
Charles University in Prague,

Faculty of Mathematics and Physics

BACHELOR THESIS

David Babka

Regression Benchmarking Web

Department of Software Engineering

Supervisor: Doc. Ing. Petr Tůma, Dr.

Study program: Computer science, Programming

2008

2

3

I would like to thank my supervisor Doc. Ing. Petr Tůma, Dr., for numerous pieces of

advice, corrections, his patience and the time he spent with me. Furthermore, I would like to

thank my former supervisor RNDr. Tomáš Kalibera, PhD., for guiding me through the

specification and Mgr. Vlastimil Babka for his review.

I hereby declare that I wrote the thesis myself using only the referenced sources. I agree with

lending the thesis.

Prague, August 6, 2008 David Babka

4

5

Contents

Contents .. 5
1 Introduction ... 7

1.1 Regression benchmarking .. 7
1.2 Goal of the thesis ... 8

1.3 Overview of the following document .. 8
2 Analysis ... 9

2.1 Detailed requirements .. 9
2.2 Results ... 15
2.3 Performance results plots ... 15
2.4 Plot caching ... 16
2.5 Implementation technologies ... 17

3 Basic usage instructions .. 18
3.1 Installation ... 18

3.2 Sections .. 18
3.3 Parsing ... 23
3.4 Permissions .. 25

4 Implementation ... 26
4.1 Architecture ... 26

4.2 Plot generation ... 27

4.3 Process flow ... 28

4.4 Database ... 30
5 Conclusion .. 34

5.1 Related work .. 34
5.2 Future work .. 35

6 Bibliography ... 36
7 Appendices .. 38

6

Název práce: Web pro prezentaci výsledků regresivních výkonnostních testů

Autor: David Babka

Katedra: Katedra softwarového inženýrství

Vedoucí bakalářské práce: Doc. Ing. Petr Tůma, Dr.

e-mail vedoucího: petr.tuma@mff.cuni.cz

Abstrakt: Při vývoji software je jeho výkon často důležitou součástí požadavků zákazníka.

Vzhledem k tomu, že se software neustále vyvíjí, lze pomocí porovnávání výsledků testů

výkonu určit nedostatky ve zdrojovém kódu a tím celkově optimalizovat výkon software. Tato

práce se zabývá implementací flexibilní webové aplikace založené na získávání těchto

výsledků a jejich prezentací je v grafech a jiných formách. Pro co nejlepší přehlednost bude

možné tyto grafy dynamicky generovat. Další z výhod této aplikace bude možnost zasílání e-

mailů uživatelům s informacemi o nových měřeních.

Klíčová slova: webová aplikace, výkonnostní testování, regrese, zátěžové testování,

prezentace výsledků, grafy

Title: Regression Benchmarking Web

Author: David Babka

Department: Department of Software Engineering

Supervisor: Doc. Ing. Petr Tůma, Dr.

Supervisor’s e-mail address: petr.tuma@mff.cuni.cz

Abstract: During the software development the performance of the software is often important

part of client requirements. Considering the constant development process of the software,

comparison of the performance testing results could pinpoint to various defects in the source

code, which could lead to optimizing software and its performance. This thesis focuses on

implementation of flexible web application created for retrieving the performance results and

presenting them in plots and other forms. The plots are dynamically generated to provide as

much transparency as possible. This application will also provide the ability to send e-mails to

users with the information about new measurement results.

Keywords: web application, performance testing, regression, benchmarking, result

presentation, plots

mailto:petr.tuma@mff.cuni.cz
mailto:petr.tuma@mff.cuni.cz

7

1 Introduction

1.1 Regression benchmarking

It is generally accepted [1] that performance testing has an essential place as an integral part

of the software development process - with the advent of distributed software development

centered around web accessible frameworks such as development forges, the need for

publishing of performance testing results on the web increases.

However, performance testing results can be affected by various random factors, which

makes the results quite distorted [16]. For example software compilation does not always

create identical binaries and therefore testing different compilations could lead to different

results. It is vital for the results to display the most representative value. Performance tests are

therefore usually repeated many times including recompilation, creating a huge amount of

data. Statistical analysis then provides trustworthy results such as mean or 99% confidence

interval, which can be published on the web.

Regression benchmarking allows capturing performance changes of software

development. Multiple versions of the software are separately measured and the obtained

results are compared to show the performance impact of code changes between them, which

could pinpoint to effective or ineffective code for further improvements. One of the basic

visual outputs of regression performance testing is a performance impact plot, such as the one

displayed on Figure 1.1.

Figure 1.1 - Performance impact plot

8

1.2 Goal of the thesis

This thesis focuses on the part of the regression benchmarking framework that is responsible

for displaying results. The goal is to implement a flexible web interface for displaying

benchmarking results that can be used to track performance of software as it develops.

This implementation of the regression benchmarking web will be used as a replacement

for the existing MONO Regression Benchmarking web [2], which no longer fulfills required

expectations such as dynamic plot generating, and lacks flexibility.

The regression benchmarking web will be based on an open source content management

platform and the required features will be provided by plug-in modules created for this

platform, thus making the web more versatile, which is essential for further improvements and

extensions.

After correct installation of these modules, the web application will be able to parse

benchmarking results and present them in dynamically generated plots. There will be also the

possibility to send e-mail notifications about newly submitted results to registered users.

1.3 Overview of the following document

The second chapter presents an analysis of detailed requirements and a discussion of possible

approaches to fulfill these requirements. The third chapter describes how to use the

implementation from the installation to result parsing or plot displaying. Detailed description

of the web implementation follows in the fourth chapter and the fifth chapter concludes the

thesis.

9

2 Analysis

2.1 Detailed requirements

There are four primary tasks essential for the regression benchmarking web.

Projects, benchmarks and platforms management

Unlike MONO Regression Benchmarking [2], which is specialized only for performance

testing of MONO [20], the regression benchmarking web will have the ability to manage

multiple software projects and with it comes the need to manage individual benchmarks
1
 and

platforms
2
.

The management of these three types will have few aspects in common. They will all

hold the name, description, publisher and the published tag. The rest of the settings will be

specialized for each type. In the project management, the management of dependencies is

essential; it will hold the information about benchmarks and platforms used for the project

performance testing. Benchmark management will focus on the management of its metrics.

Performance testing results parsing

The benchmark results are usually stored in files in human-readable ASCII-based
3
 format and

for further presentation it is vital to extract the results from these files. After the extraction,

the most necessary data are stored to the database for quicker and more comfortable access.

Detailed discussion about parsing can be found in following section 2.2.

Performance testing results presentation

The next major improvement from MONO Regression Benchmarking [2] is dynamic plot

generation, which makes the presentation more transparent. Plots will be created and

parameterized by plot wizards and have automatically justified axes to fit all displayed results

and to prevent blank spaces.

1
 Benchmark is a computer program or sets of programs designed to test the software performance

2
 Platform describes hardware architecture or software framework used for the benchmarking

3
 American Standard Code for Information Interchange (ASCII) – character encoding

10

The regression benchmarking web will provide following performance testing presentations:

Performance results plot

The performance results plot (Figure 2.1) is composed of multiple vertical segments, each

segment belonging to results from one version of the tested software (versions are denoted by

dates on which they were committed to the source control repository). Within each segment,

the X axis shows the sequential number of the collected sample in a benchmark run that

collects a sequence of samples, the Y axis the value of the sample (a single grey dot is

displayed for each sample). Segments also contain mean (red horizontal stripes) and 99%

confidence interval (blue horizontal stripes) in the current vertical position related to Y axis.

Figure 2.1 - Performance results plot

11

99% Confidence plot

This plot displays both mean and confidence interval (Figure 2.2). On the X axis there are

displayed versions of the tested software by the date of commit to the source control

repository. The Y axis shows the value of the mean (red circles) and 99% confidence interval

boundaries (blue circles connected by blue line) of all the samples collected from a single

version. The mean circles are connected to emphasize the regression of the software versions.

Figure 2.2 – 99% Confidence plot

Impact plot

The impact plot (Figure 1.1) shows performance changes over multiple software versions

relatively to the first displayed version. The performance changes may consist of multiple

metrics described in the plot legend. The X axis represents software versions by the date of

commit to source control repository. The Y axis shows different metrics, which are displayed

in percentage of a mean.

12

Error plot

Error plot (Figure 2.3) is divided into two large vertical segments with common Y axis

showing the software versions by the date of commit to source control repository.

The first segment displays percentage of both failed compilations (green bar) and failed

runs (red bar). The X axis of this segment shows values of the mentioned data starting from

zero in order from right to left.

The second segment contains the number of systematic (yellow bar) and random (blue

bar) errors occurred during the testing. The value of this data is presented in the X axis

starting from zero in order from left to right.

Figure 2.3 – Error plot

13

Project comparison plot

The project comparison plot (Figure 2.4) shows the mean of multiple project-platform couples

viewed in the plot legend. In the X axis are displayed software versions by the date of commit

to source control repository. The Y axis shows the mean value (colored circles) of each

couple.

Figure 2.4 – Comparison plot

Text results

The text results (Figure 2.5) are presented as a table, which is divided into pairs of rows

representing the software versions. The first of these rows contains the date of commit to

source control repository, mean, performance impact, coefficient of variations, percentage of

failed compilations, percentage of failed runs, number of random errors, number of systematic

errors, change detection value and link to page displaying commit log data from current

software version to the following version. The second row displays a table of compilation

results. Each row of the compilation results table contains number, mean, coefficient of

variations, percentage of failed runs, number of random errors, number of systematic errors

and change detection value of one compilation.

14

Figure 2.5 – Text results

Performance tables

Performance tables (Figure 2.6) consist of two tables. The first table assigns a color to each

platform used in the second table. The second table is more complex. Columns of the table

represent daily software versions and have multiple sub-columns, which are divided by the

colors of the platforms. The rows of the table are divided into two types: benchmark rows and

metric rows. The benchmark rows display only the colors of the platforms for each software

version. Underneath each benchmark row, there are metric rows related to the benchmark.

Metric rows contain the performance change from the previous version. For irrelevant

performance change will be displayed “=” as a value and for missing software version results

will be displayed “NA”.

Figure 2.6 – Performance tables

15

Notifications

This will be a feature for registered users, who would like to receive e-mail notifications

about new performance testing results. The users will only have to select which project or

projects to watch.

2.2 Results

As discussed in section 1.1, performance tests are usually performed more than once to get

enough data to determine reliable conclusions. These tests are also often performed on several

different software recompilations. Each of these performance tests will create a file with one

to hundred or more samples for each metric. In worst case scenario the final size of one

benchmark result file could outreach 500KB and just reading this file without any action will

take approximately 0.5 seconds. Due to the quantity of the performance result files and time

consumption of the process, it is quite necessary to cut down the result parsing to a minimum.

A fast way to process the results for further generation of possibly multiple plots is to

parse the plain-text files only once, retrieve the data and store them in a form that is faster and

comfortable to use, such as a relational database. This way, there is no need for further

parsing and all the required data is prepared for next usage. However it would be quite

ineffective to store all the gathered samples as it is in the database, because the database

would soon be over-flooded and retrieving wanted data would take more or less the same time

as parsing the performance results files. The database will therefore contain only the data that

is most often viewed on regression benchmark web, such as mean, 99% confidence interval,

coefficient of variations, errors occurred etc.

To access the parser, the user would open a special URL
4
, which will activate the script.

This URL will contain information about what sort of data is parsing and for what software

version. There is possibility, that some version of the software will be retested, which could

change the benchmarking results. The special URL can thus be used more than once, which

will delete data stored in the database for current version and it will parse the results again.

2.3 Performance results plots

Since the performance results plot is the only type of plot that displays the individual samples

from performance testing and the database does not store them (as discussed in the previous

section), there is a problem getting data needed for this plot and generating it before

exceeding the execution time limit (usually 30 seconds).

The simplest solution would be to parse all the data needed for the plot, but as discussed

earlier, parsing is very slow and ineffective.

Caching performance results after parsing is another obvious solution for this problem.

It would probably be fast enough to fit in the time limit, but generating plot will be still too

slow to discourage many expectant users. Even if all required data was cached and there was

no reason for parsing, the plot would still have to generate at least few million grey dots.

Third possibility is to cut off as many data as possible. Using all the data is not quite as

necessary as it seems, because there is only a limited space for each software versions

performance results in the plot, which means that many result dots are placed in the same

pixel. The idea is thus to randomly select a smaller amount of benchmarking results during

4
 “Uniform Resource Locator (URL) is a compact string of characters used to represent a resource available

on the Internet” [3]

16

the parsing process and storing them to the database. In the end it would be just a question of

choosing the right amount of data, which would not over-flood the database and still would

provide the required detail of the plot.

The ideal solution of this problem is to create an image during the parsing with all the

performance results as a grey dots, store it somewhere on the hard drive and use it every time

needed for plot generation. This way, the plot generator does not have to go through millions

of performance results to create the dots during the generation, making the generator very fast

and effective. Furthermore, the created image will have to be scaled down to fit the plot,

making the dots blend together creating new dots in various grey tint as displayed in Figure

2.7, which is making the plot more pleasant to look at.

Figure 2.7 – Scaling images

2.4 Plot caching

As another way of speeding up the process of presenting regression benchmarking plots, we

have considered the idea of caching the whole plot images, which would elegantly avoid

repeated generating of plots. This process would require its own management, which would

activate every time the cache exceeds maximum assigned hard drive space, leaving only the

most used plots.

Unfortunately this idea has few major disadvantages. Because there are a lot of options

for generating plots and one single plot can have from 50 to 400kB, it would require a lot of

cache space just for a little probability of displaying a plot that has already been cached. To

decide whether to use plot caching or not, it was necessary to test the speed of the plot

generator.

17

 20 versions 50 versions 100 versions

Performance results plot 0.21s 0.38s 0.82s

Impact plot 0.13s 0.22s 0.34s

99% Confidence plot 0.09s 0.16s 0.29s

Error plot 0.14s 0.33s 0.62s

Project comparison plot 0.13s 0.26s 0.45s
Table 2.1 – Plot generator speed testing

Since the testing of the plot generator (Table 2.1) revealed that even for a 100 software

version the results displayed in the plots are generated under one second, which is relatively

fast, there is therefore no need for plot caching.

2.5 Implementation technologies

We chose Drupal [4], because it is free and plug-in able software distributed under the GPL
5

license implemented in the PHP
6
 programming language, which was selected for

implementing this web. Other alternatives could be for example Joomla [15], which also

fulfills mentioned requirements. Drupal is able to use both MySQL
7
 and PostgreSQL

8

databases, therefore this project can also use both of these databases.

5
 “The GNU General Public License (GNU GPL or simply GPL) is a widely used free software license,

originally written by Richard Stallman for the GNU project.” [5]
6
 “Hypertext preprocessor (PHP) is a widely-used general-purpose scripting language that is especially suited

for Web development and can be embedded into HTML.” [10]
7
 MySQL is widely-used database management system available under terms GNU GPL, as well as under a

variety of proprietary agreements. [22]
8
 PostgreSQL is a free database management system released under a BSD-style license. [21]

18

3 Basic usage instructions

This section assumes that you have already installed Drupal 5 and read the getting-started

guide [6].

3.1 Installation

Copy the special files ajax.php and plotgenerator.php to Drupal’s root directory. This is very

important otherwise the modules will not work properly.

Next, install the modules MTypes, Measurement, Parser and Subscriptions according

the Drupal manual [7].

After correct installation, Drupal will write a message for each module – Module-name

module has been successfully installed and Drupal menu will have five new sections –

Benchmarks, Projects, Platforms, Measurement and Subscriptions, all described in the

following section.

Fully installed and working regression benchmarking web can be seen on [19]. To

access administrator account use username “admin” and password “aaa”.

3.2 Sections

Aside from the five sections mentioned in the previous section, there is also one hidden parser

section. Detailed description of the sections follows.

Benchmarks, Platform and Project sections

These sections are practically identical except for few differences, which will be described

later. The following description will be demonstrated on Benchmarks, but it could be as easily

used for Platforms and Projects.

This section takes care of the benchmark management. Clicking the Benchmarks section

in Drupal menu will cause expanding the menu and show a list of all benchmarks as shown in

Figure 3.1.

Figure 3.1 – Expanded menu

19

This list extended of published tag and description will be also displayed in the main

frame, which will provide the possibility to add new benchmark as displayed in Figure 3.2.

Figure 3.2 – Benchmark list

Clicking the name of the benchmark will view the body of the benchmark with possible

actions like View and Edit, which can be seen in Figure 3.3.

Figure 3.3 – Benchmark view

20

The Add new benchmark or Edit benchmark actions will display benchmark settings

form, where the user can edit the name, the description, the body, the body-format, the

publishing options and some additional data, which differs for each type of section.

Benchmarks settings have folder name, outlier percentage and axis scale percentage,

which are used for parsing and discussed in section 3.4. Benchmarks settings also includes

the metric management, where can be added, edited, deleted and order changed of the metrics

as depicted in Figure 3.4.

Figure 3.4 – Metric management

21

The additional options for project settings are Results URL used for the parsing and Diff

URL, which provides the information about software changes. There is also dependence

management in the project settings, which allows selecting pairs of benchmark and platform

used for performance testing of current project. This dependence requires information about

count of benchmark runs and count of compilations tested. For better understanding see

Figure 3.5.

Figure 3.5 - Dependence management

The only additional option for platform settings is folder name, which is used for

parsing.

22

Measurement section

All regression benchmarking results are presented in this section, which is divided into four

subsections described in Table 3.1.

Subsection Displays

Comparison of projects Comparison plot – Figure 2.4.

Performance results Performance results plot – Figure 2.1.

Performance tables Performance table – Figure 2.5.

Regression plots 99% Confidence plot – Figure 2.2.

Impact plot – Figure 1.1.

Error plot – Figure 2.3.

Text results – Figure 2.6
Table 3.1 – Measurement subsections

All features mentioned in Table 3.1 are described in section 2.1. Each subsection has a plot

wizard, which sets up the data that will be displayed.

Subscriptions section

This section is only accessible to registered users, because it is working with registration data

especially users e-mail. Users can sign up here for receiving notification e-mail about new

measurement.

By clicking this section the main frame will display a form for adding new subscription

and a list of all subscriptions, which were already added by the user. To add a new

subscription it is necessary to choose a triplet of project, benchmark and platform, which

benchmarking results needs to be watched and a change detection threshold. Every time,

when a designated cron
9
 job is started, there will be sent an e-mail to all users, who haves one

or more subscription, if there are new benchmarking results for the given triplet with higher

change detection than the threshold. The e-mail appearance can be set in the administration

settings of subscriptions.

Parser section

Parser is activated by special URL composed of site URL, the “parser” string, dependence id

and date string of current version. Dependence id is viewed in dependencies of project. More

about parsing is written in section 3.3.

Parser URL example:

http://www.mysite.com/parser/5/20080219-235959

9
 “Cron is a time-based scheduling service in Unix-like computer operating systems.” [8]

23

3.3 Parsing

Because it is impossible to create a universal parser, which would be able to parse all the

benchmarking results no matter the format, it requires a special file and folder structure of the

parsed results for correct run.

Folder structure

For better transparency and faster access, the benchmarking results files must be stored in a

folder structure consisted of four folders with specific names:

1. Time string of commit current software version to source control repository

2. Benchmark folder name

3. Platform folder name

4. Software compilation number

This structure needs to be in every results URL defined in the project settings and in the same

order as viewed in the folder preview. The software compilation number folders contain the

files with the results, which are named by numbers from one to benchmark runs count, and

can be compressed by bzip2
10

. There also needs to be special files named “result” with the

data from the statistical analysis, which are divided into two types:

1. Complete analysis file – this file is stored in the platform folder and contains

statistical analysis data from all the benchmarking results created for current software

version.

2. Compilation analysis file – every software compilation number folder must contain

this file, which has the statistical analysis data for current compilation benchmarking

results.

Numeric files structure

For every sample taken by benchmark must be a single line in the file containing the result. If

the benchmark has more than one metrics, then the results of each metric must be separated

by one or more of the following special characters: “ “, “\t”, “|“ and “;”. The parser also

assumes that the metric results are in the same order as the metrics in the metric management.

This solution for metric results is used in all the following file structures.

10

 Bzip2 is a free lossless data compression program. [9]

24

Complete analysis files structure

Data from the analysis must be stored in the same way as shown in Table 3.2.

Line # Used for all metrics Description

1 Yes Mean

2 Yes Upper boundary of the 99% confidence interval

3 Yes Lower boundary of the 99% confidence interval

4 Yes Coefficient of variations

5 No Number of failed compilations of the project

6 No Number of failed runs of the benchmark

7 No Number of random errors

8 No Number of systematic errors

9 Yes Change detection

Table 3.2 – Complete analysis files structure

 Compilation analysis files structure

Structure of compilation analysis file displayed in Table 3.3 is similar to complete analysis

files except for the absence of failed compilations line.

Line # Used for all metrics Description

1 Yes Mean

2 Yes Upper boundary of the 99% confidence interval

3 Yes Lower boundary of the 99% confidence interval

4 Yes Coefficient of variations

5 No Number of failed runs of the benchmark

6 No Number of random errors

7 No Number of systematic errors

8 Yes Change detection

Table 3.3 – Compilation analysis files structure

25

3.4 Permissions

The complete list with description of all permissions used for this project is viewed in the

following Table 3.4.

Permission name Allowed actions

Create benchmark Add new benchmark

Edit settings of own benchmarks

Manage metrics of own benchmarks

View own unpublished benchmarks

Create platform Add new platform

Edit settings of own platforms

View own unpublished platforms

Create project Add new project

Edit settings of own projects

Manage dependencies of own projects

View own unpublished projects

Delete benchmark Delete benchmark

Delete platform Delete platform

Delete project Delete project

Edit benchmark Edit settings of all benchmarks

Manage metrics of all benchmarks

View all unpublished benchmarks

Edit platform Edit settings of all platforms

View all unpublished platforms

Edit project Edit settings of all projects

Manage dependencies of all projects

View all unpublished projects

Access benchmark View all published benchmarks

Access platforms View all published platforms

Access projects View all published projects and its dependencies

Access measurement View measurement section

Access parser May parse benchmarking results

Authenticated user Manage own subscriptions

Anonymous user Nothing

Table 3.4 - Permissions

26

4 Implementation

The regression benchmarking web is implemented in PHP 5 using AJAX
11

 and MySQL 5

database. The web uses the Sarissa Library, which is distributed under the GNU GPL and

offers “various XML related goodies like Document instantiation, XML loading from URLs or

strings, XSLT transformations, XPath queries etc” as written on [12].

The project is dependent on Drupal 5 and cannot work without it. Correct functionality

of modules on higher versions of Drupal would require adapting to the Drupal API
12

 changes.

Higher versions of Drupal have its own support of AJAX, therefore it would allow to use the

built-in AJAX management functions instead of the Sarissa library.

Since Drupal supports MySQL and PostgreSQL, the implemented modules will work

with both of these database systems.

4.1 Architecture

The architecture comprises the following components: Measurement module, MTypes

module, Parser module, Subscriptions module, ajax.php, plogenerator.php and plot.inc. The

logical model of these components is depicted in Figure 4.1 and individual components are

described further in this section.

Figure 4.1 – Logical model of implementation components

MTypes module

This component provides the benchmark, platform and project management. It contains all

database related functions to benchmarks, platforms, projects, metrics and dependencies,

which are used by all other module components.

11

 “Ajax (asynchronous JavaScript and XML), or AJAX, is a group of interrelated web development techniques

used for creating interactive web applications or rich Internet applications.” [11]
12

 Application programming interface (API)

MTypes module

Parser module Measurement module

Subscriptions module

ajax.php

plotgenerator.php

plot.inc

27

Measurement module

This component forms measurement section. It is mainly displaying plot wizards, which uses

AJAX for better transparency and taking care of actions that are triggered by these wizards.

The data collected by the plot wizard is given to plotgenerator.php, which creates appropriate

plots.

Parser module

This module finds a path to a folder containing benchmarking results that should be parsed.

The data is parsed twice, first to get axis boundaries for the image, displayed in performance

results plots, according to benchmark settings (outlier percentage and axis scale percentage)

and then second time to create the mentioned image by putting grey dots representing the

benchmarking results. In the end it parses the statistical analysis data and stores them into the

database.

Subscriptions module

This component creates the section subscriptions. It has two tasks: manage subscriptions and

send required e-mails to users.

ajax.php

This component only uses given data to invoke correct hook AJAX function from the

modules. Theses hook AJAX functions returns XML code, which is used for further

operations.

plotgenerator.php

This component is used to generate data required for displaying plot and using the “PLOT”

class from plot.inc file to generate the plot.

plot.inc

This component uses all the data given to create plot. Further discussion about plot generating

is in following section 4.2.

4.2 Plot generation

As mentioned earlier plots are generated by class “PLOT” from the file plot.inc. Before plot

can be generated, this file requires following data: type of plot, minimal results value,

maximal results value, results in supported format and if needed legend information.

After adding the minimal and maximal results value this class computes ideal axis scale

that would display all the required data with minimal space waste and provide as much

transparency possible.

Before generating the plot there also needs to be computed width and height of the plot,

which can change depending on the amount of displayed data. The basic plot generation

consists in creating blank JPEG
13

 image and filling it with text, lines, circles, squares and

other objects forming required plot.

13

 “JPEG (Joint Photographic Experts Group) is a commonly used method of compression for photographic

images.” [13]

28

4.3 Process flow

The Plot Generator process flow (Figure 4.2) and the Parser process flow (Figure 4.3) are

depicted in the following UML
14

 sequence diagrams

Figure 4.2 – Plot Generator process flow

14

 Unified Modeling Language (UML)

29

Figure 4.3 – Parser process flow

30

4.4 Database

The table relations are depicted in Figure 4.4 and the complete list of tables with detailed

description follows.

Figure 4.4 – Database ER model

(1, 1) (0, n)

(0, n)

(0, n)

(1, 1)

(1, 1)

(1, 1)

(0, n)

(1, 1)

(0, n)

(1, 1)

(0, n)

(1, 1)

(0, n)

(1, 1)

(0, n)

(1, 1)

(0, n)

(1, 1)

(0, n)

(1, 1)

(0, n)

(1, 1)

(0, n)

Benchmarks Projects Platforms

Compilation

results

Subscriptions

Drupal users Dependencies Metrics

Results

31

Benchmarks

This table contains benchmarks settings, more displayed in Table 4.1.

Field name Type Description

Id integer(10) Benchmark identification number

Title varchar(128) The name of the benchmark

Description mediumtext Short description viewed in the list of benchmarks

Body longtext Full text

Format integer(11) Format of the body

folder_name varchar(255) Name of the folder used for storing results

Outlier double Outlier percentage

axis_scale double Axis scale percentage

Uid integer(11) Identification number of user, who added this

benchmark

Created integer(11) Creation time in timestamp

Changed integer(11) Time of last change in timestamp

Published char(1) “N” for not published and “Y” for published
Table 4.1 – Benchmarks table

Projects

This table contains projects settings, more displayed in Table 4.2.

Field name Type Description

Id integer(10) Project identification number

Title varchar(128) The name of the project

Description mediumtext Short description viewed in the list of projects

Body longtext Full text

Format integer(11) Format of the body

results_url varchar(255) Path to results

commitlog_url varchar(255) Path to commit log

date_format varchar(64) String determining the time format of the time string

folders mentioned in section 3.3.

Uid integer(11) Identification number of user, who added this

benchmark

Created integer(11) Creation time in timestamp

Changed integer(11) Time of last change in timestamp

Published char(1) “N” for not published and “Y” for published
Table 4.2 – Projects table

32

Platforms

This table contains platforms settings, more displayed in Table 4.3.

Field name Type Description

Id integer(10) Platform identification number

Title varchar(128) The name of the platform

Description mediumtext Short description viewed in the list of platforms

Body longtext Full text

Format integer(11) Format of the body

folder_name varchar(255) Name of the folder used for storing results

Uid integer(11) Identification number of user, who added this

benchmark

Created integer(11) Creation time in timestamp

Changed integer(11) Time of last change in timestamp

Published char(1) “N” for not published and “Y” for published
Table 4.3 – Platforms table

Metrics

This table contains metrics information, more displayed in Table 4.4.

Field name Type Description

Id integer(11) Metric identification number

benchmark_id integer(11) Identification number of benchmark, which uses this

metric

Name varchar(64) Name of the metric

Units varchar(64) Units used for measurement

Order integer(2) The order number of the metric in the benchmarking

results files
Table 4.4 – Metrics table

Dependencies

This table contains data of dependencies between benchmarks, platforms and projects. More

information about this table is displayed in Table 4.5.

Field name Type Description

Id integer(11) Identification number of the dependence

benchmark_id integer(11) Identification number of benchmark

platform_id integer(11) Identification number of platform

project_id integer(11) Identification number of project

comp_cnt integer(11) Count of compilations made for this dependence

runs_cnt integer(11) Count of benchmark runs done for each compilation
Table 4.5 – Dependencies table

33

Results

This table contains the results data, more displayed in Table 4.6.

Field name Type Description

Id integer(11) Identification number of the result

dependence_id integer(11) Identification number of dependence

metric_id integer(11) Identification number of metric

viewed_min double Lower boundary of image created from parsing

viewed_max double Upper boundary of image created from parsing

Time integer(11) The time of commit to of measured software

Mean double Mean

confidence_min double The lower boundary of the 99% confidence interval

confidence_max double The upper boundary of the 99% confidence interval

Cov double Coefficient of variations

Ecompilation integer(11) Count of failed compilations

Eruns integer(11) Count of failed benchmark runs

Erandom integer(11) Count of random errors

Esystematic integer(11) Count of systematic errors

Chdetected double Change detection value
Table 4.6 – Results table

Compilation results

This table contains the data of compilation results, more information in Table 4.7.

Field name Type Description

Id integer(11) Identification number of the compilation result

result_id integer(11) Identification number of full results of current software

Compnumber integer(11) Number of compilation of this software

Mean double Mean

confidence_min double The lower boundary of the 99% confidence interval

confidence_max double The upper boundary of the 99% confidence interval

Cov double Coefficient of variations

Eruns integer(11) Count of failed benchmark runs

Erandom integer(11) Count of random errors

Esystematic integer(11) Count of systematic errors

Chdetected double Change detection value
Table 4.7 – Compilation results table

Subscriptions

This table contains subscriptions data, more displayed in Table 4.8.

Field name Type Description

Id integer(11) Identification number of the compilation result

user_id integer(11) Identification number of user, who created this

subscription

dependence_id integer(11) Identification number of dependence

Mindetection double Minimum change detection needed to send the e-mail
Table 4.8 – Subscription table

34

5 Conclusion

The regression benchmarking web implementation fulfills all expected requirements

mentioned in section 2.1, creating a flexible web interface for displaying benchmarking

results in various user friendly forms.

Even though the benchmarking results parser is based on the most common

benchmarking results files, it can be difficult to find live benchmarking data with current

format especially with the statistical analysis data file. The parser could increase its flexibility

by adding the possibility to choose the correct results file structure in the benchmark settings

and it could provide its own statistical analysis data, but in the end the parser would be too

slow to handle large amount of results data. Since this project is made for Distributed System

Research Group, Charles University, Prague [14], which pledged providing results in correct

format, there was no need of further analysis of this problem.

The speed of the parser is dependent on the amount of data parsed. The feasible data

amount for parsing would be up to approximately 1 MB, which is parsed in about 10 seconds.

By increasing the data amount the parser becomes less effective. When the data amount

increases to approximately 2 MB the parser will throw an error of exceeding the maximum

execution time.

There are few other factors, which could have influence on the web application process

such as too many performance testing results or too many users connected. The first option is

dependant to the database system, which stores the result data, because too much data can

over-flood the database. Since the amount of data for one measurement is not that large, the

possibility of over-flood is low. The second factor could affect the speed of generating plots

or displaying the page.

5.1 Related work

Since there are not many regression benchmarking oriented webs on the internet, the

regression benchmarking web was designed mainly on the MONO Regression Benchmarking

[2] with few inspirations from following webs.

CSiBe

The CSiBe is an online benchmark, which measures the compilation time and the size of code

generated by GCC
15

, and is designed to help GCC developers to avoid or fix code-size

growth, compilation slow-down and code performance degradation [17].

Eclipse performance results

This web site displays performance results of Eclipse version 3.2.1 relative to version 3.1. It

measures the time needed for performing various actions such as opening Ant editor or

initializing plug-ins and compares them to old Eclipse version results. These test are

performed on several platforms and displayed using impact plots [18].

15

 GNU Compiler Collection (GCC)

35

5.2 Future work

In the future it would be probably better to upgrade to the latest version of Drupal, because it

is more mature, providing more possibilities and bug-fixes.

The next logical step would be to remake the parser to other language then PHP such as

C++, which would provide more speed and comfort, because it will not be bounded by

expiration time limit. This way the parser could provide its own statistical analysis and would

not be dependant of files created by other scripts.

36

6 Bibliography

[1] Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating

Responsive, Scalable Software, Addison-Wesley, 2001

[2] MONO Regression Benchmarking, http://dsrg.mff.cuni.cz/projects/mono/

[3] Uniform Resource Locator – Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/URL

[4] About Drupal | drupal.org, http://drupal.org/about

[5] GNU General Public License – Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/GPL

[6] Getting started | drupal.org, http://drupal.org/getting-started

[7] Installing Modules | drupal.org, http://drupal.org/getting-started/5/install-

contrib/modules

[8] Cron – Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Cron

[9] Bzip2, http://www.bzip.org/

[10] PHP: Hypertext preprocessor, http://www.php.net/

[11] Ajax (programming) – Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Ajax_%28programming%29

[12] Sarissa – Sarissa Home Page, http://dev.abiss.gr/sarissa/

[13] JPEG – Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Jpeg

[14] Distributed Systems Research Group, Prague, http://dsrg.mff.cuni.cz/

[15] Joomla!, http://www.joomla.org/

[16] Kalibera, T., Tuma, P.: Precise Regression Benchmarking with Random Effects:

Improving Mono Benchmark Results, in proceedings of Third European Performance

Engineering Workshop (EPEW 2006), Springer-Verlag, 2006

[17] GCC Code-Size Benchmark Environment (CSiBE), http://www.inf.u-szeged.hu/csibe/

[18] Eclipse Performance Results, http://archive.eclipse.org/eclipse/downloads/drops/R-

3.2.1-200609210945/performance/performance.php

[19] Regression Benchmarking Web, http://ozzy.kabel1.cz/regressionweb/

[20] MONO, http://www.mono-project.com/Main_Page

http://en.wikipedia.org/wiki/URL
http://drupal.org/about
http://en.wikipedia.org/wiki/GPL
http://drupal.org/getting-started
http://en.wikipedia.org/wiki/Cron
http://www.php.net/
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://dev.abiss.gr/sarissa/
http://en.wikipedia.org/wiki/Jpeg
http://dsrg.mff.cuni.cz/

37

[21] PostgreSQL, http://www.postgresql.org/

[22] MySQL, http://www.mysql.com/

38

7 Appendices

All appendices can be found on the enclosed CD.

Appendix A

Results for parser testing

resuts.zip

Appendix B

Drupal’s 5 installation

drupal5.zip

Appendix C

Project implementation

measurement_modules.zip

Appendix D

Electronic form of the thesis

thesis.pdf

Appendix E

Generated PHPDocs

phpdocs.zip

