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Abstract

Název práce: Delta-monotonńı funkce v́ıce proměnných
Autor: Libor Pavĺıček
Katedra: Katedra matematické analýzy
Vedoućı diplomové práce: Prof. RNDr. Jan Malý, DrSc.
e-mail vedoućıho: maly@karlin.mff.cuni.cz
Abstrakt: V této práci studujeme monotonńı zobrazeńı mezi Banachový-
mi prostory, konečné a nekonečné dimenze, a zobrazeńı která jsou rozd́ıly
monotonńıch (DM). Dokazujeme odhad Radó-Reichelderferova typu pro
monotonńı zobrazeńı v konečné dimenzi, jenž se přenáš́ı i na rozd́ıly mono-
tonńıch zobrazeńı. Tı́m podáváme alternativńı d̊ukaz o Fréchetovské difer-
encovatelnosti s.v. DM zobrazeńı. Dokazujeme odhad Morreyova typu pro
distributivńı derivaci monotonńıch zobrazeńı, který lze přenést i na DM zo-
brazeńı. Je ukázáno, že zobrazeńı mezi konečně dimenzionálńımi prostory,
které je lokálně DM, je DM i globálně. Zavád́ıme a studujeme novou ťŕıdu
tzv. UDM zobrazeńı mezi Banachovými prostory, která je zobecněńım
křivek s konečnou variaćı.
Kĺıčová slova: zobrazeńı s konečnou variaćı; monotonńı zobrazeńı; DM
zobrazeńı; UDM zobrazeńı; Radó-Reichelderferova podmı́nka.

Title: Delta monotone functions of several variables
Author: Libor Pavĺıček
Department: Department of Mathematical Analysis
Supervisor: Prof. RNDr. Jan Malý, DrSc.
Supervisor’s e-mail address: maly@karlin.mff.cuni.cz
Abstract: We study the classes of mappings between finite and infinite
dimensional Banach spaces which are monotone and mappings which are
differences of monotone mappings (DM). We prove the Radó-Reichelderfer
estimate for the monotone mappings in finite dimensional spaces which
remains valid for the DM mappings. This provides an alternative proof
of the Fréchet differentiability a.e. of DM mappings. We establish the
Morrey-type estimate for the distributional derivative of monotone map-
pings. We prove that a locally DM mapping between finite dimensional
spaces is also globally DM. We introduce and study the new class of so
called UDM mappings between Banach spaces, which generalizes the con-
cept of curves of finite variation.
Keywords: mappings of bounded variation; monotone mapping; DM
mapping; UDM mapping; Radó-Reichelderfer condition.
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Preface

This thesis is devoted to the study of monotone mappings and their differences
on finite and infinite dimensional Banach spaces. The class of the monotone
mappings from a reflexive Banach space to its dual space was at first introduced in
the works by F. Browder and G. Minty as a powerful method for solving nonlinear
partial differential equations. The most simple examples of monotone mappings
are the Gateaux derivatives of the convex functionals, such mappings are called
the potential monotone mappings and they have many specific properties. The
proof of the surjectivity of such a potential monotone operator is based on a simple
variational argument. The main contribution of the methods of Browder and
Minty was in the removing of the assumption of the potentiality of the considered
operators. It is well known fact that the smooth vector field in finite dimension
is potential if and only if its Jacobian matrix is symmetric. Thus it seems that
the assumption of potentiality is very restictive. Recall the famous Browder-
Minty theorem about surjectivity of a monotone coercive continuous operator,
which is sufficient for the proof of the existence of the weak solution for a wide
class of nonlinear problems. The methods were developed and generalized by H.
Brézis, R. Kačurovski, L. Leray, J. L. Lions, J. P. Aubin and by many others. In
some cases the concept of accretive mappings, which represent a generalization
of the Hilbert space monotonicity in a bit different way than the Banach space
monotonicity, appeared to be more suitable for some types of problems. The
accretive mappings and their differences are also briefly discussed here.

Later the monotone operators were studied from the point of view of ap-
plications in variational inequalities, differential inclusions, optimization theory
and connections to the convex and the nonlinear analysis. This naturally led
to the introducing of set-valued monotone operators which were investigated in
the works by T. Rockafellar, S. Fitzpatrick, J. Borwein and others and they are
still an active area of the contemporary research. Also the theoretic aspects of
the monotone operators were treated and a lot of interesting and deep results
about the description of the points of the multiplicity, the continuity and the dif-
ferentiability and the maximality of the monotone operators were proved by T.
Rockafellar, R. Phelps, J. Borwein, D. Preiss, L. Veselý and L. Zaj́ıček. The real
analytic approach to the monotone operators on Euclidean spaces is presented in
the paper [1] by L. Alberti and G. Ambrosio. In this paper there are discussed
relations to the geometric measure theory and to mappings of bounded variation.
In the papers of L. Kovalev there is studied a special class of monotone mappings,
so called δ-monotone mappings which poses many nice properties. There are very
interesting connections between δ-monotone mappings and quasiconformal map-
pings, quasisymmetric mappings and mappings of finite distortion.

The functions which can be represented as a difference of two convex func-
tions (now standardly called d.c. functions) were probably at first introduced by
Russian geometer A. D. Aleksandrov. He studied mainly the geometric proper-
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ties of surfaces in three dimensional space which can be viewed as a graph of d.c.
functions. The theory of d.c. functions was further developed by P. Hartman who
proved the composition theorem for the d.c. functions. There is a simple charac-
terization of the real d.c. functions of one real variable. The class of d.c. functions
coincides with the indefinite integrals of function of locally finite variation as fol-
lows from the classical C. Jordan’s result. The similar characterization for vector
valued d.c. functions of one real variable (d.c. curves) is shown in [25], but no ef-
fective characterization of the d.c. functions defined on higher dimensional spaces
is known. The d.c. functions were applied in the nonsmooth optimization by V.
F. Demyanov and A. M. Rubinov. The contemporary research in the theory of
d.c. functions with the connection to the optimization theory focuses rather on
different algorithms for minimization problems of the mathematical programming
evolving d.c. functions. The generalization of the d.c. functions to arbitrary Ba-
nach spaces is due to L. Veselý and L. Zaj́ıček and is in detail studied in their
paper [25]. The further development is contained in the papers [8], [26].

The class of the DM mappings seems to be studied for the first time in this
thesis. Roughly speaking the basic examples of the DM mappings arise by the
differentiating of the d.c. function. Thus the DM mappings is a system of map-
pings from a Banach space to its dual space which can be written as a difference
of two monotone operators but the assumption of the potentiality is removed. In
contrast to the one-dimensional case the requirement that the mapping is DM is
more restrictive than that it is in BVloc. The example is provided. It is well known
that there exist a functions of bounded variation of two or more variables which
are not bounded. Such mappings provide the simplest examples of BV map-
pings which are not DM. The DM mappings of course inherit many important
properties of the monotone mappings such as the continuity, the differentiability
and belonging to the space of the functions of bounded variation. In this thesis
we also discuss the so called Radó-Reichelderfer and the Morrey type estimates
for the monotone mappings which remain valid for the DM mappings. Unfortu-
nately the class of the DM mappings lacks some stability-type properties of the
d.c. mappings, for instance an analogue of the composition theorem for the d.c.
mappings does not hold. The example of the DM mapping whose composition
with the linear mapping is not DM is presented.

This was the main motivation for the introducing the class of the UDM map-
pings which generalizes the concept of curves with the locally finite variation. The
advantage of such mappings is that they can be defined between arbitrary Banach
spaces and enjoy some nice properties in comparison with DM mappings. As a
difference to the d.c. mappings not all monotone mappings are UDM mappings.
The counterexample is provided. In the case of the d.c. mapping it is obvious
that every convex function is a d.c. function. The source of such difficulties is
probably in the fact that the basic concept for the DM and UDM mappings is
an monotone operator between a Banach space and its dual space. This opera-
tor seems to be a more complicated object than a convex function which is the
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central concept for the theory of the d.c. mappings.
As declared the DM and the UDM mappings are probably for the first time

studied in this thesis, thus many natural questions remained unanswered and
some of them are written in the last section as open problems.
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List of notation

C(U) space of continuous functions on a topological space U,

Cc(U) space of compactly supported functions on a topological
space U,

C0(U) space of continuous functions lying in the closure of the
space Cc(U) with respect to the metric of the uniform
convergence,

Lp(S,S, μ) space of measurable functions on the measurable space
(S,S, μ), whose absolute value is integrable with the p-th
power,

W 1,p(Ω) Sobolev space of functions on the open set Ω,

〈x∗; x〉 duality pairing between a Banach space X and its dual
space X∗, scalar product for X being a Hilbert space

δf(x; v) directional derivative of a mapping f at a point x in a
direction v

δf(x) Gateuax derivative of a mapping f at a point x,

f ′(x) Fréchet derivative of a mapping f at a point x,

||x||X , ||x||, |x|X, |x| norm of a point x of a Banach space X,

B(a, r) open ball with the center a and the radius r,

BX closed unit ball in the Banach space (X, | · |X),

Ln(E), |E| Lebesgue measure of a measurable set E,

L(X, Y ) space of bounded linear operators between Banach spaces
X and Y ,

f|C restriction of a mapping f : A → B on the set C ⊂ A,

∨b
a f variation of a mapping f : (a; b) → Y,
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∨
(f, L) variation of the restriction f|L, where L ⊂ X is a line seg-

ment,

A : T → 2S multi-mapping between sets T and S i.e. At ⊂ S not
necessarily singleton,

Gr(A) graph of the multi-mapping A : T → 2S i.e. the set
{(t, s); s ∈ At},

∫
M

− u, uM the average of L1 function over a measurable set M
with 0 < |M | < ∞ i.e. uM := 1

|M |
∫

M
u,

lip(f, E) the lipschitz constant of a mapping f on the set E,

U ⊂⊂ V U ⊂ U ⊂ V.
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1 Preliminaries

All Banach spaces considered in this text are real.

Definition 1 Let U be an open subset of Rn. We say that u ∈ L1(U ; Rd)
is a function of bounded variation if the distributional gradient of u is (repre-
sentable by) a Radon Rd×n-valued measure in U. We denote this function space
by BV (U ; Rd) (if d = 1 we write briefly BV (U)) and equip it with the norm

||u||BV (U ;Rd) := ||u||L1(U ;Rd) + ||Du||M(U ;Rd×n).

We say that u is a function of locally bounded variation and write u ∈ BVloc(U ; Rd)
if u ∈ BV (Ũ ; Rd) for each Ũ ⊂⊂ U.

Definition 2 Let u ∈ L1
loc(U ; Rm) be a mapping. We say that a ∈ Rm is the

L1-approximate limit of u at x0 if

lim
r↘0

∫
B(x0,r)

−|u(y) − a| dy = 0. (1)

The set of points x0 ∈ U where such a does not exist is called the L1-approximate
discontinuity set and denoted by Su.

Remark 3 Notice that the points of the set U \ Su for which

lim
r↘0

∫
B(x0,r)

−|u(y)− u(x)| dy = 0.

are standardly called the Lebesgue points of the function u and it is well known
that the complement of the set of all Lebesgue points in Ω is a Lebesgue null set.

Definition 4 For given u ∈ L1
loc(U ; Rd) and x ∈ U \ Su, denote by ũ(x) the

L1-approximate limit of u at x. We say that u is L1-approximate differentiable
at x if there is a d × n matrix L such that

lim
r↘0

∫
B(x,r)

−|u(y) − ũ(x) − L(y − x)|
r

dy = 0. (2)

The set of such points x, where the mapping u is L1-approximate differentiable
is denoted by Du and the matrix L ∈ Rd×n is denoted by Dapu(x) and called the
L1-approximate differential .

Remark 5 There are available other more general definitions of the differentia-
bility. The definition which uses the densities of ”bad” sets{

y ∈ U \ {x}; |u)y) − ũ(x) − L(y − x)

|y − x| > ε

}
,
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leads to the approximate differentiability (see [9] ). Since we work only with
functions of bounded variation, that are differentiable in the stronger sense, we
will use the definition based on (2).

Theorem 6 (Calderón-Zygmund; see [3]) Let u be a function of the class BV (U ; Rd).
Then u is L1-approximate differentiable at Ln- a.e. points of U and the L1-
approximate differential Dapu is the density of the absolutely continuous part of
Du with respect to the Lebesgue measure.

Remark 7 It can be easily seen (for details consult [3]) that the function u is
L1-approximately differentiable at a point x with L being its L1-approximate
differential if and only if the rescaled functions

ur(y) :=
u(x + ry) − ũ(x)

r

converge in the L1
loc-topology to the linear mapping y �→ Ly.

Theorem 8 (Kirzbraun; see [9]) Let S ⊂ Rn be an arbitrary set and let f : S →
Rm be a Lipschitz continuous mapping. Then there is a mapping f : Rn → Rm,
such that f |S = f and lip(f, S) = lip(f, Rn).

The following theorem is a known tool for handling with BV functions, since
we were not able to find a suitable reference we sketch the proof.

Theorem 9 Let Ω ⊂ Rn be an open set and u be a function of the class BVloc(Ω; Rm).
Let B := B(z, r) ⊂⊂ Ω be a ball. For Ln-a.e ζ ∈ B it is∣∣∣∣

∫
B

−u(y) dy − u(ζ)

∣∣∣∣ ≤ 2r

∫ 1

0

|Du|(Bt)

|Bt|
dt, (3)

where Bt := B(ζ + t(z − ζ), tr).

Proof. We have B1 = B. Using the terminology from [23] we have that Bt shrinks
nicely to the point ζ as t → 0. It is not difficult to see that for 0 < s < t ≤ 1 we
have

Bs ⊂ Bt. (4)

Indeed, we can for a moment assume z = 0, ζ = ζ1e1, 0 ≤ ζ1 < r, since for
1 ≥ t > s > 0 we have

ζ1(1 − t) + tr > ζ1(1 − s) + sr,

we conclude Bs ⊂⊂ Bt.
Let ζ be a Lebesgue point of u. By [23]

lim
ε→0+

∫
Bε

−u(y) dy = u(ζ). (5)
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Assume for a moment that the function u is smooth (i.e. of the class C∞(Ω)).
Denote

φ(t) :=

∫
Bt

−u(s) ds.

We have

φ(t) =

∫
B1

−u(ζ + t(y − ζ)) dy

thus
dφ

dt
=

∫
B1

−∇u(ζ + t(y − ζ))(y − ζ) dy.

This implies for 0 < ε < 1

φ(1) − φ(ε) =

∫ 1

ε

∫
B1

−∇u(ζ + t(y − ζ))(y − ζ) dy dt. (6)

Since ζ, y ∈ B1 and Bt ⊂ B1, t ∈ (0; 1] we infer from (6)

|φ(1) − φ(ε)| ≤ 2r

∫ 1

ε

∫
B1

−|∇u(ζ + t(y − ζ))| dy dt.

For general u we can find a sequence of smooth functions (uj)j∈N such that

uj → u, in L1
loc(Ω) (7)

and
|Duj|(B1) → |Du|(B1). (8)

(This is so called strict convergence see [3].) Let denote μ := |Du|, μj := |Duj|.
By the calculations for smooth functions we have

|φj(1) − φj(ε)| ≤ 2r

∫ 1

ε

∫
B1

−|∇uj(ζ + t(y − ζ))| dy dt,

= 2r

∫ 1

ε

∫
Bt

−|∇uj(ξ))| dξ dt

= 2r

∫ 1

ε

μj(Bt)

|Bt|
dt, (9)

where we have denoted

φj(t) :=

∫
Bt

−uj(s) ds.

Let ε be fixed. From (7) we infer that the left hand side of (9) converges for
j → ∞ to ∣∣∣∣

∫
B1

−u(y) dy −
∫

Bε

−u(s) ds

∣∣∣∣ . (10)

11



Now we realize that μj ⇀∗ μ. (This is a property of the strict convergence, see
[3].) Thus we have

μ(Bt) ≥ lim sup μj(Bt) ≥ lim sup μj(Bt) (11)

and
μ(Bt) ≤ lim inf μ(Bt). (12)

We infer that μ(∂Bt) > 0 at most for countably many t ∈ (0; 1]. Indeed, if it
would not be true, since the boundaries if Bt and Bs are disjoint by (4), we
would obtain a contradiction with μB1 < ∞. Since for almost all t ∈ (0; 1] it is
μ(∂Bt) = 0 we have by (11) and (12) for almost all t ∈ (0; 1] that

μj(Bt) → μ(Bt). (13)

We infer from (8) that

μj(Bt)

|Bt|
≤ 1

εnrn|B(0, 1)|

∫
Bt

d|Duj| ≤
1

εnrn|B(0, 1)|

∫
B1

d|Duj| ≤
K

εnrn|B(0, 1)| .

Thus we have an integrable majorant and (13) combined with the dominated
convergence theorem implies that the right hand side of (9) converge to

2r

∫ 1

ε

|Du|(Bt)

|Bt|
dt. (14)

Thus by (10) and (14) we have∣∣∣∣
∫

B1

−u(y) dy −
∫

Bε

−u(s) ds

∣∣∣∣ ≤ 2r

∫ 1

ε

|Du|(Bt)

|Bt|
dt

≤ 2r

∫ 1

0

|Du|(Bt)

|Bt|
dt.

From (5) we obtain by the limit passage for ε → 0∣∣∣∣
∫

B

−u(y) dy − u(ζ)

∣∣∣∣ ≤
∫ 1

0

2r
|Du|(Bt)

|Bt|
dt.

This concludes the proof. �

Theorem 10 (Poincaré inequality; see [3]) Let Ω ⊂ Rn be a domain. Then
there is a constant γ such that for any u ∈ BV (Ω; Rm) and for any ball B(a, ρ) ⊂
Ω ∫

B(a,ρ)

|u − uB(a,ρ)| dx ≤ γρ

∫
B(a,ρ)

d|Du|.
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The following theorem can be viewed as a generalization of the well known
theorem about the Lebesgue points of a locally integrable function.

Theorem 11 ([23]) Let X be a normed linear space and μ ∈ Mloc(R
n; X) a

vector measure which is singular with respect to the Lebesgue measure. Then

lim
r→0+

|μ|(B(x, r))

|B(x, r)| = 0 (15)

for Ln-almost all x ∈ Rn.

The following lemma presents a well known fact from the theory of Sobolev
functions. Since we were not able to find a reference, we sketch the proof.

Lemma 12 Let u : Rn → R be a Lipschitz continuous function and B(0, R)
be a given ball. Then there is a function uR and c > 0 such that u = uR on
B(0, R), uR = 0 in the exterior of the larger ball B(0, cR) and lip(uR, Rn) ≤
lip(u, Rn). (The constant c depends on the function u.)

Proof. We define the function

v(x) :=

{
u(x), x ∈ B(0, R)
0, x ∈ R

n \ B(0, cR),

where the constant c is chosen as large as

lip(v, B(0, R) ∪ R
n \ B(0, cR)) ≤ lip(u, Rn).

Theorem 8 gives a function uR such that uR is an extension of v and the Lipschitz
constant of uR does not exceed the Lipschitz constant of v. This concludes the
proof. �

Definition 13 Let X, Y be Banach spaces and let D ⊂ X be an open convex
set. A mapping F : D → Y is called a d.c. mapping if there exists a continuous
convex function f : D → R such that for every y∗ ∈ BY ∗ the function

f + y∗ ◦ F : D → R

is a continuous convex function.

We need some basic tools of the descriptive set theory.

Definition 14 Let M be a complete separable metric spaces. The set A ⊂ M
is called analytic set if there is a complete separable metric space N and a Borel
subset B of M × N such that

A = πMB,

where πM : (m, n) ∈ M × N �→ m is the projection of M × N onto M.
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Proposition 15 Let M, N be complete separable metric spaces, let

g : M → N

be a continuous mapping and let A ⊂ M be an analytic set. Then g(A) ⊂ N is
an analytic set. Analytic subsets of Rn are Lebesgue-measurable.

2 Monotone multi-mappings

2.1 Basic properties

In the sequel the symbol T : M → 2V will denote that Tm is a nonempty subset
of V for every m ∈ M . We can find in a literature concerning monotone operators
the convention to write T : X → 2X∗

and keep in the mind that Tx may be empty
but we will not use this convention.

Definition 16 Let X be an arbitrary Banach space with the dual space X∗. We
say that a multi-mapping T : Dom(T ) → 2X∗

is the monotone multi-mapping if
for every x1, x2 ∈ Dom(T ) and every x∗

1 ∈ Tx1, x
∗
2 ∈ Tx2 the following inequality

holds:
〈x∗

1 − x∗
2, x1 − x2〉 ≥ 0. (16)

The set Dom(T ) is the set of all point x ∈ X such that Tx �= ∅ and we call
it the effective domain of T. We call T the maximal monotone multi-mapping
if there is no proper enlargement S of T which preserves the monotonicity (the
proper enlargement means that there is an element of the graph of S which is
not contained in the graph of T ). We denote the class of all maximal monotone
multi-mappings by Mon(X). We say that T is strictly monotone if for every
x1 �= x2 the inequality in (16) is strict.

An easy consequence of the definition is the following proposition.

Proposition 17 The set of all monotone mappings forms a convex cone in the
space of all mappings from the space X to the dual space X∗.

Remark 18 It is common in the theory of monotone multi-mappings to identify
the multi-mapping T with its graph

Gr(T ) := {(x, x∗) ∈ X × X∗, x∗ ∈ Tx}.

Having in mind this convention we can speak about monotone subsets of X ×X∗

as well as about monotone multi-mappings.
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Remark 19 We can show by Zorn’s lemma that each monotone multi-mapping
has a maximal monotone extension (in general not unique). To see this take a
fixed monotone multi-mapping T and let T be a system of all monotone multi-
mappings whose graph contains the graph of T . We consider T partially ordered
by the graph-inclusion. If T ′ is an arbitrary linearly ordered subsystem of T then
the set

⋃
T ′ is the graph of a monotone multi-mapping which is an upper bound

for the chain T ′. Thus by Zorn’s lemma there is a maximal element T which is
the desired maximal monotone extension of T .

Remark 20 It is easily seen from the definition of the monotone multi-mapping
that the inversion of a monotone mapping T , defined as the mapping

T−1 : X∗ → 2X , T−1x∗ = {x ∈ X; x∗ ∈ Tx},

is monotone.

Definition 21 (Minty; see [17]) Let X be a Hilbert space and let M ⊂ X be
its arbitrary subset. Let A : M ⊂ X → 2X be a multi-mapping. The Cayley
transformation

Γ : X × X → X × X,

is defined by the formula

Γ(x1, x2) := (x1 + x2, x1 − x2).

We define the mapping Γ�A via the equality

Gr(Γ�A) := Γ(Gr(A)).

Further the mapping Γ−1
� A is a mapping whose graph is Γ−1Gr(A).

Proposition 22 (see [17]) Let M be an arbitrary subset of a Hilbert space X
and let A : M → 2X be a monotone multi-mapping. Then Γ�A is 1-Lipschitz.
On the other hand, for a given Lipschitz continuous mapping φ : N ⊂ X → X a
monotone multi-mapping Γ−1

� φ is a monotone multi-mapping.

Proof. Denote B := Γ�A. The definition of the operator Γ� gives that

(α, ξ) ∈ Gr(B) ⇔ (∃(a, x) ∈ Gr(A), α = a + x, ξ = −a + x). (17)

Take arbitrary two pairs (α1, ξ1) (α2, ξ2) ∈ Gr(B). A simple manipulation with
(17) gives immediately

αi + ξi

2
∈ A

(
αi − ξi

2

)
, i = 1, 2.
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We write the monotonicity condition for A and obtain

0 ≤
〈

α1 + ξ1

2
− α2 + ξ2

2
;
α1 − ξ1

2
− α2 − ξ2

2

〉
,

this easily gives
|ξ1 − ξ2| ≤ |α1 − α2|.

Thus B = Γ�A is 1-Lipschitz. The reverse correspondence is proved by the same
argument. �

Lemma 23 (Minty; see [17], [21]) Let X be a Hilbert space and let T : X → 2X

be a maximal monotone multi-mapping. Then the mappings

MT
1 := (I + T )−1, MT

2 := (I + T−1)−1

are non-expansive maximal monotone and the mapping

x �→ (MT
1 x, MT

2 x)

is bi-Lipschitz bijection from X onto Gr(T ). In terms of the Caley transform

Γ(MT
1 (x), MT

2 (x)) = (x, MT
1 (x) − MT

2 (x)).

Remark 24 The previous lemma asserts a nice property of the monotone multi-
mappings. The graph of a maximal monotone multi-mapping can be viewed
as a Lipschitz manifold in X × X. If X = Rn this observation combined with
Rademacher’s theorem gives that there exists a tangent space to the graph of the
maximal monotone multi-mapping at the point (MT

1 x, MT
2 x) for almost every

x ∈ Rn. This information is crucial in the proof of Mignot theorem 59.

The following propositions are easy facts about monotone mappings and can
be found in a more general form in the paper [1].

Proposition 25 (see [1]) Let u : Dom(u) → 2Rn
be a monotone mapping. Then

the set of x ∈ Dom(u), where u(x) is not a singleton is a Lebesgue null set.

Proposition 26 (see [1]) Let u : Dom(u) → 2R
n

be a maximal monotone map-
ping. Assume that xj → x, yj → y and yj ∈ u(xj) (i.e. xj ∈ Dom(u)). Then
y ∈ u(x).

In the following proposition all interiors and closures are meant with respect
to the norm topology.
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Theorem 27 (Rockafellar; see [20]) Let T : X → 2X∗
be a maximal monotone

multi-operator and suppose that int(co(Dom(T ))) �= ∅. Then T is locally bounded
at each point x ∈ int(Dom(T )) and satisfies the relations

int(co(Dom(T ))) = int(Dom(T ))

and
Dom(T ) = int(Dom(T ),

hence int(Dom(T )) and Dom(T ) are convex. Further for all x ∈ int(Dom(T ))
the set Tx is weak* compact and convex.

The following lemma, which is a form of an extension theorem for monotone
mappings, will be useful.

Lemma 28 Let Ω ⊂ Rd be a bounded set and let A : Ω → 2Rd
be a bounded

monotone multi-mapping. Then there is a monotone multi-mapping A : R
d → 2Rd

which is an extension of A i.e. A|Ω = A. In particular for A : Ω → Rd single-
valued there is a single-valued extension.

Proof. We will work in the space Rd × Rd. We denote the first copy of Rd by R1

and the second one by R2.
The set N := π1Γ(Gr(A)), where we have denoted by π1 the projection on

R1, is a bounded subset of R1 since Ω is bounded, A is bounded on Ω and π1 and
Γ are the linear mappings.

By Proposition 22 we conlude that the mapping Γ�A : N → Rd is a Lipschitz
mapping. If we use Theorem 8 we get the mapping Γ�A : Rd → Rd which is a
Lipschitz extension of Γ�A onto the whole R

d.
Now we have to guarantee that if we return back to the monotone multi-

mapping it will remain to be defined on the whole space. We can apply Lemma
12 to the function Γ�A and obtain a Lipschitz continuous mapping (Γ�A)R which
has the Lipschitz constant bounded by the Lipschitz constant of Γ�A and which
coincides with Γ�A in a ball B(0, R) which contains Ω. Now we consider the
mapping

A := Γ−1
� [(Γ�A)R],

because we have used the cut off procedure, we infer that the graph of A in the
exterior of a sufficiently large ball B(0, cR) coincides with the linear subspace M
of Rd × Rd, where M = Γ(R1 × {0}). The fact that for every x ∈ Rd there is
a point y such that (x, y) ∈ GrA follows from Brouwer theorem, indeed we are
looking for such y such that

x − y = f(x + y),

where we have denoted f := (Γ�A)R. Let x be fixed. We are solving the equation

y = x − f(x + y) =: h(y).

17



Since f is continuous with compact support |f(·)| is bounded by some C. We
have |h(y)| ≤ |x| + C. Thus for a ≥ |x| + C we have h : B(0, a) → B(0, a).
Brouwer theorem gives the desired point y . This gives that the multi-mapping
A is defined on the whole R1 (an argument using Theorem 27 is also possible).

Finally, for A being single-valued, an arbitrary selection of A, which coincides
with A on Ω, is surely a single-valued monotone extension of A. �

The classical result says that in the one dimensional case a function defined
on an open interval can be written as a difference of two nondecreasing functions
if and only if it has the locally finite variation. Thus the following example is a
bit surprising.

Example 29 Consider the plane with the axis x, y. Consider an arbitrary func-
tion f : R → R and define the function u : Dom(u) → R2, where Dom(u) is the
x-axis by the formula u(x, y) := (x, f(x). A simple geometric argument implies
the monotonicity of the mapping u.

Let us be more concrete. Let R2 ⊃ D := (−1; 1) × {0}, let (rn)n∈N be a
countable dense subset of (−1; 1). Consider for x ∈ (−1; 1)

vn(x) :=
1

2n
(x − rn) sin

1

x − rn

and define

v :=

∞∑
n=1

vn.

Finally let u : D → R
2 be given by

u(x, y) := (x, v(x)).

This function is continuous on D by the Weierstrass criterion, it is monotone
but it does not have the finite variation over any line segment contained in D.
Later we will see that this example is in fact pathological, since the domain of
the function is very small. ♣

Definition 30 Let f : X → R ∪ {+∞} be a convex function on a Banach
space X which is not identically equal to +∞ (such functions are called proper
convex functions) and let x ∈ X be a point where f is finite. We define the
subdifferential of f at x as the set

∂f(x) := {x∗ ∈ X∗; f(z) − f(x) ≥ 〈x∗; z − x〉, z ∈ X}. (18)

The elements of ∂f(x) are called the subgradients of f at x.

18



Remark 31 By Hahn-Banach theorem we can see that f is subdifferentiable in
the interior of its effective domain, for details see [27].
It can be proved that a continuous convex function f is Gateaux differentiable
at point x, if and only if ∂f(x) consists of exactly one point δf(x), for details see
[27].

Example 32 The well known examples of monotone multi-mappings are the
differentials of smooth convex functions, more generally subdifferentials of proper
convex functions. Indeed, consider the multi-mapping ∂f , choose points x, y ∈
Dom(∂f) and x∗ ∈ ∂f(x), y∗ ∈ ∂f(y). Write the inequality (18) for z := y and
for z := x, subtract and rewrite. We obtain exactly the monotonicity-inequality
(16).

If we consider as the special case the indicator function of a convex set C ⊂ X
defined by

δC(x) =

{
0, x ∈ C
∞, x �∈ C,

then its subdifferential is equal to the normal cone of C, defined by

N(x, C) := {ξ∗ ∈ X∗; 〈ξ∗; c − x〉 ≤ 0, c ∈ C}

as can be easily verified. ♣

We introduce now a definition which will be used later and for the sake of
completeness we recall one deep result.

Definition 33 A multi-mapping T : Dom(T ) → 2X∗
is called cyclically mono-

tone if for every n ∈ N, for every choice {x0, x1, . . . , xn = x0} ⊂ Dom(T ) and
each x∗

j ∈ Txj , j = 0, . . . , n

n∑
k=1

〈x∗
k; xk − xk−1〉 ≥ 0.

The operator T is called maximal cyclically monotone if there is no proper en-
largement of T which preserves the cyclical monotonicity.

Theorem 34 (Rockafellar; see [19]) Let T : Dom(T ) ⊂ X → 2X∗
be a multi-

mapping. Then the following conditions are equivalent:
(i) T is maximal cyclically monotone,
(ii) there exists a proper lower semi-continuous convex function f : X → R ∪
{+∞} such that T = ∂f .

Example 35 Another example of a monotone mapping can be gained as the
projector mapping in a Hilbert space. Let C be a closed convex subset of the
Hilbert space X. It is a well known fact from the elementary theory of Hilbert
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spaces that for every u ∈ X there is a unique element c ∈ C such that ‖u− c‖ =
miny∈C ‖x − y‖. We prove that the projector mapping P : X → C is monotone.
It is geometrically obvious and easy to prove that

Pu = c ⇔ {〈u − c; x − c〉 ≤ 0, x ∈ C}. (19)

Take u, v ∈ X and denote by Pu, Pv their projections. Let us write the inequality
(19) for u with x = Pv and for v with x = Pu. We have

〈u − Pu; Pv − Pu〉 ≤ 0

and
〈v − Pv; Pu− Pv〉 ≤ 0.

We sum these two inequalities to obtain

〈u − v, Pv − Pu〉 ≤ 〈Pu− Pv; Pv − Pu〉 ≤ 0.

This gives the desired. ♣

Definition 36 Let (X, ‖ · ‖) be a Banach space and let ‖ · ‖∗ be the canonical
dual norm. The multi-mapping j : X → 2X∗

for which

(x, f) ∈ Gr(j) ⇐⇒ 〈f ; x〉 = ‖x‖2 = ‖f‖2
∗

is called the duality mapping.

Proposition 37 (see [27]) Let (X, ‖ · ‖) be a Banach space and let j be the
duality mapping. Then j is maximal cyclically monotone, homogeneous and

∂
1

2
‖x‖2 = j(x).

Definition 38 A Banach space X is called smooth if for every x ∈ X there is
only one x∗ ∈ X∗ such that 〈x∗; x〉 = ‖x‖.

Definition 39 A multi-operator A : Dom(A) → 2X is called accretive if it
satisfies the condition:

∀x, y ∈ Dom(A), ∀(ξ, η) ∈ Ax × Ay ∃f ∈ j(x − y) : 〈f ; ξ − η〉 ≥ 0. (20)

If the inequality (20) is satisfied for all f ∈ j(x−y) we call this multi-operator
fully accretive.

Remark 40 We have introduced the definition of accretive operators which is
used in the modern theory of the partial differential equations. The notion of the
full accretivity was introduced in the pioneering Browder’s work [4].
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The following proposition is obvious.

Proposition 41 Let X be a smooth Banach space. Then the duality mapping
is single-valued.

Remark 42 The previous proposition shows that the concepts of the full accre-
tivity and the accretivity coincide in the class of the smooth Banach spaces.

Definition 43 We say that a mapping a : M → N, where M, N are abstract
sets, is a selection of a multivalued mapping A : M → 2N if for every m ∈ M
a(m) is a singleton and a(m) ∈ A(m). We write briefly a ∈ A for a being a
selection of A.

Lemma 44 Let A : Ω ⊂ X → 2X∗
, where Ω is a convex set, be a multivalued

mapping. Let x, h ∈ X be such points such that for every selection a ∈ A the
function

t �→ ϕ(x, h, a; t) := 〈a(x + th) − a(x), h〉,
is defined on an interval Ix,h. Then A is monotone if and only if for each x, h ∈
X, a ∈ A the function ϕ(x, h, a; ·) is nondecreasing on Ix,h.

Proof It is clear that A is a monotone multivalued mapping if and only if each
selection a ∈ A is a monotone mapping. Let A be a monotone multi-mapping,
a ∈ A its arbitrary selection and choose x, h ∈ X, 0 ≤ s < t such that ϕ(x, h, a; t)
and ϕ(x, h, a; s) are defined. We have

ϕ(x, h, a; t) − ϕ(x, h, a; s) = 〈a(x + th) − a(x), h〉 − 〈a(x + sh) − a(x), h〉 =

1

t − s
〈a(x + th) − a(x + sh), (t − s)h〉 ≥ 0,

since a is monotone.
Conversely let ϕ be nondecreasing, choose admissible x, h ∈ X and a selection

a ∈ A. We obtain

〈a(x + h) − a(x), h〉 = ϕ(x, h, a; 1) − ϕ(x, h, a; 0) ≥ 0.

This gives the monotonicity of the multi-mapping A. �

Definition 45 We say that a multi-mapping A : Ω ⊂ X → 2X∗
is locally

monotone in Ω if for every point x0 ∈ Ω there is a (relative) neighborhood U(x0)
of x0 in Ω such that A|U(x0) : U(x0) → 2X∗

is a monotone multi-mapping.

Lemma 46 Let Ω ⊂ X be a convex set. A multi-operator A : Ω → 2X∗
is

monotone if and only if it is locally monotone in Ω.
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Proof The necessity is obvious.
For the sufficiency recall that due to Lemma 44 it is sufficient to show that

for every selection a ∈ A and every x, h ∈ X such that the function ϕ(x, h, a; ·) is
defined, ϕ(x, h, a; ·) is nondecreasing on its domain. The assumption of the local
monotonicity of A implies the local monotonicity of each selection a ∈ A. This
gives that the function ϕ(x, h, a; ·) is nondecreasing at every point of its domain.
Thus ϕ is nondecreasing as follows from the standard calculus result. �

Definition 47 Let (E, �) be an arbitrary metric space and let (Cn)n∈N be a
sequence of closed subsets of E. We say that the sequence (Cn)n∈N converges in
the Hausdorff sense to a closed set C ⊂ E if the following conditions are satisfied:
i) every cluster point of the sequence (xn)n∈N, xn ∈ Cn belongs to C,
ii) for every point x ∈ C there is a sequence of points xn ∈ Cn which converges
to x.
We denote this type of the convergence by the symbol H lim.

Remark 48 Let (E, �) be a metric space. The Hausdorff distance of closed sets
F, F ′ is defined by

δH(F, F ′) := max{sup
x∈F

�(x, F ′); sup
x′∈F ′

�(x′, F )}.

If E is compact then δH induces the Hausdorff convergence (see [1] and the
references there in).

We can consider the the space E as the one-point compactification of the
space Rn × Rn i.e. E = (Rn × Rn) ∪ {∞}. Let i be the map which associates
to any closed subset F of Rn × Rn the closed subset F ∪ {∞} of E. We put for
closed subsets of R

n × R
n

dH(F, F ′) := δH(iF, iF ′).

Let F0 := F0(R
n × Rn) be the class of all closed subsets of Rn × Rn. It can be

verified that (F0, dH) is a compact metric space where the convergence is the
convergence in the Hausdorff sense.

Definition 49 We say that mappings (un)n∈N ⊂ (E → 2F ) (E, F are metric
spaces) converge to a mapping u : E → 2F graphically if

H lim
n→∞

Gr(un) = Gr(u).

We use the notation

g lim un = u.

Proposition 50 (see [1]) Let A : R
d → 2Rd

be a maximal monotone multi-
mapping. Then Gr(A) is a closed subset of Rd × Rd.
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Proposition 51 (see [1]) Let An : Rd → 2R
d
, n ∈ N be a sequence of maximal

monotone mappings. Let A =g lim An be finite. Then A ∈ Mon(Rd).

Proposition 52 (see [1]) Let A : Rn → Rn be a maximal monotone mapping.
We define the so called Yosida regularizations of A as the mappings

YλA := (λI + A−1)−1, λ > 0.

Then YλA is 1/λ-Lipschitz maximal monotone mapping and

g lim
λ→0+

YλA = A.

The notion of Borel measurable mappings can be generalized for multi-mappings.

Definition 53 The multi-mapping T : Dom(T ) ⊂ Rm → 2Rn
is called Borel

measurable multi-mapping (briefly Borel multi-mapping) if for every open subset
O ⊂ Rm the set T−1(O) ⊂ Rn is Borel.

It can be proved by basic methods of the descriptive set theory that if the
graph of a multi-mapping T : Rm → 2Rn

is an analytic subset of Rm × Rn then
T is a Borel multi-mapping. Indeed, let O be an open subset of Rn we have

T−1(O) = πm(Gr(T ) ∩ (Rm × O)),

where πm is the projection of Rm×Rn onto Rm. This together with Proposition 15
implies that the set T−1(O) is an analytic subset of Rm. Similarly we obtain that
T−1(Rn \ O) is an analytic subset of Rm. It follows by a descriptive set theoretic
argument( see [24]) that the set T−1(O) is a Borel subset of Rm.

This result combined with the closeness of the graph of a maximal monotone
multi-mapping u : R

n → 2Rn
(Proposition 50) implies:

Proposition 54 Every maximal monotone multi-mapping u : Rn → 2R
n

is a
Borel measurable multi-mapping.

Example 55 On the other hand, there is a monotone mapping u : Rn → Rn

which is not Borel measurable. For simplicity we construct such an example for
n = 2 but the similar construction can be done for arbitrary n ∈ N. At first we
realize that if f : R → [0; 1] is an arbitrary function and the function u1 : R2 → R

is defined by

u1(x1, x2) =

⎧⎨
⎩

0, x1 < 0
f(x2), x1 = 0
1, x1 > 0,

then the function u := (u1, 0) : R2 → R2 is a monotone mapping. This can be
easily shown by distinguishing the cases

((x1 < 0) & (y1 < 0)),
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((x1 < 0) & (y1 > 0)),

((x1 < 0 & (y1 = 0)),

and
((x1 > 0 & (y1 = 0)).

Let N ⊂ R be a set which is not Lebesgue measurable. Then the set {0} × N
is a subset of R2 which is not Borel (see Proposition 15). Denote by 1N the
characteristic function of the set N. We define

f(t) :=
1

2
1N (t)

and take the monotone mapping u defined for this function f as before. Consider
the open subset of R2 O := (0; 1) × R. Then we have

u−1(O) = {0} × N.

Hence u is a monotone mapping which is not Borel measurable. ♣

2.2 Differential theory for monotone mappings

In this section Ω will denote an open convex set of a Banach space X.

2.2.1 Classical case

Theorem 56 (see [21]) Let u : Ω → X∗ be a Gateaux differentiable mapping.
Then u is monotone if and only if its Gateaux derivative δu(x) ∈ L(X, X∗)
is positive-semidefinite for each x ∈ Ω. Further it is strictly monotone if the
operator δu(x) is positive definite for each x ∈ Ω.

Proof. Let u be monotone, we have

〈u(x + th) − u(x); th〉 ≥ 0.

We divide by t2 and take the limit for t → 0. We obtain

〈δu(x)h; h〉 ≥ 0

for arbitrary choice of x, h. Which gives the desired.

Conversely, let δu(x) be positive-semidefinite for all x. Choose x0, x1 ∈ X
and define f(t) := 〈u(xt)− u(x0); x1 − x0〉, where xt := (1− t)x0 + tx1. We have
f(0) = 0 and we claim f(1) ≥ 0. Since f is differentiable, we infer

f ′(t) = 〈δu(xt)(x1 − x0); x1 − x0〉 ≥ 0,

thus f is nondecreasing and consequently f(1) ≥ 0. This gives monotonicity of
u. The second part of the proof can be directly rephrased for the strict case. �
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Remark 57 The strict monotonicity does not imply the positive-defineteness of
the derivative matrix as a simple one-dimensional example t �→ t3 shows.

A straightforward modification gives:

Theorem 58 Let T : X → X be a Gateaux differentiable mapping from a smooth
Banach space to itself. Then T is an accretive mapping if and only if its Gateaux
differential δT (x) is accretive, i.e. positive semidefinite in the sense that for every
h ∈ X

〈j(h); δT (x)h〉 ≥ 0

at every point x ∈ X.

Proof. The proof is only paraphrasing of the the previous one and we use that
the duality mapping is single-valued and homogeneous (see Proposition 41). �

Theorem 59 (Mignot; see [1], [16]) Let u : Dom(u) → Rn be a maximal mono-
tone function and let D be the set of all x ∈ Dom(u) such that u(x) is a sin-
gleton. Then u is differentiable at almost every x0 ∈ D, i.e. there is a matrix
u′(x0) ∈ Rn×n such that

lim
x→x0
y∈u(x)

y − u(x0) − u′(x0)(x − x0)

|x − x0|
= 0. (21)

Remark 60 It is easily seen that for a single valued function u (21) reduces
exactly to the Fréchet differentiability of u at x0. The fact that for almost every
point x ∈ Dom(u) there is a matrix u′(x) satisfying (21) follows from a combi-
nation of Theorem 59 and Proposition 25. The standard proof of Theorem 59
uses the Cayley transformation and Rademacher theorem. We will provide later
an alternative proof for the single valued case which uses the Radó-Reichelderfer
property of monotone mappings.

2.2.2 Nonsmooth case

In the following section we introduce a characterization of monotone mappings
on reflexive Banach spaces using the generalized differentiation. The methods
were developed in the paper [10] for a finite dimensional case and here adapted
for reflexive Banach spaces.

Let Ω be an open convex subset of a Banach space X we denote for arbitrary
F : Ω → X∗, x, h, ξ ∈ X

d〈F ; ξ〉(x, h) := lim inf
t→0+

〈
F (x + th) − Fx

t
; ξ

〉

d〈F ; ξ〉(x, h) := lim sup
t→0+

〈
F (x + th) − Fx

t
; ξ

〉
.
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Analogously for a smooth Banach space X, an open convex set Ω ⊂ X and
F : Ω → X we define

d〈j(ξ); F 〉(x, h) := lim inf
t→0+

〈
j(ξ);

F (x + th) − Fx

t

〉

d〈j(ξ); F 〉(x, h) := lim sup
t→0+

〈
j(ξ);

F (x + th) − Fx

t

〉
,

where j : X → X∗ is the duality mapping.

Definition 61 We say that a closed subset ∂∗F (x) of L(X, X∗) is the gener-
alized differential of the mapping F : Ω → X∗ at the point x ∈ Ω if for each
ξ ∈ X, h ∈ X

d〈F ; ξ〉(x, h) ≤ sup
M∈∂∗F (x)

〈Mh; ξ〉. (22)

Remark 62 Similarly for a smooth Banach space X we introduce the generalized
differential as a closed subset ∂∗F (x) of L(X) satisfying

d〈j(ξ); F 〉(x, h) ≤ sup
M∈∂∗F (x)

〈j(ξ); Mh〉. (23)

Remark 63 It is evident that the inequality (22) is equivalent to the inequality

d〈F ; ξ〉(x, h) ≥ inf
M∈∂∗F (x)

〈Mh; ξ〉. (24)

It is suitable to remark that for F : Ω → X∗ resp. F : Ω → X the whole space
L(X, X∗) resp. L(X) is a generalized differential ∂∗F (x) resp. ∂∗F (x), but it
can not provide any other information about properties of F . It is also obvious
that if a set A is a generalized differential and B ⊃ A then B is a generalized
differential as well.

Definition 64 We say that the generalized differential ∂∗F (x) is regular if for
each ξ, h ∈ X

d〈F ; ξ〉(x, h) = sup
M∈∂∗F (x)

〈Mh; ξ〉 (25)

or equivalently
d〈F ; ξ〉(x, h) = inf

M∈∂∗F (x)
〈Mh; ξ〉. (26)

Remark 65 The reformulation of the definition 64 for ∂∗F (x) is straightforward.

Theorem 66 (Version of nonsmooth mean value theorem) Let X be a reflexive
Banach space and let F : Ω ⊂ X → X∗ be a mapping which is continuous on
lines and admits a generalized differential. Then for every a, b ∈ Ω

F (b) − F (a) ∈ co{∂∗F [a; b](b − a)}, (27)

where [a; b] denotes the line segment between a, b.
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Proof. Let ξ ∈ X be fixed, consider the function g : [0, 1] → R given by the
formula

g(t) := 〈F (a + t(b − a)) − F (a) + t(F (a) − F (b)); ξ〉.
Since g(0) = g(1) = 0 and g is continuous, there is a point of an extreme t0 ∈
(0, 1). Suppose that t0 is the point of a minimum, since the case of a maximum
can be investigated analogously. We denote

dg(t0, α) := lim inf
t→t0

g(t0 + αt) − g(t0)

t
.

It is easy to compute

dg(t0, α) = d〈F (a + t0(b − a)); ξ〉(t0, α(b − a)) + α〈F (b) − F (a); ξ〉.

Hence for every α ∈ R we have

d〈F (a + t0(b − a)); ξ〉(t0, α(b − a)) ≥ α〈F (a) − F (b); ξ〉.

If we take α := ±1 we get

−d〈F (a+t0(b−a)); ξ〉(t0, a−b) ≤ 〈F (b)−F (a); ξ〉 ≤ d〈F (a+t0(b−a)); ξ〉(t0, b−a).

Thus (22) gives

inf
M∈∂∗F (a+t0(b−a))

〈M(b − a); ξ〉 ≤ 〈F (b) − F (a); ξ〉 ≤ sup
M∈∂∗F (a+t0(b−a))

〈M(b − a); ξ〉,

which gives

〈F (b) − F (a); ξ〉 ∈ 〈co{∂∗F (a + t0(b − a))(b − a)}; ξ〉,

consequently
〈F (b) − F (a); ξ〉 ∈ 〈co{∂∗F [a; b](b − a)}; ξ〉, (28)

for all ξ ∈ X.
Suppose that (27) is not true. Since X is reflexive, the set co{∂∗F [a; b](b−a)}

is convex and closed and the singleton F (b) − F (a) is compact, geometric form
of Hahn-Banach theorem enables to find z ∈ X and ε > 0 such that

〈F (b) − F (a); z〉 − ε > sup
ξ∗∈co{∂∗F [a;b](b−a)}

〈ξ∗; z〉,

thus
〈F (b) − F (a); z〉 > sup{〈co{∂∗F [a; b]}(b − a); z〉}.

This contradicts (28). �
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Remark 67 Theorem 66 can be modified as: let F : Ω → X be continuous on
lines where X is a smooth and reflexive Banach space and suppose that there is
a generalized differential ∂∗F (x) for all x ∈ Ω. Then for all [a; b] ⊂ Ω

F (b) − F (a) ∈ co{∂∗F [a; b](b − a)}.

The proof is only imitating of the scenario of the proof of Theorem 66. Let us
note only the main changes. Instead of the function g from the proof of Theorem
66 we work with the function

h(t) := 〈j(ξ); F (a + t(b − a)) − F (a) + t(F (a) − F (b))〉.

Then the proof goes in the same way. Hahn-Banach theorem is used for the
existence of a separating functional ξ∗ ∈ X∗ and then we realize that since X is
reflexive there is a point ξ ∈ X such that j(ξ) = ξ∗.

Theorem 68 Let X be a reflexive Banach space and let F : Ω → X∗ be a
mapping continuous on lines which admits a generalized differential ∂∗F (x) for
every x ∈ Ω and assume that for each x ∈ Ω all the (linear) operators M ∈ ∂∗F (x)
are monotone. Then F is monotone.

Proof. Choose arbitrary x, h ∈ X, by Theorem 66 we have

F (x + h) − F (x) ∈ co{∂∗F [x; x + h]h},

thus
〈F (x + h) − F (x)); h〉 ∈ 〈co{∂∗F [x; x + h]h}; h〉.

Thus there exists z ∈ [x, x + h] and N ∈ co∂∗F (z), such that

〈F (x + h) − F (x); h〉 = 〈Nh; h〉 ≥ inf
M∈co∂∗F (z)

〈Mh; h〉 = inf
M∈∂∗F (z)

〈Mh; h〉 ≥ 0.

Let us only comment the last equality. Since the function M �→ 〈Mh; h〉 is a
continuous linear functional it is sufficient to realize that for a continuous concave
function g the relation

inf
A

g = inf
coA

g = inf
coA

= inf
coA

g

holds, but the second equality follows from the continuity, the third one is a
consequence of a well known property of the convex hull coA = coA and the
first one is easily obtained by the concavity of g. Thus the monotonicity of F is
proved. �

Remark 69 We again only note that it is possible to modify the previous result:
Let X be a smooth and reflexive Banach space and let F : Ω → X be a mapping
continuous on lines which admits a generalized differential ∂∗F (x) for every x ∈ Ω
and suppose that for each x ∈ Ω (linear) operators M ∈ ∂∗F (x) are accretive.
Then F is accretive. The proof is a straightforward modification of the proof of
Theorem 68 where the version of mean value theorem from Remark 67 is used.
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Theorem 70 Let Ω be an open convex subset of a Banach space X and let F :
Ω → X∗ be a monotone mapping which admits a regular generalized differential
∂∗F (x) for every x ∈ Ω. Then each M ∈ ∂∗F (x) is a monotone linear mapping
for every x ∈ Ω.

Proof. Suppose that there are points x ∈ Ω, ξ ∈ X and an operator M ∈ ∂∗F (x)
such that

〈Mξ; ξ〉 < 0.

The regularity of ∂∗F (x) gives

d〈F ; ξ〉(x, ξ) = inf
M∈∂∗F (x)

〈Mξ; ξ〉 < 0.

Thus for a suitable positive t we have

〈F (x + tξ) − F (x); ξ〉 < 0.

We have a contradiction with the assumption that F is monotone. �

Remark 71 Let us only note that the modification for accretive operators is
easy and can be omitted.

2.2.3 Relation to functions of bounded variation

Theorem 72 (see [1]) Let u : Dom(u) → 2R
n

be a monotone multi-mapping and
let Ω ⊂ intDom(u) be a measurable set. Then u, understood as an element of
L∞(Ω; Rn), is a mapping of the class BV (Ω; Rn). Moreover∫

Ω

d|Du| ≤ C[diamΩ + osc(u, Ω)]n, (29)

where the constant C = C(n) depends only on the dimension n.

Theorem 73 Let u : Ω → Rn be a continuous monotone function. Then the
L1-approximate differential maps Ω into positive-semidefinite n × n matrices.

Proof. Since a monotone function has the bounded variation by Theorem 29,
we have by Theorem 6 that u is a.e. L1-approximate differentiable and thus the
mapping Dapu is defined almost everywhere in Ω.
Pick a point x ∈ Du and denote L := Dapu(x). Consider the set

Z := {z ∈ B(0, 1); 〈Lz; z〉 < 0}.

By the monotonicity of u and by the continuity, which guarantees u = ũ in Ω,
we obtain

0 ≤ 〈u(x + rh) − u(x); rh〉,
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we divide by r2, integrate, use Remark 7 and pass to the limit as r tends to 0.

0 ≤
∫

Z

〈
u(x + rh) − u(x)

r
; h

〉
dh →

∫
Z

〈Lh; h〉 dh < 0.

This is a contradiction. �

Remark 74 The function f : t �→ t−c(t), where c is the singular Cantor function
satisfies f(0) = f(1) = 0, f is increasing on the interval (1/3; 2/3), the L1-
approximate differential Dapf is positive almost everywhere but the function f
is not increasing. This demonstrates that the reverse implication in Theorem 73
does not hold.

Theorem 75 Let u : Dom(u) → Rn be a monotone function and let B0 ⊂
intDom(u) be a ball. Then there are constants C = C(u, n, B0) and C̃ = C̃(u, n, B0)
such that for any ball B ⊂ B0∫

B

−d|Du| ≤ Cosc(u, B)

diamB
≤ C̃

diamB
. (30)

Proof. Let u be a given monotone function and B ⊂ B0 a ball, let denote

δ := diamB, λ := osc(u, B).

Choose a point x0 ∈ B, consider the change of coordinates δx′ − x0 = x and
denote as B′ the set of all points x′ corresponding to all points x ∈ B. We define
the monotone function v(x′) := u(x)

λ
. Now we have∫

B

|Du|(dx) =
λ

δ

∫
B

|Dv|(dx) =
λ

δ

∫
B′

δn|Dv|(dx′) ≤

C ′λδn−1(osc(v, B′) + diamB′) = C ′′osc(u, B)(diamB)n−1,

where we have used the estimate (29). The second inequality in (30) easily fol-
lows, since osc(u, B) ≤ osc(u, B0). This concludes the proof. �

The previous theorem asserts a type of Morrey estimate for the derivative of
a monotone function. Suppose that Du is representable by a locally integrable
function f , then the inequality (30) can be read as f ∈ M1,n−1(B0; R

n×n). The
Morrey spaces of functions have broad applications in the theory of the regularity
of weak solutions of partial differential equations, see [13] for the more complete
definition and basic facts about Morrey spaces. In our case we have in fact proved
the following corollary:
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Corollary 76 Let u : Dom(u) → Rn be a monotone mapping and let B0 ⊂⊂
intDom(u) be a ball. Then the derivative Du of the mapping u belongs to the
space of measures

M1,n−1
∗ (B0; R

n×n) :=

{
τ ∈ M(B0; R

n×n); sup
B(x,ρ)⊂B0

1

ρn−1

∫
B(x,ρ)

d|τ | < ∞
}

.

Proof. The corollary follows immediately from Theorem 75. �

Theorem 77 Let Ω ⊂ R
n be an open convex set. There exists a constant C,

depending only on Ω such that

osc(u, B(x0, r))

r
≤ C

∫
B(x0,2r)

−d|Du| (31)

for every monotone function u : Dom(u) → R
n, Ω ⊂ intDom(u) and every ball

B(x0, r) ⊂ B(x0, 2r) ⊂ Ω.

Proof. We abbreviate B1 := B(x0, r) and B2 := B(x0, 2r) and denote d :=
osc(u, B1).

The set u(B1) can be covered by a finite family B consisting of N = N(n)
balls of the diameter 2ρ := 2

5
d. We can find a ball B := B(z, ρ) ∈ B such that

|B1 ∩ {u ∈ B}| ≥ |B1|
N

. (32)

We denote E := B1 ∩ {u ∈ B}. There are two points y, ỹ ∈ u(B1) such that
|y − ỹ| > 4ρ. We can suppose that |y − z| ≥ 2ρ (at least one of the points y, ỹ
satisfies this). Let x ∈ B1 be such a point such that u(x) = y. Consider the cone

U := {y′; 〈y′ − y; z − y〉 ≤
√

2

2
|y − y′||y − z|}.

We define the set

E ′ := B2 ∩
{

x′; 〈y − z; x′ − x〉 ≥
√

2

2
|x′ − x||y − z|

}
. (33)

Take a point x′ ∈ E ′ and set y′ = u(x′). We have

〈y − z; x′ − x〉 ≥
√

2

2
|x′ − x||y − z|. (34)

Since u is monotone we have

〈y′ − y; x′ − x〉 = 〈u(x′) − u(x); x′ − x〉 ≥ 0, (35)
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Define

a :=
x − x′

|x − x′| ,

b :=
y − z

|y − z|
and

c :=
y − y′

|y − y′| .

Suppose that

〈c;−b〉 >

√
2

2
.

Since by (34)

〈b; a〉 ≥
√

2

2

we have √
2 < 〈b; a − c〉 ≤ |a − c|.

Taking the squares and using |a| = |c| = 1 we have

〈a; c〉 < 0.

This contradicts (35). Thus we have

〈z − y; y′ − y〉 ≤
√

2

2
|z − y||y′ − y|. (36)

The inequality (36) means that y′ = u(x′) ∈ U consequently u(E ′) ⊂ U.
We have that B is the ball of radius ρ which is contained in the cone Rn \ U.

The center z lies on the axis of the the cone R
n \ U. For each y′′ ∈ ∂U which is

closest to the point z we have

|z − y′′|2 = |z − y|2 − |y′′ − y|2

and

|z−y′′|2 = |z−y|2−2〈z−y; y′′−y〉+|y′′−y|2 = |z−y|2+|y′′−y|2−
√

2|z−y||y′′−y|.

Hence we conclude

|y′′ − y|2 =
1

2
|z − y|2.

Thus
|z − y′′|2 ≥ 2ρ2.

By triangle inequality
dist(B, U) ≥ ρ(

√
2 − 1)
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thus for x ∈ E and x′ ∈ E ′ we have

|u(x) − u(x′)| ≥ ρ(
√

2 − 1). (37)

The relations (32) and (33) imply the existence of a constant α = α(n) depending
only on the dimension n such that

α|E| ≥ |B2| (38)

and
α|E ′| ≥ |B2|. (39)

Using the estimates (38), (39) and (37) we have

d = 5ρ ≤ 5√
2 − 1

1

|E||E ′|

∫
E

∫
E′

dist(U, B) dxdx′

≤ 5√
2 − 1

1

|E||E ′|

∫
E

∫
E′
|u(x) − u(x′)| dxdx′

≤ k

|B2|2
∫

B2

∫
B2

|u(x) − u(x′)| dx dx′. (40)

The comparability conditions (38) and (39) give that the constant k depends only
on the dimension.

The right hand side of (40) can be estimated using the triangle inequality and
the Poincaré inequality (Theorem 10) as

k

|B2|2
∫

B2

∫
B2

|u(x) − u(x′)| dx dx′

≤ k

|B2|2
∫

B2

(∫
B2

|u(x) − uB2| dx +

∫
B2

|u(x′) − uB2 | dx

)
dx′

≤ k

|B2|

∫
B2

(
γr

∫
B2

−d|Du| + |u(x′) − uB2|
)

dx′

≤ 2kγr

∫
B2

−d|Du|.

The proof is finished. �

Definition 78 Let Ω ⊂ Rn be an open set and let u : Ω → Rd be a mapping.
We say that u satisfies the weak Radó-Reichelderfer condition, if there is a non-
negative Radon measure μ ∈ M+(Ω) depending only on the mapping u and the
set Ω such that for every balls B(a, r) ⊂ B(a, 2r) ⊂ Ω

osc(u, B(a, r))

r
≤

∫
B(a,2r)

− dμ. (41)

We will say that u satisfies the weak Radó-Reichelderfer property with the weight
μ ∈ M+(Ω). We use the notation u ∈ RR1

∗(Ω; Rd).
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Theorem 77 implies easily the following corollary.

Corollary 79 Let u : Dom(u) → Rn be a given monotone function and let
Ω ⊂ intDom(u). Then u ∈ RR1

∗(Ω; Rn).

Proof. Corollary is an easy reformulation of Theorem 77. �

The following proposition follows easily from results from the paper [18].

Proposition 80 Let Ω ⊂ Rn be an open set. Let u : Ω → Rd be a mapping of
class RR1

∗(Ω; Rd). Then u is a mapping of the class BV (Ω; Rd).

Remark 81 Further details about the class RR1
∗ can be found in the paper [6].

Let notice that Proposition 80 does not provide an alternative proof of Theorem
72 since in the proof of Theorem 77 there was used Poincaré inequality holding
for mappings of the class BV.

The following propositions yield easy facts about the mappings resp. the
measures of the class RR1

∗ resp M1,n−1
∗ . We formulate them in the not too general

form.

Proposition 82 Let u : Dom(u) → Rn be a mapping, let B0 ⊂ intDom(u) be a
ball and let q : R

n → R
n be a continuously differentiable and Lipschitz continuous

mapping. If the mapping u is of the class RR1
∗(B0; R

n) then the mapping q ◦ u is
of the class RR1

∗(B0; R
n) too.

Proof. Let B(x, ρ) ⊂ B0 be an arbitrary ball. Let u satisfy the weak Radó-
Reichelderfer condition (41) with a weight μ and let q : R

n → R
n be a Lipschitz

continuous mapping with a Lipschitz constant �q. It is

osc(q ◦ u, B(x, ρ)

ρ
≤ �q

osc(u, B(x, ρ)

ρ
≤

∫
B(x,2ρ)

−dμq,

where μq := �qμ. �

Proposition 83 Let u : Dom(u) → R
n be a mapping, let B0 ⊂ intDom(u)

be a ball and let q : Rn → Rn be a linear mapping. If Du is of the class
M1,n−1

∗ (B0; R
n×n then D(q ◦ u) is of the class M1,n−1

∗ (B0; R
n×n) as well.

Proof. Denote again the Lipschitz constant of q by �q. Let Du belong to the
space M1,n−1

∗ (B0, R
n×n). The general chain rule for BV functions (see [3]) implies

|D(q ◦ u)| ≤ �q|Du|. Hence∫
B(x,ρ)

−d|D(q ◦ u)| ≤ �q

∫
B(x,ρ)

−d|Du| ≤ �qC

ρ
,
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which gives the result. �

We realize in the next proposition that the mappings of the class RR1
∗ have

very good differentiability properties. The following observation slightly gener-
alizes the result which can be found in [15]. We join the proof for the sake of
completeness.

Proposition 84 Let f ∈ RR1
∗(Ω; Rd). Then f is Fréchet differentiable almost

everywhere.

Proof. Proposition 80 implies that f is of the class BV thus its distributional
derivative is a Radon matrix valued measure. We can apply the Lebesgue-Radon-
Nikodým theorem and write

Df = Daf + Dsf = gLn + Dsf,

where Dsf is the singular part of the measure Df with respect to the Lebesgue
measure, Daf is the absolutely continuous part of Df with respect to the Lebesgue
measure and g ∈ L1(Ω; Rd×n) is the Radon-Nikodým derivative of the measure
Daf with respect to the Lebesgue measure. It is known (see [23]) that for
Ln- almost all points x ∈ Ω

g(x) = lim
r→0+

Daf(B(x, r))

|B(x, r)| . (42)

Let μ ∈ M+(Ω) be a weight from the definition of the Radó-Reichelderfer condi-
tion (41). We write again

μ = μa + μs = θLn + μs,

where θ ∈ L1(Ω) and μs resp. μa is the singular part resp. the absolutely
continuous part with respect to Ln.

Let choose one fixed representative for g. We will prove that f ′(z) = g(z) at
such points z ∈ Ω which satisfy:
i) z is a Lebesgue point of f,
ii) z is a Lebesgue point of g,
iii) z is a Lebesgue point of θ,
iv) θ(z) < ∞,
v) Dsf satisfies the condition (15) from Theorem 11 in the point z,
vi) μs satisfies the condition (15) from Theorem 11 in the point z
vii) the measure Daf satisfies (42) in the point z.

Theorem 11 and Remark 3 imply that the set of such points z which fulfill
the conditions i)-vii) has the full measure in Ω.

35



We can suppose that f(z) = 0, g(z) = 0 otherwise we pass to the function

x �→ f(x) − f(z) − g(z)(x − z).

Choose ε ∈ (0; 1/4) and find δ > 0 such that

0 < ρ ≤ δ ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
B(z,ρ)

− |θ(z) − θ(x)| dx ≤ εn

∫
B(z,ρ)

− d|Dsf | ≤ εn+1

∣∣∣∣ |Daf |(B(z, ρ))

|B(z, ρ)|

∣∣∣∣ ≤ εn+1

(43)

Let y ∈ B(z, δ/2) and denote r := 2|y − z|. Thus we have B(y, 2rε) ⊂ B(z, r).
We estimate

|f(y)| ≤
∣∣∣∣f(y) −

∫
B(y,εr)

−f(x) dx

∣∣∣∣ +

∫
B(y,εr)

−|f(x)| dx =: T1 + T2.

The first term can be estimated using the Radó-Reichelderfer condition and
the assumption iii) and vi) as

T1 ≤ osc(f, B(y, εr)) ≤ εr

∫
B(y,2εr)

−dμ

= εr

(∫
B(y,2εr)

−dμa +

∫
B(y,2εr)

−dμs

)

= εr

(∫
B(y,2εr)

−θ dx +

∫
B(y,2εr)

− dμs

)

≤ εr

(∫
B(y,2εr)

−|θ(z) − θ| dx + θ(z) +

∫
B(y,2εr)

−dμs

)

≤ εr

(
θ(z) + 2−nε−nr−n

∫
B(z,r)

|θ(z) − θ| dx + 2−nε−nr−n

∫
B(z,r)

dμs

)
≤ εr(θ(z) + 2−nε−nεn + 2−nε−nεn)

≤ εr(θ(z) + 1).

The term T2 is treated with the help of Theorem 9 applied on the point ζ := z
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and u := |f |. Thus Bt = B(z, tr) and |Du| ≤ |Df | (see [3]). We have

T2 =

∣∣∣∣
∫

B(y,εr)

−f(x) dx

∣∣∣∣ ≤
∫

B(y,εr)

−|f(x)| dx ≤ ε−n

∫
B(z,r)

−|f(x)| dx

= ε−n

∣∣∣∣
∫

B(z,r)

−|f(x)| dx− |f(z)|
∣∣∣∣ ≤ 2r

εn

∫ 1

0

|Df |(Bt)

|Bt|
dt

≤ 2r

εn

∫ 1

0

(
|Daf |(Bt) + |Dsf |(Bt)

|Bt|

)
dt ≤ 4rε,

where we have used the last two inequalities from (43). Thus we have proved
that

|f(y)| ≤ Mεr = 2Mε|y − z|,
where the constant M does not depend on ε and y. The Fréchet differentiability
of the mapping f at the point z is proved. �

Corollary 85 Let u : Dom(u) → Rn be a monotone mapping. Let Ω ⊂
intDom(u) be an open set. Then u is Fréchet differentiable at almost every point
of Ω.

Proof. The corollary follows immediately from Corollary 79 and Proposition 84.
�

3 Differences of monotone mappings

3.1 Properties of DM mappings

Definition 86 A multi-mapping A : Ω ⊂ X → 2X∗
is called DM multi- map-

ping if there exist monotone multi-mappings A↑, A↓ : Ω → 2X∗
such that for all

x ∈ Ω it is
Ax ⊂ A↑x − A↓x.

Single-valued DM multi-mappings are called DM mappings. We will also say that
the mapping A has the DM property.

Remark 87 We will work mainly with single-valued DM mappings. It is an
easy observation that the class of DM mappings is the smallest space generated
by the cone of monotone mappings.

Proposition 88 Every Lipschitz mapping from a Hilbert space to itself is a DM
mapping.
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Proof. Let α be the Lipschitz constant of A. We use the Schwartz inequality to
obtain

〈(αI − A)x − (αI − A)y; x− y〉 = α‖x − y‖2 − ‖Ax − Ay‖‖x− y‖

≥ α‖x − y‖2 − α‖x − y‖2 = 0.

Finally we put A = αI − (αI − A). �

The situation in general Banach spaces is more complicated and it has some
interesting connections to its geometry. The analogous conclusion for Lipschitz
maps holds only in the accretive setting:

Proposition 89 Let A : X → X be a Lipschitz mapping from a Banach space
X to itself. Then A can be represented as a difference of two fully-accretive
mappings.

Proof. Let α be the Lipschitz constant of A. We can write A = αI − (αI − A).
We need to show the full accretivity of αI − A. Let x, y ∈ X , f ∈ j(x − y) be
chosen, we have

〈f ; (αI − A)x − (αI − A)y〉 = α〈f ; x− y〉 − 〈f ; Ax− Ay〉 ≥

α‖x − y‖2 − ‖Ax − Ay‖‖f‖∗ ≥ α‖x − y‖2 − α‖x − y‖‖f‖∗ ≥ 0.

This concludes the the proof. �

Corollaries 76 and 79 imply two necessary conditions for the DM property of
a mapping u.

Proposition 90 Let u : Dom(u) → Rn be a DM mapping and let
B0 ⊂ intDom(u) be a ball. Then the derivative Du belongs to the space of mea-
sures

M1,n−1
∗ (B0; R

n×n)

and the function u itself belongs to the space RR1
∗(B0; R

n).

Proof. Let u = u↑ − u↓, where u↓ and u↑ are monotone mappings. The ball B0

lies in the intersection Dom(u↑) ∩ Dom(u↓). Let B(x, ρ) ⊂ B0 be an arbitrary
ball.

At first we prove the Morrey estimate. We can write for the ball B(x, ρ)∫
B(x,ρ)

−d|Du| =
1

|B(x, ρ)| |Du|(B(x, ρ) =
1

|B(x, ρ)| |Du↑ − Du↓|(B(x, ρ))
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≤ 1

|B(x, ρ)| |Du↑|(B(x, ρ) +
1

|B(x, ρ)| |Du↓|(B(x, ρ) ≤ C

ρ
,

where we have used the elementary property of variation of vector measures
|g1 − g2| ≤ |g1| + |g2| and Theorem 75.

The proof of the Radó-Reichelderfer estimate is easy too. Let denote the
non-negative Radon measures from Corollary 79 corresponding to the mappings
u↑ resp. u↓ by μ↑ resp. μ↓. We have by using Corollary 79

osc(u, B(x, ρ))

ρ
=

osc(u↑ − u↓, B(x, ρ)

ρ
≤ osc(u↑, B(x, ρ))

ρ
+

osc(u↓, B(x, ρ))

ρ

≤
∫

B(x,2ρ)

−dμ↑ +

∫
B(x,2ρ)

−dμ↓ =

∫
B(x,2ρ)

−dμ,

where the non-negative Radon measure μ is defined by μ := μ↑ + μ↓. This con-
cludes the proof. �

Later we will demonstrate that the conditions from Proposition 90 are not
sufficient for the DM property.

Corollary 91 Let u : Dom(u) → Rn be a DM mapping. Let Ω ⊂ intDom(u)
be an open set. Then u is Fréchet differentiable at almost every point of Ω.

Proof. The corollary follows immediately from Corollary 85. �

Proposition 92 A mapping A : X → X∗ is DM if and only if there exists a
monotone mapping kA : X → X∗ such that for each x, y ∈ X

|〈Ax − Ay, x − y〉| ≤ 〈kAx − kAy, x − y〉.

We will say that kA is a (monotone) control mapping for DM mapping A.

Proof. Let A be DM, we define kA := A↑ + A↓. For this kA we have by the
monotonicity of A↓

〈Ax−Ay; x− y〉 = 〈A↑x−A↑y; x− y〉− 〈A↓x−A↓y; x− y〉 ≤ 〈kAx− kAy; x− y〉.

We apply the same for DM mapping −A use the monotonicity of A↑ and obtain
the control inequality

|〈Ax − Ay; x − y〉| ≤ 〈kAx − kAy; x − y〉.

Conversely, suppose the existence of a control mapping kA and define A↑ :=
kA, A↓ := kA − A. We need only to show the monotonicity of A↓. For arbitrary
x, y ∈ X we have

〈A↓x − A↓y; x− y〉 = 〈kAx − kAy; x − y〉 − 〈Ax − Ay; x − y〉 ≥

〈kAx − kAy; x− y〉 − |〈Ax − Ay; x − y〉| ≥ 0.

This concludes the proof. �
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Corollary 93 Let (An)n∈N be a sequence of single-valued DM mappings from
an open subset of a Banach space to its dual space and let kn be a monotone control
function for An. Assume that An → A and kn → k (pointwise convergence).
Then A is a DM mapping with the control function k.

Proof. We pass to the limit in the inequality

〈Anx − Any; x− y〉 ≤ 〈knx − kny; x− y〉.

�

Remark 94 Suppose that A is a DM mapping and k is a monotone mapping
such that k−A is monotone. Then k̃ := 2k−A has the property that both of the
mapping k̃ ±A are monotone. Thus if we have a monotone mapping k such that
at least one of the mappingf k ± A is monotone, then we can find a monotone
control mapping for A.

Definition 95 We say that the mapping A : Ω → X∗ is locally DM if for every
x0 ∈ Ω there is its neighborhood U(x0) such that the restriction
A|U(x0) : U(x0) → X∗ is DM.

Theorem 96 Let Ω ⊂ R
d be an open convex set and A : Ω → R

d be a locally
DM mapping. Then A is a DM mapping.

Proof. Let (Kn)n∈N and (Kn)n∈N be a nondecreasing sequences of compact convex
subsets of Ω such that

Ω =
⋃
n∈N

Kn =
⋃
n∈N

Kn,

K1 ⊂ K1 ⊂ K2 ⊂ K2 ⊂ . . .

and the distances dist(∂Kj , ∂Kj) and dist(∂Kj , ∂Kj+1) are strictly positive.
Consider the set K1, we find points x1

1, . . . , x
1
j(1) ∈ K1 such that

K1 ⊂
j(1)⋃
i=1

B

(
x1

i ,
1

4
r1
i

)

and A is DM as the mapping A : B(x1
i , r

1
i ) → R

d. Thus there is a monotone
mapping k1

i : B(x1
i , r

1
i ) → Rd, for i = 1, . . . , j(1) such that k1

i −A : B(x1
i , r

1
i ) → Rd

is a monotone mapping.
We define the sets B1

i := B(x1
i ,

3
4
r1
i )∩K1, where i = 1, . . . , j(1). Consider the

restrictions (k1
i )|B1

i
denoted again as k1

i . These mappings are bounded (see The-
orem 27) monotone mappings and they can be extended to monotone mappings
ki,1 : Rd → Rd by Lemma 28. We put

k1 :=

j(1)∑
i=1

ki,1.
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This mapping is a monotone mapping such that k1 − A is monotone on the set
K1. It is sufficient to realize that k1−A satisfies the monotonicity inequality (16)
for arbitrary two points which are closer than ε := 1

4
min{r1

i ; i = 1, . . . , j(1)}. But
this is easy: take x, y, |x− y| ≤ ε, there is a ball B(x1

i ,
1
4
r1
i ) which contains x and

thus y is contained in B(x1
i ,

1
2
r1
i ). We have the monotone mapping ki,1 with the

property that ki,1 − A is a monotone mapping on the set B(xi,
1
2
r1
i ). This gives

that k1 has the desired property too.
Now we construct the mapping k1 with the properties:

1) k1 : Rd → Rd is a monotone mapping
2) k1 − A is a monotone mapping on the set K2,
3) k1 = k1 on the set K1.

Assume for a moment that we have constructed such function k1. Then we
can by the induction construct a sequence (kn)n∈N such that:
1n) kn : Rd → Rd is a monotone mapping
2n) kn − A is a monotone mapping on the set Kn+1,
3n) kn = kn+1 on the set Kn+1.
Hence the limit limn→∞ kn =: k exists uniformly on compact subsets of Ω and
is a monotone function. Since k = kj on Ki for j ≥ i, we have that k − A is a
monotone mapping on the whole set Ω.

It remains to construct the function k1 :
we have the sets K1 ⊂ K1 ⊂ K2 ⊂ K2 and the mapping k1 : Rd → Rd which
is monotone and k1 − A is monotone on the set K1, we seek for a mapping
k1 with the properties 1-3. Consider the set K2 \ K1 and the mapping k1 − A.
This mapping is locally DM on this set and thus this set can be covered by a
finite number of open balls G1

1, . . . , G
1
m(1) such that there are monotone mappings

�1
1, . . . , �

1
m(1) with the property that �1

i + k1 − A is monotone on the set G1
i . We

can suppose that dist(G1
i , K

1) > ε0 > 0, i = 1, . . .m(1) since dist(∂K1, ∂K1) > 0
by the assumption.

We define the sets G1,i := G1
i ∩ (K2 \ K1). Let i ∈ {1, . . . , m(1)} be fixed.

Consider the function

�1,i(x) =

{
�1

i (x) − ci, x ∈ G1,i

0, x ∈ K1,

where the vector ci ∈ Rd is chosen such that the mapping

�1,i : K1 ∪ G1,i → R
d

is monotone.
Let justify the existence of such vector ci. This vector is chosen suitably if

and only if it satisfies

〈�1
i (x) − ci; x − z〉 ≥ 0, (x, z) ∈ G1,i × K1.
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Thus it suffices to take ci which solves the inequality

〈ci; x − z〉 ≤ −|�1
i (x)||x − z|, (x, z) ∈ G1,i × K1. (44)

Since the mapping �1
i is bounded on the sets G1,i and the sets K1, G1,i are

bounded, we have that the right hand side of (44) can be estimated from be-
low by some α < 0. Hahn Banach theorem (applied on the compact convex sets

K1 and G1
i ) enables to find di ∈ Rd and ε > 0 such that

〈di; x − z〉 ≤ −ε, (x, z) ∈ G1,i × K1.

A multiple −α
ε
di is the desired vector ci.

Let define the mappings ρ1,i : Rd → Rd as monotone extensions of �1,i : G1
i →

R
d (see Lemma 28). Put

ρ1 :=

m(1)∑
i=1

ρ1,i

and finally k1 := ρ1 + k1 is the desired mapping satisfying 1-3. �

Corollary 97 Let A : Rd → Rd be a locally Lipschitz mapping. Then A is a
DM mapping.

Proof. Proof is a direct combination of Theorem 96 and Proposition 88. �

Lemma 98 The mapping A : X → X∗ is DM if and only if there exists a mono-
tone mapping M : X → X∗ such that for each y, h ∈ X the inequality

ϕ(y, h, M ; r) ≥ ϕ(y, h, A; r)

is satisfied for r ∈ [0; 1]. The function ϕ was defined in Lemma 44.

Proof. Assume the existence of a mapping M. Define the mapping B := M −A.
We claim that B is monotone. By Lemma 44 it is sufficient to show that the
function ϕ(x, h, B; ·) is nondecreasing for each x, h ∈ X. We have for arbitrary
0 ≤ s < t ≤ 1

ϕ(x, h, B; t)−ϕ(x, h, B; s) = 〈M(x+th)−M(x+sh); h〉−〈A(x+th)−A(x+sh); h〉

= ϕ(x + sh, h, M ; t − s) − ϕ(x + sh, h, A; t− s) ≥ 0.

The proof of the reverse implication is similar. If A(x) = A↑(x) − A↓(x) for
every x ∈ X and A↑, A↓ are monotone we define the mapping M := A↑ + A↓.
Verifying of the inequality

ϕ(y, h, M ; r) ≥ ϕ(y, h, A; r),

42



where y, h ∈ X are arbitrary, is easy

〈M(y + rh) − M(y); h〉 = 〈A↑(y + rh) − A↑(y); h〉 + 〈A↓(y + rh) − A↓(y); h〉 ≥
〈A↑(y + rh) − A↑(y); h〉 − 〈A↓(y + rh) − A↓(y); h〉 = 〈A(y + rh) − A(y); h〉.

We have used that the term A↓(y + rh) − A↓(y); h〉 is non-negative. �

Theorem 99 Let D ⊂ X be an open convex set. Then the mapping T : D → X∗

is DM if and only if there is a monotone mapping A : D → X∗ such that for
every line segment L = [L0, L0 + L1]

1∨
0

T 

L ≤

1∨
0

A

L, (45)

where A

L(t) := 〈A(L0 + tL1); L1〉 and T 


L is defined analogously.

Proof. Lemma 44 implies that the function A

L is nondecreasing. We put B :=

A − T and show that B is monotone. Then it suffices to write T = A − (A − T )
for the proof of the DM property of T.

The monotonicity of B will be proved by showing that the function B

L is

nondecreasing. So let 0 ≤ t1 < t2 ≤ 1 be chosen, we have by the monotonicity of
A, the assumption (45) and the definition of the variation

B

L(t2) − B


L(t1) = A

L(t2) − A


L(t1) − (T 

L(t2) − T 


L(t1)) ≥
t2∨
t1

A

L −

t2∨
t1

T 

L ≥ 0.

Actually, we have used the relation (45) for the line segment [L0+t1L1; L0+t2L1].
This gives the monotonicity of B.

For the reverse implication we put A := T ↑ + T ↓, where T = T ↑ − T ↓ is
supposed to be DM. For arbitrary line segment L we have

1∨
0

T 

L =

1∨
0

(T ↑

L − T ↓


L ) ≤
1∨
0

T ↑

L +

1∨
0

T ↓

L =

1∨
0

(T ↑

L + T ↓


L ) =
1∨
0

A

L.

We have used that the functions T ↑

L , T ↓


L are nondecreasing. �

Remark 100 The similar result can be obtained for accretive mappings in
smooth Banach spaces, the proof is an easy modification of the previous one where
we use the fact that the duality mapping in smooth Banach space is single-valued.

Proposition 101 Let T : X → X be a mapping from a Hilbert space to itself.
Assume that there exists a monotone Gateaux differentiable mapping A : X → X
such that for each line segment L = [L0, L0 + L1]

lim sup
λ↘0

λ∨
0

(
t �→

〈
T (L0 + tL1) − T (L0)

λ
; L1

〉)
< 〈δA(L0)L1; L1〉. (46)

Then T is a DM mapping.
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Proof. We need to verify the inequality (45).
We have guaranteed the existence of a positive number λ0 such that for each

λ ≤ λ0

λ∨
0

(
t �→

〈
T (L0 + tL1) − T (L0)

λ
; L1

〉)
< 〈δA(L0)L1; L1〉.

Since A is Gateaux differentiable, we have

λ∨
0

(
t �→

〈
T (L0 + tL1) − T (L0)

λ
; L1

〉)
< lim

s↘0

〈
A(L0 + sL1) − A(L0)

s
; L1

〉
.

This gives the existence of a number s0 > 0 such that for λ ≤ min{s0, λ0}

λ∨
0

(
t �→

〈
T (L0 + tL1) − T (L0)

λ
; L1

〉)
≤

〈
A(L0 + λL1) − A(L0)

λ
; L1

〉
.

We multiply both sides by the positive number λ, we use that the function

A∗
L(t) = 〈A(L0 + tL1; L1〉

is nondecreasing and by a simple manipulation we get the inequality (45) for line
segments with the length bounded by min{λ0, s0}, but this is sufficient for the
proof that A−T is monotone at each point and thus it is monotone (see Lemma
46). �

3.2 UDM mappings

Definition 102 Let X, Y be Banach spaces, C ⊂ X be an open convex set.
We say that a mapping F : C → Y is the UDM mapping if there is a monotone
operator f : C → X∗ such that for every Q ∈ BL(Y,X∗) the mapping

Q ◦ F + f : C → X∗

is monotone. The monotone operator f is called the control mapping for F.

Remark 103 It is evident that the definition has a good sense for an arbitrary
set C not necessarily open and convex and we will sometime use it, but for
the differentiability properties the assumption of the openness is natural and
sometimes the convexity assumption is also needed.

It is an easy observation that if |a| ≤ b and F is controlled by f then aF
is controlled by bf. Thus if we consider in Definition 102 the operators Q with
the norm bounded by some c > 0 we obtain an equivalent definition and also it
is obvious that the class of UDM mappings forms a linear space. Further, it is
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easy to see that if F : C ⊂ X → Y is an UDM mapping controlled by f and
L : Y → Z is a continuous affine mapping then L ◦ F : C → Z is an UDM
mapping controlled by lip(L)f. Finally notice that for the case Y = X∗ every
UDM mapping is a DM mapping. Indeed, we can write

F =
1

2
(f + F ) − 1

2
(f − F ).

Definition 104 Let Ω ⊂ X be an open convex subset of a Hilbert space X. Let
u : Ω → X be a mapping. We say that u is the δ-monotone mapping if there is
a number δ > 0 such that for all x, y ∈ Ω

〈u(x) − u(y); x− y〉 ≥ δ|u(x) − u(y)||x− y|. (47)

Remark 105 The class of the δ-monotone mappings is in detail studied in pa-
pers by L. Kovalev, see for instance [12].

Proposition 106 Every δ-monotone mapping is an UDM mapping. Conse-
quently each linear combination of δ-monotone mappings is an UDM mapping.

Proof. Let Q ∈ BL(X) be arbitrary. We use (47) to estimate

〈Q ◦ u(x) − Q ◦ u(y); x− y〉 ≤ |u(x) − u(y)||x− y| ≤
〈u

δ
(x) − u

δ
(y); x− y

〉
,

hence u/δ is a control mapping for u, consequently u is an UDM mapping. �

The following lemma will be useful.

Lemma 107 Let X, Y be Banach spaces and let x ∈ X and y ∈ Y be fixed. Then

|x|X |y|Y = sup{〈Qy; x〉; Q ∈ BL(Y,X∗)}.

Proof. We can suppose that |x|X = |y|Y = 1. Hahn-Banach theorem gives func-
tionals x∗ ∈ X∗, y∗ ∈ Y ∗ with the norms equal to one such that 〈x; x∗〉 = 〈y; y∗〉 =
1.

We define the operator Qx,yz := 〈y∗; z〉x∗. It is evident that ‖Q‖ ≤ 1. We
have

〈Qx,yy; x〉 = 〈y∗; y〉〈x∗; x〉 = 1.

This concludes the proof. �

Corollary 108 Let C ⊂ X be an open convex set and let F : C → Y be an
UDM mapping and f : C → X∗ be its control mapping. Then for each x1, x2 ∈ C
the estimate

|F (x1) − F (x2)|Y |x1 − x2|X ≤ 〈f(x1) − f(x2); x1 − x2〉 (48)

is satisfied. Moreover if F satisfies the inequality (48) then F is an UDM mapping
with the control mapping f. We will call the inequality (48) the control inequality.
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Proof. The corollary is an immediate consequence of Lemma 107. �

Remark 109 This corollary immediately implies that if the control mapping f
is Lipschitz continuous then F is Lipschitz continuous as well. The results of this
type for d.c. mappings are nontrivial, see [8]. Further, if the control mapping f
is continuous at a point x then the mapping F is continuous at the point x too.

Corollary 110 Let Fn : C ⊂ X → Y and fn : C → X∗, n ∈ N be sequences of
mappings. Assume that each Fn is an UDM mapping with a control mapping fn

and that for every x ∈ C it is Fn(x) → F (x), fn(x) → f(x) as n → ∞. Then F
is an UDM mapping with the control mapping f.

Proof. We pass directly to the limit in the inequality

|Fn(x) − Fn(y)|Y |x − y|X ≤ 〈fn(x) − fn(y); x− y〉.

�

Corollary 111 Let F : C ⊂ Rn → Rd, where C is an open convex set be an
UDM mapping. Then F ∈ RR1

∗(C; Rd). Consequently F ∈ BV (C; Rd)

Proof. The proof is an easy combination of Lemma 108 and the definition of the
class RR1

∗ (Definition 78). Let f be a control mapping for F. Let μ ∈ M+(C) be
a weight from the RR1

∗ property of the mapping f. Let B(x0, r) ⊂ B(x0, 2r) ⊂ C
be balls. We have for x, y ∈ B(x0, r)

|F (x) − F (y)|
r

≤ |f(x) − f(y)|
r

≤ osc(f, B(x0, r)

r
≤

∫
B(x0,2r)

−dμ,

we pass to the supremum for x, y ∈ B(x0, r). This implies the desired. The fact
that F ∈ BV (C; Rd) follows by the same way from the well known characteri-
zation of the functions of bounded variation using one-dimensional sections, see
[3]. Alternatively we can use Proposition 80. �

Proposition 112 Let F : (a; b) → Y, where Y is a Banach space, be a mapping.
Then F is an UDM mapping if and only if F has the locally finite variation.

Proof. Let F be an UDM mapping, f : (a; b) :→ R be its nondecreasing control
mapping and let a < c < d < b be arbitrary. By Hahn-Banach theorem and by
the control property we obtain

d∨
c

F = sup{
k∑

i=1

|F (ti) − F (ti−1)|; c = t0 < t1 < . . . tk = d}
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= sup{
k∑

i=1

sup{〈F (ti) − F (ti−1); y
∗〉; |y∗|Y ∗ ≤ 1}; c = t0 < t1 < . . . tk = d}

≤ sup{
k∑

i=1

|f(ti) − f(ti−1)|; c = t0 < t1 < . . . tk = d} =
d∨
c

f < ∞.

Conversely let F : (a; b) → Y be an arbitrary mapping of the locally finite
variation. Choose arbitrary c ∈ (a; b) and define

f(t) =

{ ∨t
c F, t ≥ c

−
∨c

t F, t < c.

If y∗ ∈ BY ∗ , a < s < t < b are given we have

〈F (t) − F (s); y∗〉 + f(t) − f(s) ≥ f(t) − f(s) − |F (t) − F (s)| ≥ 0.

Thus f is a control mapping for F . �

The following two theorems present simple results about compositions of UDM
mappings. We briefly recall one concept of linear functional analysis. Let V, X
be Banach spaces and let L ∈ L(V, X) be a bounded linear operator. We define
the operator L∗ ∈ L(X∗, V ∗) by he formula

〈L∗x∗; v〉 := 〈x∗; Lv〉, v ∈ V, x∗ ∈ X∗.

Then the operator L∗ is called Banach adjoint operator .
The operator L ∈ L(V, X) is called bounded from bellow if there is ε > 0 so

that for every v ∈ V it is
|Lv|X ≥ ε|v|V .

Theorem 113 Let V, X, Y be Banach spaces and let D ⊂ V and C ⊂ X be open
convex sets. Let L ∈ L(V, X) be a bounded linear operator which is bounded from
bellow and which fulfills LD ⊂ C. Let F : C → Y be an UDM mapping. Then
the composition F ◦ L : D → Y is an UDM mapping.

Proof. Let ε > 0 be a non-negative number from the boundedness from bellow
of the operator L, let f : C → X∗ be a monotone control mapping for F, and let
u, v ∈ D be arbitrary. We have

|F ◦ L(u) − F ◦ L(v)|Y |u − v|V ≤ 1

ε
|F ◦ L(u) − F ◦ L(v)|Y |Lu − Lv|X

≤ 1

ε
〈f ◦ L(u) − f ◦ L(v); Lu − Lv〉

=
1

ε
〈L∗ ◦ f ◦ L(u) − L∗ ◦ f ◦ L(v); u − v〉.
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Thus we see by Corollary 108 that

1

ε
L∗ ◦ f ◦ L : D → V ∗

is a monotone control mapping for F ◦ L. �

Theorem 114 Let X, Y, Z be Banach spaces, let C resp. D be an open convex
set of X resp. Y. Assume that F : C → D be an UDM mapping with a control
mapping fand let G : D → Z be Lipschitz continuous with a constant �G. Then
the composition mapping G ◦ F : C → Z is an UDM mapping with the control
mapping �Gf.

Proof. Let Q ∈ BL(Z,X∗) and x, y ∈ C be arbitrary. We use Corollary 108 and
the Lipschitz continuity of G to estimate

〈Q ◦ G ◦ F (x) − Q ◦ G ◦ F (y); x− y〉 ≤ �G|F (x) − F (y)|Y |x − y|X
≤ 〈�Gf(x) − �Gf(y); x− y〉.

Thus �Gf is a control mapping for G ◦F and hence G ◦F is an UDM mapping.�

It can be suitable to slightly generalize Definition 102.

Definition 115 Let X and Y be Banach spaces, let C be an open convex
subset of X and let Φ : C → 2Y be a multi-mapping. We say that Φ is the UDM
multi-mapping if there is a monotone multi operator φ : C → 2X∗

such that for
arbitrary two pairs (x, y), (x′, y′) ∈ Gr(Φ)

|y − y′|Y |x − x′|X ≤ sup{〈ξ − ξ′; x − x′〉; ξ ∈ φ(x), ξ′ ∈ φ(x′)} (49)

and for every x ∈ C we have

diamΦ(x) ≤ diamφ(x). (50)

The multi-operator φ is called the control multi-mapping and the inequality (49)
is again called the control inequality.

Remark 116 It is easily seen (Corollary 108) that for a single-valued UDM
mapping F with a single-valued monotone mapping f Definition 115 is equivalent
to Definition 102. The seemingly artificial condition (50) is evidently fulfilled in
the single valued case and ensures that Φ(x) is a singleton whenever φ(x) is a
singleton.

The following proposition we formulate for X = Rd, it is possible that it is
valid in higher generality too.
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Proposition 117 Let C be an open convex subset of Rd, let Y be a Banach

space and let F : C → 2Y be an UDM multi-mapping. Denote by L := Gr(F )
C×Y

(the relative closure in C × Y of the graph of F with respect to the euclidean
topology on C and the norm topology on Y ). Then L is the graph of an UDM
multi-mapping F : C → 2Y .

Proof. Let f : C → 2Rd
be a monotone control multi-mapping for F. Let f : C →

2R
d

be the restriction on the set C of a maximal monotone extension of f (see
Remark 19). We show that f is a control multi-mapping for F .

Choose arbitrary two distinct pairs (x, y), (x′, y′) ∈ Gr(F ) ⊂ C × Y. We can
find the sequences (xn, yn)n∈N, (x′

n, y′
n)n∈N ⊂ Gr(F ) ⊂ C × Y such that

|x − xn| → 0, |x′ − x′
n| → 0, |y − yn|Y → 0, |y′ − y′

n|Y → 0

as n → ∞. We can suppose xn �= x′
n, n ∈ N. Since F is the UDM multi-mapping

we have for n ∈ N

|yn − y′
n|Y ≤ sup{〈ξn − ξ′n; xn − x′

n〉; ξn ∈ f(xn), ξ′n ∈ f(x′
n)}

|xn − x′
n|

.

Let ε > 0 and n ∈ N be given. We can find ξ̃n ∈ f(xn) and ξ̃′n ∈ f(x′
n) such

that

|yn − y′
n| − ε ≤ 〈ξ̃n − ξ̃′n; xn − x′

n〉
|xn − x′

n|
. (51)

Since x, x′ ∈ intDom(f) we can suppose that xn, x′
n ∈ intDom(f). Theorem 27

implies that the sequences (ξ̃n)n∈N, (ξ̃′n)n∈N are bounded. Thus we can suppose
(after passing to a subsequence if necessary) that ξ̃n → ξ̃, ξ̃′n → ξ̃′ as n → ∞.
Proposition 26 gives that ξ̃ ∈ f(x) and ξ̃′ ∈ f(x′).

The limit passage in (51) gives

|y − y′|Y − ε ≤ 〈ξ̃ − ξ̃′; x − x′〉
|x − x′|

≤ sup{〈ξ − ξ′; x − x′〉; ξ ∈ f(x), ξ′ ∈ f(x′)}
|x − x′| .

Since ε was arbitrary the inequality (49) is proved.
The proof of condition (50) is easy too. Let (x, y), (x, y′) ∈ Gr(F ) be chosen

arbitrarily. We find the sequences (xn, yn)n∈N, (x′
n, y′

n)n∈N ⊂ Gr(F ) which con-
verge to (x, y), (x, y′) respectively. Distinguishing the cases xn = x′

n and xn �= x′
n

and using the conditions (49) and (50) for F and its control multi-mapping f we
infer

|yn − y′
n|Y ≤ sup{|ξn − ξ′n|; ξn ∈ f(xn), ξ′n ∈ f(x′

n)}.
For ε > 0 and n ∈ N we find ξ̃n ∈ f(xn) and ξ̃′n ∈ f(x′

n) such that

|yn − y′
n|Y − ε ≤ |ξ̃n − ξ̃′n|. (52)
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After passing to a subsequence we can again suppose that ξ̃n → ξ̃, ξ̃′n → ξ̃′ as
n → ∞ and ξ̃ ∈ f(x) and ξ̃′ ∈ f(x). Hence

|y − y′| − ε ≤ |ξ̃ − ξ̃′| ≤ diamf(x).

This concludes the proof. �

The following simple lemma may be sometime useful.

Lemma 118 Let C be an open convex subset of a Banach space X and let F :
C → Y be an UDM mapping with a monotone control mapping f : C → X∗.
Assume that f(C) is a separable subset of X∗. Then F (C) is a separable subset
of Y. In particular if X∗ is separable than F (C) is a separable subset of Y.

Proof. Let (x∗
n)n∈N be a countable dense subset of f(C) and let xn ∈ C be

such that x∗
n = f(xn), n ∈ N. Let yn = F (xn), n ∈ N. If y ∈ F (C) and ε > 0

are arbitrary we find x ∈ C such that y = F (x) and x∗
j ∈ f(C) such that

|f(x) − x∗
j |X ≤ ε. Corollary 108 implies

|y − yj|Y ≤ |f(x) − f(xj)|X = |f(x) − x∗
j |X ≤ ε.

Thus (yn)n∈N is a countable dense subset of F (C). �

Lemma 119 Let C ⊂ Rn be an open convex set and let F : C → Y, where Y is a
Banach space, be an UDM mapping. Let F : C → 2Y be a multi-mapping whose
graph is the relative closure of the graph of F in C × Y with respect to the norm
topology. Then F (C) is a separable subset of Y.

Proof. Since the graph Gr(F ) is a subset of C × F (C), which is separable by
Lemma 118, we have that Gr(F ) is separable. Let F be a mapping whose graph
is the closure of the graph of F. Thus Gr(F ) is separable too. Since F (C) is the
image under continuous projection of Gr(F ) it is separable as well. �

The inspiration for the following theorem is a well known fact that in Banach
spaces with the Radon-Nikodým property the curves with the locally finite vari-
ation are Fréchet differentiable almost everywhere. More precisely, a nontrivial
result says that a Banach space Y has the Radon-Nikodým property if and only
if every φ : (a; b) → Y such that

∨d
c φ < ∞ for all a < c < d < b is Fréchet

differentiable almost everywhere in (a; b). This characterization seems to be more
transparent than the classical definition of the Radon-Nikodým property, thus
we take it as the definition, see [14] and references therein.

Theorem 120 Let C ⊂ Rn be an open convex set and let Y be a Banach space
having the Radon-Nikodým property and suppose that there exists a countable
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total subset Q ⊂ BL(Y,Rn) (i.e. for every y �= 0 there is Q ∈ Q such that Qy �= 0.)
If F : C → Y is an UDM mapping, which is Borel measurable, then F is Fréchet
differentiable almost everywhere in C.

Proof. Let f : C → Rn be a monotone control mapping for F. We infer from
Mignot theorem 59 that the control mapping f has the Fréchet derivative f ′(c)
and that Q ◦ F has the Fréchet derivative AQ,c for almost every c ∈ C.

Let Ẽ := {ei; i = 1, . . . , n}, where ei is the i-th canonical vector and let
E ⊃ Ẽ be a countable dense subset of Sn−1 := {| · | = 1}. For v ∈ E denote by
Δv the set of all points c ∈ C such that the directional derivative δF (c; v) of F
at the point c in the direction v exists. We denote

Ac,v := δF (c; v), c ∈ Δv, v ∈ E.

Let Ev
i,j,k be the set of all such points of the form (x, t, s), where x ∈ C, t, s ∈

R, 1
i
≤ |t| ≤ 1

j
, 1

i
≤ |s| ≤ 1

j
,∣∣∣∣F (x + tv) − F (x)

t
− F (x + sv) − F (x)

s

∣∣∣∣
Y

≤ 1

k

and B(x, 1/j) ⊂ C. Since F : C → Y is a Borel measurable mapping the setEv
i,j,k

is a Borel subset of
Z := R

n × R × R.

Z is a separable complete metric space. Let π1 be the projection of Z on the first
component i.e.

π1 : (x, t, s) �→ x.

The set π1E
v
i,j,k is an analytic subset of R

n by Proposition 15, thus it is a mea-
surable set. Since

Δv =
∞⋂

k=1

∞⋃
j=1

∞⋂
i=j+1

π1E
v
i,j,k

we have that the set Δv is measurable.
Take an arbitrary point c ∈ C. Define the mappings Fc,v : (ac,v; bc,v) → Y by

the formula
Fc,v(t) := F (c + tv).

The functions
ϕc,v(t) := 〈f(c + tv); v〉

are defined and nondecreasing (see Lemma 44) on intervals (ac,v; bc,v).
Let ac,v < s < t < bc,v be arbitrary. Since |v| = 1, Corollary 108 implies

|Fc,v(t) − Fc,v(s)|Y |t − s| = |F (c + tv) − F (c + sv)|Y |t − s||v|
≤ 〈f(c + tv) − f(c + sv); (t− s)v〉
= (ϕc,v(t) − ϕc,v(s))(t − s).
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Thus Fc,v is an UDM mapping. Proposition 112, the Radon-Nikodým property
and Fubini theorem give that |C \ Δv| = 0 for all v ∈ E.

It is sufficient to prove that there is the Fréchet derivative F ′(a) for all a ∈ C
satisfying:
i) there exists the Fréchet derivative f ′(a),
ii) a ∈

⋂
v∈E Δv,

iii) there exists the Fréchet derivative (Q ◦ F )′(a) =: AQ,a for all Q ∈ Q.

Choose such a point a, it is not restrictive to assume that

a = f(a) = 0, F (a) = 0.

We identify an element Ac,v ∈ Y with the linear mapping

R � t �→ tAc,v.

At first we realize, that there is a unique bounded linear operator A ∈ L(Rn, Y )
such that

A(tv) = Aa,v(t), v ∈ Ẽ. (53)

Indeed, we consider the vectors Aa,v ∈ Y, v ∈ Ẽ and for Rn � h =
∑n

i=1 tiei

define

A(h) :=

n∑
i=1

tiAa,ei
.

Then A is the desired operator satisfying (53). We show that A is the desired
Fréchet derivative F ′(a). By the uniqueness of the Fréchet derivative we have

AQ,a(tv) = Q ◦ Aa,v(t), v ∈ E, Q ∈ Q. (54)

This together with (53) gives

AQ,a(tv) = Q ◦ A(tv), v ∈ Ẽ, Q ∈ Q

thus
AQ,a = Q ◦ A, Q ∈ Q. (55)

Now by (55) and by (54) we obtain for all v ∈ E, Q ∈ Q

Q ◦ A(tv) = AQ,a(tv) = Q ◦ Aa,v(t).

The totality of Q implies A(tv) = Aa,v(t) for v ∈ E.
Let ε > 0 be given. We can find a finite set K ⊂ E such that for every

v ∈ Sn−1 there is z̄ = z̄(v) ∈ K satisfying |v − z̄| < ε.
Let δ > 0 be such that

(|t| < δ & v ∈ K) ⇒ (|F (tv) − A(tv)|Y ≤ εt), (56)
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(|h| < δ) ⇒ (|f(h) − f ′(a)h| ≤ ε|h|). (57)

Choose arbitrary h ∈ Rn, |h| < δ. Consider z̄ := z̄(v), where v := h
|h| and put

z := |h|z̄, thus we have

|z| ≤ |h|, |z − h| ≤ |h||z̄ − v| ≤ ε|h|. (58)

Lemma 107 implies |F (h)−F (z)|Y ≤ |f(h)−f(z)|, using this fact we estimate

|F (h) − Ah|Y ≤ |F (h) − F (z)|Y + |F (z) − Ah|Y

≤ |f(h) − f(z)| + |F (z) − Az|Y + |Az − Ah|Y =: T1 + T2 + T3.

The term T3 can be estimated using (58) as T3 ≤ Mε|h|, where M is the norm
of A. The term T2 ≤ ε|h| thanks to (56). Finally the term T1 we treat as

T1 = |f(h) − f(z)| ≤ |f(h) − f ′(a)h| + |f ′(a)h − f ′(a)z| + |f ′(a)z − f(z)|.

This can be similarly estimated with help of (57), (58) and denoting the norm of
f ′(a) by L as

T1 ≤ ε|h| + ε|h|L + ε|h|.
Hence T1 + T2 + T3 ≤ Nε|h|, where N does not depend on ε and h, which
immediately gives A = F ′(a). �

Remark 121 The straightforward generalization enables to consider not neces-
sarily UDM mappings but only mappings which are locally UDM, i.e. for every
x ∈ C there is a ball U(x) such that F|U(x) is an UDM mapping.

Definition 122 A mapping A : X → 2X∗
, where X is a Banach space is called

strongly monotone if there is a constant β > 0 such that for every x1, x2 ∈
X, x∗

1 ∈ Ax1, x
∗
2 ∈ Ax2 the inequality

〈x∗
1 − x∗

2; x1 − x2〉 ≥ β‖x1 − x2‖2 (59)

is satisfied.

Definition 123 Let X be a Banach space. The function δX : [0; 2] → R, defined
by the formula

δX(ε) := inf

{
1 −

∥∥∥∥x + y

2

∥∥∥∥ ; ‖x‖ = ‖y‖ = 1, ‖x − y‖ = ε

}
,

is called the modulus of convexity of the Banach space X. We say that the modulus
of convexity is of the power type 2 if there is a constant b > 0 such that for every
ε ∈ [0; 2]

δX(ε) ≥ bε2.
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Proposition 124 (see [28], [5]) For a Banach space (X, | · |) the following con-
ditions are equivalent
(i) the duality mapping is strongly monotone,
(ii) the modulus of convexity is of the power type 2,
(iii) X satisfies the weak parallelogram law, i.e. there is c > 0 such that

2|x|2 + 2|y|2 ≥ |x + y|2 + c|x − y|2, x, y ∈ X.

In the following proposition it will be suitable to extend slightly Definition
102. We will admit the monotone control mapping f in that definition to be
multivalued, otherwise we would have to restrict ourselves only to smooth Banach
spaces.

Definition 125 We say that the mapping F : C → Y is the mapping of the
class UDM∗ if there is a monotone multi-operator f : C → 2X∗

such that for each
Q ∈ BL(Y,X∗) the multi-operator

Q ◦ F + f : C → 2X∗

is a monotone multi-operator.

Let us note that this definition is more restrictive than to say that F is a
single-valued operator which is an UDM multi-mapping in the sense of Definition
115.

Recall some basic facts from the linear functional analysis. Consider a con-
tinuous bilinear mapping

b : X × X → Y,

where X and Y are arbitrary Banach spaces. We associate with the continuous
bilinear mapping b the continuous linear mapping b̃ : X → L(X, Y ) defined by
the formula

b̃x(y) := b(x, y),

where x ∈ X, y ∈ Y. It can be easily seen that b̃ is Lipschitz continuous with the
constant ‖b‖ where ‖b‖ is defined as the smallest constant C such that

|b(x, y)|Y ≤ C|x|X |y|X.

The reverse correspondence between b̃ and b is obvious. For the details see [7].

Definition 126 Let (X, | · |X) be a Banach space. We say that a maximal
cyclically monotone multi-mapping k : X → 2X∗

is the equivalent duality mapping
if for each x ∈ X the number 〈kx; x〉 is independent on the choice of kx ∈ k(x)
and ‖x‖2

X := 〈kx; x〉 defines a norm which is equivalent to the original norm | · |X,
and ‖x‖2

X = ‖kx‖2
∗, where ‖ · ‖∗ is a canonical dual norm to the norm ‖ · ‖X .
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Theorem 127 For a Banach space X the following conditions are equivalent:
(i) X admits an equivalent norm such that the duality mapping associated with
this new norm is strongly monotone.
(i’) X admits an equivalent norm with the modulus of convexity of power type 2.
(ii) There exists a cyclically monotone multi-mapping k : X → 2X∗

, which is an
equivalent duality mapping, such that for every open convex set C ⊂ X and every
Banach space Y every Lipschitz continuous mapping F : C → Y is an UDM∗

mapping with the monotone control multi-mapping lip(F )k.
(iii) There exists a cyclically monotone multi-mapping k : X → 2X∗

which is an
equivalent duality mapping such that every continuous linear mapping b̃ : X → X∗

is an UDM∗ mapping with a control multi-mapping lip(b̃)k.
(iv) For every open convex set C ⊂ X and every Banach space Y, each Lipschitz
continuous mapping F : C → Y is an UDM∗ mapping with a control multi-
mapping kF , which is an equivalent duality mapping .
(v) For every Banach space Y and every continuous bilinear mapping b : X×X →
Y the associated linear mapping b̃ : X → L(X, Y ) is an UDM∗ mapping with a
monotone control multi-mapping kb, which is an equivalent duality mapping.

Proof.
(i)⇔(i’) follows from Proposition 124.
(i)⇒(ii). Let j : X → 2X∗

be the duality mapping and define k := j
β
, where β

is the number from the definition of strong monotonicity (Definition 122). Let
F : C → Y be a Lipschitz continuous mapping, denote L := lip(F ) and let
Q ∈ BL(Y,X∗) be arbitrary. We have for x, y ∈ C and kx ∈ k(x), ky ∈ k(y)

〈Q◦F (x)+Lkx−Q◦F (y)−Lky; x−y〉 ≥ −|F (x)−F (y)|Y |x−y|X +L|x−y|2X ≥ 0.

Thus Lk is the desired monotone control multi-mapping and the UDM∗ property
of F is proved. The maximality and the cyclical monotonicity of k follows from
Proposition 37.
(ii)⇒(iii). Using the properties of bilinear form b and its associated linear map-
ping b̃ and the basic properties of duality mapping the proof of the implication
(ii)⇒(iii) is easy.

The implications (ii)⇒(iv) and (iv)⇒(v) are trivial.
(iii)⇒(i). Let b : X × X → R be a continuous bilinear form, we know that the
associated linear mapping b̃ : X → X∗ is Lipschitz continuous. Let x, y ∈ X
be given, we can find �∗ ∈ SX∗ such that 〈�∗; x − y〉 = |x − y|X. Consider the
continuous symmetric bilinear form

bx,y(u, v) := 〈�∗; u〉〈�∗; v〉

and the corresponding linear mapping

〈b̃x,y(u); v〉 := bx,y(u, v).
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We have for all linear mappings b̃x,y, x, y ∈ X the existence of a multi-mapping
k with the postulated properties such that for all x, y ∈ X, kx ∈ k(x), ky ∈ k(y)

〈kx − ky; x − y〉 ≥ 〈b̃x,y(x) − b̃x,y(y); x− y〉
= 〈�∗; x〉〈�∗; x − y〉 − 〈�∗; y〉〈�∗; x − y〉
= |x − y|2X.

Thus defining the norm ‖x‖2
X := 〈kx; x〉 we obtain a norm which is equivalent to

the norm | · |X . Let l be the duality mapping associated to the norm ‖ · ‖X . We
have to realize that l = k. Since for every x ∈ X and every g ∈ k(x) we have
〈g; x〉 = ‖g‖2

∗ = ‖x‖2
X we conclude k ⊂ l. The maximality of k implies k = l.

Using the equivalence of the norms | · |X and ‖ · ‖X we see that the duality
mapping associated with the norm ‖ · ‖X satisfies the condition of the strong
monotonicity.
(v)⇒(i). Let Ξ ⊂ SX∗ be an arbitrary norming set i.e. for each x ∈ X

|x|X = sup{〈ξ; x〉; ξ ∈ Ξ}.

Consider the continuous bilinear mapping

b : X × X → �∞(Ξ × Ξ)

defined by the formula

b(x1, x2) := (〈ξ1; x1〉〈ξ2; x2〉)(ξ1,ξ2)∈Ξ×Ξ

and the corresponding linear mapping

b̃ : X → L(X, �∞(Ξ × Ξ)).

Thus we have b̃ : X → L(X, Y ) is a bounded linear operator, where

Y := �∞(Ξ × Ξ).

The assumption gives the existence of a multi-mapping kb such that kb is the
equivalent duality mapping, and kb satisfies

〈kb
x − kb

y; x − y〉 ≥ 〈Q ◦ b̃(x) − Q ◦ b̃(y); x− y〉,
for x, y ∈ X, kb

x ∈ kb(x), kb
y ∈ kb(y) and Q ∈ L(L(X, Y ), X∗), ‖Q‖ ≤ 1 (we use

the standard operator norm). We claim that kb is strongly monotone. Using
Lemma 107, the expression of the operator norm, the relation between b and b̃
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and the norming property of the set Ξ, we can write

〈kb
x − kb

y; x − y〉 ≥ |x − y|X||b̃x − b̃y||L(X,Y )

= |x − y|X sup
|h|X≤1

|b̃(x − y)h|Y

= |x − y|X sup
|h|X≤1

∣∣∣(〈ξ1; x − y〉〈ξ2; h〉)(ξ1,ξ2)∈Ξ×Ξ

∣∣∣
Y

= |x − y|X sup
|h|X≤1

( sup
(ξ1,ξ2)∈Ξ×Ξ

|〈ξ1; x − y〉〈ξ2; h〉|)

= |x − y|2X sup
|h|X≤1

|h|X = |x − y|2X.

We again infer that kb is a duality mapping associated with the norm ‖ · ‖X. This
together with the equivalence of the norms ‖ · ‖X and | · |X implies the strong
monotonicity of the mapping kb. �

Remark 128 We can show the existence of a nontrivial Banach space which
satisfies the condition i) from the theorem 127. Consider the space

X := Lp(S,S, μ), 1 < p < 2,

where (S,S, μ) is arbitrary measure space. It is sufficient to prove that the
modulus of convexity of X satisfies the condition (iii) from proposition 124. Recall
the well known Clarkson’s inequality

‖f + g‖p′
p + ‖f − g‖p′

p ≤ 2(‖f‖p
p + ‖g‖p

p)
p′−1,

which holds for arbitrary f, g ∈ X for p ∈ (1; 2) and p′ = p
p−1

. Using this inequal-
ity and the definition of modulus of convexity, we obtain

δX(ε) ≥ 1 − 1

2
(2p′ − εp′)

1
p′ .

Thus by concavity of the function t �→ t
1
p′ we have

1 − δX(ε) ≤
[
1 −

(ε

2

)p′
] 1

p′
≤ 1 − 1

p′

(ε

2

)p′

.

Thus the inequality δX(ε) ≥ bε2 is satisfied for suitable constant b > 0.

Remark 129 The introducing of UDM mappings provides a possibility to define
a similar concept of DM mappings between two arbitrary Banach spaces. This
generalization lacks some good properties posed by the generalization of d.c.
functions, which is due to L. Veselý and L. Zaj́ıček.
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We can modify the definition of DM mapping by taking formally the derivative
of a d.c. mapping and remove the assumption of the potentiality. Thus we obtain
the following definition.

Let X, V be Banach spaces and let C ⊂ X be an open convex set. Let
F : C → L(X, V ) be a mapping. For g : C → X∗ and v∗ ∈ BV ∗ consider the
mapping

kg
v∗ : C → X∗,

defined by
〈kg

v∗(x); x̃〉 = 〈g(x); x̃〉 + 〈v∗; F (x)x̃〉, x̃ ∈ X.

We say that F is the generalized DM mapping if there is a monotone operator
f : C → X∗ such that for every v∗ ∈ BV ∗ the mapping kf

v∗ : C → X∗ is monotone.
For V = R this definition coincides with the definition of DM mapping.

This definition is quite complicated and it is not more studied in this text but
it seems that some interesting results could be obtained in this direction.

3.3 Examples and applications of DM and UDM map-

pings

Example 130 We show that in the contrast to the one-dimensional case there
is a function u ∈ BV (Ω; Rn) which is not the DM mapping. At first notice that
if v : Ω → Rn is a DM mapping then, by Lemma 44, we have for all closed line
segments L = [L0; L0 + L1] ⊂ Ω

1∨
0

v

L < ∞

where v

L(t) = 〈v(L0 + tL1); L1〉. Suppose that we have a function u1 ∈ BV (Ω)

for which holds ∨
(u1, L) = ∞,

where L := [0, e1]. Then we put u := (u1, 0, . . . , 0). Thus we have u

L(t) = u1(te1)

which gives
1∨
0

u

L = ∞,

Thus u can not be DM. It is well known that the mapping defined on an open
subset Ω of R

n is a mapping of bounded variation if and only if it has a repre-
sentative which has the bounded variation over almost all line sections of Ω by
the lines parallel with the coordinate axis. Examples of functions of the bounded
variations which does not have the finite variation on all line segments are known.
We construct such an example using the results about monotone mappings.

For the transparency we will work only in the two-dimensional space but it
will be clear that a similar construction can be done in a space of an arbitrary
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finite dimension. Let [a; b] ⊂ R be a compact interval and let f : [a; b] → R

be an arbitrary bounded function which does not have the finite variation
∨b

a f.
Consider the function u : D := [a; b] × {0} ⊂ R

2 → R
2 defined by the formula

u(x1, x2) = (x1, f(x1)).

It is easily seen that this function u : D → R
2 is monotone and bounded. Lemma

28 enables to find a mapping v : R2 → R2 which is a monotone extension of
the mapping u. Using Theorem 72 we have that v is a mapping of the locally
bounded variation. Let Q : R2 → R2 be a linear mapping given by the matrix

Q =

(
0 −1
1 0

)
.

This linear mapping, which is in fact the anti-clock wise rotation with the angle
π/2, is obviously Lipschitz continuous, thus the composition

w(x) := Q ◦ v(x) = (−f(x1), x1)

is a mapping of bounded variation (see [3]). Since 〈w(te1); e1〉 = −f(t) the
mapping w can not be DM again by Lemma 44.

Let us realize that this example gives also a counterexample of a DM mapping
which is not an UDM mapping and it also demonstrates that the satisfying of
the Radó-Reichelderfer condition by the mapping v and the Morrey condition by
the measure Dv is not sufficient for the posing the DM property by the mapping
v. Indeed suppose at first that v is an UDM mapping. Theorem 114 asserts that
w = Q ◦ v is an UDM mapping as well. But this is a contradiction since w is not
DM as we have ensured. Further, the mapping v fulfills the Radó-Reichelderfer
condition by Corollary 79 and the measure Dv fulfills the Morrey estimate by
Corollary 76. Propositions 82 and 83 imply that the same conclusion holds for
the mapping w = Q ◦ v and the measure Dw. The absence of the DM property
for the mapping w was already discussed.

Finally if we consider the mapping

z(x) := v ◦ Q(x)

we obtain for −t ∈ [a; b]

〈z(te2; e2〉 = 〈u(−t, 0); e2〉 = f(−t).

This demonstrates the non-stability of DM mappings with respect to inner com-
positions. ♣

Example 131 Another possibility how to construct an example of a mapping
of bounded variation which is not DM is to use the Proposition 84 which implies
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the Fréchet differentiability almost everywhere of DM mappings. Let n ≥ 2, it
is possible to find a function u ∈ W 1,1(Rn) ⊂ BV (Rn) which is discontinuous in
every point. This function can not be Fréchet differentiable in any point. The
function v : Rn → Rn defined by v = (u, 0, . . . , 0) presents the desired example
of a BV mapping which is not DM. The following construction belongs to the
standard techniques in the theory of Sobolev functions thus we describe it briefly
and omit some details.

Let α, c > 0 and d ∈ Rn. In this example we will say that the function
f : Rn → R is of the type (α, c, d) if

f(x) = max{|x − d|−α, c} − c.

It is a standard calculation to show that for α ≤ n − 1 the function

x �→ |x|−α

belongs to the space W 1,1
loc (Rn). It is well known that the Sobolev functions are

stable with respect to the truncation. Since every function of the type (α, c, d)
has a compact support we have for α < n − 1 that it belongs to the space
W 1,1(Rn). It is easily seen that for every ball B and for every ε > 0 we can find
d ∈ Rn, c > 0 and α < n − 1 such that the function of the type (α, c, d) has the
support contained in B and the W 1,1 norm not exceeding ε.

Roughly speaking the basic idea of the construction is to find a sequence of
balls B(xj , rj) such that for every open set U ⊂ R

n and for every k ∈ N there
is an integer j ≥ k such that B(xj , rj) ⊂ U. Further, we find balls B±

j in every
B(xj , rj) such that u = ±1 on the set whose Lebesgue measure is large with
respect to the Lebesgue measure of B±

j .
The construction is done by induction. We take u0 := 0. We consider in the

j-th step the ball B(xj , rj) and find disjoint balls B̃±
j such that for every i < j it

is
|B̃+

j |
|B−

i |
≤ 2−j

and
|B̃−

j |
|B+

i |
≤ 2−j .

We put ũj+1 := uj + uj+ − uj−, where uj± are the functions of type (α, c, d) with
the support contained in B̃±

j and the norm ‖uj±‖W 1,1 ≤ 2−j. The function uj is
defined as a truncation of the function ũ i.e.

uj+1 := max{−1; min{ũj; 1}}.

The stability with respect to the truncation implies that the function uj+1 remains
in the space W 1,1(Rn). Every function of the sequence (uj)j∈N is bounded from
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below by −1 and from above by 1. The construction easily implies that the
sequence (uj)j∈N is a Cauchy sequence in the space W 1,1(Rn). Thus there is
a function u ∈ W 1,1(Rn) such that ‖u − uj‖W 1,1 → 0. Thus uj → u almost
everywhere. For every representative of u and for every ball B(xj , rj) there are
points x± ∈ B(xj , rj) such that u(x±) = ±1. This concludes the construction. ♣

Example 132 This example demonstrates some effects for monotone and UDM
mappings which can not occur in the situation of convex and d.c. functions.

It is easily seen that if Ψ : X → R is a convex function then Ψ is a d.c.
function with the control function Ψ. We show that there is a monotone mapping
F : R

2 → R
2 whose no multiple can be control mapping for F in the sense of

Definition 102.
Let define F : R2 → R2 by the formula

F (x) :=

{ x
|x| , x �= 0

0, x = 0,

where | · | stands for Euclidean norm. Let us notice that the mapping

x �→
{ x

|x|λ x �= 0

0, x = 0,

where λ < 1, is shown to be δ-monotone (consequently by Proposition 106 UDM)
in [12] (in a bit tricky way).

At first we realize that F is a monotone mapping. This can be verified by a
geometric argument. Alternatively we realize that F is a selection of ∂| · | thus
the monotonicity easily follows.

We show that there is no K > 0 such that∣∣∣∣ x

|x| −
y

|y|

∣∣∣∣ |x − y| ≤ K

〈
x

|x| −
y

|y| ; x − y

〉
(60)

is fulfilled for all x, y ∈ R2.
We can do an analytic computation but we can proceed in more geometric

way. The inequality (60) in fact means that the angle between the vectors x− y
and F (x)−F (y) is less or equal than π/2−ε, where ε = ε(K) > 0. For x1, y1 ∈ S1

set xt := tx1 and ys := sy1. For fixed t > 1 the angle between the vectors xt − ys

and x1−y1 can be arbitrary close to π/2 by taking s > 0 and |x1−y1| sufficiently
small . Thus the inequality (60) can not be fulfilled for any K > 0. ♣

Remark 133 Let us note that the previous example is not too surprising. Since
if X is a Hilbert space and Ω ⊂ X an open convex set and a monotone mapping
F : Ω → X is an UDM mapping with a suitable multiple of F as a control
mapping then F is necessarily δ-monotone mapping. It is proved in [12] (the
proof is not obvious) that every δ-monotone mapping is locally Hölder continuous
with an exponent λ depending only on δ. This is the reason why in Example 132
the discontinuous function can not be controlled by its multiple.
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Example 134 We show an example of an UDM mapping which is not continuous
in an interior point of its domain. Let define

F (x) := 1{0},

i.e. F (0) = 1 and F (x) = 0 for R2 � x �= 0. Let f := x/|x| for x �= 0 and
f(0) := 0. We have already realized in Example 132 that f : R2 → R2 is a
monotone mapping.

We prove that F is an UDM mapping with a control mapping f. Since for
x, y �= 0 the control inequality

|F (x) − F (y)||x− y| ≤ 〈f(x) − f(y); x− y〉

is trivial, we need to check this inequality for x �= 0 = y. But this is easy since
we have

|F (x) − F (0)||x| = |x| ≤
〈

x

|x| ; x
〉

.

This gives the desired.
This example can be easily modified. Let (an)n∈N ⊂ R2 be a countable dense

subset of R2 and let

Fn(x) :=
1

n2
1{an}

and

fn(x) :=

{ x−an

n2|x−an| , x �= an

0, x = an.

We can show as in the first part of the example that Fn is an UDM mapping with
a control mapping fn. The series

f :=

∞∑
n=1

fn,

converge by the Weierstrass criterion and the mapping f : R2 → R2 is a monotone
mapping. The mapping F : R2 → R2 defined by

F :=
∞∑

n=1

Fn

is also correctly defined. We conclude by Proposition 51 that F is an UDM
mapping with control mapping f. Thus we have found an UDM mapping which
is discontinuous on the dense set. ♣

In the following we will present two very simple examples of a DM mapping
resp. a difference of two accretive mappings between infinite dimensional spaces.

Recall the definition and the basic properties of the Nemytskii mapping in
spaces of integrable functions. For the details about Nemytskii mappings see [2]
and [22].
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Definition 135 Let Ω be an open subset of Rn. The mapping

a : Ω × R
d1 × . . . Rdm → R

d

is said to be the Carathéodory integrand if a(·, y1, . . . , ym) : Ω → Rd is measurable
for all

(y1, . . . , ym) ∈ R
d1 × . . . Rdm

and a(x, ·) : Rd1 × . . . Rdm → Rd, is continuous for a.e. x ∈ Ω. The Nemytskii
mapping Na is defined for functions ui : Ω → Rdi , i = 1, . . . , m by the formula

Na(u1, . . . , um)(x) := a(x, u1(x), . . . , um(x)).

Theorem 136 Let a : Ω × Rd1 × · · · × Rdm be an Carathéodory integrand and
the functions ui : Ω → Rdi, i = 1, . . . , m be measurable. Then Na : Ω → Rd is
measurable. Moreover, if a satisfies the growth condition

|a(x, y1, . . . , ym)| ≤ γ(x) + c

m∑
i=1

|yi|
pi
p

for some γ ∈ Lp(Ω), then Na is the bounded continuous mapping
Lp1(Ω; Rd1) × · · · × Lpm(Ω; Rdm) → Lp(Ω; Rd).

Proposition 137 (DM property of the Nemyckii mapping) Let a : Ω × Rn →
Rn be a Carathéodory integrand and let for a.e. x ∈ Ω be a(x, ·) DM with a control
function k(x, ·). Further, let the functions a and k satisfy the growth conditions

|a(x, y)| ≤ γa(x) + c|y|
r
p

and
|k(x, y)| ≤ γk(x) + c|y|

r
p ,

where γa, γk ∈ Lp(Ω) and r ≤ p′. Then the Nemyckii mapping Na : u(·) �→
a(·, u(·)) is DM as a mapping Na : Lp(Ω; Rn) → Lp′(Ω; Rn) with the control
mapping Nk.

Proof. By Theorem 136 the Nemyckii mappings Na, Nk are well defined as
mappings Lp(Ω; Rn) → Lr(Ω; Rn) ⊂ Lp′(Ω; Rn) = (Lp(Ω; Rn))∗. Choose u, v ∈
Lp(Ω; Rn), we have

|〈Nau −Nav; u − v〉| =

∣∣∣∣
∫

Ω

〈a(x, u(x)) − a(x, v(x)); u(x) − v(x)〉 dx

∣∣∣∣
≤

∫
Ω

|〈a(x, u(x)) − a(x, v(x)); u(x) − v(x)〉| dx

≤
∫

Ω

|〈k(x, u(x)) − k(x, v(x)); u(x) − v(x)〉| dx

= 〈Nku −Nkv; u − v〉.
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This by Lemma 92 completes the proof. �
In the following lemma we consider the space Rd endowed with the Euclidean

norm.

Lemma 138 (see [22]) Let 1 < p < ∞. Then the duality mapping

j : Lp(Ω; Rd) → Lp′(Ω; Rd)

is given by the formula

j(u)(x) =
u(x)|u(x)|p−2

‖u‖p−2
Lp

.

Proposition 139 Let 1 < p < ∞ and let a : Ω × Rd → Rd be a Carathéodory
integrand which is DM with a monotone control mapping k : Ω × Rd → Rd

in the second variable, further suppose that a resp k satisfy the linear growth
condition |a(x, y)| ≤ γ(x) + c|y| resp. |k(x, y)| ≤ γ(x) + c|y| with some γ ∈
Lp(Ω). (Especially the linear growth condition and DM property are satisfied for
a being Lipschitz continuous with a(0) = 0.) Then the Nemyckii mapping Na :
Lp(Ω; Rd) → Lp(Ω; Rd) is a difference of two accretive mappings with accretive
control mapping Nk.

Proof. By Theorem 136 the operators Na resp. Nk are well defined mappings
of Lebesgue space Lp(Ω, Rd) to itself and Nk is an accretive mapping. Using the
formula for the duality mapping in Lebesgue spaces (see Lemma 138) we obtain

|〈Nau −Nav; j(u − v)〉|

≤
∫

Ω

∣∣∣∣(a(u(x)) − a(v(x)))
(u(x) − v(x))|u(x) − v(x)|p−2

||u − v||p−2
p

∣∣∣∣ dx

≤
∫

Ω

(k(u(x)) − k(v(x)))
(u(x) − v(x))|u(x) − v(x)|p−2

||u − v||p−2
p

dx

= 〈Nku −Nkv; j(u − v)〉.

Thus Nk −Na is an accretive mapping. This gives the assertion. �

Remark 140 Let us add one brief comment. The Nemyckii operator provides a
counter example for the validity of a variant of Theorem 59 in infinite-dimensional
spaces. Assume that

a : Ω × R → R

is a Carathéodory integrand such that the Nemyckii operator Na is a bounded
continuous mapping

Na : L2(Ω) → L2(Ω).
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If a is a nondecreasing in the second variable then the operator Na is a monotone
operator. It is proved in the monograph [2] that if Na is Fréchet differentiable at
least at one point u0 ∈ L2(Ω) then the function a is of the form

a(x, r) = a1(x)r + a2(x).

Thus the Nemyckii mapping

Na : L2(Ω) → L2(Ω)

which is induced by Carathéodory integrand, which is not linear in second vari-
able, is nowhere Fréchet differentiable.

3.4 Problems and future projects

Since this thesis is, as we know, the first text devoted to the study of differences
of monotone mappings, many interesting questions were not answered here. We
bring up some of them in this last section. It is possible that some of these
problems are easy, but they appeared to late to be solved here. Some of these
problems are formulated rather vaguely since it is not a-priori clear which exact
assumptions are reasonable. It can be seen during solving these problems.

Problem 141 Does every DM mapping have a potential control mapping? More
precisely, let X be a Banach space, let Ω ⊂ X be an open convex set and let
A : Ω → X∗ be a DM mapping. Does there exist a Gateaux differentiable convex
function g : X → R such that the mappings δg ±A (or at least one of them) are
monotone? ♠

Problem 142 In this problem we are asking, roughly speaking, if by splitting
a mapping into a difference of two monotone mappings, we obtain mappings of
the similar quality.

At first we ask whether every continuous DM mapping can be written as a
difference of two continuous monotone mappings?

Similar question to Problem 141 is whether every potential DM mapping can
be written as a difference of two potential monotone mappings.

We have realized in Corollary 97 that locally Lipschitz continuous mappings
Rd → Rd are DM. Assume that A : Rd → Rd is a polynomial. Thus the mapping
of the form A(x) = (A1(x), . . . , Ad(x)), where

Aj(x) =

n(j)∑
|α(j)|=0

aα(j)x
α(j), j = 1, . . . , d, (61)

where α(j) ∈ Nd
0, j = 1, . . . , d are multiindices with |α(j)| :=

∑d
i αi(j) and

xα(j) := x
α1(j)
1 x

α2(j)
2 . . . x

αd(j)
d .
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Is it true that each such polynomial can be written as a difference of two monotone
polynomials?

Let us note that for d = 1 the answer is positive as can be easily observed by
analyzing the monomials of odd and even degree.

We can ask more generally if every real analytic mapping can be written as a
difference of two real analytic monotone mappings. (We can imagine real analytic
mappings by setting formally n(j) = ∞ in (61).)

Let us only note that the similar question can be studied for holomorphic func-
tions (after identification C with R2), for harmonic mappings, caloric mappings.
♠

Problem 143 The fact that the class of the DM mappings is not stable with
respect to compositions even with linear mappings and since the requirement of
the UDM property seems to be sometimes too strong we are led to an idea of a
modification of the definition of the class of DM mappings. Let X, Y be Banach
spaces and let Ω ⊂ X be an open convex set. We consider a class of mappings
u : Ω → Y, which belong to the linear span of the mappings of the form

R ◦ v,

where v : Ω → X∗ is a monotone mapping and R : X∗ → Y is a linear mapping.
Let call this class of mappings IDM mappings. If Y = X∗ then the class of IDM
mappings contains all DM mappings and their compositions with continuous
linear mappings. Let us note that for X = R every IDM mapping is an UDM
mapping and in the case Y = X∗ we have that UDM ⇒ DM ⇒ IDM. Since for
X being finite dimensional the range of IDM mapping is finite dimensional there
exists an UDM mapping which is not an IDM mapping. In the case of X = Rn

every IDM mappings is Fréchet differentiable almost everywhere and no Radon-
Nikodým property is needed. Otherwise in the case X = Y = Rn there are IDM
mappings which are not UDM mappings as we have realized in Example 130.

The definition of d.c. mappings can be modified in a similar way. It is again
easilily seen that for Y = R this new definition coincides with the standard
definition of d.c. mappings.

We would like to study the properties of these classes of mappings. ♠

Problem 144 Korn’s inequality is an important tool in partial differential equa-
tions. It asserts that for u ∈ W 1,p(Ω; Rn), p > 1 the Lp-norm of the gradient can
be estimated by the Lp-norm of the symmetric gradient, i.e.

‖∇u||Lp ≤ C||Eu||Lp,

where the constant C does not depend on the function u and

2Eu := ∇u + ∇�u.
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The examples of W 1,1 functions for which Korn’s inequality fails are known.
There is, in fact, proved in the paper [1] that Korn’s inequality remains valid
for monotone functions even in the case u ∈ BV (Ω; Rn) only. The question is
whether it is possible to prove a variant of Korn type inequality for DM or UDM
mappings. ♠

Problem 145 Is it possible to relax the assumption of the Borel measurability
of the UDM mapping F in Theorem 120? This assumption was needed only for
the proof of the measurability of the set Δv. ♠

Problem 146 Is it possible to construct an UDM mapping on Rn which is not
continuous on the larger set than countable? Which types of discontinuities can
occur? (We have constructed only the removable singularities.)

A characterization of the points of discontinuity of UDM mappings would be
interesting too. It could be also interesting to investigate relations between UDM
and quasiconformal mappings.

Similar questions is whether we can get an estimate on the dimension of F (x)
for F an UDM multi-mapping if we know the dimension of f(x), where f is a
monotone control multi-mapping for F. ♠

Problem 147 We have noticed in Remark 140 that the nonlinear Nemyckii
mapping is not Fréchet differentiable in any point as a mapping from L2 → L2.
However the situation is not so bad in general. It can be proved that under
some technical assumptions the Nemyckii operator is Fréchet differentiable as a
mapping Lp → Lp′ , where p > 2 and p+p′ = pp′ (for details see [2]). Thus we can
still whether if it can be established some differentiability properties of monotone
operators in a suitable class of Banach spaces. ♠

Problem 148 It is not difficult to realize that Theorem 96 can be reformulated
for UDM mappings C → Y, where C ⊂ R

d is an open convex set. But it is
shown in [11] that there is a d.c. function �2 → R which is locally d.c. but which
is not globally d.c.. We are asking whether a similar effect can occur for UDM
mappings. ♠

Problem 149 Theorems 113 and 114, without providing counterexamples, are
not sure to be optimal. The assumptions of Lipschitz continuity or linearity and
boundedness from bellow of the mappings from these theorems seems to be very
restrictive.

Thus we would like to study under which assumptions it is possible to prove
similar composition theorems for more general UDM mappings or provide appro-
priate counterexamples. Let us note that the similar problem for d.c. mappings
is investigated in the up till now unpublished paper of L. Veselý and L. Zaj́ıček.

Further we would like to ensure if it possible to show the DM or the UDM
property of the inversion of a DM or UDM mapping.
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The problem of posing of the DM or the UDM properties of implicit mappings
seems to be interesting too. ♠
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Malý , J. Math. Anal. Appl. 252 (2000), no.1, 147-166.
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Radó-Reichelderfer condition, 33

selection of a multi-mapping, 21
smooth Banach space, 20
strictly monotone multi-mapping, 14
strongly monotone multi-mapping, 53
subdifferential, 18

UDM mapping, 44
UDM multi-mapping, 48

weak parallelogram law, 54

Yosida regularizations , 23

71


