
BACHELOR THESIS

Marek Behún

Post-quantum alternative to secure
sockets

Department of Software Engineering

Supervisor of the bachelor thesis: Miroslav Kratochv́ıl, M.Sc.

Study programme: Computer Science

Study branch: General Computer Science

Prague 2017

I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In date signature of the author

i

ii

Title: Post-quantum alternative to secure sockets

Author: Marek Behún

Department: Department of Software Engineering

Supervisor: Miroslav Kratochv́ıl, M.Sc., Department of Software Engineering

Abstract: The goal of this thesis is to implement a software library that
provides a wrapping of real-time socket-like communication into an crypto-
graphic protocol with purpose similar to SSL or TLS, that is secure against an
adversary in possession of a quantum computer. Resulting software utilizes
the Supersingular Isogeny Diffie Hellman (SIDH) key-exchange algorithm for
achieving this level of security, and is simple, portable and independent on
system-specific primitives. The thesis gives a concise introduction to the the-
ory on which SIDH is built, targeting the audience of undergraduate students
of Computer Science.

Keywords: encryption security post-quantum cryptography diffie-hellman su-
persingular isogeny elliptic curves

iii

iv

“It is not paranoia if they really are out to get you.”

— an unknown paranoid

This thesis is dedicated to all those who systematically try to overcome cog-
nitive biases that make them underestimate the need for proper caution and
security, the biases that make them not paranoid enough.

I would also like to thank my supervisor Mirek Kratochv́ıl, who invested
his time to introduce me into this interesting problem, which also led me to
study the beautiful theory behind it.

v

vi

Contents

Introduction 3
Motivation . 3
Goals . 4
Related Work . 5

Related Research . 5
Similar Software . 5

Layout of this Thesis . 6

1 Galois Fields 7
1.1 Galois Fields in General . 7
1.2 Arithmetic in Fp2 . 9

1.2.1 Addition, Substraction and Negation 10
1.2.2 Multiplication and Squaring 10
1.2.3 Multiplicative Inverse 10
1.2.4 Square Root . 10

2 Elliptic Curves over a Field 15
2.1 Short Weierstrass Form . 15
2.2 The Group Law . 17
2.3 Point Multiplication . 20
2.4 Elliptic Curve Diffie-Hellman 20

3 Supersingular Isogeny Diffie-Hellman 23
3.1 Isogenies Between Elliptic Curves 23

3.1.1 Supersingular Elliptic Curves 25
3.2 The j-invariant of an Elliptic Curve 26
3.3 The SIDH Key-Exchange Algorithm 27

3.3.1 Parameter Generation 27
3.3.2 Key-Exchange . 27
3.3.3 Public-Key Encryption 28
3.3.4 Current State of Security 29

4 Implementation 31
4.1 Description of The Protocol 31

4.1.1 Handshake . 31
4.1.2 After Handshake . 33
4.1.3 Error Handling . 34
4.1.4 The SIDHex Key-Exchange Type 34

1

4.1.5 The SIDHex-sha512 Authentication Type 35
4.2 Library Internals . 37

4.2.1 Mathematical Primitives 37
4.2.2 Cryptographic Algorithm Abstractions 40
4.2.3 The session Class Interface 40
4.2.4 Other Classes . 41

4.3 Installation and Usage . 42
4.3.1 Requirements . 42
4.3.2 Installation . 43
4.3.3 Usage of the Example Programs 43

4.4 Evaluation of the Software . 44
4.4.1 Comparison with other SIDH Implementations 44

Conclusion 47
Further Development . 47

Attachments 59

2

Introduction

The security of trapdoor functions used by current cryptographic key-ex-
change schemes is usually based on some number-theoretic problem related
either to integer factorization or the discrete logarithm problem. It is now
more than twenty years since the algorithm that solves these problems in
polynomial time on a quantum computer was published, and more than
thirty since the dawn of the development of cryptographic schemes that are
considered safe against an attacker possessing such a quantum computer—
these schemes are usually referred to as post-quantum safe schemes.

In spite of this, there are few software packages implementing these
quantum-secure schemes, at least when compared to those which focus on
classical, pre-quantum cryptography.

This thesis aims to contribute to this development by implementing a se-
cure communication library that employs a key-exchange scheme constructed
from a post-quantum trapdoor function, namely the difficulty of finding iso-
genies between supersingular elliptic curves.

Motivation

In 1994, Peter Shor presented a quantum algorithm that performs integer
factorization in polynomial time [Sho95], that was later also shown to be
able to efficiently perform discrete logarithm on elliptic curves [PZ03]. As
a result, at the moment somebody succeeds in building a large quantum
computer, practically all asymmetric ciphers used today (RSA, DSA, elliptic
curves, etc.) are instantly rendered insecure. Although the record for largest
integer to be successfully factored using Shor’s algorithm, which was achieved
in 2012, does not really seem to show any possible harm to the security
of classical cryptographic schemes (the integer factored was 21), there is
no reason to believe that fully-functional large quantum computers are far
future. Moreover, research in related topic of adiabatic quantum computing
was successful in factoring the integer 56153, also in 2012 [DB14].

Furthermore, taking into account that

• there is a risk that the existence of working quantum computers large
enough to attack classical cryptographic schemes would be for a certain
period of time concealed

• it is expectable that these computers will exist in such a near future
when someone could still gain an unfair profit by breaking the security

3

of encrypted messages archived at present time

• there are already proposed post-quantum alternatives to classical cryp-
tographic schemes, they are easy to implement and in certain ways very
neat

• in general it is not recommended for the security of the whole system
to be built around one problem

it would be appreciable to have a practical, usable software ready as soon as
possible.

Goals

The main goal of this thesis is to implement a post-quantum alternative to
current SSL and TLS protocols [DR08, TLS]. To achieve that, we implement
a software library that is able to wrap real-time socket-like communication
in a protocol to provide the required security, is easy to use, has small spec-
ification and straightforward implementation, is easily extensible and has
minimal dependencies on other software.

It was decided not to implement a public key infrastructure such as X.509
as known from SSL/TLS, since it would have to depend on post-quantum
signatures, which, although they do exist, are not quite practical, usually
because of the size of the key or signatures (the most promising signature
scheme is called SPHINCS-256 [BHH+15] and its signatures are 41 KiB long).
Instead, as a substitution, we utilize post-quantum asymmetric encryption
in an SSH-like authentication model.

Although a general post-quantum alternative to a forward-secure Diffie-
Hellman like key-exchange scheme did not exist for a long time, recent de-
velopment [FJP11] has shown a brilliant new method for a quantum-secure
key-exchange algorithm based on computing isogenies on supersingular ellip-
tic curves. Our library is expected to use the Supersingular Isogeny Diffie-
Hellman (SIDH) key-exchange algorithm and shall be implemented in the
C++ programming language (with a possibility of implementing wrapper
functions around the C++ API so that it can also be accessible from pro-
grams written in C).

The programming interface should be inspired by that of the TLS class
of Qt Cryptographic Architecture [QCA], since we want to have the library
only do the actual protocol- and cryptography-related computations, and
leave the system-dependent part of the code on the user—QCA does this in
a sensible way.

4

The second goal is to document the inner workings of the resulting soft-
ware, to explain the communication protocol and to present several example
programs that use the library to achieve security.

The third goal of this thesis is to give an introduction to the theory behind
the key exchange method used (SIDH), since most readers ever only learn at
most about RSA—there is not much introductory material into elliptic curve
isogenies. The reader is expected to have been introduced to some basics of
number theory and group theory. We try to simplify the more complex parts
of the theory, giving informal definitions of some concepts, and avoiding some
of them completely (for example, we do not talk about algebraic closure of
a field at all). This should not break the soundness of the theory nor give
incorrect notions to those readers who would then like to continue studying
this beautiful theory in more depth.

Related Work

Related Research

Note that there are other possible post-quantum secure key-exchange meth-
ods this software could have focused on, like the Ring Learning With Errors
key-exchange [Sin15], based on lattice-based cryptography. We have cho-
sen SIDH because it uses smallest key sizes of all currently available post-
quantum key-exchange algorithms, and provides perfect forward secrecy.

Similar Software

To the best of our knowledge and apart from the basic implementation by
the authors of the SIDH algorithm [SSi], the only open-source SIDH imple-
mentations currently available to general public are:

• SIDH Library from Microsoft Research [MSR] is a MIT licensed C
implementation of the SIDH algorithm focused on efficiency which also
implements an ECDH+SIDH hybrid called BigMont.

• openssl-sidh [Oss] is an OpenSSL plugin which uses the SIDH Library.

• liboqs from Open Quantum Safe [OQSa] is a C library for quantum-safe
cryptographic algorithms released under the MIT License and supports
multiple key-exchange methods as cryptographic primitives (it uses the
SIDH Library for SIDH implementation). Open Quantum Safe also
integrates liboqs into their fork of OpenSSL [OQSb].

5

An API for secure sockets is only provided by the openssl-sidh plugin and
the OpenSSL fork from OQS, but it seems that the openssl-sidh project has
virtually no documentation nor does seem to be actively developed, and the
OpenSSL fork from OQS does not yet provide key-exchange method based
on SIDH. Also, these packages do not provide protection from active attacks
using countermeasures such as signature schemes.

Furthermore, there is another significant problem we wanted to avoid—
OpenSSL has a troublesome vulnerability history, which may, among other
things, be due to the size of the library and a not-quite-exemplary history
of resolving bug reports [Lib, Ope]. Note that this fact has led some major
projects invest resources into cleaning it and releasing a fork of the library—
there is now a patched OpenSSL called BoringSSL used in Google Chrome
[Bor], and a massively cleaned OpenSSL fork from the OpenBSD project
called LibreSSL [Luc14, Ram].

Layout of this Thesis

In Chapter 1 we give an introduction into Galois fields, and show how to
perform fast arithmetic operations on a certain type of them.

We explain the algebraic concept of an elliptic curve over a finite field in
Chapter 2, together with how the group operations can be constructed on
an elliptic curve. We also show how the operation called elliptic curve point
multiplication is performed and how it is used for cryptographic purposes.

In Chapter 3 we define isogenies of elliptic curves and explain how an
isogeny can be computed given its kernel. We briefly explain what super-
singular elliptic curves are, and then describe the key-exchange protocol and
the public-key encryption scheme based on isogenies between supersingular
elliptic curves.

Chapter 4 describes the communication protocol that carries data en-
crypted by our library, and also the inner workings of the library, which
includes a brief overview of its sub-modules and their interaction.

We conclude in Conclusion, giving an overview of accomplished goals
and a summary of complications encountered while developing the software.
Some ideas for future development are also presented.

6

1. Galois Fields

Given an algebraic structure, such as the real numbers, with a set of ax-
ioms defining that structure and a set of proved properties of that structure,
mathematicians have often tried to see how many of the structure defining
axioms they can remove and still have a valid proof of a given property—this
is called generalization. For example, the definition of a convergent sequence
is not limited to real numbers, because the notion of distance is all it takes
to define convergence—and thus the results of the theory of metric spaces is
valid not only for real numbers, but all structures that can properly define
the notion of distance.

A field is one such generalized structure, taking only some of the axioms
of real numbers, but still having enough common with their structure that it
is possible to think about polynomials over a field, or elliptic curves over it.

When we limit the cardinality of that structure to only contain a finite
number of elements, we are talking about finite fields, or Galois1 fields.

In this Chapter we introduce finite fields, stating for which orders finite
fields do exist and we show how to compute efficiently in one particular kind
of them.

We present most of the theorems in this chapter without a proof. If
required, proofs can be found in any literature concerning abstract algebra,
for example in that from Judson [Jud13].

1.1 Galois Fields in General

Definition 1. For d ∈ N, a finite (Galois) field of d elements is the tuple
Fd = (F,+, ·, 0F , 1F), where:

• F is a set of d elements,

• 0F , 1F ∈ F and 0F 6= 1F ,

• F (+, 0F) and F \ {0F} (·, 1F) are Abelian groups,

• for every a, b, c ∈ F , a · (b+ c) = a · b+ a · c.

The number d = |F | is called the order of the field.

As we can see, the structure has enough properties to be able to express
constructions like integer powers or multiplicative inverses.

1Évariste Galois (25 October 1811 – 31 May 1832) was a French mathematician whose
work led to the foundation of Galois theory and group theory.

7

Definition 2. For n ∈ N and x ∈ Fd, where Fd is a Galois field

• the expression n·x denotes

n times︷ ︸︸ ︷
x+ x+ · · ·+ x and xn denotes

n times︷ ︸︸ ︷
x · x · · · · · x,

• −x denotes the additive inverse of x (such that x+ (−x) = 0F),

• −n · x is n · (−x) and 0 · x is 0F ,

• x−1 or 1
x

is the multiplicative inverse of x (such that x · x−1 = 1F),

• x−n is (x−1)
n

and if x 6= 0F , then x0 is 1F .

Our aim is to construct a Galois field of a given number of elements. The
following gives characterization of the allowed cardinalities.

Definition 3. The characteristic of a Galois field Fd is the smallest p ∈ N
such that p · 1F = 0F , or 0 if no such p exists.

Theorem 1. If Fd is a Galois field, then d = pn, where p is a prime and n ∈
N. Two Galois fields of the same order are isomorphic and the characteristic
of Fpn is p.

Corollary. If Fp is a Galois field of prime order p, then Fp ' Zp, where Zp is
the ring of integers modulo p.

The elements of a finite field can be represented as polynomials over a
base field. We therefore define the following:

Definition 4. A polynomial over a finite field Fd is a polynomial with coeffi-
cients from Fd. The set of all polynomials over the field Fd is denoted Fd(x)
and it forms a commutative ring.

Definition 5. An irreducible polynomial over a Galois field Fd is a non-
constant polynomial p(x) over Fd such that p(x) cannot be factored into two
non-constant polynomials over Fd. That is, there are no non-constant poly-
nomials q(x), r(x) over Fd such that p(x) = q(x) · r(x).

Now we can use these notions to finally construct finite field of given
order:

Theorem 2 (Galois field construction). A Galois field Fpn of order pn, where
p is prime and n > 1, is isomorphic to the quotient ring Fp(x)/q(x), where
q(x) is an irreducible polynomial of degree n over Fp. Such a polynomial
always exists.

8

Because of Theorem 2, we can represent the elements of a finite field
as polynomials over Zp for some prime p. Therefore, in the following text,
we will denote some of this elements with the symbols usually reserved for
integers (such as 0, −1, 1). They map into the finite field naturally—an
integer is also a constant polynomial.

A simple way to find an irreducible polynomial for a field of order p2 for
a prime p ≡ 3 (mod 4) is shown in the next section.

1.2 Arithmetic in Fp2

Now that we can construct Galois fields, we need algorithms for performing
basic arithmetical operations on their elements. Most of them can be com-
puted “from definition”, but because the atomic operations on large integers
are costly, we want to speed them up as much as we can.

We shall describe explicit algorithms for arithmetic in Fp2 for a prime p
such that p ≡ 3 (mod 4). This specific p is used because of the following
lemmas.

Definition 6. A non-zero element r ∈ Fd is called a quadratic residue over
Fd if there exists an element q ∈ Fd such that q2 = r, or, equivalently,
q2 − r = 0. Otherwise, it is called a quadratic non-residue.

Theorem 3 (Euler’s criterion). A non-zero element r ∈ Fd is a quadratic

residue if and only if r
d−1
2 = 1 and a quadratic non-residue if and only if

r
d−1
2 = −1.

Lemma 4. If p is a prime such that p ≡ 3 (mod 4), then the polynomial
(x2 + 1) is irreducible over Fp.

Proof. We have

(−1)
p−1
2 = (−1)

3−1 mod 4
2 = (−1)1 = −1

therefore −1 is a quadratic non-residue in Fp, thus x2 = −1 has no solutions,
which is equivalent to (x2 + 1) being irreducible.

Thus, by selecting a prime p such that p ≡ 3 (mod 4), we can always use
the polynomial (x2 +1) as the irreducible polynomial for construction of Fp2 .

Moreover, because x2 ≡ −1 (mod x2 + 1), the field also has the arith-
metical structure of complex numbers, and so we will write the elements of
Fp2 in the form a+ ib, where a, b ∈ Fp.

9

1.2.1 Addition, Substraction and Negation

The operations of addition and substraction in Fp2 are done by components.
We present the pseudocode for addition in Algorithm 1, substraction is done
correspondingly.

To save some computations, we can avoid using the modulo operation in
negation (shown in Algorithm 2).

1.2.2 Multiplication and Squaring

The naive multiplication algorithm based on the formula

(a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc)

uses four multiplications. We can save one multiplication if we use the iden-
tity

(a− b) · (c+ d) = ac+ ad− bc− bd.

The pseudocode is shown in Algorithm 3. Note that if the multiplication
algorithm gets specialized for squaring, we can save one more multiplication.

1.2.3 Multiplicative Inverse

We follow the method also used for inversing complex numbers to find mul-
tiplicative inverse in Fp2 :

1

a+ ib
=

a− ib
(a+ ib) · (a− ib)

=
a

a2 + b2
+ i

−b
a2 + b2

This is shown in Algorithm 4.
To find the multiplicative inverse in Fp2 one has to find the multiplicative

inverse in Fp, which is also called modular multiplicative inverse. Extended
Euclidean algorithm [Euc] can be used for this task. Both the modular
multiplicative inverse and Extended Euclidean algorithm operations are im-
plemented in the GMP library (as mpz invert(o, i, m), which stores the
inverse of i modulo m into o and mpz gcdext(g, s, t, a, b), which stores
the greatest common divisor of s and t into g and also into a and b such
coefficients that a · s+ b · t = g). Because of this, in the text below, we shall
consider these operations atomic.

1.2.4 Square Root

Finding square roots in Fp2 again requires the ability to find square roots in
Fp.

10

Algorithm 1 Addition in Fp2
function AddGFp2(a+ ib, c+ id)

a← (a+ c) mod p
b← (b+ d) mod p
return a+ ib

end function

Algorithm 2 Negation in Fp2
function NegateGFp2(a+ ib)

a← p− a
b← p− b
return a+ ib

end function

Algorithm 3 Multiplication in Fp2
function MultiplyGFp2(a+ ib, c+ id)

t1 ← (a− b) · (c+ d)
t2 ← ad
t3 ← bc
a← (t1 − t2 + t3) mod p
b← (t2 + t3) mod p
return a+ ib

end function

Algorithm 4 Multiplicative inverse in Fp2
function InverseGFp2(a+ ib 6= 0)

t←ModularInverseGFp(a2 + b2)
a← a · t mod p
b← −b · t mod p
return a+ ib

end function

11

Lemma 5. If p is a prime number and x is a quadratic residue in Fp, then√
x = x

p+1
4 .

Proof. As x is a quadratic residue, Theorem 3 says that x
p−1
2 = 1. Now

√
x

2
=
(
x
p+1
4

)2

= x
p+1
2 = x

p−1
2 · x = 1 · x = x

Lemma 6. If p is a prime number and x a quadratic residue in Fp, it has
exactly two square roots: if d is one of them, −d is the other.

Proof. Suppose that there are d, e such that d2 = e2. Then d2−e2 = 0 which
can be factored into (d+ e) · (d− e) = 0, and because in a field it holds that
if ab = 0, then either a = 0 or b = 0, we have d = e or d = −e.

Now, given an element c+ id that is a quadratic residue in Fp2 , we want
to find a + ib such that (a + ib)2 = c + id. After multiplicatoin of the left
side we can compare the coefficients:

a2 − b2 = c

2ab = d.

Substituting b = d
2a

into the first equation yields

a2 − d2

4a2
= c,

which is a quadratic equation for A = a2 with the solution

A1,2 =
c±
√
c2 + d2

2

Now only one A ∈ {A1, A2} is a quadratic residue over Fp if c+ id 6= 0. Were
it not so, we would have four different square roots, which is not possible
according to lemma 6.

We can find out which one is the residue using Euler’s criterion 3, receiving
a =
√
A and b = d

2a
.

The pseudocode for square root is shown in Algorithm 5.

12

Algorithm 5 Square root in Fp2
function SqrtGFp2(a quadratic residue c+ id 6= 0)

t← SqrtGFp(c2 + d2)
A← (c+ t)/2
if not IsResidueGFp(A) then

A← (c− t)/2
end if
a← SqrtGFp(A)
b← d/(2a)
return a+ ib

end function

13

14

2. Elliptic Curves over a Field

The study of structure of finite groups is one of the main building blocks of
modern cryptography. The theory of finite groups is a rich and nontrivial
field of mathematics which has led to many useful applications.

To make use of the structure of finite groups of required cryptographic
properties we need a way to compactly represent the groups and their ele-
ments. The theory of elliptic curves gives one such way to represent certain
types of finite Abelian groups.

To avoid misunderstanding, we give a forward informal definition of an
elliptic curve: an elliptic curve over a field F is the set of points E =
{O} ∪ {(x, y) ∈ F2 | y2 = x3 + ax+ b} for some a, b ∈ F together with a
group operation on this set.

2.1 Short Weierstrass Form

We begin with the definition of the short Weierstrass form of an elliptic curve
equation.

Definition 7. Given a field F of characteristic neither 2 nor 3, the short
Weierstrass form of an elliptic curve E is given by the equation

E : y2 = x3 + ax+ b, (2.1)

where a, b ∈ F and 4a3 + 27b2 6= 0.

The condition (4a3 + 27b2) 6= 0 is required for the property of the curve
being smooth, that is, it has to contain no singular points (geometrically,
these are points where the tangent cannot be properly defined: intersections
or cusps). This happens when the polynomial on the right side of the Equa-
tion 2.1 does not have a multiple root.

Lemma 7. The polynomial p(x) = x3 + ax + b defined over a field F has a
multiple root if and only if 4a3 + 27b2 = 0.

Proof. If p(x) has a multiple root α, it is either a double root or a triple root.
If it is a double root, then by dividing p(x) by (x−α)2 we get (x−β), where
β is the other root. In either case we can write

p(x) = (x− α)2(x− β) = x3 + (−2α− β)x2 +
(
α2 + 2αβ

)
x− α2β.

15

Comparison of coefficients leads to −2α − β = 0, a = α2 + 2αβ, b = α2β.
From this a = −3α2 and b = 2α3, and thus

4a3 + 27b2 = 4
(
−3α2

)3
+ 27

(
2α3
)2

= −108α6 + 108α6 = 0.

On the other hand, if 4a3 + 27b2 = 0, consider that α such that a = −3α2

is a root of p(x). Then 27b2 = −4a3 = 108α6, thus b = ±2α3. Since α can
be replaced by −α, assume that a = −3α2 and b = 2α3. This holds for
p(x) = (x− α)2(x+ 2α).

Lemma 8. An elliptic curve E over a field F with a short Weierstrass form
defined by Equation 2.1 is smooth if and only if the Equation 2.1 does not
have a multiple root.

Proof. Since we have not defined derivatives of polynomials over a field nor
proven that they have properties similar enough to those over R, we prove
this lemma only for the base field R.

Let the polynomial on the right side of the Equation 2.1 have three roots,
α, β and γ, so that the equation can be written as y2 = (x−α)(x−β)(x−γ).
Differentiating this implicitly defined function we get the tangent at point
(x, y):

dy

dx
= −(x− β)(x− γ) + (x− α)(x− γ) + (x− α)(x− β)

−2y

= ±(x− β)(x− γ) + (x− α)(x− γ) + (x− α)(x− β)

2
√

(x− α)(x− β)(x− γ)

This is properly defined1 for all (x, y) ∈ E if and only if α, β, γ are pairwise
different.

The Weierstrass form can be defined for fields of characteristic 2 and 3
as well, but in these cases the equation is more complicated:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

When the characteristic of the field F is neither 2 nor 3, one can transform
the coordinates with η = y + (a1x + a3)/2 and ξ = x + (a2

1 + 4a2)/12 to get
the short Weierstrass form.

1we consider the improper derivative, which arises when x ∈ {α, β, γ}, as properly
defined, since it properly defines the tangent

16

2.2 The Group Law

We will now show how to perform group operations on a curve with a short
Weierstrass form, thus showing that points on an elliptic curve form a group.
Consider a curve E defined over the real numbers R by the Equation 2.1.

We want to construct an operation +E such that the operation with the
points on curve E yields an Abelian group. Since the curve is symmetrical
about the x-axis, given a point P , we define −EP as the point opposite
to it. Given two points P,Q ∈ E, we can uniquely describe a third point
R = P +E Q by first drawing a line between P and Q, and then taking as
−ER the point where the line intersects E the third time. Lemma 9 shows
that there are no more intersections.

Lemma 9. Given a field F of characteristic 0 or greater than 2 and points
a, b, c, d ∈ F, a curve defined by y2 = x3+ax+b has at most three intersections
with a line defined by y = cx+ d.

Proof. We have

(cx+ d)2 = x3 + ax+ b

c2x2 + 2cdx+ d2 = x3 + ax+ b

0 = x3 − c2x2 + (a− 2cd)x+ (b− d2)

which is a cubic equation. Since the standard algebraic derivation of roots
of a cubic equation is correct also in F (as shown for example on Wikipedia
[Cub]), we conclude that it has at most three solutions.

For two distinct, non-opposite points P , Q, Figure 2.1 shows how P +E

Q = R can be found. In the case that P = Q, the tangent at P is used as
the line for finding the intersection, which is illustrated in Figure 2.2. In the
case of opposite points, P = −EQ, we define P +E Q = O, where O is the
neutral point of the group operation, the so called point at infinity. There is
one special case: if P is an inflection point, we take P +E P = −EP .

To obtain explicit formulas for the coordinates of point R = P +E Q =
(xR, yR) given coordinates P = (xP , yP), Q = (xQ, yQ), one has first to find
the equation for the line crossing P and Q, which is y = λ(x − xP) + yP ,
where the slope λ is computed as

λ =


yP − yQ
xP − xQ

, if xP 6= xQ

3x2
P + a

2yP
, if xP = xQ,

(2.2)

17

P

Q

R

Figure 2.1: The group law when P and Q are distinct, non-opposite, non-
neutral points

P

R

Figure 2.2: The group law when doubling a point P , i.e. when P = Q

18

and then substitutes the right side of this equation as y into Equation 2.1.
This reduces into a cubic equation in the x variable. Taking into account
that Equation 2.1 holds also for the pairs (xP , yP) and (xQ, yQ), one can then
divide by the polynomial (x− xP) · (x− xQ) and finally obtain:

xR = λ2 − xP − xQ (2.3)

yR = λ · (xP − xR)− yP (2.4)

The operation we have just defined, usually called elliptic curve point
addition, is clearly commutative. It is an exercise in manipulation with alge-
braic expressions to check that associativity also holds.

Observation. Linear transformations of the coordinates do not change the
group structure of the curve—the points of intersection transform linearly as
well.

Note that the Equations 2.2, 2.3 and 2.4 are properly defined for any field
F with characteristic different from 2 and 3, not just for real numbers. Given
Equation 2.1 defining curve E with a, b ∈ F and points P,Q ∈ F2 such that
P,Q ∈ E, the elliptic curve point addition yields a point R = P +E Q ∈ E.

Remark. The group law also holds when working with a generic field F of
characteristic 0 or greater than 2, not just on R.

Lemma 10. Given a short Weierstrass form Ea,b : y2 = x3 + ax + b where
a, b ∈ F, there is a short Weierstrass form Ec,d : y2 = x3 +cx+d with c, d ∈ F
and (c, d) 6= (a, b) having the same group structure as Ea,b.

Proof. As observed above, the group structure does not change when trans-
forming the coordinates linearly. Thus a change of variables x′ = 2x and
y′ = y/

√
8 does not change the group structure and yields equation y′2 =

x′3 + 1
4
ax′ + 1

8
b.

We can now properly define an elliptic curve as understood in abstract
algebra:

Definition 8. By an elliptic curve E over a field F with a short Weierstrass
form y2 = x3 + ax + b, where a, b ∈ F, we understand a set of points of the
form P = (x, y) for x, y ∈ F and y2 = x3 + ax + b together with a special
point at infinity O, equipped with a group operation +E as defined by the
group law.

19

2.3 Point Multiplication

Elliptic curve point multiplication is the trapdoor function used in classical
elliptic curve cryptography (ECC).

Definition 9. Given an elliptic curve E, integer n and point P ∈ E, we
define the product of n with P as [n]P = P +E P +E · · ·+E P︸ ︷︷ ︸

n times

for n > 0,

[n]P = [−n]−E P for n < 0 and [n]P = O for n = 0.

The problem of finding the value of n as the solution to P = [n]Q given
points P,Q ∈ E is known as the elliptic curve discrete logarithm problem, and
is used in classical ECC in the same way as the integer factorization problem
is used in RSA. As we have mentioned in Introduction, there is a known
polynomial time quantum algorithm that solves this problem, and so classical
ECC schemes are not quantum-safe. Although not as a trapdoor function,
elliptic curve point multiplication is also used in the SIDH algorithm.

A naive algorithm for elliptic curve point multiplication needs O(n) el-
liptic curve point additions. This is, naturally, inefficient, and therefore an
algorithm similar to exponentiation by squaring is used. There are several
different algorithms for efficient multiplication, but for the need to avoid
side-channel attacks which arise from timing, the Montgomery ladder is used
most frequently (shown in Algorithm 6).

2.4 Elliptic Curve Diffie-Hellman

As we have said, the classical elliptic curve based protocols assume that
finding the elliptic curve discrete logarithm of a random point on an elliptic
curve is infeasible. We will now describe how a key-exchange scheme using
elliptic curve point multiplication as a trapdoor function works—the Elliptic
Curve Diffie Hellman algorithm.

First, the public parameters are chosen: a prime field Fp or a binary field
F2m for prime m together with an irreducible polynomial f of order m over
F2, an elliptic curve E : y2 = x3 + ax + b on that field, and a base-point
P ∈ E with a prime order n, such that the cyclic subgroup generated by P
is not too much smaller from E, preferably n = |E|, but at least n ≥ |E|

4
.

Now suppose that Alice and Bob want to establish a shared secret key
over an insecure channel. Alice generates a random number a ∈R Zn \ {0},
computes A = [a]P and sends A to Bob. Bob, similarly, generates a random
b ∈R Zn \ {0}, computes B = [b]P and sends B to Alice. Upon receiving
B, Alice computes [a]B and upon receiving A, Bob computes [b]A. Since

20

Algorithm 6 Montgomery ladder elliptic curve point multiplication algo-
rithm

function MontgomeryLadder(n ∈ Z, P ∈ E)
if n < 0 then

return MontgomeryLadder(−n,−EP)
end if
Q← O
R← P
for i-th bit b of n from most significat bit to the least do

if b = 1 then
Q← R +E Q
R← R +E R

else
R← R +E Q
Q← Q+E Q

end if
end for
return Q

end function

[a]B = [a][b]P = [ab]P = [b][a]P = [b]A, they have both computed the same
result, which is used as the shared secret key.

21

22

3. Supersingular Isogeny
Diffie-Hellman

In this Chapter we give a basic introduction to the theory of isogenies be-
tween elliptic curves, on which the Supersingular Isogeny Diffie-Hellman key-
exchange algorithm is built.

We explain what is an isogeny between elliptic curves and we outline the
notion of supersingular elliptic curves. We then show how an isogeny can be
represented, how can certain kind of isogenies be computed efficiently and
how they can be used by the parties of a key-exchange scheme to generate
two isomorphic elliptic curves. We then show how the j-invariant of this
isomorphism class can be computed and used as a shared secret.

In the last Section we describe the SIDH key-exchange algorithm as pro-
posed by Jao, Feo and Plût [FJP11].

We do not go into much details in this Chapter, since the theory is rather
complex. For interested readers we recommend the book of Silverman [Sil92]
and Connell [Con96] and the article of Shumow [Shu09].

3.1 Isogenies Between Elliptic Curves

Definition 10. An isogeny from elliptic curve E1 to elliptic curve E2, both
over a field F, is a map which preserves the neutral element and maps every
other point (Px, Py) ∈ E1 to a point (gx(Px), gy(Px, Py)) ∈ E2, where gx, gy are
rational functions over F. If the denominator of either gx or gy is evaluated
to 0 for (Px, Py), the result is taken to be the neutral element.

Two elliptic curves are isogenous if there exists an isogeny between them.

Note that this definition of isogeny prohibits constant isogenies (those
which map every point to the neutral element), which is different from some
literature.

Example. For m ∈ N, the multiplication-by-m map [m], which takes P ∈ E
to [m]P ∈ E, is an isogeny from E to E.

Lemma 11. The relation of being isogenous is an equivalence relation.

Theorem 12. Every isogeny is a homomorphism. That is, if φ : E1 → E2

is an isogeny, then for all P,Q ∈ E1

φ(P +E1 Q) = φ(P) +E2 φ(Q).

23

Theorem 13. If φ : E1 → E2 is an isogeny, then kerφ = φ−1(O) is a finite
group.

Theorem 14 (Tate’s theorem). Two elliptic curves E1 and E2 defined over
a finite field F are isogenous if and only if |E1| = |E2|.

Theorem 15. Let E be an elliptic curve over F and Φ be a finite subgroup of
E. Then there is a unique (up to isomorphism) elliptic curve E ′ and isogeny
φ such that φ : E → E ′ and kerφ = Φ.

Definition 11. Let E be an elliptic curve over F and Φ a finite subgroup of
E. The unique elliptic curve which is the image of isogeny φ with kerφ = Φ,
and which exists thanks to Theorem 15, is denoted by the quotient E/Φ or
E/φ. The degree of isogeny φ, deg φ, is equal to the cardinality of Φ and we
shall call φ the isogeny induced by Φ on E.

Hence we can identify an isogeny by specifying its kernel, and given a
kernel subgroup, we can compute the corresponding isogeny using Vélu’s
formulas.

Theorem 16 (Vélu’s formulas). Let E be an elliptic curve over F defined
with the equation y2 = x3 + ax + b, Φ a finite subgroup of E, φ an isogeny
induced by Φ on E and l = deg φ. If O 6= P = (Px, Py) ∈ E, then φ(P) =
(φx(P), φy(P)), where

φx(P) = Px +
∑

Q∈Φ\{O}

((P +E Q)x −Qx)

φy(P) = Py +
∑

Q∈Φ\{O}

((P +E Q)y −Qy) .

Furthermore, if we define the polynomial D such that

D(z) =
∏

Q∈Φ\{O}

(z −Qx) = zl−1 − σ1z
l−2 + σ2z

l−3 − σ3z
l−4 + · · ·

and take σ1, σ2 and σ3 from D(z) to define

t = a(l − 1) + 3
(
σ2

1 − 2σ2

)
w = 3aσ1 + 2b(l − 1) + 5

(
σ3

1 − 3σ1σ2 + 3σ3

)
,

then the target curve of isogeny φ, E/φ, is given by the equation y2 = x3 +
a′x+ b′, where

a′ = a− 5t

b′ = b− 7w.

24

Theorem 17. Let E be an elliptic curve over F and Φ a finite subgroup of
E. If the degree of isogeny φ : E → E/Φ induced by Φ on E is greater than
1, then the isogeny φ can be factored into a composition of isogenies of prime
degree.

If Ψ is a subgroup of Φ and ψ : E → E/Ψ the isogeny induced by Ψ on E,
then ψ(Φ) is a finite subgroup of E/Ψ and for the isogeny χ : E/Ψ→ E/ψ(Φ)
induced by ψ(Φ) on E/Ψ holds:

φ = χ ◦ ψ
Thanks to this theorem we can efficiently compute isogenies of smooth

degree (a smooth number is informally defined as a number which can be
factored completely into small primes). We describe the iterative method in
corollary.

Corollary. Let l be a small prime and e ∈ N. Let E0 be an elliptic curve
and 〈R0〉 a cyclic subgroup of E0 of order le generated by the point R. For
0 ≤ i < e put

Ei+1 = Ei/
〈[
le−i−1

]
Ri

〉
φi : Ei → Ei+1

Ri+1 = φi(Ri)

Then φ = φe−1 ◦ φe−2 ◦ · · · ◦ φ1 ◦ φ0 is the isogeny generated by 〈R0〉 on E0.

3.1.1 Supersingular Elliptic Curves

We showed how isogenies can be computed efficiently if they are of smooth
order.

If an elliptic curve E has smooth order (|E| is a smooth number), then
there are many isogenies of smooth order on E—taking a random point on
E with a large smooth order as a generator of the inducing subgroup would
lead to such isogeny.

There is a certain kind of curves which are easy to construct to have
smooth number of elements [Brö09]. We give the definition and state one
property of this kind of elliptic curves, and we leave it at that, since the
theory behind the construction is not important for our implementation.

Definition 12. Let F be a field of characteristic p > 0. An elliptic curve E
defined over F is supersingular if and only if the kernel of the multiplicative
map [p] : E → E is trivial, that is

{R ∈ E | [p]R = O} = {O}
Theorem 18. If elliptic curves E1 and E2 defined over a finite field F are
isogenous, then either both E1 and E2 are supersingular, or none is.

25

3.2 The j-invariant of an Elliptic Curve

We will now extend the observation about linear transformations from Sec-
tion 2.2 to describe a method by which it can be checked if two elliptic curves
defined by their short Weierstrass form are isomorphic.

Observation. Two elliptic curves E1 and E2 over a field F of characteristic not
2 nor 3 defined by their short Weierstrass forms are isomorphic if and only if
there is a linear transformation of the x-coordinate and corresponding linear
transformation of the y-coordinate in their short Weierstrass forms that can
bring one curve onto the other.

Lemma 19. Two elliptic curves over a field F of characteristic not 2 nor 3
given by their short Weierstrass forms E1 : y2 = x3 + ax + b and E2 : y2 =
x3 +a′x+ b′ are isomorphic if and only if there is a non-zero λ ∈ F such that
a′ = λ2a and b′ = λ3b.

Proof. Apply to the short Weierstrass form of E1 the linear transformation
x 7→ αx+ β for α, β ∈ F, α 6= 0 to get

y2 = (αx+ β)3 + a(αx+ β) + b

y2

α3
= x3 +

3β

α
x2 +

3β2 + a

α2
x+

β3 + aβ + b

α3
.

Now apply linear transformations x 7→ x − β
α

so that the coefficient of x2

vanishes and y2 7→ y2α3 to normalize the equation:

y2 = x3 +
a

α2
x+

b

α3
.

Finally take λ as 1
α

.
The other implication is straightforward.

Definition 13. The j-invariant of an elliptic curve E over field F with char-
acteristic not 2 nor 3 with short Weierstrass form E : y2 = x3 + ax + b is
defined as

j(E) = 1728
4a3

4a3 + 27b2
.

Now we can finally express how the j-invariant identifies the isomorphism
class of an elliptic curve.

Lemma 20. Let F be a field of characteristic not 2 nor 3. Elliptic curves
E1, E2 over F are isomorphic if and only if j(E1) = j(E2).

26

Proof. By lemma 19 there is a λ ∈ F such that E1 : y2 = x3 + ax + b and
E2 : y2 = x3 + λ2ax+ λ3b. Now

j(E2) = 1728
4 (λ2a)

3

4 (λ2a)3 + 27 (λ3b)2

= 1728
4λ6a3

4λ6a3 + 27λ6b2

= 1728
4a3

4a3 + 27b2

= j(E1).

3.3 The SIDH Key-Exchange Algorithm

Now that we have introduced the required theory, we can explain the SIDH
key-exchange algorithm and the corresponding public-key encryption algo-
rithm.

3.3.1 Parameter Generation

First, a prime number of the form p = leAA l
eB
B f ± 1 is generated, where lA, lB

are small, different prime numbers, eA, eB are exponents defining the number
of security-bits and f is a (preferentially small) cofactor so that p is prime.
Then a supersingular elliptic curve E0 is constructed over Fp2 with cardinality

(leAA l
eB
B f)2. This curve has group structure (Z/ (leAA l

eB
B f)Z)2. Finally a basis

{PA, QA} of E0[leAA] = {R |R ∈ E0, [leAA]R = O} and a basis {PB, QB} of
E0[leBB] = {R |R ∈ E0, [leBB]R = O} are found using the method described in
the article of Jao, Feo and Plût [FJP11].

3.3.2 Key-Exchange

Alice and Bob want to establish a shared secret key over an insecure channel.
They do this by taking random walks on the isogeny graph: Alice will walk
the graph consisting of isogenies of degrees lA and Bob of degrees lB.

Alice generates random integers mA, nA ∈R ZleAA , not both divisible by
lA, and computes the isogeny φA : E0 → EA with kernel

〈[mA]PA +E0 [nA]QA〉 .

27

Since the kernel is of smooth order, this can be done efficiently as described
in the corollary in Section 3.1. She also computes the images of points PB
and QB through the isogeny φA and sends the triplet {EA, φA(PB), φA(QB)}
to Bob. Bob does the corresponding with his parameters.

Upon receipt of {EB, φB(PA) ∈ EB, φB(QA) ∈ EB} from Bob, Alice com-
putes the image curve of the isogeny φ′A : EB → EAB with kernel

〈[mA]φB(PA) +EB [nA]φB(QA)〉 .

Bob, again, does the corresponding with his parameters.
Alice and Bob can then use the common j-invariant of

EAB = φ′A(φB(E0)) ∼= φ′B(φA(E0)) = EBA ∼=
∼= E0/ 〈[mA]PA +E0 [nA]QA, [mB]PB +E0 [nB]QB〉

as the shared secret key.
Figure 3.1 illustrates this.

E0

EA

ker
(φA

)=
〈[mA

]PA
+[nA

]QA
〉

φA
(PB

),φA
(QB

)

EB

ker(φ
B)=〈[m

B]P
B+[n

B]Q
B 〉

φ
B (P

A),φ
B (Q

A)

EAB

ker
(φ
′
A
)=〈[

mA
]φB

(PA
)+[nA

]φB
(QA

)〉

EBA

ker(φ ′
B)=〈[m

B]φ
A (P

B)+[n
B]φ

A (Q
B)〉

‖

Figure 3.1: SIDH key-exchange protocol (figure taken from the article of Jao,
Feo and Plût [FJP11])

3.3.3 Public-Key Encryption

The key-exchange method can be adapted into an ElGamal-like encryption
scheme. Let H = {Hk | k ∈ K} be a set of hash functions indexed by a finite
set K, where each Hk : Fp2 → {0, 1}w.

Key generation Alice generates random integers mA, nA ∈R ZleAA , not both
divisible by lA, and a random index k ∈R K and computes the isogeny

28

φA, curve EA and points φA(PB) and φA(QB) as in the key-exchange
scheme. The public key is the tuple (EA, φA(PB), φA(QB), k) and the
private key is the tuple (mA, nA, k).

Encryption Bob wants to encrypt a message m ∈ {0, 1}w using public key
(EA, φA(PB), φA(QB), k). Bob generates random integers mB, nB ∈R
ZleBB , not both divisible by lB, and computes the isogeny φB, curve

EB and points φB(PA), φB(QA) as in the key-exchange scheme. He
also computes the isogeny φ′B and the resulting curve EBA and its j-
invariant j(EBA). He then computes

c = Hk(j(EBA))⊕m

and sends (EB, φB(PA), φB(QA), c) to Alice.

Decryption Upon receiving ciphertext (EB, φB(PA), φB(QA), c), Alice com-
putes the isogeny φ′A and the resulting curve EAB and its j-invariant.
The decrypted plaintext is

m = Hk(j(EAB))⊕ c.

3.3.4 Current State of Security

The authors of SIDH conjectured that the problem of finding the result-
ing j-invariant of the curve EAB as described in the key-exchange protocol
when given only (EA, φA(PB), φA(QB), EB, φB(PA), φB(QA)) is computation-
ally infeasible, in the sense that for any polynomial-time solver algorithm,
the advantage of the algorithm is negligible of the security parameter log p.

The fastest known algorithm for finding isogenies between supersingular
elliptic curves is a quantum algorithm with a running time O(p1/4) [BJS14],
where p is the characteristic of the base field. Since SIDH is a special case
of this problem, where the base field is Fp2 and some parameters are known,
the problem can be viewed as an instance of the claw problem, which has
optimal asymptotic quantum complexity O(p1/6) [Tan07, Zha05].

However, a very powerful attack was found on the public-key encryption
scheme [GPST16], which also attacks the key-exchange scheme where one
side uses static keys. This attack can be prevented with a countermeasure
of checking if the sender generated his parameters honestly, for which the
protocol has to be changed.

29

30

4. Implementation

We shall now describe the structure of the implemented library, explain how
the implemented protocol works and how the key-exchange and authentica-
tion sub-protocols encode data, explain the interfaces of mathematical prim-
itives and algorithms, and show how to install the library.

As stated in Introduction, the main interface of the library is similar to
that of the TLS class of the Qt Cryptographic Architecture.

We have chosen C++ as the programming language for the implementa-
tion because of several reasons:

• Programs written in C and C++ have very few requirements on the
underlying system, they require almost no runtime support and can be
easily ported to embedded devices.

• In contrast to C, C++ does greatly simplify bothersome things like
memory allocation and deallocation, and with operator overloading the
usage of mathematical primitives becomes more readable.

• There are fast implementations available for C and C++ of some re-
quired algorithms that are out of scope of this thesis, such as the SHA-2
family of hash functions or the ChaCha20 cipher. Although the library
does currently depend on the GNU Nettle library [Net] because of these
primitives, it is possible to change or remove that dependency in the
future, if such a need arises.

Note that the library is implemented in a way that makes it easy to create
wrapper function calls for programs written in C, and it makes little use of
those parts of the C++ STL library that are implemented in a shared binary
(usually called libstdc++.so, at least on GNU systems). Therefore, if such
a need comes, it is possible to remove even the dependency on the STL shared
library, which can be a reasonable requirement for embedded programs.

4.1 Description of The Protocol

4.1.1 Handshake

We have decided to make the handshake protocol plaintext, because it seemed
that debugging would be easier this way, and parsing it does not cost almost
any extra computing power (at least compared to the actual cryptographic
operations).

31

From software engineering point of view, the usage of text-based protocol
is rationalized by the complexity of transferred data—a complicated binary
protocol that would embrace all possible future changes therefore seems in-
feasible. On the contrary, the very simple raw-data-transfer protocol that is
used ever since handshake is finished is not expected to grow, and is designed
as binary for efficiency reasons. This decision can be also viewed as a subtle
instance of the popularized Rule of Transparency, as defined e.g. in The Art
of Unix Programming [Ray03].

The handshake protocol uses Unix-style newline as line separator.
At the beginning, the client sends this message to the server:

Post-quantum hello v1, [server name].

Key-exchange: [KEX type]

Supported-ciphers: [space delimited list of supported ciphers]

Supported-MACs: [space delimited list of supported MACs]

Secret: [KEX data in base64]

Auth-type: [authentication type, optional]

Server-auth: [ID of server authentication key, optional]

Auth-request: [auth request data in base64, optional]

[empty line]

The fields Server-auth and Auth-request must be present if only if the
field Auth-type is present.

If the server supports requested key-exchange type, authentication type
(if present) and at least one of the ciphers and message authentication codes
the client allows, it should respond with this message:

Post-quantum hello v1.

Key-exchange: [KEX type]

Supported-ciphers: [space delimited list of supported ciphers]

Supported-MACs: [space delimited list of supported MACs]

Secret: [KEX data, potentially in base64]

[empty line]

After this, both sides should perform the key-exchange scheme, and (if re-
quested) the authentication scheme, and select one of the ciphers and MACs
supported by other side, generate a random nonce which they will use as the
key for the MAC selected and respond:

KEX: OK

Cipher: [cipher]

MAC: [mac]

Nonce: [base64 encoded nonce]

32

Auth-reply: [authentication reply data, optional]

[empty line]

At the end of this procedure, the key-exchange has produced secret key
SK which is same for both sides. The peers have chosen MAC functions
Ms(d, n) and Mc(d, n) and stream cipher functions Es(d, k, o), Ec(d, k, o) for
encryption and Ds(d, k, o), Dc(d, k, o) for decryption, where variables d, n, k
and o represent data, nonce, key and offset, respectively.

Ephemeral Key Derivation Given secret key SK, ephemeral key of the
client side is EKc = Mc(SK, nc), where nc is nonce generated by client
and send to server, and ephemeral key of the server side is computed
correspondingly, EKs = Ms(SK, ns).

This is done so that the secret key can be forgotten immediately, thus
ensuring weak perfect forward secrecy.

4.1.2 After Handshake

After a successful handshake, proper packets are transmitted. This part of
the protocol is binary: before encryption, the first byte of each packet repre-
sents the packet type. Each packet m shall be authenticated by correspond-
ing MAC to create an authenticated packet mauth: mauth = m | Mp(m,np),
where peer p is either s for server or c for client, and the symbol | means con-
catenation. The authenticated packet is then encrypted into menc: menc =
Ep(mauth, EKp, op), where op is the stream cipher offset of peer p, which is 0
at beginning and incremented by the length of mauth after this operation.

Close Packets Sent when one side wants to close its end of the connection.
After this, the side cannot send packets anymore. The packet is one
byte long:

m = byte(0).

Data Packets Each data packet can hold up to 64 KiB of data. The length
is stored in a 32 bit unsigned integer in network byte order after the
first byte which identifies the packet type:

m = byte(1) | uint32(length(data)) | data.

Rekey Packets When a side wants to change the ephemeral key it uses for
encryption, it shall generate new random nonce and send this informa-
tion to the other side in a rekey packet. Length of the nonce is stored in

33

an 8 bit unsigned integer after the packet identifying byte (thus nonce
can be up to 255 bytes long):

m = byte(2) | uint8(length(nonce)) | nonce.

4.1.3 Error Handling

If any error occurs during the handshake, or when parsing or verifying the
authenticity of the packets, the library calls report an error status, corre-
sponding error code can be retrieved by other API calls. Since the reported
errors are not recoverable, the connection is then no longer considered to
provide security, and the user is required to terminate it.

4.1.4 The SIDHex Key-Exchange Type

The SIDHex key-exchange type utilizes the SIDH key-exchange scheme as
described in Section 3.3.2. The prime of the base field p = 23723239 − 1 is
chosen as in the article of Costello et al. [CLN], so that leAA ≈ leBB and p
is approximately 768 bits long, thus ensuring 128 bits of security (since, as
mentioned in Section 3.3.4, a quantum algorithm can break SIDH inO(p1/6)).
The other public parameters can be viewed in the file pqc sidh params.cpp.

First we describe how data are encoded in SIDHex:

Encoding of Galois Field Elements An element a+ ib ∈ Fp2 is encoded
by its coefficients (a first), which are in turn encoded in network byte
order, with each coefficient taking as many bytes as would be required
for encoding the prime p. If a denotes the network byte order encoding
of a ∈ Zp and a+ ib the encoding of a+ ib ∈ Fp2 , then

a+ ib = a | b.

Encoding of Elliptic Curves An elliptic curve Ea,b with a short Weier-
strass form y2 = x3 + ax+ b, where a, b ∈ Fp2 , is encoded as

Ea,b = a | b.

Encoding of Points on a Curve A point P ∈ Ea,b is encoded as

P = byte(1) | Px | Py

if O 6= P = (Px, Py), where Px, Py ∈ Fp2 , and as a sequence of zero
bytes of corresponding length if P = O.

34

The message which is sent in the Secret field of the handshake is

base64enc
(
EX | φX(PY) | φX(QY)

)
,

where (X, Y) ∈ {(A,B), (B,A)}.

4.1.5 The SIDHex-sha512 Authentication Type

The general idea of authentication is based on public-key encryption: the
peer S that wants to be authenticated generates a public/private key-pair.
When another peer C wants to authenticate S, it simply encrypts his key-
exchange commitment with S’s public key, which enforces that only S can
compute the shared secret key successfully. This is visualized in Figure 4.2.
Thus a man-in-the-middle attack (shown in Figure 4.1) is prevented.

Because the general idea would require the implementation of algorithms
able to encrypt messages of any length that also provide ciphertext indistin-
guishability, and our case is rather special in that we only need to enforce
the key-exchange commitment to pass through the channel unchanged, we
have developed a simpler protocol for authentication only, that does not en-
crypt the key-exchange commitment, only generates a challenge which only
a receiver in possession of the private key is able to respond to correctly.

The SIDH parameters for the SIDHex-sha512 authentication type are
same as for the SIDHex key-exchange type. The randomly generated private
parameters m,n are always of the form (1,m) or (m, 1), for m ∈ {0, · · · , le}.
The keys also always contain a 32 byte hash seed as the index k of the hash
function Hk.

Private Key The first byte of the private key is byte(0) when the generated
private parameters are of the form (1,m) and byte(1) when of the form
(m, 1). The number m is then encoded in network byte order in as
many bytes as would take to encode the number le. The 32 byte hash
function index k follows.

PrivKey =

{
byte(0) | m | uint256(k) if (m,n) = (1,m)

byte(1) | m | uint256(k) if (m,n) = (m, 1).

Public Key The public key stores the curve EA together with the points
φA(PB), φA(QB) and hash function index k.

PubKey = EA | φA(PB) | φA(QB) | uint256(k).

35

S C

M

S CM

XA
X
B

X
MXN

XAMXMAXAN XNA

Figure 4.1: Man-in-the-middle attack, applicable to any Diffie-Hellman-style
key-exchange.

S C

S C

PubKeyS

public key distribution

En
cS(

EA
|φA

(PB
)|φA

(QB
))

E
B |φ

B (P
A)|φ

B (Q
A)

EAB EAB

Figure 4.2: The general idea of authentication of SIDH key-exchange, based
on public-key encryption. A potential man-in-the-middle cannot decrypt the
commitment from C, therefore he is unable to compute the shared secret
that must be used to communicate with C. The same scheme can also be
used symmetrically, possibly on both sides.

36

The authentication process uses the hmac sha512 hash based message
authentication code as the hash function Hk, where k is the 32 byte key
value to the HMAC. The authentication consists of three parts:

Request When peer C wants to prove the authenticity of peer S, it follows
the encryption procedure of the SIDH public-key encryption scheme
given the public key of peer S, but ignores the ciphertext c. The
request that is sent to S is:

Req = base64enc(EB | φB(PA) | φB(QA)).

Sign Upon receiving message m and authentication request for message m
from C (the message is the data from the Secret field of the hand-
shake), peer S computes the signature of the request

Sign = Hk

(
m | j(EAB)

)
,

and then sends base64enc(Sign) back to peer C.

Verification Peer C also computes Hk(m | j(EAB) and compares this value
to the one received from peer S. If they differ, the verification is un-
successful.

As mentioned in Section 3.3.4, there is a recently developed attack on the
SIDH public-key encryption scheme. The authentication type we described
in this Section is also vulnerable. Fortunately, a simple countermeasure does
also already exist. We leave the implementation of this countermeasure for
the future.

4.2 Library Internals

The logical structure of the library is shown on Figure 4.3. Here we describe
library internals in more detail.

4.2.1 Mathematical Primitives

Big Integers The GNU GMP library [GMP] is used for computation with
big integers. It has bindings for C++ implemented in a header file in
such a way that when compiler optimizations are enabled, the emitted
assembly is very efficient. We have extended the mpz class represent-
ing big integers to class Z, adding some useful features such as serial-
ization, modular multiplicative inverse or quadratic residues (most of

37

P
ri

m
it

iv
es

L
ib

ra
ry

in
te

rn
al

s

L
ib

ra
ry

A
P

I

A
p

p
li

ca
ti

on

Application logic Application data Network socket

handshake()

read()

write()

write incoming()

read outgoing()

rekey functions

close()

status&error inspection

Diffie-Hellman wrapper

Handshake logic Data buffers Network buffers

Data streaming protocol logic

SIDH Stream ciphers HMAC&Hash functions

GMP library Nettle library

Figure 4.3: Overview of library structure by logical layers.

38

these are implemented in GMP, but are not accessible in a C++ way
from mpz class).

Galois Field Primitives The arithmetic in Fp2 as described in Section 1.2
is implemented in class GF.

It is important to note that the way C++ handles temporary results in
compound expressions can result in a performance penalty—for exam-
ple, given variables x, y, z of type GF, the expression x = x*y + x*y*z

needs to construct at least two temporary variables and then destroy
them. This can be rewritten to an expression x *= x, x *= y, x *=

z+1, which only requires the construction of one temporary variable
(z+1). It is possible to implement similar optimizations as gmpxx.h

does, using builtin functions of the compiler, so that the need to create
temporary variables would be minimized.

But if one wants to avoid the creation of temporary variables at all for
such expressions, one would need to create named global temporary
variables to store the temporary results and write all expressions in such
a way that would avoid creating per-expression temporary variables.

This is done in the reference implementation [SSi], but we wanted to
avoid this, for the same reason we preferred C++ over C: it is practi-
cally writing in assembly—there is not much difference between x *=

x, x *= y, tmp = z+1, x *= tmp and

gf_mul (x, x, x);

gf_mul (x, x, y);

gf_add (tmp, z, gf_const(1));

gf_mul (x, x, tmp);

Elliptic Curve Primitives Elliptic curves in short Weierstrass form and
points on them are represented by classes WeierstrassCurve and Wei-

erstrassPoint, respectively. Operators for addition and negation are
overloaded on the class WeierstrassPoint so that these operations
correspond to the group law on the elliptic curve. The operator for mul-
tiplication implements scalar multiplication by the Montgomery ladder
algorithm described in Algorithm 6.

Isogenies between elliptic curves are represented by the Weierstrass-

SmallIsogeny and WeierstrassIsogeny classes. The Weierstrass-

SmallIsogeny class computes, given isogeny generator and its degree d,
the image of a given point in O(d) operations, while the Weierstrass-

Isogeny class represents isogenies of smooth degree—it computes the

39

composition of small degree isogenies represented by the class Weier-

strassSmallIsogeny. Because the naive implementation of the algo-
rithm which computes a smooth degree isogeny would require O(n2)
operations in the base field, we use the optimal strategy algorithm de-
scribed in Section 4.2.2 of the article by Jao et. al. [FJP11].

Random Number Generator Primitives The random number genera-
tor primitive, random bytes, generates random bytes using the Cha-
Cha20 algorithm, with a seed initialized from system entropy. We
decided not to give the user multiple choices for the random number
generator engine, since there seemed to be little advantage in it.

The function random z below(Z p) returns a random element of Zp,
utilizing the generator from random bytes.

4.2.2 Cryptographic Algorithm Abstractions

The implementations of stream cipher algorithms, message authentication
codes, key-exchanges and authentication mechanisms are descended from
abstract classes cipher, mac, kex and auth, respectively. These types define
the interfaces for each class of cryptographic algorithm, and their descendants
must define, for example, the key size needed for them to work.

The cryptographic algorithms defined in this way must be cryptographi-
cally secure and resistant to all kinds of attacks.

At the time of writing this thesis, the software supports the ChaCha20

cipher, the hmac sha256 and hmac sha512 message authentication codes,
the SIDHex key-exchange algorithm and the SIDHex-sha512 authentication
mechanism.

4.2.3 The session Class Interface

In this Section we describe the inner workings of the session class, which is
the main (and almost only) class with which programs intending to use pqc

should work.
The session class represents one side of a communication session se-

cured by pqc—both a server application and a client application use it to
communicate with each other.

Here is a brief explanation of what the session class does when used
properly:

Session Beginning At the beginning, the application must call the method
start client or start server. These initialize internal variables and
put handshake data into internal buffer in the case of a client session.

40

Handshake The application cannot receive or send any plaintext data un-
til the session is handshaken. Instead, the application polls for data
on the internal session buffers (via the bytes outgoing method) or on
the communication channel (when data are available, the application
puts them into the session internal buffer using the write incoming

method). After enough data for the handshake to complete are trans-
ferred between server and client, the shared secret key of the session
is computed, from which the ephemeral keys are generated and the ci-
pher and MAC instances are created and the session changes its state
so that data can be sent and received.

Data Transfer When the application writes data with the write method,
the data are divided into packets of 64 KiB, each packet is signed and
encrypted and put into the outgoing buffer. The application shall then
read the outgoing data and send them through the communication
channel.

If the threshold for a rekey is reached (the threshold is set with the
set rekey after method), a new nonce is generated and sent to the
peer, and the ephemeral secret key for the cipher is recomputed.

The binary data written via write incoming are put into packet rea-
der, from which whole packets are retrieved whenever there are some.
The data from the packets are then put into an internal buffer from
which the application reads them with the read method.

In the case a rekey packet is received, the ephemeral secret key for
cipher of the peer is recomputed with the nonce from the packet.

If a close packet comes, the state of the session is changed so that it
will allow no more data from the peer.

Session Close To close the session, the application must call the close

method. This will change the internal state of the session so that the
application cannot write data anymore, and when the close packet is
received from the peer, the session is closed permanently. No more data
can be sent or received.

4.2.4 Other Classes

Here we briefly describe the other internal classes of the library, for developers
interested in modifying the software.

41

sidh params The set of parameters for the SIDH-based algorithm are rep-
resented by this class. At the time of writing this thesis, only one set
of parameters is defined.

sidh key basic This class implements the primitives for the SIDH key-
exchange algorithm. It either generates the private and public key-pairs
and allows to export them, or can import the public key from another
peer and generate shared secret.

sidh key Extension of sidh key which adds the index of the hash function
used in the authentication protocol.

packet A packet, as described in Section 4.1.2, is represented by class pa-

cket. The buffer for the packet has to be given when constructing,
in the form of a reference to a string and a position where the packet
begins in that string. The data in the string may be changed when
manipulating the packet.

packet reader This class is used by the session class to store incoming
data and decrypt them. Whenever a full packet is available in the
decrypted data, it can be read and popped away from the reader.

handshake The parser of the handshake protocol is implemented here.

chacha Because the ChaCha20 cipher can only generate its stream in chunks
of 64 bytes, we had to implement an interface with which it would be
possible to encrypt/decrypt chunks of any length. If an incomplete
chunk has to be used (when a string of length not divisible by 64 is to
be processed), the rest is stored in an internal buffer to be used in the
next processing.

4.3 Installation and Usage

4.3.1 Requirements

A C++14 capable compiler is needed for the pqc library to compile. Any
recent versions of the GNU Compiler Collection [GCC] or Clang [cla] should
be sufficient.

The library uses GNU Multiple Precision Arithmetic Library [GMP] for
computations with big integers. All GNU-based systems are likely to have
GMP in the software repository, and probably already installed (the GCC
compiler does depend on the GMP library, for example).

42

The Nettle library [Net] is also required for some cryptographic primitives.
This dependency will be probably optional in the future.

GNU Make [Mak] is required when building the library.

We have successfully compiled and tested the library on several Linux
systems (Gentoo and Debian-testing distribution) and on FreeBSD.

4.3.2 Installation

After retrieving the sources of the library from Attachment A, or after cloning
the git [git] repository from the URL https://github.com/elkablo/pqc,
run:

$ gmake

$ gmake install

This will compile the sources with GCC and install the binaries and headers
into the directory /usr/local. Another installation directory can be speci-
fied via the PREFIX variable. On FreeBSD, it is also needed to use the Clang
compiler instead of GCC—this is done by specifying CXX=clang++.

This will also install the example programs: the SSH-like client called
pqc-telnet together with a server called pqc-telnetd and a key-generation
tool pqc-keygen.

4.3.3 Usage of the Example Programs

Here we explain how to use the bundled pqc-telnet program. At first, a
key-pair for server authentication has to be create:

$ pqc-keygen SIDHex-sha512 server.priv server.pub

After this, we can run the server on TCP port 8822 with private authentica-
tion key server.priv:

$ pqc-telnetd server.priv 8822

To open a shell prompt on the machine with IP address 10.20.30.40 where
the server is running we execute the client program:

$ pqc-telnet server.pub 10.20.30.40 8822

sh-4.3$

43

https://github.com/elkablo/pqc

4.4 Evaluation of the Software

We have performed several tests with the example programs. All bench-
marks presented in this Section were measured on Intel i7-3520M clocked at
2.90GHz.

The example pqc-telnet program required 792 milliseconds of CPU time
on the client side and 552 milliseconds of CPU time on the server side, on
average, to perform the handshake (which consists of key-exchange and peer
authentication) and telnet session negotiation and establishment.

The overhead of raw data transfer with the pqc-telnet program was
measured to be insignificant in comparison to the handshake. Transferring
of 1 MiB of data to a remote machine took 830 milliseconds on the client
side and 642 milliseconds on the server side, on average.

4.4.1 Comparison with other SIDH Implementations

We have compared the speed of our isogeny computation code to that of the
SIDH Library. Other implementations either use the SIDH Library (Open
Quantum Safe), or are difficult to use in an lightweight environment (the
implementation from the authors of SIDH requires SageMath [sag], which is
a very complex software used for research).

The comparison is shown in table 4.1. The pqc implementation is, as
expected, roughly 10 times slower than the optimized version of the SIDH
Library, since it represents elliptic curves in Weierstrass form, which requires
more operations on big integers than on Montgomery curves. It is interesting
to note that if the optimizations specific for the x86 platform are turned off in
the SIDH Library, our implementation is only around 20% slower in average.
This leads us to believe that the implementation of Montgomery curves in
our library could make it outperform the SIDH Library on non-x86 platforms
by a significant margin.

44

pqc library SIDH Library generic SIDH Library assembly

keygen A 206 161 20

keygen B 204 189 24

final A 218 149 19

final B 222 177 23

Table 4.1: Comparison of various SIDH key-exchange operations with other
software. All values are in milliseconds. Timings for key generation and
shared secret final computation are compared for both sides of the key-
exchange, since the sides compute isogenies of different degrees.

45

46

Conclusion

We have achieved the stated goal by implementing a new software library
for real-time socket-like communication, which provides post-quantum alter-
native to the TLS protocol and utilizes the SIDH key-exchange and public-
key encryption schemes. The implemented protocol has been designed for
simplicity—our library is implemented in less than 6000 lines of code. As a re-
sult, it should be easily auditable for security vulnerabilities. The handshake
part of the protocol is designed to be extensible, to be able to accommodate
changes possibly required for future development.

There are several example programs that demonstrate the functionality,
including a post-quantum SSH-like client program together with a corre-
sponding server, that can already be used in practical environment. We have
also implemented a tiny tool for generating the pairs of asymmetric keys that
are used for authentication.

A description of the inner workings of the library, together with enough
programmer-targeted information necessary for its proper usage, is included
in the thesis.

The theory behind SIDH required for understanding the trapdoor func-
tion used by the implementation, including the required introduction to Ga-
lois field and elliptic curve theory, are given in the first chapters of the thesis.
For maintaining brevity, we have sometimes been forced into deciding what
parts of the rather complex theory (considering the scope of this thesis) we
should elude or explain less formally. In such cases, we refer to literature
that contains full formal explanation.

The process of implementing a secure authentication mechanism from the
SIDH public-key encryption scheme has been somewhat hindered by recent
development of a new attack, as described in the last paragraph of Section
3.3.4. This attack allows a potential man-in-the-middle to gradually com-
promise the authenticity of the connection, if he can actively interfere with
the handshake. There are, fortunately, several methods that can prevent the
attack.

Further Development

There are several viable starting points for future research and work on the
library:

• The most pressing task for future development is to implement the

47

countermeasure for the attack mentioned above. One such counter-
measure is described in the presentation of Kirkwood et al. [KLM+15].

• More key-exchange and authentication schemes should also be added—
for example, a SIDH-based scheme which works with elliptic curves in
Montgomery form, like the implementation from the authors of SIDH
does, because the arithmetic on Montgomery curves requires less long-
integer operations.

• An API accessible to programs written in the C language would also
come handy in the future.

• An implementation of a public-key infrastructure using certificate au-
thorities could allow an almost seamless integration into existing soft-
ware (e.g. Web browsers).

48

Bibliography

[BHH+15] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing,
Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou,
Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn.
SPHINCS: practical stateless hash-based signatures. In An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 368–397. Springer, 2015.

[BJS14] Jean-François Biasse, David Jao, and Anirudh Sankar. A Quan-
tum Algorithm for Computing Isogenies between Supersingular El-
liptic Curves, pages 428–442. Springer International Publishing,
Cham, 2014.

[Bor] https://www.chromium.org/Home/chromium-security/

boringssl. Accessed: 2016-12-16.

[Brö09] Reinier Bröker. Constructing supersingular elliptic curves. J.
Comb. Number Theory, 1(3):269–273, 2009.

[cla] http://clang.llvm.org/. Accessed: 2016-12-16.

[CLN] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient
algorithms for supersingular isogeny Diffie-Hellman. In Advances
in Cryptology. Springer.

[Con96] Ian Connell. Elliptic Curve Handbook. http://www.math.

mcgill.ca/connell/, 1996.

[Cub] Cubic Function. https://en.wikipedia.org/wiki/Cubic_

function. Accessed: 2016-12-16.

[DB14] Nikesh S. Dattani and Nathaniel Bryans. Quantum factorization
of 56153 with only 4 qubits, 2014.

[DR08] Tim Dierks and Eric Rescorla. The Transport Layer Security
(TLS) Protocol, Version 1.2. https://tools.ietf.org/html/

rfc5246, August 2008. Accessed: 2016-12-16.

[Euc] https://en.wikipedia.org/wiki/Extended_Euclidean_

algorithm. Accessed: 2016-12-16.

49

https://www.chromium.org/Home/chromium-security/boringssl
https://www.chromium.org/Home/chromium-security/boringssl
http://clang.llvm.org/
http://www.math.mcgill.ca/connell/
http://www.math.mcgill.ca/connell/
https://en.wikipedia.org/wiki/Cubic_function
https://en.wikipedia.org/wiki/Cubic_function
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

[FJP11] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-
resistant cryptosystems from supersingular elliptic curve isoge-
nies. Cryptology ePrint Archive, Report 2011/506, 2011. http:

//eprint.iacr.org/2011/506.

[GCC] http://gcc.gnu.org/. Accessed: 2016-12-16.

[git] https://git-scm.com/. Accessed: 2016-12-16.

[GMP] https://gmplib.org/. Accessed: 2016-12-16.

[GPST16] Steven D Galbraith, Christophe Petit, Barak Shani, and Yan Bo
Ti. On the security of supersingular isogeny cryptosystems. In
Advances in Cryptology–ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and In-
formation Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part I, pages 63–91. Springer, 2016.

[Jud13] Thomas W. Judson. Abstract Algebra: Theory and Applications.
2013. Accessed: 2016-12-16.

[KLM+15] Daniel Kirkwood, Bradley C. Lackey, John McVey, Mark Motley,
Jerome A. Solinas, and David Tuller. Failure is not an option:
Standardization issues for post-quantum key agreement. 2015.

[Lib] https://en.wikipedia.org/wiki/LibreSSL. Accessed: 2016-
12-16.

[Luc14] Michael Lucas. LibreSSL at BSDCan. http://blather.

michaelwlucas.com/archives/2071, May 17 2014. Accessed:
2016-12-16.

[Mak] https://www.gnu.org/software/make/. Accessed: 2016-12-16.

[MSR] https://www.microsoft.com/en-us/research/project/

sidh-library/. Accessed: 2016-12-16.

[Net] http://www.lysator.liu.se/~nisse/nettle/. Accessed:
2016-12-16.

[Ope] https://marc.info/?l=openbsd-cvs&m=139715677231774.
Accessed: 2016-12-16.

[OQSa] https://openquantumsafe.org/. Accessed: 2016-12-16.

50

http://eprint.iacr.org/2011/506
http://eprint.iacr.org/2011/506
http://gcc.gnu.org/
https://git-scm.com/
https://gmplib.org/
https://en.wikipedia.org/wiki/LibreSSL
http://blather.michaelwlucas.com/archives/2071
http://blather.michaelwlucas.com/archives/2071
https://www.gnu.org/software/make/
https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/
http://www.lysator.liu.se/~nisse/nettle/
https://marc.info/?l=openbsd-cvs&m=139715677231774
https://openquantumsafe.org/

[OQSb] https://github.com/open-quantum-safe/openssl/. Ac-
cessed: 2016-12-16.

[Oss] https://github.com/xoloki/openssl-sidh. Accessed: 2016-
12-16.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quan-
tum algorithm for elliptic curves. 2003.

[QCA] Qt Cryptographic Architecture. http://delta.affinix.com/

docs/qca/index.html. Accessed: 2016-12-16.

[Ram] http://opensslrampage.org/. Accessed: 2016-12-16.

[Ray03] Eric S. Raymond. The Art of Unix Programming. Addison-
Wesley, 2003.

[sag] http://www.sagemath.org/. Accessed: 2016-12-16.

[Sho95] Peter W. Shor. Polynomial-Time Algorithms for Prime Factor-
ization and Discrete Logarithms on a Quantum Computer. 1995.

[Shu09] Daniel Shumow. Isogenies of Elliptic Curves: A Computational
Approach. CoRR, abs/0910.5370, 2009.

[Sil92] Joseph H. Silverman. The arithmetic of elliptic curves, volume
106 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1992. Corrected reprint of the 1986 original.

[Sin15] Vikram Singh. A Practical Key Exchange for the Internet us-
ing Lattice Cryptography. Cryptology ePrint Archive, Report
2015/138, 2015. http://eprint.iacr.org/2015/138.

[SSi] https://github.com/defeo/ss-isogeny-software. Accessed:
2016-12-16.

[Tan07] Seiichiro Tani. Claw Finding Algorithms Using Quantum Walk.
2007.

[TLS] Transport Layer Security. https://en.wikipedia.org/wiki/

Transport_Layer_Security. Accessed: 2016-12-16.

[TRe] https://is.cuni.cz/webapps/zzp/. Accessed: 2016-12-16.

[Zha05] Shengyu Zhang. Promised and distributed quantum search. In
International Computing and Combinatorics Conference, pages
430–439. Springer, 2005.

51

https://github.com/open-quantum-safe/openssl/
https://github.com/xoloki/openssl-sidh
http://delta.affinix.com/docs/qca/index.html
http://delta.affinix.com/docs/qca/index.html
http://opensslrampage.org/
http://www.sagemath.org/
http://eprint.iacr.org/2015/138
https://github.com/defeo/ss-isogeny-software
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://is.cuni.cz/webapps/zzp/

52

List of Algorithms

1 Addition in Fp2 . 11
2 Negation in Fp2 . 11
3 Multiplication in Fp2 . 11
4 Multiplicative inverse in Fp2 11
5 Square root in Fp2 . 13
6 Montgomery ladder elliptic curve point multiplication algorithm 21

53

54

List of Figures

2.1 The group law when P and Q are distinct, non-opposite, non-
neutral points . 18

2.2 The group law when doubling a point P , i.e. when P = Q . . 18

3.1 SIDH key-exchange protocol (figure taken from the article of
Jao, Feo and Plût [FJP11]) . 28

4.1 Man-in-the-middle attack, applicable to any Diffie-Hellman-
style key-exchange. 36

4.2 The general idea of authentication of SIDH key-exchange, ba-
sed on public-key encryption. A potential man-in-the-middle
cannot decrypt the commitment from C, therefore he is unable
to compute the shared secret that must be used to communi-
cate with C. The same scheme can also be used symmetrically,
possibly on both sides. 36

4.3 Overview of library structure by logical layers. 38

55

56

List of Tables

4.1 Comparison of various SIDH key-exchange operations with
other software. All values are in milliseconds. Timings for key
generation and shared secret final computation are compared
for both sides of the key-exchange, since the sides compute
isogenies of different degrees. 45

57

58

Attachments

Attachment A - the Enclosed CD

On the CD attached to this thesis (and on the online Thesis Repository of
Charles University [TRe]) we enclose the source codes of the implemented
software together with the source codes of its dependencies (GNU Nettle
and GMP), and also the code of the SIDH Library, so it can be used for
comparison when benchmarking.

The electronic version of this thesis is also enclosed.

59

60

	Introduction
	Motivation
	Goals
	Related Work
	Related Research
	Similar Software

	Layout of this Thesis

	Galois Fields
	Galois Fields in General
	Arithmetic in Fp2
	Addition, Substraction and Negation
	Multiplication and Squaring
	Multiplicative Inverse
	Square Root

	Elliptic Curves over a Field
	Short Weierstrass Form
	The Group Law
	Point Multiplication
	Elliptic Curve Diffie-Hellman

	Supersingular Isogeny Diffie-Hellman
	Isogenies Between Elliptic Curves
	Supersingular Elliptic Curves

	The j-invariant of an Elliptic Curve
	The SIDH Key-Exchange Algorithm
	Parameter Generation
	Key-Exchange
	Public-Key Encryption
	Current State of Security

	Implementation
	Description of The Protocol
	Handshake
	After Handshake
	Error Handling
	The SIDHex Key-Exchange Type
	The SIDHex-sha512 Authentication Type

	Library Internals
	Mathematical Primitives
	Cryptographic Algorithm Abstractions
	The session Class Interface
	Other Classes

	Installation and Usage
	Requirements
	Installation
	Usage of the Example Programs

	Evaluation of the Software
	Comparison with other SIDH Implementations

	Conclusion
	Further Development

	Attachments

