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Preface

As soon as programs started their growth, it became necessity to split them into
functions, and later into compilation units. This shields the programmer from
unnecessary technical details of implementation, and allows him to concentrate
on the actual work. The same structure limits the scope of the compiler, which
can not optimize beyond unit boundaries. This is a major disadvantage as the
compiler needs as much information as it can get to generate better code.

For a long time, most compilers worked on separate compilation units, and
did not really care about other units in terms of analysis. However compilers
grow more capable each year, as does the computing power of consumer-grade
machines. We have reached the point where advanced optimizations could be
performed even on very large programs.

In 2009, the GCC (GNU Compiler Collection) project merged link-time op-
timizer, which enables analysis and optimization on scope of whole program or
shared library. This offers new opportunities for improvement, but also new chal-
lenges. Some of the existing algorithms can easily process whole programs, some
have limitations, and some of them are just too slow and/or memory intesive to
be used in production.

The goal of this thesis is to explore current link-time optimization techniques,
identify bottlenecks, and improve upon it.

This thesis is organized as follows: We introduce compilation and link-time
optimization techniques in the first chapter. We focus on Alias Analysis problem
and its possible solutions in the second chapter, with emphasis on practical use in
current compilers. We improve upon Andersen’s inclusion-based algorithm in the
third chapter using efficient data-structure derived from Bloom filters, sacrificing
some precision for tractability, and compare the results with non-approximate
solution using the same algorithm. In the last chapter we provide documentation
necessary to reproduce presented results.
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1. Compilation and optimization

In this chapter, we will discuss the composition of modern programs, organization
and size of their code-base. We proceed with an overview of compilation stages,
introduce optimization passses and link-time optimization framework.

1.1 Code-base organization and size

Let us start by examining some of the code-bases for programs we use every day.
Many developers run Linux, Firefox (or other browser) and GCC, but unless they
are developing one of them, they do not really have a good idea of how large they
are. The chart in Figure 1.1 shows historical development of code-base size over
the past 10 years for selected projects.
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Figure 1.1: Codebase size of Firefox, Chrome and GCC over time [OpenHub]
.

It might be tempting to say that the code will be split into many libraries. It
is however a common practice to bundle many libraries into a single large binary.
Figure 1.2 shows 8 largest libraries contained in a standard Firefox distribution.
The size of main library libxul.so is 66.39 MB, while the second largest is only
1.51 MB. This is due to performance optimizations, as the developers noticed a
significant start-up cost of dynamic linking, and bundled them together into a
single library. This also means that link-time optimizing compiler has to deal
with an enormous code base at once.

We should keep these numbers in mind while designing a compiler. Compiler
has to keep up with the code-base growth of projects, adding around 2 millions
of lines of code each year and growing complexity of abstraction in modern pro-
gramming languages.
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Figure 1.2: Firefox 50.0.2 object sizes by binary

1.2 Program compilation

Only the simplest programs consist of a single source file. Many programs have
tens, hundreds or even thousands of source files. This not only serves an organiza-
tional purpose, but also allows the programmer to choose different optimization
flags for different files, or even write different parts in different languages. A
mechanism called separate compilation is used to compile and combine (link) all
of them together, to form a finished program. Figure 1.3 shows the transformation
using standard GCC and Binutils (compiler and linker).

In this traditional model, first step is to compile every source file (compilation
unit) into an object file. In this phase, a compiler is invoked and does all the
work necessary to convert source code into binary, including code generation. The
result is stored in an object file, including required metadata, for example, symbol
table. This step is independent for each source file, so they can be processed in
parallel.

Second step consists of linking. The linker inspects all generated objects,
resolves required and provided symbols, dynamic libraris, and produces a final
executable. The linker usually does only minimal modifications to the code in
object files, as it only understands symbols and sections.

main.c

unit1.c

unit2.c

main.o

unit1.o

unit2.o

program.elf

cc1

cc1

cc1

ld

Figure 1.3: Standard workflow for separate compilation
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1.3 High-level structure of a compiler

To compile a program written in a high-level programming language into a ma-
chine code requires many steps. To make orientation easy, and to support code
re-usability, compilers usually consists of the following high-level components:

Front End parses the input language, builts abstract syntax tree and converts
it into an intermediate language (IL) which is used by the middle-end.

Middle End analyses the program represented in IL and performs most high-
level optimizations. This includes splitting the code into basic blocks, building a
callgraph and control flow graph. Various optimizations are then performed.

Back End converts IL code into machine code, optimizing on the lowest level.
For example, it is able to schedule individual instructions and allocate registers.

During this process multiple intermediary languages are used, sometimes more
at the same time (usually during transition to the lower-level language). For
example, GCC uses the following intermediate languages [GCCInt]:

GENERIC is the highest-level IL used by the Front End, able to represent
syntax trees and language-specific features.

GIMPLE is tuple-based IL language, able to represent only simple expressions
common to all languages. It is unable to represent many high-level con-
structs, for example, loops.

RTL (Register Transfer Language) is a low level language similar to machine
code, containing algebraicly described instructions, as should be generated.

1.4 Link-time optimization

Restricting the scope of optimization to a single compilation unit is an important
limitation to the optimizer. One example is devirtualization in C++, which needs
to build complete type inheritance graph to decide which virtual function should
be used to devirtualize given call. Literature usually assumes the compiler sees
the whole source, but as the class its descendants are usually in a separate file, the
compiler has no way of knowing that there is only one possible virtual method,
and devirtualize it.

The idea of interprocedural and link-time optimization (LTO) is old. It was
already discussed in literature in 1970s [All75; AC76]. One of the first industrial
strength implementation of LTO optimizing compiler was MIPSPro, which open-
sourced in 2000 as Open64 under GNU GPL. The compiler suite LLVM supports
link-time optimization by design, from its first release in 2002 [Lat02]. GCC
was entering the link-time optimization game relatively late, with the framework
proposed in 2005 [GCC05; Bri+07] and released in 2009. At present day all three
compiler suites have link-time optimization frameworks ready for production use.

Even before the advent of link-time optimizations, some developers worked
around this limitation. For example, SQLite or older versions of KDE support
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code concatenation in their build system. This results in one huge source file
being passed to the compiler. The result was good in its day, but still had some
issues. All the code needed to be parsed at once, which increases memory usage
and does not scale well, as traditional compilers are single-threaded, and thus
cannot make use of multi-processor and distributed build environment.

main.c

unit1.c

unit2.c

main.o

unit1.o

unit2.o

program.elf

cc1

cc1

cc1

ld

lto1 -fwpa

wpo1.o
...

wpoN.o

ltrans1.o
...

ltransN.o

lto1 -fltrans

ld

Figure 1.4: Compiling source code into binary

The LTO framework implemented in GCC (see Figure 1.4) solves these prob-
lems by keeping separate compilation, but instead of generating classical object
files containing machine code, the middle end stops and writes GIMPLE repre-
sentation into the object, including some metadata (for example the call graph).

Instead of generating library, the linker then picks up the GIMPLE represen-
tation and invokes the compiler again. GCC was designed to perform most of
the link-time optimizations in parallel, and the process has been further split into
two stages. The sequential WPA (Whole Program Analysis) stage and parallel
LTRANS (Local TRANSformations) stage.

WPA stage performs declaration and type linking, and decision stage of inter-
prodecural optimizations. It ends by partitioning the code into smaller pieces
called LTO partitions. The partitioning happens with regard to the code being
optimized, for example to minimize cross-partition edges.

LTRANS stage then performs optimizations decided by WPA stage, followed
by local optimizations and code generation.

1.5 Evaluating GCC performance

As we previously noted, we focus on the GCC suite. In this section, we cover
the experimental setup, evaluate compile time in selected programs and extract
practical information on resources needed and anticipated use. The source code
used to take these measurements is available online (see Attachments), allowing
others to reproduce results presented and use it in future work.

1.5.1 Compiler

For further measurements, we the 5.3 release of GCC. This release is relatively
fresh, supports most of the latest features, but formed a stable base for develop-
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ment and testing.

1.5.2 Tested software packages

Several opensource programs are available for testing, however a good candidate
has to be selected in order to make testing straightforward and reproducible. We
will choose testing applications based on the following criteria:

• written in C++ (preferred) or C,

• good compatibility with current GCC versions (5.x and 6.x),

• flexible and robust build system,

• mid to large codebase, and,

• preferably large monolithic binary.

It is surprisingly difficult to find projects that fit all of those requirements.
For example the build systems of MySQL and Inkscape is very inflexible and has
trouble with LTO compilation. GIMP consists of many plugins which does not
pose any challenge for the current link-time optimizer.

The following applications were used in this work.

Firefox is already an established benchmark for GCC [GH10] and though ear-
lier versiond were difficult to build with LTO, recent versions are polished and
fullfill all the requirements. Is is the largest test case and though it takes only a
few minutes to compile in standard setup, the time can be raised to many hours
with certain optimizations enabled. We will discuss this in more detail later in
Section 1.5.4. Besides the size, the codebase is also divers and makes use of
modern C++ constructs. The specific version used in testing is Firefox 48.

Merkaartor is an OpenStreetMap editor written in C++ with medium sized
code-base. It utilizes Qt framework, a lot of C++ constructs and links plenty of
objects into a single binary. It also uses a lot of C++ constructs. The specific
version used in testing is Merkaartor 0.18.3-rc1

SQLite is a SQL database engine in a single source file with a medium (to
small) sized code-base. It is the simplest of all three and does not offer much
challenge for the optimizer, but offers very quick turn time as well as an easy
entry point for testcase minimization. The specific version used in testing is
SQLite 3.8.7.4.

1.5.3 Experimental setup

Where relevant, the following machine was used for testing:

• Intel Xeon E3-1231-v3 @ 3.40GHz (Haswell),

• 32GB DDR3 RAM @ 1600MHz, 4 modules KHX1600C10D3/8G,
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• 120GB Intel 520 SSD, SSDSC2CW120A3.

This setup is on the high-end of desktop computing, and much more than should
be required for regular development.

The system was running 64bit Linux kernel 4.5 and standard Gentoo Linux
installation. Memory and CPU usage measurements were taken using Linux
Control Groups for whole compilation process, including GNU make and other
tools. The data were sampled at one second intervals, which is more than enough.
Total CPU usage is known precisely, as control groups keep cumulative counter.
The activity at a given point is used only as a pointer as to how many cores
are currently computing. The measurement is precise enough for memory too,
as we are not allocating and freeing memory rapidly. In fact, most of memory
allocation is done at the beginning of an analysis.

1.5.4 Compiling Firefox with LTO and IPA PTA

Firefox, in a standard configuration, can be compiled within minutes. See Figure
1.5 for a graph of the whole compilation (not only the libxul.so). The dip in
CPU cores used around 16th minute is the linker for libxul.so being invoked,
the following spike is a parallel compilation of a few unit tests and miscellaneous
parts.
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Figure 1.5: Compiling Firefox without LTO

Enabling LTO results in slightly longer compile time, but most of the time
is spent during the LTO phase of libxul.so, which is plotted separately in
Figure 1.6a. The link time is being actively improved by the GCC developers
and substantial improvements are made between releases.

Enabling the interprocedural alias analysis pass causes the compilation to end
abruptly due to insufficient RAM. See Figure 1.6b for details: each drop in utilized
CPU cores shows a moment where one LTO process was killed by the kernel on
out-of-memory condition (or finished successfully in later phases). This issue is
remedied by running only 2 processes concurrently (see Figure 1.6c). However
even in this setup the compiler used more than 27 GB RAM and it took around
18 hours to complete.
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(a) libxul.so with -flto=8
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(b) libxul.so with -fipa-pta -flto=8
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Figure 1.6: Compiling libxul.so with different optimization options
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1.5.5 Profiling GCC

To see what areas of GCC are worth improving, we used the perf profiler to
record usage statistics for various GCC functions. Figure 1.1 shows top 20 used
functions during LTO phase. It is not surprising to see a lot of bitmap * func-
tions, as a lot of passes use bitmaps for computations and storing results. Typical
users are data-flow analyzers [Muc97] used many times through the compila-
tion process, register allocator and points-to analysis. Enabling interprocedural
points-to analysis (-fipa-pta) shows drastically different results, with functions
bitmap ior into and bitmap elt ior taking almost all the CPU time. This
clearly shows the pass could benefit from bitmap and/or algorithm optimizations.

Overhead Cmd/Object Symbol

2.92% ltrans/lto1 bitmap set bit

2.19% ltrans/libc int malloc

1.92% ltrans/lto1 bitmap clear bit

1.40% ltrans/lto1 ggc internal alloc

1.26% ltrans/lto1 record reg classes

1.16% ltrans/lto1 process bb lives

1.07% ltrans/lto1 df note compute

0.91% ltrans/lto1 bitmap bit p

0.91% ltrans/lto1 df ref create structure

0.88% wpa /lto1 inflate fast

0.87% ltrans/libc int free

0.77% ltrans/lto1 df worklist dataflow

0.75% ltrans/lto1 inverted post order compute

0.71% ltrans/lto1 cselib invalidate regno

0.70% ltrans/lto1 df ref record

0.68% ltrans/lto1 pool alloc

0.61% ltrans/lto1 reload cse simplify operands

0.59% ltrans/lto1 bitmap ior into

0.58% ltrans/lto1 cse insn

0.58% ltrans/lto1 df reorganize refs by reg

Table 1.1: perf profile with -flto
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Overhead Cmd/Object Symbol

80.99% ltrans /lto1 bitmap ior into

3.62% ltrans /lto1 bitmap set bit

2.11% ltrans /lto1 find what var points to

1.79% ltrans /lto1 do complex constraint

0.53% ltrans /lto1 find

0.40% ltrans /lto1 bitmap copy

0.38% ltrans /lto1 bitmap bit p

0.36% ltrans /lto1 bitmap elt insert after

0.35% ltrans /lto1 add graph edge

0.34% ltrans /lto1 solve constraints

0.21% ltrans /libc int malloc

0.18% ltrans /lto1 bitmap clear bit

0.13% ltrans /lto1 topo visit

0.11% ltrans /lto1 solution set expand

0.10% ltrans /lto1 record reg classes

0.09% ltrans /lto1 ggc internal alloc

0.09% ltrans /lto1 process bb lives

0.09% ltrans/[unknown] 0x000000000061c7aa

0.09% ltrans /lto1 df note compute

0.07% ltrans /libc int free

Table 1.2: perf profile with -flto -fipa-pta
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2. Alias Analysis

The goal of alias analysis is to enable optimizations across memory operations.
It is used by other compiler components to disambiguate accesses to memory
locations, enabling many optimizations. We discuss most commonly used decision
methods, with focus on points-to analysis.

2.1 Common alias analysis methods

In the C language, a memory location is usually accessed by its name or via a
pointer. Disambiguating two accesses is necessary for many optimizations, but
missing an alias might result in incorrect code generated. See example in Figure
2.1. The second assignment to b might seem redundant, as a could not have
changed. However, it is true only if the call to some fn did not change variable
b.

void set_call_set(void) {

int a,b;

[...]

b = a + 1;

some_fn(a, &b);

b = a + 1;

[...]

}

Figure 2.1: Example of the importance of alias information

Accurately disambiguating memory references may be arbitrarily complex.
Many optimizations will however be possible even with a minimal aliasing infor-
mation. Consider example in Figure 2.2. The loop seems to write zeroes into an
array a. This is true if the pointer dereference can not change the pointer itself.
Fortunately we do not need to examine any code not shown in the example. The
C standard prohibits the dereference of float* to modify float* itself [ISO11].
This method is called Type-Based Alias Analysis (TBAA).

void fill_floats(void) {

float* a;

[...]

for (int i = 0; i < 10; i++)

*(a++) = 0;

}

Figure 2.2: Example of the importance of alias information

Alias analysis can not be solved accurately. We distinguish between may-alias
and must-alias information, enabling us to give conservative answers. May-alias
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information indicates that the same memory can be accessed on at least one path
in the control flow graph. On the other hand, must-alias information requires
alias in all possible paths. Consider example in Figure 2.3. The information that
“p points-to x or ’y’ is an example of may-alias, as it depends on the condition
taken. The information “q points-to x” is an example of must-alias, as it holds on
all paths in the example. Notice that must-alias always returns a single element,
may-alias usually returns larger points-to sets.

void fill_floats(void) {

int *p,*q;

int x,y;

[...]

q = &x;

if (x > y) {

p = &x;

[...]

} else {

p = &y;

[...]

}

*p = 0;

[...]

}

Figure 2.3: Example of may and must-aliasing

Alias analysis can be seen as a separate module of a compiler, which is accessed
by optimization passes by the means of alias oracle. This usually is a function
that given two memory accesses in a program answers if they can access the same
memory location. The answer can be yes, no or maybe. A single oracle can apply
multiple algorithms to determine the answer. The following three oracles are
most often used:

Type Based Alias Analysis (TBAA) infers aliasing information from types
and language-specific rules. For the C language [ISO11], an example of this
mechanism has been shown in Figure 2.2 and discussed earlier. This method is
very fast, as it only needs to inspect the types in question. For this reason, it is
usually asked first and is able to distinguish many cases by itself.

Base and offset analysis is used especially for structures or arrays, where the
access is composed of base pointer and an offset. The offset information might
not be complete, but sometimes the range for offset is known. If the bases are
distinct memory locations, the accesses do not alias. If the bases are provably
the same memory locations, the offsets can be compared to see if the accesses can
alias.

For example, consider the code in Figure 2.4. The base and offset would be
able to decide that a[5] and a[6] do not alias, as their base is identical and offset
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differs by at least size of array type, char. On the other hand, it is unable to
answer if *p and a[0] alias: though the base is provably the same, it is unknown
what the offset is for p.

void base_offset(void) {

char a[] = {..., 0};

char *p = a;

while ((*p) != 0 || (*p) != ’a’)

p++;

a[5] = a[6];

(*p) = a[0];

[...]

}

Figure 2.4: Example of base an offset analysis

Points-to analysis is used in a case a memory access cannot be disambiguated
by any simpler rule. A points-to set for a variable (pointer) is a set of memory
locations the variable can be used to access. For example, a simple non-pointer
variable can only be used to access itself (access by name). A pointer variable
can be used to access other memory locations of which the address was taken.
To disambiguate two pointer-dereferences the corresponding points-to sets have
to be compared and if their intersection is empty, it is safe to assume they do
not alias. If their intersection is non-empty, or some of the sets could not be
computed, we must assume they do intersect to preserve correctness.

Compared to type based and base and offset analysis, points-to analysis is a
time-consuming process and will be a focus of this chapter.

2.2 Points-to analysis

Both type-based analysis and base and offset analysis run in practically constant
time. On the other hand, points-to analysis requires nontrivial processing and
does not necessarily scale and we discuss it further. We first distinguish between
the variants of the problem, as the approach to solve them differs wildly.

A flow-sensitive algorithm computes the alias information with regard to con-
trol flow. In the example in Figure 2.3 it would notice the different branches of
if and provide information that “p points to x in the if branch” and similarly
for the else branch. A flow-insensitive algorithm computes alias information
without any regard to control flow. In the same example it would just output “p
may point-to x or y”.

Context sensitivity is a similar problem to flow sensitivity but in intrapro-
cedural case. While flow sensitivity relies on control flow graph inside a single
function, context sensitivity is based on callgraph. The callstack, or some part of
it, is usually considered as a context.

Let us formally define the various alias-analysis types. See [Muc97].
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Definition. Flow-insensitive may-alias information is a binary relation on the
variables AFinMay ⊆ Var× Var. A pair (x, y) is in the relation if x and y can refer
to the same memory location, possibly at a different place in the program, or at a
different time during execution. This relation is symmetric, but is not transitive.

Definition. Flow-insensitive must-alias information is a binary relation on the
variables AFinMust ⊆ Var× Var. A pair (x, y) is in the relation if and only if x
and y always refer to the same memory location during the program execution.
This relation is symmetric, but also transitive.

The flow-sensitive case is a more complicated, and can be examined both as
a relation or function.

Definition. Flow-sensitive may-alias information is a ternary relation on the
variables and program locations AFseMay ⊆ Var× Var× Loc. A triplet (x, y, p)
is in the relation if x and y can refer to the same memory location at the point
p in program execution.

Definition. Flow-sensitive must-alias information is a ternary relation on the
variables and program locations AFseMust ⊆ Var× Var× Loc. A triplet (x, y, p)
is in the relation if and only if x and y always refer to the same memory location
at the point p in program, regardless of what the memory location is.

A similar definition could be used for context sensitivity, adding call context
to the relation as well, or encoding it in the location. The specifics depend on the
definition of context, as there are multiple possiblites. A context could be just a
call site, or a path in callgraph from the entry point, possibly only to a limited
depth.

2.2.1 Problem complexity

It is useful to know how difficult the problem of points-to analysis is. In this
section we will review previous results showing the theoretical bounds for different
problem variants.

The earliest classification is from Landi [LR91], who proves that computing
flow-sensitive may- and must-alias information in the presence of single level
pointers can be done in polynomial time. By adding more levels of indirection,
as is common in most languages, the problem becomes NP-hard.

Later Horwitz [Hor97] proved that precise flow-insensitive alias analysis is
NP-hard with only scalar variables and no heap allocations, though the result
assumes unrestricted pointer dereference.

Chakaravarthy [Cha03] proved that when heap allocations are allowed the
problem becomes undecidable, even if all the variables are scalar. The same
articles also proves that the flow-insensitive variant is in P, if the variables are
further restricted to well-defined types1. Although this is not always the case, it
gives us hope that a successful alias analysis could be performed on a well-formed
program.

1Known type and number of indirections

15



In practical applications, computing high-quality points-to analysis on a single
function is achievable, but for interprocedural scope even the flow- and context-
insensitive poses a considerable challenge.

2.2.2 Known algorithms and approaches

During the years, only a few algorithms have been developed and because alias
analysis is a typical dataflow problem, there is little reason to expect a practical
but fundamentally different algorithm.

Andersen’s algorithm

First published by Lars Ole Andersen [And94], it is an inclusion-based algorithm
is based on direct mathematical representation of aliases as points-to sets. That
is, a points-to set for a given pointer p is a set Sp containing all locations pointer
p can point to. Further expressions are then translated into set inequalities:

pi = &a → a ∈ pi (2.1)

pi = pj → pj ⊆ pi (2.2)

pi = ∗pj → ∀pk ∈ pj : pk ⊆ pi (2.3)

The structure of proposed Andersen’s flow-insensitive algorithm is shown in
Figure 2.5.

1. Initialize variables using inequality 2.1.

2. Build a propagation graph using inequalities 2.2 and 2.3 with variables
as vertices, propagations along edges.

3. Find strongly connected components in the grah and merge them into
a single node.

4. Mark every node as changed.

5. For every changed node, reset its changed status, propagate the
change along edges and mark nodes as changed if they were mod-
ified.

6. Repeat step 5. until no node is marked as changed.

Figure 2.5: Andersen’s algorithm

Steensgaard’s algorithm

The main problem of Andersen’s approach is scalability. Elegant approach was
developed by Bjarne Steensgaard [Ste96]. It is similar to Andersen’s, but replaces
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inclusion-based constraints by equality-based constraints. Solving is then simpli-
fied to points-to class unification. This is why it is sometimes called unification-
based algorithm. The unification can be done in almost linear time, which leads
to a very fast and scalable algorithm, though sacrificing some precision.

The unification-based algorithms are less used, as the method is believed to be
patented by Microsoft[Ste01]. It is being used in Open64 and was implemented in
LLVM, but later removed in 2006 [Lat06] due to patent concerns. We expect this
to change, as the patent has just expired while writing this thesis, in September
2016.

2.2.3 Further improvements

Steensgaard’s algorithm can use Union-Find data structure for the unification,
which is already extremely efficient [Tar75]. Andersen’s algorithm has to deal
with sets, and the choice of data structure for set management is harder. Two
major improvements have been proposed to date, though none of them have been
implemented in a production compiler.

Bloom filters

The use of Bloom filters was first proposed by Nasre et. al [Nas+09]. They are
very space efficient and perform well on certain operations, as is query and union.
Some implementations can also perform interesection, but with decresed preci-
sion. The complete lack of the ability to enumerate elements was worked around
by introducting multiple dimensions for multi-level pointers. In this scheme, a
pointer could be easily dereferenced upto a constant depth and after that, the
algorithm answers conservatively.

We will revisit the use of Bloom filters in later chapters.

Binary decision diagrams based algorithms

A Binary decision diagram (BDD) is a data structure used to represent boolean
functions. It can be easily extended to represet relations by encoding characteris-
tic function of given relation, and the complete alias information as well. Multiple
algorithms based on the BDDs were developed [WL04; Bie05], but most of them
lack public and usable code for further development. The major issue with the
use of BDDs is that they heavily rely on the correct variable ordering. Choosing
wrong ordering quickly results in size explosion and speed decrease. However the
BDD approach seems promising for loss-less representations.

2.3 Current state in compilers

There are not many modern compilers with open code that can be examined and
improved upon. One of the players is GCC, that has been around since 1985 (1.x
release was in 1991) and is the most widely used open source compiler today. The
younger competitor is LLVM/Clang, first released in 2003. It is written in C++,
is supported by Apple since 2005, and due to its age has more modern design,
and is generally deemed to be easier to extend and work with. Other competitor
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is Open64, which lacks community support, but is still being developed by some
groups.

Many researchers also focus on Java compiles and algorithms, and though
many techniques can be used for C and C++, Java is very different language, in
that it has just in time compiler (JIT), and does not have pointers in the classic
sense, only references, which simplifies some cases.

There are many more compilers available, but most of them are proprietary
or not maintained, as for example the Intel C++ Compiler (ICC), VisualC++,
SUIF and IMPACT.

It is very hard to compare many of the published results, as the implemen-
tations are not public, and mostly implemented for compilers that are unable
to keep up with current C/C++ standards and successfully build modern (and
big) projects. Many of the results are computed outside the compiler and never
tested. Even if they were, there is no simple metric that could be used for com-
parison. The results rely on previous optimization passes, constraint generator,
chosen granularity (wether to consider structure members or arrays) and finally
queries asked by the compiler in later optimization phases.

In the rest of this chapter we briefly summarize the state of art of alias ana-
lyzers in open-source compilers.

GCC

GCC has a good support for TBAA and Base-offset analysis, intraprocedural
points-to analysis, but lacks a good interprocedural points-to analysis. We discuss
details in Chapter 4.

LLVM/Clang

As LLVM is very modular, it contains multiple alias analysis passes. In the core
package there is -basic-aa pass, providing local alias information using many
language-specific facts. It is similar to GCC’s TBAA and Base-offset analysis.

Additionally, the poolalloc package provides a -globalsmodref-aa pass,
providing context-sensitive alias information for global variables similar to GCC’s
ipa-reference pass. It also implements the Steensgaard’s algorithm in the
-steens-aa pass, and Andersen-style context and field-sensitive points-to anal-
ysis in -ds-aa.

Open64

Open64 traditionally implements TBAA, Base and offset analysis and points-to
analysis using Steensgaard’s algorithm. A new context-sensitive andersen-style
alias analysis has been implemented in 2013-2014 [Sui+14], though the context
sensitivity seems to be only partially implemented.
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3. From Bloom filters to
Bloomaps

During points-to analysis the datastructure is almost as important as the algo-
rithm used. In the case of GCC, the structure chosen is a hybrid of bitmap and
a linked list. This works fine for small and dense data, but not so well with
large data. Converting to a better data structure is relatively easy task, but
what data structures are available? We start by examining the needs of a typ-
ical Andersen-style algorithm and comparing theoretical complexities of various
well known data structures. In the rest of this chapter we will describe a new
enhancement of Bloom filters called Bloomaps, tailored specifically for the use in
points-to analysis.

3.1 Requirements

As a basic data structure for points-to analysis, we need a data structure holding
sets of integers that is compact and has the following operations.

• INSERT(set, element) – inserts element into set and returns if the struc-
ture has been changed by the insertion.

• QUERY(set, element) – checks if element is part of set.

• INTERSECTION EMTPY(set1, set2) – checks if intersection of set1 and
set2 is empty.

• ENUMERATE(set) – lists all elements in a set.

• UNION(set1, set2) – merge set2 into set1.

The algorithm uses the following operations in the following way:

• Initialization: INSERT used to populate points-to sets with memory loca-
tions assigned to them.

• Propagation: UNION is used for every copy constraint, ENUMERATE and UNION

for dereferences. Majority of time and memory is consumed by the propa-
gation stage.

• Oracle queries: QUERY is used for set membership, INTERSECTION EMPTY for
set disjointness

In other words, the basic operations can be slower, INTERSECTION EMPTY and
UNION has to be fast. There are a few other considerations:

• UNION will be called on the same pairs over and over again, the difference
will usually be in just a few elements.

• The average number of stored elements will be small, and the data sparse.
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• Some sets may grow very large, containing almost every element possible.

• Low memory overhead is required, as the number of sets is in the order of
number of elements inserted.

Traditionally GCC uses two basic types to represent sets. One called sbitmap,
which is plain bit array of a given size, and second bitmap, which is designed
for storing sparse bitmaps. The later consists of a linked list of blocks, each
block containing 128 bits, and allows to skip long sequences of empty blocks.
The implementation is relatively memory efficient and performs well on many
dataflow solvers including bitwise AND and OR. In case only a few bits are set in a
block, the worst-case complexity of O(n) for most operations comes into play and
the stucture becomes unusable in points-to solver. This is expected to happen
relatively often. For example, Firefox has tens of millions of declarations, each
of them can find itself in a set, with high probability to be a single bit in that
set. A program can be made to generate arbitrary points-to sets. For this reason
it is unrealistic to expect points-to sets to have some structural properties that
could lead us to efficient and precise data structure. This leads us to consider
non-exact data structures.

3.2 Bloom filters

A Bloom filter is a classical probabilistic data structure, invented by Burton
Howard Bloom [Blo70]. The goal is to provide a data structure that has some
nonzero probability of false-positive, but zero probability of false-negative. This
is accomplished by taking a bit field of m bits, k hash functions, and hashing
every element into k different bits, writing 1 on insertion, and checking if every
position contains 1 on query.

The Bloom filter has immediate applications in some areas, for example
caching: it is a good idea to ask a filter if an element is in the cache. If the
answer is no, we need to get it elsewhere. If the answer is yes, we can look into
the cache, and in the worst case it is not there (an ocurrence false-positive).

Basic operations can be implemented with the following time complexity (pro-
vided the hashes can be computed in constant time, which is often possible):

• QUERY in O(1) time.

• INSERT in O(1) time.

• UNION in O(m) time (bitwise OR).

• BITWISE INTERSECTION in O(m) time.

• DELETE, ENUMERATE, RESIZE not supported1.

Unlike in simple bitmaps, bitwise intersection of Bloom filters is not equal to
set intersection. Denote by BF (A) a Bloom filter created from empty filter by

1Though there are variations that support these oprations, only RESIZE is usually possible
without drastic changes to the structure.
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inserting elements from A one by one. Then for A,B it does not hold that BF (A∩
B) = BF (A) ∩ BF (B). While the inequality BF (A ∩ B) ⊆ BF (A) ∩ BF (B)
holds, it is nowhere near the equality. Most imporantly INTERSECTION EMPTY is
hardly reasonably accurate, because a single bit in BITWISE INTERSECTION causes
the filter to be non-empty.

3.3 Bloom filter intersection

Although a Bloom filter intersection is easily computed with bitwise AND, it is
rarely accurate. As proven in [Bos+08], the probability that BF (A ∩ B) =
BF (A) ∩BF (B) is:

p = (1− 1/m)k
2·|A−A∩B|·|B−A∩B|.

For INTERSECTION EMPTY, we can further simplify the formula by considering two
cases: |A ∩B| > 0 and |A ∩B| = 0. Assuming that |A ∩B| = 0, the probability
that BF (A) ∩BF (B) is also empty. It is as follows:

pempty = (1− 1/m)k
2·|A|·|B|.

Jeffrey and Steffan [JS11] showed a slightly improved bound with partitioned
Bloom filters.

pempty =

(
1−

(
1− k

m

)|A|·|B|)k

.

Partitioned Bloom filter has a separate partition for each hash function of
size m/k, therefore it is enough to have one empty partition to consider the filter
empty, as every query would result in false in this empty partition.

The same paper also proved that pure Bloom filter intersection is more mem-
ory consuming than storing inserted elements in an linked list. In the next sec-
tion, a hybrid solution is provided that can be used with both of these approaches,
based on the time requirements.

3.4 Bloom filter enumeration

It is immediately clear that vanilla Bloom filter does not support element enu-
meration. For example the simplest filter holding 1 elements and answering with
false-positive probability 0.5 would have to enumerate half the universe U , which
may as well be impossible for U = N.

Let us briefly summarize a few options most commonly used:

Enumerate entire universe. Without any extra information on what may be
contained in a filter, we have to check for every element in the universe. This
is possible for small and dense universe, and appropriately sized filter. Even for
almost empty filter, this approach takes O(|U |) time.
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Keep a Queue-of-queries for each filter. This approach is suggested by
[JS11]. This idiom is to keep a queue of elements inserted into the filter, which
is evaluated in case the elements need to be enumerated. The queue usually
holds each element as many times as it has been inserted. The filter has limited
capacity, so as long as we do not insert elements many times over excessively, the
list can not grow indefinitely. However, this approach does not work well with
UNION, as the lists would have to be either concatenated (in which case the lists
would grow exponentially) or pruned after each union, which would be essentially
same as using bitmaps.

Alternative structures. A structure has been proposed by Michael Goodrich
[GM11], called Invertible Bloom Lookup Tables (IBLT). The problem of IBLT is
that they have non-zero probability of being unable to produce a complete list
of entries, and do not provide the advantages of classic Bloom filters, as a fast
intersection and membership queries. This said, we will not attempt to use them,
although they are an interesting structure for future work and may find its use
in other optimizers.

Neither of these methods are good for use in points-to analysis, as our universe
can be large (tens of millions of lines of code), and the number of filters is about
the same size as the universe. We introduce a new approach, a compromise
between the two above.

Keep a single Queue-of-queries for all filters. The number of sets in points-
to analysis prohibits the use of queue-of-queries for each filter. The universe
enumeration could be used, but is wasteful as only some variables will ever be
inserted in the set. However, we can keep a global queue-of-queries for all filters
used in the algorithm. Each element inserted will be recorded in an indexed data
structure, and parts of this structure will be searched and evaluated later, when
enumeration is requested.

Choosing a good data structure is still important, as we still need low overhead
and preferably fast insertion. Assuming our universe is all 32 bit integers, a single
bit array of every item ever inserted in under 512 MB. This is reasonable, but
storing even 8 bits for each element would result in 4 GB, which is not. We show
later in this chapter an efficient indexed bit array with insertion in O(1).

3.5 Bloomaps and Families

Bloomap Family with parameters (m, k, s) is a datastructure that maintains a list
of Bloomaps of the same parameters, and indexed representation of used parts of
the universe in union of all its Bloomaps, capable of enumeration.

A Bloomap is an enhanced Bloom filter, belonging to a single family, capable
of executing INSERT and QUERY itself, and ENUMERATE, UNION and INTERSECTION

within its family.
Bloomap with parameters (m, k, s) is constructed from a partitioned Bloom

filter with k partitions, each for one hash function, with the addition of a side
index containing s bits. The side index is used as another partition in the Bloom
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filter, however with simpler hash function that is easily inverted (for example a
simple SHIFT and AND with a mask).

Furthermore, the Bloomaps and their families need to fulfill these conditions:

• When a new item is inserted into a Bloomap, it is also inserted into the
family.

• A Family has to enumerate all items inserted into it’s Boomaps for any
given hash.

Figure 3.4 shows Bloomap and BloomapFamily prototypes. Here hash set is
some data structure capable of storing a set of elements from universe associated
with a given hash. In C++, hash map<vector<universe type>> could be used
as a naive data structure, but we offer a better solution later in this chapter. See
Figure 3.5 for pseudocode implementation of INSERT and ENUMERATE functions.
Overview of Bloomap structure is shown in Figure 3.1.

Bloomap

Side index

INSERT(0b 0000︸︷︷︸
offset

00001︸ ︷︷ ︸
hash

000︸︷︷︸
data

) → offset = 0 hash = 1 indexdata(5) = 00001

INSERT(0b 1000︸︷︷︸
offset

01001︸ ︷︷ ︸
hash

101︸︷︷︸
data

) → offset = 8 hash = 9 indexdata(5) = 10000

ENUMERATE(bloomap, hash)

index[1.hash]

index[0.hash]

index[2.hash]
...

...

Figure 3.1: Overview of Bloomap structure

Both stuctures are pretty straightforward, as INSERT is a regular function for
Bloom filter insertion, with the added partition for side index and family universe
insertion.

While insertion in Bloom filter is in O(1), inserting into a universe may be
O(log n) for tree-based implementations or amortized O(1) for hash-based im-
plementations. There probably is not a better solution in generic case, but we
suggest a worst-case O(1) for 32 bit integers (dense sequence of ids starting from
zero).
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The Bloomap achieves the following theoretical time complexity:

• QUERY in O(1) time.

• INSERT in O(1), assuming O(1) insertion into universe index.

• ENUMERATE in O(|U |) in worst case, assuming universe index suggested in
section 3.5.1 and |U | the size of the index.

• UNION in O(m) time.

• BITWISE INTERSECTION in O(m) time.

• DELETE, RESIZE not supported.

Though the theoretical complexity of ENUMERATE seems very bad, leading po-
tentially to tens of millions of queries. Here the constant is important, as the
Bloomap will rarely be completely full and most of the queries will be filtered by
the side index and universe index. We can also further optimize the algorithm to
reject enumeration of Bloomap that has more elements than designed for.

3.5.1 Compact representation of dense integer universe

Representing universe requires storing sets for different hashes. It is wasteful to
store them in a linked-list, trees or even hash tables, as a humble bit array fulfills
the task. A little unusual form of a bit array has been used, in order to achieve
less allocations and good space efficiency.

As mentioned above, we will split the value to offset, hash and data at
binary boundaries. This means we can simply concatenate the values to get the
represented integer. We can now organize the data into buckets and superbuckets
in the following way:

• Each offset has it’s own superbucket.

• Each superbucket contains a bucket for every hash value.

• Each bucket contains a bit for every data value.

element = offset·hash·data ⇔ universe[offset·hash].bit[data]

...

}
superbucket0

bucket1

bucketN

Figure 3.2: Bucket and superbuckets in an array.

The structure is illustrated in Figure 3.2 and pseudocode implementation in
Figure 3.3. Memory allocation is expected to be done automatically in vector
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class and the array should be resized on first access beyond current boundary.
This allows the structure to occupy only as much memory as is necessary to store
a set of size at most O(max(E)), where E is the number of elements inserted. In
this case, a bucket has 64 bits, so it will fit up to 6bit data. Number of bits in
hash and offset is not important and should be chosen by the size of Bloomap’s
side index.

struct superbucket {

uint64_t bits[];

};

struct universe_index {

vector<struct superbucket> superbuckets;

};

void universe_index::INSERT(offset, hash, data) {

superbuckets[offset]->bits[hash].bit[data] = 1;

}

vector<element> universe_index::ENUMERATE(hash) {

vector<element> candidates;

for (sb in superbuckets) {

for (i = 0 .. 63) {

if (sb->bits[hash].bit[i])

candidates.append(bit);

}

}

return candidates;

}

Figure 3.3: Bucket and superbuckets prototype and pseudocode
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struct Bloomap {

BloomapFamily f; # Family this maps belongs to

int m,k,s; # Filter parameters

int index[s]; # Side index

int partitions[k][m/k]; # Regular filter partitions

};

struct BloomapFamily {

vector Bloomap; # Owned bloomaps

int m,k,s; # Filter parameters

hash_set universe; # Indexed universe

}

Figure 3.4: Bloomap and BloomapFamily prototypes (in pseudocode)
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void Bloomap::INSERT(element) {

# Decompose element to offset, index_hash and data.

(offset,index_hash,data) := element;

# Insert into side index of a bloomap.

index[index_hash] := true;

for (i := 1..k) {

partitions[i][hash_fn(i,element) % m/k] := 1

}

# Insert into universe index of a family

f.universe[index_hash] += element;

}

bool Bloomap::QUERY(element) {

for (i := 1..k) {

if (partitions[i][hash_fn(i,element) % m/k] == 0)

return false;

}

return true;

}

void Bloomap::UNION(another) {

for (i := 1..s) {

index[i] |= another.index[i];

}

for (i := 1..k, j := 0..m/k) {

partitions[i][j] |= another.partitions[i][j];

}

}

vector Bloomap::ENUMERATE() {

vector list = ();

# Check each element in side index

for (i := 1..s | index[i] == true) {

# Test for every element universe lists for this index

for (element in f.universe[i] && this.QUERY(element))

list += element;

}

return list;

}

Figure 3.5: Basic Bloomap operations (in pseudocode)

27



4. Using Bloomaps in points-to
analysis

In this chapter we discuss the internals of points-to analysis as implemented in
the GCC compiler and how it was augmented by the use of Bloomaps instead of
regular bitmaps. Later we show how the change affected GCC and discuss future
work.

4.1 Points-to analysis in GCC

The points-to analysis in GCC is implemented in two files. In tree-ssa-alias.c

contains the alias oracle and the TBAA and Base-offset algorithms (see sections
2.1 and2.1). Function refs may alias p(tree,tree) wraps most of the func-
tionality, but a few others exist to check for aliasing with global memory, call
clobbers and other special cases. It also contains interface to alias analysis on
RTL objects, which query the oracles listed above.

The points-to information is stored in a structure pt solution, which is com-
puted by algorithm in tree-ssa-structalias.c. It is an implementation based
on [PKH04; HT01], and is an Andersen-style algorithm. An overview of this
algorithm is on Figure 4.1.

The implementation has two modes. One for intraprocedural points-to anal-
ysis (PTA) and second for interprocedural points-to analysis (IPA PTA). In our
case this code reuse complicates the development. We want to keep the intrapro-
cedural analysis as it actually performs well, and modify the interprodecural
version which has performance issues as discusses in earlier chapters.

4.1.1 Improving the implementation

In this work, we have temporarily duplicated the code into ik-structlias.c,
which was then modified to implement only the interprocedural case. This is just
a temporary solution which enables us to run the original and modified points-
to algorithm (called IPA KPTA) in a single execution and directly compare the
results. Furthermore, while benchmarking only the points-to algorithms code
changes, the rest of the compiler is identical. The most important reason is to
avoid case separation in each function. The actual algorithm needs adjustments:
we not only need to pass different data types, but some operations are no longer
supported, and some operations should be used with greater care than they are
now. After inspecting the code, it became clear that the two algorithms need to
be separated.

To split the code, a few modifications has been done. Common functions
were marked static and renamed to avoid confusion. New query functions were
added to tree-ssa-alias.c, which ask both the original and the new points-to
oracle if the data is available. A new pass has been created, called kpta, which
is controlled by new command line options:

• -fipa-kpta is an analog to -fipa-pta and instructs the compiler to run
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1. Allocate varinfo t structure for each variable. varinfo t includes
metadata and a solution set.

2. Find constraints in the form of p = &q (direct constraints), and use
them to initialize the solution sets.

3. Find constraints in the form of p = q (copy constraints), and use
them to build a constraint graph on variables. For example for p =

q constraint an edge q → p is inserted to the graph.

4. Find other constraints in form of *p = q or p = *q or containing
field offsets (complex constraints) attach them to their corresponding
vertices in the constraint graph.

5. Find and contract strongly connected components in the graph.

6. Put all graph vertices into a worklist.

7. Take a vertex from the worklist. Process all complex constraints
(possibly adding more copy edges to the graph) and propagate the set
along the copy edges, including complex constraints. Put all vertices
modified by this operation into the worklist.

8. Repeat step 7. while there are elements in the worklist.

Figure 4.1: GCC implementation of Andersen’s algorithm

the new IPA KPTA algorithm during LTO phase, just after the original
IPA PTA pass (if enabled).

• --param kpta-bloomap-size=n forces a Bloomap of specific size.

• --param kpta-bloomap-precision=p forces a Bloomap of specific preci-
sion. The value passed is inverted precision in percent, so a value of 100
will result in a precision of 1%.

4.1.2 Integrating Bloomaps

Integrating Bloomaps was relatively straightforward. The following steps were
necessary, as some operations do not map well to Bloomap operations.

• The main loop in solve graph() keeps two solution sets: a current one
and one from previous iteration. When new elements are to be propagated
(via complex constraints), only the difference is examined to make changes.
This is a nice optimization for classical bitmaps. However, Bloomap has no
easy method to list difference and would have to be enumerated.

• Due to historical reasons, two identifiers were used in the algorithm. This
is no longer necessary and one of them was removed.
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• Finished solutions were deduplicated, merging same sets into one. This
results in a less memory use, but is not worth the effort for Bloomaps, as
they are already very space efficient.

• Unnecessary bitmap enumerations were removed and the remaining ones
optimized to reduce the number of passes.

4.2 Performance evaluation

By using Bloomaps instead of classical bitmaps, we have improved significantly
both the compile time and memory usage. See Figure 4.2 for comparison. We
measured compile time in hours for the old IPA PTA algorithm, and we could
only utilize 2 cores due to memory requirements. The improved IPA KPTA
algorithm finishes in just 16 minutes, utilizing approximately the same memory,
but working in 8 threads instead of 2. Though the memory use is still not ideal,
taking approximately extra 10 GB (see Figure 1.5 in the first chapter). It is now
viable to enable IPA KPTA by default during LTO phase.
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Figure 4.2: Comparison of build time with old and improved algorithm

We have also analyzed the precision lost by using Bloomaps instead of an
exact data structure. There is no good metric to use, as a single difference in
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answer might add or prevent some following queries. We implemented a special
procedure that compares IPA PTA and KPTA results. For variables where boths
points-to sets are computed, we provide a comparison by intersecting all pairs of
sets. A percentage of empty intersections is computed for both the old and new
algorithm. Any difference is result of the imprecision introduced, either directly
caused by imprecise intersection, or by conservative propagation earlier.

This approach is not ideal, as the absolute percentage varies greatly between
problem instances, but the relative difference is mostly stable. The precision
achieved was always within 2% of exact datastructure and some minor improve-
ments were made using additional checks via enumeration.

4.3 Future work

Our results demonstrate that Bloomaps are a competetive alternative to classical
bitmaps. Not only will be interesting to use Bloomaps in other algorithms that do
not require precision sets, but also further improving on IPA KPTA. It is possible
to save even more memory by using deduplication or pruning of non-interestings
sets (those that are too full or could point to anything). More precise analysis
could be devised by starting with bitmaps and converting to Bloomaps in case
they get too big to process, or by prefering bitmaps for sets that have to be
enumerated, or are expected to be more important than others.

It is also possible to decide Bloomap size and/or precision at runtime, as
the approximate number of pointers and dereferences is available beforehand. A
further extension to the Bloomaps using ideas in [Guo+06], though it is not clear
how the side index should be constructed.

The precision of the algorithm can also be improved. It handles some cases
as function parameters and return values too conservatively. As the improved
algorithm is now able to analyze most programs in existence, we hope other
developers will join the effort and improve the constraint generation as well.

As the algorithm now scales, it should be possible to generate constraints dur-
ing compilation, compute points-to sets during WPA phase (for whole program
rather than partitions) and stream the results into LTRANS. This would result
in even better propagation and is similarly implemented in Open64.
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Conclusion

In this work we have identified bitmaps as one of the most used data structure in
GCC and one of its biggest users, the interprocedural points-to analysis. We have
enhanced this algorithm with a new data structure based on Bloom filters, the
Bloomap. In the link-time optimization of Firefox, we decreased memory usage
from 13 GB per process to 3 GB per process during link-time optimization phase,
and build time has been decreased from 18 hours with the old pass to around 16
minutes with the improved pass. This is a major improvement and enables us
to analyze programs that could not have been analyzed before without excessive
resource use.

To our knowledge it is the first open-source implementation able to compute
interprocedural points-to analysis for projects like Firefox using reasonable re-
sources. It works well in production environment and has been checked to give
conservatively correct results. The code currently exists as a patch to GCC and
We work toward including the code in mainline GCC.
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Attachments

Bloomap.zip

Implementation of Bloomaps in C++. Also available online on github:
http://github.com/Krakonos/Bloomap

gcc-ipa-kpta.diff

Patch to GCC implementing IPA KPTA. Also available online on github:
http://github.com/Krakonos/kgcc

cgstat

A tool for measuring resource usage using Linux Control Groups.

thesis.pdf

Digital version of this thesis.
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