by the recovery rate
0. In general, the recovery rate can be a stochastic process with values in [0,1]. This
stochastic process ¢; is assumed to be a part of the information set available to the
modeler, i.e. G, = o(1, X;, 051 s < t).

Firstly, to be consistent with the structural model in the previous section, we suppose
that the recovery rate ¢, is paid at time 7". Using (2.0.4), the time zero value of the unit
defaultable zero-coupon bond with maturiy 7" and the recovery rate process d, can be
written as

D(0,T) =Eq [By' (Lgrs7y + 071 r<my)] - (2.2.77)

For the defaultable zero-coupon with the face value K we have
K(0,T)=KD(0,T) =Eq [B;' (Kl{rs7y + Ko 1i7<1y)] - (2.2.78)

A small but crucial difference between this pricing formula in the intensity-based model
and the pricing formula (2.1.44) in the structural model is that the recovery process in
the structural model is prespecified by a knowledge of the liability structure, whereas
here it is given exogenously.

In the credit risk literature there are three main specifications for recoveries.

1. Recovery of Face Value: The recovery is assumed to be an exogenously given
fraction ¢ of the face value of the defaultable security. Hence the recovery rate o
is constant and independent of the default time 7. Let us assume a defaultable
zero-coupon bond with face value 1 and that a fixed fraction of the bond’s face
value is paid at time of default 7, then its value can be calculated using (2.2.76)
with Cr=1 and R, = .

2. Recovery of Treasury: In this case, the recovery payment R is assumed to be an
exogenously given fraction ¢ of the value of an equivalent but default-free version
of the security.

3. Recovery of Market Value: Here the recovery payment is assumed to be an ex-
ogenously given fraction ¢ of the security market value just before default. In the
case of defaultable zero-coupon bond we have R, = 6;D(7—,T'). More generally, if
default occurs at time t the recovery process can be written as R; = 6;C;_, where
Ci— = limg; Cs. This convention make only sense if C; is different from C;_.

Hence there is a surprise jump at default in the security price. In the structural
models it holds that C._ = C,.

For an extentive review of the treatment of recovery rates we refer to Chapter 6 in
Schénbucher [2003].
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2.2 Reduced Form Models

2.2.2 Credit Rating Migration Models

A firm’s credit rating is a measure of the firm’s propensity to default. In these models
it is assumed that the credit quality of corporate debt is quantified and categorized into
a finite number of disjoint credit rating classes. The credit quality migrates between
various credit classes. The credit rating migration is often modeled using Markov chains
with finite state space S = {1,..., K}, as was introduced in Jarrow et al. [1997]. Here
one should think of 1 as the top rating (AAA, say) and K as default. The default rating
class K represents the absorbing state, since multiple defaults are exluded. The credit
magration process is usually assumed to be either a discrete time or a continuous time
Markov chain. The main issue in these models is thus the specification of the matrix
of transition probabilities in the discrete time setting or matrix of transition intensities
in the continuous time case for the credit rating migration process. There are some
problems with using continuous time homogeneous Markov chains:

e The Markov Property: Transition probabilities should depend only on the cur-
rent rating, but empirically there is evidence that if a counterparty downgrade its
rating, there will be a higher probability of another downgrade than in the case of
a counterparty which has a stable rating or if a current rating was reached by an
upgrade. This can be fixed by extending the state space from K ratings 2K — 2.
It can be done in the following way 1,2,2—,3,3—,..., K — 1, (K — 1)—, K, where
rating i represents the situation when rating ¢ was reached by an upgrade, and
rating 1— means that rating was reached by a downgrade. The rating K (resp. 1)
can be reached only by a downgrade (resp. an upgrade). Thus we have 2K — 2
rating classes.

e The Aging Effect: There is dependence of transition probabilities on the time
that a firm spends in the same credit rating and also on age. For a homogeneous
Markov chain it holds that the distribution of sojourn times (i.e. the time spent by
M in some state of K) is exponencial. The exponential distribution is memoryless
but there is indeed an apparent momentum in rating transition data. This problem
can be solved by means of semi-Markov processes. In semi-Markov processes the
transition probabilities are functions of the waiting time spent in some state. The
dependence on age can be solved in a general approach by means of a inhomoge-
neous environment. Both these problems are solved applying an inhomogeneous
semi-Markov environment. For the general theory of semi-Markov processes we
refer to Janssen & Manca [2006]. Applications for finance and for credit risk mi-
gration models can be found in Janssen & Manca [2007] and D’Amico et al. [2005].

e Constant Rating Intensities: Real data shows that intensities change over time.
Rating based model which include stochastically varying transition intensities was
introduced by Lando [1998]. In this model the Cox process framework is proposed
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2.2 Reduced Form Models

to model default time as the first time that the credit migration process M with
state space S = {1,..., K} hits the absorbing (default) state, i.e

r=inf{t €[0,7]: M, = K}. (2.2.79)
The dynamics of of credit migration process M are characterized by a generator
matrix Q:
(X)) Aa(Xy) o Ara(Xy) Ak (XG)
Aoa(Xp) =Xy 0 Aara(Xr) A (X
Q(X¢) = : : : : . (2.2.80)
Ax—11(Xe) Ax—12(Xe) o0 “Ar1(Xy) A1k (Xe)
0 0 e e 0
where )\;; : R — R*, i,j = 1,..., K are non-negative functions which maps the

risk factors X into the transition intensity and

K
N(X) = D0 (X)), i=1,. K -1, (2.2.81)

j=1,j#i

for every t € [0,T]. Intuitively, we can think of the product i j(X¢)At, for small
At, as the probability that the firm currently in rating class ¢ will migrate to class
j withhin the time interval At, and \;(X;)At as the probability that there will be
any rating change for the firm currently in the rating class ¢ within the time interval
At. The migration process M is determined in such a way that, conditionally on
a particular sample path X;(w), t € [0,T] of the economy variables process X,
the migration process M is a time inhomogeneous Markov chain with finite state
space S = {1, ..., K'} and time dependent deterministic intensity matrix Q(X;(w)).
The corresponding default process N is a Cox process with intensity Ay, x(X:) at
time ¢ that is represented by the last column in the generator matrix Q(X;). This
generalises the Jarrow et al. [1997] approach, where the transition intensities are
supposed to be constant. Conditionally on the evolution of the economic variables,
the transition probabilities of the Markov chain M satisfy

a]-DX($7 t)

o = —Q(X)Px(s. 1) (2.2.82)

In general we are interested in modeling transition probabilities

P(s,t) = (pij(s,t);_ (2.2.83)
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2.2 Reduced Form Models

where p; ;(s,t) is the conditional probability that the debtor will be in the rating j at
time ¢ given that he is in the rating ¢ at time s. In the time homogeneous case, the
matrix of transition probabilities satisfies

Okt — )k
P(s,t) =exp|(t — $)Q] := Z Q(tk—!), (2.2.84)

where Q is the K x K matrix of constant intensities.
If the ratings transition generator Q(¢) is a deterministic matrix function of time, then
special methods are required to compute transition probabilities. It is not generally true

that one can extend time homogeneous case (2.2.84) to get P(s,t) = exp [f; Q(u) du].

But, for this time dependent but deterministic generator, P(s,t) solves the linear ordi-
nary differential equation
OP(s,t)
ds
which has to be solved numerically without further assumptions on the generator Q(t).
Computation of P(s,t) can be hard. One such a case when the linear ordinary differential
equation (2.2.85) can be solved more explicitly is when commutativity property

Q(s)Q(t) = Q(1)Q(s) (2.2.86)

holds for every s and t. This obviously holds if the transition intensities are constant.

We place ourselves into the Cox process framework with differential equation (2.2.82).
Let us assume that for each path of X it holds that the matrix Q(X;) can be written in
the form

— —Q(s)P(s,1), (2.2.85)

Q(X,) =CD(X,)C™, (2.2.87)

where C is the K x K matrix whose columns consist of K eigenvectors of Q(X;) and
D(X;) is the K x K diagonal matrix with 7** diagonal element d;(X;) fori =1... K —1
and dxg = 0. Here d; : R? — [0,00), i =1,..., K — 1 are non-negative functions defined
on the state space of X and we assume that for almost every sample path of X we have

fOT d;(X,) du < co. Also, let us define the diagonal matrix

exp [ [fdi(X,) du} 0 . . 0
0 exp [fst do(X,) du} . .. 0
Ex(s,t) = :
0 ... exp [fstdK_l(Xu) du| 0
0 . o . 1
(2.2.88)
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Under the assumption made that C does not depend on ¢, while D may, we have commu-
tativity (2.2.86) and it follows from the theory of linear ordinary differential equations
that

Px(s,t) = CEx(s,t)C! (2.2.89)

satisfies Kolmogorov’s backward equation (2.2.82) and P x (s, t) is the matrix of transition
probabilities of an inhomogeneous Markov chain with state space K. The last column of
the matrix Px (s, t) is a vector of default probabilities from time s to time ¢ for different
ratings.

Lando [1998] in the Chapter 5. discusses the valuation of a defaultable European
contingent claim whose payoff at time T" is Cpr = f(Xp, M7), i.e. the function of back-
ground process X and migration process M. Payments are directly linked to the rating
class of a certain firm. We give here only the price of defaultable zero-coupon bond with
maturity 7" and zero recovery that is given by

Di(t,T) = BiEqg [B;' (1 — px(t, T)ix)|o(Xs: 0 < s < t)] (2.2.90)

where px(t,T); k is the (i, K)" element of the matrix Px(¢,7T), i.e. the conditional
transition probability that the debtor will default up to time 7" given that at time ¢ he is
in rating class i. Under condition (2.2.87) on Q , with d and C as discussed above, and
if we assume that the short term interest rate satisfies r, = R(X;), for some bounded
measurable function R : RY — [0, 00), (2.2.90) can be rewritten as

D;(t,T) = Z BiiEq {exp {/t (d;(Xy) — R(Xy))du| | o(Xs:0<s<t), (2291)

where coefficients 3;; are defined as 3;; = —cijcj_é with ¢;; (resp. c]_é) elements of the

matrix C (resp. C'). Assuming that d and R are affine functions of diffusions with
affine drift and volatility (like in examples in the previous section) we get a class of
models whose bond prices are expressed as sums of affine models.

Drawbacks of Intensity Models

Reduced form models lack an endogenous specification of default based on the firm’s
economic fundaments, i.e. firm’s assets and liability structure. These models are not
based on any characteristic of the firm’s credit quality. The intensity approach is not
well adapted to the situation where one wants to model the rise and fall of credit spreads.
This can in practise be due in part to changes in the level of investor confidence. Another
unsatisfactory feature is that they do not adequately take into account the fact that
defaults are typically associated directly with a failure in the delivery of a promised
(contractually agreed) cash flow, for example a missed coupon payment.
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Chapter 3

Incomplete Information Credit Risk
Models

Structural and Reduced form models, treated in the previous chapter, are viewed as
competing approaches. However, in recent years, papers by Kusuoka [1999] Duffie &
Lando [2001], Cetin et al. [2004], Giesecke [2006], and Guo et al. [2008] have tried to
bridge the gap between structural and reduced form models. Jarrow & Protter [2004]
provide a survey of the previously mentioned literature with the emphasize on the in-
formation set held by the modeler. An introduction to this literature can be also found
in Elizalde [2005c]. As shown by the above mentioned authors, a structural model with
a predictable default time can be transformed into a reduced form model with a totally
inaccessible default time, by introducing incomplete information. Relaxing the complete
information assumption about the dynamics of the processes which trigger the firm’s
default they arrive, through different though equivalent routes, to a framework which
links both approaches.

Throughout the chapter we work with a fixed probability space (2, F,P) that is
endowed with a filtration F = {F;, ¢ € [0, T} satisfying the usual conditions. Time 7" is
the final date in the model. The filtration IF represents the evolution of the information.
We assume the existence of the probablity measure QQ which is an equivalent risk-neutral
measure, i.e. Q is a martingale measure with respect to the numeraire security with

value B; = exp [ f(f rs ds] at time ¢, where r is an [F-progressively measurable process.

The no arbitrage assumption guarantees the existence but not the uniqueness of such a
probability measure Q.

3.1 Noisy Accounting Report of Assets

The first incomplete information model is introduced by Duffie & Lando [2001]. They
retain the first passage time definition of default, but suppose that investors observe the
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3.1 Noisy Accounting Report of Assets

true value of a firm imperfectly. As a model for the firm’s assets value process V' they
assume a geometric Brownian motion

1
Vi=exp|Z)] =exp |Zo+ (1 — 502)75 +oWf|, (3.1.1)

where W is a standard Brownian motion, o is a positive volatility parameter and p € R
represents the expected asset growth rate, like in (2.1.20).

In this model, the firm is operated by equity shareholders who are completely in-
formed about the firm’s assets at every time, i.e. they have as information the filtration
generated by the firm’s asets value process V., F; = o(V; : s € [0,1]). Firm’s managers
choose the liquidation policy, i.e. an F-stopping time, in order to maximize the value of
the equity. The optimal liquidation time is the first time when the assets value process
falls below some sufficiently low boundary.

Duffie & Lando point out that in reality bond investors are not fully informed and
cannot observe the issuer’s asset process V' directly. They postulate that the market can
only observe the firm’s assets value process obscured by adding independent noise and
only at selected times ¢;, 7 = 1,2, ... such that ¢; < ¢;41. In particular, they suppose that
at each observation time t; there is a noisy accounting report of assets given by

Vi, = exp [N,] = exp [, + Vi), (3.1.2)

where Y}, is the added noise process observed at times ¢; and which is normally distributed
and independent of Z. This noise generates a market’s suprise with respect to default
since a firm could nearly be in default and the market is not yet aware of this imminence.
An interpretation of this noise is that accounting reports and (or) management press
releases either purposefully (e.g. Enron) or inadvertently add extraneous information
that obscures the market information about firm’s assets value process. The market task
is to remove this extraneous noise. This idea was motivated by accounting scandals in
the American companies Enron and WorldCom. Both of them had mistakes in their
accounting that is by Duffie & Lando modelled by an additional noise.

At each time ¢ € [0, 00), the market is also informed whether the equity owners have
liquidated the firm. Hence, since one sees XA/t and not V;, the filtration G available to the
market is given by

G =0 (Lir<s), Ny, 1 5, 1 € [0,8]) (3.1.3)

where Ny, = Z;, + Y, and 7 = 7(B) = inf {t > 0: V; < B} is the first time when the
assets value process V' falls below the boundary B.

The first objective is to compute the conditional distribution of V; given G;. We begin
with the case of a single noisy observation at time ¢t = t;. Using properties of the first
passage time of a Brownian motion and aplying Bayes’ formula and fixing Z, = 2y, Duffie
& Lando derived an explicit formula for the conditional density g(-|V, z0,t) of Z; given
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3.1 Noisy Accounting Report of Assets

the noisy observation Ny = Z; +Y; and 7 = inf {s > 0: Z, < v} > t, where v = In B.
This explicit formula can be found in the original paper. Given survival to ¢, this gives
us the conditional distribution of assets, since the conditional density of V; at some level
v can be obtained from the conditional density of Z; at In(v).

Using this conditional density, the G;-conditional probability p(t,u) of survival to
some future time u > ¢ can be, for 7 > t | expressed as

p(t,u) =P (1 > u|G)

:/00(1 — 7 (u—t,2 — v)) g(z| Ny, 20, 1) da, (3.1.4)

v

where 7 (t, ) denotes the probability of first passage of a Brownian motion with drift
o — %(72 and volatility ¢ from an initial condition > 0 to a level below zero before time
t. This probability is given by

7 (tz) = d (_I - ET“\/; %02>t) +exp {— (2 ;2‘72”’1 ® <_I i ET“\/_Z %‘72>t) (3.1.5)

This result and proof can be found in, e.g. Bielecki & Rutkowski [2002] (Lemma 3.1.2).
Duffie & Lando show in a numericall illustration that with pefect information, the con-
ditional probability of default within one year is approximately 2.9%, whereas this con-
ditional probability is approximately 6.7% if accounting assets are reported with a 10%
level of accounting noise. As a measure of the degree of accounting noise it is used the
standard deviation of Y;.

The default stopping time 7 has an intensity process A with respect to filtration G;,
if A is a non-negative progressively measurable process such that

t
{ﬂ{rgt} — / Agds:t > 0} (3.1.6)
0

is a G;-martingale, provided fot Asds < oo a.s. for all t.

From above results, at any (w,t) such that 0 < t < 7(w), the G;-conditional distribu-
tion of Z; has a continuously differentiable conditional density f(t,-,w). This density is
zero at the boundary v, and has a derivative f,(¢,v,w) that exists and is non-zero.

Duffie & Lando proved that the process A defined by

0 fort >
\ _ 7 3.1.7
t(w) {%UQfx(t7yaw)7 for t € <O’ T] ( )

is an G;-intensity process of 7. Thus the intensity of the default can be expressed in terms
of the conditional assets distribution and the default threshold. In structural models,
perfect information implies that credit spreads go to zero as maturity tends to zero,
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3.2 Compensators and Pricing Trends

regardless of the credit quality of the issuer. However, with imperfect information about
the firm’s value credit spreads stay bounded away from zero as maturity tends to zero.

Duffie & Lando [2001] also outline extensions of this basic model allowing for inference
regarding the distribution of assets from several variables correlated with the asset value
or from more than one period of accounting reports. For the latter they do not have
explicit solution for the survival probability, but numerical integration can be done.
They also discuss how to model re-capitalization when the level of assets reaches some
sufficiently high level v, or decisions by the firm that may be triggered by more than one
state variable, such as a stochastic liquidation boundary.

Using the theory of the enlargement of filtrations (see Chapter VI of Protter [2004]),
Kusuoka [1999] has proposed a model such that, similar to Duffie & Lando [2001], the
information is revealed to the market with an additional noise, but the relevant processes
are observed continuously and not discretely. In this approach Kusuoka begins with the
modeler’s filtration G C F and a random variable 7 :  — R*. Then he expands the
filtration so that in the expanded filtration the random variable 7 is a stopping time.
The filtration expansion is analogous to adding noise to the firm’s assets value process.

Duffie & Lando [2001] also characterize the default intensity for cases in which the
asset process V satisfies a stochastic differential equation of the form

AV, = p(t, Vi) dt + o(t, V;) dW,. (3.1.8)

Let us assume an observation scheme as in Kusuoka [1999] for which at time ¢ < 7 there
exists a conditional density f(t,-) for V;. Duffie & Lando then show, under technical
assumptions on u, o, and f, that the intensity process A for the first hitting of V' at
barrier v is given by

No= 50w 0f (0 0), (3.1.9)

for t < 7. Here the structural model due to information obscuring is transformed into
an intensity-based model.

3.2 Compensators and Pricing Trends

In this section we denote by V; the issuer’s firm value V', and we assume that the issuer
defaults when V' falls below some random barrier L < Vj. We suppose that L is inde-
pendent of V. Let us assume a random variable 7 :  — R™ representing the firm’s time
of default which is given by

T=inf{t >0:V, < L}. (3.2.10)
The related default indicator process N; generated by 7 is given by
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3.2 Compensators and Pricing Trends

This default indicator process is obviously a right-continuous submartingale. The Doob-
Meyer decompostion then implies the existence of an unique F-compensator C; with
Cy = 0 for the process N; such that N, — C}, called the compensated process, is an
F-martingale (see, e.g., Section 4.6 in Bielecki & Rutkowski [2002], or Protter [2004]).

Giesecke [2004b, 2006], and Giesecke & Goldberg [2004a, 2004b] make use of a process
Ay, referred to as pricing trend, related to the F-compensator C; such that

Ct - At/\T - AZ (3212)

Here Asn, is the stopped process. If the pricing trend is absolutely continuous with
respect to Lebesgue measure,i.e.

t
At:/ Ay ds, (3.2.13)
0

then the density A is the intensity of arrival of the stopping time 7. The inexistence of
an intensity A\; does not mean that we cannot calculate default probabilities or price of
defaultable securities. Using this pricing trend, the conditional default probability can
be expressed as

Qr<T|F]=1-Eqg[exp[A: — Ar| | F]. (3.2.14)

Next we consider the valuation of a defaultable security which pays a bounded amount
X € Fr at T in the case of default and zero otherwise. If the pricing trend is continuous
and we suppose that the process defined by Eg [X|F;] is almost surely continuous at 7,
then the price of the security at time ¢t < T is given by

T
S; =Eq {exp {—/ Ts ds} X]1{7>t}].7:t}
t

_ JEq [Xexp [At —Ar — ftT Ts ds} |.7-"t] , on {t<T} (3.2.15)
0, on {t>7}.

These two expresions (3.2.14) and (3.2.15) are similar to those observed in an intensity-

based model, if (3.2.13) holds.

Let the filtration [F represents the evolution of the information available to investors.
Then different specifications of F will imply different compensator processes and hence
different pricing trends. Thus pricing trends are determined by the specification of the
information F and a stopping time 7. Once we have a specification of the default time
(3.2.10), assumptions of the information available to the investors regarding the firm’s
assets value process and default threshold will yield a different pricing trend and thus a
different reduced form model. These informational assumptions provide a link between
structural and reduced form models.
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3.2 Compensators and Pricing Trends

3.2.1 Complete Information

Firstly, let us assume that the investor can observe both V and L. If we also assume
that V' has continuous paths then we can find an announcing sequence of stopping times
T, < 7 which converges to 7 almost surely. Thus default can be anticipated and 7 is
predictable with respect to the filtration generated by V and L. This is the case of
a standard first passage model. In this structural model there is no short-term credit
risk that would require compensation. Hence the default indicator process is its own
compensator, i.e. A7 = N; and an intensity in the sense of (3.2.13) does not exist.

If we allow for jumps in V' as in e.g. Zhou [2001], then assets may continuously
diffuse to the default barrier or cross it with a sudden jump. Here the times 7, just are
defined converge to 7 only with a probability strictly less than one, hence there is always
a chance that the firm jumps below the default barrier, i.e. 7 cannot be anticipated
anymore. So depending on the state of the world there may or may not be short-term
credit risk.

3.2.2 No Information about Default Threshold

Giesecke & Goldberg [2004a] deal with the case of complete information about the asset
value, but incomplete information about the default threshold. They claim that the
default barrier is random and unobserved, (which they argue is consistent with the
recent experiences with Enron, WorldCom, and Tyco) which models the fact investors
cannot observe the barrier. Not knowing the default threshold, investors form a priori
a distribution for its value with distribution function G on (—o0, V). Since the default
time depends on this random threshold that cannot be observed by the investor, the
default time 7 is rendered totally inaccessible. If we also assume that V' has continuous
paths and G is a continuous function, then it can be proved that the pricing trend is a
continuous process and for each ¢ > 0 it holds that

A= —InG (M) a.s., (3.2.16)

where M; = min,<, V; is the historical minimum of the firm assets value at time t. In
view of (3.2.13) we need only differentiate the trend to get the intensity. However, under
the assumption that G is differentiable, the derivative of A(t,w) with respect to time ¢
is zero for almost all w. It means that in this specification of the information setting,
the pricing trend does not admit an intensity of default. In spite of this fact, there are
closed form expressions for probability of default (3.2.14) in some cases.

The reason for the absence of an intensity is that investors learn about the default
barrier as time goes by. Investors observe the asset process V', hence they are fully
informed about the historical minimum of assets. With a time invariant default barrier,
if the firm has not defaulted by time ¢, investors know that the default barrier must lie
below M; at t. Giesecke & Goldberg [2004a] argue that this incomplete information model
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3.2 Compensators and Pricing Trends

detects deterioration in the equity market-implied credit quality earlier than the complete
information model. This model reacts more quickly to changes in the asset value, since
it takes account of the whole history of firm’s assets values not just the current value.
The rate at which the credit spread converges to zero in case V; = My is much smaller
than in the complete information case. As an example of the distribution function of the
default barrier D under the pricing probability Q, they give G(x) = exp [az], for z < 0
and some parameter o > 0.

3.2.3 No Information about Assets

Giesecke [2006] also considers cases where investors cannot observe the firm’s assets value
process perfectly after the bonds have been issued, and either investor observe the default
barrier or not.

Firstly, we consider the case where investors observe the default barrier, but have
incomplete information, such as noisy or lagged asset report, for the firm’s asset value
process after the bonds have been issued at time zero. This is described by the model
filtration G C F. We denote H(t,-) the G;-conditional distribution function of the run-
ning minimum M; = min,<; V. Assume that the variables Vj, and D are Gy-measurable.
If the variable H(t,z) < 1 a.s. for each ¢ > 0 and = < V;, and the process H (-, x) is
continuous and monotone for each z < Vj, then the default time is totally inaccessible
in F. The pricing trend in this case is a continuous process such that for each t > 0 we
have

Av=—-In(1—-H(t,D)) a.s. (3.2.17)

If in addition we suppose that for each x < Vj the process H(-, z) is absolutely continu-
ous ! with a bounded, non-negative, right continuous and G-predictable density process
h(-,z), then there exists an intensity and for each ¢t > 0 we have

h(t, D)

At:1—H(t,D)

a.s. (3.2.18)

From this expression the intensity derived by Duffie & Lando [2001] can be recovered
under the assumptions that default barrier D is equal to the constant d < V; almost
surely and that asset process V follows the stochastic differential equation (3.1.8).
Finally, we consider the case of incomplete information for the firm’s assets value after
the bonds have been issued, and that the default barrier is unobservable. Let us assume
that the variable Vj is Gp-measurable but the variable D is never G;-measurable. We also
assume that investors form a priori a distribution of D with distribution function G' on

I'Non-decreasing process X is called an absolutely continuous if the random measure on R associated
to X is absolutely continuous w.r.t Lebesgue measure almost surely.
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3.3 Reduced Information

(—o0, Vp). If the variable H(t,x) < 1 a.s. for each ¢t > 0 and # < V and the process
H(-,z) is continuous and monotone for each z < V4, then the default time is totally
inaccessible in F. The pricing trend in this case is a continuous process such that for
each t > 0 we have

Vo

A= —1In (1 — | H(t ) dG(x)) a.s. (3.2.19)

If in addition we suppose that for each = < Vj the process H (-, z) is absolutely continuous
with a bounded, non-negative, right continuous and G-predictable density process h(-, x),
then there exists an intensity and for each ¢ > 0 we have
[Y h(t,x) dG(x)
A= T a.s.. (3.2.20)
1— [2 H(t,x)dG(x)

Giesecke [2006] shows that spreads in this case are bounded away from zero for all ma-
turities.

Learning by investors as mentioned in Section 3.2.2 has also important implications
in the context of multiple firms. Giesecke [2004b] extends the incomplete information
assumption in a structural model to the modeling of default correlation. He provides
a structural model of correlated defaults where the firm’s default probabilities are con-
nected using a joint distribution for their default thresholds and investors do not have
perfect information about neither such thresholds nor their joint distribution. From ob-
serving assets and defaults of all firms in the market, investors learn over time about
the characteristics of individual firms. Investors form a prior distribution which is up-
dated at any time one of such tresholds is revealed. This happens when one of the firms
defaults. In the event of default, the value of the threshold becomes public knowledge.
Giesecke [2004b] assumes that investors have complete information about firm’s assets.

This framework was extended by Giesecke & Goldberg [2004b] to the case in which
investors do not have information about neither firms’ default tresholds nor about their
assets values. The default correlation in this case is introduced through correlation in
the firm value processes. Contagion effects due to counterparty relations are modeled
through the dependence of default barrier processes. Investors receive information about
the firms asset processes and default thresholds only when they default. Giesecke &
Goldberg [2004b] explicitly calculate the pricing trends and the arrival intensity of the
n'-to-default in terms of fundamental firm variables.

3.3 Reduced Information

An alternative approach for obtaining a reduced form model from a structural model
to the one by Duffie & Lando [2001] is that the market has the similar information as
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3.3 Reduced Information

firm’s managers but just less of it. Cetin et al. [2004] assume that investors only receive
a reduced version of the information set which is available to the firm’s management. In
their model, the firm’s cash flow is the process that triggers default. The firm defaults
if the firm’s cash flow remains negative for an extended period of time, after exhausting
both its lines of credit and easily liquidated assets. The firm’s management observes this
cash flow process, but the market receives only information about the sign of the cash
flows. Thus the market knows only that the firm is in financial distress and the duration
of this state. This makes the default time an unpredictable event for the market.

Let us assume a process X which represents the cash balances of the firm normalized
by the value of the money market account B;. This process is observed by the firm’s
management. Let X follows the stochastic differential equation

dX, = o dW2, (3.3.21)

where cash balances are initialized at Xy = x > 0 units of the money market account,
o > 0, and where VVtQ is a standard Brownian motion under the probability Q. An
interpretation of x should be the target or optimal cash balances for the firm, since the
firm gives up attractive investment projects and incurs increased tax liabilities if it holds
too many cash, whereas it increases the likelihood of bankruptcy if it has too little cash.
The firm makes an effort to maintain cash balances at this optimal level. Cetin et al.
[2004] assume, without loss of generality, that x = 0 and o0 = 1. Hence cash balances can
be positive, zero or negative. The last corresponds to the situations where the firm is in
financial distress and the payments owed are not paid. Under the martingale measure
cash balances have no drift term.
Let Z denote the times when the firm’s cash balances hit zero, i.e.

Z:={tel0,T]: X, =0}. (3.3.22)

When a firm has zero or negative cash balances, debt payments can only be made by
accessing bank lines of credit or liquidating the firm’s assets. The firm can exist with
negative cash balances for only a limited period of time. We also define the random time
[(t) that represents the last time before ¢ at which cash balances hit zero, i.e.

I(t):=sup{s <t: X,=0}. (3.3.23)

Let 7., for some parameter of the default process @ € R*, be the random time that
measures the onset of a possible default situation for the firm, i.e

2
Ty := inf {t >0:t—1(t) > %, where X, <0 for s € (l(t_),t)} . (3.3.24)

Thus 7, is the first time at which the firm’s cash balances have been negative for at
2 . . .
least %- units of time. The constant « is a parameter of the default process. It could
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3.3 Reduced Information

be estimated from market data. The default time is defined as the first time after 7, at
which the cash balances doubles in magnitude., i.e.

Ti=inf{t >71,: X; =2X.}. (3.3.25)

Cetin et al. [2004] point out that the doubling in absolute magnitude is only for analytical
convenience and it has no economic content. The intuition behind (3.3.25) is that after
being below zero for a long time, the firm exhausts all its slacks (e.g. lines of credit) to
meet its debt payments. The firm has no slacks left if it ever hits 2X afterwards, hence
it defaults.

The market does not observe the firm’s cash balances. Until the random time 7, the
market only knows when the firm has positive cash balances or when it has negative or
zero cash balances. After time 7,, the market knows whether cash balances are below or
above the default threshold 2X, . Let us introduce a new process

X for t < 7,,
Yt:{ b s (3.3.26)

2X,, — Xz, fort>r,.

The process Y is also an F-Brownian motion and the definition of the default time
(3.3.25) , in terms of this process, can be rewtitten as

T=inf{t>7,:Y,=0}. (3.3.27)
Let us define
—1, forz <0
— ’ -7 3.3.28
sen(@) {1, for x > 0. ( )

Let G = {G;: t € [0,T]} denote the Q-complete and right-continuous version of the
filtration G = {@ (te [O,T]}, where G, := o {sgn(Y,) : s <t}. This filtration G rep-

resents the information that is available to market.
Cetin et al. [2004] define

2
and point out that M, is Azéma’s martingale on the filtered probability space (Q, (gt)te[(m , Q) .

This martingale M, satisfies the following claims: quadratic variation of M, satisfies the

structure equation
d[M, M), = dt — M,_ dM;, (3.3.30)

Azéma’s martingale is a strong Markov process, and M; can be expressed by

M, = sgn(Yt)\/ﬁ\/t —1, (3.3.31)
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where [, := sup {s < t:Y, = 0}. These results on Azema’s martingale can be found in
Sections IV.5 (p.203-204) and IV.8 of Protter [2004]. The default time 7 now can be
equivalently written as

T=inf{t > 0: AM, > a}. (3.3.32)

Therefore, 7 is a jump time of Azema’s martingale, hence it is totally inaccessible with
respect to the filtration G (see Protter [2004], Theorem 59 (iv)). The random time can be
rewritten as 7, = inf {t > 0: M;_ < —a}. For AM,; we have AM; = —M;_Lp,_~u,)
hence 7, < 7 almost surely. However, 7, is a predictable stopping time which implies
Q(r =17,) = 0, hence 7, < 7 almost surely. If we define N; = 1;.<4, then by the
Doob-meyer decomposition there exists a continuous, natural increasing process A such
that N — A is a G-martingale that has only one jump at 7 of the unit size. Cetin et al.
[2004] proved that 7 has a G-intensity, i.e. process A in the Doob-Meyer decomposition

is of the form A; = OMT As ds. Furthermore,

(@) 0, fort > 7 (3:3.33)
w) = ..
t mﬂ{t>7—a}, fOI‘ t E [0, T]

Thus under the market’s information set, default is given by a totally inaccessible stop-
ping time, and we obtain a reduced form model from the market’s perspective. The
firm’s default intensity is zero until time 7,, then, after this time, intensity decreases
with the length of time that the firm remains in financial distress (t — ,_). It can be
interpreted as follows: the longer the firm survives in the state of financial distress, the
less likely it is to default. With the intensity (3.3.33), the market can value credit linked
securities as in the reduced form approach. Valuation of a defaultable zero-coupon bond
can be found in the original paper by Cetin et al. [2004].

3.4 Delayed Filtration

Collin-Dufresne et al. [2003], following Duffie & Lando [2001], assume that investors do
not observe the actual current firm value. Instead, they assume that investors observe a
signal which corresponds to some lagged firm’s assets value procces V; = V;_; where the
lag [ is not known perfectly. For simplicity Collin-Dufresne et al. assume that [ can take
on only one of two values, [ or ¥, where [ > [* i.e. firms are either in the high-delay
state or the low-delay state. The longer the delay the less is known about how close
the current cash flows are to the default boundary. For the firm value process V they
use a geometric Brownian motion. Guo et al. [2008] attempt to unify notions of noisy
and lagged information into the same framework. They define the notion of a delayed
filtration for both discrete and continuous case. A continuously delayed filtration allows
information to flow in continuously, albeit following a time clock slower than ordinary
one. A discretely delayed filtration does not allow new information to flow in between
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two consecutive observation times. Guo et al. [2008] introduce following two definitions
of the delayed filtration.

Definition 3.4.1. (CONTINUOUSLY DELAYED FILTRATION) Let H = {H;, ¢t > 0} be a
filtration that satisfies the usual conditions. Let {at,t > 0} denote an increasing, right-
continuous process such that ap = 0 and «; is an H-stopping time for every ¢t > 0.
Suppose that a;(w) < t a.s. for all £ > 0. The time-changed filtration F = {F;, t > 0} =
{Ha,, t > 0} is then called a continuously delayed filtration of H.

Definition 3.4.2. (DISCRETELY DELAYED FILTRATION) Let H = {H;, t > 0} be a
filtration that satisfies the usual conditions. Suppose there are K sequences of H-stopping
times {Tff}po, 1 <k < K such that TF =0, T¥ 1 co and for all n > 0, T¥ < oo it holds

that 7% < T% , (i.e each sequence is strictly increasing). Suppose also that {G;, _;.cen}
is a family of sub-o-field of Hoo = (U5 H:) such that

(1) Giyie T Gjyoires i1 < g1, ik < Jk,

(iii) For any k, T¥ is G;, . i, -measurable whenever n < i;. Define

F= @i N{TE <t<Tf, 1<k <K}),

(AR5

and
Fo=J (Giiw VON)N{TE <t <TF, : 1<k <K},
i1
where A is the collection of all negligible sets. Then F = {F;, t > 0} is a filtration that
satisfies the usual conditions, and is called a discretely delayed filtration of H.

Under this mathematical framework Guo et al. [2008] generalize both Duffie & Lando
[2001] and Collin-Dufresne et al. [2003] to show how a delayed filtration generate the
default intensity process for any Markov model, with or without jumps. For the closed-
form formulas we refer to original paper by Guo et al. [2008] and for an alternative
methodology to obtain closed-form formulas of intensity see Guo & Zeng [2008].

2Here a V b = max {a, b}
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Chapter 4

Information-Based Pricing

Another line of research is concerned with how to model the market filtration by use of
the concept of partial information. This is constrasted with what is the more common
modelling approach in mathematical finance where the market filtration is simply given.
Here cash flows, defining a credit-risky asset, are modelled by random variables. The
objective is to develop an economic model for the partial information about the value
of the cash flows at a later time. This approach to credit risk modelling is followed in
Macrina [2006], Brody et al. [2007, 2008a, 2008b], and Rutkowski & Yu [2007]. In this
approach there is no attempt to bridge a gap between structural and intensity-based
credit risk models, and authors avoid the use of inaccessible stopping times. Brody et al.
[2007] present an alternative reduced form model, based on the amount and precision
of the information received by market participants about the firm’s credit risk. Market
participants have only noisy information about forthcoming cash flows. The rate at
which true information is provided for each such cash flow is a parameter of the model.
This model does not require the use of default intensities. It relies on market prices of
defaultable instruments as the only source of information about the firms’ credit risk.
Default events are associated directly with the failure of obligors to make contractually
agreed payments.

Throughout this chapter we work with a probability space (€2, F, Q) with filtration
F = {F, 0 <t < oo}, where Q is the risk-neutral probability measure and F repre-
sents the flow of information to market participants and it will be constructed explicitly.
All asset price processes and other information-providing processes accessible to market
participants will be adapted to F. The real probability measure does not directly enter
into the investigation. We assume absence of arbitrage, hence there exists a risk-neutral
measure. Brody et al. also assume the existence of a pricing kernel (see Cochrane
[2005]), hence this measure is unique (i.e. the market has chosen a fixed risk-neutral
measure Q for the pricing of all assets and derivatives), even though the market may be
be incomplete (i.e. derivative hedging is not always possible). They also assume that
the default-free system of interest rates is deterministic. This assumption is relaxed in
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4.1 Cash Flows and Market Factors

the paper by Rutkowski & Yu [2007], using a forward measure technique (Musiela &
Rutkowski [2005]). If we have a deterministic system of interest rates, then the absence
of arbitrage implies that the corresponding default-free system of discount functions,
denoted {Pr}o<i<pcs, can be written in the form

Py =2 (4.0.1)

for t < T, where {Fy }y<,.o is the initial discount function. This function is assumed
to be differentiable and strictly decreasing, and also that it satisfies Py, € (0,1] and
lim; ., Py = 0. It is also supposed to be part of the initial data of the model. The
expression (4.0.1) is the parallel of the expression (2.0.3) in Chapter 2.

4.1 Cash Flows and Market Factors

We start with the general situation where the asset pays multiple dividends. Each
financial asset is defined by a series of random cash flows. We consider an asset that is
defined by a set of random cash flows {Dy, },_,  which are paid at the pre-specified
dates {Ty},_, - For simplicity it is assumed that n is finite. Possession of the asset at
time ¢ entitles the bearer to the cash flows occuring at times T}, > t.

For each date T}, we introduce a set of independent random variables {X%k ::11 :”“
which we call market factors. For each value of « it is assumed that the market factor
X%, is Fr,-measurable, where F is the market filtration. The market factors {X };<x
for each value of k represent the independent elements that determine the cash flow
occuring at the future time 7Tj. Thus for each date T} we introduce a cash flow function
(or structure function) Ag, of Zle m; variables such that

Dp, = Aq, (X3, X3, ..., X)) (4.1.2)

Brody et al. say that for any given asset it is the job of the financial analyst (or actuary)
to determine the relevant independent market factors, their a prior: probabilities, and
the form of the cash flow function Ay, for each cash flow.

The price of the asset that generates the cash flows {Drp },_,
risk-neutral valuation formula o

is given by the

n

St =Y V<ry P Eo [Dr,| 7] (4.1.3)
k=1

Example 4.1.1. DEFAULTABLE DISCOUNT BOND WITH RANDOM RECOVERY: We con-
sider a defaultable discount bond which at maturity date T" pays out the terminal value
X, i.e. an asset that provides a single cash flow Dy = X1 at time T
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4.1 Cash Flows and Market Factors

Brody et al. [2007] assume the situation where this defaultable discount bond has
a discrete probability spectrum Xp = x;, ¢ = 0,1,...,n with a priori probability
qi := Q (X1 = z;), and for convenience they assume that x, > x,_1 > -+ > x1 > .
In this situation we think of X7 = z,, as the case of no default and the other cases as
various possible degrees of recovery. If we assume the case n = 1, we obtain a simple
defaultable binary discount bond that matures at time 7T to pay a principal payment x;
if there is no default and zy in the event of default. Further, if 1 = 1 and xy = 0 we get
a digital defaultable discount bond.
Rutkowski & Yu [2007] relax the assumption that Xt has a discrete probability distribu-
tion and they postulate that X; takes values in the interval [0, 1], i.e. the claim X7 can
be interpreted as the payoff of a defaultable bond with maturity 7" and the face value 1.
The price process {Bir}y,;«r of the defaultable bond with payoff Xr, using (4.1.3),
is given by o
Bir = PrEq [Xr|F, (4.1.4)

for all t € [0, 7.

Example 4.1.2. ACCUMULATION PROCESS: In finance and insurance there are many
important problems that involve the analysis of accumulation processes, i.e. cumulative
gains or losses. Let [0,7] be a fixed accounting period, where time zero denotes the
present. Brody et al. [2008b] assume contracts for which the payoff, at time T, is given by
a random cash flow X7 which is given by the terminal value of a process of accumulation,
or, more generally, by a function of X7. The random variable Xt represents the total
accumulation of an irreversible gain process. For instance, in the case of insurance
contracts the random variable X represents the totality of the payments made at T" in
settlement of claims arising over the accounting period [0,7]. The problem facing the
insurance firm is the valuation of the random cash flow. Traditionally, insurance claims
reserving has been concerned to a large extent with estimation and prediction. Brody
et al. [2008b] instead emphasise the role of valuation and separate the issue of how to
manage the reserves from how these should be calculated. The value process {S;};cr
of the contract that pays Xp at T is given by o

St = PtTEQ [XT|ft] . (415)

One can interpret S; as the value of the reserve that needs to be maintained by the
insurance firm at ¢ in order to ensure that X, will be payable at T. Equivalently, it
represents the cost of commuting the claim, i.e. one can view S; as the amount that
would have to be paid at t for the insurance firm to relieve itself of the obligation to pay
Xr. Likewise, the time t cost C;p of a simple stop-loss reinsurance contract that pays
out (X7 — K)* at time T for some fixed threshold K is given by

Cior = PirEg [(Xr — K)*|F] . (4.1.6)
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4.1 Cash Flows and Market Factors

Another example of an accumulation process originate in credit risk management.
If we consider a large credit portfolio, X7 may denote the accumulated losses due to
defaults over the interval [0, T]. For example, at time zero a credit-card firm has a large
number of customers, each with an outstanding balance payable in the accounting period.
If a customer does not pay the balance by the required date, they will be deemed to be
in default, and a loss will be registered. The random variable X1 will denote the totality
of such losses. Brody et al. [2008b] assume that once a customer is in default, no further
payments are made by that customer (or that any such payments are registered in a
separate account). The problem facing the firm is to determine the capital it needs to
set aside to cover such losses, and in particular what premium to charge over the base
interest rate, to ensure that funds will be in hand to cover the default losses.

There are also many other examples. For instance, X may represent the total
number of accidents or fatalities of a certain type during the period from 0 to 7', or
the total number of sales achieved, or the total amount of water, or gas, or electricity
consumed, or total GDP, or the total amount of emissions emitted, or the total rainfall,
etc.

In the subsequent examples below, Xr,, j = 1,2,...,k denote independent binary
random variables taking the value 0 in case of default or 1 if there is no default, with a
priori probabilities p{’ (default) and p” (no default), and the constants ¢ and p denote

the coupon and the principal.

Example 4.1.3. SIMPLE DEFAULTABLE COUPON BOND: We consider a bond with two
payments remaining. A coupon Dy, at time 77, a coupon plus the principal totalling
Dy, at time T, and no recovery on default. The default can occur at any of the coupon
dates. If there is a default at 77 then no further payment is made at 7;. On the other
hand, if the coupon at time 7T; is paid, default may still ocuurs at time 7T5. Hence for
this defaultable coupon bond we have the following cash flows

DT1 = CXT1 )

DT2 - (C + p)XT1XT2 .

Example 4.1.4. DEFAULTABLE COUPON BOND WITH RECOVERY: We can extend the
previous two coupons in Example 4.1.3 by considering that there is partial recovery in
the case of default. For instance, by saying that in the case of default on the first coupon
we have the recovery rate Ry as a percentage of coupon plus principal (¢ + p), whereas
in the case of default on the final payment at time 75 the recovery rate is R,. Hence the
associated cash flows can be written in the form

DT1 = CAXVT1 + Rl(C + p)(l — XTl) 5 (419)
Dy, = (¢ +p) X5, X1, + Ro(c +p)Xry, (1 — X13) . (4.1.10)
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4.2 Market Filtration and Market Information Processes

Example 4.1.5. DEFAULTABLE n-COUPON BOND WITH MULTIPLE RECOVERY LEVELS:
In this example we consider the case of n outstanding payments at the pre-specified
payment dates T}, where k = 1,...,n. In the event of default at the date T} we assume
the recovery payment Ry(c+p), where, as in the Example 4.1.4 above, Ry, is a percentage
of the owed coupon and principal payment. Here the associated cash flows are given by

k k—1
Dy, =c|[ Xz, + Re(c +p) [ Xr,(1 = Xz, fork=1,,...,n—1, (4.1.11)
j=1 j=1
n n—1
Dy, = (c+p) [[ Xz, + Ra(c+p) [ [ Xr,(1 = Xz,), for k=n. (4.1.12)
j=1 j=1

Example 4.1.6. CREDIT DEFAULT SWAP: We consider a CDS written on a defaultable
coupon bond. The seller of protection receives a series of premium payments, each of
the amount g, at some pre-specified dates. The payments continue until a credit event
occurs, which here is modeled as the failure of a coupon payment in the reference bond.
In the event of default a lump sum is paid to the buyer of protection at the default time
equal, for instance, to the principal minus the effective effective recovery value of the
reference bond at that time. If we take as the reference bond the one from Example
4.1.4 with two outstanding coupon payments, and for simplicity we assume that the
default-swap premium payments are made immediately after the bond coupon dates,
then this CDS has the following cash flows

-DT1 :gXT1 _(p_Rl(C+p>) (1_XT1)7 (4113)
Dr, =gXn, X7, — (p — Ro(c+p)) X7y (1 — Xp). (4.1.14)

The pricing issues of the credit linked securities from above examples will be treated
below in the sections 4.3 and 4.4. Firstly we shall construct the filtration observed by
market participants.

4.2 Market Filtration and Market Information Pro-
cesses

The new conceptual tool underpinning the information-based approach by Brody et al.
is the so-called market information process, denoted by £. For each market factor Xg ,
kEk=1,...,n, a =1,...,mg we introduce an information process {ngk}0<t<Tk' The
information flow available to investors is modelled explicitly and is assumed to be the

natural filtration of one or more independendent market information processes. Thus

F=o ({g;“Tk =l ) < 5 < t> . (4.2.15)

k=1,....n
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4.2 Market Filtration and Market Information Processes

The idea is that the information process reveals the value of X% at time Ty. The

information processes {gng} are clearly {F;}-adapted. In the following we will consider
two types of information processes: Brownian bridge information and Gamma bridge
information.

4.2.1 Brownian Bridge Information Processes

For t < T}, we assume that all information available to market participants about the

market factor X7 is contained in the information process {ff‘Tk } 0<i<T, defined by
i, = X700t + Bir» (4.2.16)

where o7, is a parameter, and the process {B?Tk} is a standard Brownian bridge

0<t<Ty,
over the interval [0,7}]. Thus {3z, } o<i<, 18 & Gaussian process defined on (Q,F,Q)
satisfying Byr, = 0 and B, 7, = 0. It is known (see Karatzas & Shreve [1988], p.358-360)
that the mean and the covariance of the Brownian bridge are given by

Eg [Bir,] =0, (4.2.17)

Eq (B ] = S0 =Y

4.2.18
), (42.18)

for all s,t satisfying 0 < s <t < T;. We assume that market factors Xz and the
Brownian bridge processes are all independent.

For the explanation of this form of market information processes, we consider for the
moment the case in which the asset entails a single payment Dr at time 7. Brody et al.
make the assumption that some partial information regarding the value of the cash flow
Dr is available at earlier times. This information is in general imperfect. The model for
such imperfect information is of a simple type that allows for a great deal of analytic
tractability. In this model, information about the true value of the cash flow steadily
increases, while at the same time the obscuring factors increase in magnitude for the first
half of its trajectory, and then eventually die away at the payment day since investors
have a perfect information about the value of Dy at time T'. Formally, in this case of a
single distribution occuring at time 7', we assume that the following F-adapted market
information process £ is accessible to market participants

ft = DTO't + 5tT- (4219)

The first part of this process Drot contains the true information about the cash flow
and grows in magnitude as time ¢ increases. It is assumed that initially all available
market information is taken into account in the determination of the price. In the case
of a defaultable discount bond, the relevant information is embodied in the a prior:
probabilities (see Example 4.1.1). Since the market filtration F is generated by the
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4.2 Market Filtration and Market Information Processes

market information process, see (4.2.15)), the cash flow Dy is Fp-measurable but it
is not Fi-measurable for ¢ < T, i.e. the true value of Dy is not fully accessible until
time 7". The Brownian bridge process {31}« is assumed to be independent of Dy
and thus represents pure noise. The market participants do not have direct access to
the bridge process (i1, i.e. Gy is not assumed to be F-adapted. This reflects the fact
that until the cash flow is paid the market participants cannot distinguish the true
information from the noise in the market. We can thus think of ;7 as representing
speculation, rumour, overreaction, gossip, misrepresentation, and general disinformation
often occuring in connection with financial activity. The parameter o represents the rate
at which information about true value of Dr is revealed as time progresses. Thus low
o indicates that the true vaule of Dy is effectively hidden until very near the payment
date of the asset. On the other hand, if ¢ is high, then Dr is revealed quickly.

More generally, the rate at which the true value of Dt is revealed is not constant. In
that case we will have

t
& = DT/ oy du + B, (4.2.20)
0

where o, is non-negative and deterministic function. This can be interpreted, for instance,
that there is more activity in a market during the day than at night. This consideration
is important for short-term investments. Alternatively, more information concerning the
future of the firm may be available on the day when the annual report of a firm is going
to be published than normal.

When o is constant, the important feature of the market information process (4.2.19)
is that {&},<,s has the Markov property, i.e.

Q (& <2lF}) =Q (& < 2l (4.2.21)

for all x € R, and for all s, ¢ such that 0 < s <t <T'. The proof of this property can be
found in Brody et al. [2007] (p.238) or in Rutkowski & Yu [2007]. Along with the fact
that Dp is Fp-measurable we thus find that

Eq [DTlff} = Eq [Dr]&], (4.2.22)

which simplifies calculations.

In the case of random interest rate, it is needed to introduce another source of ran-
domness. Let us introduce a Brownian motion W@ on (9, F, Q) independent of ¢ and
Dyp. Then ¢ has the Markov property with respect to the joint filtration G = F¢ Vv FV®,
ie.

Q (& < x]G,) = Q (& < zley), (4.2.23)

for all x € R, and for all s, t such that 0 < s <t <T.
In the general case of market infomation processes (4.2.16), the Brownian bridges g,
represent market noise and only the terms X, of, ¢ contain true market information. The
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true value of the market factors X is revealed at time 7j,. The parameter of, can be
interpreted as the information flow rate for the market factor Xg . Clearly, the market
factor X is Fr,-measurable. The information process {7, is Fi-adapted, but this is
not the case for the Brownian bridges O;7, . By calculation it can be also shown that the
information processes {fr, satisfy the Markov property.

Price Process of Single Dividend Paying Asset

Firstly, we shall focus on the derivation of the conditional expectation (4.2.22) if the
random variable Dp represents continuously distributed asset payoff. This conditional
expectation can take the following form

Eq [Dr|&] = /Oo afi(x) da, (4.2.24)

0

where f;(z) is the conditional probability density for the random variable Dy given &,
ie.

(#) 1= forle (2160 = 5@ (Dr < al6). (4.2.25)

It is implicitly assumed that appropriate technical conditions on the distribution of Dy,
that will be sufficient to ensure the existence of the expressions under consideration, are
satisfied. In what follows, ¢(x) will denote the a priori probability density function of Dy.
This density is assumed to be known as an initial condition, and f¢, p, (-|#) denotes the
conditional probability density function of the random variable & given that Dy = .

Properties of market information process, in particular, that the random variable G

has a normal distribution with mean zero and variance @, imply that the conditional

probability density function for &, evaluated at z, is given by

fepr (2]7) = %em 2T 1) (4.2.26)

T'(z— xat)2]

Using a form of Bayes’ formula, we can express the a posteriori probability density
function of Dp given that & = z as

o 4
q(x)exp [% (maz — %x202t)}
[L (xaz — %ZL’QO'Qt)} dx

fDT\ﬁt (x|2) = foo ((
(( (4.2.27)

This result and (4.2.25) imply that the conditional expectation (4.2.22) can be expressed
as

DAt = EQ [DT|£t] =D (t7£t)> (4228)
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where D : [0,7] x R — (0,00) is a jointly continuous function given by the formula

fooo xq(z)exp [TTt (xa{t — —x o? )} dx
fo exp[ L (maf — —ZL‘202t)] de

The process D, is Fé-adapted .
If the random variable Dy has an arbitrary cumulative distribution function F' then
(4.2.29) can be reformulated as

J° wexp |75 (z0& — j2%0%t)| dF ()
[ exp [ (zo& — La20%t)] dF (z)

0 T—

D(t,&) = (4.2.29)

D (ta gt) =

(4.2.30)

Furthermore, by (4.1.3), the information-based price process {S;}(<,<, of a limited-
liability asset that pays a single dividend Dr at time T with a priori distribution
Q (Dr <u) = [, q(x)dz is given by

fooo xq( Jexp [TL (xaft -1620215)} dx
fo x)exp [TL (xa& — §ZL‘202t)] dz

St - ]1{t<T}PtT (4231)

Asset Price Dynamics
In order to obtain the dynamics of the above asset we need to find the stochastic differ-
ential equation to which the process S; is the solution.

Firstly, we shall investigate the dynamics of the market information process (4.2.19).
We know (Karatzas & Shreve [1988], p.358) that a standard Brownian bridge {81} <;<r
satisfies the stochastic differential equation o

ﬁtT

dByr = dt + th , for 0<t<T, (4.2.32)

where W is a standard Brownian motion under the measure Q with respect to its
natural filtration F = F". Then for the dynamics of & = Drot + B, we have

dft DTO' dt + dﬁtT

= Drodt — TﬂtT dt + dW .
f — DTO't —Q
DyoT — _
- T‘T’—_t&dw a2, (4.2.33)

Thus the market information process {& },.,.r is a continuous semimartingale and for

its quadratic variation we have (§), = (WQ>t =t for all ¢t € [0,7]. From this result we
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see that the market information process can be represented as a solution to a stochastic
differential equation driven by some Brownian motion under Q. Let define the process
WQ by the formula

t ﬁsaT — &
o I'—s
It is not immediately evident, but one can prove (see, e.g. Brody et al. [2007], or
Rutkowski & Yu [2007]) that this process W€ is a continuous martingale with respect
to the filtration FS. For the quadratic variation of W@ we have (W@), = (¢), = t,
hence making use of the Lévy’s characterization theorem shows that W< is a standard
Brownian motion with respect to F¢.

A straightforward application of It6’s formula and (4.2.34) shows that the dynamics

of ﬁt under Q can be written as

A ol ﬁsaT —
th = VarQ [DT|§t] (dft — —ft dt)

W2 =¢ — ds. (4.2.34)

T—t T—t
=7 tVarQ [Dr|&] dW,=, (4.2.35)

where conditional variance Varg [Dr|&] can be written as

Varg [Dr|&] = /000 (:c — ﬁt>2 fi(z)dz

::waﬂﬁﬂdx—<4mxﬂ@ﬁm)% (4.2.36)

Therefore, the dynamics of the asset price process (4.2.31) are given by

dS; =d <PtT[)t> = Dt dPir + Pir d[)t

. T
= TtPtTDt dt + PtT (TO-_ tVarQ [DT|£t] thQ>
= 7Sy dt 4+ Xy dW2 (4.2.37)
where the short-term interest rate r, = —% In Py, and the absolute price volatility >;r
is given by
ol
Yop = PtTT — tVar@ [Dr|&] . (4.2.38)

Brody et al. [2008b] point out that from the point of view of the market it is the
process {W,} that drives the asset price dynamics. In this way their framework resolves
the paradoxical point of view usually adopted in financial modelling in which {W,} is
regarded on the one hand as noise, and yet on the other hand also generates the market
information flow. Therefore, instead of hypothesising the existence of a driving process
for the dynamics of the markets, they are able to deduce the existence of such a process.
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Price Process of Single Dividend Paying Asset with Multiple Market Fac-
tors

We asume the more general case when the cash flow Dy is determined by a number of in-
dependent market factors, i.e. Dy = Ap (X4, ..., X). For each market factor we have
the vector-valued information process 3. = Xfoft + B¢, which generates the market
filtration. Write ¢®(z) for the a priori probability density function of the market factor
X§&. Calculations in the same manner as above ((4.2.25)-(4.2.27)) lead us to the following
expression for the conditional probability density functions f(z) fora=1,...,m

q (a:)exp (75 (z0%&r — 1a? (0*)° t)]
I ¢ (x)exp [75 (z0&r — 22 (0° ) t)] da

Then owing to the independence of the information processes {7 associated with the
market factors X&, a =1,...,m we find that

Sy = LyeryPrEq [Ar (X7, XP) |Es - -, 67

= ]1{t<T}PtT/ / Arp (21, ... 7$m>ft1<551) s [ (@) day - - - dag,. (4.2.40)

fi(x) =

(4.2.39)

Black-Scholes Theory from the Information-Based Perspective

It is interesting that in the information-based framework the standard Black-Scholes-
Merton theory can be expressed in terms of a normally distributed market factor and
an independent Brownian bridge noise process. We consider a limited-liability company
that makes a single cash distribution D7 at time T'. Let X7 be a standard normally
distributed random variable. We assume that D7 has a log-normal distribution under
the probability measure Q and thus can be expressed as

1
Dr = Dyexp |rT — §p2T + VT Xy |, (4.2.41)

where r and p are strictly positive constants. In this setting we assume that the Brownian
bridge information process is of the form

ft = XTO't + 6tT7 (4242)

and that the information flow rate parameter is of the special form o = 1/ VT. Using
this o and (4.2.27) where ¢(z) is the probability density function of a stardard normal

distribution, i.e g(x) = \/%exp [—%2], we find that the conditional probability density

function of Dr given & is of the Gaussian form

T (avVT — &)
fi(z) = mexp [_WI : (4.2.43)
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Using this conditional density, the value of the asset is given by
St = LperyPirEq [Dr|&]

o 1
~Lpenexp (= 0) [ Doexp {rT LT VT | o)

1
= Ly Doexp [rt - §p2t + p&] : (4.2.44)

In our case of normally distributed market factor X; and information flow parameter
c=1/ VT, the market information process is of the form

t
ﬁ + B,

and owing to the fact that Xr and {f;r} are independet it follows that Eg [£:&] = s
for s < t. This shows that {} is an F-Brownian motion. Hence setting W; = &, for
t €[0,7] in (4.2.44) we get the standard geometric Brownian motion model

& = Xr (4.2.45)

1
D; = Dgexp [(7‘ — §p2)t + th} : (4.2.46)

Reversely, starting with (4.2.46) and making use of the orthogonal decomposition of the
Brownian motion (see, e.g. Mansuy & Yor [2008])

t t
Wt - TWT —|— (Wt - TWT> 5 (4247)

the second term on the right side of (4.2.47) is a standard representation of the standard
Brownian bridge of duration 7', and it is independent of the first term of the right side
of (4.2.47). Hence if we set X7 = Wy /V/T and 0 = 1/+/T, we find that the right side
of (4.2.47) is indeed the market information process. The special feature of the Black-
Scholes theory therefore is the fact that the information flow rate takes the specific form

o=1/VT.

4.2.2 Gamma Bridge Information Processes

We assume the situation of example 4.1.2, i.e. the random variable X7 represents the
total accumulation of an irreversible gain process. In this setting we will assume that the
flow of information available to market participants is generated by an aggregate claims
process . For each t the random variable & stands for the totality of claims known at
t to be payable at T. Brody et al. [2008b] assume that this information process & is of
the form

& = Xoyr, (4.2.48)
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where the random variable X7 and the gamma bridge process {Vir},,<r are indepen-
dent. The motivation for this specific form of the accumulation process arises from the
idea that the gamma process can be used as a mathematical basis for describing the
aggregate losses associated with insurance claims (see references cited in Brody et al.
[2008b]).

For fixed T we define the process {vir}y<;<r by

Yir = L, (4.2.49)

YT
where {%}ogt <o 18 a standard gamma process with mean growth rate m. Here by a
standard gamma process {”Yt}ogt <o With rate m, defined on a fixed probability space
(Q,F,Q), we mean a process such that 7o = 0, and with independent increments such

that v, — 7, for 0 < s <t has a gamma distribution with mean and variance both equal
to m(t — s), i.e. the probability density function of the increment v, — ~y, is given by

xm(t—s) —1eXp [—ZE]

=1y, , 4.2.50
where I' [ is the standard gamma function that is for o > 0 defined by
['[a] = / * texp [—] d. (4.2.51)
0

From definition (4.2.49) we see that yop = 0 and ypp = 1. We refer to {vir}gepep as
the standard gamma bridge over the interval [0, T] associated with the gamma process
{1}. By computation it can be shown (see Brody et al. [2008b], Proposition 3.1) that
the random variable ;7 has a beta distribution with probability density function

=1 (1 _ m)m(T—t)—l

b() = Locacy 3 (T =] (4.2.52)
where B [a, (] is the beta function that is for p,q > 0 defined by
Bla,f] = /01 7M1 —2) ! du, (4.2.53)
and can be also expressed as -
Bla, (] = H. (4.2.54)

h

Using (4.2.53) we can easily express n'" moment of a gamma bridge process, for n > 0,

* Blmt +n,m(T —t)]

Bmt,m(T —t)]

Eq 1] = (4.2.55)
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Using the above results on gamma and beta functions, we can show that the mean and
the variance of the gamma bridge are given by

t
T’
HT —t)

Varg [yr] = o T ml) (4.2.57)

Eq [ver] = (4.2.56)

It is interesting to observe that the expectation of v, does not depend on the growth
rate m, and that the variance of ;- decreases with increasing m. The gamma bridge
has also remarkable property that for all ¢ € [0,7] the random variables ;*—; and ~yp
are independent. Some further propeties of gamma bridges can be found in Yor [2007]
and paralels between Brownian bridges and gamma bridges are treated in Emery & Yor
[2004].

The important feature of the aggregate claims process (4.2.48) is that {& },.,. has
the Markov property, i.e. o

Q (& <2lF}) =Q (& < 2l (4.2.58)

for all z € R, and for all s, t such that 0 < s <t < T. This result and its proof can be
found in Brody et al. [2008b] (Proposition 4.1, p.1810). Along with the fact that X7 is
Fr-measurable we thus find that

Eq | XrlFf| = Eq [Xrl&), (4.2.50)

where F¢ = 0 (£, : 0 < s < t) in accordance with (4.2.15). The value S; of the claim at
time ¢ is then given by
S, = PrEq [Xrl€] . (4.2.60)

In (4.2.48) the gamma bridge {yr} is independent of the random variable Xz, and
represents in some sense the noise that obscures the true value of Xt , while progressively
revealing that value as time passes . In the insurance context, & represents the totality
of claims known already at time ¢ to be payable at time 7. In the credit context, &
represents the default losses known at ¢ that will be realisable at T'.

4.3 Applications of the Information-Based Pricing
to Credit Risk Management

The information-based approach described in the Section 4.2.1 has many applications in
modelling of credit risk.
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4.3.1 Defaultable Discount Bond with Random Recovery

We assume the situation described in the Example 4.1.1 and that the filtration is gener-
ated by market information process & = Xrot + Gy for all t € [0, T].

Firstly we consider the simple case of a binary defaultable discount bond which at
maturity date pays a principal payment z; with a priori probability ¢; if there is no
default and xq with a priori probability qo in the event of default, where ;1 > x( . Using
(4.1.4), for the time zero price of this binary bond we can write

Bor = Por(zoqo + 71q1). (4.3.61)

We assume that the market data Byr and Fyr are known. Then the a priori probabilities
qo and ¢; can be worked out as

1 B 1 (B
o= <x1 _ ﬂ) o= (ﬂ _ ;1:0) . (4.3.62)

T1 — To Por T1 — To

Now we consider the more general situation when the defaultable bond has n+ 1 dif-
ferent possible payoffs o < x; < --- < z,, with a priori probabilities ¢; = Q (X7 = ;).
As we have mentioned above, the case of X; = z, corresponds with no default and
all the others cases with various possible degrees of recovery. Using the fact that the
market information flow F is generated by the market information process (4.2.19) along
with the Markov property of the Brownian bridge information process {{},.,., we can
rewrite the price process of this defaultable bond (4.1.4) as o

Bir = PirEq [Xr|&], (4.3.63)

for all t € [0, T]. The bond price can thus be expressed in the form

By = Py Z TiPit (4-3-64)

=0

where p; = Q (X1 = 74|&) is the conditional probability that the defaultable bond pays
out x; at T. This a posteriori probability can be calculated following steps parallel
to (4.2.24) - (4.2.27) but for the discretely distributed payoff Dy = Xp. Thus the
conditional probability can be worked out explicitly as a function of & and t by use of a
form of the Bayes formula analogous to (4.2.27), i.e p;; can be expressed as

q; exXp [% (miaft — %x?aztﬂ
>oico @i exp [ (2i0€ — 5aiot)]

Consequently on account of (4.3.64), for the price process of the defaultable zero coupon
bond we have

Pit = (4.3.65)

Z?:o T;q; €Xp [% (miagt — %x?g%)}

B = B o [75 (wi0€, — La20%1)]

(4.3.66)
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In particular, for the above case of the binary bond we have

Togo exp |7 (w00& — 2a30?t)] + m1q1 exp |75 (2106 — 3ai0%t) ]
Qo exp [7 (z00& — 3230°t)] + qrexp [75 (210& — 330°1)]

BtT = IT (4367)

Analogous to the treatment in the Section 4.2.1 ((4.2.32) - (4.2.38)), we can compute
the dynamics of defaultable bond, and it can be written as

dBtT = TtBtT dt + ZtT th, (4368)

where 7; is the short rate and the absolute bond volatility is given by

ol
Sir = Prrge—Varg [Xrlg/
oT & 5o
= PtTT 3 ZZ:(; (x; — Xi)"pat (4.3.69)

Here X, = Eg [X7]&]. It should be apparent that as the maturity date is approached
the absolute discount bond volatility will be high unless the conditional probability has
most of its mass concentrated around the ”true” outcome. Since PtT%Xt = Y7, the
price process Byr is increasing in &;.

One of the attractive features of formula (4.3.66) is that since By is expressed ex-
plicitly as a function of the market information process, simulation of the dynamics of
the bond price process can be carried out quite efficiently. All we need to do is to sim-
ulate the dynamics of {&}. We choose at random a value for Xt in accordance with
the a prior: probabilities, and a sample path for the Brownian Bridge. The way how to
simulate a Brownian bridge is Gy = W; — %WT as in the decomposition (4.2.47). So the
present framework allows for a very simple and natural simulation methodology for the
dynamics of defaultable bonds and related structure.

The parameter o governs the speed at which the bond price converges to its terminal
value. In the case of a binary bond with price process (4.3.67) this can be seen as
follows. We suppose for instance that in a given run of the simulation the actual value
of the payoff is X7 = xy. Hence for market information process in this case we have
& = xoot + Byr and thus for { By} we have

Toqo €xp [z (200 Byr + S280?t)] + 21q1 ex - (2108 + moz10%t — Lato’t)]

Bir = Pir T 1 T[ ~ i
o exp [7= (200 Bir + 3230%t)| + quexp 75 (210 By + zoz10%t — S33021)]

(4.3.70)
When we divide the numerator and the denominator by the coefficient of xqg, the result
is

Zoqo + T1q1 €XP [—Lt (5 (21 — l‘o) ot — (x1 — o) UﬁtT)]

do + q1 €xXp [—TL (% Ty — ) 0215 — (21 — x0) UﬁtT)}

BtT — PtT (4371)
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Hence the convergence of the bond price to the value x( is exponential. A similar
argument shows that the bond price converges to x; provided X = x;. The parameter
o%(x1 — mg) governs the speed at which the defaultable discount bond converges to its
destined terminal value. In particular, if the a priori probability of no default is high
(say, ¢1 =~ 1), and if ¢ is very small, and if in fact X7 = ¢, then it will only be when ¢
is close to T that serious decay in the bond price will set in.

4.3.2 Options on Defaultable Bonds

In this section we shall perform a method which is based on the concept of an Arrow-
Debreu security. An alternative method where the price of an European call option
written on a defaultable bond with discrete payoff is calculated by use of a change of
measure technique to introduce the so-called bridge measure can be found in Section 8
of Brody et al. [2007], and for the same method but with continuous payoff we refer
to Rutkowski & Yu [2007]. We shall see that the value of the information flow rate
parameter ¢ can be inferred from option price data.

The value at time 0 of an European call option exercisable at time ¢ > 0 on a
defaultable bond with maturity date T" > ¢ and strike price K is given by risk neutral
formula

Co = PuEqg [(Bir — K)']. (4.3.72)

Using formulas (4.3.64) and (4.3.66) for the bond price Byr, the valuation formula (4.3.72)
for the option can be rewritten as

- n +
Co = PoEg (PtT Z TiPit — K) ]
L i=0

([ Cimaiexp [ (wo& — o))\
S\ —K |- 4.3.
0t~Q _( tT Yoo Qi €Xp [% (xio'ft — %x?a%ﬂ (4.3.73)

The call option price can thus be viewed as an exotic derivative with payoff h(§;) at
maturity t. The underlying of this derivative is the information available to market
participants. The price of such an information derivative is given by

Vo = PoEg [h(&)] (4.3.74)
We first look at an abstract security expiring at time ¢ with the payoft
9(&) =0(& —v), (4.3.75)
where ¢ is the delta “function”, i.e. . To work out the price in this case we use the
Fourier representation of the delta function
1 [ _
80(& —y) = %/ exp [1(& — y)u] du. (4.3.76)
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As we mentioned above, conditional on a specific value of the random variable X1 the
information process {&} is normally distibuted. Along with the fact that the random
variable X7 can take only a finite number of different states this ensures that the expec-
tation in (4.3.74) and the integral in (4.3.76) can be interchanged. Let us write Ay ()
for the time zero value of the contract with payoff (4.3.75). The value of this elementary
information security is given by the discounted risk neutral expectation of the payoff

(& —y), ie
Ao(y) = PoEq [6(& — v)]
- pot_/ TR [ du. (4.3.77)
Conditional on a specific value of the random variable X7 = z; the information process

{&} is normally distibuted with mean x;ot and variance ¢(7° — ¢)/T. This leads us to
the relation

Eq [¢%"] = EQ [Eq [ X7]] (4.3.78)
14T - 1) 2}
= g q; exp {1m oty — ————u”|. (4.3.79)
2 T

Here we have used the known expression of characteristic function of a normal distribu-
tion. Inserting this result into (4.3.77), swapping the order of integration and sumation,
and then working out the integral we obtain

(zjot — )T

The calculation above served the purpose of illustrating an application of the information
based approach to the pricing of an Arrow-Debreu security. The value of a general
information derivative (4.3.74) can then be expressed as a weighted integral where the
elementary information securities with Arrow-Debreu price Ay (y) play the role of the
weights, i.e.

(4.3.80)

Vo = Puq [h(&)] = PuEq { [ st6—unway
_ / " Au)h(y) dy (4.3.81)

Setting h(&) = (B — K)' we are in the position to calculate the value Cy of the
call option by rewriting (4.3.73) in terms of A(y) = Ao:(y)/Fo: which can be called the
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non-discounted Arrow-Debreu density, i.e.
i Tt OXP 7 (w06 — 52io®t)] '
S0 @i exp [ (zio& — $x202t)]
o n T (roy — Lo20t *
_ / Aoa) (BTZZO 2 5P [ (nioy = goio)] K) "

> @i exp [ (wioy — jai0?t)]
_ < (o Yiomigiexp [z (rioy — zaio’t)] !
= P()t/ <PtT Zn gD [T : (CL’ p— 1 2021&)} — K) A(y) dy. (4.3.82)

Observing that the Arrow-Debreu density A(y) is a positive function, we can rewrite
(4.3.82) as

Co = P / N (Pthz;”WeXp L7 (zioy ~ peie™) A(y)—KA(y)) dy. (4.3.83)

Dm0 @i exp [ (zioy — gxio?t)]
)

Using (4.3.80), for the density A(y

Co - POt]EQ

—00

o0

we can express the density A(y) as

(y) = ext { 2t(T—t)y] om t(T — t) Zi:o € ExP [T—t (m Y 2% t)}
4.3.84
1 ( )

For sake of brevity we introduce ¢; = ¢; exp [TL (xzay — ixza )} and we plug (4.3.84)
into (4.3.83). Hence we obtain

/ T
POt — t / (exp 2t T _ t) :| ; (Pthz K) ta> dy
[T = T I\
:POt m/w (;(]Z (Pthi—K)exp [—m (y—:L‘iO't) :|) dy

(4.3.85)

In case that Prz, > ... > Pypxg > K the option is certain to expire in the money and for
value of the option we have Cy = Byr — Py K, and in case that K > Pyrx, > ... > Py
the option expires out of money hence Cy = 0. We consider the case where the strike
price lies in the range Pirx;11 > K > Pyraj for some value of j = 0,1,...,n. In this case
the option can expire in or out of money and there exists a unique critical value of y,
above which the argument of maximum in the expression (4.3.85) is positive. Writing g
for this critical value, which can be obtain by numerical methods, we define the random
variable

_ y — x;0t
Z(z;) = 1120 (4.3.86)
H(T—t)

T
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and we note that this random variable is normally distributed with zero mean and unit
variance. Then the equation (4.3.85) takes the form

- 1 o0 22
Co= Py Z qi (Pirx; — K) —/ exp [—5 dz}

=0 27T Z(wi)

= Py i ¢ (Prx; — K)® (—Z(mi)), (4.3.87)

where ® denotes the cumulative distribution function of the standard normal distribu-
tion. This semi-analytic option pricing formula can be regarded as fully tractable for
practical purposes.

In the case of a binary defaultable bond paying either z or x; at maturity we obtain
a closed-form expression for the price of the call option. The result for the option price is
very similar in form to the Black-Scholes formula. We start with formula (4.3.85) which
can be in case of a binary defaultable bond rewritten as

Ct=Po s [ (0 (Pra— K)esp [ 5 = o]

o (y — xlat)2]>+ dy. (4.3.88)

+q1 (Przy — K) exp {—m

As above we write g for the critical value which is obtained by setting the argument of
maximum function above to zero, i.e.

qo(Pirzo — K) 1,0 T .
l 2 N - - 4.3.89
n (Ch(K — Py) + 20 (961 fﬂo) T T _ ta(wl x0)7, ( )

where 7 = jf—irt Consequently, realizing that y —z;0t, © = 1, 2 have a normal distribution

with zero mean and variance t(T' —t)/T’, expression (4.3.88) can be rewritten as
Co = Por [1 (Perwy — K) (") — qo (K — Pirwo) @ (d7)] (4.3.90)
where d™ and d~ are given by

a(K—Pirx1) | + 1 o 2 2
+ In (tIo(PtTwo—K) - 2(:131 )"0 T

d- = TN . (4.3.91)

The information flow rate o thus plays a role very similar to that of the volatility pa-
rameter in the Black-Scholes formula.
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b
Let us define the option vega in this model by V = %. For the vega we then obtain
a positive expression

V:

A
exp [—rt — 5} (21 — 20) \/TQO(h (Pray — K) (K — Pirxo), (4.3.92)

1
V2T
where A is given by

A= ! _ (m <Q1(K — Pthl)))Q + Ly = )20 (4.3.93)

(x1 — m9)202T qo(Pyrxo — K) 4

Thus Cj is an increasing function of the information flow rate o. In other words, the
more rapidly information regarding the true value of the bond payoff is released, the
higher the premium of the call option. Another conclusion is that bond option prices
(or, equivalently, the prices of caps and floors) can be used to recover an implied value
for the information flow rate o, and hence to calibrate the model.

Another important feature of the information-based model is that options positions
can be hedged with a position in the defaultable bonds. This is because the option price
process and the underlying bond price process are one-dimensional diffusions driven by
the same Brownian motion. The number of bond unites needed to hedge a short position
in a call option is given by the option delta A = 20 In the case of a binary bond,

dBor
making use of (4.3.90) and (4.3.62), we can write the ngtion delta as

(Piray — K) (d¥) — (K — Birao) @ (d7)

Pyr(z1 — )

A = (4.3.94)

4.3.3 Defaultable n-coupon Bond with Multiple Recovery Lev-
els

We consider the case of a defaultable coupon bond where default can occur at any of
the n coupon pre-specified payment dates Ty, where kK = 1,...,n. In this section the
market factors X7,, j = 1,2,..., k are modelled as independent binary random variables
taking the value 0 in case of default or 1 if there is no default, with a priori probabilities
q[()j) (default) and qgj) (no default). The constants ¢ and p denote the coupon and
the principal. In the event of default at the date T we assume the recovery payment
Ri(c+p), where Ry, is a percentage of the owed coupon and principal payment. At each
date T}, there occurs a cash flow Hyp, given by

k k—1
Dy, =c|[ Xz, + Relc +p) [[ Xr,(1 = Xz, fork=1,,...,n—1, (4.3.95)
j=1 j=1
n n—1
Dy, = (c+p) [ [ Xz, + Ru(c +p) [ [ Xr,(1 = Xz,), for k=n. (4.3.96)
j=1 j=1
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In this case we introduce a set of market information processes given by
&Tj = XTjO'Tjt + 6tTj7 (4397)

and denote by ¢ the market filtration which is generated collectively by the market
information processes. Using (4.1.3), we can write the information-based price process
of this defaultable n-coupon bond as

n—1
Si =" Lyery P, Eq [Dmfﬂ + P Lger, Eg [DTn]}"f} . (4.3.98)
k=1

As an ilustration we assume the case of two outstanding payments as in example 4.1.4.
In this setting we have two market information process of the form (4.3.97) for 7 = 1,2,
and cash flows (4.1.9), (4.1.10). Then for the price of this bond we have

Sy = Lyery Py [€Eq [ X1y [§ey] + Ri(e +p)Eqg [1 — X7 [&iry ]

+ ]1{t<T2}PtT2 (C + p) (EQ [XTllgtTJ E@ [XT2|§tT2] + R2E@ [XTI |§tT1} EQ [1 - XT2|£tT2]) )
(4.3.99)

where the two expectations appearing here can be calculated explixitly using an analogy
0 (4.3.65). Thus we have

(J') exp [% (aT.gtT. - %0%,15)}

Eq XT ‘ftT szp@t o ) )
q¢’ + ¢ exp [T t<U€tT - oTtﬂ

(4.3.100)

In case of two outstanding payments we hence obtain a two-factor model, the factors
are the two independent Brownian motions arising in connection with the information
processes. In the case of n payments we obtain an n-factor model. A further extension
can be done by introducing of random recovery rates.

4.3.4 Credit Default Swaps

In the information-based framework swap-like structures can also readily be treated.
We assume the situation outlined in the Example 4.1.6, that is, we assume cash flows
(4.1.13) and (4.1.14) from the point of view of the seller of protection. Using risk neutral
valuation formula (4.1.3) for the value of the default swap we get

Vi = gPtTlEQ [XT1 |§tT1] - (p - Rl(c + p)) PtT1 (1 - E@ [XTI |§tT1D
+gPtT2EQ [XTl ’£tT1] EQ [XTzlftTQ]
- (p - RQ(C + p)) PtTQEQ [XT1 |€tT1] (1 - EQ [XTz‘Sth]) ’ (4'3'101)
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where expectations are given in (4.3.100). If we assume a more general case where g
denotes the premium payment and n denotes the payment made to the buyer of the
protection in the event of default, then the price of a default swap written on a reference
defaultable two coupon bond is given by

Vt = - nPtTl + ((g + n>PtT1 - nPtT2) E@ [XT1|§tT1]
+ (g + n)PtT2]EQ [XTI |§tT1] EQ [XT2 |§tT2] . (4‘3'102)

Brody et al. [2007] point out that a similar approach can be used in the multi-name
credit situation. They also treat the problem of valuation for a basket of defaultable
bonds, when there are correlations in the payoffs. Here the number of independent
factors in general grows rapidly with the number of bonds in the portfolio. Consequently,
a market which consists of correlated bonds is in general highly incomplete. This fact
provides an economic justification for the creation of products such as CDSs and CDOs
that enhance the hedgeability of such portfolios.

4.4 Applications of the Information-Based Pricing
to Insurance and Credit Portfolio Management

In this section we derive an expression for the value process of a contract that delivers
the cash flow Xp at time T', when the market filtration is generated by the accumulation
process (4.2.48). We also derive the value of general reinsurance contracts that at some
fixed time t gives the contract holder the option to commute the claim X7 by paying a
fixed amount K at t.

4.4.1 Aggregate Claims

We assume a contract that pays X at T', which is assumed to be positive and integrable
random variable. As we have mentioned above, Xt represents the total accumulation
of irreversible gains processes. These may be the totality of the payments made at T in
settlement of claims arising over the period [0, 7], or total losses in a credit portfolio.

Firstly, we also assume that Xp has a continuous distribution. The market filtration
is generated by an aggregate claims process

& = Xryer, (4.4.103)

where process {7} is a standard gamma bridge under the measure Q with parameter
m. This gamma process represents in some sense the noise that obscures the true value
of X7. As we have mestioned above, In the insurance context, & represents the totality
of claims known already at time ¢ to be payable at time T and in the credit context, &
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represents the default losses known at ¢ that will be realisable at T'. It is assumed that
X7 and the gamma bridge are independent. Thus for the market filtration we can write
Fi=0(& :s€0,t]). The value of the contract at ¢t < T is given by S; = PirEq [X7|F).
The fact that Xr is Fp-measurable along with the fact that the process {¢;} has the
Markov property leads us to valuation formula

Next, we shall compute the conditional expectation in (4.4.104) in the same manner as
presented above in this chapter. So that the conditional expectation in (4.4.104) takes
the following form
Eq [Xrl&] = / ofi(x) dz, (4.4.105)
0
where f;(x) is the conditional probability density for the random variable Xr , i.e.

0
fe(@) = fxpie, (2]&) = 7.2 (X7 <z2[&). (4.4.106)
Using Bayes’ formula, we can write this conditional density in the form

2ly) = q(x)fﬁt\XT (y’l’)
fxrle (xly) =@ feer (y]2) 4o (4.4.107)

where ¢(z) denotes the a priori probability density function for Xz, which is assumed to
be known, and f¢, x, (y|z) denotes conditional density of &, valued at y, which is given
by

0 0
Jeuxr (ylz) = 8_yQ (& <yl Xpr=2x)= a_y@ (Xryer < y|Xr =12)

0 Y 0 :
= — < L) = —
dy <%T :B> ay/o blu) du

1
= b (g) . (4.4.108)
xr \x
We recall that the random variable v, has a beta distribution with probability density
function b that is given by (4.2.52). Thus (4.4.108) can be rewritten as

1 i/_c)mt_l (1 . %)m(T—t)—l
f§t|XT (y‘x) = E]l{y<z} (

Bmt,m(T —t)]
1-mT 2 \m(T—t)—1
e it Gl ) 4.4.109
= B It m(T — 1) (4.4.109)
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The conditional density (4.4.107) is thus given by

—1 q(z)z' T (z — &)mT 0!
ft(x) = Ha>&} f;o q(%):ljkan(m _ gt)m(T*t)*l dz’

(4.4.110)

Hence, inserting (4.4.110) into (4.4.105), we obtain from (4.4.104) that the value S; at
time t < T of the aggregate claim that pays the continuous variable X7 > 0 at time T
is given by

Je a(@)a? " (z — &)1 dg

Sy = Pir—=s5 : 4.4.111

T e T — T )

When X7 is a discrete random variable taking values z;, ¢ = 1,...,n with a priori
probabilities p;, a similar calculation gives

§, = Py zizo Mevey@iti ™ (2 = &) (4.4.112)

Z?:O ]l{mi>5t}Qix}7mT($i - gt)m(Tft)fl .

It is straightforward to see that if ¢ tends to 7" the expression (4.4.112) converges to the
correct terminal value.

Since the value S; of the reserve at time ¢ is given explicitly as a function of the
accumulation & (the cumulative gain so far achieved), it becomes a straightforward
matter to simulate trajectories of the reserve process, and hence also to value financial
products that depend in a general way on the value of the reserve. The parameter m
can be interpreted as the information flow rate for the market factor X.

4.4.2 Valuation of Reinsurance Products

Firstly we assume the case of a simple reinsurance contract that pays out (Xp — K)7*
at T for some fixed threshold K. The value process of this simple stop-loss reinsurance
policy is given by Cyr = Eq [(Xr — K)T|&] and using the results of previous section it
can be calculated as follows

Cir = Pt /OO (x — K)Jr fi(x)dx
0

JZO q(x) (I i K)-i- CL,l—mT(x _ gt)m(Tft)fl dzx
S qlo)at T (g —g)ymTD-Tdy

= Py (4.4.113)

for t < T. Once a time ¢ has been reached such that & > K, then Cyr = Py (S; — K)
for all s such that s € [¢,T], i.e. once a sufficient number of claims have accumulated
the option is sure to expire in the money. In the case of a large credit portfolio, Cir has
the interpretation of being the value at ¢ of a contract that pays at T" an amount equal
to the total loss incurred by the portfolio, in excess of some threshold K.
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A more general situation can be assumed, when we consider a contract that at a
fixed time ¢t < T allows the firm (policy holder) the option of commuting the claim Xz
in exchange for a pre-fixed settlement K. For the time zero value of such a option we

have
Cot = Pulg [(S: — K)'], (4.4.114)

where S; is time ¢ value of the claim paying Cr at T'. In the context of a credit portfolio,
S; represents the value at t of a contract that pays an amount equal to the accumulated
losses in the portfolio at time 7. Then CYy, is the time zero price of a contract that pays
at time ¢ the excess of S; over K. Since the payout of the option is function of &, we
can use the concept of Arrow-Debreu security mentioned in the Section 4.3.2. Thus the
value at time zero of a simple option on the reserve (4.4.114) takes the form

Cor = Puq [(5(,6) — K)']
- ke | [ l6 -0 st - 1" dy

= /OOO Ao(y) (S(t,y) — K) dy. (4.4.115)

Here we have written Ao (y) = PoEqg [0(& — )] for the price of an Arrow-Debreu security
on the aggregate gains process, with delta function payoff. Using Fourier transformation
this price can be written as

1 o0 . .
A()t(y) — P(]t%/ e—lquQ [elftu] du

_ pm% / e Eq [Eq [¢ ¥ X7]] du

1 o0 . o0 .
= Pot_/ e V¢ </ q(z)Eq [e 7] d:v) du.
27 —00 0

Swapping the order of integration, using the inverse Fourier transform of the character-
istic function and using the fact that conditional on a value of the random variable X
the gamma bridge process vy has density function specified in (4.4.109) we derive the
following expression for the price of the Arrow-Debreu security

mt—1

Ap(y) = POtB [mt%/m(T ) /yoo q(z)z' ™" (z — y)m(T_t)_1 dz. (4.4.116)

Inserting this result and expression (4.4.111) into (4.4.115) we therefore have the follow-
ing expression for the option price

Py
B [mt, m(

T—1)] /O ) y™ ( /y N q(z)(x Py — Kz ™™ (z — y)mT-0-1 dx) ! dy.
(4.4.117)

Cot =
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4.5 Conclusions

We let ¢ denote the critical value of y such that the argument of maximum function
vanishes. After some arrangements we are able to obtain the following option price

Cor = Py / ) (@Pr — K) B (g) dz, (4.4.118)

T

where
B fal th,1(1 _ Z)m(Tft)fl dz

o fol Zmi=1(1 — z)m(T—1)-1 dz’

is the complementary beta distribution function.
The option price process Cy; for 0 < s <t < T can be calculated by a similar method.
The result is as follows

B (a) (4.4.119)

Ca = Py /"O fs(z)(zPr — K)B (i : ?) dz. (4.4.120)
9] S

The derivation of this result can be found in the original paper by Brody et al. [2008b].
This expression lets us simulate trajectories of the value of the option. Note in particular
that C' is given as a function of &;.

4.5 Conclusions

Analytic solutions to valuation problems are a rarity in finance, but the gamma process
has, like Brownian motion, a set of special mathematical properties that make this
possible. In the case of Brownian motion it is the additive decomposition of the Brownian
motion into orthogonal components consisting of its terminal value and the associated
bridge process. In the case of the gamma process there is a corresponding multiplicative
decomposition.

The information-based asset pricing methodology makes it clear that the modelling
of the filtration itself should be regarded as an essential component of pricing theory.
This can be achieved by the introduction of the ideas of market factors and information
processes. We have shown how closed-form solutions for the price processes of assets can
be obtained in a number of different examples, and that complex cash-flow structures can
be modelled efficiently with a good deal of flexibility. The price process of a defaultable
zero-coupon bond is given by a closed-form expression that leads to an efficient simulation
methodology. In the case where a binary defaultable bond is the underlying, the price
of a call option can be exactly computed, and turns out to be of the Black-Scholes form.
The information-based models for binary defaultable bonds can be calibrated by use of
bond options.
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