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Abstract: Accurate regression detection in volatile environments such as the public
cloud is difficult. Cloud offers an accessible and scalable infrastructure to run bench-
marks, but the traditional benchmarking methods often fail to predict regressions
reliably. Duet method acknowledges the variability and runs the workloads in par-
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Introduction

Modern software development with rapid development cycles is in dire need of a fast,
accessible, scalable, and reliable performance regression detection method. A typical
question is if neighboring commits of the same software manifest regression. For
instance, authors of a compiler might be concerned if a new optimization increases
the performance of a particular benchmark.

The traditional performance measurement method relies on a dedicated bare-
metal server with an isolated and carefully set environment that tries to prevent mea-
surement noise. This method is reasonably fast and reliable but lacks accessibility and
scalability requirements as the maintenance cost is high.

To address the scalability and accessibility, research over the past decade has fo-
cused on offloading performance measurements to the cloud [1, 2, 3]. Cloud offers
scalable on-demand infrastructure with pay for what you use principle. However,
this research has shown that performance measurement in the cloud is difficult be-
cause of the high variability of the shared infrastructure environment.

Even in ideally crafted bare-metal conditions, multiple measurements are neces-
sary to deal with the inherent variability introduced by the code running platform,
such as just-in-time compilation, garbage collection, memory mapping, and CPU fre-
quency scaling. Benchmark code itself can have its share of non-determinism that
contributes to the overall variability of the measurements. Hence, in addition to
benchmark harness running its workload in a loop, practitioners often run the bench-
mark multiple times. Afterward, analyze individual iteration scores to evaluate the
final score.

In the context of compiler programmers, they may run multiple benchmarks on a
version with and without the optimization and compare the final scores. We refer to
this method as sequential benchmarking as it runs different versions after each other.

Bulej et al. [4] introduced a new benchmarking method called duet benchmarking
designed with volatile environments such as the cloud in mind. The main idea of
duet benchmarking is to run both versions in parallel. The distinguishing property
of this method is that it does not try to prevent interference. On the contrary, duet
benchmarking acknowledges the presence of variability and relies on fair schedul-
ing to make the impact equal on both versions running in parallel. Afterward, the
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benchmark scores are statistically evaluated to determine if there is a performance
regression between the two versions. The duet benchmarking method has shown
improvement ranging from 5.03× on average for Scalabench and DaCapo workloads
to 37.4× on average for SPEC CPU 2017 workloads [4]. However, this method re-
lies on synchronized iterations of a benchmark, which requires benchmark harness
modification that synchronizes individual iterations between harnesses.

This thesis explores the relaxation of this synchronization requirement which cre-
ates a new variant of the duet method we call asynchronous duet method. To achieve
this, we implement a tool for running benchmarks that supports sequential, syn-
chronous, and asynchronous duet methods. One novel attribute of this tool is that
it runs benchmarks in containers to achieve portability and ease of setup.

Using the tool, we run benchmarks from multiple benchmarking suites — Renais-
sance, Scalabench, DaCapo, and SPEC CPU 2017. The first three are JVM-based while
the last one represents natively compiled benchmarks. The goal of this thesis is to
assess the viability of the asynchronous duet method for different benchmarks across
different environments. Our choice of environments includes bare-metal measure-
ments on a dedicated server, AWS EC2 t3.medium instances as cloud representative,
and self-hosted shared virtual machine infrastructure.

We examine sequential and duet method differences on overall runtime duration,
measurement variability, A/A run detection accuracy, and the factor of minimal de-
tectable slowdowns (MDS) [2].

The thesis is structured as follows. The first chapter provides some background on
benchmarking in volatile environments. The second chapter delves into duet bench-
marking and poses research questions for this thesis, with the goals summarized at
the end of this chapter. The third chapter describes the architecture of our benchmark
automation tool capable of running benchmarks from multiple suites using both se-
quential and duet methods. The fourth chapter summarizes the statistical methods
used to evaluate regressions which are later used in the fifth chapter that presents the
results. Finally, we conclude the thesis and lay out the possibilities for future work in
this area.
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Chapter 1

Background and Motivation

Benchmark harness sets up an environment, executes benchmark code in multiple
iterations, and then presents some score. The score can be iteration time, throughput,
number of processed requests, etcetera. When a benchmark is a small piece of code,
also referred to as performance unit tests by Horkỳ et al. [5], it is usually written in
some microbenchmark framework. Microbenchmark execution in a public cloud has
been thoroughly examined by Laaber, Scheuner, and Leitner [2]. If the benchmark
code gets bigger, it is usually called the application benchmark.

Benchmarks do not have the sole purpose of measuring the performance of an ap-
plication. Inversely they provide a way to measure the capabilities of some hardware.
For this reason, benchmark suites aggregate many application workloads, put them
under a single harness, and simplify the performance evaluation process. Examples
of such suites are from Standard Performance Evaluation Corporation1 that has mul-
tiple suites, for instance, SPEC CPU for natively compiled benchmarks and SPECjbb,
which is JVM-based. Other standalone suites used in this thesis are Renaissance [6],
DaCapo [7], and Scalabench [8]. All suites mentioned above are JVM-based except
for SPEC CPU, which has benchmarks written in C, C++, and Fortran and hence is
natively compiled. Apart from testing hardware performance, benchmark suites are
good candidates for research in performance measurement methods as they strive to
provide a wide range of real-world representative workloads.

The requirement for multiple repetitions causes an inherent trade-off between ac-
curacy and execution time. Execution of a benchmark suite for some software project
version to identify newly introduced performance regression can take an overwhelm-
ing 3000 machine hours per day as analyzed by Bulej et al. [4] on an open-source
GraalVM project [9]. By then, a new version could have come around. This trade-off
between measurement execution time and the number of commits between tested
versions can be addressed from multiple angles. One is to reduce the number of

1https://www.spec.org
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measurements by identification of commits that might introduce performance regres-
sion Oliveira et al. [10]. Other is to reduce the execution time of measurements by
parallelization. Effective parallelization involves maintaining multiple dedicated ma-
chines, which is difficult and costly. Therefore, much research over the past decade
has focused on offloading performance measurements to the cloud [1, 2, 3].

1.1 Benchmarking in the cloud
Cloud offers practically infinite hardware scaling capabilities with on-demand ac-
cess and a pay-for-what-you-use principle. That makes it a tempting platform
for fast and accessible performance measurements. Cloud offers a large scale of
options to run your code on from bare metal offerings2 to running small pieces
of code as lambdas3. The most commonly examined and accessible method is an
Infrastructure-as-a-Service (IaaS) cloud offering where computing resources are
acquired and released as a service.

IaaS is typically in form of virtual machines or containers with attached virtual
disks. These instances come with different configuration options, such as the num-
ber of virtual CPUs, memory size, network throughput, and virtual disk. This gives
practitioners some control over what hardware and software platform is used to run
their code compared to higher-level offerings such as Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS).

Studies such as Leitner and Cito [1] and Laaber, Scheuner, and Leitner [2] summa-
rize the viability of measuring software performance on IaaS offerings from different
providers. They point out that measuring software performance on the public cloud
is a moving target, with providers constantly changing their offerings, hardware, and
processes. A common concern is that a given instance type may not run on the same
type of hardware and that the same physical hardware might host multiple colocated
instances. Hardware heterogeneity, shared and virtualized infrastructure further am-
plifies the variability of performance measurements in the cloud environment [1]
even to the point that practitioners, using state-of-the-art performance measurement
and statistical methods, might not be able to detect 1000% slowdown of some mea-
sured software as shown by Laaber, Scheuner, and Leitner [2].

Withmany repetitions and variability across the results, it is necessary to carefully
process the results and use statistical methods to find out if a code change introduces
a new performance regression. The use of statistical methods has been extensively
studied in Bulej, Horký, and Tůma [11] and further analyzed in Laaber, Scheuner,
and Leitner [2] specifically in the cloud context. To quantify the variability of the
distribution of results from a benchmark Laaber, Scheuner, and Leitner [2] use the

2AWS Outposts https://aws.amazon.com/outposts/
3AWS Lambda https://aws.amazon.com/lambda/
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coefficient of variance, also called mean standard deviation. To compare results of
two software versions Bulej, Horký, and Tůma [11] use both methods of overlapping
confidence intervals computed by bootstrap procedure and hypothesis testing with
Wilcoxon rank-sum test and its variation Mann-Whiteney U-test as well as Welch’s
t-test. Bulej, Horký, and Tůma [11] also raise concerns about the validity of these
methods when used for performance measurement data. Concerns stem from the
fact that performance measurements don’t satisfy many common assumptions that
statistical methods make, such as random independent and identically distributed
samples and asymptotic normality of the data. Moreover, performance data also tend
to exhibit long-range dependencies between samples, have unknown distributions
with long tails, and are not stationary in general, which further complicates statistical
analysis [11]. So far, there does not seem to be any "silver bullet" statistical method
that would be a good fit for performance data, and thus, these techniques need to be
used with caution as reasoned in multiple studies [1, 2, 11].

Unfavorable conditions for benchmarking in the cloud spiked interest in research
that focuses on performance measurement methods that reduce measurement vari-
ability, increase accuracy and reduce false positives of regression detection in a cloud
environment. One such method and current best practice [2] is called Randomized
Multiple Interleaved Trials (RMIT) introduced by Abedi and Brecht [3]. Trial refers
to a single run of benchmark, with multiple inside iterations, on a particular version
of the software it measures the performance of. To compare performance between
multiple versions of some software, one has to run the same benchmark with each al-
ternative. RMIT states that these runs of these alternatives should be run (1) multiple
times as discussed above and (2) repetitions of all alternatives should be randomized
to minimize both partial and periodic outside interference.

Another method that aims to reduce variance is duet benchmarking, first intro-
duced in Bulej, Horkỳ, and Tůma [12] and further expanded on in Bulej et al. [4]. The
next chapter examines the duet method and its new asynchronous variant in detail
and poses research goals for this thesis.
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Chapter 2

Duet benchmarking

Performance comparison of two different software versions is referred to as A/B
benchmarking. For example, compiler authors want to test if their optimization im-
proved the performance of some benchmark, or web developers want to try if a recent
commit caused regression in their internal benchmark. In both cases, the benchmark
code is the same, and it runs with two slightly different workloads, versions A and B,
that are similar in nature.

Figure 2.1 shows a comparison between three benchmarking methods analyzed
in this thesis (1) sequential, (2) synchronous duet, and (3) asynchronous duet. The
sequential method is the simplest, where each version is run independently of the
other. On the other hand, the synchronous duet runs A and B in parallel, and it has
to synchronize the starts of individual iterations. Asynchronous duet runs in parallel
as well but does not require synchronized iterations.

The example in figure 2.1 has the durations of iterations equal for all methods,
which illustrates one immediate benefit of running duet benchmarks — overall run-
time reduction. In an ideal case, the duet method could save up to 50% of execution
run time and hence halve execution costs. As this speedup is crucial for time andmon-
etary reasons, we will investigate it thoroughly in this thesis. Therefore, we would
like to answer the following research question.

RQ1: What are the runtime savings of the asynchronous duet method com-
pared to the sequential method?

However, to achieve such speedup, workloads running in parallel must not inter-
fere with each other. To address mutual workload interference, Bulej et al. [4] set up
measurements in such a way that each benchmark was restricted to a single dedi-
cated virtual core. Even then, it may be the case that the two virtual cores map to
the same hardware threads of the same physical core. Such virtual cores would then
compete for the single shared physical core. Here Bulej, Horkỳ, and Tůma [12] rely
on workload symmetry.

9
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Figure 2.1 Comparison of different benchmarking methods, sequential, synchronous duet,
and asynchronous duet, when comparing two software versions, A and B. Benchmark runs
two iterations with the same durations for all methods and versions. Note that version B
introduced a regression where the first iteration takes twice as long. The x-axes is an example
timeline of measurements.

Workload symmetry states that if a cloud were to exhibit systematic performance
differences between the two virtual cores running duet workloads, it would likely
exhibit similar unwarranted performance differences in other common concurrent
workloads, such behavior would be likely considered a bug and remedied. In other
words, duet benchmarking relies on fair CPU scheduling such as Completely Fair
Scheduler [13] in Linux to work out mutual interference. Bulej, Horkỳ, and Tůma
[12] also note that this works only for similar workloads, which can be expected of
neighboring commits or versions of the same software.

2.1 Synchronous vs. Asynchronous duet
Figure 2.1 also note that synchronized duet methods are not always running in paral-
lel. Once an iteration finishes it has to wait for its pair iteration to finish, until then,
this pair iteration runs alone. It might seem that an asynchronous duet solves this
issue because iterations are not blocked on the barrier, so the only iteration running
alone will be the last iteration of either A or B, whichever finishes last.

However, the asynchronous duet might be worse off in terms of equal impact
symmetry on parallel workloads due to the ways benchmark harnesses and bench-
marks themselves work. Algorithm 1 is a generic example of what an inner loop of a
benchmark harness might look like. Pre-iteration and post-iteration functions might
do some environment checks like running garbage collection and recording or vali-
dating results. Therefore, it is natural that these additional steps create gaps between
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measured code and that impacts asynchronous duet symmetry.

Algorithm 1 Generic workings of the benchmark harness which executes a benchmark.
Note that not all harnesses follow this structure — some functionsmight be effectively empty.
Specifically for synchronous duet Bulej et al. [4] had to modify PreIteration to wait on tabar-
rier.

function RunHarness(b)
Setup(b)
for i ∈ 1 . . . I do

PreIteration
start← clock.now
RunBenchmark(()b)
end← clock.now
PostIteration(b, i, start, end)

end for
ValidateResults(b)
Teardown(b)

end function

Figure 2.2 shows what implications can the absence of synchronization have on
workload overlaps. With enough iterations, harness specifics and potentially different
A/B performance workloads will inevitably diverge.

Even if workloads are partially overlapping, the start of a workload might do dif-
ferent things, for example, be CPU bound while the end might be I/O bound. Fair
CPU scheduling should, in theory, allocate the same amount of processor time for
both workloads, essentially synchronizing them. However, in practice, due to the
inherent variability of these systems, workloads will diverge.

For example, figure 2.3 demonstrates a case when this happens. Even workloads
with the same performance might get to a state of equilibrium where parts of work-
loads with different bound nature overlap each other. This kind of symmetry can
further hinder the impact symmetry argument for the synchronous duet method.
Therefore, our next research question examines the way duet pairs overlap.

RQ2 How do workloads overlap in the asynchronous duet?

For the asynchronous duet method to be useful, runtime reduction and overlap-
pingworkloads are not enough. The asynchronous duetmethod has to show accuracy
in regression detection on par with the synchronized duet method:

RQ3: What is the accuracy of regression detection of asynchronous duet
compared to synchronous duet and sequential execution across different en-
vironments?
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Figure 2.2 Tailored examples of how lack of synchronization and time in between work-
load execution might affect duet overlap. This is an example timeline of iterations of an
asynchronous duet measurement from an iteration i and j for versions A and B, respectively.
Focus on how versions A and B overlap — just partially or even not at all.
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Figure 2.3 Tailored examples of how different nature of a workload might compromise the
duet’s impact symmetry. Initially, A and B overlap on both CPU and I/O bound parts, slow-
ing down B for the first two runs. Then, CPU and I/O bound parts of A and B workloads
overlap less end B turns out to be as fast as A. Notice that A and B enter a state of equilib-
rium where each is bound on different parts of the underlying hardware.

Additionally, using a similar approach to Laaber, Scheuner, and Leitner [2] asyn-
chronous and synchronous duet methods can be compared with sequential measure-
ments in terms of minimal detectable slowdowns section 4.4:

RQ4: What are the minimal detectable slowdowns with the sequential, syn-
chronous duet, and asynchronous duet measurements that we can detect
with 95% confidence?
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2.2 Goals
To summarize, these are the areas of focus for this thesis:

Accessibility Asynchronous duet relaxes the synchronized iteration requirement on
benchmark harnesses imposed by the synchronized duet method. Our goal is to
create a generic benchmark super-harness for running benchmarks from vari-
ous suites using sequential and duet methods and automate the result process-
ing.

Runtime and cost reduction Duet methods have the potential to drastically re-
duce, up to 50%, the execution time of benchmarks (RQ1).

Accuracy The synchronized duet method can reduce the variance of benchmark re-
sults measured in a volatile environment, such as a public cloud [4]. The ques-
tion is if the asynchronous duet can do the same (RQ2, RQ3, RQ4).
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Chapter 3

Implementation

We implemented a super-harness that takes an existing benchmark harness as an
input and executes its benchmarks in the asynchronous duet style.

To keep a configuration portable and dependencies minimal, we have decided to
use the container technology, namely Docker [14] or Podman [15]. The tool is named
duetbench, and it is part of open source python package duet [16] that also implements
other complementary tools described in section 3.3. Documentation is in the form of
GitHub wiki [17].

We want to compare asynchronous duet with Bulej et al. [4], hence our super-
harness supports synchronized duet and sequential method in a containerized envi-
ronment.

3.1 Architecture
Figure 3.1 depicts architecture of duetbench script. duetbench is a process on the host
machine that spawns subprocesses that run containers — one for each version A/B.
Since initialization of a container might take longer duetbench waits for both con-
tainers to start and then uses docker exec1 to run the command that executes the
benchmark harness loop from algorithm 1. Once both benchmarks finish, copy the
raw result of those benchmarks from their respective containers and store them in
a predefined directory structure that preserves super-harness metadata and raw re-
sults [17]. Afterward, stop and clean up both containers. We refer to this process as
a run and it is analogous to a trial from Laaber, Scheuner, and Leitner [2] and Abedi
and Brecht [3] for sequential runs. For duet methods, one run executes 2 benchmarks
in parallel.

If there are more benchmarks to execute, pick the next one (according to a par-
ticular scheduling strategy, see section 3.1.2) and do the same process. In the case of

1https://docs.docker.com/engine/reference/commandline/exec/
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duetbench containerA

docker run <suite_image_A>

done

duet.yml
run

docker cp <results>

containerB

docker run <suite_image_B>

docker exec container* <run_cmd>

done

AsynchronousDuet_Suite1_Benchmark1

docker stop

docker stop

RunHarnessRunHarness

Figure 3.1 UML sequence diagram of how duetbench executes a single A/B asynchronous
duet benchmark. All the parameters in angled brackets are specified in the configuration file
duet.yml described in section 3.2. Note that the docker commands are simplified for brevity.

the sequential method, the process is very much the same omit the second container
entirely and run them separately.

3.1.1 Synchronized duet in containerized environment
Bulej et al. [4] uses a shared-memory barrier to synchronize benchmark iterations.
We ported this solution into the containers to mimic the original behavior.

The barrier uses the pthread API that is not available on all systems, such as ma-
cOS. Therefore, duetbench starts a third container to initialize and later clean up the
barrier, hence bypassing the missing functionality on the host system.

Docker environments are separated by design. To facilitate this feature duetbench
mounts host directory -v /dev/shm:/dev/shm and shares inter-process communication
namespace --ipc host2.

3.1.2 Run Scheduling
duetbench supports two options for run scheduling:

2https://docs.docker.com/engine/reference/run/
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Sequential where benchmarks are run in order of definition from a configuration
file.

Randomized Interleaving Trials where it randomly interleaves the runs from a
configuration file. Hence, it can mix different types of measurement methods
and benchmarks. With multiple repetitions of a given measurement method, it
is essentially RMIT [3].

3.2 Configuration
Listing 1 shows section of duetbench YAML configuration file that describes an A/B
asynchronous duet and sequential run. The goal of the design was to make configura-
tion generic and straightforward to use so that many harnesses and benchmark suites
can be adapted to use with duetbench. Complete documentation of the duetbench con-
figuration, including a description of how to run synchronized duets (not present in
the listing 1) is on the wiki [17].

Freedom in run command allows tweaking the harness to suit the asynchronous
duet better. For example, some harnesses support skips of validation or various
garbage collector options. Detailed configuration of experiments is in section 5.1.

Listing 1 Example part of YAML configuration file for duetbench that runs avrora bench-
mark from the DaCapo suite. In this case, both A and B versions are packaged in a single
container image as Java JAR archives. Run command specifies how to invoke the DaCapo
harness — 50 iterations, results in results.csv and run only avrora benchmark. All the re-
sult files or directories need to be specified in results array field. Note the correspondence
between user input fields from this configuration and parameters in angled brackets from fig-
ure 3.1. Furthermore, users can specify the number of repetitions for both asynchronous duet
and sequential measurements, as well as the scheduling strategy for those runs.

avrora :
image: dacapo
duet_repetitions : 2
sequential_repetitions : 2
schedule : randomized_interleaving_trials
A:

run: java -jar dacapo -A.jar -n 50 -o results .csv avrora
B:

run: java -jar dacapo -B.jar -n 50 -o results .csv avrora
results :

- results .csv

17



3.3 Result parsing
Once a run finishes, results are copied in their raw format to a dedicated result direc-
tory on the host machine. Results are then processed using duetprocess script [17]
for further analysis. duetprocess takes an output directory of duetbench as input and
produces a single CSV result file.

The minimal schema of a result data point looks like this:

• Directly parsed by duetprocess:

– suite,

– benchmark,

– run — repetition id, not necessary in order of execution,

– pair,

– pair order — which pair was started first,

– iteration,

– artifacts— duetbench provides an option to run some additional commands
such as lscpu or cat /proc/meminfo to obtain information about host en-
vironment.

• Specific per benchmark suite parsers:

– iteration start absolute timestamp,

– iteration end absolute timestamp.

Since different benchmark suites have widely different results formats, users have
to write a parser plugin — python function. The parser must obtain iteration start and
end absolute timestamps from benchmark results. Additionally, since users need to
write a parser for a given benchmark suite, they might add any data that the bench-
mark produces as an addition to the schema mentioned above.

Some benchmark suites don’t track absolute timestamps of iterations and thus
need some modification. However, without absolute timestamps, one could not eval-
uate how iterations overlap (RQ2).

3.3.1 Notation
To describe parsed results more formally and describe terminology from the duet
package, we use the following terms:

Environment e ∈ E classifies host hardware and software configuration — where
duetbench runs. The environment is deduced from artifacts in the above schema.
The set of environments E used in our experiments is described in section 5.1.
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Type t ∈ T is the measurement method type where T = {seqn, sduet, aduet} for
sequential, synchronous duet and asynchronous duet respectively.

Pair p ∈ P is version of tested software in case of A/B runs P = {A, B}

Benchmark b ∈ B is a benchmark from a benchmark suite, formally B =
{(suite, benchmark) | benchmark ∈ suite}

Run in environment e ∈ E of type t ∈ T running benchmark b ∈ B and pair
p ∈ P is denoted as Re,t,b,p. It is a unit with which duetbench works and can
run multiple times.

Iterations of a run Re,t,b,p with iters iterations is an ordered set (i1, i2, . . . iiters) of
scores of particular benchmark — execution time in nanoseconds.

To distinguish different measurement methods for some benchmark b ∈ B in an
environment e ∈ E denote a set of all sequential runs as

M e,b
seqn = {(Re,seqn,b,A

r , Re,seqn,b,B
r ) | ∀r ∈ {1 . . . runs}},

set of all synchronized duet measurements, which are naturally paired on the level
of pairs and iterations as

M e,b
sduet = {(Re,sduet,b,A

r , Re,sduet,b,B
r ) | ∀r ∈ {1 . . . runs}}

= {(iA
j , iB

j )r | ∀r ∈ {1 . . . runs}, ∀j ∈ {1 . . . iters}},

and finally set of all asynchronous duet measurements, naturally paired on the
level of pairs as

M e,b
aduet = {(Re,aduet,b,A

r , Re,aduet,b,B
r ) | ∀r ∈ {1 . . . runs}}.

Finally, refer to M e as the union of all runs in an environment e ∈ E

M e = {M e,b
seqn ∪M e,b

sduet ∪M e,b
aduet | b ∈ B}.

3.3.2 Overlaps
To address RQ2 duetprocess provides a method to compute overlapping iterations of
a given asynchronous duet run. Let (RA, RB) ∈M e,b

aduet. Iterations of respective runs
are RA = (iA

1 . . . iA
iters) and RB = (iB

1 . . . iB
iters). Iteration overlap definition uses the

following notation:

start(i) = start of iteration i,

end(i) = end of iteration i,

overlap_start(iA, iB) = max(start(iA), start(iB)),
overlap_end(iA, iB) = min(end(iA), end(iB)).
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Then set of overlaps of these two runs ORA,RB can be expressed as

ORA,RB = {(iA
j , iB

k ) | overlap_start(iA
j , iB

k ) < overlap_end(iA
j , iB

k ),
∀j ∈ {1 . . . iters}, ∀k ∈ {1 . . . iters}}.

However, not all overlaps are equally important. As shown in figure 2.2 and RQ2
introduction, some overlaps might be tiny and cover the start of one iteration with the
end of another. The following notations are used to express the quality of an overlap:

overlap_time(iA, iB) = overlap_end(iA, iB)− overlap_start(iA, iB),

overlap_rateA(iA, iB) = overlap_time(iA, iB)
iA

,

overlap_rateB(iA, iB) = overlap_time(iA, iB)
iB

,

overlap_rate(iA, iB) = min(overlap_rateA(iA, iB), overlap_rateB(iA, iB)).

Denote a set of all asynchronous duet overlaps for a benchmark b ∈ B in an
environment e ∈ E as

Oe,b = {ORA,RB | (RA, RB) ∈M e,b
aduet}. (3.1)
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Chapter 4

Overview of Results Processing

With multiple repetitions and inherent variance of measurements, statistical analysis
is used to determine performance regression in an A/B run. This chapter describes
the statistical methods used to determine and compare measurement variance and
regression detection of an A/B run using different benchmarking methods. In par-
ticular, it adjusts the confidence interval test from Bulej et al. [4] to work with the
asynchronous duet.

4.1 A/A runs

Finding a software project that exhibits a certain slowdown is difficult since regres-
sion is often tied to the hardware running the benchmark. Instead, research into per-
formance measurements employs A/A measurement technique [.] A/A measurement
runs the same version, and later labels run with A and B labels — as if there were two
different versions. Since the code is the same, the performance should be the same
as well. The usability of a benchmarking method can thus be a result of its ability
to detect A/A measurements correctly. In the context of duet runs, A/B labeling is
performed on concurrently running duet pairs.

4.2 Data filtering

In our experiments, we removed the first half of all iterations per run of JVM-based
benchmarks to avoid warm-up, same as in Bulej et al. [4]. We kept all measurements
of SPEC CPU benchmarks since it is natively compiled.
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4.3 Accuracy analysis and performance regression
tests

We use various statistical methods to address the variance of different benchmark-
ing methods, running benchmarks in containers across different environments (RQ3).
First, we compare the raw variance of measurements after data filtering using rela-
tive standard deviation. Then we compute the confidence intervals of paired itera-
tion score difference similar to Bulej et al. [4], but it has to be adjusted for the asyn-
chronous duet. That is the basis for the confidence interval test, and it allows us to
compare the relative confidence interval width across different methods. Another
regression detection method is Mann-Whitney u-test that compares iteration score
distributions between pairs. Last we use both regression tests to explore the minimal
detectable slowdowns [2] of sequential and duet methods.

4.3.1 Relative standard deviation

Relative standard deviation, also known as the coefficient of variation (CV ), is one
way to determine the variance of iteration times. Formeasurement type t ∈ T , bench-
mark b ∈ B, runs Rt,b ∈M e:

CV t,b = std(Rt,b)
mean(Rt,b) .

The CV measures how the results of different benchmarks vary relative to each
other using different benchmarking methods. However, the variance of duet methods
cannot be determined based on CV .

For instance, higher CV for given benchmark duet measurements compared to its
sequential measurements doesn’t imply worse predictability of duet methods because
of the impact symmetry argument. Overall variance might be higher, but the pairwise
comparison could be more telling. On the other hand, lower CV for duet methods
suggests better robustness of duet methods.

4.3.2 Confidence interval test

To determine if pairs manifest performance change, use the method of confidence
intervals from Bulej et al. [4]. This method also compares variance across bench-
marking methods based on relative confidence interval width. Here, we describe the
method and extend its use for the asynchronous duet.

First, runs and their iterations need to be paired.
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Sequential runs don’t have any natural pairing but are randomly paired by the na-
ture of A/A runs labeling. We decided to pair their iterations sequentially

is_pair(iA
i , iB

j ) = True⇐⇒ i = j.

Synchronous duet runs are naturally paired - sequentially by iterations; thus they
have the same is_pair predicate.

Asynchronous duet runs can’t be paired sequentially. Considering A/B measure-
ments, non-synchronized iterations will inevitably diverge, hence sequential
iteration pairing wouldn’t support impact symmetry. Instead, we decided to
pair iterations iA and iB based on the minimum overlap ratio m ∈ (0, 1) and
thus define a set of filtered overlaps as

Oe,b
m = {(iA, iB) | (iA, iB) ∈ Oe,b, overlap_rate(iA, iB) > m}, (4.1)

where Oe,b is set of overlaps from equation (3.1). The smaller the m, the fewer
pairs of iterations there will be and vice versa. Formally, denote the predicate
for asynchronous duet pairing with minimum overlap ratio parameter m as

is_pair(iA, iB) = True⇐⇒ (iA, iB) ∈ Oe,b
m .

Analysis of how many overlaps there are for different values of m is in sec-
tion 5.2.2.

Each pairing method returns a set of paired iterations for an experiment M e,b
t ,

Pairs(M e,b
t ) = {(iA, iB) | is_pair(iA, iB), ∀ iA, iB ∈M e,b

t }.

Second, paired iteration times are subtracted to determine the difference between
all pairs which yields random sample X with distribution FX

X = {iA − iB | (iA, iB) ∈ Pairs(M e,b
t )}.

Furthermore, Bulej, Horký, and Tůma [11] recommend using run means sampling
instead of runs merged sampling. The runs merged method uses all paired iterations
from all runs as a sample. On the other hand, run means aggregates paired iterations
in a paired run using statistical methods such as arithmetic mean and uses those as
samples. Given r runs each with i iterations runs merged results in r ∗ i observations
and run means results in r observations.

We decided to use run means sampling because we have the same amount of runs
for each benchmark but not identical iteration counts across suites.

These observations are used to create 95% confidence interval using non-
parametric bootstrap with 9999 draws with replacement and arithmetic mean as
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statistics.1 For A/A runs, we expect distribution FX to be centered around 0. There-
fore, if the confidence interval encompasses 0, we consider the workloads equal,
otherwise report a difference.

The confidence computation in Bulej et al. [4] differs for synchronous duet be-
cause it uses the difference of paired iteration durations together with arithmetic
mean instead of iteration duration ratio with geometric mean. This change simpli-
fies the comparison process because the samples of different benchmarking methods
have the same units.

Variability comparison using CI

Another use of these confidence intervals is to compute their relative width to com-
pare the variability of different measurement methods similar to Bulej et al. [4].

CIrelative_width(X) = CIwidth(X)
mean(X) . (4.2)

4.3.3 Mann-Whitney u-test
The next method to evaluate regression in an A/B run is to use hypothesis testing.
One such test used for the purpose of A/B performance evaluation is Mann-Whitney
u-test [11, 2]. It is a non-parametric test of the null hypothesis that two samples come
from the same distribution. One sample is the iteration durations of pair A, and the
other is of pair B.

We used u-test implementation from scipy python package 2 in its two-sided vari-
ant and decided to reject the null hypothesis if p-value is less than 5%. Hence, if
p-value is below 5% for a given benchmark, test method, and environment reject the
null hypothesis — sample distributions are distinct enough, thus we report a perfor-
mance change.

4.4 Minimal detectable slowdown
Laaber, Scheuner, and Leitner [2] explore the minimal detectable slowdowns (MDS)
for a sequential micro-benchmarking method to determine which micro-benchmarks
are viable for cloud benchmarking. We use this method to determine the viability of
duet methods compared to sequential methods in the cloud environment.

1We used the bootstrap method from python scipy package https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.bootstrap.html that uses a bias-corrected and ac-
celerated method to compute the CI by default.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
mannwhitneyu.html
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First, A/A test results are adjusted to emulate a scenario where pair B is s times
wlog slower — emulating A/B test results where version B has a performance re-
gression. For all iterations running version B, iteration runtime is multiplied by s.
Formally we adjust the experiment M e as

M e
slowed = {(RA, iB ∗ s | ∀iB inRB) | ∀(RA, RB) ∈M e}.

Increased iteration times of pair B affect the overlap of A and B during the asyn-
chronous duet. Therefore, recompute each B’s iteration’s start and end timestamps,
assuming the gaps between iterations remain unchanged.

Then the altered results can be compared as if they were A/B runs using the con-
fidence interval test or Mann-Whitney u-test while the slowdown is known.
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Chapter 5

Experimental evaluation

We compare the benchmarking methods on multiple experiments in multiple envi-
ronments. All experiments were run on super-harness described in chapter 3. This
super harness executes A/A benchmarks from multiple benchmark suites using se-
quential, synchronous, and asynchronous duet benchmarking methods.

5.1 Experiment setup

Benchmark suites used in the experiments are Renaissance, Scalabench, DaCapo, and
SPEC CPU 2017. Latter three are also part of Bulej et al. [4], and two of those — Scal-
abench and DaCapo are representatives of synchronous duet method as their har-
nesses were adapted to work with duetbench.

Renaissance benchmark suite was selected as a modern JVM suite with a focus
on parallel workloads among others[6]. We used version 0.13 and had to exclude
neo4j-analytics benchmark as it failed to execute on our configuration. That leaves
24 benchmarks in total from the Renaissance suite.

Scalabench (v.9.12) and DaCapo (v.9.12) are both JVM benchmarks that have sig-
nificant overlap in benchmarks but are the only ones that have their runtime altered
to run synchronous duet. For DaCapo and Scalabench we excluded batik, eclipse,
tomcat, actors, and jython (the last two are only in Scalabench). That account for
10 and 21 benchmarks in total for DaCapo and Scalabench suites, respectively. Both
suites were run with --novalidation parameter to tighten the workload loop.

All JVM-based benchmarks were run in OpenJDK 11.0.11 JVM with fixed heap
size and disabled garbage collection ergonomics; other virtual machine settings were
left at their defaults.

SPEC CPU 2017 is the sole non-JVM benchmark — representative of natively com-
piled C, C++, and Fortran benchmarks. We run its rate workloads in peak tuning us-
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ing the onlyrun action1 that skips additional non-workload steps. SPEC CPU was
not intended to run in a container, and hence we faced multiple issues setting it
up. From build and training errors in installation step (503.bwaves_r, 510.parest_r,
521.wrf_r, 527.cam4_r) to runtimememory requirements (502.gcc_r, 523.xalancbmk_r,
526.blender_r). Overall we run 16 benchmarks from SPEC CPU 2017.

5.1.1 Docker setup
The Docker image for Renaissance suite is based on the official Renaissance docker
image 2 based on OpenJDK 11, Scalabench and DaCapo images are built from
openjdk:11.0.8-jdk3 image, but it is adjusted to run synchronization agent described
in section 3.1.1. The Docker image for SPEC CPU is based on ubuntu image, and the
whole suite installation is done in the container build step using a configuration with
gcc; the full configuration is available in the attached source code.

Docker containers run with no additional options than mentioned in chapter 3. In
particular, there are no reservations on CPU or memory. There are multiple reasons
for this (1) benchmarks themselves check the number of available CPUs and set their
parallelism accordingly, but that information is returned by the OS and thus would be
the same for both duet pairs regardless of docker allocations, (2) the CPU reservations
would rule out use of smaller cloud instances, (3) impact symmetry with completely
fair scheduler should allocate equal resources to both benchmarks, hence simplifying
setup.

All the measurements used Podman containers.

5.1.2 Run summary
One of the goals of the duet methods is to enable benchmarking in varying environ-
ments:

cloud environments is represented by AWS EC2 t3.medium instances,

bare-metal environment consist of dedicated bare-metal servers,

shared-VM environment is self-hosted virtualized environment with no special per-
formance measurement treatment that is actively used by other students.

AWS t3.medium instance was chosen because the t2 instances were not powerful
enough to run two SPECCPU benchmarks in docker side by side and t3.medium turned

1Disclaimer: SPEC CPU prohibits the publication of results without verification, but for our use
case, verification could affect our results negatively, and we don’t report SPEC CPU scores.

2https://hub.docker.com/r/renaissancebench/buildenv
3https://hub.docker.com/_/openjdk
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out to be the cheapest alternative able to do so. The measurements were parallelized
across multiple instances in each environment except for the shared-VM environ-
ment, as there is only one instance. Table 5.1 summarizes the configuration of selected
platforms and the timeframe of the measurements.

Environment Instances CPU vCPUs Memory Measurements

AWS t3.medium 10
Intel(R) Xeon(R) Platinum 8259CL
Intel(R) Xeon(R) Platinum 8175M

2 4.0 GiB Jul 12 – Jul 19 2022

Bare metal 8 Intel(R) Xeon(R) CPU E3-1230 v6 4 32 GiB
Jun 17 – Jun 22 2022
Dec 8 – Dec 10 2022

Teaching 1 Intel(R) Xeon(R) CPU E5-2620 v4 4 16 GiB Dec 3 – Dec 20 2022

Table 5.1 Summary of selected platforms.

We ran 20 runs of each benchmark using Randomized Multiple Interleaving Trials
method [3] in each environment with every available measurement type. The only
exception is the shared-VM environment, where we decided not to run SPECCPU due
to disk and runtime requirements. That sums up to more than 100 days of machine
time executing 61 unique benchmarks.

Each benchmark run has been executed for a given amount of iterations or until
it reaches a timeout. Timeout was 5 and 30 minutes for JVM-based and SPEC CPU
suites, respectively. The iteration limit for Renaissance was set to default which is
supposed to be reasonable for that benchmark. Scalabench and DaCapo had a hard
limit of 50 iterations, while SPEC CPU had a limit of 10. Deep dive into runtime is in
the next section.

5.2 Measurements
The following sections provide answers to research questions proposed in chapter 2.
Often, due to a considerable number of benchmarks, we aggregate the results by suites
or measurement methods. For detailed, per benchmark, results see section 5.3. All
data in the following figures are subject to data preprocessing described in section 4.2
unless stated otherwise.

5.2.1 RQ1: Runtime savings
The first research question regards the duet methods’ overall runtime reduction com-
pared to the sequential method. The presumption is that since duets run concurrently,
they can be up to twice as fast as the sequential method.

Runtime is computed on raw measurements from the start of the particular run
to its end. For the sequential method, add the duration of pairs A and B since pairs
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don’t run in parallel; for duet methods, take a sooner start and a later end of a run to
compute the duration

runtimee,b
seqn = {end(RA)− start(RA) + end(RB)− start(RB) |

(RA, RB) ∈M e,b
seqn},

runtimee,b
aduet = {min(start(RA), start(RB))−max(end(RA), end(RB)) |

(RA, RB) ∈M e,b
aduet}.

Then runtime speedup for particular benchmark b ∈ B in an environment e ∈ E:

runtime_speedupe,b =
mean(runtimee,b

seqn)
mean(runtimee,b

aduet)
. (5.1)

Figure 5.1 shows the runtime speedup of asynchronous duet run. As it turns out,
this heavily depends on the environment and the type of benchmark. Some bench-
marks are almost twice as fast, especially from the SPEC CPU suite in stable envi-
ronments. However, there is significant variability, and even in the bare-metal en-
vironment, some benchmarks show no speedup. Duet in the cloud environment is
even slower for some benchmarks. This is likely the cause of vCPU discrepancy as
t3.medium has only 2 vCPUs while other environments have 4.

Overall, the median speedup is 5%, 73%, and 53% for cloud, bare-metal, and
shared-VM environments, respectively. These results show that using duet methods
can significantly reduce the machine time required to run benchmarks.

5.2.2 RQ2: Pair overlaps
The second research question aims to understand the nature of asynchronous duet
iteration overlaps. However, as stated in section 3.3.2, not all overlaps are the same.
It is essential for the CI computation from 4.3.2, where the minimum overlap ratio is
used for pairing asynchronous duet iterations. Formally, define the relative overlap
time for benchmark b ∈ B in environment e ∈ E and minimum overlap ratio m as

relative_overlap_timee,b
m =

∑︁
(iA,iB)∈Oe,b

m

2 ∗ overlap_time(iA, iB)

∑︁
(RA,RB)∈Me,b

aduet

(︄ ∑︁
i∈RA

i + ∑︁
i∈RB

i

)︄ . (5.2)

The overlap time in the nominator computes the sum of filtered overlaps from equa-
tion (4.1). This sum is doubled because the overlap is a symmetric relation,
and the denominator accounts for the runtime of both pairs; this way, the
relative_overlap_timee,b

m ∈ [0, 1] and represents a percentage of overlapping
workload runtime, not just overlapping harness.
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Figure 5.1 Runtime speedup of asynchronous duet method across different environments
and suites. This is not subject to data preprocessing from section 4.2 as it captures raw
measurements time.

Figure 5.2 shows howmuch doesminimumoverlap ratio affect the relative overlap
time. SPEC CPU has very good overlap coverage, which suggests a low variance
of iteration durations. Other suites show a steady decline as the minimum overlap
ratio reaches 90% overlap time is less than 20% of total iteration time, hindering
the runtime improvements from section 5.2.1. However, the minimum overlap ratio
of 30% or 50% retains above 80% or 60% of iteration runtime, respectively, which
seems like a good fit for the minimum overlap ratio parameter.

5.2.3 RQ3: Accuracy improvements
The third research question concerns the accuracy of regression detection using dif-
ferent benchmarking methods across different environments. The accuracy is inher-
ently dependent on the variance of measurements. Therefore, the first method of
comparison uses relative standard deviation CV as described in section 4.3.1.

Figure 5.3 shows CV of different benchmarking methods across different envi-
ronments for all benchmarks. It shows that duet methods have comparable variance,
and even though the sequential method usually has smaller CV in all environments,
there is no significant difference between methods or environments. SPEC CPU has
the smallest CV , which is expected since it is the only natively compiled suite with
longer runtime. A closer look shows common benchmark outliers, namely luindex in
the shared-VM environment in both Scalabench and DaCapo suites, fop from DaCapo
in shared-VM and cloud environments, and the dotty from Renaissance suite in the
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Figure 5.2 Box plot of benchmark relative overlap time from equation (5.2) based on min-
imum overlap ratio.

cloud environment which has maximum CV of 0.8.
Next, we can determine the accuracy of each method using A/A detection correct-

ness of CI test from section 4.3.2. As shown in section 5.2.2 the value of the minimum
overlap ratio can significantly influence overall overlap time. Figure 5.4 shows success
of CI test in determining A/A run based on minimum overlap ratio. The first impor-
tant takeaway is that the CI test has reasonably good A/A detection capabilities across
all environments. However, steep rises or declines imply that multiple benchmarks
in the given suite were on the edge of CI straddling 0, which is expected as higher
values of minimum overlap ratio decrease the overlap runtime significantly 5.2.

Scalabench in the shared-VM environment comes the off worst with only 70%
A/A detection rate closely followed by SPECCPUwith only 81%. The low correctness
of the CI test for the SPEC CPU suite is likely a result of its low variance and small
relative CI width, as shown in figure 5.5. Based on these findings, we set the minimum
overlap ratio to 40% in the following CI computations.

Figure 5.5 shows relative CI width 4.3.2. The width of CI compares iteration vari-
ance across environments and the variance of CI computation in particular. It differ-
entiates the shared-VM environment despite the fact that all environments had low
CV 5.3. Surprisingly, the CI width for the cloud environment looks very similar to
bare metal measurements.

The overall results of the CI test are in Figure 5.6. CI test achieves the best results
in the cloud environment, but the overall correctness of A/A detection straddles 80%.
One particular thing to point out is that the sequential method is not worse than duet
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Figure 5.3 Box plot of CV s of benchmarks from respective suites.
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Figure 5.4 The effect of the CI test parameter minimum overlap ratio on correct A/A run
detection for the asynchronous duet. The y-axis shows the proportion of benchmarks that
the CI test considers equal in performance — does not report a regression. Note that each
suite has a different amount of benchmarks. For example, a 20% change in DaCapo A/A
detection rate means that the CI test changed its verdict for two benchmarks. Benchmark
count for each suite is in section 5.1.
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Figure 5.5 Box plot of benchmark relative CI width from equation (4.2). CI for asyn-
chronous duet uses the minimum overlap ratio of 40%.

methods and sometimes even outperforms duet methods.
Figure 5.7 shows success of u-test described in section 4.3.3 in determining

A/A run. The u-test seems to be doing much worse compared to the CI test in the
bare-metal environment in particular. However, it has a 100% success rate on the
SPEC CPU suite in the cloud environment for both sequential and asynchronous
duet methods.

5.2.4 RQ4: Minimal detectable slowdowns
The last research question regards minimal detectable slowdowns (MDS). First, the
results have to be adjusted as described in section 4.4. Then evaluate regression de-
tection capabilities using CI test and u-test, with no slowdown, the values are the
same as in figure 5.6 and figure 5.7 for CI test and u-test respectively. The bigger
the slowdown, the sooner the A/A match should drop to 0% — no benchmarks were
considered equal in performance.

Figure 5.8 shows MDS using the CI-test. The SPEC CPU has MDS of 1% slow-
down for both benchmarking methods and in both environments, but its initial A/A
detection is only at approximately 80%. The rest of the benchmarks have somewhat
similar trends of MDS, with the sequential method sometimes lacking slightly be-
hind duet methods. Overall almost all benchmarks using duet methods have MDS of
5% in bare-metal and cloud environments. However, the sequential method in the
shared-VM environment performs significantly worse than duet methods as it fails to
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Figure 5.6 The success of the CI test in determining A/A run. The y-axis shows the pro-
portion of benchmarks that the CI test considers equal in performance — does not report a
regression.
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Figure 5.7 The success of u-test in determining A/A run. The y-axis shows the proportion
of benchmarks that the u-test considers equal in performance — does not report a regression.
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detect even some 15% regressions likely because of the biggest relative CI width in
this environment as shown by figure 5.5.

Since u-test showed a reasonable A/A detection rate only for the SPEC CPU suite,
we showcase MDS for this suite only in figure 5.9. Similar to the CI test, u-test can de-
tect 1−2% slowdown for the whole SPEC CPU suite both in the cloud and bare-metal
environment.

5.3 Evaluation automation
To streamline the duet evaluation process duet package provides a set of interactive
Jupyter notebooks that give a more detailed view of the results. Specifically, they
visualize data behind each research question separately per benchmark.

One example from these notebooks is the figure 5.10 which shows the confidence
intervals from CI test section 4.3.2 for SPEC CPU benchmarks. It clearly shows that
some benchmarks are much more variable than others, particularly in the cloud en-
vironment.
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Figure 5.8 Facet plot of minimal detectable slowdowns using the CI test. The x-axis has
the artificially applied slowdown on one pair, starting from no slowdown (A/A run) to 15%
slowdown. The y-axis shows the proportion of benchmarks from a given suite that the CI
test considers equal in performance despite the applied slowdown.
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Figure 5.9 The minimal detectable slowdown of SPEC CPU suite using u-test. Note that
u-test has 100% accuracy in the cloud environment, and it can detect a 2% slowdown for all
SPEC CPU benchmarks using asynchronous duet.
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Figure 5.10 Confidence intervals used in the CI test for the SPEC CPU suite. Benchmarks
are considered equal in performance if the CI contains the point 0; otherwise, the test reports
a regression. The y-axis shows the bootstrapped 95% confidence interval of the differences
between paired A/B iteration times in seconds as described in section 4.3.2.
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Conclusion

Our main goal was to evaluate the behavior of a new duet method variant that does
not synchronize iterations. In particular, we wanted to answer questions from sec-
tion 2.2.

First of which was better accessibility of duet methods. We achieved that by cre-
ating a benchmark super-harness tool that can run benchmarks from multiple suites
in a portable containerized way using both sequential and duet methods. This tool
was used to run measurements in cloud, bare-metal, and shared virtual machine en-
vironments.

The second goal focused on the runtime reduction potential of duet methods. Sec-
tion 5.2.1 shows that most of the natively compiled and longer running benchmarks
from SPECCPU suite ran 80−100% faster when using the asynchronous duet method
compared to using the sequential method reducing the costs by up to 50%. However,
results varied across benchmark suites and environments. Cloud environment, in
particular, did not do well in runtime speedups and even manifested a slowdown for
some benchmarks. Although this was likely caused by cloud instances having two
vCPUs while other environments had 4. Overall average speedups were 8%, 60%,
and 54% for cloud, bare-metal and shared-VM environments respectively.

The third and last goal focused on the accuracy of the asynchronous duet method.
Initially, we looked at how asynchronous iterations overlap in section 5.2.2. Overlap
quality was determined by the proportion of overlap duration and time of overlapping
iterations being above a certain threshold — minimum overlap ratio. It turned out
that SPEC CPU benchmarks overlapped almost all the time as if the iterations were
synchronized. JVM-based suites with shorter and more variable benchmarks create
overlaps of various sizes.

Section 5.2.3 looked at iteration variability of different methods and A/A run de-
tection capabilities. The overall variability of the benchmark scores across different
environments was captured by the coefficient of variability and the relative width of
confidence intervals from the confidence intervals test. The coefficient of variability
turned out to be below 0.2 for almost all tested benchmarks in all environments, with
SPEC CPU being the least variable, as expected. We did not observe any significant
difference between cloud and bare metal. However, the width of confidence inter-
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vals differentiates the shared virtual machine environment as the most volatile, with
the sequential method having the most extensive variability. Again the cloud and
bare-metal environments look very similar when compared by confidence interval
width.

A/A detection accuracy used an adjusted confidence interval test and u-test. The
confidence interval test for an asynchronous duet was parametrized by the minimum
overlap ratio pairing of 40% based on empirical observations. The confidence interval
test was able to successfully detect 90% of all JVM-based benchmarks and 80% of
SPEC CPU benchmarks. The relatively low success rate of detecting SPEC CPU A/A
runs is likely due to its low variability hence relatively low confidence interval width
that might not include point 0. To accommodate this, the confidence interval test
can be extended to consider the error by which the confidence interval missed 0 and
account for some leeway.

Mann-Whitney u-test was much more sensitive to difference; hence it has much
worse A/A accuracy overall with only 62% correctly detected JVM-based bench-
marks. However, the sensitivity proved useful for SPEC CPU benchmarks which had
100% A/A detection in the cloud environment and 84% in bare-metal. Method com-
parison with u-test rules asynchronous duet as the best with 74% followed by the
synchronous duet with 65% and sequential with 60% A/A detection accuracy.

Last, we examined the minimum detectable slowdowns (MDS) factor using artifi-
cially slowed down A/A runs in section 5.2.4. Duet methods outperformed sequential
method with the ability to detect 3− 5% slowdown for JVM-based benchmarks and
even 1% regression for SPEC CPU benchmarks, while the sequential method had
issues detecting even 10% regressions in our shared virtual machine environment.
However, the results were similar in the cloud and bare-metal environments.

Overall, removing the synchronization requirement does not hurt synchronous
duet accuracy improvements. With possibilities for significant runtime and cost re-
ductionwhile maintaining high regression detection capabilities, we believe the asyn-
chronous duet method is an attractive novel benchmarking approach that is usable
even in variable environments. Additionally, the duet python package provides a
generic way of running and processing benchmarks in the containerized environ-
ment using sequential and duet methods.

Future work
One thing we did not manage to include in this thesis due to restricted resources is
broader coverage of cloud providers and instance types with higher CPU count in par-
ticular. This could prove that runtime and cost reductions in the cloud are similar to
what we observed in our shared virtual machine infrastructure. More measurements
could also examine the required number of runs to achieve reasonable accuracy. In
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our experiments, we used 20 runs per benchmark, but fewer runs may be sufficient
to detect a certain level of MDS.

We did not examine the synchronized interference of benchmarks in depth. This
interference can manifest predominantly in the asynchronous duet method, as shown
in figure 2.3. One would need to look closer at benchmark workloads and their bot-
tlenecks to see if workloads with different bottlenecks interfere in some synchronous
manner while running in a duet.

Another thing that needs a closer look at individual benchmarks is an analysis
of benchmarks on which the duet did not do well. Ideally, some specific common
workload traits, such as high parallelism, would cause issues for the duet.

The last thing we mention is an exploration of methods that would allow deter-
mining the regression severity. The method of minimal detectable slowdown allows
us to determine what slowdowns we can reliably detect. However, in a generic A/B
run, a slowdown is unknown.
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