
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Author: Ondrej Mihályi

Development of browser-based desktop-oriented web
applications

Department of Software Engineering

Supervisor: RNDr. Petr Hnětynka, Ph.D.

Study program: Computer Science

Acknowledgments

I would like to thank my supervisor, RNDr. Petr Hnětynka, Ph.D., for his
patient support, useful commentaries and corrections, and valuable advice.

I declare that I have written this master thesis on my own and listed all the used
sources. I agree with lending of the thesis.

Prague, April 16, 2009 Ondrej Mihályi

CONTENTS

Chapter 1: Introduction..6

1.1 Motivation...6
1.2 Objectives of this thesis...7
1.3 Structure of this document...7

Chapter 2: Evolution of rich web applications...8

2.1 Evolution of internet standards and popular technologies............................8
2.2 Rich internet applications..8
2.3 Convergence of Web and Desktop applications..9
2.4 On the gap between web and desktop applications.....................................11
2.5 Pervasive adaptable rich internet applications..12
2.6 Challenges in development of desktop-oriented web applications.............14

2.6.1 Data persistence and replication..14
2.6.2 Adaptability to ambient environment..15
2.6.3 Manageable development and deployment of application..................17

Chapter 3: Architectural model and Implementation...18

3.1 Introduction to the development framework for PARIAs...........................18
3.1.1 Model of PARIA deployment..18
3.1.2 Isolation of data layer from logic...19
3.1.3 Synchronization and storage of data..21
3.1.4 Service oriented features..24
3.1.5 Final overview of the framework architecture.....................................26

3.2 Implementation of the development framework...27
3.2.1 Main module..27
3.2.2 Data layer package...29
3.2.3 Filesystem module...29
3.2.4 Persistence module..30
3.2.5 Internal Derby database module..32
3.2.6 Hibernate synchronization module..33
3.2.7 Servlet bridge...35
3.2.8 Internal HTTP server module..37

3.3 Development tool based on Eclipse platform..38
3.3.1 Description of Eclipse PDE platform..38
3.3.2 OSGi module configuration and development....................................38
3.3.3 Running and debugging applications within the IDE..........................39
3.3.4 Building the final application..40

2

3.3.5 Building web application package...41
3.3.6 Building desktop application package...42
3.3.7 Installation as a desktop package from within a web application.......46
3.3.8 Tooling for development of user interfaces...47

Chapter 4: Realization of a prototype application..49

4.1 Prototype application...49
4.1.1 Architecture of prototype application..49
4.1.2 Data layer...51
4.1.3 User interfaces of prototype application..52

4.2 Evaluation of PARIA framework in the context of prototype application. .54

Chapter 5: Conclusion and future work...56

5.1 Conclusion and evaluation..56
5.2 Future work...56

 References...58

 Appendix...60

 List of figures...60
 Acronyms and terms...60
 Enclosed CD...62

3

Title: Development of browser-based desktop-oriented web applications

Author: Ondrej Mihályi

Department: Department of Software Engineering

Supervisor: RNDr. Petr Hnětynka, Ph.D.

Supervisor's e-mail address: hnetynka@dsrg.mff.cuni.cz

Abstract: In accordance with new trends in development of web-based

services, applications that are running on the Internet tend to be more complex
and feature rich. This happens while computers and network bandwidth are
becoming more and more capable. We may see lots of different, often inventive,
approaches in rich web application development, which try to surpass the constrai
nts of web environment. Unfortunately, few technologies or tools provide support
for ubiquitous access to data. This thesis aims to propose a development method
of rich web applications, which transparently provide ubiquitous access to user
data in many various environments and conditions.

Keywords: web applications, Java, ubiquitous data, adaptability to environment,

pervasive computing

Názov práce: Vývoj desktopovo orientovaných webových aplikácií

dostupných cez webový prehliadač

Autor: Ondrej Mihályi

Katedra (ústav): Katedra softwarového inženýrství

Vedúci diplomovej práce: RNDr. Petr Hnětynka, Ph.D.

E-mail vedúceho: hnetynka@dsrg.mff.cuni.cz

Abstrakt: V súlade s modernými trendami vývoja webových služieb, aplikácie,

ktoré bežia na internete, sa stávajú komplexnejšími a bohatšími na vlastnosti. To
všetko sa deje, zatiaľ čo sa počítače a kapacita sieťových prenosov čoraz viac
zlepšuje. Môžeme pozorovať veľa často inovatívnych spôsobov vývoja aplikácií,
ktoré sa pokúšajú preklenúť obmedzenia webového prostredia. Žiaľ, málo
technológií alebo nástrojov poskytuje podporu dostupnosti k dátam z
ľubovoľného prostredia. Táto diplomová práca má za cieľ navrhnúť metódu pre
vývoj košatých webových aplikácií, ktoré poskytujú transparentný prístup k
užívateľským dátam v rôznych prostrediach a podmienkach.

Kľúčové slová: webové aplikácie, Java, všadeprítomné dáta,

adaptívnosť k prostrediu

4

CHAPTER 1: INTRODUCTION

1.1 Motivation

In accordance with new trends in development of web-based services,
applications that are running on the Internet tend to be more complex and feature
rich. This happens while computers and network bandwidth are becoming more
and more capable. We can clearly see the ascend of AJAX as a standardized
technology, which helps to create interactive and highly responsive web
applications. Such technologies help to cope with the natively request-response
based character of the HTTP protocol for serving pages. This trend is further
backed by growing number of JavaScript libraries, which ease the development
of dynamic web components. The rise of multiple third-party widgets
and component libraries, which seek to provide the desired eye candy to rich
multimedia applications, is also evident. Moreover, on many occasions,
lots of more or less standardized browser plugins, such as Adobe Flash, Java
applets, or Microsoft Silverlight, are widely utilized to bring media
and interactivity directly to the user in a pleasant manner.

In the light of these circumstances, contemporary form of the Internet is often
vastly different from what it used to be like when it was in its beginnings. Initially,
it was designed around simple technologies like HTTP and HTML. Today,
modern web applications have the potential to compete with standard desktop
programs, and still provide easily accessible Internet-based services. Such
applications create a comfortable abstraction of an application as a tool accessible
anywhere (running on Internet), without the need to tie it to a specific computer.
However, nowadays many standardized technologies are far beyond developers'
needs to create highly usable, media-centric, visually appealing web applications.

As a result, we may see lots of different, often inventive, approaches in rich
web application development, which try to surpass the constraints of web
environment. Many of them go positively hand in hand with new evolving
standards produced by organizations such as W3C, and technologies provided by
many commercial vendors. Unfortunately, few technologies or tools provide
support for ubiquitous access to data, and possibly no substantial effort has been
made to bring such tools to Java platform yet. Tools to help develop applications
deployable both in standard web environment and on a desktop are also scarce.

Chapter 1: Introduction 5

1.2 Objectives of this thesis

The thesis aims to propose a development method of rich web applications,
targeting their ability to run in both web and desktop environments. This
proposition is based on analysis of contemporary technologies and suitable
development strategies. The method should simplify development of applications,
which transparently provide ubiquitous access to user data in many various
conditions. Among these conditions are connectivity to a central network storage
and type of available runtime environment.

The emphasis is put on developing web applications, which rely only on
features available in standard web browsers. Applications may be extended by
installing a runtime support in a desktop environment. Provided that, they can
make native features of local system accessible to users and behave like usual
desktop programs. They also can provide a local storage of data in case
of connection outage.

The development method integrates suitable approaches, standards and Java
opensource technologies. It is supported by a development framework and tools
implemented and described in the thesis. These simplify and assist in development
of ubiquitous web applications, which are based on Java platform and common
Java and web standards.

1.3 Structure of this document

Chapter 2 discusses evolution of internet applications and their convergence
to desktop applications. It clarifies common terms and analyzes the differences
and similarities between web and desktop applications. The rest of the chapter
introduces a new term for the next generation web applications and discusses
the challenges needed to overcome to build such applications.

Chapter 3 proposes architectural model and a method to develop these
applications. It discusses and supports the solutions to the challenges mentioned in
Chapter 2. It later describes a development framework integrating these solutions
into a development platform. Chapter 3 is finalized by introduction
to development tool to support development of applications based on
the framework.

Chapter 4 describes how the framework from Chapter 3 can be used to build
a functional application. On an example of a prototype application, this chapter
also evaluates the advantages of using the framework over other available
frameworks and tools.

Chapter 1: Introduction 6

CHAPTER 2: EVOLUTION OF RICH WEB APPLICATIONS

2.1 Evolution of internet standards and popular technologies

In the beginnings of internet era in early 1990-ties, there were no web applications
as we know them now. Internet standards evolved in order to support simple
request-response WWW sites. These were based on HTTP protocol for transport
of web pages, HTML language to describe and present the content. Later,
additional standards were specified, which enabled growth of web sites into
interactivity through scripts and visual richness (animated images, mime-types,
etc.). Soon it was discovered, that richer applications are managed better through
dynamic scripts rather than using plain html files. Thus, web sites evolved into
more complex internet portals, making use of both browser and server side
scripting languages (Javascript, PHP, Perl, Python). After asynchronous XML
communication had been introduced in HTTP protocol, it represented a significant
step in interconnecting browser and server script engines. It alleviated
applications of the necessity to retransfer whole state of user interface upon
posting some information to the server. Thus applications began to evolve into
more and more interactive, feature-rich and responsive services. The abrupt
expansion and acceptance of AJAX as a new approach to creation of web
applications confirms that asynchronous communication had been eagerly awaited

Java, as a web platform, has been evolving for years in parallel to the evolution
of modern technologies. It offers solutions not only targeting regular web
applications, but it has continually evolved into mature enterprise platform. It has
support for majority of internet-related technologies and even brings unique
concepts in application development and deployment. Servlets, JSP, EJB,
Web Start, Java FX and Java browser applets are some of those worth mentioning.

2.2 Rich internet applications

Most modern web applications with rich user interface are referenced at as rich
internet applications. In [Mor08], based on a Macromedia white paper [All02],
the author summarizes RIAs as internet applications, which should support as
many aspects as possible of a classical Desktop Application offering a “rich user
experience”. Further in the text, he remarks that the definition of RIAs does not
mention a Web browser. This implies that the browser functions only as a widely

Chapter 2:Evolution of rich web applications 7

used media and a common platform to access the internet application. It is not
required that all RIAs are browser based.

Many existing rich web applications are built around more or less standard
and widespread browser extensions or plugins. These plugins, if built solely on
such extensions, could be possibly deployed and run even outside of a browser. In
fact, there already are efforts to provide no-browser runtime environments for
RIAs. It is possible by providing a standalone version of a certain browser plugin,
as presented by Adobe AIR. Another solution is to provide whole underlying
internet browser engine that can be encapsulated into the application (Mozilla
XULRunner). Or a web application can be encapsulated into it a container
to come closer to desktop experience (Mozilla Prism, and also Adobe AIR).
In Java world, Java FX provides a solution to build applications, which are
executed primarily outside of browser through Java Web Start, with plans
to support deployment through Java Applets. Thus the solution is to provide
runtime support in browser and outside of browser, similarly to Adobe AIR.

2.3 Convergence of Web and Desktop applications

To provide richer user experience, many web applications present user interface,
which resembles interface of classical desktop applications (DA). Some web
applications even tend to be a web alternative to DA and their user interface
strives to be as complex and feature rich as desktop user interfaces. There are
tools to create web applications close to as responsive as desktop counterparts,
to bring some form of data storage and user customization, even to access local
desktop environment.

In the thesis, we will refer to some widely used but not commonly defined
terminology regarding web and desktop paradigms. These terms are often vaguely
used and their exact meaning varies in different conditions. We will comply with
web and desktop naming conventions summarized in [Mor08].

Desktop applications are applications that need to be installed on an operating
system. A classical desktop application is, for example, a word processing
application like Microsoft Word, or a graphics editor like Adobe Photoshop.
Desktop applications with Internet connection or Internet-enabled applications
are applications that use network support, but also run offline, perhaps with
limited functionality. For example an e-mail client like Mozilla Thunderbird
or Microsoft Outlook.

Chapter 2:Evolution of rich web applications 8

On the other hand, there are classical websites, Web 2.0 applications and thin
clients. They rarely have to be installed by a user. They can be started and loaded
via network. A running connection is mostly required to use them. Websites,
Web 2.0 applications or thin Clients very often run in a Web browser.

The technologies described by the term Rich Internet Applications (RIA) are
located in the middle or between more Web-related and more Desktop-related
technologies. Many technologies and kinds of applications can be summarized as
RIAs depending on the point of view. Some run inside a Web browser, others
without. But a common characteristic aspect is, that RIAs benefit from the best
of traditional Desktop Applications and of Web applications.

The convergence of desktop and web applications is exemplified by mature
rich internet applications, which offer functionality nearing the features of desktop
applications. Such web applications are often embedded into their own web
universe and provide the same functionality and data all over the Internet.
Examples of such applications are office tools in Google office package. These
tools provide full featured browser-based user interface to edit documents in
similar way to desktop office packages, such Microsoft Office. The difference is
that the documents are stored in remote web folders, so that they are accessible
anywhere.

Chapter 2:Evolution of rich web applications 9

Figure 1: RIA categorization (from [Mor08])

RIA
(Rich Internet Application)

Desktop
related

Web
related

Ranges of RIA definition

WebDesktop

cl
ie

n
t

p
ro

ce
ss

in
g

se
rv

er
 s

id
e

p
ro

ce
ss

in
g

Classical
Desktop

Application

Internet-enabled
Application

Smart Client

Web 2.0
Thin

Client
Classical
Websites

2.4 On the gap between web and desktop applications

Traditional web applications often have to tackle with problems unknown
to desktop applications. They are unable to run without the Internet connection,
there are issues with synchronizing desktop (browser) part of the application with
the server side. Some RIAs try to overcome these problems. They extend
the possibilities of web applications with frameworks and solutions, which
support coping with these problems to some extent.

Probably the most familiar representative of such frameworks is Gears under
auspices of Google software department (gears.google.com). This project provides
for extended features with the help of an extra browser plug-in for each
mainstream browser and OS platform, and with the help of a JavaScript API
library to access the features. Applications developed under this framework may
be built using standard Javascript and server-side frameworks, such as GWT,
DOJO, ZK, and others. They are provided with an SQL-like JavaScript database
API for local storage of data, tools for detection of online and offline states,
tools for synchronization of local and remote data after going online, and other
additional functions accessible from JavaScript. The heart of Gears is
the LocalServer module, which functions as a transparent proxy inside
the browser plug-in. The LocalServer module handles all remote requests
of a Gears-aware application and substitutes remote http server when
the connection is lost. Thus the application can be started even if no connection is
available from the beginning. This solution is solid and offers reasonable tools
to build a desktop-oriented application. However, it is built for cost of tight
integration of the plug-in with the browser. Thus there is need to maintain
different versions of it for all supported browsers and platforms, what may prove
itself as a bottleneck in larger adoption.

HTML 5 offline technology, on the other hand, provides more standard way to
cope with loss of internet connection. This solution provides similar features
to Google Gears without the need to rely on a non-standard browser plugin.
However, HTML 5 specification has not yet been officially released. It has not
been adopted by majority of browser vendors and thus is not yet a working
solution. Firefox in version 3 supports a subset of HTML 5 offline specification,
but this support is still experimental.

Java FX solves the problems of web applications in a different way.
Applications built on Java FX are run as standard Java applications. They can thus
be granted access to desktop through the Java Runtime Environment. These
applications are distributed through Java Web Start and executed in a sand box.
This sand box limits some of the features available to desktop applications.

Chapter 2:Evolution of rich web applications 10

However application in a sand box can be granted all the standard privileges if
users allow it. Security is ensured by allowing to grant certain privileges only to
signed applications. Java FX provides a platform powerful enough to build
solutions to overcome usual problems of web applications mentioned above.
However, it does not provide any concrete solutions or tools to help in
development. Another disadvantage of building RIA on top of Java FX is that
the platform is built on top of standard Java platform and native operation system
features. Java FX seems to be promising in future, but nowadays only support for
some platforms supported by Java platform has been provided. RIAs aiming to be
multi-platform still have to be built around standard Java technologies.

2.5 Pervasive adaptable rich internet applications

Existing efforts are definitely close to bridge the gap between web and desktop
applications. Even though, they in general don't focus on synchronization of
application data between online and offline states. Nor they offer any substantial
advantage from running the application in a desktop environment apart from
putting it outside of a browser, so that it can be run and administrated as a desktop
application. Therefore, to distinguish between traditional RIAs and applications
targeted in this thesis, we will introduce a special category of RIAs referenced at
as Pervasive Adaptable Rich Internet Applications (PARIA). These rich internet
applications are developed with the emphasis on ubiquitousness of application
and data availability and on adaptability to advantages and disadvantages
of available desktop or web browser platform.

The term pervasive comes from pervasive computing. It is a model of
a software interaction, where a particular instance of an application is understood
mainly as a portal to ubiquitous data accessible from any other instances
of the application on any supported devices. As stated in [GDLX04], pervasive
computing is motivated by the observation that computing and networking
technologies are becoming increasingly powerful and affordable. The goal is
to provide people with universal access to their information and seamlessly assist
them in completing their tasks. This enables that, in contrast to conventional
computing environments, people focus on their activities and not on
the computers.

Ideally, [UWas02] proposes that pervasive applications should be built
according to three key axes: separation of application data and functionality,
availability of any resource/data at any time, and a common system platform
available across many different environments. These three design aspects should

Chapter 2:Evolution of rich web applications 11

be common to all pervasive applications in order to become viable and highly
usable in real world. This work takes these aspects into consideration and attempts
to embed them into proposed model of development of PARIAs.

Further, the term adaptable embraces the manner, in which PARIAs cope with
limitations and drawbacks of interconnected environment and availability
of application data under these limitations. It also stands for the capability to adapt
to certain environments and provide the most of it with regard to available
resources, permissions and the nature of the platform.

The range, in which an application adapts to the ambient environment, may be
virtually limitless. It may access simple resources, such as files or programs, on
desktop or a device. It may be able to install and integrate itself into the native
platform. It may run with a native, and thus different, more responsive user
interface, which is not bound to e.g. web browser limitations. And the list goes on.
This all can be accomplished by a unique architecture of the application, which
provides means to decouple application's functions into separated modules. These
modules are then detected and used as necessary and appropriate. As an example,
we could imagine a mail program, which could operate as a standard web-mail
when accessed through browser. But after it detects that a supportive desktop
platform is available, it could provide more suitable means to attach files from
local computer to outgoing messages, or add a notification to system tray when
new mails arrive. Nowadays, there are means to achieve this kind of behavior, for
example when a program is designed as a Java applet and manually detects
whether permission to access file on hard disk is available. However, there are
even now many challenges in practicing this behavior, because few to none
technologies exist with primary focus on development of such applications,
especially in the Java world.

2.6 Challenges in development of desktop-oriented web
applications

There are many challenges that emerge, when attempting to design and create
an application that would match a model of PARIA. They are discussed in
the remaining of this chapter in order to establish a solid theoretical background
for the proposition of a model and a development framework for PARIAs.

Chapter 2:Evolution of rich web applications 12

2.6.1 Data persistence and replication

PARIAs are in essence data-centric applications with support for ubiquitous data
availability. Their foremost feature is to persist data not only within a device, but
distribute it along whole universe of devices and platforms that could be used
to connect to the data. These are namely desktop computers connected
to the Internet and all devices that can run applications available on the Internet.

It is essential that data are accessible in any condition and that the process
of manipulation of data is optimized to the extent, which is allowed by available
underlying platform. Therefore, if feasible, the process of distribution of data has
to be backed-up by a locally stored replicas of the data on desktop clients. This
would also improve the chance to safely cope with connection outages. In the case
when internet connection is not available, it also has to be ensured that changes
to data made locally will be synchronized with data on the internet later on.
Data synchronization is crucial, because it is required in order to provide the same
user's data everywhere the user connects to the network. Data synchronization is
a process, which aims to establish consistency among data from different sources
and the continuous harmonization of the data while the sources are connected. It is
to be triggered each time an application goes online and has to resolve any
inconsistencies between locally stored data and data on remote storages.
The implementation of data synchronization could be a little simplified if
we consider only centralized topology apart from peer to peer synchronization,
but still poses a significant challenge.

With a view of data as an arbitrary information, another inconvenience arises.
It has to be decided, which data are to be persisted across the network, how they
should be manipulated locally by the application, and in which form they should
be transferred and stored. [UWas02] discusses the relationship between data
and functionality and differentiates between active and passive data. In particular,
the encapsulation of data into active objects is evaluated and then refused as
an inflexible and insecure approach. On the other hand, it is insisted on separation
of data and functionality, as it is usually easy to accomplish and much more
suitable and transparent for data distribution.

In almost all cases, when developing a software application, which manipulates
with some structural data, it seems very reasonable to keep the data separate. Data
should be stored in structures separated from logic. They, together with logical
components and runtime environments, should serve as a unifying abstraction
similar to combination of a file system and nested processes in traditional
operating systems. It is the data, which are manipulated by users or by automatic

Chapter 2:Evolution of rich web applications 13

operations, and which have to be stored between multiple executions
of the program or shared among various entities. At the end, it is the data that
users access and work with. Applications provide means to access the data. If
properly separated from the rest of the application, data are even accessible by
different programs and may be further processed beyond the capabilities
of the original application.

One of the most important aspects of PARIAs is the emphasis on ubiquitous
data availability. The data-centricity of an application is so profound concern
that it has to be built into the very basis of inner architectural model
of the application. This ensures that all data, which should be persisted
and shared, are easily distinguished from runtime data and application logic.
While in a generic software program, the separation of data and the rest
of application is possible but optional, the model of PARIA literally requires some
form of separation of data, so that it can be extracted from application instance
and transferred over the network.

In addition to this, if the application should be built using a certain framework
for data transfer and synchronization, the data layer must be transparently
accessed and described. In an object-oriented environment, the data layer may be
perceived as isolated objects with a clearly defined interface to access data.
An example of such data isolation is a DOM tree. It is well specified, can be
exported as a XML document for storage and transportation and it is widely
supported in JavaScript, Java and other common platforms.

2.6.2 Adaptability to ambient environment

The challenge with making an application adaptable is primarily related
to the overhead of detection of available resources. It has to be done either at
application start-up or even while the application is running, dependent on
volatility of resources. In conditions, where unavailability of certain resources is
rather extreme exception, such resources are usually abstracted in a form, which
simplifies development. Remote invocation, such as CORBA or RMI, may serve
as an illustration of this abstraction. Masking remote resources as local is easily
understandable and very suitable in situations with high certainty that remote
resources are almost as available as local resources. As the difference between
levels of availability of local and remote resources grows, remote invocation
usually fails to provide enough tools to cope with non-standard conditions.

In various environments, specifically the combined desktop and web
environment, a high abstraction of resources is not flexible enough as to help

Chapter 2:Evolution of rich web applications 14

build an adaptable architecture. In particular, desktop client may have more
features available in its runtime environment. Web client is not tied to one
computer and may provide unlimited accessibility to data for the price of limited
features, in the name of security or other reasons. There is hardly any suitable way
to abstract the features that are available in one platform or in the other, but not
both. Even similar features may be implemented differently. There has to be
a way to adapt at any point, when resources become or cease to be available
or when the underlying platform changes.

The two essential cases, which have to be cared of, is modules and services.
Modules are basically available always in the particular environment and are
either loaded or not loaded when application starts. Services may be loaded at any
time but may happen to be inaccessible for some time during application
execution.

Modules encapsulate the functionality, which is common only to certain
environments and thus cannot be took granted universally. The availability of such
modules is thus either manually wired into application configuration, or detected
at application startup. Their availability doesn't change throughout execution
of the application and thereby they may be statically referenced if once present.
Sometimes there may be different modules with the same functionality, but each
with different implementation, which is either limited to certain environment
or seeking some sort of optimization. Static modules may represent features like:

‒ direct access to files stored on local computer

‒ persistent data storage

‒ system tray icon

‒ authentication (in case that data storage provides for more users)

Services, on the other hand, have to be detected each time they are requested,
because there is no way to ensure their availability. Services encapsulate features,
which rely on circumstances that are not fully under control of the application.
The have, otherwise, all the characteristics of modules, but because of their
volatile nature, they have to be accessed and treated differently. With services,
there is much more emphasis on handling of the situations, in which required
services are unavailable . In such cases, it is needed to provide for supplemental
treatment, so that application may further operate under limited conditions
and normal flow of operations can be restored as soon as the service becomes
available. The single most important example of such service in PARIA is open
network connection to the central data storage.

Chapter 2:Evolution of rich web applications 15

2.6.3 Manageable development and deployment of application

Another difficult task for a PARIA, which is not that apparent, is to provide users
with suitable method to start and access the application, no matter in which
environment it is used. In the case of a single web client, the solution is rather
simple, as the application is simply accessed and executed by loading a web page
into a browser. However, if user should install and use a desktop client, she has
to be provided with a simple solution.

This goal implies that a PARIA has to be developed around a widely used
platform that is common to many devices and environments. For one reason, it
simplifies the development by focusing on one platform. This brings its fruit in
maintaining a single code-base and thus less errors in final product. Another
reason is that the final code may be executed on wide variety of software
platforms. There already exist widespread platforms that fulfill the needs
of PARIAs, among them web browser and Java platforms. These, if combined
together by suitable means and technologies, may provide a powerful capable
platform. For the sake of pervasive applications, an example of utilization of Java
platform is one.world ([GDLX04], [UWas02]). It extends Java platform
and provides a single application programming interface (API) and a single binary
distribution format with a single instruction set. These can be implemented across
the range of devices in a pervasive computing environment, which are supported
by Java platform.

Furthermore, the common platform should provide means of manipulating with
data so that they are separated from logic. The form of data storage
and representation should be easily accessible and integrated into the platform. It
should be implemented in a standard manner easily understandable by developers
and should not introduce any unfamiliar concepts or constructs that would limit
productivity.

Chapter 2:Evolution of rich web applications 16

CHAPTER 3: ARCHITECTURAL MODEL AND IMPLEMENTATION

This chapter proposes solutions to problems and challenges, which were posed in
previous text, founding them on existing standards and technologies.
The experience from a case study in [AGX02] shows that ubiquitous applications
have many aspects in common and thus can benefit from a common architectural
model. Based on this assumption, we describe a framework providing competent
infrastructure for building PARIAs, so that they can be built according
to a proposed architectural model. In the end, a tool for building PARIAs based on
this infrastructure is described and demonstrated.

3.1 Introduction to the development framework for PARIAs

3.1.1 Model of PARIA deployment

The applications targeted in the thesis, are in their principle web applications
and therefore their primary deployment is on the internet. As such, it has to be
made possible to build the application as a standard Java web application. Internet
browser thus plays the important role of an access gateway. Although, it is itself
a very limited platform to provide for deployment of all pervasive and adaptable
features, unless it is extended by a necessary plugin or a desktop runtime. Some
forms of RIA are distributed as a package, which is inherently dependent on
presence of some extra runtime, such as applications based on Java FX and Java
Web Start, or on Adobe Flash. After their preconditions are met, applications can
be easily extended as far as the environment and granted privileges allow. This
work is, however, based on the assumption that a pervasive web application
should be accessible from any standard web browser regardless any non-standard
runtime support. This assumption concludes in necessity of deploying the final
application in two separate builds, which are afterwards integrated for seamless
and adaptable distribution. One of the builds should be a web application based on
standard browser environment present natively in all modern browsers. The other
build should targeted the desktop computer environment. The presence
of the latter enables users to choose to download and extend the application with
features available only within the desktop environment. This enables users
to retain access to the application regardless of the quality of internet connection.
The Java platform provides for ideal common ground to develop both web server
component and desktop component, as it is extensively supported by many mature

Chapter 3:Architectural model and Implementation 17

tools and enterprise vendors on the web platform. It is also widely available
and present on almost all desktop computers and even other computer devices.

Deploying a web application using Java servlets is the most convenient form
of Java web deployment. It will be considered as the only suitable form
of deployment for our model of PARIA. Java servlets are well supported by all
Java web application servers and their use is in detail specified in [Sun07]. On
the other hand, the choice how to deploy and make available the desktop client is
not so apparent. The simplest solution is to deploy the desktop part as a traditional
Java application packed in a jar Java archive. Nevertheless it is not very flexible
and usable, therefore we make use of a more suitable Java Web Start technology
in this work. For our purposes, it is much more convenient than a Java applet,
because an applet is too much tied to a browser and the web part of an application.
Furthermore, it is nowadays the most widely adopted form of serving Java
applications on the internet.

Java Web Start technology frees the developer from concerning with how
the client is launched. It provides means to package an application as
a component, which can be either launched from a web page or from desktop
environment. Additionally, this technology provides a mechanism that
automatically installs applications into desktop environment. Moreover, it
supports a scheme that enables a Web server to independently distribute
and update client code ([Kim01]). The application is thus accessible also if
the page, from which it was distributed, is not available at that time.

3.1.2 Isolation of data layer from logic

In the Java platform, the most natural way to implement the data layer is to use
simple Java objects. Among available tools helping with building the data layer on
Java objects are various forms of object libraries. These libraries provide
interfaces to manipulate and isolate the data layer.

Our approach is to use the Java reflection API and a subset of standard Java
interfaces. Java Beans specification ([Sun97]) and Java Collections Framework
([Zuk01]) have been chosen to standardize the form of data objects. These two
specifications are powerful enough to design various complex custom data
structures, which are still universally accessible. This solution frees
the programmer from the requirement to adjust to a certain API and data
structures available in the library. it also opens the possibilities to extend the data
layer with event handling, easy object persistence and much more, all using tools
built around the same specifications. On the other hand, the DOM API was also

Chapter 3:Architectural model and Implementation 18

evaluated as a viable alternative for data layer. It provides its own methods
and interfaces to store objects in a tree-like structure and also provides means
to store and export the data. However, it appeared to be much more usable when
working with tree-like data and persistent storages based on XML. Combination
of Java Beans and JCF (Java Collections Framework) has been evaluated as more
convenient in all other situations. Java Beans and JCF are both designed directly
for Java environment. They are well specified and supported by many mature
tools that are available. Whole data layer is built around simple Java objects
and that provides a familiar way to work with data with almost no real restriction
on how the data structure has to be implemented.

In general, there are two approaches to implement access to isolated data layer.
First, and probably more evident, is to keep all data separated in one place
and provide for transparent accessibility to Java objects through Java Beans
property accessor methods and JCF interfaces. In this case, instances are free
to manipulate with all the data that is accessible. On the other hand, it contains
limitations concerning information about lifetime of the data. Second approach is
to expose events to listeners when the data is changed. Thus data are not directly
accessible, only changes on data are processed by external listeners. These have
to store the previous replicas of data for themselves to rebuild whole data layer if
needed.

These two approaches of data isolation and accessibility also have an impact on
the way the data are synchronized and transferred across multiple data storages. In
case when actual state of data layer is directly accessed and no object lifetime
information is available, all the data have to be transferred and compared
to the data in the other storage. On the contrary, the second approach leads
to transferring only the changed data, which may be inserted or updated in
the other storage. This storage has to contain an existing replica of data layer
before the change.

Both approaches are used in our framework. They don't interfere with one
another and may be implemented at the same time. Runtime objects represent
the separated data, which is easily accessible through accessor methods of objects.
Thanks to the many tools available for standard Java objects and Java Beans
specification, this data layer can be extended to emit events when the data is
changed. This can be achieved using events in Java Beans specification together
with bytecode manipulation libraries, such as Javassist. There are tools to help
manipulate data in a pleasant and familiar manner with little effort and code
(using e.g. JXPath for searching through data). Event processing is, on the other
hand, the core part in data synchronization. Events are triggered after modified

Chapter 3:Architectural model and Implementation 19

objects are persisted, and a special listener is used to store meta-data about
changed objects. These meta-data are later accessed directly by
the synchronization mechanism to find out about changed objects.

3.1.3 Synchronization and storage of data

In a PARIA application, there are two types of storages, in correlation with two
types of client instances. The web client operates on a central remote storage,
which is placed on a remote server (most likely on the same machine as the web
server). In the case of desktop client, there is a local data storage. It is steadily
accessible and is used primarily when remote storage is not available. Thus,
the shared storage of PARIA is oriented around one central master storage
and multiple local slave storages.

The topology of storages is very important for design of data synchronization
strategy. Based on the assumption that PARIAs are always built around central
web application, and for the sake of simplicity, this work considers only master-

Chapter 3:Architectural model and Implementation 20

Figure 2: Topology of local and remote storages – one master storage
and many local storages. Desktop instance accesses both master
and local storages

Master
storage

Web
instance

Local
storage

Desktop
instance

Local
storage

Desktop
instance

Local
storage

Desktop
instance

slave synchronization. It is most commonly needed in normal usage. The central
master point serves as a checkpoint for all other slaves. Thus there's only need for
two-way synchronization of data between master and slave. Additional
synchronization among client instances may be elaborated in future work, but is
beyond the scope of this thesis.

A two-way synchronization strategy may differ in whether the process of data
synchronization is synchronous and happens instantly, or it is asynchronous
and happens invisibly in the background. In either case, the data must be stored
locally to instantly make accessible all the data when the connection goes off.
Provided that the synchronization happens synchronously in online conditions,
data changes are sent through the network to appear in the remote storage and are
locally stored as well at the same time. Remote data are always fresh and thus
there is no need for additional synchronization. However, local operations have
to be blocked until data changes are transferred to remote side. Utilizing
the asynchronous strategy, local storage is treated as primary and is lazily
synchronized with the remote storage in the background. This is done either by
logging operations on data and sending the log in a non-blocking way,
or periodically scanning for differences between local and remote storage.

If we want to have the desktop client to behave and feel as close to a native
desktop application as possible, the synchronous data synchronization is not
an option. It doesn't cope well with latency in network environment and may
cause the application to slow down or even block itself for some time. On
the contrary, the asynchronous strategy is very suitable and is more flexible in
high latency network environment, or even environment with frequent connection
dropouts. The data are always stored locally and thus always accessible.
The synchronization mechanism stays the same in online condition and also when
the connection is reestablished.

Approach that is used in this work is to completely separate the process of local
data manipulation and the process of data synchronization with remote server.
Thus, synchronization of data is completely independent from the actual data
manipulation. It also doesn't require that the remote server is available, and it
might be triggered at any time if appropriate events happen (e.g. at application
startup, after connection becomes alive, previous synchronization attempt
failed,and so on…). From the development point of view, it is also very suitable
that the process for data synchronization is run separately in a background thread,
independent of main thread of the application. In such case, both were developed
separately and combined in a suitable manner as two intercommunicating
processes, which share data through a database layer. Applications that are based

Chapter 3:Architectural model and Implementation 21

on our framework are thus easier to test, to define and check preconditions
and postconditions, and to recover from failures.

An alternative approach would be to transform the simpler synchronous
strategy to an asynchronous one. This can be done by logging all the local changes
into a queue and later propagating all the changes in background in the order
of their creation. This may be referred to as a lazy synchronization, because it
simply changes the remote storage in the same way as the data were changed
locally, except in a latent manner. Nevertheless, there are substantial reasons why
this approach has not been chosen. This approach may expose difficulties if
the remote data were changed while the desktop client was in offline state. That
may lead to conflicts, which are tough to resolve only with the data stored in
the queue of changes. Moreover, logging all possible types of data alteration
introduces even greater complexity.

The web part of a PARIA application, as a central point of all distributed
instances of the application, has its own storage, which has the precedence before
other local storages. This storage represents the actual state of shared data, which
is known to all other distributed instances. On the other side, there are storages
that belong to local instances of the application and they represent only the actual
state of data within the particular local instance. Based on this fact, there is only
need to initiate the synchronization of central and local storage from local
instances The central storage is considered always fresh. The synchronization
module hence has to be included only in local instances. On the other hand,
the web instance has to provide access to persisted data and any required
additional meta-data through a network protocol

Another issue needed to be resolved was which data and on which layer will be
actually shared. This appears to be a subtle matter, because shared data may or
may not include in-memory structures not yet persisted into the storage. However,
if considered that only final and approved changes are worth synchronizing,
shared data layer is best built only on a defined subset of persisted data. Our
decision was hence to put the process of synchronization on the level of persisted
data in storages. Thus the process of data persistence and data synchronization
overlap. They both may make use of various advanced features of persistent
databases, such as transactions or unified data retrieval. This decision is supported
further by additional arguments. First, in research preceding this work, no viable
form of suitable in-memory data synchronization could be constructed using
existing stable Java tools. More often there exist tools, which help with replicating
persisted data between databases. Another argument is that achieving transparent
data accessibility is easier through common database interfaces than by Java

Chapter 3:Architectural model and Implementation 22

interfaces. A proved database solution involves in-built support for atomic access,
security and enforcement of data singularity and persistence. There even exist
very mature Java-based database solutions, which provide means for extending
the data layer with data synchronization mechanisms.

The data and synchronization layer in our framework for PARIA development
utilizes Hibernate Java persistence framework and DB4o replication system
([Drs09]). They together with an underlying SQL database provide a robust Java
object persistence platform. Java Beans and JCF are fully supported by Hibernate
Its engine is then extended by DB4o event listeners, which utilize the event based
approach to isolated data in order to make data synchronization more efficient.
DB4o listeners record data changes on both master and local database separately.
When the data synchronization is later invoked, only the changed data are
transferred. In order to ensure that all data were replicated, it is also possible
to amend this basic behavior with a less frequent complete scan of data for
changes between the two databases.

3.1.4 Service oriented features

Ambient environments, in which PARIAs run, may vary, and some services may
even be heavily volatile. As such, not only it is suitable to design the architecture
of PARIA based on modularity, but it has to be also designed to adapt if certain
modules or services are not available. This problem is too complex to develop
a solution for each application independently. Fortunately, the pattern of software
modules and components used as building blocks has evolved gradually
throughout software development history. Lots of mature projects and activities
have emerged to support this pattern. This allows us to use a certain common well
established framework to build the needed modular architecture.

The thesis aims to utilize the most common and widespread technologies.
The proposed architecture is based on OSGi platform ([OSG07a]), as it is one
of the most popular and widely supported platforms oriented on services
and modularization, with enough development tools built around it. Moreover,
according to [HC04], the initial focus of OSGi was the market of home services
gateways, where the vision was that a house would contain a home-area network
and most, if not all, household devices would be connected to this network.
The fact that vision is close to the mission of pervasive and adaptable applications
even more supports the decision for OSGi framework.

Now let's have a look on how the needs of PARIA, which emerge from
the requirement for adaptability, are fulfilled and implemented using OSGi.

Chapter 3:Architectural model and Implementation 23

According to the discussion in 2.6.2, we logically divide application components
into those, which are hard-configured to be available in certain deployment,
and those, which are not known before application startup if they are available
and have to be detected either once upon application invocation (if the detected
feature is assumed to be always present) or periodically throughout its execution
(if the feature may disappear at any time). The first we call modules, the second
we call services. In our implementation, services are not independent components.
They are only interfaces provided by underlying modules, if the required
conditions to administer the service are met. Modules present separated software
components and may be differently configured in either web application
deployment or desktop deployments (even different configurations for various
desktop platforms are possible).

The OSGi service framework provides a simple, light-weight framework for
creating service-oriented applications. It introduces a concept of extensible
application components, called bundles. In our framework, each application
module is implemented as such a bundle. These bundles are loaded and launched
automatically according to the configuration — the underlying framework
runtime detects and solves dependencies, controls life-cycle of bundles
and provides utility mechanisms and additional bundles for the developer.
To accomplish that, the framework runtime uses a custom class loader. This class
loader also manipulates classpaths and handles dependency resolution of bundles
upon their loading. Separate classpath is kept for each bundle.

Modules register their services through OSGi service layer. They publish each
service under a well-known Java interface in OSGi service registry. Services are
later retrieved from this registry by modules, which want to use it. In our
implementation, modules, which provide some functionality to other modules,
automatically register this functionality as an OSGi service. This kind of service
we call static service. Both hard-coded components and detected services are thus
discovered by other modules via the same mechanism in a unified manner.
To even more simplify working with modules and services, all are expected to be
possibly non-present by dependent modules. This enforces that the access
to modules and services is error prone, while still simple enough. Static services
are marked by special empty Java interface and may be assumed to never
disappear, but this behavior is discouraged.

Chapter 3:Architectural model and Implementation 24

3.1.5 Final overview of the framework architecture

The architecture of the framework is based on separate OSGi bundles, which run
inside of an OSGi framework. These bundles together form the necessary
infrastructure to develop applications. Developers include their application
components by adding new bundles into the framework.

The most robust part of PARIA framework consists of data-centered components.
These components provide a multi-layered data model built on opensource Java
technologies and a JDBC protocol. Figure 3 illustrates how the main framework
components are related. The vertical axis shows all the layers of data model. On
top is the application logic and its user interface, which are individual to each
PARIA application. Application logic operates on runtime data layer. This data
layer consists of plain objects, which either comply with Java Beans specification
or provide JCF interfaces. These objects are tied to the Hibernate engine.
The runtime data layer and Hibernate are tied through an exported data layer
package. It contains class definitions of all data layer objects. All the modules,
which operate on the data layer, import this package to access objects class
definitions. Hibernate handles changes on objects and provides automatic
persistence mechanism. For this mechanism to work, it only needs that persisted

Chapter 3:Architectural model and Implementation 25

Figure 3: Schema of framework with all the key parts. Shows OSGi component
layers in horizontal axis, and data layers in vertical axis.

Runtime data layer package
(Java Beans, JCF,
EJB annotations)

Data
synchronizer

bundle
(db4o replication)

Java Runtime Environment

U
I

libra
ries

Hibernate
persistence

bundle

O
S

G
i fram

e
w

ork

Application logic
and user interface

bundles
(possibly different for
each environment)

O
S

G
i

H
T

T
P

service

Web
interface
to central
storage

SQL database
(JDBC driver)

Java classes are marked by EJB annotations. This requirement is necessary to map
object classes to underlined SQL tables. Hibernate stores objects using a JDBC
driver, which connects to a relational database. This database is configurable
and doesn't have be a part of the Java application.

The data synchronizer bundle runs on top of Hibernate engine separately from
all others.. This bundle is present only in local desktop instances. It periodically
replicates data in a background thread with the central storage. On the other
side — on the central web instance, there is a web interface to connect
to the central database. This is realized through an open database port, or more
conveniently, through an HTTP database bridge.

There are also other OSGi bundles, which are not meant to support the data
model. These bundles contain UI libraries, provide OSGi HTTP service to deploy
servlets, and other additional functionality.

3.2 Implementation of the development framework

3.2.1 Main module

OSGi bundle cz.cuni.mff.paria.main is the main module in our framework.
It is by default included in dependency list of all other framework bundles. It
contains common utility packages and libraries, which are used by other modules,
such as logging or EJB annotations. Its main purpose is to tie together all

Chapter 3:Architectural model and Implementation 26

OSGi manifest fragment: Main bundle

Bundle-SymbolicName: cz.cuni.mff.paria.main; singleton:=true
Import-Package:

javax.servlet;version="2.4.0";resolution:=optional,
org.eclipse.equinox.servletbridge;version="1.1.0";resolution:=
optional

Export-Package: cz.cuni.mff.paria.logging,
cz.cuni.mff.paria.main, cz.cuni.mff.paria.serviceregistry,
cz.cuni.mff.paria.services, javax.persistence

Bundle-ActivationPolicy: lazy

Exported services: Main bundle

● cz.cuni.mff.paria.services.DesktopPackageProvider

framework modules and services, to monitor their activity and availability
and provide access to them.

It contains a simple hash-based service registry implemented by
ServiceRegistry class. It wraps standard OSGi services mechanism
and simplifies access to available services that were published by other modules.
It also ensures that the main module and all available modules are started before
they are used. ServiceRegistry makes use of a standard OSGi ServiceTracker
utility class. It provides methods to acquire a reference to object that implements
required interface or to test weather an implementation is available..If methods
provided by ServiceRegistry in main module are not sufficient to fine tune
the application behavior, standard OSGi service mechanism still may be used.
In this way, services are accessed using full name of the Java interface as a key
(return value of Class.getName()). However, when using ServiceRegistry,
it ensures that the whole OSGi framework with all the modules configured to start
is started prior to prompting for service reference in other modules. Static services
are hence started first, and only then the reference is returned by
ServiceRegistry. These services are thus always available from the start also
if modules are launched in parallel.

The main module also exports interfaces for common framework services,
which are provided by other framework modules or could be provided by custom
modules. These are grouped in cz.cuni.mff.paria.services package:

● interface FileSystem extends StaticService

‒ a convenience service to distinguish weather underlying filesystem
is configured to be accessed in standard way, or it is forbidden

● interface Persistence extends StaticService

‒ service that provides methods to persist and retrieve Java objects

● interface DesktopPackageProvider extends StaticService

‒ service providing URL to the JNLP descriptor file of available
desktop client

This list of services is not comprehensive and includes only basic services
needed to build a simple PARIA application. It could be extended by other helpful
services in the future. Other services may be added by the developer of final
application and need not be defined in main module. Also some modules in our
framework offer their own specific services.

The main module also exports its OSGi activator class, which provides
methods to transparently access common system and framework functions. For

Chapter 3:Architectural model and Implementation 27

example, this class is used to stop the whole OSGi application with all
the modules in the proper form by calling stopApplication().

3.2.2 Data layer package

The data layer classes are expected to be accessed from every module that needs
to work with the data objects and thus is required to have their class definition on
its classpath. Since OSGi bundles have completely separated classpaths, there
have to be some form of bridge between classpaths of the module, which
implement the data layer and of other modules, which work with data objects..
This is done through an OSGi package import. It is arbitrarily decided, that all
classes that implement data objects are encapsulated in
cz.cuni.mff.paria.datalayer package and this package is exported by
the original OSGi bundle. All other bundles, which require data classes on their
classpath, declare that they import, and thus require, this package. Upon resolving
bundles, OSGi framework then automatically bridges these bundles with
appropriate bundle, which exports the data package. It is also required that Java
classes that should be persisted must be annotated by EJB annotations, so that
the persistence engine knows the relations among data and knows how to save
them in a database.

The data layer package is also required to provide BeanRegistry class with
a single static method named getRegisteredClasses(). This method is used
to acquire list of all classes which compose the data layer. In our framework, it is
used to initialize Hibernate object mappings to relational database based on EJB
and/or Hibernate annotations, and to know which classes to replicate through
synchronization mechanism.

Chapter 3:Architectural model and Implementation 28

3.2.3 Filesystem module

Module cz.cuni.mff.paria.bundles.fs is a simple module, which doesn't
provide any extra functionality but is important as an example of how features
may be configured using services to be present or forbidden. This module is
intended to be present in every deployment of application, which should have
access to underlying filesystem. Usually it targets desktop deployment, where
the application runs under user's privileges and access to filesystem is eligible, so
that user may directly manipulate with files on her computer. On the contrary, web
part of application is usually deployed at public server and thus available for
everyone, and access to server's filesystem is required to be prevented. This
different configuration is conveniently represented by availability
of the filesystem service. If all the filesystem dependent functions of the PARIA
application are executed only after successfully acquiring reference to the FS
service, then the filesystem is accessed only if a FS module (and thus the FS
service) is configured to be available at application runtime.

Chapter 3:Architectural model and Implementation 29

OSGi manifest fragment: FS bundle

Bundle-SymbolicName: cz.cuni.mff.paria.bundles.fs
Require-Bundle: cz.cuni.mff.paria.main;bundle-version="1.0.0"

Exported services: FS bundle

● cz.cuni.mff.paria.services.FileSystem

Code snippet 1: Using FS service to access filesystem

if (ServiceRegistry.isAvailable(FileSystem.class)) {

/* do something dependent on filesystem,
 * e.g. show UI button to load files
 */

}

3.2.4 Persistence module

Persistent data storage is accessed through an OSGi service represented by
Persistence interface. We implemented the persistence module as an OSGi
bundle called cz.cuni.mff.paria.bundles.hibernatePersistence. This
bundle is built on Hibernate persistence libraries and stores the Java objects in
an underlying SQL database.

Upon activating the bundle, it initializes and starts Hibernate engine with
a default configuration and with any other provided configuration files if
available. To initialize Hibernate session factory properly, the bundle activator
scans through the list of classes obtained from datalayer's BeanRegistry,
and adds them to Hibernate annotation configurator. The mappings to relational
database are then created from EJB annotated classes. The process of initialization
is concluded by inserting db4o configuration, so that db4o synchronization is
available later.

Hibernate initialization is configured through a configuration file
hibernate.cfg.xml included in the bundle as a bundle resource. To enable
custom configuration of Hibernate in order to connect it to a certain SQL
database, and without the need to amend the HibernatePersistence bundle itself,
we make use of a very handy feature of OSGi called bundle fragments. This
technique allows to modify the host bundle by attaching a fragment of the bundle
to it. Fragments in OSGi are in principle of the same physical structure as usual
bundles, however, they cannot be activated like normal bundles because they
logically complement the host bundle, which has its own activator. Upon bundle
resolution, OSGi framework attaches all related bundles to their host bundle,
logically joining them into one resulting bundle by combining their manifests.
Fragments are allowed to alter any part of bundle's manifest and any resources.

Chapter 3:Architectural model and Implementation 30

OSGi manifest fragment: hibernate persistence bundle

Bundle-SymbolicName:
cz.cuni.mff.paria.bundles.hibernatePersistence

Require-Bundle: cz.cuni.mff.paria.main;bundle-version="1.0.0"
Import-Package: cz.cuni.mff.paria.datalayer
Export-Package: cz.cuni.mff.paria.bundles.hibernatepersistence,

(and all packages from hibernate and hibernate-annotations class libraries, all
packages from DB4o class libraries)

Exported services: hibernate persistence bundle

● cz.cuni.mff.paria.services.Persistence

The code in Hibernate bundle initialization attempts to read custom configuration
file hibernate.dbcfg.xml, which is not present in the bundle itself. This
provides a hook for developers using our framework to insert their configuration
file — the file hibernate.dbcfg.xml is simply put into the fragment's classpath
and the fragment is attached to Hibernate core bundle. Configuration fragments
may also include necessary JDBC drivers and class libraries.

3.2.5 Internal Derby database module

This module represents a compact solution for local storage of desktop instances.
It is designed to be included in a desktop instance to supply the persistence
module in situations, where external SQL database is not applicable.

This module includes only hibernate configuration file specific to embedded
derby database and the derby DB class library. It is configured to launch
embedded derby database upon loading of JDBC driver from hibernate. The
database is represented by a file on the disk under current directory. It is created
automatically if the file is not present.

Chapter 3:Architectural model and Implementation 31

OSGi manifest fragment: Derby hibernate bundle fragment

Bundle-SymbolicName:
cz.cuni.mff.paria.bundles.derbyHibernateFragment

Fragment-Host: cz.cuni.mff.paria.bundles.hibernatePersistence

Additional notes: hibernate persistence bundle

‒ adds hibernate.dbcfg.xml hibernate configuration file into host's
classpath

3.2.6 Hibernate synchronization module

Synchronization of data persisted by Hibernate module is implemented in
a separate bundle cz.cuni.mff.paria.bundles.hibernateSynchronization,
which should be configured to activate upon desktop client start-up. It then
spawns a background thread and cares for data synchronization itself without any
need for additional treatment.

In this work, we implement synchronization based on Db4o Replication
System. This replication system was built primarily for the DB4o object database,
but has been later extended to support also Hibernate object persistence. We take
advantage only of its support for Hibernate to Hibernate data replication.
The synchronization thread connects to two distinct database through Hibernate.
One of the connections is taken from Hibernate persistence module configuration
(thus the hibernatePersistence module is included as a dependency in the import
list), and the other is read from a configurations file provided by a custom bundle
fragment, copying the mechanism from hibernatePersistene bundle, only the files
are prefixed by sync. string.

Chapter 3:Architectural model and Implementation 32

OSGi manifest fragment: database synchronization bundle

Bundle-SymbolicName:
cz.cuni.mff.paria.bundles.hibernateSynchronization

Require-Bundle: cz.cuni.mff.paria.main;bundle-version="1.0.0",
cz.cuni.mff.paria.bundles.hibernatePersistence;bundle-
version="1.0.0", cz.cuni.mff.paria.datalayer;bundle-
version="1.0.0"

Export-Package: cz.cuni.mff.paria
.bundles.hibernatesynchronization

Imported services: database synchronization bundle

● com.db4o.drs.ReplicationEventListener
● cz.cuni.mff.paria.bundles.hibernatesynchronization

.ReplicationProgressListener

Exported services: database synchronization bundle

● cz.cuni.mff.paria.bundles.hibernatesynchronization
.SynchronizerController

The synchronization process is composed of the following:

● Creation of SQL tables used to store additional meta-data about modified
data

● Storing of additional meta-data about modified objects upon Hibernate
commits

● Replicating object deletions

● Check for objects created or modified in remote central storage and their
replication

● Check for objects created or modified in local storage and their
propagation to the central storage

● Resolution of conflicts between central and local storages.

Creation of necessary SQL meta-data tables and storing additional meta-data is
tightly coupled with the module providing Hibernate persistence. This is because
if the persisted data don't include additional information about the history of their
changes required by db4o replication system, it is later impossible to easily
append it to the stored data. DB4o engine is hooked to the Hibernate engine by
listeners, which react on data modification events and store information about
object revisions into the same database. The synchronization mechanism later
reads the information about changed objects and then transfers necessary data
to make the two databases consistent.

The synchronization module itself periodically starts a synchronization thread,
which attempts to make both databases consistent. The synchronization is
performed in three phases. First, the deletions of objects, which were deleted on
either side, are propagated to both databases, so that no needed objects are
transferred later. If there are any conflicts in this phase, it is assumed that deletion
has stronger preference than modification — if an object is deleted, this action is
usually meant to be permanent, apart from a change in object properties, and thus
it is generally safe to expect that the deletion in one of the storages happened
before the modification in the other storage. This is also the default behavior
of DB4o replication system. After, the synchronization process checks for new
and modified objects. This check ids performed against the remote central
database first. This is for two reasons. Central storage is considered the actual
state of all distributed data and hence should not be modified before the local
database is filled with the centrally stored data. This is to ensure that the local
instance has access to the most fresh data available. Second reason is more
pragmatic — some conflicts during replication phase may arise, and it is more
convenient and safe to solve most of them before any data is uploaded

Chapter 3:Architectural model and Implementation 33

to the central storage. Hence, it is allowed to modify other non-conflicting objects
during conflict resolution and add these objects to the other locally modified data
before they are synchronized with the remote storage.

When conflicts happen during replication process, the whole process is
intercepted by a listener, which handles conflict resolution. In the default
configuration, conflicts are resolved automatically by synchronization module
using in-built DB4o replication mechanisms — the central storage is considered
as the master, and thus whole object in the local storage is overwritten by
the remote version. This conflict resolution strategy is very simple and may in
some peripheral situations cause data losses. However, we also provide a way for
developers to implement their own strategy. It is as simple as to implement
the interface com.db4o.drs.ReplicationEventListener and register it as
an OSGi service in any bundle activator. The synchronization thread prompts
main module's ServiceRegistry for all the services implementing this interface
and adds them as listeners to replication events. Using ServiceRegistry ensures
that all bundles are started prior to searching for the services. Only if no such
services are found, the default strategy is used. The behavior
of the synchronization thread may be further fine-tuned through exported OSGi
service called SynchronizerController.

Because synchronization itself may be a length background process, we
provide a simple mechanism to monitor its progress. This mechanism is based on
OSGi services. This time, the use of services is reversed on the basis
of white-board model. The synchronization process doesn't register a monitoring
service, on the contrary, available published services are used as progress
listeners. The synchronization process, whenever it makes some progress, sends
notifications to all present services implementing monitoring interface. Modules,
which want to monitor the synchronization process, register service named
SynchronizationProgressMonitor. Through this interfaces they then receive
progress information about synchronization.

3.2.7 Servlet bridge

As discussed in 3.1.1, complete PARIA deployment consists of two separate
builds, one of them is a Java web application, and the other is a standard Java
desktop client distributed as a Java Web Start package. While configuration
and execution of the desktop client is very close to launching a standard
standalone Java desktop application, the web application has to be inserted in
an external Java application container. Meanwhile, OSGi framework is generally

Chapter 3:Architectural model and Implementation 34

implemented as a standalone runtime unaware of being started from within
a servlet container, and this causes difficulties when attempting to access
the underlying container. Additional work had to be done to bridge a servlet
container and OSGi framework in a manner consistent with the OSGi principles.
In order to accomplish this task, we need to amend the underlying framework
environment. To avoid direct modification of a framework source code, which
would also bring a dependency on a certain framework implementation, we
utilized an advanced feature of OSGi framework specification — extensibility
of the framework itself by an extension bundle. This bundle then extends
the framework environment through the basic OSGi bundle and services
mechanisms.

The Equinox OSGi implementation project provides a very convenient
and easy to use solution to implement a servlet bridge through the use of the Http
Service specification, which is part of the OSGi service compendium ([OSG07b]).
The idea is basically as follows: the chosen OSGi framework is encapsulated into
a servlet component and launched upon servlet initialization at the web
application start-up. The launcher servlet automatically provides a framework
extension bundle, which then registers a Http service. The implementation of this
service has direct access to underlying servlet and its container. By registering this
service, it makes the access to the servlet container available to other modules
of the application, creating the final bridge between them and the underlying
container. Framework modules, which need to export their servlets to a Http
servlet container, thus have a transparent way to publish their servlets, regardless
of weather the container is implemented as an internal server module, or as
a bridge to the underlying servlet container. This solution then enables
to encapsulate any part of PARIA application, which has to be built as a Java web
application using servlets, into a standard OSGi module, which simply publishes
exported servlets through the OSGi Http service interface.

Chapter 3:Architectural model and Implementation 35

3.2.8 Internal HTTP server module

If we compare the differences between the web application and the desktop client
environment, the manner, in which the user interfaces to applications are
traditionally served and implemented in each of them, is cardinal. It causes a lot
of code duplicity if two separate user interfaces have to be implemented in each
case. In order to avoid the need to duplicate work on user interface, we integrated
an internal http server module, which provides a transition for the interface
developed for web environment, so that it could be deployed also in the desktop
deployment using little extra effort.

The internal http module is built over embedded Jetty Java http servlet
container and exposes itself through the same OSGi Http service as the servlet
bridge mentioned above. It is meant to be included in the desktop deployment
to substitute for the servlet bridge, which is not available outside of web
deployment.

The module imports org.eclipse.equinox.http.jetty package, which
provides for means to configure and launch the embedded http server itself. This
package can be found in a bundle with the same name, which is included in
the Eclipse PDE platform. Otherwise it can be easily built, because it is used only
for launching the server through a single method, which has following signature:

● org.eclipse.equinox.http.jetty.JettyConfigurator.startServe
r(java.lang.String, java.util.Dictionary)

Custom configuration to the jetty container can be supplied again through
a bundle fragment, which contains file http.properties within the classpath.
This file is a simple properties file, which is read as java.util.Properties
instance and put as the second parameter to the call of startServer method.

Chapter 3:Architectural model and Implementation 36

OSGi manifest fragment: internal jetty server bundle

Bundle-SymbolicName: cz.cuni.mff.paria.bundles.internalHttpServer
Import-Package: org.eclipse.equinox.http.jetty;version="1.1.0"
Require-Bundle: cz.cuni.mff.paria.main;bundle-version="1.0.0"

Exported services: database synchronization bundle

● org.osgi.service.http.HttpService

3.3 Development tool based on Eclipse platform

3.3.1 Description of Eclipse PDE platform

The Eclipse platform was chosen as a base for development tool for building
PARIA applications because it is a mature and well-known development tool for
Java and web applications and provides features and tools very useful in building
such development tool. The Eclipse IDE is easily extensible by additional third
party plugins, provides well designed tools to build such plugins. Moreover, this
extensibility is based on the OSGi specification, and the tool itself can be easily
turned into an OSGi development platform.

The Eclipse IDE is built around a modular architecture, due to which
the development environment is extensible by many various plugins and tools. In
latest releases (since the beginning of the third generation) of the product,
the modular architecture is implemented as a full OSGi framework according
the specification, which is called Equinox. This framework is further extended by
additional custom concepts to provide for the development of richer tools
and applications for the Eclipse platform. However, these features are
implemented transparently through standard OSGi mechanisms and don't break
the specification. It is easy to amend the default configuration to turn the Eclipse
plug-in framework into a standard OSGi framework. The Eclipse Plug-in
Development Environment provides tools for development of various types
of extensions to the Eclipse IDE itself. Most of these extensions are based on
OSGi components, such as bundles, and the Eclipse PDE platform allows even
to restrict development of plugins to OSGi-only features. Thus, the tooling allows
to develop plain OSGi bundles as restricted Eclipse plugins, and OSGi bundle
fragments as restricted Eclipse fragments. It also contains some helpful additional
tools and concepts: launch configuration for an OSGi application, running
and debugging such application, grouping OSGi bundles into features, building
and exporting bundles and features, and lot more.

3.3.2 OSGi module configuration and development

In our framework, the only OSGi elements used are OSGi services, bundles
and bundle fragments. The OSGi services are easily created and administered by
Java source code in bundles and the PARIA framework provides some utility
classes and tools to make manipulation with services even easier. On the other

Chapter 3:Architectural model and Implementation 37

hand, configuration of bundles and bundle fragments is done through OSGi
manifests and is much more complicated.

The Eclipse PDE provides for very useful visual tools to configure and develop
OSGi bundles and fragments. These tools are capable to edit almost all the needed
features of OSGi manifests in visual way, so that the developer is not required
to know the proper syntax of manifest headers. Worthy of mentioning are

● defining of bundle activator, ID and version number

● listing the dependencies on other required or optional bundles
or imported packages

● listing of packages that the bundle exports

● modifying bundle's classpath

● choosing the host bundle for bundle fragment

Every bundle and bundle fragment is developed as a separate Eclipse PDE
project, bundle as a Plug-in project and bundle fragment as a Fragment project.
Any bundle project in workspace may be listed as a prerequisite of another bundle
project through OSGi dependencies, or an exported package may be imported by
another project. The dependent projects are then automatically interconnected
according the dependency tree, resolving thus Java imports from other bundles.

All the PDE projects must be created with a standard OSGi framework, apart
from using Eclipse framework, which is selected by default. The project creation
wizard allows for easy change of this setting, and also to set up some basic
configuration details of the bundle manifest.

3.3.3 Running and debugging applications within the IDE

Before we can run an application composed of OSGi bundles, we have
to configure which bundles and how they are to be launched. This could be
a tough thing to do manually, because usually the final application consists of
greater number of bundles. Eclipse IDE provides us with a helpful tool
to configure the bundles. This is done by setting up a launch configuration for
an OSGi application. The launch configuration dialog enables to choose which
modules should be included in the launched application and helps with automatic
dependency resolution. This launch configuration can be used to launch
applications in run or debug mode. It is also helpful for other tasks later,
for example to setup a feature project.

Chapter 3:Architectural model and Implementation 38

3.3.4 Building the final application

We deploy the final PARIA application in two separate packages. The web
package has a form of a Java web application and whole PARIA is in fact
embedded into a bridging servlet. On the other hand, the desktop package has
to be built as Java Web Start application, with the necessity to pack all program
components into signed downloadable packages accompanied with JNLP manifest
files. The structure and contents of final packages are so different, that we have
to provide two distinct mechanisms to build them.

Whole PARIA application consists of separated modules and each different
deployment is built including a subset of these modules..Some of the modules are
common for both web and desktop deployments, the others are targeted to be used
in only one environment. Modules which apply to data layer, persistence
and provide common functionality, are those, which could be common. It is
a good practice to bind such common modules together into a common feature
project and include this feature into all features exported From the modules
available in our framework, the following may be common to both deployments:

● cz.cuni.mff.paria.bundles.hibernatePersistence

● cz.cuni.mff.paria.datalayer

● cz.cuni.mff.paria.main

Modules applicable to only the web environment are not very numerous
and account only to support for data synchronization initiated by client,
and to bridging the application with underlying servlet container. The servlet
bridge, provided by the equinox.servletbridge project, serves as a bundle, which
publishes underlying servlet container as an OSGi http service. However, it is not
deployed in a standard way like all other modules are and the use of this bridge
will be explained later in section describing building of web package. There is
thus only one web-only module, and it is even optional (cz.cuni.mff.paria.
bundles.hibernateHttpBridge). It provides access to the central database
transparently through the http protocol, if the standard database connection
protocol between desktop instances and web instance is not applicable.

Most non-common modules target only desktop environment. They are either
not applicable to the web environment or a different implementation has to be
used to account for the differences. These include local filesystem switch module
to allow access to local files, synchronization module to turn on automatic data
synchronization with central instance, and other utility modules. In our
framework, following modules are to be used mainly in the Java Web Start
environment:

Chapter 3:Architectural model and Implementation 39

● cz.cuni.mff.paria.bundles.hibernateSynchronization

● cz.cuni.mff.paria.bundles.fs

● cz.cuni.mff.paria.bundles.derbyHibernateFragment

‒ embedded derby SQL database integrated into Hibernate persistence
module as a configuration bundle fragment, database files are
automatically created in Web Start cache

● cz.cuni.mff.paria.bundles.internalHttpServer

‒ embedded jetty http server to help with using the same web user
interface on a local machine as is used in web deployment

● cz.cuni.mff.paria.jnlp

‒ utility module providing access to features available only in Java
Web Start environment, such as running JNLP instances as singletons

Custom parts of the application are built and later integrated into
the framework as custom OSGi bundles using all the advantages of OSGi
framework.

3.3.5 Building web application package

The web part of an application is built and deployed as a standard web
application. This web application is initiated by a servlet, which launches
and bridges OSGi framework from within context of servlet container. Hence,
whole framework with application modules has to be included in the built web
application package and made accessible from bridging servlet.

The build process requires creation of a feature project, which includes all
the necessary modules and a necessary servlet bridge feature. The build itself is
performed using webappBuilder.xml Ant build script. This build script takes
advantage of Ant tasks exported by Eclipse PDE platform and by our customized
Web Start Eclipse plugin to automatically export the web package feature
and equinox framework configuration. All the exported files and packages are
bundled into the structure of final web application, under WEB-INF folder,
together with web.xml manifest and a the servlet bridge library.

All the necessary build tools and files are held in a special Eclipse project,
which is based on org.eclipse.equinox.servletbridge Eclipse project
provided by equinox.servletbridge team. This project includes class library
servletbridge.jar containing servlet, which is used to launch and extend
the equinox framework, the Ant script for building, and template directory

Chapter 3:Architectural model and Implementation 40

structure, which is to be customized and which is copied into the build directory
of the web application by the building script..In order to configure the building
process, developers need to adjust the Ant build script to match their setup,
and edit the web.xml application descriptor in the template directory. In Ant build
file, two main Ant targets have to be configured. First one, named
pdeExportFeatures, uses pde.exportFeatures task to export all the bundles
of the target web package. It is only needed to adjust the name of the feature,
which is to be exported. The exported feature is created as an Eclipse feature
project, and has to include another feature with all the necessary OSGi modules
needed to bridge OSGi framework with the underlying servlet container in order
to provide an OSGi http service. This feature is called org.eclipse.equinox.
servletbridge.feature and contains http.registry, http.servlet,

http.servletbridge Equinox OSGi modules together with all the dependencies.
The second target is used to help create equinox framework configuration file
automatically from an OSGi launch configuration and uses
paria.equinox.exportConfigurationFile Ant task, which was included into
the Web Start plug-in to support the build mechanism in our framework. It is only
needed to prepare a launch configuration with a unique name and paste its name
into the build file. Both mentioned Ant targets are configured through named Ant
properties, which are set in Eclipse Ant launch configuration dialog. These are:

● paria.webfeatures — name of the web package feature (features)

● paria.weblaunchconfiguration — name of the template OSGi launch
configuration

After execution of the properly configured build file, the web package is built
and is prepared to be deployed to a servlet container.

3.3.6 Building desktop application package

The desktop build uses bundle packages called features, a concept introduced
by Eclipse PDE, to bind all the exported plugins together and export them in one
step. Exported plugins and features are signed with a keystore, which is either
supplied by developer or a default keystore included in our development tool is
used.

Chapter 3:Architectural model and Implementation 41

It is necessary to sign all the packages that are to be deployed through Java
Web Start, because only then it is possible that the JNLP application is granted all
the privileges a desktop application can have. After bundles are exported as
a signed JNLP package, the export is completed by adding a simple Equinox
launcher, which is used to launch whole OSGi framework runtime. This is a small
JAR class library, which is included in our framework for convenience. Real
equinox OSGi implementation is present in Eclipse PDE as a bundle and was
automatically exported with the previous feature export. Finally, main JNLP
descriptor is created using a modified Web Start Eclipse plug-in, originally
developed by Jack Li Guojie (http://sourceforge.net/projects/webstart).

Chapter 3:Architectural model and Implementation 42

Figure 4:Scheme of building process of desktop application
instance. The final product is a deployable Web
Start application with JNLP manifest file

http://sourceforge.net/projects/webstart

In order to export signed bundles, we first create a feature project representing
the configuration of modules present in final desktop build. This feature should
consist of org.eclipse.osgi plug-in and any other custom plugins (bundles) we
need to include in our build. It may be easily filled with appropriate plugins from
an OSGi launch configuration. After the feature project is configured, we use
a standard feature export dialog. It is important how export is configured through
this dialog. The option to package as individual JAR files have to be selected, so
that the application can be later deployed through Java Web Start. Further, it is
also as important to select option to sign JAR archives. The Web Start for Eclipse
plug-in provides a legacy keystore under plugins/net.sourceforge.webstart_1.2.1/
keystore/webstart.keystore path with both alias and password being "webstart".
The Java SDK provides tools to create and sign keystores and developers are
encouraged to use their custom keystores.

Chapter 3:Architectural model and Implementation 43

Figure 5:Wizard for configuring export of feature. All components
have to be packaged as individual JAR archives and signed
using a keystore.

Exported OSGi modules are turned into complete Web Start application
through a JNLP file export. This is accomplished through a standard Eclipse
export dialog under options Other → Webstart (PARIA). This dialog is
preconfigured to contain all the necessary configuration to create a JNLP file. It is
only needed to fill custom values and do two necessary amendments: in resources
dialog page, the link to the JNLP file of the feature exported previously has to be
corrected, and osgi.bundles property has to be added. This property configures
Equinox runtime to load and launch the necessary plugins, which the application
consists of. The dialog provides option to fill in the bundle configuration from
an OSGi launcher configurations, if any were made ahead. After exporting
the main JNLP file and all the necessary preceding steps, the desktop package
build is complete.

Chapter 3:Architectural model and Implementation 44

Figure 6:Resources page of JNLP file export wizard. Resources are preconfigured
for deployment under Equinox OSGi implementation. Bundle
configuration is easily generated from OSGi launch configurations.

3.3.7 Installation as a desktop package from within a web application

After building the desktop package and the web package, these two have to be
interconnected into a complete PARIA package. The desktop package is inserted
into the web application folder of the web package and the web.xml application
descriptor is configured to map a URL to the main JNLP descriptor of inserted
desktop package.

In order to interconnect the two packages on the application level, so that
the web part of application knows, where the desktop package is deployed, we
designed a simple solution that fits into the OSGi architecture. The solution is
to utilize already present OSGi services mechanism and supply a service
to discover presence of deployed desktop package and its URL. For this to work,
servletbridge servlet is accessed from the main module of our framework
and a servlet context parameter called paria.desktopPackage.jnlpURL is read
for the link to JNLP file. Then an OSGi service is published, which provides this
link to other application modules. This link is meant to be used by web user
interface module, which then may provide methods to launch the Web Start
instance directly from web instance.

Chapter 3:Architectural model and Implementation 45

Example snippet of an exported JNLP file

<jnlp>
 <information>
 <vendor>Ondrej Mihályi</vendor>
 <offline-allowed/>
 <shortcut online="false">
 <desktop/>
 <menu submenu="PARIA applications"/>
 </shortcut>
 </information>
 <security>
 <all-permissions/>
 </security>
 <resources>
 <jar download="eager" href="equinoxLauncher.jar" main="true"/>
 <extension href="features/cz.cuni.....rapWeb_1.0.0.jnlp"/>
 <property name="osgi.bundles" value="..[bundle configuration].."/>
 <property name="osgi.noShutdown" value="true"/>
 <property name="eclipse.ignoreApp" value="true"/>
 </resources>
 <application-desc

main-class="org.eclipse.equinox.launcher.WebStartMain"/>
</jnlp>

3.3.8 Tooling for development of user interfaces

From the perspective of user interfaces, regular web and desktop applications
differ noticeably in the platform, which is the base for the user interface. Desktop
applications run as separate programs using available graphical desktop resources
and windowing toolkits, and they serve the user interface as one or couple
of decorated windows. On the contrary, standard web applications are served
through and tied to a browser environment, what poses limits on how the user
interface is developed. In PARIAs, this concludes into the necessity to either
supporting multiple different user interface modules, or to find a solution as
to how to bring the user interface, which is designed to be run in browser,
to the desktop platform.

One of the approaches to unify user interfaces is to build the interface on
a common platform made available in both environments. This is implemented as
a common runtime, which can be made available in browsers through a plugin
and as a library or standalone executable on desktop. Some of the tools discussed
in provide such platform, for example Adobe AIR or Java FX. In the thesis we
target PARIAs, which are not explicitly dependent on any non-standard browser
plug-in and can be accessible through any bare internet browser. Thus this
approach is not considered as an adequate solution. However, it still may be used
in case it is appropriate to require additional browser plugins.

We will further discuss approaches, which avoid such requirements. First,
the web user interface can be built using an API, which is supported by two
different backends, each one for a different environment. This is not widely
supported by many user interface toolings, nevertheless the combination of Rich
Client Platform (RCP) and Rich Ajax Platform (RAP) integrated into Eclipse IDE
provides tools to support multiple backends to a unified API. The two different
backends are included in the final application as OSGi bundles, and in the build
configuration, the appropriate backend bundles are exported for web and desktop
deployments. Since standard RCP bundles are based on platform dependent SWT
toolkit, it is encouraged to substitute standard SWT bundles with a bundle built on
SWTSwing libraries, which create a bridge between SWT API and platform
agnostic Swing UI libraries. This is exemplified by cz.cuni.mff.paria
.lib.swingswt module included in our framework.

Another adequate approach is to bring a servlet container into the desktop
environment and serve user interface again through a standard web browser. This
solution is the most powerful and supports any web technology used in
development of user interfaces. On the other hand, it may appear less intuitive

Chapter 3:Architectural model and Implementation 46

to users and involves the necessity to launch a browser to provide the interface
through. Our framework supports this approach from the ground by providing
a module with embedded jetty servlet container named internalHttpServer,
which publishes a standard OSGi http service. This module is to be included in
the desktop instance to provide the same http service, which is regularly available
in the web instance.

Chapter 3:Architectural model and Implementation 47

CHAPTER 4: REALIZATION OF A PROTOTYPE APPLICATION

4.1 Prototype application

To illustrate the capabilities and features of our PARIA framework and tools, we
will describe a prototype application. This application is a simple program for
taking and managing textual notes. It runs on the internet as a web application
accessible through a standard web browser. It can be downloaded and installed to
the desktop as a JNLP package. The desktop package then runs either as
an normal desktop program or in a browser window as web application through
an embedded http server. The data are automatically synchronized with the
Internet.

4.1.1 Architecture of prototype application

The core of the prototype application is based on Eclipse Rich Client Platform
technology (RCP). This platform is generally used in development of standard
desktop applications based Eclipse technologies. Another Eclipse technology,
Rich AJAX Platform (RAP) enables to build web applications based on UI API
analogous to RCP API. We have chosen these two technologies to build the
prototype application to illustrate the possibilities of adaptability and extensibility
of PARIA applications. While the web application instance provides standard web
user interface through a browser, desktop instance may optionally provide a more
convenient native user interface. This is achieved by different configurations of
OSGi bundles.

Web instance of application is built as servlet deployed through the OSGi
HTTP service into the underlying servlet container. This service is provided by
the servlet bridge included in PARIA framework. The rest of the application is
based on Hibernate module, Data layer module and the core RCP application
executed in RAP environment. Hibernate module is connecting to a distinct SQL
server on the network.

Desktop instances are distributed from the web instance through the JNLP
protocol, which is linked to from a menu button. They are optionally served
through a native windowing interface in RCP environment, or through a browser
using embedded instance of jetty http server. Hibernate persists objects in
embedded derby SQL database.

Chapter 4:Realization of a prototype application 48

Chapter 4:Realization of a prototype application 49

Figure 7: Architecture of web instance of prototype

Internal
servlet

container

Equinox OSGi runtime

Hibernate
Embedded

SQL database
Data layer

RAP servlet
RCP

application

OSGi
HTTP
service

Browser
UI interface

HTTP protocol

Windowing
UI interface

JDBC

SWT modulesSWTSwing
module

Synchronizer

SQL DB
of web

instance

Figure 8: Architecture of desktop instance of prototype

Internal
servlet

container

Equinox OSGi runtime

Hibernate
Embedded

SQL database
Data layer

RAP servlet
RCP

application

OSGi
HTTP
service

Browser
UI interface

HTTP protocol

Windowing
UI interface

JDBC

SWT modulesSWTSwing
module

Synchronizer

SQL DB
of web

instance

4.1.2 Data layer

Data layer of the application is composed of three Java Bean classes
and java.util.List interface, which is used to create one-to-many relations
between them. The application manipulates with textual notes stored in folders.
One folder stores zero or more notes, a note belongs to exactly one folder. We use
an additional bean to track all the folders. This bean is used as the root of the data
hierarchy. Following table summarizes bean classes, including EJB annotations.

Chapter 4:Realization of a prototype application 50

Class description: RootBean

@Entity public class RootBean {
@OneToMany List<FolderBean> folders;

@Id @GeneratedValue public long getId();
}

Class description: FolderBean

@Entity public class FolderBean {
@OneToMany List<NoteBean> notes;

@Id @GeneratedValue public long getId();

public String getName();
}

Class description: NoteBean

@Entity public class NoteBean {
@OneToMany List<NoteBean> notes;

@Id @GeneratedValue public long getId();

public String getName();
public String getText();

}

4.1.3 User interfaces of prototype application

Prototype application has been designed to show the ability to serve different user
interfaces in web and desktop environment. This is in general accomplished by
developing two different user interface modules for each deployment. However,
we took advantage of Eclipse RCP and RAP technologies to simplify
the development.

The user interface of application is built on packages, which are provided by
both SWT bundles and RAP bundles. Exported Java packages in these two bundle
packages are not equal and thus the final application code had to be adapted
to support both of them. We use OSGi mechanisms to configure, which bundle
packages are inserted in the environment. Underlying UI libraries are packaged
into bundles, which export the necessary Java packages. This allows for
substituting one UI engine for another. Additionally, we use the SWTSwing
library and package it into an OSGi bundle. This bundle allows to bridge
SWT API with native Java Swing UI libraries. SWT binary libraries are not
platform independent and have to be supplied with native OS libraries. The
SWTSwing module helps us to free the final application from this OS specific
dependencies. The final result is that the same application code runs through
a servlet and browser in web instance, and can run as a windowing application on
desktop. This is illustrated by following screenshots of in different configurations.

Chapter 4:Realization of a prototype application 51

Figure 9:Screenshot of desktop instance running on SWT backend.

Chapter 4:Realization of a prototype application 52

Figure 11:Screenshot of desktop or web instance running on servlet
RAP backend.

Figure 10:Screenshot of desktop instance running on pure Java
SWTSwing backend.

4.2 Evaluation of PARIA framework in the context of prototype
application

The prototype application showed that our PARIA framework provides a usable
concept and tools to develop desktop-oriented web applications. The development
tools simplify the development of PARIAs to the extent that it does not involve
much more complexity than development of usual Java web applications.

A worthy aspect of building the application on our framework is that
it involves many clear design patterns and principles. Separation of data into
beans helped to build the application around a central object model. This allowed
easy integration of model-view-controller design pattern into the application
through a simple event registry. Thanks to the OSGi layer, it is now possible to
build application on multiple modules and also extend it in future development.
The ServiceRegistry in main framework bundle also helped to keep track of
module references. The positive side-effect of this is cleaner and more readable
code when accessing features available in distant parts of application. Utilization
of OSGi framework also introduces features that are unmatched by other similar
tools. It enables to build application modules, which are able to fit into the rest of
the application and cooperate with other modules. This mechanism is valuable
even outside of our framework in building custom application modules.
The ability to adapt application user interface to target environment demonstrates
its power. To develop this behavior using other technologies, such as Google
Gears, is much more complicated, if not impossible.

Over Google Gears and Adobe AIR, our framework has the advantage that it is
built on plain Java platform. This makes the final application more available,
because Java Runtime Environment is nowadays present on virtually every piece
of a computer device. Moreover, the framework provides an infrastructure and
a legacy module for automatic data synchronization, which helps with building
a shared data layer very simple. This is not provided by any other known tool to
that extent. Google Gears provides a local SQL database with simple connection
API, however, synchronization with remote server is supported rather by form of
guidelines and some utility tools. Java FX provides again only a partial solution
for building PARIAs. It highly depends on JRE and thus is suitable only for
desktop instance development. As a result, it could be used as a technology
complementing the PARIA framework, and not competing it.

Development of the application showed also some imperfections and stability
issues in data synchronization mechanism. This was expected since the framework
is not yet a mature project for production use. It cannot compete in stability

Chapter 4:Realization of a prototype application 53

and reliability with well established projects like Google Gears, Java FX or Adobe
AIR, all backed by big commercial companies. Although to this day
the framework as a whole is not sufficiently stable to build production-ready
applications, it still has significant advantages over other tools available in
the universe. Moreover, developers are free to supply their solutions into
the framework through OSGi mechanism and thus bypass unfavorable, possibly
unstable, legacy modules.

Chapter 4:Realization of a prototype application 54

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

We built our tools by bringing together various Java opensource technologies. The
additional effort to glue them together to an integrated framework was not
comparable to the effort to build any of its major components. This proves that the
Java platform and surrounding technologies create a solid ground for modern
application development. Many advanced specifications and guides are being
prepared by both commercial and noncommercial organizations, mainly Sun
Microsystems and IBM. Thanks to them, it is possible to integrate most mature
software components together easily. Moreover, the OSGi mechanism allows for
flexible and configurable integration of the components.

The proposed method and tools for development of desktop-oriented web
applications illustrate how next generation network applications may be
developed. Using already existing and mature Java tools and applications, it was
possible to create platform for applications, which are ubiquitously accessible and
can compete with desktop applications at the same time. These applications
combine the best from web and desktop world.

As modern web technologies develop, there will be more demand for
applications, which provide access to the same user's data through any computer
device connected to Internet. The Google company supports this direction with
the many web applications accessible through any internet browser. Our solution
extends the range of web applications over the limitations of web environment. It
gives method and tools to develop web applications that can extend themselves to
become more a desktop application than a web application. Final applications
have the potential to unify the desktop and web paradigm into only one type of
application necessary in the interconnected future.

5.2 Future work

Our framework was built as a proof of concept to support the development
method of web-applications adaptable to desktop environments. As such, it leaves
much space for improvement through development of additional OSGi modules
or substituting existing components with more advanced ones.

Chapter 5:Conclusion and future work 55

Applications built with our existing framework are already able to provide
adaptable user interfaces to access user data anywhere on the Internet. This raises
security concerns, which are yet not covered. Data available on the Internet should
be protected by some form of authentication layer running on the web instance.
This layer would be supported by user interfaces, which would provide means to
input authentication data, and by synchronization process, which would pass these
data to the server to authenticate transactions.

Another aspect, which could be much improved, is the data synchronization
mechanism. Our framework contains a simple data replication through DB4o
Replication System. This process of synchronization periodically checks for
changed data and replicates them. It could be much better optimized, for example
by triggering synchronization attempt after data changes, or by compressing the
transferred data. Also more complex solutions to treating data conflicts could be
elaborated and supplied by more intelligent automatic conflict handlers.

In the future, we expect that more and more modern web technologies
and solutions will develop and begin to be widely accepted. Lots of projects
presented by Google and other major companies prove that this trend is inevitable.
One of recent Google's moves — Google App Engine — may provide a very
useful platform for deploying Java web applications in the future. It is meant to
provide sandbox environment built on distributed resources. If appropriately
adapted for deployment in this environment, it would represent a ideal
deployment platform for ubiquitous web applications.

 In the world of new technologies, we believe that our framework has full
potential to evolve and not become obsolete. Many emerging technologies don't
compete with, but may be combined with our framework. For example, Java FX
may be used to build desktop instances, Google Web Toolkit can be a base for
web user interfaces. The key concept of our framework is to provide a simple
synchronization of shared data and this will not be provided by most of available
tools for a while.

Chapter 5:Conclusion and future work 56

REFERENCES

[All02] Jeremy Allaire (2002): Macromedia Flash MX – A next­generation
rich client. Macromedia, Inc.
http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf

[AGX02] Larry Arnstein, Robert Grimm, Chia­Tang Hung, Jong Hee Kang,
Anthony LaMarca, Gary Look, Stefan B. Sigurdson, Jing Su, and
Gaetano Borriello (2002): Systems support for Ubiquitous Computing:
A case study of two implementations of Labscape. Pervasive
Computing, Pages 30­44.

[Drs09] DB4o object database project: db4o Replication System (dRS) version
7.0 – Product Information.
http://www.db4o.com/about/productinformation/drs/.
Accessed: February 2009

[UWas02] Robert Grimm, Janet Davis, Ben Hendrickson, Eric Lemar, Adam
MacBeth, Steven Swanson, Tom Anderson, Brian Bershad, Gaetano
Borriello, Steven Gribble, David Wetherall (2002): Systems Directions
for Pervasive Computing. University of Washington, USA.

[GDLX04] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven
Swanson, Thomas Anderson, Brian Bershad, Gaetano Borriello,
Steven Gribble, and David Wetherall (2004): System Support for
Pervasive Applications. ACM Transactions on Computer Systems, Vol.
22, No. 4, Pages 421­486.

[HC04] Richard S. Hall and Humberto Cervantes (2004): An OSGi
implementation and experience report. Consumer Communications
and Networking Conference, 2004. CCNC 2004. First IEEE, Pages
394­ 399.

[Kim01] Steven Kim (2001): Java Web Start ­ Developing and distributing Java
applications for the client side. IBM developerWorks.
http://www.ibm.com/developerworks/java/library/j­webstart/

[Mor08] Florian Moritz (2008): Rich Internet Applications (RIA): A
convergence of user interface paradigms of web and desktop ­
exemplified by JavaFX. University of Applied Science
Kaiserslautern,Germany. http://www.flomedia.de/diploma/

[OSG07a] The OSGi Alliance (2007): OSGi Service Platform ­ Core Specification.
http://www.osgi.org/Download/Release4V41

Chapter 5:Conclusion and future work 57

[OSG07b] The OSGi Alliance (2007): OSGi Service Platform ­ Service
Compendium. http://www.osgi.org/Download/Release4V41

[Sun97] Sun Microsystems, Inc (1997): JavaBeans™ API specification.
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html

[Zuk01] John Zukowski (2001): Java Collections Framework. IBM
developerWorks. http://www.ibm.com/developerworks/edu/j­dw­javacoll­

i.html

[Sun07] Sun Microsystems, Inc (2007): Java™ Servlet Specification.
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index2.html

Chapter 5:Conclusion and future work 58

APPENDIX

List of figures

Figure 1: RIA categorization (from [Mor08])..10
Figure 2: Topology of local and remote storages – one master storage and many local storages.

Desktop instance accesses both master and local storages...21
Figure 3: Schema of framework with all the key parts. Shows OSGi component layers in

horizontal axis, and data layers in vertical axis..26
Figure 4:Scheme of building process of desktop application instance. The final product is

a deployable Web Start application with JNLP manifest file...43
Figure 5:Wizard for configuring export of feature. All components have to be packaged as

individual JAR archives and signed using a keystore..44
Figure 6:Resources page of JNLP file export wizard. Resources are preconfigured for deployment

under Equinox OSGi implementation. Bundle configuration is easily generated from OSGi launch
configurations...45

Figure 7: Architecture of web instance of prototype..50
Figure 8: Architecture of desktop instance of prototype..50

Figure 9:Screenshot of desktop instance running on SWT backend..52
Figure 10:Screenshot of desktop instance running on pure Java SWTSwing backend....................53

Figure 11:Screenshot of desktop or web instance running on servlet RAP backend.......................53

Acronyms and terms

Adobe AIR Runtime, which lets developers use web technologies to build rich

Internet applications that run outside the browser.

AJAX Asynchronous JavaScript and XML

Ant Java build tool. (http://ant.apache.org/)

CORBA Common Object Request Broker Architecture

DB4o Java opensource object database

DOJO AJAX Javascript toolkit (http://www.dojotoolkit.org/)

DOM Document Object Model (http://www.w3.org/DOM)

Eclipse PDE Eclipse Plug-in Development Environment. A platform used to develop

Eclipse plug-ins from within the Eclipse IDE. (http://www.eclipse.org/
pde/)

EJB Enterprise Java Beans

Equinox OSGi implementation developed by the Eclipse Foundation. It is used
to power modular architecture of Eclipse IDE in latest releases

Flash Adobe Flash Player (http://www.adobe.com/products/flashplayer)

GWT Google Web Toolkit. (http://code.google.com/webtoolkit/)

Appendix 59

Hibernate Opensource Java persistent framework (http://www.hibernate.org/)

HTTP Hypertext Transfer Protocol

Java http://java.sun.com

Java FX http://java.sun.com/javafx/

Java Web Start Technology developed by Sun Microsystems, which enables to deploy

web applications as downloadable components accessible through
internet browser.

Javascript Standardized scripting language present in all major browsers.

Javassist Class library for editing Java bytecodes

(http://www.csg.is.titech.ac.jp/~chiba/javassist/)

JDBC Java database connectivity (http://java.sun.com/javase/technologies/
database/)

Jetty Opensource embeddable Java servlet container

(http://www.mortbay.org/jetty/)

JNLP Java Network Launch Protocol. Used to describe features, contents
and launch configuration of applications deployed through Java Web

Start.

JRE Java Runtime Environment

JSP JavaServer Pages

JXPath Interpreter of an expression language called XPath to graphs of Java

objects (http://commons.apache.org/jxpath/)

Microsoft

Silverlight

http://silverlight.net

OS Operating System

OSGi Java-based service platform (http://www.osgi.org)

PARIA Pervasive Adaptable Rich Internet Application

Perl, Python Dynamically typed programming languages with good support for

textual data and web technologies. Both often used as server-side

scripting languages. (www.perl.org, www.python.org)

Pervasive
Computing

Pervasive computing is a software model bearing in mind increasingly
ubiquitous connected computing devices in the environment and focuses

on distributed data rather than on one computer device. Also Ubiquitous
Computing.

PHP Server-side HTML embedded scripting language (www.php.net)

RAP Rich AJAX platform. Eclipse web UI project based on RCP.

(http://www.eclipse.org/rap/)

RCP Rich Client Platform. Eclipse UI project. (http://www.eclipse.org/rcp/)

RIA Rich Internet Application

RMI Remote Method Invocation

RPC Remote Procedure Call

Appendix 60

SWTSwing Port of the SWT graphical toolkit to Swing.

(http://swtswing.sourceforge.net)

ZK RIA and AJAX toolkit (http://www.zkoss.org/)

Enclosed CD

The CD enclosed with the thesis includes full source code of development
framework and demo applications. It also includes a separate Eclipse plugin and
whole Eclipse distribution for Linux and Windows with all the tools needed to
build the source code and use the framework.

File README.html on the CD includes more detailed information about
contents of the CD and how to use them.

Appendix 61

	Chapter 1: Introduction
	1.1Motivation
	1.2Objectives of this thesis
	1.3Structure of this document

	Chapter 2:Evolution of rich web applications
	2.1Evolution of internet standards and popular technologies
	2.2Rich internet applications
	2.3Convergence of Web and Desktop applications
	2.4On the gap between web and desktop applications
	2.5Pervasive adaptable rich internet applications
	2.6Challenges in development of desktop-oriented web applications
	2.6.1Data persistence and replication
	2.6.2Adaptability to ambient environment
	2.6.3Manageable development and deployment of application

	Chapter 3:Architectural model and Implementation
	3.1Introduction to the development framework for PARIAs
	3.1.1Model of PARIA deployment
	3.1.2Isolation of data layer from logic
	3.1.3Synchronization and storage of data
	3.1.4Service oriented features
	3.1.5Final overview of the framework architecture

	3.2Implementation of the development framework
	3.2.1Main module
	3.2.2Data layer package
	3.2.3Filesystem module
	3.2.4Persistence module
	3.2.5Internal Derby database module
	3.2.6Hibernate synchronization module
	3.2.7Servlet bridge
	3.2.8Internal HTTP server module

	3.3Development tool based on Eclipse platform
	3.3.1Description of Eclipse PDE platform
	3.3.2OSGi module configuration and development
	3.3.3Running and debugging applications within the IDE
	3.3.4Building the final application
	3.3.5Building web application package
	3.3.6Building desktop application package
	3.3.7Installation as a desktop package from within a web application
	3.3.8Tooling for development of user interfaces

	Chapter 4:Realization of a prototype application
	4.1Prototype application
	4.1.1Architecture of prototype application
	4.1.2Data layer
	4.1.3User interfaces of prototype application

	4.2Evaluation of PARIA framework in the context of prototype application

	Chapter 5:Conclusion and future work
	5.1Conclusion
	5.2Future work

