
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Tomas Tuma

Efficient gathering of performance information on multicore
systems

Department of software engineering

Advisors:

Sean Rooney, Ph.D., IBM Zurich Research Laboratory

Paul Hurley, Ph.D., IBM Zurich Research Laboratory

Petr Tuma, Ph.D., Charles University in Prague

Study program:

Computer Science - Software Systems

2008

Acknowledgements

I would like to thank Dr. Paolo Scotton, the manager of Advanced Messaging Technologies group at
IBM Zurich Research Laboratory, for leading my master thesis internship. Big thanks go to Dr. Sean
Rooney, the main advisor of the thesis, who carefully led me through the process of exploring the new
field, formulating the results and writing the scientific text. I really appreciated his profound approach
in our collaboration which significantly contributed to the productivity of my stay at the lab. I would
also like to thank Dr. Paul Hurley, who was advising the thesis and with whom we came up with many
inventive and extremely interesting ideas in the new field of compressive sampling. Dr. Petr Tuma from
the Charles University in Prague helped me with finishing and submitting the thesis.

Parts of the thesis are based on the paper “On the applicability of compressive sampling in fine
grained processor performance monitoring” which I wrote together with Sean Rooney and Paul Hurley.
The paper was submitted to SIGMETRICS/Performance 2009. Chapter 7 is included in the U.S. patent
application Nr. CH9-2008-022 by the same authors, filed in June 2008 by IBM Corporation.

Of course, writing the thesis did not mean only uncountable hours in front of the computer; also the
indirect stimulations, be it technical discussions or exploring the nature, were extremely important for
me. The whole team of the IBM Zurich Research Laboratory created a friendly, open and collaborative
environment which I really enjoyed. Special thanks go to Urs Hunkeler – thanks to him I could explore
Switzerland much more than I expected.

I am also grateful to my parents who have supported me throughout my studies.

Rueschlikon, October 30th, 2008

I hereby declare that I wrote the master thesis on my own and using only the cited sources. I agree with
lending the thesis.

Prague, November 15th, 2008 Tomas Tuma

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 2
1.3 Structure of the document . 2
1.4 Contributions to the text . 2

2 Related work 4
2.1 Modern processor architectures . 4

2.1.1 Multiprocessing hierarchy . 4
2.1.2 Memory hierarchy . 5
2.1.3 Performance characteristics . 6

2.2 Performance monitoring . 7
2.2.1 Hardware support of performance monitoring . 7
2.2.2 Software support of performance monitoring . 8

2.3 Operating system schedulers . 8
2.3.1 Traditional schedulers . 9
2.3.2 Symmetric multiprocessing schedulers . 9
2.3.3 First performance-aware schedulers . 10
2.3.4 Simultaneous multithreading schedulers . 10
2.3.5 Schedulers for symmetric multiprocessing with SMT processors 10
2.3.6 Chip multi processing schedulers . 11

2.4 Power-aware computing . 11
2.5 Wide-area performance monitoring . 11

3 Compressive sampling 13
3.1 Basic concepts . 13
3.2 Sparsity of the input signal . 13

3.2.1 Sparse signal . 14
3.2.2 Approximately sparse signal . 14
3.2.3 Compressible signal . 14

3.3 Signal reconstruction theorems . 15
3.3.1 General sampling matrices . 15
3.3.2 Orthogonal sampling matrices . 16
3.3.3 Random sampling matrices . 17
3.3.4 Incoherent sampling and recovery matrices . 17

3.4 Recovery algorithms . 18
3.4.1 Optimization with relaxed objective or constraint function 19
3.4.2 Greedy pursuits . 20
3.4.3 Iterative thresholding . 23
3.4.4 Sublinear algorithms . 24
3.4.5 Time complexity of recovery algorithms . 24

3.5 Bases with low coherency . 24

3.5.1 Canonical spike basis and Fourier basis . 25
3.5.2 Wavelets and noiselets . 26
3.5.3 Random basis and any fixed basis . 27

4 On the incoherence of noiselet and Haar bases 29
4.1 Preliminaries . 29

4.1.1 General definitions . 29
4.1.2 Noiselets . 30
4.1.3 Haar wavelets . 30

4.2 Matrix construction of noiselets . 30
4.3 Incoherence of noiselets and Haar . 32

5 Compressibility of performance signals 34
5.1 Data collection . 34

5.1.1 Software environment . 34
5.1.2 Workload . 35
5.1.3 Hardware platform . 35
5.1.4 Performance signals . 36

5.2 Experimental analysis . 37
5.2.1 General setup . 37
5.2.2 Metrics of compression performance . 38
5.2.3 Estimating the compressibility . 39
5.2.4 Compressibility in the DCT basis . 40
5.2.5 Compressibility in selected wavelet bases . 41
5.2.6 Reconstruction quality . 41
5.2.7 Comparison of compressibility . 42

6 Compressive sampling of performance signals 44
6.1 Modular view of compressive sampling . 44
6.2 Experimental implementation . 44

6.2.1 Sampling matrices . 45
6.2.2 Representation matrices . 46
6.2.3 Recovery algorithms . 46
6.2.4 Blockwise processing of the signal . 47
6.2.5 Automatic experimental evaluation . 47
6.2.6 Extraction of results . 48

6.3 Experimental analysis . 49
6.3.1 Measurement matrices . 49
6.3.2 Recovery algorithms . 51
6.3.3 Comparison to regular sampling . 52
6.3.4 Discussion . 53

7 Per-core sampling module 55

8 Conclusion 57

Bibliography 57

A Examples of real performance signals 63

B Contents of the CD 64

Title: Efficient gathering of performance information on multicore systems
Author: Tomas Tuma
Department: Department of software engineering
Supervisor: Sean Rooney, Ph.D., Paul Hurley, Ph.D., Petr Tuma, Ph.D.
Supervisor’s e-mail address: sro@zurich.ibm.com, pah@zurich.ibm.com, petr.tuma@dsrg.mff.cuni.cz
Abstract: Modern multicore processors provide performance counters that export information on var-
ious essential aspects of software execution, from instruction decoding to cache utilization. Typically,
a processor is capable of counting a small subset from hundreds of different event types, the events
themselves can occur almost every processor clock tick. This yields a significant amount of data which is
difficult to collect without disrupting the execution itself. The goal of the thesis is to apply compressive
sampling - a special method of sampling signals that allows to reconstruct sparse signal from a small
number of samples - to the performance counter data.
Keywords: compressive sampling, multicore processors, performance information

Title: Efektivńı sběr informaćı o výkonu na multicore systémech
Author: Tomáš Tůma
Department: Katedra softwarového inženýrstv́ı
Supervisor: Sean Rooney, Ph.D., Paul Hurley, Ph.D., Petr Tuma, Ph.D.
Supervisor’s e-mail address: sro@zurich.ibm.com, pah@zurich.ibm.com, petr.tuma@dsrg.mff.cuni.cz
Abstract: Moderńı v́ıcejádrové (multicore) procesory maj́ı k dispozici registry, prostřednictv́ım nichž
je možné źıskávat informace o řadě d̊uležitých aspekt̊u výkonnosti systému, od jednotek pro dekódováńı
instrukćı po využ́ıt́ı pamět́ı cache. Procesor obvykle umožňuje sledovat danou podmnožinu ze stovek
událost́ı, které mohou nastávat v každém procesorovém cyklu. Vzniká tak značný objem dat, která je
obt́ıžné źıskávat, aniž by bylo narušeno prováděńı programu. Ćılem diplomové práce je použ́ıt kompresńı
vzorkováńı - speciálńı metodu vzorkováńı signálu, která umožňuje rekonstruovat tzv. ř́ıdké signály z rel-
ativně malého množstv́ı vzork̊u - na tato data o výkonu procesoru.
Keywords: kompresńı vzorkováńı, v́ıcejádrové procesory, výkonnostńı informace

IBM and POWER6 are trademarks or registered trademarks of International Bussiness Machines Cor-
poration in the United States, other countries, or both, owned by IBM at the time this information was
published.
Intel, Itanium and Pentium are trademarks or registered trademarks of Intel Corporation or its sub-
sidiaries in the United States and other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States,
other countries or both and is under license therefrom.
Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.
Other company, product or service names may be trademarks or service marks of others.

Chapter 1

Introduction

For many years, growing performance requirements on computer processors have been reflected by in-
creasing the number of transistors per integrated circuit and by increasing the processor clock frequency.
However, processor design has reached the point where the performance cannot be increased by simple
frequency scaling. The reasons can be found in excessive power consumption, heat leakage and space
requirements, which combined together make it impossible to improve performance in such a way.

In order to gain better performance, more sophisticated approaches have to be taken. Basically,
processor designers can proceed to either qualitative or quantitative changes. Qualitative changes involve
changes in the inner processor architecture and instruction set. Whereas the performance gain is rather
moderate, costs of such changes are enormous. Quantitative approaches are often simpler to implement
on the processor platform, but care has to be taken that the desired performance gain is not significantly
reduced by contention on shared resources and that existing applications are able to make use of the new
performance capacity. The most wide spread quantitative techniques are simultaneous multithreading
(SMT, also known as hyperthreading), symmetric multi-processing (SMP) and chip multi-processing
(CMP, also known as multicore processing).

Multicore chip design has turned out to be a promising way of improving chip performance. It is
believed that in the following years, multicore architectures with tens to hundreds of cores on one chip
will appear. The computer community now faces the challenge of managing the computational power
provided by multicore processors. Apart from hardware design issues, multicore chips require software
awareness. Consequently, it is reasonable to expect an active development of software that may also
lead to updates in the hardware requirements.

1.1 Motivation

Providing a feedback to the software layers is often of key importance to enable an efficient usage of
the underlying hardware. When running on a hardware platform with a highly developed infrastructure
(such as hyperthreaded, multicore or multiprocessor systems), it is useful to observe performance of
the particular system components. This need has been reflected in many modern processor families by
adding the support for real-time performance monitoring.

Performance data can be used either to perform a static analysis of critical parts of software or it can
be used dynamically to control the system behaviour during the software execution. The latter involves
mainly operating system schedulers. To fulfill contradictory requirements, modern schedulers adapt to
the current workload characteristics in order to provide a heuristic solution to the scheduling problem.
Performance of the operating system scheduler influences the overall system performance.

On multicore and multiprocessor systems, delivering the performance data to the consumer can be
a challenge. As the number of performance sources and performance characteristics grows, the bus
bandwidth required to transfer the data becomes significant. However, auxiliary data should always be
delivered with minor impacts on the overall system performance.

This makes it desirable to apply an on-the-fly compression method to the performance signals. Such
a method has to exhibit special properties required by this particular use case. The most important are

1

CHAPTER 1. INTRODUCTION

good compression rates for the domain of processor performance signals and applicability with minor
resource requirements.

1.2 Goal

Compressive sampling [1, 2, 3] is an emerging signal sampling and reconstruction paradigm. Assuming
there are certain assumptions met, it guarantees that a signal can be sampled directly in its compressed
form, transferred and recovered accurately with a very high probability. The sampling and compression
happen in the same phase and are designed to be non-adaptive, i.e. the algorithm does not take different
execution paths for different input data. Emphasis is placed on the reconstruction phase, where the
signal is estimated using optimization techniques (e.g. linear programming, greedy algorithms for sparse
approximation). This asymmetry is useful in applications where simplicity of the sampling phase can be
traded against a more complex recovery phase, such as in the transfer of performance information from
processor cores to a scheduler.

The goal of this work is to evaluate compressive sampling as a tool for compression of performance
signals. This includes verifying whether the assumptions of compressive sampling can be met in the
case of performance monitoring, comparison of basic compressive sampling variations and tackling the
implementation issues in multicore processors.

1.3 Structure of the document

The remainder of the text is organized as follows.
In Chapter 2, an overview of the related work is given. In particular, the areas of contemporary

processor design, performance monitoring and operating system scheduling are visited.
In Chapter 3, the background of compressive sampling is described in a greater detail. First, we

begin with the tenet notion of sparsity. Assuming the sparsity of the signal, different theorems available
in the literature are presented and categorized. An overview of the algorithms for recovery together with
estimates of the time complexity is given.

In Chapter 4, a simple proof of the incoherence between the noiselet and Haar bases is given. Unlike
the proof currently available in the literature, the incoherence is shown in the language of simple linear
algebra. An elegant recursive equation for noiselets is derived which allows for a Kronecker-product
based proof.

In Chapter 5, compressibility of processor performance signals is examined. The hardware and soft-
ware environment of the experimental setup is described and means of sparsity estimation are introduced.
Then, the sparsity of a set of real world signals is estimated.

In Chapter 6, the intrinsic structure of compressive sampling is decomposed into modules and an
experimental environment in the Matlab software is developed. Using the experimental environment,
compressive sampling is applied to the set of real-world performance signals. The results are discussed
and possible refinements are suggested.

In Chapter 7, a novel scheme for a per-core compressive sampling module is given. The scheme
suggests how a universal compressive sampling module could be implemented with minimal resource
requirements.

In Chapter 8, we shortly summarize the obtained results and formulate the conclusions.

1.4 Contributions to the text

This master thesis was written at IBM Zurich Research Laboratory, Switzerland. As such, it originated
from the cooperation with my advisors and parts of the text are based on our joint work. The over-
whelming majority of the text, Chapters 1 – 5, 6.1, 6.2 and 7 were written exclusively by me. Also the
underlying technical work – design, implementation and running of the experiments – was conducted
exclusively by me.

2

CHAPTER 1. INTRODUCTION

Section 6.3 is based on parts of the paper “On the applicability of compressive sampling in fine
grained processor performance monitoring” which was submitted to ACM SIGMETRICS/Performance
2009. The paper was written jointly by me, Sean Rooney and Paul Hurley. Chapter 8 is based on the
same paper.

Chapter 7 was included in the U.S. patent application Nr. CH9-2008-022, Method and apparatus for
efficient gathering of information in a multicore system, filed in June 2008 by the IBM Corporation.

As the theoretical background of the work is very new, it is explained in a greater detail and a number
of citations from the contemporary literature is given. Excerpts from the literature, such as definitions,
theorems and algorithms, are carefully annotated with the original source. This allows to distinguish
the contributions of this work and also helps the reader to quickly get to the seminal papers.

3

Chapter 2

Related work

In this chapter, we provide an overview of important areas connected to the problem of efficient gath-
ering and delivering of performance data. In particular, we are interested in potential consumers of
performance data, such as schedulers and performance monitors, and with infrastructures that have
been designed to deliver or otherwise process performance data. A detailed overview of compressive
sampling is given in Chapter 3.

2.1 Modern processor architectures

To effectively deliver performance data, it is crucial to understand the internal organization of the
processor. In this section, we review the common aspects of contemporary processor architectures. We
concentrate mainly on the the processor structure and on the parts which can significantly affect the
performance.

2.1.1 Multiprocessing hierarchy

Current processors and computer systems come with a high degree of parallelism on different levels of
implementation, making it natural to view the processor as a hierarchy of interconnected processing
units. For instance, Figure 2.1 depicts the hardware topology of the IBM R© POWER6

TM

microprocessor
[4] and emphasizes its hierarchical organization.

Using the POWER6 as a model, we can clearly distinguish a common hierarchy of parallelization
levels in the contemporary processors. At the most coarse level, we look at the microprocessor as a
self-contained part of a symmetric multiprocessing (SMP) system built up from multiple processors.
The processors in an SMP system share some key resources such as memory and I/O devices, but each
processor executes its workload independently of the others. Going further, we realize that the processor
chips are typically not monolithic. Most modern processors make use of a chip multiprocessing (CMP)
design that integrates more execution units (execution cores) in one chip. These processors are often
called multicore systems. Analogically to SMP, each core is independent in workload execution, but
shares some of the on-chip resources with the other cores. Typically, a set of on-die cores shares a
common L2 cache memory (see below). Independent code execution means that each core has a full set
of execution units and register banks.

Some of the per-core resources can further be shared in order to achieve higher throughput and
exploit the advantages of out-of-order instruction processing. The technique is known as simultaneous
multithreading (SMT). In essence, it introduces a support of multiple hardware execution threads in
one processor core. Each hardware thread executes given instruction stream, however, threads running
in one core share common resources such as execution units and the first level instruction and data
caches. This makes it possible to maximize the computational throughput by instruction reordering, so
that the per-core execution units stay maximally utilized. For instance, an instruction waiting for data
retrieval should not block arithmetical units for instructions which already have their data prepared. This
approach can be combined with speculative execution of instructions and branch predicting mechanisms.

4

CHAPTER 2. RELATED WORK

L1 cache L1 cache

L2 cache

L3 cache
controller

SMP Interconnection
H

yp
er

th
re

ad
in

g
co

nt
ex

t

H
yp

er
th

re
ad

in
g

co
nt

ex
t

H
yp

er
th

re
ad

in
g

co
nt

ex
t

H
yp

er
th

re
ad

in
g

co
nt

ex
t

IBM POWER6 microprocessor

Core Core

context
Hyperthreading

context
Hyperthreading

context
Hyperthreading

context
Hyperthreading

Core Core

CPUCPU CPU

Symmetric multiprocessing level

Simultaneous multithreading level

Chip multiprocessing level

Figure 2.1: Internal structure of the IBM R© POWER6
TM

microprocessor [4]. The picture on the left shows
the logical organization of the chip, including the symmetric multi-processing (SMP) interconnection
interface, L3 cache interface, two execution cores with a common L2 cache and the internal structure of
the cores consisting of a dedicated L1 cache unit and two hyperthreading execution contexts. The right
side of the picture shows the corresponding hierarchy of the microprocessor units.

The hierarchy of processing units can further be extended and generalized. For example, consider
NUMA (non-uniform memory access) architectures [5] or wide-area architectures for high performance
computing such as Ganglia [6].

2.1.2 Memory hierarchy

It is important to note that the hierarchy of processing units often combines with other hierarchical
structures which are present also in flat execution topologies. A memory hierarchy is typically introduced
to compensate for differences between the processor and memory speed. Figure 2.2 depicts a typical
2-level cached system consisting of the main memory, second level (L2) cache, first level (L1) cache and
translation look-aside buffer (TLB).

We now briefly describe how a two level cache system works; the principles can easily be adapted
to other cache hierarchies. In a typical situation, both the data and instructions of the program are
stored in the main memory. The processor fetches the instructions from the memory and executes them.
During the execution, the instructions raise requests for the data that has to be fetched from the main
memory. Technical limitations cause that accessing the main memory is rather costly, as the memory
can only provide a fairly slower access than is the operating frequency of the processor. Thus, it is
convenient to store the instructions and data that have once been fetched in faster memories which are
situated closer to the processor.

In a two level cache system, the smallest and fastest cache memory is denoted as the L1 cache and has
typically specialized components for the instructions and data. If a processor needs to fetch something
from the main memory, it first looks for it in the L1 cache. If it is found there, we say that it is a cache
hit and the processor uses the data from the cache. Otherwise we say that there is a cache miss in the
L1 cache and the request is forwarded to the L2 cache where the same procedure applies. In case of a

5

CHAPTER 2. RELATED WORK

Memory

TLB

CPU

L1 instruction cache

L1 data

cache

R
eg

is
te

rs

L2 cache

Microprocessor

Figure 2.2: Schema of a generic 2-level cached memory system [7]. The L1 cache situated directly on
the chip is divided into an instruction cache unit and data cache unit. There is also a TLB unit on the
chip which facilitates fast address translation for the virtual memory subsystem. An external L2 cache
is situated between the processor and the main memory.

L2 cache miss, the data is fetched from the main memory.
The translation look-aside buffer (TLB) is used when the processor supports some kind of virtual

memory. Then it is often needed to translate the virtual addresses of the instructions and data to
physical memory addresses. This can be done in a variety of ways. In general, the address translations
cost processor time and involve memory accesses. Therefore, it is advantageous to store them for the
case of reuse, which is likely to occur. Similarly to cache memories, we distinguish TLB hits and TLB
misses.

In the previous description, we did not mention the problem of cache coherency, i.e. the problem
of keeping all caches mutually synchronized and synchronized with the main memory. We refer the
interested reader to [7] for an introductory text.

2.1.3 Performance characteristics

Having identified the key components of a processor architecture, it is natural to ask how the components
affect the overall performance and what metrics can be gathered to characterize their behaviour. In the
following paragraphs, we summarize the most common metrics that are useful to observe on the majority
of modern processor architectures.

Overall performance characteristics

There are several quantities that are directly related to the processor performance as seen from the
“outside”. Most notably it is the number of completed instructions, i.e. the count of instructions that
successfully passed all stages of the processor pipeline, all speculative phases and were really executed.
One can be also interested in the number of processor cycles as a metric of relative time in the processor.
Typically, processors can dispatch more instructions in one cycle or vice versa, one instruction can take
more cycles to execute. Therefore, we often see the instructions-per-cycle (IPC) or cycles-per-instruction
(CPI) ratios as the metric of overall processor performance.

6

CHAPTER 2. RELATED WORK

Memory hierarchy characteristics

The efficiency of memory operations greatly affects the processor performance. As we explained in
Section 2.1.2, the basic quantity characterizing the behaviour of a particular cache component is the
number of cache misses or cache hits, respectively, number of TLB misses or TLB hits. Typically, L1
cache misses can partially be compensated for due to the instruction-level parallelism implemented in the
core. Indeed, while the missing data is being fetched from the L2 cache, other instructions can possibly
proceed in execution. L2 cache misses on a two level cache system cause high-latency accesses to the
main memory. Operating systems often try to avoid the cache misses by implementing cache-affinity
scheduling policies [8].

Pipeline stalls and branch mispredictions

The processor pipeline chains the system resources to maximize their utilization. As the stream of
processed instructions is not homogeneous, smooth execution can be blocked by pipeline stalls. For
instance, the stalls can be caused by contention for shared resources or by cache misses. Depending on
the processor type, it is possible to observe the frequency of pipeline stalls, type and extent of the stalls
or stall causes.

Branch prediction is a speculative mechanism designed to increase throughput of code which contains
branches. Because the branches are often in an iterative code block, it is reasonable to try to predict
their repetitive execution and result. Branch mispredictions signalize how successfully the prediction
mechanism runs. A high rate of branch mispredictions causes pipeline stalls and performance drop down.

System bus characteristics

The system bus connects the processor to the memory and I/O devices. The overall count of bus
transactions signalizes the data intensity of the workload. The ratio of memory transactions and I/O
transactions helps to distinguish different types of the bus traffic, the count of read cycles and write cycles
can distinguish direction of the bus traffic. This information can be used to optimize the performance,
e.g. in bus traffic-aware scheduling policies [9].

Special characteristics

Some processor architectures provide special metrics reflecting various hardware or software events that
might be of interest. For instance, Intel R© Core 2 [10] detects a self-modifying code, which typically
causes big performance penalties. Another example is counting the number of “thermal trips” which
occur when a temperature limit is exceeded and the processor is forced to reduce the frequency and
voltage.

2.2 Performance monitoring

The problem of monitoring processor performance, and more interestingly, monitoring the performance
of internal parts of the processor infrastructure, essentially depends on the particular hardware platform.
However, the basic concepts of the performance monitoring interface are similar in all current well known
processors. Therefore, software abstractions emerge which make it possible to use the performance
monitoring counters in more general software components, such as operating system schedulers and
workload adaptation mechanisms.

2.2.1 Hardware support of performance monitoring

The Intel R© Itanium R© 2 processor [11] defines a performance monitoring interface which consists of two
parallel sets of registers, one set for configuring the monitoring capabilities and the other to acquire the
data. The monitoring concept works with the notion of performance monitoring event, which is also
common to the majority of current processor families. Events correspond to occurrences of different
internal processor activities and are counted in event counters. For instance, the corresponding event

7

CHAPTER 2. RELATED WORK

counter is incremented whenever a cache miss in the second level cache occurs. In addition, Itanium R© 2
defines derived events which typically provide pre-computed ratios based on the regular events, e.g. an
instruction-per-cycle ratio (IPC). Itanium R© 2 comes with approximately a hundred of predefined events
and four 48-bit general monitoring registers. The performance monitoring events reflect instruction
execution and data flow, pipeline stalls, branch predictions, data and instruction caching, system bus
traffic and other. Facilities to perform filtering or additional information recording are present.

The IBM Cell Broadband Engine
TM

processor [12] defines several hundreds of performance monitoring
events that can be recorded to eight 16-bit counters, resp. to four 32-bit counters. Similarly to Intel R©

processors, the events cover the most influential processor components, including the execution pipelines,
memory architecture, buses, I/O controllers and other. The counters can be configured through a set of
control registers. Counter values can be collected in defined intervals and transferred to a trace array,
which can store up to 1024 128-bit values.

The AMD Opteron processor [13] provides a simple performance monitoring interface with four
general 48-bit event counters controlled by a parallel set of configuration registers. The events span all
important processor components, including the execution pipeline, memory hierarchy and I/O system.
The Opteron processor provides only a minimal additional functionality above the basic monitoring.

The MIPS R10000 processor [14] implements a minimalistic performance monitoring unit consisting
of two 32-bit counters, two control registers and approximately 30 monitorable events.

2.2.2 Software support of performance monitoring

Despite the tight connection of performance monitoring to the processor microarchitecture, there have
been continuous efforts to provide a software abstraction over different processor families and models.
In this section, we mention software layers which were designed to directly access performance counters,
but without the need to write machine dependent code.

On the driver level, there are two widely used open source projects for the Linux R© operating sys-
tem. Stephane Eranian’s perfmon [15] currently supports all modern Intel R© processors (including the
Itanium R©, Core 2 and P4 processor families), AMD Opterons and AMD K7 processors, IBM R© POWER,

Cell Broadband Engine
TM

and PPC processors and MIPS processors. The interface generalizes some of
the common concepts in the processor families and exports logical registers for the monitoring control
and data acquisition. The core interface defines methods for manipulating the monitoring context, data
and control registers and events. The monitoring context can be local (per-thread) or system-wide.

Mikael Pettersson’s perfctr [16] supports Intel R© x86 processor family (including P4 and Core 2
processor families, but not including Itanium R© processors), AMD K7 and K8 processors, Cyrix and
IBM PPC processors. Similarly to perfmon, the interface provides logical control and data registers
which are mapped to the machine-dependent monitoring unit.

The PAPI project [17] aims to define a standard API for accessing performance monitoring capabili-
ties. The PAPI architecture defines a portable two-layered application interface and a machine dependent
substrate. Currently, the substrates cover Intel R©, AMD, IBM, MIPS, Cray and UltraSparc processors
and are ported to Linux R©, Windows, Solaris, AIX and other operating systems. When compared to
[15, 16], the PAPI interface provides a higher level cross-platform support. It allows the user to work
with event sets with only a little knowledge of the underlying hardware constraints; on the other hand,
it hides rich platform specific features that can be more easily exported by a low level driver. For in-
stance, perfmon for Intel R© Itanium R© 2 [11] exports the EAR registers which allow the user to record
the instruction addresses which caused the cache or TLB misses.

2.3 Operating system schedulers

Operating system schedulers can be considered a natural consumer of the real-time performance infor-
mation. We find it useful to look at the world of schedulers from the following perspectives:

(i) Hardware topology

(ii) Scheduling objectives

8

CHAPTER 2. RELATED WORK

(iii) Historical development

Hardware topology. In Section 2.1, a hierarchical view of the processor internal structure was intro-
duced. In particular, we distinguished the symmetric multiprocessing (SMP) level, chip multiprocessing
(CMP) level and simultaneous multithreading (SMT) level. Depending on the thoroughness of the
scheduling algorithm, different inputs may be considered and different strategies may be implemented
to take such a structured hardware topology into account. For instance, CMP-aware schedulers can take
advantage of the shared L2 cache which allows for an efficient communication among the tasks allo-
cated to the cores in one processor package. SMT-aware schedulers can apply policies involving frequent
task switches, because a task switch within an SMT domain is cheap. In contrast, schedulers for SMP
machines with non-uniform memory access (NUMA) must consider varying costs involved in the task
switch.

Scheduling objectives are in general disjunctive and schedulers have to decide on their objectives
according to the application domain they are targeting. For instance, achieving a high throughput is
valuable in high performance computing but may be considered less important in interactive applica-
tions that require good responsiveness. Once the semantic objective is selected, the technical criterion to
achieve the objective has to be considered. Typically, schedulers tend to gain a response from the system
to heuristically adjust their decisions. For instance, the way of using the assigned time quanta signal-
izes the interactivity degree of the application. In the past years, the microarchitectural performance
monitoring has opened new possibilities for the schedulers. It is now possible to monitor behaviour of
the caches, system bus and internal processor structures and dynamically adapt scheduling according to
that.

Historical development of scheduling algorithms is also bound to the development of hardware. In
what follows, we would like to emphasize the transition from the traditional “oblivious” [18] schedulers
to the schedulers which respect the hardware structure and adapt to the workload. This development is
particularly forced by the increasing complexity of hardware architecture and is facilitated by the new
performance monitoring capabilities. It should be pointed out that due to the extensive and specific
requirements on real operating system schedulers, only a few ideas with the best enhancement/cost ratio
have been implemented as a real world scheduling policy.

2.3.1 Traditional schedulers

Traditionally, the task scheduling problem [5] considered a scenario of a multiprogrammed workload
competing for a single processor. Various scheduling algorithms were developed for system classes
with differing requirements, such as the batch systems, interactive systems and real-time systems. The
traditional algorithms try to heuristically solve a set of disjunctive goals, including maximization of
throughput, minimization of response time, keeping fairness and assuring proportionality defined by the
user. Many of the very basic algorithms (see [5]) form the foundation of today’s real world operating
system schedulers (e.g. [19]). From our point of view, it is important to observe that the classical
single-CPU scheduling algorithms are very loosely bound to the underlying hardware; typically, their
input consists of the task lists, task prioritization and feedback gained from observing how the assigned
time quanta are consumed by the tasks.

2.3.2 Symmetric multiprocessing schedulers

The advent of shared-memory multiprocessor configurations (SMP) advanced the scheduling complexity,
forcing the scheduler to map a set of tasks to a set of processors. According to the topology of the
system, multiple costs and consequences of the task switches have to be considered. Tucker and Gupta
[20] observe a significant degradation of parallel application performance when the underlying scheduling
algorithm implements only a simple round-robin algorithm and multiple processes contend for multiple
processors. This fact triggered the development of schedulers that are more aware of the underlying
hardware topology. Squillante and Lazowska [8] propose to avoid the corruption of per-processor caches

9

CHAPTER 2. RELATED WORK

by using processor cache affinity strategies in schedulers. This idea is also present in the current real
world schedulers (e.g. [19]).

Cache-affinity scheduling [8] has since become a standard way of task scheduling on SMP architectures
[19] and also many proposed scheduling algorithms target the cache behaviour as one of the most
important performance predictors (e.g. [21, 22, 18, 23]). But the cache performance is apparently not
the only usable predictor. For instance, Antonopoulos et al. [9, 24] suggest to consider processor-
memory bus performance as a potential bottleneck of the SMP and thus, as a controlling variable for the
scheduling mechanisms. They proposed scheduling algorithms which use hardware performance counters
to estimate the bus bandwidth of applications.

2.3.3 First performance-aware schedulers

The obvious fact that scheduling performance is influenced mainly by the concrete workload brings the
attention of many researchers to the problem of adapting the scheduling mechanisms to a particular ap-
plication requirements. Corbalan et al. [25] published scheduling mechanisms controlled by dynamically
observed application characteristics. They based their scheduling policies on the speedup of parallel pro-
gram regions and several other criterions reported to the scheduler by runtime libraries included in the
scheduled programs. This pattern appeared in many later works which, more interestingly, considered
hardware provided application characteristics instead of artificially computed ratios.

2.3.4 Simultaneous multithreading schedulers

Increased parallelism at subtle hardware levels introduced by multithreading techniques (such as simul-
taneous multithreading (SMT), [26]) triggered the emergence of the work on symbiotic jobscheduling
[23, 27]. The main idea is to search for a symbiotic schedule, i.e. a schedule consisting of properly
selected threads which leads to low processor resource contention and higher throughput. The proposed
scheduling algorithm consists of three phases called sampling, optimization and symbiosis. In the sam-
pling phase, the schedules are randomly perturbated and the performance characteristics from hardware
counters are collected, such as the number of instructions per cycle, number of cache hits, number of
conflicts in the floating point units etc. In the optimization phase, the schedule that is believed to be
the most symbiotic one is picked up and run in the symbiosis phase. Only single processor systems are
considered.

Parekh et al. [18] proposed scheduling policies for SMTs designed to be driven by per-thread per-
formance metrics. The metrics are sampled from hardware performance counters and include the miss
rates of the L1 and L2 caches, instructions per cycle ratio, memory access time and other. The proposed
algorithms utilize greedy design patterns, which means the typically schedule the threads with the most
optimal values of the observed ratios. Only single processor systems are considered.

2.3.5 Schedulers for symmetric multiprocessing with SMT processors

Nakajima et al. [22] target the multiprocessor multithreaded environment and propose a load-balancing
scheduling assistant. The assistant relies on hardware-provided performance metrics including the cache
misses, number of load and store operations, bus activity and other. The processors with high probability
of resource contention are found by defining a threshold for each of the performance metrics. Once a
resource contention is detected, the processors with the highest and the lowest load are found (processor
load is computed from the hardware performance metrics) and a pair of processes is swapped between
the two most unbalanced processors.

McGregor et al. [28] proposed a scheduling policy based on the concept of thread pairing, where
threads with opposite extremal values of selected performance metrics are paired and scheduled together
on one single processor. The suggested performance metrics are the rate of stall cycles, rate of cache
misses and rate of bus transactions. The rates are based on the hardware performance monitoring. To
avoid noise in the observations, performance metrics are gathered with a small history window and a
smoothing function (moving average) is applied.

10

CHAPTER 2. RELATED WORK

2.3.6 Chip multi processing schedulers

Recent processor architectures which involve multiple SMT processors in a chip multiprocessing envi-
ronment are considered by Fedorova et al. [29]. They propose a two-phase scheduling algorithm which
aims at fair usage of the second level caches, which are shared among the multiple cores in one proces-
sor package. The algorithm uses a simple analytical cache model based on the hardware performance
counters.

DeVuyst et al. [30] extend the algorithms of symbiotic scheduling [23, 27] and suggest improving
the search space of possible schedules by considering the unbalanced schedules as well. Their scheduler
estimates processor performance and power requirements by using hardware counters.

Results on the design of multi-core architectures with a heterogeneous core set are published by
Kumar et al. [31]. A scheduling policy is proposed which uses hardware performance counters in
sampling phase of a two-phase scheduling algorithm to estimate execution profile of the workload.

2.4 Power-aware computing

As Chapter 1 mentions, the power consumption of modern processors is often the limiting parameter of
their performance. Subsequently, it is desirable to perform a careful analysis of the power consumption
and temporal and logical distribution of the energy in the processor. Moreover, power consumption of
a running system can be effectively influenced by software.

Joseph and Martonosi [32] discuss the problem of conversion between the commonly available hard-
ware performance counters and metrics of dissipated power for a particular processor component. They
construct a mapping between the processor performance counters and per-unit power metrics. Similar
analytical power models are concerned in Kadayif et al. [33]. The approach is later revisited for the
case of more recent processors with better performance counters by Isci and Martonosi [34], who provide
per-component power weightings for Intel R© Pentium 4 processors and use them to compute a detailed
decomposition of their per-processor power measurements (which were obtained by using a physical
measurement procedure). In all these works, the hardware performance counters are involved as the
essential source of insight into the internal structures of the processor.

Curtis-Maury et al. [35] propose algorithms for self-adaptation of parallel programs. They target
SMP machines built up from SMT processors. They use information from the hardware performance
counters to predict performance of parallel regions and balance the performance and power consumption.
Apart from the frequently used instruction-per-cycle ratio, more advanced metrics are concerned (e.g.
the rate of mispredicted branches).

Weissel and Bellose [36] suggest to continuously adapt the processor frequency to the observed run-
time behaviour of the workload. The processor frequency is scaled on each task switch with the goal
of optimizing the power consumption and preserving the performance degradation in given boundaries.
The run-time thread execution profiles are obtained by sampling the hardware performance counters.

Power density and overheating problems of multicore processors with SMT cores are targeted by
Powell et. al. [37]. Two complementary thread assignment strategies are proposed, one that maximizes
the usage of the per-core resources so that the overheated units cool down simultaneously, the second
that migrates the threads of overheated cores to more suitable cores. In both strategies, the hardware
performance counters provided by the processor are used to discover the run-time characteristics of the
threads and cores (e.g. instructions-per-cycle ratio, integer/floating-point character, resource usage).

2.5 Wide-area performance monitoring

When seen from a greater distance, the problems and logical structures of wide-area performance mon-
itoring are analogical to those of chip multiprocessing. In both domains, the task is to deliver the
performance data from multiple nodes interconnected by a shared data channel while minimizing the
impact on the performance and consumed bandwidth.

Mooney et al. [38] present a cluster monitoring framework designed with the goal of supporting
fine grained performance data delivery. The framework consists of a set of client modules and of a

11

CHAPTER 2. RELATED WORK

data collection server. The client modules sample the CPU performance data and the operating system
status which is then encoded into an XDR representation and multicasted by the UDP protocol to the
server. Performance metrics include the bytes-per-cycle ratio for memory access and the number of flops
(floating-point operations per second). The hardware performance counters are used as a source for the
performance metrics.

Ganglia monitoring framework [6] is a distributed monitoring system with an emphasis on scalability
and hierarchical organization. In Ganglia, the local node information is collected by a monitoring
daemon and communicated by multicast packets within the originating cluster. A set of clusters can
be interconnected to a federation using a meta daemon which polls information from the representative
cluster nodes. The data is encoded in the XDR and transferred in XML representation. The built-in
performance metrics capture mainly the operating system status (memory, processor utilization, clock)
and CPU load; they can be extended by a set of user-defined metrics.

Similar communication patterns can be found in other cluster monitoring systems, such as [39, 40, 41].

12

Chapter 3

Compressive sampling

Many scientific and engineering areas deal with the problem of signal processing. Real world signals often
need to be captured, transferred and processed. As an example, consider sound recordings, photography,
medical imaging, navigation etc. Because digital resources are very limited in their resolution and
bandwidth, signals are sampled and often compressed.

Traditionally, signal sampling and compression phases are treated separately. First, the signal is
sampled and consecutively, the compression is applied. In many cases, this involves unnecessary collection
of the whole signal, which is then compressed and its substantial part is thrown away. Compressive
sampling [1, 2, 3] tries to answer the question, whether it is possible to compress a signal directly in
the sampling phase in such a way that only the data that suffice to reconstruct the signal is transferred.
Under certain assumptions, it is possible to achieve this with a high probability.

3.1 Basic concepts

In the following text, we concentrate on the task of sampling, compression and recovery of a discrete
signal f ∈ R

n.
By correlating the signal to a set of basis vectors {ψk}, k = 1, ...,m, ψk ∈ R

n, we obtain samples
y ∈ R

m:
yk = 〈f, ψk〉, k = 1, ...m

We will denote this procedure as signal sampling.
Note that not necessarily m = n; we will be interested in cases when m << n. This setup is

sometimes described as signal undersampling and in compressive sampling, it is the way to achieve
signal compression.

Signal recovery takes a vector of samples y ∈ R
m and reconstructs the signal estimate f ′, such that

the constraint yk = 〈f ′, ψk〉, k = 1, ...m holds. As long as m < n, there are infinitely many candidates
for f ′.

3.2 Sparsity of the input signal

Compression principles are often based on the fact that the signal being compressed has a concise
representation in some basis (sometimes called domain). For instance, natural images are known to be
concisely representable in the wavelet domain [42]. In order to develop a compression theory and to
provide theoretical guarantees of the signal recovery, we have to somehow formally express the notion
of compressibility. The formal model of a compressible signal will be then a part of the assumptions in
the theoretical guarantees of recovery.

Let us distinguish the following definitions.

(i) Sparse signal

(ii) Approximately sparse signal

13

CHAPTER 3. COMPRESSIVE SAMPLING

(iii) Compressible signal

3.2.1 Sparse signal

A sparse signal has a concise representation in a given basis. Technically speaking, this means that when
the signal is expressed as a vector in R

n, it uses only a limited portion of the coefficients. We will use
the following sparsity definition, so that we can state how much a signal is sparse [1]:

Definition 1. Let f ∈ R
n be a vector and Ψ an orthonormal basis consisting of basis vectors ψ1, ..., ψn.

Let x ∈ R
n be a representation of vector f in basis Ψ, i.e.

f =
∑

xiψi

We say that f is S-sparse in Ψ if |{j;xj 6= 0}| ≤ S.

Informally speaking, an S-sparse signal has at most S non-zero entries in its coefficient vector. Note
that the notion of sparsity is tightly bound to the chosen basis. Finding the basis providing a concise
(sparse) representation of the signal is important for the compression to work. Refer to Section 3.3 to
see the role of sparsity in compressive sampling assumptions.

3.2.2 Approximately sparse signal

An approximately sparse signal does not obey exactly the strict definition of sparsity. This model is
practical when we work with real world signals. Assume we have a signal f and a sparsity level S. Then,
let us denote fS the signal which we obtain if we take only the S largest coefficients of f in some basis
Ψ. If the signal f is S-sparse in Ψ, we have clearly ‖f − fS‖= 0. However, if the signal is not exactly
S-sparse, we can use the lp norm ‖f − fS‖lp as an indicator of the noise introduced when we assume
the signal is S-sparse. If we can find reasonable bounds for ‖f − fS‖lp , we say that f is approximately
sparse.

We will see that in many cases, the theoretical guarantees on the recovery stability are provided
with respect to the deviation of the signal from the assumed sparsity. For instance, we can say that
the recovery is stable if the reconstructed signal differs from the original one only proportionally to
‖f − fS‖l1 . See Theorem 2 for a stability result on the l1-minimization recovery.

3.2.3 Compressible signal

The notion of signal compressibility offers the biggest interpretation freedom of the three definitions we
mention. Sparse signals are compressible by definition, because we can represent them only by their
non-zero coefficients. However, a compressible signal does not have to be necessarily sparse; instead, it
can be sufficient when its coefficients decay steeply. We will restrict ourselves to the definition provided
by Candès in [43]:

Definition 2 (Signal representation in a weak ball of given radius, [43]). Let f ∈ R
n be a vector and Ψ

an orthonormal basis consisting of basis vectors ψ1, ..., ψn. Let Ψ(f) be representation of f in Ψ. Order
the coefficients of Ψ(f) such that

|Ψ(f)|(1) ≥ |Ψ(f)|(2) ≥ ... ≥ |Ψ(f)|(n)

We say that Ψ(f) belongs to the weak lp ball of radius R, if

|Ψ(f)|(i) ≤ R · 1

i1/p
for all 1 ≤ i ≤ n

where p > 0, R > 0.

A signal belonging to a weak lp ball has coefficients in Ψ that decay like a power law. The p parameter
controls the speed of the decay. Candès proves the immediate consequences of this property [43], we
have

‖f − fS‖l2 ≤ C ·R · S−p

We see that this type of compressible signal is approximately sparse.

14

CHAPTER 3. COMPRESSIVE SAMPLING

3.3 Signal reconstruction theorems

In this section, we summarize the theoretical background of compressive sampling. The theorems are
categorized according to the characterization of the sampling matrix. First, the RIP property is intro-
duced which can be used as a characterization of any sampling matrix. Subsequently, the theorems for
more specific sampling matrices are listed, including the orthogonal, random and incoherent sampling
matrices.

3.3.1 General sampling matrices

Consider the task of recovering a signal f with a sparse representation in basis Ψ from the measurements
y = Ψf . We will see that it is possible to recover the signal exactly if the signal is sparse and the sampling
matrix Ψ meets certain assumptions.

Definition 3 (Restricted Isometry Property, [44]). Let Ψ = {ψj}j∈J be a matrix with |J | columns. For
every integer 1 ≤ S ≤ |J |, the number δS is the smallest quantity such that

(1 − δS)‖c‖2 ≤ ‖ΨT c‖2 ≤ (1 + δS)‖c‖2

for all column subsets T ⊂ J , |T | ≤ S, and all real coefficient vectors (cj)j∈T . We say that δS is the
S-restricted isometry constant of Ψ.

Given the matrix Ψ and the column count S, small values of δS indicate that every column set with
at most S columns drawn from Ψ behaves nearly like an orthonormal system. Indeed, multiplication by
an orthonormal matrix does not change vector length 1 and this property is approached the more the
δS is numerically lower.

Theorem 1 (Exact recovery of an exactly sparse signal, [44]). Let Ψ be an n-column matrix, S ≥ 1,
f ∈ Rn an S-sparse vector, y = Ψf the measurement vector. If δ2S + δ3S < 1, then the solution f ′ to
the l1 minimization recovery task

min
f ′∈Rn

‖f ′‖l1 subject to Ψf ′ = y

is exact.

The theorem says that if the given matrix has sufficiently small S-restricted isometry constants (which
in language of [43] means that the matrix obeys the uniform uncertainty principle), then the l1-norm
optimization yields an exact reconstruction of all S-sparse signals. Note that for practical usability,
we have to find a sampling matrix fulfilling given assumptions and we can work only with signals that
are exactly S-sparse. However, this is often not the case, as many real world signals tend to only be
approximately S-sparse.

Having a vector f , we will denote fS the vector obtained by setting all but the biggest S coefficients
of f to zero.

Theorem 2 (Stable recovery of an approximately sparse signal, [45]). Let Ψ, S, f and y be set up as
in the previous theorem. If δ3S + δ4S < 2, then the solution f ′ to the l1 minimization recovery task obeys

‖f ′ − f‖l2 ≤ C · ‖f − fS‖l1√
S

The expression ‖f − fS‖l1 =
∑

i|(f − fS)i| reflects the amount of noise introduced by the “sparsifi-
cation” of f . If f is already S-sparse, the theorem says ‖f ′ − f‖l2 = 0, which is a statement about an
exact reconstruction of an exactly S-sparse signal which we obtained earlier. However, when f is not
exactly S-sparse, we get an upper bound on the reconstruction error which is proportional to how much
the signal f differs from assumed sparsity. The constant C behaves reasonably [45]. The stability can
also be expressed using the l1 norm [2].

1By definition, orthogonal matrix A is a matrix such that AT A = I. When applying it to vector v, the length persists:
‖Av‖l2 = ‖v‖l2. This is because ‖Av‖2

l2 = (Av)T (Av) = (vT AT)(Av) = vT (AT A)v = vT v = ‖v‖2
l2.

15

CHAPTER 3. COMPRESSIVE SAMPLING

3.3.2 Orthogonal sampling matrices

The restricted isometry property is a general criterion on the sampling matrix. If we want to be more
concrete, we may restrict ourselves to the class of orthogonal sampling matrices. By doing that, we
also get better understandable estimates on the number of samples that is required to achieve a perfect
reconstruction.

Theorem 3 (Exact recovery of an exactly sparse signal, orthogonal sampling matrix, [46]). Let Ψ be an
orthogonal matrix of size n× n with entries of magnitude O(1/

√
n). Let Ω be a randomly chosen subset

of measurement vectors from Ψ of size m. Let f be an S-sparse real signal of length n. If

m = O(S log4 n)

then f can be exactly reconstructed with high probability from measurements y = ΨΩf by solving the l1
minimization recovery task

min
f ′∈Rn

‖f ′‖l1 subject to ΨΩf
′ = y

We see that the number of measurements depends linearly on the signal sparsity and polylogarithmi-
cally on the length of the signal. To illustrate how assumptions of the theorem can be varied, consider
that the coefficient set T is known which forms the support of the signal in the sparsity domain. Then
the assumptions are stronger: where Theorem 3 requires the conclusions to hold for all possible T ’s, we
get a tighter bound if the T is fixed. Moreover, a broader class of sampling matrices can be considered.
Suppose we measure the “flatness”’ of the sampling matrix in the following way:

Definition 4 (Matrix concentration, [47]). Let Ψ be a matrix, we say that

µ(Ψ) = max
ij

|Ψij |

is the matrix concentration of Ψ.

If we follow the conventions from [47] and normalize Ψ such that Ψ∗Ψ = nI 2 , we get the bound

1 ≤ µ(Ψ) ≤ √
n

The value of
√
n is achieved if the matrix contains a row with only one non-zero entry (that must be of

size
√
n). The value of 1 is achieved by ”‘flat”’ matrices.

Theorem 4 (Exact recovery of an exactly sparse signal, orthogonal sampling matrix and fixed signal
support, [47]). Let Ψ be an orthogonal matrix of size n × n normalized such that Ψ∗Ψ = nI. Let T
be a fixed support set of signal domain, let {z} be a sequence of +-1 drawn from symmetric Bernoulli
distribution (i.e. P (zi = 1) = P (zi = −1) = 1

2). Let Ω be a randomly chosen subset of measurement
domain of size m. If

m ≥ C0 · |T | · µ(Ψ)2 · log
n

δ
and

m ≥ C ′
0 · log2 n

δ

for some fixed C0, C
′
0, then every signal f supported on T with signs matching z can be recovered from

measurements y = ΨΩf by solving linear l1 minimization recovery task

min
f ′∈Rn

‖f ′‖l1

subject to Ψf ′ = y with probability exceeding
1 − δ

We include this theorem in exact wording from [47], so that the underlying technical means of
describing the signal set are visible. The theorem says that in order to have the l1 reconstruction working
with high probability, we have to choose the number of measurements depending on the “quality” of the
sampling matrix, required probability and signal sparsity.

2Ψ∗ is the conjugate transpose of Ψ

16

CHAPTER 3. COMPRESSIVE SAMPLING

3.3.3 Random sampling matrices

It was shown that for several types of random matrices, the assumptions of the previous theorems hold
with a high probability [43]. This is interesting as the matrices are completely unstructured, produce
noise-like, universal measurements and can be effectively implemented in hardware (see Chapter 7).

Theorem 5 (Compressive sampling of exactly sparse signals with random matrices, [43]). Let Ψ be a
K ×N matrix with elements sampled independently and identically from

1. the normal distribution N(0, 1
K) or

2. the symmetric Bernoulli distribution, i.e. P (Ψij = 1√
K

) = P (Ψij = − 1√
K

) = 1
2

Then for a sufficiently sparse signal, i.e. an S-sparse signal with

S ≤ C · K

log N
K

the compressive sampling recovery Theorems 1, 2 hold with probability

1 −O(exp−γN)

for some γ > 0.

The following theorem summarizes the stability of l1 recovery for compressible signals, i.e. for signals
that are not sparse, but belong to a weak lp ball (see Definition 2). Thus, we assume that the signals
have rapidly decaying coefficients in some basis; this is a somewhat weaker assumption than assuming a
sparsity.

Theorem 6 (Compressive sampling of compressible signals with random matrices, [43]). Let Ψ be a
K ×N random matrix and let f ∈ Rn be in a weak lp ball of some radius R with decay speed 0 < p < 1.
Choose a precision constant α > 0. With probability at least 1 − O(n−ρ/α), the solution f ′ to the
l1-minimization task can be bounded as

‖f − f ′‖l2 ≤ C ·R · (K

logN
)−r

where r = 1
p − 1

2 . The constant C depends on the decay speed p and precision constant α.

3.3.4 Incoherent sampling and recovery matrices

In the previous sections, we have considered the setup of recovering a signal f with a sparse representation
in a basis Ψ from the measurements y = Ψf . But it may happen that the signal f is not sparse in the
measurement basis Ψ, however, we know that it is sparse in some other basis Φ. We can use the same
sampling process involving only the matrix Ψ and change the recovery process to use both the bases Ψ
and Φ. We then obtain the signal represented in Φ - so from now on, we will call Φ the representation
basis. The important result is that when the pair of sampling matrix and representation matrix obeys
certain properties, we can use the compressive sampling theorems stated above.

We will now define a measure of basis coherency, to be able to express constraints on mutual repre-
sentability of a pair of bases.

Definition 5 (Mutual coherence, [1]). Let Ψ =
[

ψ1 ψ2 ... ψn

]

, Φ =
[

φ1 φ2 ... φn

]

be orthonor-
mal bases of R

n. The mutual coherence of Ψ and Φ is

C(Ψ,Φ) =
√
n max

1≤k,j≤n
|〈ψk, φj〉|

Note that the absolute value of the scalar product reflects the linear dependency of the two vectors.
By taking into account the maximum dependency between vectors of given bases, mutual coherency
expresses how much a basis can be expressed using the other one. Mutual coherence has higher values
for bases with correlated vectors and lower values for the other ones. It is then useful to know that

17

CHAPTER 3. COMPRESSIVE SAMPLING

Theorem 7. For any Ψ, Φ bases of R
n, 1 ≤ C(Ψ,Φ) ≤ √

n

Now an analogy of the Theorem 4 can be derived for a structured recovery matrix. Suppose we
sample randomly in the Ψ =

[

ψ1 ψ2 ... ψn

]

domain:

yj = 〈f, ψj〉 for j ∈ M

where M selects a subset of m = |M| measurements. The recovery matrix is changed to ΨΦ and the
recovery task reformulated as

min
f ′∈Rn

‖f ′‖l1 subject to 〈ψj ,Φf
′〉 = yj for all j ∈ M

Note the form of the minimization constraint. Its purpose is to keep the signal estimate f ′ coherent with
the measurements y. First, the signal estimate f ′ is transformed to the Φ domain and consequently, it
is put through the sampling process and correlated to the measurements. Let us conclude this to the
following theorem:

Theorem 8 (Compressive sampling with incoherent bases, [47]). Let Ψ =
[

ψ1 ψ2 ... ψn

]

, Φ be
orthonormal n-dimensional bases, f ∈ R

n be a K-sparse vector in Φ. Let y ∈ R
m be a measurement

vector obtained by selecting m measurements in Ψ domain randomly and uniformly, i.e. yj = 〈f, ψj〉 for
j ∈ M, M indexing the subset of columns of Ψ. If

m ≥ ǫ ∗ C(Ψ,Φ)2 ∗K ∗ log
n

δ

for some ǫ > 0, δ > 0 then the solution to l1 minimization recovery task

min
f ′∈Rn

‖f ′‖l1 subject to 〈ψj ,Φf
′〉 = yj for all j ∈ M

is exact with probability exceeding 1 − δ. The result holds for a fixed support and signals with signs
matching a fixed sign sequence as in the Theorem 4.

For approximately sparse signals, the results of the Theorem 2 hold analogically.

3.4 Recovery algorithms

The acquisition part of compressive sampling framework consists of correlating the signal f to given
sampling matrix Ψ. The measurement vector y is then transferred to the recovery algorithm whose task
is to expand it to the best possible approximation f ′ of the original signal f . This is a very demanding
task; a straightforward solution would be of exponential time complexity. Indeed, the system of equations

y = Ψf ′

itself is ill-posed for sampling matrices Ψ with k rows and n columns, when k < n. However, we
are naturally interested in matrices with more columns than rows, because we use them to ”extract”
important information from a signal of length n and to produce its compressed form of length k. In
compressive sampling, we use the additional a priori assumption that the signal f is sparse and thus we
are searching only for sparse solutions f ′. If we know this, we can rewrite the recovery task as

min‖f ′‖l0 subject to y = Ψf ′

where ‖f ′‖l0 = |{i; f ′i 6= 0}| is the l0 quasi-norm counting the number of non-zero elements in f ′. By
minimizing the l0-norm, we are searching for the sparsest candidate fulfilling given constraint. However,
this is a task of combinatorial complexity that is not solvable in practical applications. Therefore,
multiple approaches have been developed to deal efficiently with the recovery of sparse signals.

18

CHAPTER 3. COMPRESSIVE SAMPLING

3.4.1 Optimization with relaxed objective or constraint function

The straightforward l0-minimization task can be refined in two ways to make it computationally feasible.
Either the objective function (the l0 sparsity proxy) can be altered or the optimization constraint can be
relaxed. We give two representative approaches, Basis Pursuit and Gradient Projection, along with their
variations. The Basis Pursuit [48] uses the l1-norm (‖f ′‖l1 =

∑

i|xi|) instead of the l0-norm as a proxy
for signal sparsity. This makes it possible to recast the task as a linear program. Gradient projection
methods recast the recovery task as an unconstrained quadratic program which is solved iteratively by
projecting the gradient of the objective function onto the set of feasible solutions.

Basis pursuit with equality constraints

Basis Pursuit was first introduced in [48] as a principle of signal decomposition into atoms of given
overcomplete dictionary. The decomposition is required to be optimal in the sense that its l1 norm is
minimized. The key idea is that the l1 minimization promotes the sparse decompositions.

Basis pursuit with equality constraints is the basic setup designed for an exact signal recovery.

Definition 6 (Basis pursuit with equality constraints, [48]). Given the signal f , recovery matrix Ψ
and measurement vector y, we say that min‖f ′‖l1 subject to Ψf ′ = f is the basis pursuit with equality
constraints.

Theorem 1 states that it is possible to exactly recover a sufficiently sparse signal by a basis pursuit,
provided that the sampling matrix Ψ fulfills given assumptions. If the signal is not exactly sparse, the
recovery method is still reasonably stable, see Theorem 2. Theorem 8 summarizes conditions under which
the basis pursuit can be used to recover measurements in an incoherent basis with a high probability of
success.

Basis pursuit with quadratic constraints

In practice, it can be desirable to relax the equality constraints prescribed by the elementary form of basis
pursuit (Definition 6). In particular, if the observed data is distorted by a deterministic or stochastic
unknown error term e with known bounds, i.e. ‖e‖l2 ≤ ǫ, a quadratic constraint can be used.

Definition 7 (Basis pursuit with quadratic constraints, [45]). Given the signal f , recovery matrix Ψ,
measurement vector y and error bound ǫ, we say that min‖f ′‖l1 subject to ‖Φf ′ − y‖l2 ≤ ǫ is the basis
pursuit with quadratic constraints.

The constraint is described as “quadratic” because it uses the l2-norm to measure the recovery error,
‖f ′‖l2 =

√

x2
1 + ...+ x2

n. Therefore, bigger deviations are quadratically penalized, smaller deviations are
neglected.

According to [45], recovery of exactly sparse signals using the basis pursuit with quadratic constraints
is possible with an error that is proportional to the amount of noise ǫ. For signals that are not exactly
sparse, the recovery error is proportional to the noise ǫ and noise introduced by the sparsity assumption
(see Theorem 2 of [45]).

Basis pursuit with bounded residual correlation (Dantzig selector)

Candès and Tao named their estimator proposed in [49] the Dantzig selector as a tribute to the inventor
of linear programming. The idea is to relax the linear programming constraint in such a way that the
residual vector y − Ψf ′ is not much correlated to the recovery matrix Ψ.

Definition 8 (Dantzig selector, [49]). Given the signal f , recovery matrix Ψ, measurement vector y
and error bound γ, we say that min‖f ′‖l1 subject to ‖Ψ(Ψf ′ − y)‖l∞ ≤ γ is the Dantzig selector.

The l∞-norm is defined as
‖f ′‖l∞ = sup

1≤i≤p
|xi| ≤ λpσ

19

CHAPTER 3. COMPRESSIVE SAMPLING

There are proposed several reasons for using such an estimator [49]; among others, the estimation
procedure is not sensitive to any orthogonal transformations applied to the data vector. The Dantzig
selector can be recast to a linear programming problem.

Candès and Tao show that for models where measurements are distorted by Gaussian noise with
known variance, i.e. the measurements are of form y = Ψf + ǫ, ǫ ∼ N(0, σ2In), the Dantzig selector
recovers with high probability with error proportional to variance σ2, sparsity and logarithm of signal
length [49].

Gradient projection for sparse reconstruction (GPSR)

Let Ψ be a k × n matrix, let y be the measurement vector. The GPSR [50] targets the solution of the
optimization problem

min
f ′

1

2
‖y − Ψf ′‖2

2 + λ‖f ′‖1

for some λ > 0. The same problem appears e.g. in Basis Pursuit De-Noising [48]. The solution f ′

can be viewed as a function of the parameter λ and the optimization task as a decomposition of the
measurement vector y into a signal part and error part:

y = Ψf ′(λ) + r(λ)

where r(λ) is the residual error. When a bigger penalty is given to the l1 norm of f ′ by using a bigger
λ, a greater amount of the signal is moved to r and a more de-noised solution f ′ is obtained.

GPSR rewrites the aforementioned optimization problem as the quadratic program

min
z
cT z +

1

2
zTBz subject to z ≥ 0

where F (z) := cT z + 1
2z

TBz is the objective function (for B and c, see [50]). The solution is searched
iteratively with refinements controlled by the gradient ▽F computed at each iteration. The computation
of ▽F requires only matrix-vector products involving Ψ, ΨT . Therefore the GPSR is well suited for the
class of applications where Ψ cannot be stored explicitly but there are fast transforms to compute Ψx
and ΨTx for a vector x.

Figueiredo et. al. [50] prove that the GPSR algorithm converges to the solution of the quadratic
task at an R-linear rate 3 . Four different termination criterions are provided.

3.4.2 Greedy pursuits

The greedy strategy is to apply a sequence of locally optimal decisions to reach the globally optimal
solution. In contrast, the optimization methods (Section 3.4.1) explicitly express the global optimum (i.e.
the maximum reconstruction quality) and derive the steps to approach it. Greedy algorithms typically
start with an empty solution and build the solution additively, whereas the optimization methods start
with some initial solution which is iteratively refined [48]. Naturally, these conceptual differences lead
to different practical properties; greedy algorithms are often empirically faster, but can easily loose their
way by making a wrong decision. Optimization algorithms offer better theoretical guarantees but are
computationally more complex.

In the description of greedy algorithms, we adhere to the terminology common in the field of signal
approximation. In particular, the recovery task of finding f ′ such that y = Ψf ′ is referred to as the
decomposition of y into the atoms of the dictionary Ψ. The setup is quite general, as it does not require
the matrix Ψ to be a basis. Instead, Ψ is a (possibly redundant) collection of elements (atoms) which
can be used to express the signal y. For example, Ψ may combine Fourier waveforms and spikes to
provide an efficient sparse representation of y.

An important class of greedy algorithms used in compressive sampling is based on the ideas pioneered
by Mallat and Zhang [51]. Their algorithm is called matching pursuit and since its birth in 1993, it has

3A sequence {xk} converges at an R-linear rate to L if there exists a sequence {ǫk} which converges linearly to zero
and |xk − L| ≤ ǫk for all k.

20

CHAPTER 3. COMPRESSIVE SAMPLING

given rise to many modifications such as orthogonal matching pursuit, regularized orthogonal matching
pursuit and compressive sampling matching pursuit. Therefore, this class of algorithms is sometimes
called greedy pursuits [52].

Matching pursuit

The matching pursuit (MP) algorithm was first introduced in [51] as a method of signal decomposition
in terms of atoms of a given overcomplete dictionary. It guarantees recovery of the signal components
which belong to the span of the dictionary, however, the guarantee is only asymptotical.

Algorithm 1 gives a pseudo-code of the matching pursuit. The algorithm works by additively refining
the signal approximation and keeping track of the residual error. At the beginning of the algorithm,
the residual error is set to the signal being decomposed - in the case of compressive sampling, to the
measurement vector. At each step, a vector from the dictionary that has the highest correlation with the
residual error is picked up (i.e. the vector that explains the residual error the best) and the signal ap-
proximation is updated by that correlation. In other words, the approximation is updated by repeatedly
trying to explain the biggest portion of the residual error. In a practical implementation, the algorithm
stops when the residual error is below a given threshold.

Data: y ∈ Rk, Ψ
Result: f ′ ∈ Rn

xi := 0 for i = 1, ...n;
r := y;
while ‖r‖ ≤ ǫ do

/* Maximum correlation */

m := 0 ;
/* Index of the atom with the maximum correlation */

j := 0 ;

/* For all atoms... */

for i := 0; i < n; i+ + do

/* Compute correlation of the atom and the residual error */

ci := 〈r, ψi〉 ;

/* Look for the maximum correlation */

if |ci| ≥ m then
m := |ci| ;
j := i ;

end

end

/* Update the signal approximation */

f ′ := f ′ + cjψj ;
/* Update the residual vector */

r := r − cjψj ;
end

Algorithm 1: Matching pursuit algorithm, [51]

Orthogonal matching pursuit

The orthogonal matching pursuit (OMP) was proposed by Pati et al. [53] as a refinement to the MP
algorithm by Mallat and Zhang [51]. It aims at providing better guarantees for convergence; unlike MP,
it guarantees convergence in at most n steps for an n-element dictionary. More precisely, the partial
correctness statement is that at any given step, the algorithm has an optimal projection of the input
signal onto the subset of the dictionary that was selected up to that time. At each step, one more
atom of the dictionary is selected that has not been selected yet. The convergence statement is that the
magnitude of the residual error goes to zero as the algorithm proceeds. Thus, at least after proceeding

21

CHAPTER 3. COMPRESSIVE SAMPLING

through all dictionary entries, an optimal projection of the given signal on the subset of given dictionary
is returned. Note that this notion of optimality does not say anything about the right choice of the
dictionary subset. The algorithm minimizes the residual error, but can choose a wrong dictionary atom
that prevents it from the right way of lowering the residual error.

Technically, the main difference with respect to MP is that OMP keeps track of the selected subset
of the dictionary atoms and keeps the residual error orthogonal to it. This involves computing a least
squares problem of size n in each step. Tropp and Gilbert [54] showed the following properties of OMP
for the case of random measurement matrices.

Theorem 9 (Recovery by orthogonal matching pursuit, [54]). Fix δ ∈ (0, 0.36) and S-sparse f ∈ Rn.
Then construct a measurement matrix Ψ with +-1 entries drawn from symmetric Bernoulli distribution.
Let y = Ψf be a measurement vector. If

m ≥ CS ln(
n

δ
)

for some C > 0, orthogonal matching pursuit reconstructs the signal from measurement vector y exactly
with probability at least 1 − δ.

Note that in comparison to similar theorems for basis pursuit (e.g. Theorem 5), this result is weaker
in the sense that it guarantees a highly probable recovery for a fixed signal and a randomly constructed
matrix. This means that one such random matrix is guaranteed to work with given probability only for
the fixed signal. In contrast, Theorem 5 for BP first fixes the random matrix and then guarantees the
exact recovery for a set of sufficiently sparse signals.

Regularized orthogonal matching pursuit

Needell and Vershynin [55] proposed a modification to the orthogonal matching pursuit which extends
the procedure of selecting atoms from the overcomplete dictionary. OMP selects the atom that is most
correlated to the residual error and has not been selected yet. Regularized OMP (ROMP) computes the
correlation of the residual error to all remaining dictionary atoms and selects S correlations biggest in
magnitude, where S is the sparsity level of the signal to approximate. Then the regularization step is
performed: from the set of S atoms with the highest correlations, a subset with “comparable” magnitudes
of correlations (see [55]) and maximum l2 energy of the magnitudes is selected. The subdictionary used
to express the signal is augmented by the whole selected set of atoms.

The goal of these modifications is to come with better guarantees of recovery than OMP:

Theorem 10 (Recovery by regularized orthogonal matching pursuit, [55]). Let Ψ be a measurement
matrix satisfying the restricted isometry conditions defined in [55]. Let f ∈ Rn be an S-sparse vector
and y = Ψfbe the measurement vector. Then after at most n iterations, ROMP outputs a set of atoms
I such that I is a superset of f ’s support and |I| ≤ 2S. The signal f can be recovered exactly from
measurements y by computing (ΨI)

−1y.

The restricted isometry conditions defined in [55] are satisfied by random Gaussian, Bernoulli and
partial Fourier matrices. Note that similar probability assumptions are required as in Theorem 5.

Compressive sampling matching pursuit

The compressive sampling matching pursuit (CoSaMP) was introduced very recently by Needell and
Tropp [52]. As the name suggests, CoSaMP is derived from the matching pursuit. However, it combines
the greedy approach with ideas from other types of recovery algorithms. First, it does a non-adaptive
refinement of the signal estimate which is known from the iterative algorithms (Section 3.4.3). Second,
it assumes the exact signal sparsity is known (compare to sublinear algorithms, Section 3.4.4) and uses
it to parametrize the internals of the algorithm (see Algorithm 2).

Similarly to MP, CoSaMP keeps track of the residual error and tries to explain it in each iteration
by applying ΨT . The obtained “signal proxy” is searched for large coefficients which are candidates for
significant components of the estimated signal. A subset of the largest coefficients proportional to the

22

CHAPTER 3. COMPRESSIVE SAMPLING

assumed sparsity level is added to the support of the signal estimate which is iteratively constructed.
The signal estimate is then updated by computing the least squares estimate on the newly obtained
support. Finally, the estimate is thresholded to contain only the number of coefficients corresponding to
the signal sparsity.

Data: y ∈ Rk, Ψ, sparsity level m
Result: x ∈ Rn

/* Intialize signal approximation */

xi := 0 for i = 1, ...n;

/* Initialize residual error ax the measurement vector */

r := y;

/* Initialize support to an empty set */

S := ∅;
while stop criterion is not met do

/* Form signal proxy */

p := ΨT r ;

/* Merge support with 2m largest components of p */

S := S ∪ support(p, 2m) ;

/* Update the approximation by computing least-squares on the support set */

xS := LeastSquares(ΨS , y);
xI−S := 0;;

/* Take only m largest entries from x */

x := LargestEntries(x,m);

/* Update the residual error */

r := y − Ψx ;
end

Algorithm 2: CoSaMP algorithm, [52]

CoSaMP comes with uniform guarantees for all sensing matrices fullfiling restrictions on isometry
constant. The guarantees bound l2-norm of reconstruction error to be proportional to the amount of
noise assumed in the signal model (measurements y = Ψx + ǫ) and to the amount of noise introduced
by recovering a not exactly sparse signal.

3.4.3 Iterative thresholding

Iterative thresholding uses the Landweber iteration to converge to a signal approximation while repeat-
edly refining it by a thresholding function to ensure sparseness. The algorithm begins with an empty
(zero) approximation. In each step, the residual error is computed and “inverted” by applying ΨT . This
procedure yields an estimate of the residual error expressed in Ψ. To explain this error, the sparse ap-
proximation is updated by this estimate and consecutively, the thresholding is applied to filter significant
coefficients. This approach was analyzed by Daubechies et. al. [56].

23

CHAPTER 3. COMPRESSIVE SAMPLING

Data: y ∈ Rk, Ψ
Result: x ∈ Rn

xi := 0 for i = 1, ...n;
while stop criterion is not met do

/* Update the coefficient vector */

x := x+ ΨT (y − Ψx) ;

/* Perform thresholding */

x := T (x) ;
end

Algorithm 3: Iterative thresholding, [56]

3.4.4 Sublinear algorithms

Gilbert et al. [57] proposed the chaining pursuit algorithm with recovery time sublinear in the length
of the reconstructed signal. Their approach is based on the theory of dimensionality reduction (see
e.g. [58]). In short, it is known that it is possible to reduce a set of points in R

n which have non-zero
coordinates in at most S dimensions to a subspace of O(S log2(n)) dimensions, provided that some
distortion can be accepted. Practically, this reduction is achieved by applying a specially constructed,
structured sampling matrix. The recovery algorithm works by extracting only the significant coefficients
of the signal, i.e. works in time proportional to the signal sparsity.

Chaining pursuit provides uniform guarantees of recovery for approximately sparse signals:

Theorem 11 (Recovery with chaining pursuit, [57]). With probability at least 1−O(d−3), the chaining
pursuit measurement operator Ψ has the following property. Suppose that f is a d-dimensional signal
whose best m-term approximation with respect to l1 norm is fm. Given the measurements y = Ψf of size
O(m log2 d) and the measurement matrix Ψ, the chaining pursuit algorithm produces a signal estimate
f ′ with at most m nonzero entries. The output f ′ satisfies

‖f − f ′‖l1 ≤ C(1 + logm)‖f − fm‖l1

In particular, if fm = f , then also f ′ = f . The time cost of the algorithm is O(m log2(m) log2(d)).

In comparison to the basis pursuit approach, chaining pursuit requires a special design of the sampling
matrix. At the time of sampling, BP does not require to know the sparsity basis of the signal; chaining
pursuit must perform the encoding by applying the sparse transformation at the sampling time. Chaining
pursuit requires slightly more measurements, in concrete, O(n2 log n) compared to O(nn

S) of BP with
random Gaussian matrix.

Recently, a similar algorithmic approach was proposed by the same authors as HHS Pursuit [59].
HHS Pursuit uses chaining pursuit as an optional preprocessing step.

3.4.5 Time complexity of recovery algorithms

Consider a recovery of n length, S-sparse signals from m measurements. Table 3.1 summarizes the
time complexity of the recovery if no special properties of the operators involved are exploited. By
employing fast transforms which are well known for many operators used in the recovery (such as the fast
Fourier transform, fast wavelet transform), the time complexity can be further lowered. Other important
criterions for quantitative comparison of recovery algorithms are spatial complexity and accuracy. We
refer the reader to [57] for a similar comparison involving the reconstruction accuracy.

3.5 Bases with low coherency

The theorems introduced in Section 3.3.4 can be practically used only if concrete pairs of incoherent
bases are known. We briefly visit some of the frequently used ones [1]. The representatives encompass
two perfectly incoherent pairs, the canonical (time) basis vs. Fourier basis and noiselet basis vs. wavelet

24

CHAPTER 3. COMPRESSIVE SAMPLING

Recovery task Technique Time complexity

Basis pursuit with equality constraint Linear programming O(m2n
3

2)
Basis pursuit with quadratic constraint Second order cone programming O(n3)

Basis pursuit with Dantzig selector Linear programming O(m2n
3

2)
GPSR Quadratic programming O(n2) per iteration

Matching pursuit Greedy algorithm O(mn) per iteration
Orthogonal matching pursuit Greedy algorithm O(Smn)
Regularized OMP Greedy algorithm O(Smn)
CoSaMP Greedy algorithm O(mn)

Iterative thresholding Iterative algorithm O(mn) per iteration

Chaining pursuit Combinatorial algorithm O(m log2(m) log2(n))

Figure 3.1: Time complexity of selected recovery algorithms. Signal length is n, signal sparsity S and
measurement count m.

bases. Both of them are interesting because they are perfectly or nearly perfectly incoherent to well
established domains of time-frequency analysis. We also mention the interesting case of random matrices
which are highly (but not perfectly) incoherent to any representation basis of choice. This has both
implementational and algorithmic consequences: only one sampling algorithm has to be implemented
while the search for the ideal decorrelation basis can evolve or the basis can be adaptively changed during
the recovery.

3.5.1 Canonical spike basis and Fourier basis

Canonical spike basis and Fourier basis are known to be maximally incoherent.

Canonical spike basis

The canonical spike basis consists of vectors having all coefficients set to zero except one (the spike).
Such a basis can be conveniently used to represent a signal using samples in the time or space domain.
Formally, a spike basis can be defined using the Dirac delta functions:

Definition 9 (Dirac delta function, [60]). The Dirac delta function on R is

δ(x) =

{

1, x = 0

0, x 6= 0

Note that we are using simplified definition of the Dirac function which is originally defined as a limit
of rectangular functions (see e.g. [61]).

Definition 10 (Canonical (spike) basis, [1]). We say that Ψ =
[

ψ1 ψ2 ... ψn

]

is a spike basis if

(ψk)i = δ(i− k)

Fourier basis

We are often interested in converting a signal represented in the time domain to a frequency domain,
or vice versa. This task is referred to as the time-frequency analysis. Fourier analysis is one of the well
known methods of the time-frequency analysis. It represents the analyzed signal in terms of harmonic
sinusoidal functions. The operation of transforming a signal f to the frequency domain using the Fourier
analysis is called Fourier transform. In its most general form, the Fourier transform concerns functions
of real arguments (i.e. f(t)) and is defined as [61]:

S(F) =

∫ ∞

−∞
f(t) · e−i2πFtdt

25

CHAPTER 3. COMPRESSIVE SAMPLING

The expression above defines a complex number describing the amplitude and phase of the frequency F
in the frequency representation of f(t). In the digital world, we are concerned with the discrete Fourier
transform (DFT) of a discrete signal f [t]. The resulting frequency representation S[F] is discrete as well
and has the following form:

S[F] =

N−1
∑

t=0

f [t] · e−i2π F
N

t

Definition 11 (Fourier basis, [61]). We say that a basis Ψ =
[

ψ1 ψ2 ... ψn

]

consisting of basis
vectors

(ψj)t = n−
1

2 ei2πjt/n

is called a Fourier basis.

3.5.2 Wavelets and noiselets

Wavelets

Wavelets [61] provide a way to perform time-frequency analysis using families of wavelet functions
parametrized by shift (translation) and scale. Compared to Fourier analysis, this approach yields better
results in analysis of non-periodic signals and signals with local discontinuities and changes. Given a
mother wavelet ψ(t), a family of wavelet functions ψa,b(t) is derived by shifting and scaling of ψ [61]:

ψa,b(t) =
1

√

|a|
ψ

(

t− b

a

)

where a denotes scale and b denotes shift.
The operation of decomposing a real signal f(t) 4 to the wavelet domain is called a wavelet transform.

In its most general form (continuous wavelet transform), it is defined as [61]:

CWTa,b(f) =
1√
a

∫

R

ψ

(

t− b

a

)

f(t) dt

where a, b are scale and shift, respectively. To be able to compute the wavelet transform practically
for sampled signals, the wavelet family is discretized. For m,n ∈ Z, a0 > 1, b0 > 0, the discretized child
wavelets are obtained as [61]

ψm,n(t) = a
−m/2
0 ψ(a−m

0 t− nb0)

where m denotes scale and n denotes shift. The discrete wavelet transform takes the form [61]

DWT (f) =
∑

m

∑

n

〈ψm,nf〉

The discrete wavelet transform can be effectively computed by exploiting the multiresolution structure
of wavelets and designing multiscale filter banks [62]. For example, the discrete Haar wavelet transform
can be computed in O(n) time, where n is the signal length.

There is a multitude of wavelet families with varying complexity of design and implementation. The
first wavelet was created by a Hungarian mathematician Alfred Haar in 1909 and is therefore called the
Haar wavelet. It is the simplest possible wavelet and is also considered as a special case of the Daubechies
wavelet [63]. The JPEG 2000 standard [42] employs the Cohen-Daubechies-Feauveau wavelet [63]. As
the detailed survey of wavelet families is beyond the scope of this work, we refer the reader e.g. to [63]
for a more elaborate discussion on the properties of different wavelet families.

4More precisely, we require f(t) ∈ L2(R)

26

CHAPTER 3. COMPRESSIVE SAMPLING

Noiselets

Noiselets [64] are functions designed to be totally uncompressible using the Haar wavelet analysis. They
can be shown to generate orthonormal bases for the spaces of Haar multiresolution analysis and feature
fast transform algorithms. The family of noiselets is constructed on the interval [0, 1)as follows:

f1(x) = χ[0,1)(x)

f2n(x) = (1 − i)fn(2x) + (1 + i)fn(2x− 1)

f2n+1(x) = (1 + i)fn(2x) + (1 − i)fn(2x− 1)

Here, χ[0,1)(x) = 1 on the whole definition interval [0, 1). The construction of noiselets can be
extended to R. It can be shown that

Theorem 12 (Orthogonality of noiselets, [64]). The set {fj |j = 2N , ..., 2N+1 −1} is an orthogonal basis
of the vector space V2N , which is a space of all possible approximations at the resolution 2N of functions
in L2(R).

The theorem says that a given set of noiselets forms an orthogonal basis of the space of all approx-
imation functions we get by computing the Haar wavelet decomposition with a given resolution. This
means that the same class of functions can be expressed by noiselets and Haar wavelets. Interestingly,
Haar wavelet coefficients of noiselets are flat up to the finest scales (see [64]), meaning that noiselets
themselves cannot be compressed in the Haar basis. In terms of compressive sampling, this is described
by the perfect incoherence property.

Noiselets can be also expressed using the means of linear algebra. Starting with a 1× 1 matrix N1, a
sequence of noiselet matrices N1, N2, N4, ..., N2m of sizes 1× 1, 2× 2, 4× 4, ..., 2m × 2m, respectively, is
generated. The rows of the Nn matrix are the noiselets which form an orthonormal basis for the space
R

n.

Definition 12 (Noiselet matrix). The n× n noiselet matrix Nn is defined recursively as

Nn(k, ∗) =
1

2

[

(1 − i, 1 + i) ⊗Nn/2(⌊k
2 ⌋, ∗)

]

for k=0,2,4,...,n-2

Nn(k, ∗) =
1

2

[

(1 + i, 1 − i) ⊗Nn/2(⌊k
2 ⌋, ∗)

]

for k=1,3,...,n-1

starting with N1 =
[

1
]

.

See Chapter 4 for a matrix-based proof of the perfect incoherence between the noiselets and Haar
wavelets. Concerning other types of wavelets, [1] gives estimates of the incoherence for the Daubechies-4
and Daubechies-8 wavelets, which are also constant and low: 2.2 and 2.9, respectively.

One possible way of implementing a fast noiselet transform is to take the Cooley - Tukey approach
known from the Fast Fourier Transform [60].

3.5.3 Random basis and any fixed basis

So far, we have given examples of incoherence between particular types of sampling and representation
bases. However, it can be shown that a random sampling basis is highly incoherent with any fixed
representation basis:

Theorem 13 (Incoherence of a random and any fixed basis, [1]). Let Ψ be a random basis of the
space R

n (created by sampling randomly and uniformly points on the unit sphere in R
n) and Φ be any

n-dimensional basis. Then the incoherence C(Ψ,Φ) is approximately
√

2 log n.

The theorem says that if we take samples by observing the first K coefficients of the signal rep-
resentation in a randomly chosen n-dimensional basis, we get incoherence guarantees independent of

27

CHAPTER 3. COMPRESSIVE SAMPLING

the representational basis we use in the recovery. In practical implementations, the concept of the
downsampling in a random basis can be further simplified. Instead of creating the basis and ensuring
its orthogonality, a sampling matrix with coefficients sampled directly from a Gaussian or Bernoulli
distribution can be used directly. See Theorem 5 in Section 3.3.3.

28

Chapter 4

On the incoherence of noiselet and

Haar bases

In Chapter 3, we have seen that pairs of bases which exhibit low coherency are important in compressive
sampling. The more incoherent the bases are, the better compression ratios can be achieved. We have
also pointed out that noiselets [64], introduced by Coifman, Geshwind and Meyer in 2001, are perfectly
incoherent to the Haar wavelet basis. Because noiselets come with a fast transform algorithm, they have
attracted interest as a sampling basis in compressive sampling.

In this chapter, a simple proof of the incoherence between the noiselet and Haar bases is given.
By introducing the proof we extend the theoretical background presented in Chapter 3 and allow the
reader to understand one of the important properties used in the remainder of the text. Unlike the
proof currently available in the literature [64], the incoherence is shown in the language of simple linear
algebra. A new, elegant recursive equation for noiselets is derived which allows for a Kronecker-product
based proof.

4.1 Preliminaries

4.1.1 General definitions

Definition 13 (Kronecker product, [65]). Let A be an m× n matrix, let B be a matrix of an arbitrary
size. The Kronecker product of A and B is

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

The Kronecker product is a bilinear and associative operator. It is not generally commutative. It
can be mixed with a standard maxtrix multiplication in the following way

(A⊗B)(C ⊗D) = AC ⊗BD

whenever the products AC, BD exist. This property is sometimes called the mixed product property.
For further information on the Kronecker product, we refer the reader to e.g. [65].

Definition 14 (Matrix row/column notation). Let A be a m × n matrix. By A(k, ∗) we denote the
(row) vector

[A(k, 1), A(k, 2), ..., A(k, n)]

and similarly, A(∗, l) denotes the (column) vector

[A(1, l), A(2, l), ..., A(m, l)]T

29

CHAPTER 4. ON THE INCOHERENCE OF NOISELET AND HAAR BASES

4.1.2 Noiselets

Noiselets [64] are functions designed to be totally uncompressible using the wavelet analysis. The family
of noiselets is constructed on the interval [0, 1) as follows:

f1(x) = χ[0,1)(x)

f2n(x) = (1 − i)fn(2x) + (1 + i)fn(2x− 1)

f2n+1(x) = (1 + i)fn(2x) + (1 − i)fn(2x− 1)

Here, χ[0,1)(x) = 1 on the definition interval [0, 1) and 0 otherwise.. It can be shown that

Theorem 14 (Orthogonality of noiselets, [64]). The set {fj |j = 2N , ..., 2N+1 −1} is an orthogonal basis
of the vector space V2N , which is a space of all possible approximations at the resolution 2N of functions
in L2([0, 1)).

4.1.3 Haar wavelets

The Haar wavelet basis can be described by a real square matrix. For our purposes, it is advantageous
to recursively build the n× n Haar wavelet matrix Hn using the Kroneckner product [66]:

Hn =
1√
2

[

Hn/2 ⊗ (1, 1)
In/2 ⊗ (1,−1)

]

The iteration starts with H1 =
[

1
]

. The normalization constant 1√
2

ensures that HT
nHn = I. Haar

wavelets are the rows of Hn.

4.2 Matrix construction of noiselets

First we extend and discretize the noiselet functions.

Definition 15 (Extended noiselets). The extensions of noiselets to the interval [0, 2m − 1] sampled at
points 0, 1, ..., 2m − 1 is the series of functions fm(k, l)

fm(1, l) = 1 for l = 0, ..., 2m − 1

= 0 otherwise

fm(2k, l) = (1 − i)fm(k, 2l) + (1 + i)fm(k, 2l − 2m)

fm(2k + 1, l) = (1 + i)fm(k, 2l) + (1 − i)fm(k, 2l − 2m)

where m denotes the range of extension, k = 1, ..., 2m+1 is the function index and l = 0, ..., 2m − 1 is the
sample index.

Starting with a 1 × 1 matrix N1, a sequence of noiselet matrices N1, N2, N4, ..., N2m of sizes 1 × 1,
2 × 2, 4 × 4, ..., 2m × 2m, respectively, is generated. The rows of the Nn matrix are the noiselets which
form an orthonormal basis for the space R

n.

Definition 16 (Matrix recursion for noiselets). The n× n noiselet matrix Nn is defined recursively as

Nn(k, ∗) =
1

2

[

(1 − i, 1 + i) ⊗Nn/2(⌊k
2 ⌋, ∗)

]

for k=0,2,4,...,n-2

Nn(k, ∗) =
1

2

[

(1 + i, 1 − i) ⊗Nn/2(⌊k
2 ⌋, ∗)

]

for k=1,3,...,n-1

starting with N1 =
[

1
]

.

30

CHAPTER 4. ON THE INCOHERENCE OF NOISELET AND HAAR BASES

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) Real part of 8x8 noiselet matrix

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) Imaginary part of 8x8 noiselet ma-
trix

10 20 30 40 50 60

10

20

30

40

50

60

(c) Real part of 64x64 noiselet matrix

10 20 30 40 50 60

10

20

30

40

50

60

(d) Imaginary part of 64x64 noiselet
matrix

Figure 4.1: Noiselet matrix: graphical view. In figures (a) and (b), the black and white colors denote
values of −0.25 and 0.25 respectively. In figures (c) and (d), the black, gray and white colors denote
values of −0.125, 0 and 0.125 respectively.

Theorem 15 (Relation of the noiselet matrix to the extended noiselets). Let m > 0. The noiselet
matrices N1, N2, N4, ..., N2m relate to the series of fm functions as

Nn(k, l) = fm(n+ k,
2m

n
l) for k, l = 0, ..., n− 1

Proof. Let m > 0 be fixed. For n = 1

N1(0, 0) = fm(1, 0) = 1

By induction, for a matrix of size n = 2p, p = 1, ...,m, its basis vector k = 0, 2, 4, ..., n − 2 and vector
indices l = 0, ..., n

2 − 1

Nn(k, l) = (1 − i)Nn/2(⌊
k

2
⌋, l) = (1 − i)fm(

n

2
+
k

2
,
2m

n
2

l) = fm(n+ k,
2m

n
l)

For the same n, k and l = n
2 , ..., n− 1

Nn(k, l) = (1 + i)Nn/2(⌊
k

2
⌋, l − n

2
) = (1 + i)fm(

n

2
+
k

2
, 2

2ml

n
− 2m) = fm(n+ k,

2m

n
l)

To see this, observe that fm is zero outside the interval [0, 2m −1] and therefore, the first half of samples
of fm(k, l) are defined exclusively by the expression (1±i)fm(k, 2l) whereas the second half of the samples
are defined exclusively by (1 ± i)fm(k, 2l − 2m).

31

CHAPTER 4. ON THE INCOHERENCE OF NOISELET AND HAAR BASES

The situation is analogical for k = 1, 2, ..., n− 1.

Specially, the noiselet matrix Nn for n = 2m can be found as the “tail” of the function series fm.
Indeed, the expression in Theorem 15 becomes N(k, l) = fm(n+ k, l) for n = 2m.

4.3 Incoherence of noiselets and Haar

Definition 17 (Perfect incoherency). Two bases A,B of C
n are perfectly incoherent if the matrix

C = ABT is “flat”, i.e.
∃c ∈ R : |C(k, l)| = c for all 0 ≤ k, l ≤ n− 1

We show the perfect incoherence of the noiselet and Haar basis. It will save us some technical work
to define a “twisted” noiselet basis as

Definition 18 (Twisted noiselets). The n× n noiselet matrix N̂n is defined recursively as

N̂n(k, ∗) =
1

2

[

N̂n/2(⌊k
2 ⌋, ∗) ⊗ (1 − i, 1 + i)

]

for k=0,2,4,...,n-2

N̂n(k, ∗) =
1

2

[

N̂n/2(⌊k
2 ⌋, ∗) ⊗ (1 + i, 1 − i)

]

for k=1,3,...,n-1

starting with N̂1 =
[

1
]

.

Compared to the definition of N , we only changed the order of operands in the Kronecker product.
We can convince ourselves that

Theorem 16 (Equivalency of twisted noiselets and noiselets). For n = 2m, the bases Nn, N̂n consist
of the same set of basis vectors.

Proof. Indeed, we can write N̂n = PnNn where P is a permutation matrix defined as

P (k, ∗) = Pn/2(⌊
k

2
⌋, ∗) ⊗ (1, 0) for k = 0, 2, 4, ..., n− 2

P (k, ∗) = Pn/2(⌊
k

2
⌋, ∗) ⊗ (0, 1) for k = 1, 3, ..., n− 1

starting with P = [1].
The claim holds for n = 1. For n = 2, 4, 8, ..., 2m,

PnNn(k, l) = Pn(k, ∗)NT
n (∗, l)

as it can easily be shown that Nn is symmetric. Using the recurrent equations for Pn and Nn and
applying the mixed product rule, we get for l = 0, 2, 4, ..., n− 2

PnNn(k, l) = (1 − i)Pn/2(⌊
k

2
⌋, ∗)Nn/2(∗,

l

2
)

PnNn(k, l) = (1 + i)Pn/2(⌊
k

2
⌋, ∗)Nn/2(∗,

l

2
)

where k = 0, 2, 4, ..., n− 2 and k = 1, 3, ..., n− 1, respectively. By applying the induction we get

PnNn(k, ∗) = (1 − i, 1 + i) ⊗ N̂n/2(⌊
k

2
⌋, ∗)

for even l indices. This situation for odd l indices is similar.

Now the main result can be shown.

32

CHAPTER 4. ON THE INCOHERENCE OF NOISELET AND HAAR BASES

Theorem 17 (Perfect incoherency of Haar and noiselets). Let n = 2m,m > 0. Let Nn be the noiselet
matrix of size n × n and let Hn be the Haar matrix of size n × n. Assuming the bases are normalized
such that HT

nHn = I and NT
n Nn = nI, the coherence matrix C = HnN

T
n has all entries of magnitude

1, i.e. |C(k, l)| = 1 for all 0 ≤ k, l ≤ n− 1.

Proof. It is trivial to show the claim for the case of n = 1, as

H1N1 =
[

1
]

·
[

1
]

=
[

1
]

For n = 2m,m > 1, the incoherence is shown by induction. Suppose we know the perfect incoherence
holds for n

2 and we want to show it for n. In the induction step, we use the iterative construction of the
Haar matrix by means of Kronecker product. By computing the product

HnN̂
T
n = H(NT

n P
T
n) = (HnN

T
n)PT

n

we will still be able to conclude on magnitude of the elements of (HnN
T
n), since the permutation matrix

does not change the magnitudes.
The product HnN̂

T
n can be computed per-column; we take the j-th column of N̂T

n , j = 0, 2, 4, ..., n−2
and transform it by Hn, getting

HnN̂
T
n (∗, j) =

1√
2

[

Hn/2 ⊗ (1, 1)
In/2 ⊗ (1,−1)

]

· 1√
2

[

N̂T
n/2(∗, j

2) ⊗ (1 − i, 1 + i)T
]

Note the altered normalization factor of noiselets. Now the mixed product property can be applied to
get

1

2

Hn/2N̂
T
n/2(∗, j

2) ⊗ (1, 1)

[

1 − i
1 + i

]

In/2N̂
T
n/2(∗, j

2) ⊗ (1,−1)

[

1 − i
1 + i

]

=
1

2

[

Hn/2N̂
T
n/2(∗, j

2) ⊗ 2

In/2N̂
T
n/2(∗, j

2) ⊗−2i

]

By induction, it follows that

|Hn/2N̂
T
n/2(i,

j

2
)| = 1

|In/2N̂
T
n/2(i,

j

2
)| = 1

for i = 1, ..., n
2 . The Kronecker multiplication is only by entries with magnitude 2, thus the resulting

magnitudes are 1
2 ∗ 2 = 1. The proof is parallel for j = 1, 3, ..., n− 1.

33

Chapter 5

Compressibility of performance

signals

Compressive sampling is designed to work with signals that are sparse in a given representation basis.
When an exact sparsity level cannot be determined due to the nature of the signal, many flavors of
compressive sampling can be shown to behave in a stable way provided the signal is approximately
sparse. Thus, a characterization of the signal compressibility has to be known in order to predict
behaviour of the compression algorithms and to tune compressive sampling for a particular application.

In this chapter, we measure a set of real performance signals on a wide spread processor platform and
derive estimates of their sparsity in selected bases. We do this empirically by analyzing the representation
of the acquired signals in the sparsity domain.

5.1 Data collection

The environment for collection of performance signals can be divided into the workload layer (a set of
programs that are measured), the hardware layer (the execution platform which is measured) and the
software layer (a set of programs that enable to acquire and store the measurement data). After choosing
a concrete instance of this measurement stack, we select a range of performance signals to be measured
and perform the actual measurements.

5.1.1 Software environment

The interface for processor performance monitoring can be different not only across the multitude of
processor models, but also across the implementations of one processor model. Therefore it is advanta-
geous to use a software interface which provides a reasonable abstraction over the hardware-dependent
layers.

In the following experiments, we use the Linux R© operating system and the performance monitoring
project perfmon [15]. Perfmon defines a logical view of the performance monitoring interface (also called
PMU, performance monitoring unit) which consists of a set of logical register pairs. Each pair consists
of:

• PMC - Performance monitoring control register

• PMD - Performance monitoring data register

As the name suggests, a PMC is used to control the content of the corresponding PMD. Depending
on the underlying hardware, the registers can also be decoupled, so that one PMC controls a vectors of
PMDs or vice versa.

All PMCs and PMDs are equally wide (64 bits). The mapping from the logical PMCs and PMDs to
the concrete hardware interface is done internally, effectively hiding the differences in PMU implemen-
tations from the user. There are two modes of performance monitoring available, per-thread monitoring

34

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

and system-wide monitoring. Per-thread monitoring preserves the exclusive state of the PMU for each
thread across task switches, whereas a system-wide session measures the performance events for a given
set of logical processors, such that the events generated by all tasks are aggregated. In both modes, it
is possible to filter the events generated at the kernel or user level.

The functionality provided by perfmon kernel libraries is encapsulated in the user-space command
line utility pfmon. In order to obtain the processor signal, pfmon can be set up to sample a given set of
counters with a given frequency. There are two ways how the sampling can be done: the time interval
printing or event sampling functionality.

Using the time interval printing, the values of selected PMDs are printed or stored periodically in a
given interval. This is the most straightforward approach which is also used in the experiments in this
chapter. However, the event sampling could also be used for this purpose. It samples down a set of
event counters each time a given counter exceeds a specific value. Provided there is a performance event
that occurs regularly, such an event can be used to trigger the sampling of the counters.

5.1.2 Workload

We used a subset of SPEC CPU2006 benchmark suite [67] as the workload for our measurements. The
benchmark subset was selected to include different types of workload in terms of application domain
and character of CPU usage. In particular, we chose compilation, video encoding, ray tracing and fluid
dynamics as workload types. These are summarized in Table 5.1.

Integer benchmarks

403.gcc C Language optimizing compiler
464.h264ref Video compression

Floating point benchmarks

437.leslie3d Computational Fluid Dynamics
453.povray Computer visualization

Table 5.1: SPEC CPU2006 benchmarks selected as the workload.

5.1.3 Hardware platform

We gathered performance information on the Intel R© Core 2 Duo 2.33 GHz processor [10]. The processor
consists of two execution cores, each core has its own execution resources and execution state. Both
cores share the second level cache and bus. Figure 5.1 gives an overall scheme of the processor.

Architectural State

Execution Engine

Local APIC

Architectural State

Execution Engine

Local APIC

Core Core

Second Level Cache

Bus Interface

Bus

Figure 5.1: Overall architecture of the Intel R© Core 2 Duo chip used in the experiments. The scheme is
based on [10]. In a dual-core system, each of the cores has its exclusive execution state and execution
resources. The bus interface and second level cache are shared among the cores.

35

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

The processor uses out-of-order instruction execution. This means that performance of the pipeline
is strongly influenced by the workload. Consequently, monitoring of the events related to the pipeline
performance is of natural interest. The processor features a two-way cache architecture (compare to
Section 2.1.2). Each core has its own L1 cache (separate for instructions and data) and TLB. The L2
cache is shared between the cores.

Performance monitoring

For each logical processor, the Intel R© Core 2 architecture defines a set of register pairs which provide
an interface to the performance monitoring capabilities (compare to Section 5.1.1):

• IA32 PERFEVTSELx (control register)

• IA32 PMCx (data register)

The CPUID mechanism [10] can be used to determine the size and count of available performance
monitoring registers which can differ across processor implementations. The control register specifies the
content and behaviour of the respective counter register. It allows the programmer to set the event and
its particular alternate to be counted, filter the events according to the privilege level of the instruction
and generate an interrupt in case of counter overflow.

5.1.4 Performance signals

A complete list of performance events available on the Intel R© Core 2 platform can be found in [10]. We
selected a subset of the available performance events as the data source for the experiments, see Table
5.2. The events were selected such that they reflect performance of important infrastructure components
of the processor.

Event group Event code and mask Event description

Architectural events

General events INST RETIRED:ANY P Retired instructions
CPU CLK UNHALTED.REF Reference cycles when the core is not halted

Caches and TLBs

L1 cache L1D REPL Cache lines allocated in the L1 data cache (L1 cache misses)
L1I MISSES Instruction Fetch Unit misses

L2 cache L2 LINES IN.CORE L2 cache misses
L2 M LINES IN L2 cache line modifications
L2 M LINES OUT Modified lines evicted from the L2 cache

Instruction TLB ITLB MISSES ITLB misses
Data TLB DTLB MISSES:ANY Memory accesses that missed the DTLB

Floating point unit

Floating point operations MUL Multiply operations executed
DIV Divide operations executed

Pipeline and internal execution processes

Pipeline stalls RESOURCE STALLS.ANY Resource related stalls
Branches BR MISP EXECUTED Mispredicted branch instructions executed
Load/store mutual blocking SB DRAIN CYCLES Cycles while stores are blocked due to store buffer drain
Memory disambiguation MEMORY DISAMBIGUATION.RESET Memory disambiguation reset cycles

Bus

Bus transactions BUS TRANS MEM.CORE Memory bus transactions

Other

Interrupts HW INT RCV Hardware interrupts received

Table 5.2: List of evaluated performance events on the Intel R© Core 2 architecture.

Measurement frequency

The performance counters were sampled periodically every 10ms.

36

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

5.2 Experimental analysis

Sparsity of the input signal in a chosen representation basis is the key assumption of compressive sampling
(see Section 3.3). In particular, the degree of sparsity influences the number of samples that have to
be taken in the sampling phase, respectively, it determines the probability that an exact reconstruction
from a given number of samples occurs. In the following analysis, we perform very similar steps to the
initial phases of classic compression schemes, i.e. we compute the signal transformation and examine
coefficients in the basis that is expected to provide a concise representation. We shall be interested in
determining to what extent non-significant coefficients can be discarded while the important information
carried by the signal is preserved. However, keep in mind that the compressive sampling algorithm itself
does not work by examining sparse representation coefficients in this way and does not perform any
operations that would need to know what coefficients to discard.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Time

C
ou

nt
er

 v
al

ue

(a) Original signal

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Time

C
ou

nt
er

 v
al

ue

(b) Recovery from 1/8 of Haar wavelet
coefficients

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Time

C
ou

nt
er

 v
al

ue

(c) Recovery from 1/8 of DCT coeffi-
cients

Figure 5.2: Intel R© Core 2: number of retired mispredicted branch instructions, sampled while running
SPEC CPU2006 403.gcc workload. The original signal consists of 1024 samples. The signals in figures
(b) and (c) were recovered from 128 most significant coefficients in given representation basis.

5.2.1 General setup

As we do not assume the signals to be exactly sparse, it is not possible to directly estimate the number
of non-zero coefficients for a given signal in a given representational basis. We expect the energy of
the signals to be partially spread out over many coefficients which are, under the assumption of com-
pressibility, not significant, i.e. such coefficients do not carry substantial information about the signal.
Therefore instead of an exact sparsity level, we estimate the number of significant coefficients in the
representational domain. Figure 5.3(a) illustrates the coefficient magnitudes used in a representation of
a real signal. It shows that the signal is approximately sparse when represented in both the DCT and
Haar domain, for example in both representations the top ten coefficient have much higher values than
all subsequent coefficients.

A good basis for a given signal is one that concentrates most of the signal’s energy into as few
coefficients as possible. Therefore the task of sparsity detection can be reformulated as finding a threshold
for classifying high-valued coefficients. We assume that such a threshold is signal and representation
dependent. It also depends on the desired level of accuracy.

In order to determine the threshold and its impact on the reconstruction quality, we introduce the
following procedure. First the signal is transformed to the representational basis. The representational
coefficients are examined to detect the threshold. Next, a thresholding operation on the representation
coefficients is applied and the signal is recovered from the thresholded representation coefficients. After
the recovery, similarity between the original and the recovered signal is measured. More precisely, we
use the following entities:

• Input signal f ∈ R
n

• Representation basis Ψ

37

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

• Transformation function T : R
n → R

n

• Inverse transformation function T−1 : R
n → R

n

• Thresholding function C : R × R
n → R

n

• Similarity metric S : R
n × R

n → R

A more detailed description of the entities follows:

Transformation functions. The function T corresponding to the representation basis Ψ converts a
given input signal f into its representation in Ψ. Note that the representation vector T (f) contains
coefficients whose meaning and layout is given by the particular transformation computed and is likely
to differ for different transformations. For instance, a wavelet transform produces multiple sequences
of approximation and detail coefficients at different scales, whereas a DCT transform produces a flat
sequence of coefficients. The inverse transformation function T−1 converts given signal coefficients in Ψ
into the signal f . The transform T is invertible, i.e. T−1(T (f)) = f .

Thresholding function. The thresholding function is parametrized by the number of representation
coefficients that are to be retained. The function retains the given number of coefficients biggest in
magnitude; all other coefficients are set to zero.

Similarity metric. Having an original signal and a signal reconstructed from a compressed coefficient
sequence, a similarity metric S is used to obtain an objective statistical comparison of these two signals.
See Section 5.2.2 for a list of similarity metrics used in the sparsity estimation procedure.

The sparsity estimation procedure can be summarized to the following steps.

1. Compute g = T (f), coefficient vector representing f in the analyzed basis.

2. Estimate the number of significant coefficients r.

3. Compute C(r, g), thresholded coefficient vector.

4. Compute fr = T−1(C(r, g)), reconstruction of f from its compressed form.

5. Compute m = S(fr, f), statistical similarity of original and recovered signal.

5.2.2 Metrics of compression performance

The problem of measuring signal compression quality is well known in many scientific areas and is
being a subject of ongoing research e.g. in the field of image processing [68]. In this section, we
describe a set of objective measures for evaluating signal compression quality. These measures provide
statistical means of summarizing the amount of signal distortion introduced by a lossy compression.
However, it is important to point out that the requirements on “quality” can significantly differ across the
application domains, and it is difficult or not possible (depending on the level of generality) to develop
a general quality criterion. For instance, it has been observed that universally employed statistical
criterions, such as the mean squared error and signal-to-noise ratio (see below), provide results that are
often in contrast to subjective perception of a compressed image [69]. It is reasonable to expect such
inconsistency in the area of CPU performance signals; therefore, the following metrics are only intended
to provide comparisons between different compression methods and to provide a fundamental overview
of the compression performance. The introduced metrics are most likely not sufficient for determining
the suitability of a compression technique for specific application purposes.

The basic quantitative characterization of the reconstruction error is to compute its magnitude
(norm):

38

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

Definition 19 (Polynomial norm of the reconstruction error). Let f, f ′ ∈ R
n be the source and recovered

signal, respectively. For a real p ≥ 1, the lp norm of the reconstruction error is

‖f − f ′‖lp = (|f1 − f ′1|p + |f2 − f ′2|p + ...+ |fn − f ′n|p)
1

p

In particular, the l2 norm of the reconstruction error is

‖f − f ′‖l2 =

√

∑

i

(fi − f ′i)
2

In signal processing, a common metric is the signal-to-noise ratio (SNR):

Definition 20 (Signal-to-noise ratio, [61]). Let f ∈ R
n be a signal. Then

SNR(f) = 10 log10

σ2
f

Df

where σ2
f is the variance of f and Df is distortion (or noise) present in the signal.

For the purposes of measuring reconstruction quality, the traditional definition of signal-to-noise ratio
is adopted using the l2 norm:

Definition 21 (Reconstruction signal-to-noise ratio, [52]). Let f, f ′ ∈ R
n be the source and recovered

signal, respectively. The reconstruction SNR is

SNR(f, f ′) = 10 log10

‖f‖
‖f − f ′‖

In order to measure the energy of discarded coefficients in a signal spectrum, we use the notion of
retained energy:

Definition 22 (Retained energy). Let fc, f̂c be the original and thresholded coefficient vector in R
n,

respectively. The retained energy of the thresholded coefficient vector with respect to the original vector
is

RE(f, f̂c) =
‖f̂c‖2

‖fc‖2

5.2.3 Estimating the compressibility

In lossy compression techniques, the compression ratio is a trade-off between reduction of the space
complexity and information loss. A practical choice of the compression ratio highly depends on the
particular application domain and requirements. Usually, experimentation with real data sets is required.
In this section, we describe simple strategies that can be used to find an initial guess for the compression
ratio.

Balancing sparsity and retained energy (BSRE)

The sparsity/energy balancing strategy finds the compression ratio r such that

r = RE(T (f), C(r, T (f))

or in a more relaxed version, r is defined as

min
r

|r −RE(T (f), C(r, T (f))|

The idea behind this algorithm is that by increasing the compression ratio (i.e., the amount of dis-

carded coefficients), we cause the RE(T (f), C(r, T (f)) = ‖C(r,T (f))‖
‖T (f)‖ to decrease. Indeed, we discard

the coefficients by setting them to zero, causing the fraction nominator to have a lower l2 length. At
some point, the compression ratio is the same as the retained energy of the coefficient vector; increasing
the compression ratio lowers the information content and increasing the information content lowers the
compression ratio.

In practice, the compression ratio and information change are not continuous, as the coefficient vector
is finite. Therefore we get along by minimizing the difference |r −RE(T (f), C(r, T (f))|.

39

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Coefficient index

C
o

e
ff
ic

ie
n

t
v
a

lu
e

Haar wavelet coefficients

DCT coefficients

(a) Coefficient magnitudes of a performance signal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

6

Retained energy

R
e

c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

Haar wavelet

DCT

(b) Retained energy vs. error in signal domain

Figure 5.3: Both figures are based on the performance signal ”Number of retired mispredicted branch
instructions”. The signal has length 1024 and was sampled while running the SPEC CPU2006 403.gcc
benchmark. Figure (a) depicts coefficient magnitudes in wavelet and DCT representations; for the sake
of visual clarity, the coefficients were linearized and ordered by magnitude of their absolute value. Only
the first 120 coefficients in this ordering are shown. Figure (b) illustrates dependency between retained
energy and reconstruction error. For each level of retained energy l, the coefficients of c were added to
ĉ in order of their importance stopping when retained energy l was achieved. Then the signal f̂ was
reconstructed from ĉ and the reconstruction error was measured using l2 metric.

Discarding non-significant coefficients (DNC)

The DNC strategy finds the compression ratio r such that

RE(T (f), C(r, T (f)) = K

or in a more relaxed version, r is found as

min
r

|K −RE(T (f), C(r, T (f))|

where K is a retained-energy constant, 0 < K < 1.
Unlike the BSRE strategy where the compression ratio and the retained energy of the compressed

coefficient vector are balanced, the DNC strategy applies a fixed constraint on the retained energy of
the compressed coefficient vector and finds a corresponding compression ratio. For instance, by setting
K := 0.1, the method finds a compression ratio such that only 10% falloff in RE(T (f), C(r, T (f)) is
caused by applying the compression.

By analogy to BSRE, the definition using a minimum is proposed due to practical reasons.

5.2.4 Compressibility in the DCT basis

Figure 5.4 shows the number of significant coefficients detected by two different procedures (BSRE and
DNC, Section 5.2.3) for the signals of the 403.gcc benchmark. The estimates differ significantly across
the space of evaluated signals. For instance, the number of executed multiply operations was detected to
have 436, resp. 250 significant coefficients out of 1024. On the other hand, the frequency spectrum of the
number of mispredicted branch instructions when running the same benchmark was highly concentrated
into a small set of high-valued coefficients, so that the estimation procedures reported only 10, resp.
34 significant coefficients. This behaviour can be attributed to the properties of the DCT basis. As
the basis is designed to represent periodic signals, it does extremely well for signals like the number of

40

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

0

50

100

150

200

250

300

350

400

450

br
_in

st_
re

tir
ed

_m
isp

re
d

bu
s_

tra
ns

_m
em

_s
elf

cp
u_

clk
_u

nh
alt

ed
_r

ef div

dt
lb_

m
iss

es
_a

ny

hw
_in

t_
rc

v

ins
t_

re
tir

ed
_a

ny
_p

itlb
_m

iss
es

l1d
_r

ep
l

l1i
_m

iss
es

l2_
lin

es
_in

_s
elf

l2_
m

_li
ne

s_
in_

se
lf

l2_
m

_li
ne

s_
ou

t_
se

lf

m
em

or
y_

dis
am

big
ua

tio
n_

re
se

t
m

ul

re
so

ur
ce

_s
ta

lls
_a

ny

sb
_d

ra
in_

cy
cle

s

N
um

be
r

of
 s

ig
ni

fic
an

t c
oe

ffi
ci

en
ts

Fixing retained energy at 0.9

Balancing sparsity and retained energy

Figure 5.4: Compressibility of the 403.gcc signals in the DCT basis. The signals from Table 5.2 were
captured while running the SPEC CPU2006 403.gcc benchmark. The signal length is 1024.

reference clock ticks and the number of retired instructions, but it fails to concisely represent signals
with sharp peaks (such as arithmetic operations in an integer-based benchmark).

Also note that for the DCT basis, fixing the retained energy at 90% yielded more pessimistic estimates
than balancing the retained energy to the number of significant coefficients. This was because the 403.gcc
signals were generally not very sparse in the DCT basis and thus the BSRE estimation procedure tended
to offset the higher retained energy (which was hard to achieve) against the number of significant
coefficients.

5.2.5 Compressibility in selected wavelet bases

We evaluated compressibility in the following wavelet families which facilitate fast transforms:

Wavelet family Description

Haar A discrete, simplest possible wavelet.
Daubechies Basic orthogonal compactly supported wavelet.
Coiflets Orthogonal compactly supported wavelet with van-

ishing moments equally distributed for the scaling
function and the wavelet.

Symlets Orthogonal wavelet with maximum symmetry and
compact support.

Biorthogonal wavelets Wavelet family with different wavelets for decompo-
sition and reconstruction.

Table 5.3: Selected wavelet families and their characteristics

Figure 5.5 summarizes the compressibility of the evaluated signals in five different wavelet bases. For
each signal, the number of significant coefficients was estimated using two different procedures (BSRE
and DNC, Section 5.2.3). We see that for the case of the 403.gcc benchmark, all signals had less than
140 significant coefficients out of 1024. The simplest Haar wavelet allowed for the best or close to the
best compressibility across all evaluated signals, even when compared to the more sophisticated wavelets.
Some evaluated signals were extremely sparse in the wavelet domain, e.g. the events that are related to
the number of floating point operations in the 403.gcc benchmark.

41

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

0

20

40

60

80

100

120

140

br
_in

st_
re

tir
ed

_m
isp

re
d

bu
s_

tra
ns

_m
em

_s
elf

cp
u_

clk
_u

nh
alt

ed
_r

ef div

dt
lb_

m
iss

es
_a

ny

hw
_in

t_
rc

v

ins
t_

re
tir

ed
_a

ny
_p

itlb
_m

iss
es

l1d
_r

ep
l

l1i
_m

iss
es

l2_
lin

es
_in

_s
elf

l2_
m

_li
ne

s_
in_

se
lf

l2_
m

_li
ne

s_
ou

t_
se

lf

m
em

or
y_

dis
am

big
ua

tio
n_

re
se

t

m
ul

re
so

ur
ce

_s
ta

lls
_a

ny

sb
_d

ra
in_

cy
cle

s

N
um

be
r

of
 c

oe
ffi

ci
en

ts
 to

 a
ch

ie
ve

 r
et

ai
ne

d
en

er
gy

 o
f 0

.9

Haar

Daubechies−4

Coiflet−4

Symlet−4

Biortho−1.3

Figure 5.5: Compressibility of the 403.gcc signals in selected wavelet bases. The signals from Table 5.2
were captured while running the SPEC CPU2006 403.gcc benchmark. The signal length is 1024.

5.2.6 Reconstruction quality

Removing coefficients in the sparsity domain can introduce errors in the signal domain after the recon-
struction. The character of the error depends on the particular representation basis. Therefore, to get a
complete information about the compressibility, we compare the reconstruction quality in different bases
by using an objective measure. See Figure 5.6 which presents quality of the reconstruction when 128
significant coefficients out of 1024 in total were used. We see that for the 403.gcc benchmark, the differ-
ent wavelet bases again had approximately the same performance, and for the majority of the evaluated
signals, the DCT basis had a worse performance than the evaluated wavelets.

0

5

10

15

20

25

30

35

40

br
_in

st_
re

tir
ed

_m
isp

re
d

bu
s_

tra
ns

_m
em

_s
elf

cp
u_

clk
_u

nh
alt

ed
_r

ef div

dt
lb_

m
iss

es
_a

ny

hw
_in

t_
rc

v

ins
t_

re
tir

ed
_a

ny
_p

itlb
_m

iss
es

l1d
_r

ep
l

l1i
_m

iss
es

l2_
lin

es
_in

_s
elf

l2_
m

_li
ne

s_
in_

se
lf

l2_
m

_li
ne

s_
ou

t_
se

lf

m
em

or
y_

dis
am

big
ua

tio
n_

re
se

t
m

ul

re
so

ur
ce

_s
ta

lls
_a

ny

sb
_d

ra
in_

cy
cle

s

R
ec

on
st

ru
ct

io
n

qu
al

ity
 (

dB
)

Haar
Daubechies−4
Coiflet−4
Symlet−4
Biortho−1.3
DCT

Figure 5.6: Reconstruction quality of the 403.gcc signals. The signals from Table 5.2 were captured
while running the SPEC CPU2006 403.gcc benchmark. The signal length is 1024.

5.2.7 Comparison of compressibility

Clearly, the compressibility estimates depend on the computational character of the workload. We have
demonstrated the estimation for the 403.gcc compiler, where the majority of signals were represented at
best by the Haar wavelet. The more computational workloads, such as the fluid dynamics and raytracing,
produced signals with repetitive patterns and high periodicity. For these workloads, the DCT basis gave
the best sparsity estimates and reconstruction quality: for the 437.leslie3d benchmark, the DCT basis
provided a sparser representation than wavelets for 16 out of 17 evaluated signals. However, the Haar

42

CHAPTER 5. COMPRESSIBILITY OF PERFORMANCE SIGNALS

wavelet showed stable performance across all benchmarks: the estimated sparsity was rarely higher than
20%.

It is interesting to note that the relative sparsity of the performance signal, computed with respect to
the signal length, changes when computed for signals captured over different time periods. The longer
the block size the more representative the block is of the signal and the greater the compressibility.
Figure 5.7 illustrates this effect. The number of retired instructions was measured while running the
403.gcc compiler. We divided the signal into blocks of sizes ranging from 64 bytes up to 16 Kbytes. For
each block size, we determined how many coefficients are needed to retain 90% of energy in the wavelet
domain.

64 128 256 512 1024 2048 4096 8192 16384
0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

Length of the signal

%
 o

f c
oe

ffi
ci

en
ts

 to
 a

ch
ie

ve
 r

et
ai

ne
d

en
er

gy
 o

f 0
.9

Figure 5.7: Compressibility of a 32kB signal (number of retired instructions) for different block sizes.
For each block size, the signal was divided into chunks of respective length and the compressibility was
measured. The figure depicts the median of the compressibility.

In all following experiments, the counter is read every 10 ms and the compressed signal transmitted
after the counter has been read 128 times, i.e. approximately every second.

We conclude that a range of performance counters are approximately sparse when represented in
the domains we looked at. Furthermore, the Haar wavelet performs as well as the more complicated
wavelets. As it is computationally less demanding we shall restrict ourselves to consideration of the Haar
wavelet and DCT in what follows.

43

Chapter 6

Compressive sampling of

performance signals

In this chapter, we develop a systematic approach to evaluate performance of compressive sampling
for the case of processor performance signals. First, we decompose the acquisition protocol into a set
of modules. We describe the parametrization of the modules and design a toolkit for experimental
evaluation. Then we use the toolkit to infer empirical properties of the most attractive implementation
choices.

6.1 Modular view of compressive sampling

Compressive sampling (CS) can be viewed as a modular framework for signal compression. As such,
it can be decomposed into a set of mutually interconnected algorithmic modules. Figure 6.1 captures
the intrinsic structure of CS as it implicitly follows from the theorems in Section 3.3. The structure is
adjusted to fit the task of compressing processor performance signals.

Let us define the parameter space of the CS framework to include the following quantities:

(i) Length of the sampling time slot

(ii) Type of the sampling basis

(iii) Sampling rate

(iv) Type of the representation basis

(v) Type of the reconstruction technique

This set of parameters influences different stages of compressive sampling acquisition protocol. We
can further divide them into the parameters of the encoding phase (points (i), (ii), (iii)) and parameters
of the decoding phase (points (iv), (v)).

6.2 Experimental implementation

To be able to discover the empirical properties of CS, we develop a simple experimental framework in
the Matlab environment. We impose the following functional requirements on the implementation:

1. Blockwise processing of the signal

2. Interchangeable sampling matrices

3. Interchangeable representation matrices

44

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

=

MeasurementsSignal
block

Measurement
matrix

x

M x N N x 1 M x 1

Measurement
matrix

Representation
matrix

x x

N x NM x 1

Measurements

=

N x 1M x N
Signal
block

RA

algorithm
Recovery

Recovered signalSource signal

Sampling Recovery

channel
Real transfer

Virtual transfer channel

Figure 6.1: Compressive sampling parametrization

4. Interchangeable recovery algorithms

5. Automatic execution of the experiments and storage of the results

6. Extraction of the experimental results for purposes of data analysis

6.2.1 Sampling matrices

An instance of a sampling matrix is created by calling its constructor with syntax

h = matrixName(k, n)

The constructor creates a sampling matrix with dimensions k × n, where k is the resulting number of
measurements and n the length of the input signal block. The returned handle h points to a vector-by-
matrix multiplication function of the form

y = computeMatrixMultiplication(mode, x)

where mode = 1 specifies multiplication of x by the sampling matrix and mode = 2 specifies multiplica-
tion of x by the transpose (pseudo-inverse) of the sampling matrix. Matrix-vector multiplication is the
only allowed operation for the sampling matrix; it should always be sufficient for applications in compres-
sive sampling. Moreover, if the sampling matrix implements the multiplication using a fast transform
algorithm (such as the noiselet transform), multiplication by a vector is the only natural operation.

To give an example of a non-explicit sampling matrix, consider sampling in the noiselet domain (see
Section 3.5). In this case, the sampling matrix first converts the signal block to the noiselet domain and
then performs random downsampling of the coefficients. In other words, the signal block is transformed
using only a random subset of the basis vectors. The key point is that the overall operation is presented as
a matrix, but the noiselet transform is computed implicitly and also the random selection is implemented
more efficiently (without a matrix multiplication).

We provide the following basic sampling matrices: random Gaussian sampling, random Bernoulli
sampling, random noiselet sampling and random sampling in the time domain. For purposes of compar-
ison, a regular downsampling matrix in the time domain is also provided. See Table 6.1 for a summary.
Some matrices are provided in an orthogonalized version to ensure the rows are not linearly dependent
and thus no redundant measurements are produced.

45

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

Function Description

randomGaussianMatrix(k, n) Explicit k × n matrix with entries drawn from the
Gaussian distribution N(0, 1). Orthogonalized.

randomBernoulliMatrix(k, n) Explicit k × n matrix with entries −1, +1 drawn
from the symmetric Bernoulli distribution. Orthog-
onalized.

randomGaussianMatrixNonOrthogonal(k, n) Explicit k × n matrix with entries drawn from the
Gaussian distribution N(0, 1). Not orthogonalized.

randomBernoulliMatrixNonOrthogonal(k, n) Explicit k×n matrix with entries −1, +1 drawn from
the symmetric Bernoulli distribution. Not orthogo-
nalized.

randomNoiseletMatrix(k, n) Random downsampling in the noiselet domain.
randomTimeDomainMatrix(k, n) Random downsampling in the time domain.
regularTimeDomainMatrix(k, n) Regular downsampling in the time domain.

Table 6.1: Implemented sampling matrices.

6.2.2 Representation matrices

An instance of a representation matrix is created by calling its constructor with syntax

h = matrixName(n, ...)

The constructor creates a representation matrix with dimensions n × n, where n is the length of the
signal block. A representation matrix corresponds to a transformation between two n-dimensional bases,
therefore it is always square. The additional parameters are representation specific, e.g. wavelets require
a number of levels of the decomposition.

The returned handle h points to a matrix-vector multiplication function of the form

y = computeMatrixMultiplication(mode, x)

where mode = 1 specifies multiplication of x by the sampling matrix and mode = 2 specifies multipli-
cation of x by the transpose (pseudo-inverse) of the sampling matrix. Multiplication by a given vector
is the only allowed operation for a representation matrix; the reasoning is the same as in the case of
sampling matrices.

Based on the experimental analysis of performance signals (see Chapter 5.2), we provide only the
Haar wavelet and DCT representation matrix. Integration of other wavelet bases is straightforward. An
identity matrix is also provided that is intended to be used with the interpolation recovery algorithms.
See Table6.2. We use the WaveLab package [70] to compute the wavelet transformations.

Function Description

haarStandardRepresentationMatrix(n, l) Fast wavelet transformation of n length signal on l
levels with the Haar filter. n must be a power of 2.

dctRepresentationMatrix(n) Discrete cosine transformation of n length signal.
identityRepresentationMatrix(n, l) Identity matrix with dimensions n× n.

Table 6.2: Implemented representation matrices.

6.2.3 Recovery algorithms

In principle, the recovery algorithms are fully compatible with any combination of sampling and represen-
tation ensembles. The framework is provided with a set of optimization and greedy recovery algorithms,
which are described in a greater detail in Chapter 3.4. For purposes of comparison, the set of recov-
ery algorithms is augmented by interpolation mechanisms (linear interpolation and sinc interpolation,

46

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

[60]). The algorithms and their identification codes are summarized in Table 6.3. Implementation of the
recovery algorithms is based on the SparseLab package [71].

Code Description

BP_EQ Basis pursuit with equality constraint.
OMP Orthogonal matching pursuit.
ROMP Regularized orthogonal matching pursuit.
StOMP Stagewise orthogonal matching pursuit.
CoSaMP Compressive sampling matching pursuit.

LINEAR_INTERPOLATION Linear interpolation.
SINC_INTERPOLATION Sinc interpolation.

Table 6.3: Implemented recovery algorithms.

The recovery algorithm works with a recovery matrix which is constructed internally (transparently
to the framework user) as a combination of the sampling and representation matrix. We follow the
convention of the SparseLab package and define the recovery matrix in the following way:

y = recoveryMatrix(mode, m, n, x, I, dim)

If mode = 1, the function computes multiplication of given vector x by the recovery matrix, if mode = 2,
the function multiplies x by the transpose (pseudo-inverse) of the recovery matrix. The dimensions of
the recovery matrix are m × dim1. I is a subset of n columns of the matrix that are used to compute
the product. Thus, by setting I ⊂ {1, ..., dim} we multiply x by a recovery submatrix consisting only of
columns from I. This functionality is important for greedy algorithms.

6.2.4 Blockwise processing of the signal

In our implementation of compressive sampling, the source signal is processed in blocks of fixed length.
The blocks are encoded, transferred and decoded separately. At the end of the processing pipeline, the
signal estimate is assembled from the decoded blocks.

The block processing is facilitated by the functions

encodedBlock = encodeSignalBlock(signalBlock, samplingMatrix)

decodedBlock = decodeSignalBlock(encodedBlock, samplingMatrix,

representationMatrix, recoveryAlgorithm)

The function encodeSignalBlock creates an encoded block by taking measurements using given sam-
pling matrix. The encoded block is transferred to the recovery component, where decodeSignalBlock

computes an estimate of the original signal using the same sampling matrix, given representation matrix
and given recovery algorithm. Note the typical property of CS acquisition protocol: at the time of sam-
pling, we do not require to know in what basis we recover the signal. On the other hand, the sampling
matrix has to be known to both parties.

6.2.5 Automatic experimental evaluation

The set of sampling and representation matrices, recovery algorithms and functions for per-block signal
encoding/decoding is integrated in a batch evaluation framework.

On the signal level, we define the function

evaluationResult = evaluateForSignal(signal, csParametrization)

Given the signal and parametrization of compressive sampling, the function decomposes the input signal
into blocks, encodes the blocks, decodes the blocks and assembles the output signal estimate. The
csParametrization structure contains the fields listed in Table 6.4.

1Keep in mind that the matrix is implicit, i.e. there is no real m × dim recovery matrix in the memory, instead the
matrix is computed by calling the representation and sampling transformations.

47

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

Field name Description

blockSize Size of the signal block, 2d where d > 5
measurementSize Number of measurements per block
samplingMatrix Instantiated sampling matrix
representationMatrix Instantiated representation matrix
recoveryAlgorithm One of the codes from Table 6.3

Table 6.4: Content of the csParametrization structure.

A typical initialization of the csParametrization structure looks as follows:

csParametrization.blockSize = 128;

csParametrization.measurementSize = 32;

csParametrization.samplingMatrix = randomNoiseletMatrix(32, 128);

csParametrization.representationMatrix = haarStandardRepresentationMatrix(3);

csParametrization.recoveryAlgorithm = ’BP_EQ’;

Results of the evaluation are stored in the evaluationResult structure, whose fields are summarized
in Table 6.5.

Field name Description

recoveredSignal Recovered signal (in the representation domain)
perBlockEncodingTimes Encoding time for each signal block
perBlockDecodingTimes Decoding time for each signal block

Table 6.5: Content of the evaluationResult structure.

Batch functionality for a specified signal set is implemented in the evaluateForSignalSet function:

function evaluateForSignalSet(outputDirectory, inputDirectory, ...

platformName, samplingPeriodFilter, ...

cpuNumberFilter, benchmarkNameFilter, ...

evaluatedSamplingMatrices, ...

evaluatedBlockSizes, ...

evaluatedSamplingRatios, ...

evaluatedRepresentationMatrices, ...

evaluatedRecoveryAlgorithms, ...

numberOfTrials ...

)

The function processes all signals stored in the inputDirectory with respect to given filters (samplingPeriodFilter,
cpuNumberFilter, benchmarkNameFilter). For each signal, the parametrization of CS (block size,
sampling ratio, sampling matrix, representation matrix, recovery algorithm) is systematically set to all
possible combinations of the evaluated values. For each such combination, the results are computed by
calling evaluateForSignal repeatedly according to given numberOfTrials.

The evaluation results (Table 6.5) are stored into given outputDirectory together with information
about the source signal. Each trial is stored in a separate file.

6.2.6 Extraction of results

A systematic traversal of the CS parameter space which is obtained by using the functions from Section
6.2.5 needs to be further processed in order to extract useful information from it. Typically, during
a regression analysis one fixes a given set of parameters while a chosen parameter is observed as an
independent variable. To facilitate this kind of analysis, a simple data extractor is provided.

48

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

First, the experimental data is loaded using a simple call to

results = loadResults(inputDirectory)

The results of the evaluateForSignalSet function stored in the inputDirectory are post-processed
to contain a set of performance metrics for assessing the quality of reconstruction (e.g. signal-to-noise
ratio, refer to Section 5.2.2 for an overview).

As a second step, a set of constraints on both the evaluation parameters and post-processed values
is created using the functions

updateConstraintSet = addConstraint(constraintSet, variableName, variableValue)

updateConstraintSet = replaceConstraint(constraintSet, variableName, variableValue)

The set of constraints is built incrementally, in each step a new constraint is introduced. A constraint
means that a variable with a given variableName is required to have a given variableValue. A
variable is technically any field of the result structure, either present originally or generated during the
post-processing step. For example, a constraint set can be built in the following way:

c = addConstraint([], ’measurementPeriod’, ’10ms’);

c = addConstraint(c, ’csParametrization.blockSize’, 128);

c = addConstraint(c, ’csParametrization.representationMatrixName’, ’HAAR_STD’);

c = addConstraint(c, ’csParametrization.recoveryAlgorithm’, ’BP_EQ’);

c = addConstraint(c, ’csParametrization.samplingMatrixName’, ’NOISELETS’);

In the final step, the set of constraints is applied to filter the results and extract a given independent
variable:

[x, y] = extractResults(results, constraintSet, independentVariable, ’snr’);

Here, x contains the set of distinct values of independentVariable. For each each value of x, y contains
an array of values of independentVariable.

6.3 Experimental analysis

6.3.1 Measurement matrices

We performed a series of experiments to clarify empirical properties of selected random measurement
bases. First, we considered whether there was a significant difference in the reconstruction quality be-
tween a signal sampled with the Bernoulli and Gaussian sampling matrices. These matrices work with
high probability like an approximately orthogonal system. However, a concrete instance can contain
linearly dependent rows producing redundant measurements. Therefore we further distinguish between
measurements with (1) non-orthogonalized matrices (i.e. with entries directly sampled from the respec-
tive distribution) and (2) matrices with rows orthogonalized by the Gram-Schmidt procedure.

We fixed the compression ratio and took measurements by using orthogonalized Gaussian and
Bernoulli matrices. For each matrix type and each signal, we performed 20 trials. In each trial, the
measurement matrix was independently constructed and orthogonalized, the signal was measured and its
estimate was computed. Figure 6.2 presents results for a set of 403.gcc performance events. The results
were comparable for all evaluated workloads. We conclude that the difference between using orthogonal-
ized Gaussian and Bernoulli random matrices for sampling is not significant in terms of reconstruction
quality.

In a practical implementation, the orthogonalization of matrices may not be readily achievable,
e.g. when the matrix is implemented in hardware. Subsequently, sampling with non-orthogonalized
matrices may be of interest. The Bernoulli matrix is a promising candidate for efficient hardware imple-
mentation, due to the fact that it requires only values of 1 and −1. Sampling with non-orthogonalized
Bernoulli matrix was compared to sampling with orthogonalized Bernoulli matrix. Figure 6.3 shows
the results for different sampling ratios and a fixed signal. It can be seen that the orthogonalized ma-
trix in general outperformed the non-orthogonalized one. Orthogonalization was critically important

49

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

0

5

10

15

20

25

30

35

40

R
ec

on
st

ru
ct

io
n

qu
al

ity
 (

dB
)

br
_in

st_
re

tir
ed

_m
isp

re
d

bu
s_

tra
ns

_m
em

_s
elf

cp
u_

clk
_u

nh
alt

ed
_r

ef div

dt
lb_

m
iss

es
_a

ny

hw
_in

t_
rc

v

ins
t_

re
tir

ed
_a

ny
_p

itlb
_m

iss
es

l1d
_r

ep
l

l1i
_m

iss
es

l2_
lin

es
_in

_s
elf

l2_
m

_li
ne

s_
in_

se
lf

l2_
m

_li
ne

s_
ou

t_
se

lf

m
em

or
y_

dis
am

big
ua

tio
n_

re
se

t
m

ul

re
so

ur
ce

_s
ta

lls
_a

ny

sb
_d

ra
in_

cy
cle

s

Gauss sampling
Bernoulli sampling

Figure 6.2: Comparison of reconstruction quality for sampling with random Bernoulli and Gaussian
matrices. The events from Table 5.2 were sampled while running the SPEC CPU2006 403.gcc benchmark.
The length of each signal is 1024 samples. The signals were recovered using OMP. Each reconstruction
task was repeated in 20 independent trials. The bars depict median of reconstruction quality and the
additional interval signs show range between the first and the third quartile.

20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

12

14

16

18

% of samples taken

R
ec

on
st

ru
ct

io
n

qu
al

ity
 (

dB
)

Orthogonalized Bernoulli matrix

Non−orthogonalized Bernoulli matrix

Figure 6.3: Comparison of reconstruction quality for orthogonalized and non-orthogonalized Bernoulli
sampling matrix. For each compression ratio, we perform 20 independent trials.

in a certain region. The region corresponds to the boundary below which CS was no longer reliably
performant.

Consider now the comparison of orthogonalized random Bernoulli matrix to random sampling in the
noiselet domain. Noiselet measurements are complex numbers and, in general, require both the real and
imaginary part of the measurements to be transferred. Therefore a fair comparison needs to be performed
at a normalized sampling ratio where the number of real coefficients is the same. Figure 6.4 compares
noiselets at a non-normalized and normalized sampling ratio (50%, resp. 25%) to a random Bernoulli
matrix. When the sample rates were not normalized, noiselets achieved generally better reconstruction
quality than Bernoulli matrices. This was expected due to their perfect incoherence to the Haar wavelet
domain. However, after normalization noiselets achieved comparable or slightly worse reconstruction
quality than the Bernoulli matrix.

50

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

0

2

4

6

8

10

12

14

16

18

R
ec

on
st

ru
ct

io
n

qu
al

ity
 (

dB
)

br
_in

st_
re

tir
ed

_m
isp

re
d

bu
s_

tra
ns

_m
em

_s
elf

cp
u_

clk
_u

nh
alt

ed
_r

ef div

dt
lb_

m
iss

es
_a

ny

hw
_in

t_
rc

v

ins
t_

re
tir

ed
_a

ny
_p

itlb
_m

iss
es

l1d
_r

ep
l

l1i
_m

iss
es

l2_
lin

es
_in

_s
elf

l2_
m

_li
ne

s_
in_

se
lf

l2_
m

_li
ne

s_
ou

t_
se

lf

m
em

or
y_

dis
am

big
ua

tio
n_

re
se

t
m

ul

re
so

ur
ce

_s
ta

lls
_a

ny

sb
_d

ra
in_

cy
cle

s

Bernoulli @ 50%

Noiselets @ 50%

Noiselets @ 25%

Figure 6.4: Comparison of reconstruction quality for the Bernoulli and noiselet sampling. For each
evaluated signal and each sampling ratio, we performed 20 independent trials consisting of sampling
and recovery. The signals from Table 5.2 were captured while running the SPEC CPU2006 403.gcc
benchmark. The signal length is 1024. The bars depict median of reconstruction quality and the
additional interval signs show range between the first and the third quartile. The recovery task was
formulated as Basis Pursuit.

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

% of samples taken

T
im

e
(s

)

BP

OMP

(a) Running time of BP vs. OMP

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

4

% of samples taken

R
ec

on
st

ru
ct

io
n

er
ro

r

BP

OMP

(b) Reconstruction error of BP vs. OMP

Figure 6.5: Comparison of BP and OMP for a fixed signal of length 1024. The signal represents the
number of retired mispredicted branch instructions and was captured while running the SPEC CPU2006
403.gcc benchmark. The sampling and recovery was performed in 20 independent trials. Both algorithms
recover the signal from random Gaussian projections. The plot depicts median of time/error and the
additional interval signs show range between the first and the third quartile.

6.3.2 Recovery algorithms

Our measurements confirm the time bounds predicted by theory. For all tested signals and all reasonable
sampling ratios, the greedy algorithms considerably outperformed optimization algorithms in processing
time. The difference was typically orders of magnitude. Rather than presenting the results for all
signals, we illustrate here the phenomenon in finer granularity for a fixed signal. Figure 6.5(a) depicts
the running time of the BP and the OMP algorithms for different sampling ratios.

On the other hand, BP allowed more accurate recovery than OMP for many signals evaluated in this
work. Figure 6.5(b) illustrates the quality differences for measurements with the Gaussian matrix.

51

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

6.3.3 Comparison to regular sampling

The evaluation compares the recovered signal using CS to the recovered signal using regular sampling
followed by sinc interpolation 2 [72]. The regular sampling algorithm, for a measurement size M and a
signal block of length N , takes M measurements in regular intervals of length N

M from the signal block.
The unknown values in the signal estimate (exactly N −M values) are computed by sinc interpolation.
Marginal entries (i.e. the first and the last block of unknown entries) are extrapolated. For clarity, we
chose N and M such that N

M is an integer.
There are multiple ways in which compressive sampling can be implemented. Based on our obser-

vations in the previous sections, we select three configurations with different qualitative properties and
computing costs. The first two configurations aim at achieving an accurate reconstruction when infor-
mation about the signal is known a priori. The CS(Noiselets, Haar) configuration takes samples in the
noiselet domain and recovers the signal in the Haar domain. The CS(Time, DCT) configuration takes
samples in the time domain and recovers the signal in the DCT domain. Both CS(Noiselets, Haar) and
CS(Time, DCT) formulate the recovery task as Basis Pursuit and employ highly incoherent basis pairs
(incoherency 1 and approximately

√
2, resp.). The third configuration targets a practical setting where

the signals are sampled in the processor and recovered in real-time. This configuration uses the univer-
sally incoherent Bernoulli sampling and recovers the signal using the OMP algorithm, which was in our
experiments empirically faster than BP. The sampling matrix is not orthogonalized and the signals are
recovered in the Haar domain. We denote this configuration CS(N-Bernoulli, Haar).

−5

0

5

10

15

20

25

30

35

40

45

R
ec

on
st

ru
ct

io
n

qu
al

ity
 (

dB
)

br
_in

st_
re

tir
ed

_m
isp

re
d

bu
s_

tra
ns

_m
em

_s
elf

cp
u_

clk
_u

nh
alt

ed
_r

ef div

dt
lb_

m
iss

es
_a

ny

hw
_in

t_
rc

v

ins
t_

re
tir

ed
_a

ny
_p

itlb
_m

iss
es

l1d
_r

ep
l

l1i
_m

iss
es

l2_
lin

es
_in

_s
elf

l2_
m

_li
ne

s_
in_

se
lf

l2_
m

_li
ne

s_
ou

t_
se

lf

m
em

or
y_

dis
am

big
ua

tio
n_

re
se

t
m

ul

re
so

ur
ce

_s
ta

lls
_a

ny

sb
_d

ra
in_

cy
cle

s

CS(Noiselets, Haar)

CS(Time, DCT)

CS(N−Bernoulli, Haar)

Regular sampling+sinc

Figure 6.6: Comparison of compressive sampling to regular sampling followed by sinc interpolation. The
signals from Table 5.2 were captured while running the SPEC CPU2006 453.povray benchmark. The
signal length is 1024 and the sampling ratio is 50%. The bars depict median of reconstruction quality
and the additional interval signs show the range between the first and the third quartile.

The evaluation was carried out for different sampling ratios. Figure 6.6 shows the results when
50% of samples were taken while running the 453.povray benchmark. The majority of the signals were
recovered at best by compressive sampling. 10 out of 13 signals which were highly sparse in the DCT
domain were recovered in the best quality by CS(Time, DCT). Two signals related to the L2-cache,
highly sparse in the Haar wavelet domain, were recovered by CS(Noiselets, Haar) with 10dB, resp. 5dB
accuracy improvement over the other configurations.

The choice of the sparsity basis was less clear for the 403.gcc benchmark and employing CS did not
bring so unequivocal performance gain. CS(Noiselets, Haar) configuration recovered 4 signals better than
regular sampling, namely the signals from the arithmetical units, TLB and L2 cache. These signals were
highly sparse in the Haar wavelet domain. The efficient CS(N-Bernoulli, Haar) configuration recovered

2Given a sampling period T and uniformly spaced samples f(nT), the approximation of f at point t is f(t) =

f(nT)
sin(π(t−nT)/T)

π(t−nT)/T

52

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

5 signals better and the CS(Time, DCT) only 1 signal, the number of processor cycles. Similar results
were obtained for the 464.h264ref benchmark.

In the fluid dynamics benchmark 437.leslie3d, the reconstruction quality of CS was in many cases
comparable to that of regular sampling. However, only 5 signals were recovered better by CS. When the
sampling ratio was increased to 80% to compensate for the non-ideal incoherence of the time-DCT pair,
CS(Time, DCT) was better in 15 out of 17 cases.

Higher compression ratios, e.g. taking 25% of samples, worked only for highly sparse signals, in this
case for signals with sparsity estimates below 5% (see Figure 5.5). This corresponds to the reported lower
bounds of 3K - 5K samples in [73]. For example, in the 403.gcc benchmark, the number of multiply
operations and the number of ITLB misses, both highly sparse in the Haar wavelet basis, were recovered
the best by CS(Noiselets, Haar).

In general, the evaluated signals which were recovered better by sinc inteporlation shared a strong
periodic character. Because such signals are often sparse in the DCT basis, a comparable or better
performance of CS was achievable once the sampling ratio was increased to compensate for the sparsity
and incoherence.

CS also worked for the evaluated signals where interpolation resulted in a recovery which bore no
resemblance to the original signal. Typically, these signals exhibit a non-smooth development with lots
of discontinuities. Figure 6.7 shows an example of two contrasting signals. Both signals are captured by
CS, but in one case CS is outperformed by regular sampling followed by sinc interpolation and in the
other case CS is better.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Time

C
ou

nt
er

 v
al

ue

(a) Original

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Time

C
ou

nt
er

 v
al

ue

(b) CS(Noiselets, Haar)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Time

C
ou

nt
er

 v
al

ue

(c) Sinc interpolation

0 100 200 300 400 500 600 700 800 900 1000
2.326

2.328

2.33

2.332

2.334

2.336

2.338

2.34

2.342
x 10

7

Time

C
ou

nt
er

 v
al

ue

(d) Original

0 100 200 300 400 500 600 700 800 900 1000
2.326

2.328

2.33

2.332

2.334

2.336

2.338

2.34

2.342
x 10

7

Time

C
ou

nt
er

 v
al

ue

(e) CS(Noiselets, Haar)

0 100 200 300 400 500 600 700 800 900 1000
2.25

2.3

2.35

2.4
x 10

7

Time

C
ou

nt
er

 v
al

ue

(f) Sinc interpolation

Figure 6.7: Recovery of contrasting signals. Signal (a) represents the number of mispredicted branch
instructions during the first 10s of SPEC 403.gcc compiler. Signal (d) represents the number of reference
cycles from the same benchmark. The signal estimates (b), (c), (e), (f) were recovered from 50% of
samples. Negative values in the estimates were set to 0. For the sake of legibility, signal (f) has a coarser
scaling of the y-axis than (e).

6.3.4 Discussion

We have shown that for a range of different performance signals, the simple Haar wavelet or DCT
can work surprisingly well. However, the sparsity and compression efficiency may be further enhanced
by using more advanced representation techniques. Current research explores redundant and mixed
representation dictionaries which allow for combining the advantages of different representation bases.

53

CHAPTER 6. COMPRESSIVE SAMPLING OF PERFORMANCE SIGNALS

For instance, see [74] for results on using recovery dictionaries combining spikes and cosine waveforms
or [1] for a demonstration of recovery with a highly overcomplete dictionary of Gabor functions.

The recovered estimates were often noisy; for basis pursuit, this has been observed even for simple
artificial signals [73] and is attributed to a “leakage” of signal energy to the high frequency coefficients
in the representational domain. See for example [73] for suggestions how the “leakage” can partially
be reduced if signal-specific constraints in the recovery are imposed. To reduce the noise in greedy
algorithms, it may be helpful to exploit structure of the representational domain (e.g. the Haar wavelet)
and employ tree-based modifications of matching pursuit, see for instance [75, 76].

Naturally, the measure used for assessing reconstruction quality heavily depends on the evaluation
objectives. We chose to measure performance by the objective l2 metric and signal-to-noise ratio mea-
sures. A more specific analysis with a focus on prediction of the thread behaviour and new scheduling
algorithms may require more tailored measures based on stochastic modeling and information theory.

In this work, CS was not run at its best possible configuration as predicted by theory. To be able to
translate Basis Pursuit as a linear programming task, we chose the real-valued DCT basis instead of the
complex-valued Fourier basis as the domain for signal recovery. Although DCT is still highly incoherent
to the time domain, the Fourier basis would allow a perfect incoherence. Noiselets were evaluated at a
normalized sampling rate which significantly affected their performance. The normalization was required
because of the intrinsic usage of complex numbers in noiselets. We are currently designing a real sampling
basis which is to be perfectly incoherent to the Haar wavelet and facilitates a fast transform algorithm.
Having such a basis would bring substantial improvements in the reconstruction quality of CS.

We have observed strong inter-signal correlations between the evaluated performance signals. Such
dependencies could allow for modeling the signal ensembles as jointly-sparse [77] and employing the algo-
rithms for distributed compressive sampling. This approach could further lower the required bandwidth.

It must not be forgotten that the signals we used were themselves regularly sampled valued of the
underlying performance counters. It is conceivable that a more accurate representation could be obtained
by CS by directly working with the underlying signal in hardware.

54

Chapter 7

Per-core sampling module

In this chapter, we outline a proposal of a compressive sampling module intended to be used on per-chip
or per-core basis 1. The module is designed to perform the sampling part of compressive sampling (see
Chapter 3), taking a real-valued signal of length n and producing its encoded form of length k, k < n.
The signal is supposed to be sampled periodically in the time domain and the task of the module is
to correlate the signal to a given sampling matrix. In the following algorithms, we try to exploit the
nature of how the signal is obtained (as a series of incoming values) and how it is encoded (using matrix
multiplication).

More formally, consider signal f ∈ R
n and sampling matrix A with dimensions k × n, k < n. Note

that this is an “undersampling”’ matrix producing vectors in R
k. We need to obtain the vector

d = A · f

By definition of matrix multiplication, the i-th element of d can be computed as

di =
∑

j

Aijfj

i.e. by correlating the signal f to the i-th line of the sampling matrix. A straightforward computation of
d by evaluating all its coefficients in the described way would require storing the vector f and traversing
its coefficients multiple times. In our case it is better to take one f coefficient at a time, process it and
throw it away. By processing we mean computing everything that takes this coefficient into account. If
we initialize di := 0 for 1 < i <= K and store it somewhere, then computing di := di +Aikfk for signal
values fk, k = 1, ...N does the job. The basic algorithm looks this way:

Data: f ∈ Rn

Result: d ∈ Rk

di := 0 for i = 1, ...k;
foreach fk in f do

foreach di in d do
di := di +Aikfk ;

end

end
Algorithm 4: Multiplying a signal by a matrix: a basic approach

Now we are concerned with the multiplication matrix A. For given fixed k, we need only one column
of the A matrix to execute the inner for loop. After the k is advanced, the column is advanced as well
and the old one is no more needed. Suppose we have a vector a that is a projection of the k-th column
of matrix A. Then Algorithm 4 can be rewritten:

1The content of this chapter is subject of the U.S. Patent Application Nr. CH9-2008-022, METHOD AND APPARA-

TUS FOR EFFICIENT GATHERING OF INFORMATION IN A MULTICORE SYSTEM, filed in June 2008 by the
IBM Corporation.

55

CHAPTER 7. PER-CORE SAMPLING MODULE

Data: f ∈ Rn

Result: d ∈ Rk

di := 0 for i = 1, ...k;
foreach fk in f do

a := A∗k ;
foreach di in d do

di := di + ai ∗ fk ;
end

end
Algorithm 5: Multiplying a signal by a matrix: separation of the column

In Algorithm 5, A∗k denotes the k-th column of matrix A. Now we clearly see that the inner loop
can be parallelized in terms of i - having fk and a, d can be computed in one step provided the additions
and multiplications run in parallel.

The described algorithm performs encoding of one signal block of length n. After that, the encoded
vector d is sent away and the procedure runs the same way again. The important fact is that the
sampling matrix A remains the same for all encoding blocks. Thus, the a vector will be consequently
filled with the same values as new fk samples arrive. From a’s point of view, there is a cycle of fixed set
of values for each ai.

Currently processed signal sample

Source signal

Multiplication

Addition

Current column

Cyclic rows

Sampling matrix

Encoded signal

Length K << N

Length N

x

+ + + + + + + + + + + + +

matrix row

(length N)

Cyclic

register

Figure 7.1: Schema of the per-core compressive sampling module.

It is possible to exploit special properties of the sampling matrices used in compressive sampling,
so that the value cycle for a can be computed rather than stored. For example, columns of a random
binary matrix with the symmetric Bernoulli distribution (see Theorem 5) can be generated using pseudo-
random number generators of uniformly distributed integer variables. For instance, linear congruential
generators [78, 79], lagged Fibonnaci generators [78] and shift-register generators [78] are the simple and
well known ones. These algorithms are fairly easy to implement and implementations in both software
and hardware exist (e.g. [80]). The fact that the algorithms behave deterministically upon initialization
by a seed is important; the sampling matrix has to be known to the recovery algorithm, which is typically
implemented in a different hardware of software component.

56

Chapter 8

Conclusion

This work is the first proposal and examination of dynamic compression of information gathered from
performance monitoring units in multicore processors. For this task, conventional compression mech-
anisms are impractical: they require first the acquisition of the entire signal in a processor core, and
then the application of a possibly computationally intensive compression algorithm. An alternative is
desirable.

We evaluated the practicality of such an alternative, compressive sampling (CS). It is a surprising
new development in information theory [81, 43], whose key result is that general classes of signals may
be compressed non-adaptively, without acquiring the entire signal. These techniques require that a basis
of representation for the signal be found such that the signal is (approximately) sparse (i.e. most of its
coefficients are zero) when represented in that basis and that a second basis, the measurement basis,
exists in which the signal representation is spread out over many coefficients. Moreover, it can suffice to
choose a random basis as the measurement basis.

The mathematical foundation for compressive sampling was outlined. The mathematical theorems
were categorized according to their assumptions and different approaches to the signal recovery were
examined. The incoherence of noiselet and wavelet bases was proven using a new definition of noiselets
based on the Kronecker product.

We gave an overview of contemporary processor architectures which exhibit a high degree of par-
allelism and performed a survey on how performance information can be gathered from them and ex-
ploited. As one of the most important applications of this performance data procurement, we considered
the scheduling of threads on processor cores. Many proposals exist in the literature on performance
aware schedulers whose main input for decisions is performance counters.

Our approach was motivated by demonstrating that many performance signals are compressible in
the Haar wavelet and DCT representations. We chose a subset of well known benchmarks as the work-
load and analyzed properties of the signals gathered on a widely spread processor platform. We then
evaluated distinct measurement and representational basis pairs, emphasizing measurement bases which
can be practically implemented in hardware. We investigated the practicality of recovering the signal
through an evaluation of the various algorithms proposed in the literature. Finally, having identified
practical measurement and representational bases and efficient algorithms, the effectiveness of compres-
sive sampling in compressing performance signals was measured. It was demonstrated that some of the
signals can be accurately recovered from as low as a 25% sampling rate using compressive sampling,
figures which correspond to those predicted by theory.

In general, we outlined a methodology which can be used for choosing, given a particular applica-
tion, the most appropriate components of CS. A special purpose sampling algorithm was designed that
efficiently compresses performance readings in a processor core.

CS proved an efficient alternative for some real-world, highly sparse signals. Further developments
are needed in order to exploit its full potential for a broader range of signals, a reasonable expectation
given CS is a new and active field. For example, performance could be improved by use of maximally
incoherent measurement bases that consist solely of real numbers.

57

Bibliography

[1] E. J. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing
Magazine, vol. 25, no. 2, pp. 21 – 30, 2008.

[2] E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathemati-
cians, vol. 3, pp. 1433 – 1452, 2006.

[3] J. Romberg and M. Wakin, “Compressed sensing: A tutorial.” IEEE Statistical Signal Processing
Workshop, 2007.

[4] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti, W. M. Sauer,
E. M. Schwarz, and M. T. Vaden, “IBM POWER6 Microarchitecture,” IBM Journal of Research
and Development, vol. 51, no. 6, 2007.

[5] A. S. Tanenbaum, Modern Operating Systems. Prentice Hall, 2001.

[6] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia distributed monitoring system: Design,
implementation and experience,” Parallel Computing, vol. 30, no. 7, 2003.

[7] R. van der Pas, “Memory hierarchy in cache-based systems.” Technical Report 817-0742-10, Sun
Microsystems, 2002.

[8] M. S. Squillante and E. D. Lazowska, “Using processor-cache affinity information in shared-memory
multiprocessor scheduling,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2,
pp. 131–143, 1993.

[9] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatheodorou, “Realistic workload scheduling
policies for taming the memory bandwidth bottleneck of SMPs,” in Proceedings of the International
Conference on High Performance Computing, pp. 286–296, 2004.

[10] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual, vol. 3B. 2008.

[11] Intel Corporation, Intel Itanium 2 Processor Reference Manual For Software Development and
Optimization. 2004.

[12] IBM Corporation, Cell Broadband Engine Programming Handbook. 2007.

[13] AMD Corporation, BIOS and Kernel Developer’s Guide for the AMD Athlon 64 and AMD Opteron
Processors. 2006.

[14] MIPS Technologies, MIPS R10000 Microprocessor User’s Manual. 1996.

[15] S. Eranian, “Perfmon2: a flexible performance monitoring interface for Linux,” in Ottawa Linux
Symposium 2006: Proceedings of the Linux Symposium, vol. 1, pp. 269 – 288, 2006.

[16] M. Petterson, “Perfctr documentation.” Available online from
http://user.it.uu.se/ mikpe/linux/perfctr, 2008.

58

BIBLIOGRAPHY BIBLIOGRAPHY

[17] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, “A scalable cross-platform in-
frastructure for application performance tuning using hardware counters,” in Supercomputing ’00:
Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM), (Washington, DC,
USA), p. 42, IEEE Computer Society, 2000.

[18] S. Parekh, S. Eggers, and H. Levy, “Thread-sensitive scheduling for SMT processors.” University
of Washington Technical Report, 2000.

[19] J. Aas, “Understanding the linux 2.6.8.1 cpu scheduler.” On–line article,
http://joshaas.net/linux/linux cpu scheduler.pdf.

[20] A. Tucker and A. Gupta, “Process control and scheduling issues for multiprogrammed shared-
memory multiprocessors,” SIGOPS Operating Systems Review, vol. 23, no. 5, pp. 159–166, 1989.

[21] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum, “Performance of multithreaded chip multi-
processors and implications for operating system design,” in ATEC ’05: Proceedings of the annual
conference on USENIX Annual Technical Conference, (Berkeley, CA, USA), pp. 26–26, USENIX
Association, 2005.

[22] J. Nakajima and V. Pallipadi, “Enhancements for hyper-threading technology in the operating sys-
tem: seeking the optimal scheduling,” in WIESS’02: Proceedings of the 2nd conference on Industrial
Experiences with Systems Software, (Berkeley, CA, USA), pp. 3–3, USENIX Association, 2002.

[23] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simultaneous multithreaded proces-
sor,” in ASPLOS-IX: Proceedings of the ninth international conference on Architectural support for
programming languages and operating systems, (New York, NY, USA), pp. 234–244, ACM, 2000.

[24] C. Antonopoulos, D. Nikolopoulos, and T. Paptheodorou, “Scheduling algorithms with bus band-
width considerations for SMPs,” in Proceeding of the 2003 International Conference on Parallel
Processing, pp. 547–554, 2003.

[25] J. Corbalán, X. Martorell, and J. Labarta, “Performance-driven processor allocation,” in OSDI’00:
Proceedings of the 4th conference on Symposium on Operating System Design & Implementation,
(Berkeley, CA, USA), pp. 5–5, USENIX Association, 2000.

[26] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading: maximizing on-chip
parallelism,” in ISCA ’98: 25 years of the international symposia on Computer architecture (selected
papers), (New York, NY, USA), pp. 533–544, ACM, 1998.

[27] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic jobscheduling with priorities for a simultane-
ous multithreading processor,” in SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems, (New York, NY, USA),
pp. 66–76, ACM, 2002.

[28] R. L. McGregor, C. D. Antonopoulos, and D. S. Nikolopoulos, “Scheduling algorithms for effective
thread pairing on hybrid multiprocessors,” in IPDPS ’05: Proceedings of the 19th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS’05) - Papers, (Washington, DC,
USA), p. 28.a, IEEE Computer Society, 2005.

[29] A. Fedorova, M. Seltzer, and M. D. Smith, “Cache-fair thread scheduling for multi-core processors,”
in Technical Report TR-17-06, Harvard University, 2006.

[30] M. D. Vuyst, R. Kumar, and D. Tullsen, “Exploiting unbalanced thread scheduling for energy
and performance on a CMP of SMT processors,” in Proceedings of 20th International Parallel and
Distributed Processing Symposium, 2006.

[31] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, “Single-ISA hetero-
geneous multi-core architectures for multithreaded workload performance,” SIGARCH Computer
Architecture News, vol. 32, no. 2, p. 64, 2004.

59

BIBLIOGRAPHY BIBLIOGRAPHY

[32] R. Joseph and M. Martonosi, “Run-time power estimation in high performance microprocessors,”
in ISLPED ’01: Proceedings of the 2001 international symposium on Low power electronics and
design, (New York, NY, USA), pp. 135–140, ACM, 2001.

[33] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J. Irwin, and A. Sivasubramaniam,
“vEC: virtual energy counters,” in PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, (New York, NY, USA), pp. 28–31,
ACM, 2001.

[34] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Methodology and
empirical data,” in MICRO 36: Proceedings of the 36th annual IEEE/ACM International Sympo-
sium on Microarchitecture, (Washington, DC, USA), p. 93, IEEE Computer Society, 2003.

[35] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopoulos, “Online power-
performance adaptation of multithreaded programs using hardware event-based prediction,” in ICS
’06: Proceedings of the 20th annual international conference on Supercomputing, (New York, NY,
USA), pp. 157–166, ACM, 2006.

[36] A. Weissel and F. Bellosa, “Process cruise control: event-driven clock scaling for dynamic power
management,” in CASES ’02: Proceedings of the 2002 international conference on Compilers, ar-
chitecture, and synthesis for embedded systems, (New York, NY, USA), pp. 238–246, ACM, 2002.

[37] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, “Heat-and-run: leveraging SMT and CMP to
manage power density through the operating system,” SIGARCH Computer Architecture News,
vol. 32, no. 5, pp. 260–270, 2004.

[38] R. Mooney, K. P. Schmidt, and R. S. Studham, “NWPerf: a system wide performance monitor-
ing tool for large Linux clusters,” in CLUSTER ’04: Proceedings of the 2004 IEEE International
Conference on Cluster Computing, (Washington, DC, USA), pp. 379–389, IEEE Computer Society,
2004.

[39] M. J. Sottile and R. G. Minnich, “Supermon: A high-speed cluster monitoring system,” in CLUS-
TER ’02: Proceedings of the IEEE International Conference on Cluster Computing, (Washington,
DC, USA), p. 39, IEEE Computer Society, 2002.

[40] E. Anderson and D. Patterson, “Extensible, scalable monitoring for clusters of computers,” in LISA
’97: Proceedings of the 11th USENIX conference on System administration, (Berkeley, CA, USA),
pp. 9–16, USENIX Association, 1997.

[41] R. Buyya, “PARMON: a portable and scalable monitoring system for clusters,” Software - Practice
and Experience, vol. 30, no. 7, pp. 723–739, 2000.

[42] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression Fundamentals, Standards
and Practice. Kluwer Academic Publishers, 2001.

[43] E. Candès and T. Tao, “Near optimal signal recovery from random projections and universal en-
coding strategies,” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406 – 5425,
2006.

[44] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information
Theory, vol. 51, no. 12, pp. 4203 – 4215, 2005.

[45] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate mea-
surements,” Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207 – 1223,
2006.

[46] M. Rudelson and R. Vershinin, “Sparse reconstruction by convex relaxation: Fourier and gaussian
measurements,” in Proceedings of the 40th Annual Conference on Information Sciences and Systems,
pp. 207 – 212, 2006.

60

BIBLIOGRAPHY BIBLIOGRAPHY

[47] E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Problems,
vol. 23, no. 3, pp. 969–985, 2007.

[48] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM
Review, vol. 43, no. 1, pp. 129–159, 2001.

[49] E. Candès and T. Tao, “The dantzig selector: statistical estimation when p is much larger than n,”
Annals of Statistics, vol. 35, no. 6, pp. 2313 – 2351, 2007.

[50] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Applica-
tion to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal
Processing, vol. 1, no. 4, pp. 586 – 597, 2007.

[51] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transac-
tions on Signal Processing, vol. 41, no. 12, pp. 3397 – 3415, 1993.

[52] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate
samples,” Preprint, 2008.

[53] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive function
approximation with applications to wavelet decomposition,” in Proceedings of the 27 th Annual
Asilomar Conference on Signals, Systems, and Computers, pp. 40 – 44, 1993.

[54] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal mathch-
ing pursuit,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655 – 4666, 2007.

[55] D. Needell and R. Vershynin, “Uniform uncertainity principle and signal recovery via regularized
orthogonal matching pursuit,” 2007. Submitted for publication.

[56] I. Daubechies, M. Defrise, and C. DeMol, “An iterative thresholding algorithm for linear inverse
problems,” Communication on Pure and Applied Mathematics, vol. 57, pp. 1413 – 1457, 2003.

[57] A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin, “Algorithmic linear dimension reduction in the
ell-1 norm for sparse vectors,” 2006. Submitted for publication.

[58] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mapping into hilbert space,” Con-
temporary Mathematics, vol. 26, pp. 189 –– 206, 1984.

[59] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, “One sketch for all: fast algorithms
for compressed sensing,” in STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, (New York, NY, USA), pp. 237–246, ACM, 2007.

[60] G. Strang, Introduction to applied mathematics. Wellesley - Cambridge Press, 1986.

[61] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Prentice Hall, Authors, 2007.

[62] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[63] I. Daubechies, Ten lectures on wavelets. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1992.

[64] R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Applied and Computational Harmonic Anal-
ysis, vol. 10, no. 1, pp. 27 – 44, 2001.

[65] A. J. Laub, Matrix Analysis for Scientists and Engineers. SIAM, 2005.

[66] B. Falkowski and S. Rahadja, “Walsh-like functions and their relations,” in IEE Proceedings on
Vision, Image and Signal Processing, vol. 143, pp. 279 – 284, 1996.

[67] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH Computer Architecture News,
vol. 34, no. 4, pp. 1–17, 2006.

61

BIBLIOGRAPHY BIBLIOGRAPHY

[68] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: From error measure-
ment to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
2004.

[69] A. Eskicioglu and P. Fisher, “Image quality measures and their performance,” IEEE Transactions
on Communications, vol. 43, no. 12, pp. 2959 – 2965, 1995.

[70] J. Buckheit and D. Donoho, “Wavelab and reproducible research,” in Wavelets in Statistics, pp. 55–
81, Springer-Verlag, 1995.

[71] D. Donoho et al., “Sparselab: Seeking sparse solutions to linear systems of equations.” Available
online at http://sparselab.stanford.edu.

[72] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing. Prentice Hall,
1999.

[73] E. J. Candès and J. Romberg, “Signal recovery from random projections,” in Proceedigns of SPIE
Conference on Computational Imaging III, pp. 76 – 86, 2004.

[74] H. Rauhut, K. Schass, and P. Vandergheynst, “Compressed sensing and redundant dictionaries,”
IEEE Transactions on Information Theory, vol. 54, pp. 2210–2219, May 2008.

[75] C. La and M. Do, “Signal reconstruction using sparse tree representation,” in Proceedings of SPIE
on Wavelets XI, vol. 5914, 2004.

[76] P. Jost, P. Vandergheynst, and P. Frossard, “Tree-based pursuit: Algorithm and properties,” IEEE
Transactions on Signal Processing, vol. 54, pp. 4685–4697, December 2006.

[77] M. F. Duarte, S. Sarvotham, D. Baron, M. B. Wakin, and R. G. Baraniuk, “Distributed compressed
sensing of jointly sparse signals,” in Proceedings of the 2005 Asilomar Conference on Signals, Sys-
tems, and Computers, pp. 1537 – 1541, 2005.

[78] G. Marsaglia, “A current view of random number generators,” in Computer Science and Statistics:
16th Proceedings of the Symposium on the Interface, 1984.

[79] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-
Wesley, 1997.

[80] Y. Bi, G. D. Peterson, G. L. Warren, and R. J. Harrison, “Hardware acceleration of parallel lagged-
fibonacci pseudo random number generation,” in Proceedings of the 2006 International Conference
on Engineering of Reconfigurable Systems & Algorithms, pp. 215–218, 2006.

[81] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4,
pp. 1289 – 1306, 2006.

62

Appendix A

Examples of real performance signals

0 200 400 600 800 1000
0

2

4
x 10

5 br_inst_retired_mispred

0 200 400 600 800 1000
0

5

10
x 10

5 bus_trans_mem_self

0 200 400 600 800 1000
2.32

2.34

2.36
x 10

7 cpu_clk_unhalted_ref

0 200 400 600 800 1000
0

2

4
x 10

5 div

0 200 400 600 800 1000
0

2

4

x 10
5 dtlb_misses_any

0 200 400 600 800 1000
0

20

40
hw_int_rcv

0 200 400 600 800 1000
0

2

4

x 10
7 inst_retired_any_p

0 200 400 600 800 1000
0

1

2
x 10

4 itlb_misses

0 200 400 600 800 1000
0

1

2
x 10

6 l1d_repl

0 200 400 600 800 1000
0

2

4
x 10

5 l1i_misses

0 200 400 600 800 1000
0

2

4
x 10

5 l2_lines_in_self

0 200 400 600 800 1000
0

1

2
x 10

6 l2_m_lines_in_self

0 200 400 600 800 1000
0

2

4
x 10

5 l2_m_lines_out_self

0 200 400 600 800 1000
0

5000

10000
memory_disambiguation_reset

0 200 400 600 800 1000
0

2

4
x 10

5 mul

0 200 400 600 800 1000
0

2

4
x 10

7 resource_stalls_any

0 200 400 600 800 1000
0

5

10
x 10

4 sb_drain_cycles

Figure A.1: Intel R© Core 2 performance signals for SPEC CPU2006 403.gcc. Sampling frequency 10ms,
1024 samples.

63

Appendix B

Contents of the CD

The master thesis comes with a CD which contains the text of the work, images, traces and results of
the experiments. The CD is structured as follows:

/Text/Source/ Text of the work in the LATEXformat.
/Text/Images/ Images used in the text in the EPS format.
/Text/Text.pdf Compiled version of the work as it was printed in the

PDF format.

/Data/Traces/ The traces of evaluated performance counters in the
pfmon ASCII format.

/Data/Results/ Results of the experiments, one directory per exper-
iment.

/Data/Results/readme.txt Configuration of the particular experiments.

64

