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Preface

The mechanics of fluids is a very large and diverse discipline where every problem can be
investigated from many different points of view. These views vary even in how detailed
description is involved, i.e., we can describe a fluid in terms of the statistical physics,
the thermodynamics of continuum, the quantum mechanics, . . . , they all have their own
models of fluids. Then a question arises: “Are there any relations between these models?”

The process of the derivation of one model from the other one is often called the
fluid dynamic limit. Both models can be on the same level of description or both can
be from different levels. This work is focused on the relationship between the kinetic
models and the macroscopic models of fluids, thus connects the statistical physics and the
thermodynamics of continuum.

The work is divided into the three parts. Each part has its own introduction of
the issue, use a slightly different notation, has its own bibliography and all terms are
explained independently of the other parts. This is mainly due to the different natures of
the investigated problems.

On the other side, all problems have some common features, and the most important
one is the kinetic equation. We introduce the different modifications of the Boltzmann
equation where the main role plays the Boltzmann collision operator and its properties.
Here we would like to refer the reader to the first two sections of Chapter 2 where the
precise and detailed derivation of the Boltzmann equation from the Liouville equation
is demonstrated. The Boltzmann (kinetic) equation is a significant simplification of the
huge N -particle problem (N is very large, typically of the order of Avogadro’s number)
because instead of solving 6N equations of the motion we solve the one equation for the
statistical distribution of particles in a fluid.

The first part is devoted to the Prandtl equation developed in order to approximate
the behavior of the fluid near the boundary. It was Claude Bardos who pointed out to me
the importance of this problem because of the blowup solution of the Prandtl equation1.
The result from this chapter completes the results obtained by C. Bardos, F. Golse and
collaborators. The connection of the Boltzmann equation and the Prandtl equation is
examined on the appropriately rescaled Boltzmann equation.

The second part investigates the model of multipolar viscous fluids and it is discovered
that the higher order approximations of the collisional transfer originate the multipolar
character of fluids. A slightly modified Boltzmann equation is introduced and the equa-
tions of balance of mass, momentum and energy of multipolar viscous fluids are found. In
addition, the constitutive relations for the multipolar stress tensors and the heat flux of
the linear dipolar viscous fluids are obtained, as well as the sign, magnitude and depen-
dence on the density and the temperature of the coefficients in constitutive relations. The
thermodynamic theory of multipolar viscous fluids according to J. Nečas and M. Šilhavý

1Weinan E and Bjorn Enquist, Blowup of solutions of the unsteady Prandtl’s equation, Comm. Pure
and Appl. Math., Volume 50, Issue 12, Pages 1287 - 1293.
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is introduced on the most simple model of multipolar viscous fluids – the linear dipolar
viscous fluids. The general constitutive relations implied by the Clausius–Duhem in-
equality and the principle of material frame-indifference are developed. Both types of the
constitutive relations are compared at the end of the chapter.

The third part was inspired by Jindřich Nečas at the sixth Paseky school of Mathe-
matical theory in fluid mechanics) who gave me the article about a generalization of the
Boltzmann equation. On the advice of Claude Bardos I started to investigate the acoustic
limit of the generalized Boltzmann equation and I obtained some formal and analytical
results. At the same time I tried to understand the physical background of such a gener-
alization and I realized that the problem with the opposite sign is more natural. Hence
the problems with the both signs are examined.
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Chapter 1

Compressible Boundary Layer and
the Boltzmann Equation

We consider flow of ideal gas in half space described by the system of compressible
Navier–Stokes equations. We apply the Prandtl scaling and we obtain the system
of compressible Prandtl equations. In this article a modification of the classical
Chapman–Enskog method is proposed, which allows us to derive the system of
compressible Prandtl equations directly from the Boltzmann equation without the
use of the Knudsen-layer correction. Different types of boundary conditions are
discussed.

1.1 Introduction

To describe the flow of ideal gas in RD, one can choose two different descriptions –
macroscopic and kinetic.

On the molecular (kinetic) level, the fundamental concept is based on the density
of particles f(x, v, t) in a single particle phase space RD × RD. Here x and v denote
the position and velocity of the particle at time t. Assuming zero external forces, the
dimensionless kinetic equation for this non-negative function f(x, v, t) takes the form

∂tf + (v · ∇x)f =
1

Kn
C(f) . (1.1)

On the right hand side there is the collision operator C(f), which acts only in the space
of velocities, i.e. particles are assumed to be mass points and collisions instantaneous.
According to the particular choice of the collision operator we call (1.1) the Boltzmann
equation, the BGK model, etc.

On the macroscopic level the basic principles are the laws of conservation of mass,
momentum and energy, together with the second law of thermodynamics. The description
is based on macroscopic (measurable) quantities — density ρ, velocity u and temperature
θ. For ideal (viscous) gas we obtain the system of dimensionless compressible Navier–
Stokes equations:

∂tρ+∇x · (ρu) = 0 ,

ρ(∂t + u · ∇x)u+∇x(ρθ) = Kn∇x · [µσ(u)] , (1.2)
D
2
ρ(∂t + u · ∇x)θ + ρθ(∇x · u) = Kn 1

2
σ(u) : σ(u) + Kn∇x · [κ∇xθ] ,

where σ(u) = (∇xu + ∇T
x u) − 2

D
(∇x · u)I and µ, κ are the coefficients of viscosity and

thermal conductivity of the gas.

4



The dimensionless parameter Kn, the Knudsen number, plays the key role in the study
of the connection of these two models. From the kinetic formulation it follows that the
Knudsen number is the ratio of the mean free path λ of the particle to the characteristic
macroscopic length L. On the macroscopic level the Knudsen number is the ratio of the
Mach number Ma to the Reynolds number Re (von Karman’s relation)

Kn =
λ

L
=

Ma

Re
. (1.3)

For sufficiently small Knudsen numbers or sufficiently dense gases both models can be
used. Every macroscopic quantity has its corresponding molecular quantity and their
relation is based on taking the mean value of the molecular quantity with respect to the
density f :

ρ =

∫
RD
f dv ≡ 〈f〉 , ρu = 〈vf〉 , ρ(1

2
|u|2 + D

2
θ) =

〈
1
2
|v|2f

〉
.

In order to not have to distinguish between particular models of collision operator, we
summarize their common and essential properties:

• collision invariants: 〈C(f)ψ〉 = 0 for ψ = 1, v1, . . . , vD, |v|2, which formally lead to
the system of macroscopic equations:

∂t 〈f〉+∇x · 〈vf〉 = 0 ,

∂t 〈vf〉+∇x · 〈v ⊗ vf〉 = 0 ,

∂t
〈

1
2
|v|2f

〉
+∇x ·

〈
v 1

2
|v|2f

〉
= 0 .

(1.4)

• fundamental inequality: 〈C(f) ln f〉 ≤ 0, which guarantees the validity of the second
law of thermodynamics and enables us to characterize the gas in equilibrium by one
of the following equivalent propositions:

C(f) = 0 ⇐⇒ 〈C(f) ln f〉 = 0 ⇐⇒ f = m =
ρ

(2πθ)D/2
exp

(
−|v − u|

2

2θ

)
.

(1.5)
The equilibrium density m is called the Maxwellian distribution.

The formal system (1.4) of the macroscopic equations is not closed and several methods
of its closure were proposed. We will deal with the Chapman–Enskog method ([ChC39]
and [BGL91]) based on the expansion of the state close to equilibrium with respect to a
small parameter Kn. It is known that the Chapman-Enskog method if applied to (1.4)
results in the system (1.2) of compressible Navier–Stokes equations.

In the presence of the boundary both formulations have to be completed by stating
the boundary conditions. For simplicity we assume that the domain is the half space
x′ = (x1, . . . , xD−1) ∈ RD−1 and xD > 0 with an impenetrable wall at xD = 0. Density
distribution of particles leaving the wall (v′ ∈ RD−1 and vD > 0) can be prescribed in
different ways. We shall deal with the following three types

• specular reflection:
f(v′, vD) = f(v′,−vD) ; (1.6)

• reverse reflection:
f(v′, vD) = f(−v′ + 2u′w,−vD) ; (1.7)
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• diffusive reflection:

f(v′, vD) =
−
∫
vD<0

vDf(v′, vD) dv′dvD

(2πθw)(D−1)/2 θw
exp

(
− |v

′ − u′w|2 + v2
D

2θw

)
. (1.8)

Here (u′w, 0) and θw are the velocity and temperature of the wall. For the system of
Navier–Stokes equations we consider

∂xDu
′ = 0 , uD = 0 and ∂xDθ = 0 ; (1.9)

u′ = u′w , uD = 0 and ∂xDθ = 0 ; (1.10)

u′ = u′w , uD = 0 and θ = θw . (1.11)

1.2 Prandtl Idea

In the rest of this paper we shall deal with the flow of fluids with small viscosity and we
shall focus on the thin boundary layer. Let ε be the thickness of such a region. From the
Prandtl theory [ChM93] we know that such a flow is characterized by a high Reynolds
number Re = ε−2. Because the gas is compressible, its Mach number is finite (Ma = 1) and
consequently the Knudsen number Kn = ε2. To derive a simpler system of macroscopic
equations in the boundary layer we rescale the independent variables

x̃′ = x′ , x̃D =
xD
ε

and t̃ = t .

From the continuity equation we see that the normal component uD of the velocity is also
very small, therefore we set

ρ̃(x̃, t̃) = ρ(x, t) , ũ′(x̃, t̃) = u′(x, t) , ũD(x̃, t̃) =
uD(x, t)

ε
and θ̃(x̃, t̃) = θ(x, t) .

For these new quantities we obtain the system of compressible Prandtl equations pro-
vided higher order terms in the system of compressible Navier–Stokes equations can be
neglected. Thus we derive the system (written without tilde):

∂tρ+∇x · (ρu) = 0 ,

ρ(∂t + u · ∇x)u′ +∇x′(ρθ) = ∂xD(µ ∂xDu
′) ,

∂xD(ρθ) = 0 ,
D
2
ρ(∂t + u · ∇x)θ + ρθ(∇x · u) = µ |∂xDu′|2 + ∂xD(κ ∂xDθ) ,

(1.12)

together with the set of boundary conditions considered above. From the third equation
it follows that the pressure depends only on the variables x′ and t, so it can be considered
to be a given function. Because also values of the velocity u′ and the temperature θ have
to be prescribed as xD →∞, we suppose

ρθ(x′, t) = ρEθE(x′, xD = 0, t) ,

u′(xD =∞) = u′E(xD = 0) ,

θ(xD =∞) = θE(xD = 0) ,

(1.13)

where ρE, uE and θE is the solution of the compressible Euler equations on the halfspace
with the slip boundary conditions.
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1.3 Rescaled Boltzmann equation

In this section we establish the connection between the appropriately rescaled Boltzmann
equation and the system of compressible Prandtl equations. For this purpose we (slightly)
modify the standard Chapman–Enskog method ([ChC39] and [BGL91]). Before doing so
we introduce convenient notation.

In order to find a solution not far from equilibrium it is advantageous to linearize the
collision operator by Taylor’s formula

2

m
C(m(1 + εg)) =

2

m
C(m)︸ ︷︷ ︸

= 0, see (1.5)

+ ε
2

m
DC(m)(mg)︸ ︷︷ ︸
≡ εL(g)

+ ε2 1

m
D2C(m)(mg)2︸ ︷︷ ︸
≡ ε2Q(g, g)

+O(ε3) .

The linear operator L is supposed to be non-negative, self-adjoint and to satisfy the
Fredholm alternative with (D+2)-dimensional kernel spanned by the collision invariants
{1, v1, . . . , vD, |v|2} on the Hilbert space

L2
m(RD) = {g(v) : RD → R | g m1/2 ∈ L2(RD)}

with the scalar product

(g, h)L2
m

=

∫
RD
ghmdv .

Further we use vector (tensor) notation:

V =

(
v′ − u′√

θ
,
vD√
θ

)
, A(V) = V ⊗ V − 1

D
|V|2I , B(V) =

(
1
2
|V|2 − D+2

2

)
V ,

where ⊗ is the tensor product. We assume that the solution of

L(A′) = A and L(B′) = B

can be written (we know that A, B satisfy Fredholm alternative) in the form

A′(V) = −α(ρ, θ, |V|)A(V) and B′(V) = − β(ρ, θ, |V|)B(V) ,

where α, β are positive scalar functions. We denote by m0 a particular type of Maxwellian
distribution with zero mean velocity in xD direction, i.e.

m0 =
ρ

(2πθ)D/2
exp

(
− |v

′ − u′|2 + v2
D

2θ

)
.

Following the Prandtl idea of scaling we introduce the rescaled Boltzmann equation (tilde
omitted)

∂tf + (v′ · ∇x′)f + 1
ε vD∂xDf = 1

ε2 C(f) . (1.14)

Now we can state our main result.

Theorem 1.1 (Formal). Assume that ρ, u, θ solve the system of compressible Prandtl
equations (1.12) with the coefficients of viscosity and thermal conductivity given by1

µ(ρ, θ) = θ
〈
α(ρ, θ, |V|)A2

1D(V)m0

〉
, (1.15)

κ(ρ, θ) = θ
〈
β(ρ, θ, |V|)B2

D(V)m0

〉
, (1.16)

1we can observe the absence of the parameter ε in front of these coefficients in the system (1.12). This
differs from the result of the classical Chapman–Enskog expansion.
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with one set of the boundary conditions (1.9)–(1.11) and with additional conditions (1.13).
Then there exist functions g and w such that

hε = m0 (1 + ε g + ε2w) (1.17)

is an approximative solution of order 1 to the rescaled Boltzmann equation (1.14), i.e.

∂th
ε + (v′ · ∇x′)h

ε + 1
ε vD∂xDh

ε = 1
ε2 C(hε) +O(ε) (1.18)

and specular reflection boundary condition corresponding to macroscopic conditions (1.9)
is approximated up to the order 2, while reverse reflection resp. diffusive reflection corre-
sponding to macroscopic conditions (1.10) resp. (1.11) are satisfied approximately to the
order 1.

Moreover, w lies in the orthogonal complement to the kernel of linear operator L and g is
given by the formula

g = −α(ρ, θ, |V|)
∑D−1

j=1
AjD(V) ∂xDuj − β(ρ, θ, |V|) BD(V)

∂xDθ√
θ

+ vD
uD
θ
. (1.19)

Proof. The above mentioned modification of the standard Chapman–Enskog method is
based on the relations of orthogonality for g. This function does not lie in the orthogonal
space to the kernel of operator L but for ψ = vD this condition is:

〈gvDm0〉 = ρuD. (1.20)

There is no dispute due to particular choice of Maxwellian m0.
We substitute approximative solution hε into the rescaled Boltzmann equation (1.14).

Comparing the terms of the same order and omitting higher order terms we obtain

L(g) = vD
∂xDm0

m0

, (1.21)

L(w) =
(∂t + v′ · ∇x′)m0

m0

+
vD ∂xD(m0g)

m0

−Q(g, g) . (1.22)

The right hand sides of both the equations have to satisfy conditions of Fredholm alter-
native with collision invariants

{
1, v′ − u′, vD, 1

2
(|v′ − u′|2 + v2

D)
}

. For partial derivative
∂ with respect to t or xj we have the formula

∂m0

m0

=
∂(ρθ)

ρθ
+

(
|v′ − u′|2 + v2

D

2θ
− D + 2

2

)
∂θ

θ
+

(v′ − u′) · ∂u′

θ
.

From the equation (1.21) for the collision invariant ψ = vD we see that

∂xD(ρθ) = 0 (1.23)

and consequently this equation can be rewritten as

L(g) =
∑D−1

j=1
AjD(V) ∂xDuj + BD(V)

∂xDθ√
θ
.
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Solution g is exactly (1.19) if we suppose additional condition (1.20). Solvability con-
ditions for (1.22) reduce to the remaining Prandtl equations. The term Q(g, g) has a
property of collision invariants. The second term gives the relations:

〈vD ∂xD(m0g)〉 = ∂xD(ρuD) ,

〈(vj − uj) vD ∂xD(m0g)〉 = ∂xD( θ 〈AjDm0g〉) + ρuD ∂xDuj , j = 1, . . . , D − 1 ,〈
v2
D ∂xD(m0g)

〉
= 0 ,〈

|v′ − u′|2 + v2
D

2
vD ∂xD(m0g)

〉
= ∂xD( θ3/2 〈BDm0g〉) + D+2

2
ρθ ∂xDuD

+
∑D−1

j=1
(∂xDuj) θ 〈AjDm0g〉 .

From the first term of (1.22) we deduce

〈(∂t + v′ · ∇x′)m0〉 = ∂tρ+∇x′ · (ρu′) ,
〈(vj − uj) (∂t + v′ · ∇x′)m0〉 = ρ (∂t + u′ · ∇x′)uj + ∂xj(ρθ) , j = 1, . . . , D − 1 ,

〈vD (∂t + v′ · ∇x′)m0〉 = 0 ,〈
|v′ − u′|2 + v2

D

2
(∂t + v′ · ∇x′)m0

〉
= D

2
ρ (∂t + u′ · ∇x′)θ + D

2
θ (∂tρ+∇x′ · (ρu′))

+ ρθ (∇x′ · u′) .

The expressions containing AjD and BD can still be simplified using definitions (1.15) and
(1.16) of the coefficients µ and κ, due to the symmetry

θ 〈AjD(V)m0g〉 = −µ ∂xDuj and θ3/2 〈BD(V)m0g〉 = −κ ∂xDθ .

Let us notice that from (1.23) we have D
2
θuD∂xDρ + D

2
ρuD∂xDθ = 0 and the Prandtl

equations follow.
To prove the statement about boundary conditions we have to show that relations

(1.6)–(1.8) hold approximately with hε instead of f up to the order mentioned above. In
all these cases the wall is impenetrable, so

g(xD = 0) = −α
∑D−1

j=1
AjD(V) ∂xDuj − β BD(V)

∂xDθ√
θ
.

For specular reflection Maxwellians on both sides of (1.6) are equal and g(xD = 0) = 0.
In the case of diffusive reflection we can evaluate

−
∫
vD<0

vD h
ε(xD = 0) dv =

ρθ

(2πθ)1/2
+O(ε2) ,

so for θ = θw and u′ = u′w we obtain equal Maxwellians too. Reverse reflection has order
of approximation one, because we have

g(xD = 0) = −α
∑D−1

j=1
AjD(V) ∂xDuj .
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1.4 Conclusion

Our result completes a list of several recent studies. In the article [BAGS99] the authors
introduced scaling, which gives the incompressible Prandtl equations from the Boltzmann
equation by the moments method. In the article [SBGS00] the stationary compressible
Prandtl equations are derived by a modified Hilbert method. In this paper, we propose a
modification of the Chapman–Enskog method that enables us to perform the limit leading
to the evolutionary compressible Prandtl equations without the use of the Knudsen-layer
correction.
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Chapter 2

Theory of Multipolar Viscous Fluids
from the Kinetic Scope

The theory of multipolar fluids, originally introduced in the papers by Green and Rivlin
(see [GR64a] and [GR64b]) and later on extended by Nečas and Šilhavý ([NS91]), results
to the system of equations where certain constitutive quantities, in particular the Cauchy
stress, the heat flux and the higher order stress-like tensors depend on the higher order
spatial derivatives of the velocity and the temperature.

This approach leads to the system of partial differential equations generalizing the
classical Navier–Stokes and Navier–Stokes–Fourier equations for fluids, and also the clas-
sical, yet not at all understood, equations of finite (visco)-elasticity. The advantage of
such systems lies in their accessibility by current tools of mathematical analysis. Thus,
the articles by Nečas, Novotný and Šilhavý ([NNS89] and [NNS92]) were the first ones
where the long-time and large-data well-possedness (existence, uniqueness and continu-
ous dependence on data) was established in the case of (dipolar respectively tripolar)
compressible heat-conducting fluids. Similarly, Nečas and Růžička ([NR92]) developed a
consistent mathematical theory for dynamical problems of finite elasticity (finite visco-
elasticity). While for classical compressible fluids (“classical” means without a need to
incorporate the dependence of the constitutive relations on the higher spatial derivatives),
there are nowadays alternative and deeper mathematical studies that concern long-time
and large-data existence theory (see the monographies by P. L. Lions [Li98], E. Feireisl
[Fe03] or a very recent paper by E. Feireisl [Fe07]), in the case of elastic materials sub-
jected to large time-dependent deformations the long-time and large-data theory is not
available.

Although the accessibility of the models to current methods of mathematical analysis,
the well-possedness of some models as well as consistency of the models with the classical
principles of continuum thermodynamics are the positive features of multipolar fluid-like
models, these models are not popular and this is due to several reasons.

First of all, there are no experimental data that would confirm the higher gradient
theory and give insight what kind of boundary conditions should be taken into account
for higher derivatives.

Another reason is the lack of the details of physical micro-processes which in fluids
are passing, and which are originating macroscopic phenomena expressed and described
by the theory of multipolar fluids.

Also, even for linear constitutive equations, there are too many material coefficients
that it is difficult to identify and we know almost nothing neither about their dependence
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on density and temperature nor about their sign.
The aim of this chapter is to provide somehow different insight on the multipolar

fluid models. We use the approach of the fluid dynamic limit from the kinetic level to
the macroscopic one and we take the advantage of this technique to derive the sign,
and the density and temperature dependence of coefficients in constitutive relations. We
also slightly reveal the secret of micro-processes in the fluid and we show that it is the
higher order approximation of the collisional transfer which is originating their multipolar
character. The key role in this study plays the binary collision – a non-local and non-
instant process in a fluid.

The scheme of this chapter is the following. In the first section we recall the BBGKY
hierarchy, a usual step in the derivation of kinetic equations. In the next section, after
making several simplifications, we conclude with the kinetic equation which incorporates
the higher order approximation of the collisional transfer.

Developing such a kinetic equation we then take in Section 2.3 its fluid dynamic limit
and we obtain the equations of balance of mass, momentum and energy for dipolar viscous
fluids. In addition we get the constitutive relations for such a fluid.

In the next section 2.4 we recall the Enskog kinetic equation and show some similar
features of his kinetic equation and our one.

In section 2.5, we recall the foundations of dipolar fluids within the framework of
continuum thermodynamics how it has been done at the early nineties. In section 2.6 we
provide foundations of dipolar fluid model using completely different approach developed
by K. R. Rajagopal and his coworkers.

In the concluding section, we compare the results of all these approaches.

2.1 BBGKY hierarchy

Let us start with the closed system of N identical particles: every particle obeys the
Newtonian mechanics and xi = xi(t) and vi = vi(t) denote the position and the velocity
of the particle i at time t. Such a system is described by a N -particle distribution function
fN = fN(x1,v1, . . . ,xN ,vN , t) fulfilling∫

fN(x1,v1, . . . ,xN ,vN , t)
N∏
i=1

dxidvi = N ! . (2.1)

The norm N ! exactly corresponds to the fact that the particles are indistinguishable, so
exactly the same system can be realized in N ! ways. The Hamiltonian of such a system
consists of the sum of the kinetic energy of all particles and the potential energy of
their mutual interactions (we assume that the inter-particle potential ϕij acting between
particles i and j is spherically symmetric and depends only on the distance |xj − xi| of
both particles); thus

HN =
N∑
i=1

1
2
m|vi|2 + 1

2

N∑
i,j=1
i 6=j

ϕij , (2.2)

where m is the mass of one particle. The time evolution of such a closed system is driven
by the Liouville equation which represents the conservation of the probability density in
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a phase space

∂tf
N +

N∑
i=1

vi · ∇xif
N − 1

m

N∑
i,j=1
i 6=j

∇xiϕij · ∇vif
N = 0 . (2.3)

Here ∇x denotes a gradient with respect to three coordinates of the vector x, and x ·y =∑3
i=1 xiyi is a scalar product of two vectors.
The Liouville equation is often expressed in terms of the Poisson brackets

∂tf
N + [fN , HN ]N = 0 , (2.4)

where

[ψ, ϕ]N =
N∑
i=1

{
∇xiψ · ∇mviϕ−∇mviψ · ∇xiϕ

}
. (2.5)

We assume that the initial conditions are symmetric due to the interchange of particles.
Because the Hamiltonian is also symmetric, we have the symmetry of the density fN all
the time. It is then reasonable to define the h-particle distribution function fh through
the relation

fh =
1

(N − h)!

∫
fN(x1,v1, . . . ,xN ,vN , t)

N∏
i=h+1

dxidvi , h = 1, 2, . . . , N − 1 . (2.6)

The norm of the density fh has a similar interpretation as the norm of the density fN∫
fh(x1,v1, . . . ,xh,vh, t)

h∏
i=1

dxidvi =
N !

(N − h)!
. (2.7)

Upon integration of the Liouville equation over the positions and the velocities of
N − h particles where h = 1, . . . , N − 1 we obtain the chain of equations – the so-called
BBGKY hierarchy which is named by the authors Bogoliubov [Bo46], Born and Green
[BG49], Kirkwood [Ki46] and Yvon [Yv35]:

∂tf
h+ [fh, Hh]h = 1

m

h∑
i=1

∫
∇vif

h+1 ·∇xiϕi,h+1 dxh+1dvh+1 , h = 1, . . . , N −1 . (2.8)

The BBGKY hierarchy is not a closed system. Thus, in order to solve the equation for
fh we have to know the solution fh+1. Fortunately, we can adopt and combine additional
physical assumptions/restrictions which help us to evaluate the right hand side of the
equation for fh in terms of f 1, f 2, . . . , fh, and we get the closed chain of the equations
for f 1, f 2, . . . , fh.

Let us mention some of these assumptions/restrictions:

binary collisions — in a rarefied gas the probability of the collisions of 3 or more par-
ticles is negligible. The number n of particles per unit volume and the particle
diameter σ have to satisfy

nσ3 � 1 . (2.9)

repulsive potential — the particles can form more complex objects like dimers, . . . in
the case of the potential with an attractive part (e.g., the Lennard–Jones potential).
Then the closure must include both the probability density of one particle f 1 and
the probability density of dimers f 2, . . . . (See [RHB82] and [Ra84].)
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instantaneous collisions — the phase space of two interacting particles can be divided
into the pre-collision, post-collision and interactive part. If the potential of interac-
tion is strictly repulsive and has a short range – the concept of cutoff potential – we
can neglect the interactive part of the phase space and evaluate only the pre-collision
and post-collision parts.

point particles — the internal structure of particles is omitted. Very simple model of
particles with internal (quantum) states is the mixture where each internal state of
particle generates a new specie of the mixture.

neutral particles — the charged particles require a specific approach. It is mainly
due to the softness of the Coulomb’s forces (they decrease with the square of the
distance), hence each particle interacts with each other and the concept of cutoff
potential is useless. In addition, the particles generate the electromagnetic field and
from the macroscopic point of view the system have to obey the Maxwell’s laws.
A gas of charged particles described by the Landau equation is the basic model of
plasma.

molecular chaos — it is assumed that the particles entering a collision are in the in-
dependent states. It means that the material has no memory and the probability
density in the pre-collision part of the phase space can be factorized, i.e., f 2 = f 1 ·f 1.
We can imagine that the particle hits many of other particles between two subse-
quent collisions with the same particle. We notice that the principle of factorization
is directly contained in the Liouville equation. Let us assume that the s-particle
system can be divided into two independent groups with q and s− q particles. The
Hamiltonian of such system is Hs = Hq + Hs−q and for the Poisson brackets we
have

[ · , Hs]s = [ · , Hq]q + [ · , Hs−q]s−q . (2.10)

As the groups are independent, the probability density f s = f q · f s−q and the
Liouville equation splits into two parts

f q{∂tf s−q + [f s−q, Hs−q]s−q}+ f s−q{∂tf q + [f q, Hq]q} = 0 . (2.11)

hard spheres — the model of many “billiard balls” where the collisions of particles
(balls) are instantaneous and elastic.

collisional transfer — the transfer of mass, momentum and energy between two re-
gions, i.e., across an imaginary surface, has different origins. At first, there is the
free motion of particles between collisions, and the particles carry the mass, the
momentum and the energy themselves. At second, there are the binary collisions of
point particles on the imaginary surface. The total amount of mass, momentum and
energy of both particles is divided due to the details of the collision. At third, these
quantities are transfered over the distance separating the two colliding particles.
The transfer of momentum and energy (not of mass) originates in the shell around
the imaginary surface of the thickness comparable with the interaction range. This
mechanism is called the collisional transfer.

initial conditions — initial conditions must also obey the chosen physical assump-
tions/restrictions, for example, the molecular chaos must be present in the initial
conditions.
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no mixture, no external forces, no chemical reactions — the assumptions which
reduce the complexity of the problem significantly.

2.2 Kinetic equation

In this section we deal with the closure of the equation for the 1-particle distribution
function

∂tf
1 + v1 · ∇x1

f 1 = 1
m

∫∫
∇v1

f 2 · ∇x1
ϕ12 dx2dv2 . (2.12)

We assume the potential ϕ12 = ϕ(|x1 − x2|) is a strictly repulsive cutoff potential which
is negligible on distances larger than σ – the range of inter-particle forces. We also
postulate the assumption of binary collisions – “rarefied gas”. Furthermore, we assume
that no external forces act on the system of particles and no chemical reactions take place
inside the system.

We would like to emphasize that we do not impose any additional assumptions on the
binary collisions (e.g., instantaneous collisions, point particles, hard spheres, . . . ) and
we investigate the binary collisions as a non-local an non-instant processes, i.e., collisions
have a duration time and particles interact over a separating distance.

We follow the considerations of H. S. Green [Gr52]. As we assume only the binary
collisions, the Liouville equation holds for the 2-particle distribution function f 2 during
the collision. It implies that f 2 stays constant along the trajectory of colliding particles
in a phase space. Especially, it is equal to the value at time t0 when particles are entering
the collision (the distance |x1(t0)−x2(t0)| between two particles at this time is exactly σ).
In a rarefied gas we can assume that both particles have not any interactions in the past
and therefore their velocities are completely independent of each other. This crucial step
– the principle of molecular chaos – changes the reversible process into the irreversible
one. (We have chosen the past and the future.) Mathematically, it means that

f 2
(
x1(t),x2(t),v1(t),v2(t), t

)
= f 1

(
x1(t0),v1(t0), t0

)
f 1
(
x2(t0),v2(t0), t0

)
.

The formula above evaluates the 2-particle distribution function in the terms of the
1-particle distribution function, and using the kinetic equation (2.12), we have closed the
kinetic equation for f 1:

∂tf
1 + v1 · ∇x1

f 1 = 1
m

∫∫
∇v1

[f 1
(
x1(t0),v1(t0), t0

)
f 1
(
x2(t0),v2(t0), t0

)
]

· ∇x1
ϕ12 dx2dv2 . (2.13)

This equations differs from the Boltzmann equation because of the evolution of space and
time variables. But the concept of instantaneous point collisions is so useful, and we have
also good knowledge of the classical Boltzmann equation, that we reformulate the above
formula in such a way

f 1
(
x1(t0),v1(t0), t0

)
f 1
(
x2(t0),v2(t0), t0

)
= f 1

(
x1(t),v1(t0), t

)
f 1
(
x1(t),v2(t0), t

)
+ E1 + E2 , (2.14)

where

E1 = f 1
(
R(t),v1(t0), t

)
f 1
(
R(t),v2(t0), t

)
− f 1

(
x1(t),v1(t0), t

)
f 1
(
x1(t),v2(t0), t

)
,

(2.15)
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and

E2 = f 1
(
x1(t0),v1(t0), t0

)
f 1
(
x2(t0),v2(t0), t0

)
− f 1

(
R(t),v1(t0), t

)
f 1
(
R(t),v2(t0), t

)
.

(2.16)

The first term E1 emphasizes the nature of the collisional transfer, and it moves the
collision into its real physical center – the mass center R(t) = (x1(t) + x2(t))/2. The
second term E2 emphasizes that a binary collision is a non-local and non-instant process.

Let us simplify the current notation x1(t), v1(t), x2(t), v2(t) will be x, v, y, w, and
v1(t0), v2(t0) will be v0, w0, f 1 will be f , r = y − x and ϕ12 = ϕ. The equation (2.13)
becomes

∂tf + v · ∇xf = 1
m

∫∫
∇v
[
f(x,v0, t) f(x,w0, t)

]
· ∇xϕ dydw

+ 1
m

∫∫
∇v
[
E1 + E2

]
· ∇xϕ dydw.

(2.17)

The system of two interacting particles has the equations of the motion:

dr

dt
= w − v , m

dv

dt
= ∇rϕ , m

dw

dt
= −∇rϕ , (2.18)

r(t0) = r0 , v(t0) = v0 , w(t0) = w0 , (2.19)

for the nine unknown functions of time r(t), v(t) and w(t). This system has the eight
constants of the motion Ip = Ip(r,v,w), i.e., the functions of r, v and w which stay
constant during the collision of particles. The following equation holds for each Ip;

dIp
dt

= 0

=
dr

dt
· ∇rIp +

dv

dt
· ∇vIp +

dw

dt
· ∇wIp

= (w − v) · ∇rIp + 1
m
∇rϕ · (∇vIp −∇wIp) , p = 1, . . . , 8 .

(2.20)

Usually, the total momentum vector, total angular momentum vector and total energy are
the seven constants of the motion. Any sufficiently smooth function of the constants of
the motion Ip is also a constant and also satisfies the equation (2.20). (The ninth constant
of the motion is the invariance of the system (2.18) against a time shifting.)

We can inverse the problem and evaluate the initial conditions r0, v0 and w0 as
functions of the constants of the motion, hence solve the nine equations

Ip(r0,v0,w0) = Ip , p = 1, . . . , 8 ,

|r0| = σ .
(2.21)

It implies that the term f(x,v0, t)f(x,w0, t) is a function of the constants of the
motion (and x, t in addition), thus we can apply the formula (2.20) on this term. Therefore

1
m
∇rϕ · ∇v[f(v0)f(w0)] = ∇r · [f(v0)f(w0) (w − v)]− 1

m
∇w · [f(v0)f(w0)∇rϕ] .

If we substitute this relation in the kinetic equation (2.17), the second term vanish due to
the Gauss theorem and the first term can be converted to a surface integral on the unit
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sphere S2 (η is a outer unit normal vector to S2):

1
m

∫∫
∇v
[
f(x,v0, t) f(x,w0, t)

]
· ∇xϕ dydw

= σ2

∫∫
R3×S2

[f(v0)f(w0)] (w − v) · η dηdw . (2.22)

We split the unit sphere S2 into the two hemispheres

S2
+ = {η : (w − v) · η > 0} , and S2

− = {η : (w − v) · η < 0} . (2.23)

Now, when (w − v) · η < 0, the particles are entering the collision, hence v0 = v and
w0 = w. On the other hand, when (w− v) · η > 0, the particles are leaving the collision
and the pre-collision velocities v0, w0 are related to the post-collision velocities v, w by
the relations:

v0 = v − [η · (v −w) ]η ,

w0 = w + [η · (v −w) ]η .
(2.24)

The relation (2.22) reduces further to

1
m

∫∫
∇v
[
f(x,v0, t) f(x,w0, t)

]
· ∇xϕ dydw

= σ2

∫∫
R3×S2

+

[f(v0)f(w0)] (w − v) · η dηdw

+ σ2

∫∫
R3×S2

−

[f(v)f(w)] (w − v) · η dηdw

=

∫∫
R3×S2

+

[
f(v0)f(w0)− f(v)f(w)

]
[σ2 (w − v) · η] dηdw .

The last equality relation is due to the substitution η = −η′ in the second integral.
Let us define the Boltzmann collision operator1

Q(f, f) =

∫∫
R3×S2

+

[
f(v0)f(w0)− f(v)f(w)

]
b(|v −w|,η) dηdw , (2.25)

where b(|v1 − v2|,η) is a measurable non-negative function called the Boltzmann kernel.
Then we have the kinetic equation

∂tf + v · ∇xf = Q(f, f)− 1
m

∫∫
∇v
[
E1 + E2

]
· ∇rϕ drdw . (2.26)

The Boltzmann collision operator has the property of collision invariants (see (2.52)
below) which reflects that the mass, the momentum and the energy is conserved during
the instantaneous point collisions. These quantities are also conserved in the case of non-
local and non-instant collisions, but, as the quantities are transfered between two different

1The Boltzmann collision operator is the reduced form of the symmetric bilinear quantity:

Q(f, g) =
1
2

∫∫
R3×S2

+

[
f(v0)g(w0) + g(v0)f(w0)− f(v)g(w)− g(v)f(w)

]
b(|v −w|,η) dηdw .
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spatial points, the new flux sources originate. For this reason the terms E1 and E2 are
sometimes called the source terms.

We expand the term E1 into the Taylor series

E1(x, r,v0,w0, t) =
∞∑
n=1

1

n!

[ n
⊗
(

1
2
r
)]

: ∇n
x

[
f(x,v0, t)f(x,w0, t)

]
.

Here ⊗n r denotes a nth-order tensor which is a tensor product of the same vectors r,
i.e., (⊗n r)i1···in = ri1 . . . rin , and : denotes a scalar product of two tensors A : B =∑

i1,...,in
Ai1···inBi1···in .

We use this formula to rearrange the first source term∫∫
∇vE1 · ∇rϕ drdw =

∞∑
n=1

1

2nn!
∇n
x :

{∫ [ n
⊗ r
] [
∇v
∫
f(v0)f(w0)dw

]
· ∇rϕ dr

}
.

The source term E2 was closely studied in the papers [Gr52] and [SC58]. Here we would
like to give the sketch of these results and to explain why we will omit its contribution.
In the simplified notation it reads

E2 = f(x0,v0, t0)f(y0,w0, t0)− f(R,v0, t)f(R,w0, t0) , (2.27)

and applying the Taylor series expansions to, we obtain

E2 = (t0 − t)
[
∂t0 + v0 · ∇x0

+w0 · ∇y0

][
f(x0,v0, t0)f(y0,w0, t0)

]
+ [(t− t0)v0 + (x0 −R)]∇x0

f(x0,v0, t0) f(y0,w0, t0)

+ [(t− t0)w0 + (y0 −R)] f(x0,v0, t0) ∇y0
f(y0,w0, t0) .

The first term on the right hand side is zero because it is the Liouville equation for two
particles entering a collision. In such a case ϕ(|y0−x0|) = 0 and the assumption of binary
collisions implies that the probability density of such two particles is independent of the
rest of the system during the collision.

The mass center of two colliding particles moves constantly

R(t) = 1
2
(x0 + y0) + 1

2
(v0 +w0)(t− t0) ,

and if we neglect any further partial derivatives with respect to time and the spatial
coordinates, we obtain

E2 = 1
2
r′ ·
[
∇xf(x,v0, t) f(x,w0, t)− f(x,v0, t) ∇xf(x,w0, t)

]
, (2.28)

where
r′ = (y0 − x0) + (w0 − v0)(t− t0) . (2.29)

In order to estimate the magnitude of the influence of the source terms we develop
the dimensionless form of the kinetic equation (2.26). As usual, we rescale the variables
with respect to their characteristic values. The spatial variable x has the characteristic
length Λ∗ of a surrounding box, the relative position r of two colliding particles has
the characteristic length of the mean free path λ∗ because of the range 0 < |r| < σ of
cutoff potential. The mass of the initial data gives the characteristic density %∗ and the
mean square velocity of the initial data, where velocities are relative to the movement
of the mass center of system, gives the characteristic temperature θ∗. The time scale
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t∗ is deduced from the concept of mean free path t∗ = λ∗/
√
θ∗. The Knudsen number

ε = λ∗/Λ∗ is defined as the ratio between the micro-space and the macro-space.
Then the dimensionless form of the kinetic equation (2.26) reads

∂tf + v · ∇xf = 1
εQ(f, f)− IE1(f)− IE2(f) , (2.30)

where

IE1(f) =
∞∑
n=1

εn−1

2nn!
∇n
x :

{∫ [ n
⊗ r
] [
∇v
∫
f(x,v0, t)f(x,w0, t)dw

]
· ∇rϕ dr

}
(2.31)

IE2(f) =

∫∫
∇v
{

1
2
r′ ·
[
∇xf(x,v0, t) f(y,w0, t)

− f(x,v0, t) ∇yf(y,w0, t)
]}
· ∇rϕ drdw .

(2.32)

Let us multiply the equation (2.30) by ε and take the formal limit ε→ 0+. We obtain
the equilibrium equation

Q(f, f) = 0 . (2.33)

It is well known, see [Ce88, Section II.7], that the solution of this integral equation is the
Maxwellian

M(V) =
%

(2πθ)3/2
exp

(
−|V |

2

2θ

)
, (2.34)

where % = %(x, t), u = u(x, t) and θ = θ(x, t) are the density, the bulk velocity and
the absolute temperature of the system. In fact there is the equivalence between the
equilibrium solution and the Maxwellian

Q(f, f) = 0 if and only if f = M . (2.35)

Since the additional terms IE1(f) and IE2(f) have higher orders in powers of ε, we
suggest the further simplification of the equation (2.30), and we evaluate both terms at
the Maxwellian

∂tf + v · ∇xf = 1
εQ(f, f)− IE1(M)− IE2(M) . (2.36)

Such a consideration underlines the meaning of the both terms in the sense of the source
terms. It also significantly simplifies the problem of the solution because the equation
(2.36) is then the Boltzmann equation plus some additional (source) terms.

Since the energy is conserved during a binary collision, we have

|v0|2 + |w0|2 = |v|2 + |w|2 + 2ϕ , (2.37)

and we apply it to the product of Maxwellians (V0 = v0 − u, W = w − u, . . . )

M(V0)M(W0) = M(V)M(W)e−ϕ/θ . (2.38)

The first term on the right hand side of the equation (2.36) transforms into

IE1(M) = −
∞∑
n=1

εn−1

2nn!
∇n
x :

{
%M(V)

θ

[∫ ( n
⊗ r⊗∇rϕ

)
e−ϕ/θ dr

]
V
}
. (2.39)

We would like to emphasize the dependence on ε of the right hand side. We will observe
its consequences later.
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We apply the symmetry with respect to the vector r. The integrand is the tensor
product of the same vectors r and we use the results from the Appendix A.1. All terms
with n even vanish, and consequently

IE1(M) = −
n odd∑
n=1

εn−1

2nn!
∇n
x :

{
%M(V)

θ

[∫
S2

n+1
⊗ η dη

] [∫ σ

0

rn+2 ϕ′ e−ϕ/θ dr

]
V
}
. (2.40)

Furthermore, we truncate the sum to the first two terms corresponding to n = 1, 3.
Such a simplification is sufficient to introduce the model of linear dipolar viscous fluids
and, clearly, it reduces an algebra indispensably. Hence we have

IE1(M)
.
= − ∇x ·

{
%M(V)

[
2π

3 θ

∫ σ

0

r3ϕ′e−ϕ/θdr

]
V
}

− ε2∇3
x :

{
%M(V)

[
π

180 θ

∫ σ

0

r5ϕ′e−ϕ/θdr

] (
I ⊗V + [[V ]] + V ⊗I

)}
.

We define the positive coefficients (ϕ is a strictly repulsive potential):

α(θ) = − 2π

3 θ

∫ σ

0

r3ϕ′e−ϕ/θdr , (2.41)

and

β(θ) = − π

60 θ

∫ σ

0

r5ϕ′e−ϕ/θdr , (2.42)

and we notice that ∇2
x : I = ∆x. The resulting expression for the first source term is in

the form
IE1(M)

.
= ∇x ·

{
α(θ) %M(V)V

}
+ ε2∇∆x ·

{
β(θ) %M(V)V

}
. (2.43)

Let us start to discuss the role of the source term IE2(M). We introduce the new
variables

G = 1
2
(V + W) , g = W − V ,

and we calculate the formula for the gradient of the Maxwellian:

∇xM(V) = M(V)

{
∇x%
%

+
V · ∇xu

θ
+
(

1
2
|V |2 − 3

2
θ
)∇xθ
θ2

}
. (2.44)

On substituting this formula, and using (2.38), we simplify the expression for E2(M):

E2(M) = − 1

2θ
M(V)M(W)e−ϕ/θ

[
∇xu+

∇xθ
θ
⊗G

]
: (r′ ⊗ g0) . (2.45)

Here we used the conservation law of momentum during a binary collision, i.e., G = G0.
The details of a binary collision can be used to explicitly evaluate r′ = r′(r, g) and

g0 = g0(r, g), and then perform the integration over the variable r in IE2(M). The result
has the following form (see [SC58, p. 126]):

IE2(M) = −
∫
∇g ·

{
M(V)M(W)

[
∇xu+

∇xθ
θ
⊗G

]
: [F1 g ⊗ I + F2 [[g]] + F3 I ⊗ g + F4 g ⊗ g ⊗ g]

}
dw , (2.46)
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where Fi, i = 1, . . . , 4 are the coefficients independent of the variables v and w.
Formula (2.46) is very useful because it enables us to verify the solvability conditions

of the linearized problem (see bellow) and even to find out the solution in terms of the
Sonine polynomials. From the quantitative point of view this source term contributes to
the coefficients of viscosity and thermal conductivity in the Stokes and the Fourier law.
(Such a result can be expected as the source term depends only on the first gradients of
the bulk velocity u and of the first gradient of temperature θ.)

Because of the quantitative meaning of the source term IE2(M), we omit this term in
our calculations and we conclude with the kinetic equation

∂tf + v · ∇xf = 1
εQ(f, f)−∇x · s(M) , (2.47)

where
s(M) = α(θ) %M(V)V + ε2 ∆x

[
β(θ) %M(V)V

]
. (2.48)

2.3 Fluid dynamic limit

The probability density f = f(x,v, t) and the macroscopic quantities such as the density
% = %(x, t), the bulk velocity u = u(x, t) and the absolute temperature θ = θ(x, t) are
tied up together. The macroscopic quantities are averaged properties of particles over
all possible velocities v with respect to the density f . We denote the integration of any
scalar-, vector- or tensor-valued function y(v) over all velocities v by 〈y〉:

〈y〉 =

∫
R3

y(v) dv . (2.49)

The dependence of y on x, t is omitted.
The properties of particles corresponding to the macroscopic density %, the velocity

u and the energy e are the particle’s mass 1, the particle’s velocity v and the particle’s
kinetic energy 1

2
|v|2. We have

〈f〉 = % , 〈vf〉 = %u ,
〈

1
2
|v|2f

〉
= %
(

1
2
|u|2 + 3

2
θ
)
. (2.50)

We can observe that the process of averaging has the two consequences. On one side
it hides many details about particles and simplifies the problem. On the other side we
have to introduce new macroscopic quantities to interpret the macroscopic model. For
example, the pure kinetic energy of particles has to be interpreted as the sum of kinetic
energy 1

2
%|u|2 plus the internal energy 3

2
%θ on the macroscopic level because of the relation〈

1
2
|v|2f

〉
= 1

2
%|u|2 +

〈
1
2
|v − u|2f

〉
. (2.51)

The Boltzmann collision operator has the property of collision invariants (e.g., [Ce88,
Section II.6]):

〈ψ(v)Q(f, f)〉 = 0 if and only if ψ(v) ∈ span{1, v1, v2, v3, |v|2} (2.52)

which means that the invariants of binary collisions (the mass, the momentum and the
energy) are also conserved in average by the Boltzmann collision operator regardless of
any details of collisions.
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We successively multiply the kinetic equation (2.47) by the collision invariants 1, v
and 1

2
|v|2 and integrate over all velocities v, we find the local conservation laws:

∂t 〈f〉+∇x · 〈vf〉+∇x · 〈s(M)〉 = 0 , (2.53)

∂t 〈vf〉+∇x · 〈v ⊗ vf〉+∇x · 〈vs(M)〉 = 0 , (2.54)

∂t
〈

1
2
|v|2f

〉
+∇x ·

〈
1
2
|v|2vf

〉
+∇x ·

〈
1
2
|v|2s(M)

〉
= 0 . (2.55)

Such a process is called the fluid dynamic limit and helps us discover the hydrodynamic
equations of fluids from the kinetic equation.

We expand the solution of the equation (2.47) in a series of powers of ε:

f = M(1 + εg + ε2h+ . . . ) , (2.56)

where M is the Maxwellian defined in (2.34). Because of the properties of the Maxwellian

〈M〉 = % , 〈vM〉 = %u ,
〈

1
2
|v|2M

〉
= %
(

1
2
|u|2 + 3

2
θ
)
, (2.57)

and the relations (2.50), we impose the following conditions on all remaining terms in the
expansion (2.56)

〈ΨM〉 = 0 , 〈vΨM〉 = 0 ,
〈

1
2
|v|2 ΨM

〉
= 0 , Ψ = g, h, . . . (2.58)

This expansion is called the Chapman–Enskog method, and the different orders of ap-
proximations give us the different fluid dynamic limits (see [BGL91], [ChC39], [FK72]). In
the case of the Boltzmann equation the first order approximation gives us the compress-
ible Euler equations, the second order gives us the compressible Navier–Stokes equations
and even higher order approximations were studied and the systems of Burnett and Su-
perburnett equations were developed.

The investigated kinetic equation (2.47) only differs from the Boltzmann equation by
the source term s(M), thus the Chapman–Enskog method is suitable even in this case.
The general equations of multipolar viscous fluids (2.115)–(2.117) are close to the system
of compressible Navier–Stokes equations, hence we use the second order approximation
of the solution and substitute f = M(1 + εg + ε2h) in the kinetic equation (2.47). The
result is

(∂t + v · ∇x)M

M
+
∇x · s(M)

M
+ ε

(∂t + v · ∇x)Mg

M
= L(g) + ε

[
L(h) + Γ(g, g)

]
+O(ε2) , (2.59)

where L is the linear Boltzmann collision operator

L(g) =
2

M
Q(Mg,M) (2.60)

and Γ is the bilinear operator

Γ(g, g) =
1

M
Q(Mg,Mg) . (2.61)

The linear Boltzmann collision operator has the equivalent form

L(g) =

∫∫
R3×S2

[
g(v′) + g(w′) − g(v) − g(w)

]
M(w)b(|v − w|,η) dηdw , (2.62)
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and it is a non-negative, self-adjoint operator which satisfies the Fredholm alternative with
5-dimensional kernel KerL = span{1, v1, v2, v3, |v|2} on the Hilbert space L2

M = {y(v) :
R3 → R | y(v)M1/2 ∈ L2(R3)} equipped with the scalar product

〈y, z〉M = 〈yz〉M =

∫
R3

yz Mdv . (2.63)

It means that there exists the inverse operator L−1 : KerL⊥ → KerL⊥ which yields
the unique solution of the problem

Ly = z =⇒ ∃! y = L−1z ∈ KerL⊥ for all z ∈ KerL⊥ . (2.64)

The inverse operator L−1 has the symmetry〈
y,L−1z

〉
M

=
〈
L−1y, z

〉
M

for all y, z ∈ KerL⊥ . (2.65)

We compare the terms of the same powers of ε in the equation (2.59) and we obtain
the system of linear equations for the unknown functions g and h. The equation for g
reads

L(g) =
(∂t + v · ∇x)M

M
+
∇x · s(M)

M
. (2.66)

We should emphasize that the source term s(M) given by the equation (2.48) depends
internally on the Knudsen number ε and such inconsistency is the crucial step in the
derivation of multipolar viscous fluids from the kinetic level. From the mathematical
point of view it is the correction of the order O(ε2) and it should be negligible in the
range of our approximation (2.59).

The functions g and h have to be in KerL⊥ because of the relations (2.58), thus we
have the unique solution of the equation (2.66) if and only if the right hand side is in
KerL⊥, too. We adjust each term of the right hand side separately but the solvability
conditions are verified altogether; see (2.82).

Using the formula (2.34), we directly obtain that

(∂t + v · ∇x)M

M
=

1

%

{
∂t%+∇x · (%u)

}
+

V
%θ
·
{
%(∂t + u · ∇x)u+∇x(%θ)

}
+

1
2
|V |2 − 3

2
θ

%θ2

{
%(∂t + u · ∇x)θ + 2

3
%θ∇x· u

}
+

V ⊗V − 1
3
|V |2I

2%θ2
:
{
%θ σ(u)

}
+

(
1
2
|V |2 − 5

2
θ
)
V

%θ3
·
{
%θ∇xθ

}
,

(2.67)

where the symbol σ(u) denotes the deviatoric part of the symmetric velocity gradient
tensor

σ(u) = ∇xu+∇T
x u− 2

3
(∇x· u) I . (2.68)

All terms on the right hand side of (2.67) are mutually orthogonal with respect to the
scalar product on the Hilbert space L2

M . We would like to point at the first three curly
braces on the right hand side of (2.67). These terms are the left hand sides of the
compressible Euler equations of an ideal gas, i.e., p = %θ.
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We also calculate directly the first part of the source term s(M)

∇x ·
{
α(θ) %M(V) V

}
M

=
V
%θ
· ∇x

(
α(θ) %2θ

)
+

1
2
|V |2 − 3

2
θ

%θ2

{
2
3
α(θ) %2θ∇x· u

}
+

V ⊗V − 1
3
|V |2I

2%θ2
:
{
α(θ) %2θ σ(u)

}
+

(
1
2
|V |2 − 5

2
θ
)
V

%θ3
·
{
α(θ) %2θ∇xθ

}
.

(2.69)

The second part of the source term s(M) requires much effort as the calculations
are algebraically complicated and they result in the tents terms. Fortunately, we need
only know the part belonging to the KerL and we can calculate the projection on this
subspace. If we assume that all partial derivatives of ψ with respect to the spatial variable
x are continuous, we deduce the subsequent formula∫

ψ∇∆x · ϑ dV = ∇∆x ·
( ∫

ψ ϑ dV
)

−∇2
x :
( ∫
∇xψ ⊗ ϑ dV +

∫
ϑ⊗∇xψ dV +

∫
∇xψ · ϑ dV I

)
+∇x ·

( ∫
2 [∇2

xψ]ϑ dV +
∫

∆xψϑ dV
)

−
∫
∇∆xψ · ϑ dV .

(2.70)

Let us calculate the projection of the term ∇∆x·
[
β(θ)%M(V)V

]
with the help of the

above formula.
At first, we use the constant ψ = 1. Because each component of β(θ)%M(V)V is odd

in some component Vi, i = 1, 2, 3, we obtain∫
∇∆x ·

[
β(θ)%M(V)V

]
dV = ∇∆x ·

∫
β(θ)%M(V)V dV

= 0 .

(2.71)

At second, we use the functions ψ = Vi for i = 1, 2, 3. As all spatial derivatives of Vi
are independent of any component of the vector V , we have∫

V ∇∆x ·
[
β(θ)%M(V)V

]
dV = ∇∆x ·

( ∫
V ⊗ V β(θ)%M(V) dV

)
= ∇∆xK(%, θ) ,

(2.72)

where
K(%, θ) = β(θ)%2θ . (2.73)

Let us look at the magnitude of the quantity K(%, θ) in the case of the hard sphere
potential. We use the approximation of the hard sphere potential as proposed in paper
[SC58]:

ϕn(r) = κ(σ/r)n . (2.74)

The following limit, in the sense of distributions, can be proved

1
θ
ϕ′n e

−ϕn/θ → −δ(r − σ) as n→∞ , (2.75)

where δ is the Dirac function.
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We take the relations (2.41) and (2.42) for the coefficients α(θ) and β(θ), using the
above formula, we get

α = 2
3
πσ3 and β = 1

60
πσ5 . (2.76)

Both coefficients are independent of the absolute temperature θ and are small because of
the particle’s diameter σ. The quantity K(%, θ) depends linearly on the temperature and
on the density square in the case of the hard sphere potential.

In the rest of this section we will assume that all spatial derivatives of the quantity
K(%, θ) are negligible. We will discuss such a consideration later from the point of view
of the state equation of gas and we will compare it with the assumptions made in paper
[NS91], hence ∫

V ∇∆x ·
[
β(θ)%M(V)V

]
dV .

= 0 . (2.77)

Further calculations with the formula (2.70) are more technical and they are described
in details in Appendix A.2. The following formulas hold∫

(V ⊗ V − θI) ∇∆x ·
[
β(θ)%M(V)V

]
dV = K ∆xσ(u) + 2

3
K∇∆x · u I , (2.78)

and∫ (
1
2
|V |2 − 5

2
θ
)
V ∇∆x ·

[
β(θ)%M(V)V

]
dV = K π(u) + 5

2
K∇∆xθ , (2.79)

where π(u) is a vector which has the components (k = 1, 2, 3):

πk(u) =
3∑

i,j=1

(
∆xui δjk + ∆xuj δik + ∆xuk δij

+ 2
∂2ui
∂xj∂xk

+ 2
∂2uk
∂xi∂xj

+ 2
∂2um
∂xj∂xm

δik

)
∂ui
∂xj

. (2.80)

Let us write down the above formulas in the form similar to (2.69)

∇∆x ·
[
β(θ)%M(V)V

]
M

=
1
2
|V |2 − 3

2
θ

%θ2

{
2
3
K∇∆x · u

}
+

V ⊗V − 1
3
|V |2I

2%θ2
:
{
K ∆xσ(u)

}
+

(
1
2
|V |2 − 5

2
θ
)
V

%θ3
·
{
K∇∆xθ + 2

5
K π(u)

}
+ q(%,u, θ,V) .

(2.81)

Here the function q(%,u, θ,V) represents the unknown part which is orthogonal to KerL
and is also orthogonal to any linear combinations of the functions V ⊗V − 1

3
|V |2I and(

1
2
|V |2 − 5

2
θ
)
V .

Finally, we express the right hand side of the equation (2.66), using the results (2.67),
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(2.69) and (2.81), it reads

L(g) =
1

%

{
∂t%+∇x · (%u)

}
+

V
%θ
·
{
%(∂t + u · ∇x)u+∇x(%θ + α(θ) %2θ)

}
+

1
2
|V |2 − 3

2
θ

%θ2

{
%(∂t + u · ∇x)θ + 2

3
(%θ + α(θ) %2θ)∇x· u+ ε2 2

3
K∇∆x · u

}
+

V ⊗V − 1
3
|V |2I

2%θ2
:
{

(%θ + α(θ) %2θ)σ(u) + ε2K ∆xσ(u)
}

+

(
1
2
|V |2 − 5

2
θ
)
V

%θ3
·
{

(%θ + α(θ) %2θ)∇xθ + ε2K∇∆xθ + ε2 2
5
K π(u)

}
+ ε2 q(%,u, θ,V) .

(2.82)

Let us introduce the hydrodynamic equations of linear dipolar viscous fluids (the
Einstein convention of summation over the same indices is used):

∂t%+∇x · (%u) = 0 , (2.83)

∂t(%u) +∇x · (%u⊗ u) +∇xp = ε∇x · T 〈0,V 〉 , (2.84)

∂t(%e) +∇x · (%eu+ pu) = ε
∂

∂xk

{
T 〈0,V 〉jk uj + T 〈1,V 〉ijk

∂ui
∂xj

}
+ ε∇x · q , (2.85)

where

p = %θ + α(θ) %2θ , (2.86)

e = 1
2
|u|2 + 3

2
θ , (2.87)

T 〈0,V 〉 = µα σ(u) + ε2 µβ ∆xσ(u) , (2.88)

T 〈1,V 〉ijk = ε2 µγ

(
∆xui δjk + ∆xuj δik + ∆xuk δij

+ 2
∂2ui
∂xj∂xk

+ 2
∂2uk
∂xi∂xj

+ 2
∂2um
∂xj∂xm

δik

)
,

(2.89)

q = κα∇xθ − ε κγ ∆xu+ ε2 κβ∇∆xθ . (2.90)

The coefficients of viscosity and thermal conductivity are functions of the density % and
the absolute temperature θ

µα(%, θ) = µ(θ) ( 1 + α(θ)% ) , µβ(%, θ) = µ(θ)β(θ)% , µγ(%, θ) = 3
2
µβ(%, θ) , (2.91)

κα(%, θ) = κ(θ) ( 1 + α(θ)% ) , κβ(%, θ) = κ(θ)β(θ)% , κγ(%, θ) = β(θ)%2θ . (2.92)

Here the coefficients µ(θ) and κ(θ) are the first approximations of the classical coefficients
of an ideal gas obtained from the Boltzmann equation and usually expressed in terms of so-
called Ω-integrals (see [ChC39] and [FK72]). Both coefficients µ(θ), κ(θ) are independent
of the density and they are related by the Eucken ratio (cv = 3/2 is the specific heat)

κ(θ)/µ(θ) = 5
2
cv = 15

4
. (2.93)

We can observe that the coefficients of the viscosity µα, µβ, µγ and the thermal
conductivity κα, κβ of linear dipolar viscous fluids are linear functions of the density %,
and that κγ is proportional to %2.
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The convective form of the above equations is

(∂t + u · ∇x)%+ %∇x· u = 0 , (2.94)

%(∂t + u · ∇x)u+∇xp = ε∇x · T 〈0,V 〉 , (2.95)
3
2
%(∂t + u · ∇x)θ + p∇x· u =

ε T 〈0,V 〉jk

∂uj
∂xk

+ ε
∂

∂xk

[
T 〈1,V 〉ijk

∂ui
∂xj

]
+ ε∇x · q .

(2.96)

Comparing the equations (2.94)–(2.96) with the right hand side of the equation (2.82),
we get that the solvability conditions are satisfied if we eliminate the time derivatives of
the functions %, u and θ with the help of the hydrodynamic equations as the right hand
sides of the equations (2.95) and (2.96) are at least of order one with respect to ε.

Therefore, we have the reduced form of the equation for g:

L(g) = +
V ⊗V − 1

3
|V |2I

2%θ2
:
{

(%θ + α(θ) %2θ)σ(u) + ε2K ∆xσ(u)
}

+

(
1
2
|V |2 − 5

2
θ
)
V

%θ3
·
{

(%θ + α(θ) %2θ)∇xθ + ε2K∇∆xθ + ε2 2
5
K π(u)

}
+ ε2 q(%,u, θ,V) ,

(2.97)

while the remaining terms from the hydrodynamic equations were moved into the equation
for h:

L(h) =
(∂t + v · ∇x)(Mg)

M
− Γ(g, g) +R . (2.98)

The remainder R is

R =
V
%θ
·
(
∇x · T 〈0,V 〉

)
+

1
2
|V |2 − 3

2
θ

%θ2
·
{
T 〈0,V 〉jk

∂uj
∂xk

+
∂

∂xk

[
T 〈1,V 〉ijk

∂ui
∂xj

]
+∇x · (q + εK∆xu)

}
. (2.99)

To verify the solvability conditions of the equation (2.98) we successively multiply this
equation by ψ = 1, v1, v2, v3 and 1

2
|v|2. We use the property g ∈ KerL⊥ and we recall that

the operator Γ(g, g) = 1
M
Q(Mg,Mg) has the property of collision invariants. It implies

that the solvability conditions are equivalent to

0 = ∇x · 〈ψ v g〉M + 〈ψR〉M for each ψ = 1, v1, v2, v3,
1
2
|v|2 . (2.100)

It holds obviously for ψ = 1.
The terms with the remainder R may be evaluated directly

〈vR〉M = 〈V R〉M = ∇x · T 〈0,V 〉 , (2.101)〈
1
2
|v|2R

〉
M

=
〈
(1

2
|V |2 − 3

2
θ)R

〉
M

+ 〈V R〉M · u

=
∂

∂xk

{
T 〈0,V 〉jk uj + T 〈1,V 〉ijk

∂ui
∂xj

}
+∇x · (q + εK∆xu) .

(2.102)

To calculate the terms with g we use the following algebraic relations

v ⊗ v = V ⊗V − 1
3
|V |2I + 1

3
|V |2 I + u⊗ V + V ⊗ u− u⊗ u ,

1
2
|v|2v =

(
1
2
|V |2 − 5

2
θ
)
V + (V ⊗V − 1

3
|V |2I)u+ 5

2
θV + 1

3
|V |2u+ 1

2
|v|2u− 1

2
|u|2V ,
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where the underlined parts are in KerL⊥. We obtain

∇x · 〈v ⊗ v g〉M = ∇x ·
〈
(V ⊗V − 1

3
|V |2I) g

〉
M
, (2.103)

∇x ·
〈

1
2
|v|2v g

〉
M

= ∇x ·
〈(

1
2
|V |2 − 5

2
θ
)
V g
〉
M

+∇x ·
[〈

(V ⊗V − 1
3
|V |2I) g

〉
M
u
]
.

(2.104)

Due to the symmetry of the operator L−1 we can avoid to calculate the solution g and
transform the task into

〈 (V ⊗V − 1
3
|V |2I) g 〉M = 〈 L−1(V ⊗V − 1

3
|V |2I)L(g) 〉M , (2.105)

〈
(

1
2
|V |2 − 5

2
θ
)
V g 〉M = 〈 L−1(

(
1
2
|V |2 − 5

2
θ
)
V)L(g) 〉M . (2.106)

The special technique of the Sonine polynomials and the so-called bracket integrals was
developed (see [FK72],[ChC39]) in order to solve the inverses L−1(V ⊗V − 1

3
|V |2I) and

L−1(
(

1
2
|V |2− 5

2
θ
)
V). Here, we follow the proposition of Burnett and we suppose that the

first order approximations of these solutions should be sufficient. In fact, we are interested
in the qualitative aspects of these terms and the error of such approximations is only a
few percent. The expressions for the solutions becomes

L−1(V ⊗V − 1
3
|V |2I)

.
= − µ(θ)

%θ
(V ⊗V − 1

3
|V |2I) , (2.107)

L−1
((

1
2
|V |2 − 5

2
θ
)
V
) .

= − 2κ(θ)

5%θ

(
1
2
|V |2 − 5

2
θ
)
V , (2.108)

and using these results in combination with (2.97), equations (2.105) and (2.106) reduce
to the form

〈 (V ⊗V − 1
3
|V |2I) g 〉M

= − 1

%θ2

〈
(V ⊗V − 1

3
|V |2I)⊗ (V ⊗V − 1

3
|V |2I)

〉
M

: 1
2
[µασ(u) + ε2 µβ∆xσ(u)]

= − 1

10%θ2

〈
(V ⊗V − 1

3
|V |2I) : (V ⊗V − 1

3
|V |2I)

〉
M

[µασ(u) + ε2 µβ∆xσ(u)]

= −[µασ(u) + ε2 µβ∆xσ(u)] ,

(2.109)

and similarly (the Eucken ratio gives us 2
5
κβ = 3

2
µβ in the last equation)

〈
(

1
2
|V |2 − 5

2
θ
)
V g 〉M

= − 2

5%θ3

〈(
1
2
|V |2 − 5

2
θ
)
V ⊗

(
1
2
|V |2 − 5

2
θ
)
V
〉
M

[κα∇xθ + ε2 κβ∇∆xθ + ε2 2
5
κβπ(u)]

= − 2

15%θ3

〈(
1
2
|V |2 − 5

2
θ
)
V ·
(

1
2
|V |2 − 5

2
θ
)
V
〉
M

[κα∇xθ + ε2 κβ∇∆xθ + ε2 2
5
κβπ(u)]

= −[κα∇xθ + ε2 κβ∇∆xθ + ε2 3
2
µβπ(u)] .

(2.110)

The constitutive relations for T 〈0,V 〉, T 〈1,V 〉 and q result now from the solvability
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conditions for h, i.e., using (2.101), (2.103), (2.109) and (2.102), (2.104), (2.110), we get

∇x · {T 〈0,V 〉 − [µασ(u) + ε2 µβ∆xσ(u)]} = 0 ,

∇x ·
{
q + εK∆xu− [κα∇xθ + ε2 κβ∇∆xθ]

+
∂

∂xk

[
T 〈1,V 〉ijk

∂ui
∂xj
− ε2 3

2
µβπ(u)

]
+

∂

∂xk

[
T 〈0,V 〉jk uj − [µασjk(u) + ε2 µβ∆xσjk(u)]uj

]}
= 0 .

Remark. The system of hydrodynamic equations can also be obtained by averaging the
kinetic equation (2.47) if we substitute f by the approximation solution f = M(1 + εg)

∂t〈ψ (1 + εg) 〉M +∇x · 〈ψv (1 + εg) 〉M +∇x · 〈ψ s(M) 〉M = 0 .

We successively apply ψ = 1, v1, v2, v3,
1
2
|v|2 and we obtain the system

∂t%+∇x · (%u) = 0 ,

∂t(%u) +∇x · (%u⊗ u) +∇xp = − ε∇x · 〈 (V ⊗V − 1
3
|V |2I) g 〉 ,

∂t(%e) +∇x · (%eu+ pu) + ε2K∇∆x · u =

− ε∇x ·
[
〈 (V ⊗V − 1

3
|V |2I) g 〉u

]
− ε∇x · 〈

(
1
2
|V |2 − 5

2
θ
)
V g 〉 .

Finally, we use the above formulas (2.109) and (2.110) again.

2.4 Enskog equation

Enskog was the first who studied the collisional transfer of momentum and energy on the
model of hard spheres. In this section we would like to point out the similarity between
his theory and the source term s(M); see (2.48).

The Enskog equation for the model of hard spheres reads (see, e.g., [ChC39, Chapter
16], [BLTP91])

(∂t + v · ∇x)f = E(f ; f, f) , (2.111)

where

E(f ; f, f)(x,v, t) = σ2

∫∫
(v−w)·η>0

[
χ(x− 1

2
ση)f(x,v0, t)f(x− ση,w0, t)

− χ(x+ 1
2
ση)f(x,v, t)f(x+ ση,w, t)

]
(v −w) · η dηdw . (2.112)

Here χ is the so-called pair correlation function.
The Enskog equation is a modification of the Boltzmann equation for the model of

hard spheres, i.e., b(|v−w|,η) = σ2(v−w) · η, where the additional ad hoc assumptions
are taken into account:

1) the centers of two colliding particles are at the distance σ which is equal to the
diameter of hard spheres. (The different signs are implied by the relation (v−w)·η =
−(v0 −w0) · η .)
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2) the probability of the collision of two particles is increased by the factor χ. This
factor is evaluated at the contact point of two spheres and it represents the following
considerations of Enskog. Let n be the number of particles per unit volume. The
probability of the collision of two particles should be increased due to the fact that
the particles occupy a volume themselves, i.e., the unit volume in which the center
of particle can lie is reduced to 1 − 4

3
πσ3 n. Furthermore, if the centers of two

particles are at the distance larger than σ, but less than 2σ, then the particles are
shielding each other, and it reduces the probability of collisions. Enskog included
these considerations into the factor χ:

χ(x) =
1− 11

8
n(x)α̃

1− 2n(x)α̃
, where α̃ = 2

3
πσ3 . (2.113)

The factor χ is equal to unity for a rarefied gas and increases with increasing density
of the gas. There exists the maximum density nc where χ tends to infinity (hard spheres
are packed so closely that the motion is impossible).

For brevity, we assume a rarefied gas, i.e., χ = 1, and we expand f(x− ση,w0, t) and
f(x + ση,w, t) in the relation (2.112) by the Taylor theorem. Then we replace all the
gradients of f by the gradients of M , and we get

E(f ; f, f)
.
= Q(f, f) +

∑
k=1

σk+2

k!

∫∫
(v−w)·η>0

k+1
⊗ η :{[

(−1)kM(V0)∇k
xM(W0)−M(V)∇k

xM(W)
]
⊗ (v −w)

}
dηdw . (2.114)

The second term on the right hand side corresponds “in some ways” to the source
term IE1(M) in the case of the model of hard spheres. There are the same powers of
σ, the same powers and symmetry of tensors ⊗k+1 η. But the Maxwellians also depends
on the vector η through the relations (2.24), hence the even terms do not vanish. Any
further calculations are very technical.

We conclude this section with the result obtained by Enskog [ChC39, Eq. 16.32,3] for
k = 1 which reads

E(f ; f, f) = Q(f, f)− σ3

∫∫
(v−w)·η>0

η⊗η :{
M(V)M(W)

[
∇x lnM(W0) +∇x lnM(W)

]
⊗ (v −w)

}
dηdw

= Q(f, f)

− V
%θ
· ∇x

(
α̃ %2θ

)
−

1
2
|V |2 − 3

2
θ

%θ2

{
2
3
α̃ %2θ∇x· u

}
−

V ⊗V − 1
3
|V |2I

2%θ2
:
{

2
5
α̃ %2θ σ(u)

}
−
(

1
2
|V |2 − 5

2
θ
)
V

%θ3
·
{

3
5
α̃ %2θ∇xθ

}
.

The right hand side is qualitatively comparable to the relations of orthogonality (2.69)
as the coefficient α(θ) is equal to the coefficient α̃ in the case of hard spheres; see (2.76).
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2.5 Thermodynamics of dipolar viscous fluids – First

approach

The general theory of multipolar materials was introduced by Green and Rivlin ([GR64a]
and [GR64b]) and further extended and generalized by Nečas and Šilhavý ([NS91]). Here
we explain their concept and we introduce the most simple example of such fluids – the
linear dipolar viscous fluid.

The multipolar viscous fluids are characterized as materials for which the thermody-
namic processes satisfy the local forms of balance equations (see below), the constitutive
quantities are functions of higher order spatial derivatives of the density, the velocity
and the temperature2, and for which the Clausius–Duhem inequality and the principle of
material frame-indifference holds. The multipolar viscous fluids of grade N are materials
where the constitutive quantities depend on the velocity gradients up to order N , i.e., the
case N = 1 are the monopolar viscous fluids where the constitutive quantities depend only
on the first gradient of velocity (e.g., the Stokes law for the stress tensor), and the case
N = 2 are the dipolar viscous fluids where the constitutive quantities depend on the first
and also the second gradient of velocity. The local balance equations of mass, momen-
tum, energy and angular momentum, in the case of the absence of external momentum
and heat sources, have the following form (the Einstein convention of summation over
the same indices is used and the dot over the terms denotes the material time derivative
∂t + u · ∇x):

%̇+ %∇x· u = 0 , (2.115)

%u̇ = ∇x · T 〈0〉 , (2.116)

%(ν + 1
2
|u|2)

.

=
N−1∑
n=0

∂

∂xk

[
T 〈n〉ij1···jnk

∂nui
∂xj1 · · · ∂xjn

]
+∇x · q , (2.117)

%(Eijkxjvk)
.

=
∂

∂xp

(
EijkxjT 〈0〉kp + EijkT 〈1〉kjp

)
, i = 1, 2, 3 . (2.118)

Here % is the density, u is the velocity, ν is the internal energy, θ is the absolute temper-
ature, η is the entropy, q is the heat flux and E is the Levi–Civita tensor

Eijk =


+1 (i, j, k) is an even permutation of (1, 2, 3) ,

−1 (i, j, k) is an odd permutation of (1, 2, 3) ,

0 otherwise: i = j or j = k or i = k .

The tensors T 〈n〉 are the multipolar stress tensors of order n+ 2 which are symmetric in
the indices j1, . . . , jn. The convention T 〈n〉 = 0 for n ≥ N is used.

The Clausius–Duhem inequality usually reads as

%η̇ ≥ ∇x ·
(q
θ

)
. (2.119)

The principle of material frame-indifference postulates the independence of the phys-
ical quantities on the observers. It postulates that if the coordinates are transformed by
any Galilean transformation

x̄p = Opi(t)xi + cp(t) , (2.120)

2Nečas and Šilhavý proposed only the first gradient of the temperature but we have the dependence
of the heat flux on the third gradient of the temperature; see (2.90)
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where O(t) is a time-dependent orthogonal matrix and c(t) is a time-dependent vector,
then the physical quantities %, θ, η, e, q and T 〈n〉 are transformed in the following way

%̄ = % , θ̄ = θ , η̄ = η , ē = e , (2.121)

q̄p = Opiqi , (2.122)

T 〈n〉p1···pn+2
= Op1i1 · · · Opn+2in+2T

〈n〉
i1···in+2

. (2.123)

The arguments on the left hand side are (x̄, t) and on the right hand side are (x, t).
The multipolar viscous fluids of type (N,M,K) are the materials where the constitu-

tive equations for e, η, q and T 〈n〉, n = 0, . . . , N − 1 are functions of %, u and θ and their
gradients

f = f(%,∇x%, . . . ,∇M−1
x %,∇xu, . . . ,∇K

x u, θ,∇xθ) . (2.124)

Let us state, without the proof, the consequences of the principle of material frame-
indifference as stated in paper [NS91].

Proposition 2.1. A multipolar viscous fluid of type (N,M,K) satisfies the principle of
material frame-indifference if and only if the following two conditions are satisfied:

(1) The functions e, η, q and T 〈n〉 depend on the first spatial gradient of velocity only
through its symmetric part D = 1

2
(∇xu+∇T

x u), i.e.,

f(%,∇x%, . . . ,∇M−1
x %,∇xu, . . . ,∇K

x u, θ,∇xθ)
= f(%,∇x%, . . . ,∇M−1

x %,D,∇2
xu, . . . ,∇K

x u, θ,∇xθ) , (2.125)

where f stands for any of the functions e, η, q and T 〈n〉.

(2) The constitutive functions e, η, q and T 〈n〉 are isotropic scalar-, vector-, or tensor-
valued functions of the scalar, vector, tensor arguments %, ∇x%, . . . , ∇M−1

x %, D,
∇2
xu, . . . , ∇K

x u, θ, ∇xθ.

The isotropic function is a function which satisfies the postulates of the principle of
material frame-indifference through its arguments, i.e.,

T 〈n〉p1···pn+2
(%̄,∇x̄%̄, . . . ,∇M−1

x̄ %̄, D̄,∇2
x̄ū, . . . ,∇K

x̄ ū, θ̄,∇x̄θ̄)
= Op1i1 · · · Opn+2in+2T

〈n〉
i1···in+2

(%,∇x%, . . . ,∇M−1
x %,D,∇2

xu, . . . ,∇K
x u, θ,∇xθ) . (2.126)

In the rest of this section we focus on the most simple multipolar fluid – the linear
dipolar viscous fluid. The constitutive equations of such a fluid are independent of the
gradients of density (M = 1) and the multipolar stress tensors and the heat flux depend
linearly on the gradients of velocity and on the gradient of temperature. The word dipolar
means there are only two stress tensors (N = 2), so we interested in the multipolar viscous
fluids of type (2, 1, K), where

f = f(%,∇xu, . . . ,∇K
x u, θ,∇xθ) . (2.127)

We introduce the division of the multipolar stress tensor T 〈n〉 into the equilibrium part
T 〈n,E〉 corresponding to the zero values of the gradients of velocity and the zero value of
the gradient of temperature

T 〈n,E〉(%, θ) = T 〈n〉(%, 0, . . . , 0, θ, 0) (2.128)
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and the viscous part T 〈n,V 〉 of the multipolar stress tensor

T 〈n,V 〉 = T 〈n〉 − T 〈n,E〉 . (2.129)

The equilibrium part and the viscous part of the multipolar stress tensor have to obey
the principle of material frame-indifference independently, thus they must be isotropic
functions and the relation

T 〈1,E〉prs (%, θ) = OpiOrjOskT 〈1,E〉ijk (%, θ) (2.130)

have to hold even for O = −I. It implies

T 〈1,E〉 = 0 . (2.131)

From the equation (2.120) we get the transformation law

∂x̄p
∂xi

= Opi , or equivalently
∂xi
∂x̄p

= Opi , (2.132)

and this gives us the transformation law for the gradient of the temperature θ:

∂θ̄

∂x̄p
=

∂θ

∂xi

∂xi
∂x̄p

= Opi
∂θ

∂xi
. (2.133)

It is a little bit complicated with the transformation law of the gradients of velocity
because

ūp = ˙̄xp = Ȯpixi +Opiui + ċp , (2.134)

thus
∂ūp
∂x̄r

=
∂

∂xj
(Ȯpixi +Opiui + ċp)

∂xj
∂x̄r

= ȮpjOrj +OpiOrj
∂ui
∂xj

, (2.135)

where the matrix ȮpjOrj is antisymmetric. (By the way, it implies the dependence of the
constitutive equations through the symmetric part of the gradient of velocity D because
D̄pr = OpiOrjDij.) All higher gradients of velocity are transformed as usual

∂nūp
∂x̄r1 · · · x̄rn

= OpiOr1j1 · · · Ornjn
∂nui

∂xj1 · · · ∂xjn
n ≥ 2 . (2.136)

As the dependence on the gradients of velocity and the gradient of temperature is
supposed to be linear, the transformation laws have to hold for each linear term separately.
For example, suppose that the heat flux q depends linearly on D, then this part transforms
as O2 because of symG, but transforms as O because q in an isotropic vector-valued
function. Hence the trick O = −I shows that the heat flux must be independent of D.
More generally:

T 〈0,V 〉 = T 〈0,V 〉(%, θ,∇xu,∇3
xu,∇5

x, . . . ) , (2.137)

T 〈1,V 〉 = T 〈1,V 〉(%, θ,∇2
xu,∇4

xu, . . . ,∇xθ) , (2.138)

q = q(%, θ,∇2
xu,∇4

xu, . . . ,∇xθ) . (2.139)

The linear dipolar viscous fluid has the following reduced equation of balance of energy
(the equation is reduced by the equation of balance of momentum)

%ν̇ = T 〈0〉ij

∂ui
∂xj

+
∂T 〈1〉ijk

∂xk

∂ui
∂xj

+ T 〈1〉ijk

∂2ui
∂xj∂xk

+
∂qi
∂xi

. (2.140)
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We introduce the Helmholtz free energy

ξ = ν − θη , (2.141)

using the above equations (2.140), (2.141), we obtain the equivalent form of the Clausius–
Duhem inequality — the dissipation inequality which reads

%ξ̇ ≤ −%ηθ̇ + T 〈0〉ij

∂ui
∂xj

+
∂T 〈1〉ijk

∂xk

∂ui
∂xj

+ T 〈1〉ijk

∂2ui
∂xj∂xk

+
qi
θ

∂θ

∂xi
. (2.142)

We use the constitutive relations (2.127) to express the material time derivative of the
Helmholtz free energy and the gradient ∂T 〈1,V 〉/∂xk in more detailed form

%

(
−% ∂ξ

∂%

∂ui
∂xi

+
K∑
n=1

∂ξ

∂∇n
xui

˙∇n
xui +

∂ξ

∂θ
θ̇ +

∂ξ

∂∇xθ
˙∇xθ
)

≤− %ηθ̇ + T 〈0,E〉ij

∂ui
∂xj

+ T 〈0,V 〉ij

∂ui
∂xj

+

(
∂T 〈1,V 〉ijk

∂%

∂%

∂xk
+

K∑
n=1

∂T 〈1,V 〉ijk

∂∇n
xup

∂∇n
xup

∂xk
+
∂T 〈1,V 〉ijk

∂θ

∂θ

∂xk
+
∂T 〈1,V 〉ijk

∂∇xθ
∂∇xθ
∂xk

)
∂ui
∂xj

+ T 〈1,V 〉ijk

∂2ui
∂xj∂xk

+
qi
θ

∂θ

∂xi
.

(2.143)

The first term on the left hand side was adjusted with the help of the continuity equation
%̇ = −%∇x· u and we applied the identity T 〈1,E〉 = 0; see (2.131).

This inequality is required to hold for every process in a fluid, hence all the derivatives
of velocity and temperature and also their material time derivatives are completely arbi-
trary. We compare the terms with the material time derivatives and we see immediately

∂ξ

∂∇n
xui

= 0 ,
∂ξ

∂∇xθ
= 0 ,

∂ξ

∂θ
= −η . (2.144)

In other words, the Helmholtz free energy ξ, from the definition (2.141) also the internal
energy ν and the entropy η, depends only on the density % and the temperature θ:

ξ = ξ(%, θ) . (2.145)

For the same reason, i.e., ∂∇xθ/∂xk has an arbitrary value, we have T 〈1,V 〉 independent
of the gradient of temperature

∂T 〈1,V 〉ijk

∂∇xθ
= 0 . (2.146)

Furthermore, we can systematically replace all the gradients of velocity and tempera-
ture by their α > 0 multiples and we obtain the inequality

−%2 ∂ξ

∂%
α
∂ui
∂xi
≤ T 〈0,E〉ij α

∂ui
∂xj

+ T 〈0,V 〉ij α
∂ui
∂xj

+

(
∂T 〈1,V 〉ijk

∂%

∂%

∂xk
+

K∑
n=1

∂T 〈1,V 〉ijk

∂∇n
xup

α
∂∇n

xup
∂xk

+
∂T 〈1,V 〉ijk

∂θ
α
∂θ

∂xk

)
α
∂ui
∂xj

+ T 〈1,V 〉ijk α
∂2ui
∂xj∂xk

+
qi
θ
α
∂θ

∂xi
.
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Some terms are linear and some terms are quadratic in α, so we divide the equation by
α and take the limit α → 0+. We notice that the point at which the stress tensors and
the heat flux are evaluated (%, α∇xu, . . . , α∇K

x u, θ,∇xθ) tends to the equilibrium point
(%, 0, . . . , 0, θ, 0), thus the tensors T 〈0,V 〉, T 〈1,V 〉 and also the derivative ∂T 〈1,V 〉/∂% vanish.
The limit inequality reads

−%2 ∂ξ

∂%

∂ui
∂xj

δij ≤ T 〈0,E〉ij

∂ui
∂xj

+
qi
θ

∂θ

∂xi
.

The gradient of temperature can vary independently, it implies that

q(%, 0, . . . , 0, θ, 0) = 0 . (2.147)

The remaining two terms depend linearly on the gradient of velocity, hence the equality
have to hold and we get

T 〈0,E〉 = −p(%, θ) I , (2.148)

where p is the pressure

p(%, θ) = %2 ∂ξ

∂%
. (2.149)

We know the interpretation of both partial derivatives of the Helmholtz free energy,
the equations (2.149) and (2.144), therefore we can derive the Gibbs equation

%ξ̇ = %
∂ξ

∂%
%̇+ %

∂ξ

∂θ
θ̇

= T 〈0,E〉ij

∂ui
∂xj
− %ηθ̇ .

(2.150)

Finally, we subtract the Gibbs equation from the dissipation inequality (2.142) and
we obtain the residual dissipation inequality

T 〈0,V 〉ij

∂ui
∂xj

+
∂T 〈1,V 〉ijk

∂xk

∂ui
∂xj

+ T 〈1,V 〉ijk

∂2ui
∂xj∂xk

+
qi
θ

∂θ

∂xi
≥ 0 . (2.151)

According to paper [NS91, Theorem 5.1], the viscous parts T 〈0,V 〉 and T 〈1,V 〉 of the
linear multipolar stress tensors and the heat flux q can be explicitly stated. Here we
restrict their general forms to the case K = 3:

T 〈0,V 〉ij = λ̄
∂uk
∂xk

δij + µ̄

(
∂ui
∂xj

+
∂uj
∂xi

)
+ ᾱ∆x

∂uk
∂xk

δij + β̄1 ∆x
∂ui
∂xj

+ β̄2 ∆x
∂uj
∂xi

+ γ̄
∂3uk

∂xi∂xj∂xk
,

(2.152)

T 〈1,V 〉ijk = c̄1∆xuk δij + c̄2
∂2up
∂xk∂xp

δij

+ c̄3∆xuj δik + c̄4
∂2up
∂xj∂xp

δik

+ c̄5∆xui δjk + c̄6
∂2up
∂xi∂xp

δjk

+ c̄7
∂2ui
∂xj∂xk

+ c̄8
∂2uk
∂xi∂xj

+ c̄9
∂2uj
∂xi∂xk

,

(2.153)

qi = k̄
∂θ

∂xi
+ d̄1

∂2up
∂xi∂xp

+ d̄2∆xui , (2.154)
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where all coefficients λ̄, µ̄, ᾱ, β̄1, β̄2, γ̄, c̄1, . . . , c̄9, k̄, b̄1 and b̄2 are scalar functions of %
and θ.

We would like to notice that there should be three additional terms in formula (2.153)
according to paper [NS91, Equation 6.12]

c̄10
∂θ

∂xk
δij + c̄12

∂θ

∂xj
δik + c̄13

∂θ

∂xi
δjk ,

but we have restriction (2.146), so these terms are zero.
The equation of balance of angular momentum (2.118) has the reduced form (applying

the equation of balance of momentum and energy)

Eijk
(
T 〈0〉kj +

∂T 〈1〉kjp

∂xp

)
= 0 , i = 1, 2, 3 . (2.155)

We split the multipolar stress tensors into the equilibrium and viscous parts and we use
the explicit forms of T 〈0,E〉 = −pI and T 〈1,E〉 = 0, then

Eijk
(
T 〈0,V 〉kj +

∂T 〈1,V 〉kjp

∂xp

)
= 0 (2.156)

because Eijkδjk = 0.
The Levi–Civita tensor has some interesting properties. For each tensor Aij it holds

EijkAjk = −EijkAkj. Especially, if A is a symmetric tensor (e.g., δij or the second partial
derivatives ∂2/∂xi∂xj of a sufficiently regular function) then EijkAjk = 0.

We substitute the above formulas (2.152), (2.153) for the linear multipolar stress
tensors T 〈0,V 〉, T 〈1,V 〉 into the equation (2.155) and we apply the properties of Levi–Civita
tensor. Then

EijkT 〈0,V 〉kj = Eijk(β̄1 − β̄2) ∆x
∂uk
∂xj

,

Eijk
∂T 〈1,V 〉kjp

∂xp
= Eijk(−c̄3 + c̄5 − c̄7 + c̄9) ∆x

∂uk
∂xj

+ r̄i(∇2
xu) ,

where the vector r̄i depends linearly on the second partial derivatives of velocity

r̄i = Eijk
(
∂c̄3

∂xk
∆xuj +

∂c̄4

∂xk

∂2up
∂xj∂xp

+
∂c̄5

∂xj
∆xuk

+
∂c̄6

∂xj

∂2up
∂xk∂xp

+
∂c̄7

∂xp

∂2uk
∂xj∂xp

+
∂c̄8

∂xp

∂2up
∂xj∂xk

+
∂c̄9

∂xp

∂2uj
∂xk∂xp

)
.

The velocity gradients of all orders may be chosen in a completely arbitrary way, hence
the coefficients of T 〈0,V 〉, T 〈1,V 〉 are in the relation:

β̄1 + c̄5 + c̄7 = β̄2 + c̄3 + c̄9 , (2.157)

and this relation holds for any linear dipolar viscous fluid of type (2, 1, 3) which satisfies
the local law of balance of angular momentum.
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2.6 Thermodynamics of dipolar viscous fluids – Sec-

ond approach

In this section, we provide an alternative approach developed by K. R. Rajagopal and his
coworkers [RS04] for deriving the constitutive relations of dipolar viscous fluids. Instead
of assuming a priori the structure for the stresses T 〈0〉, T 〈1〉, and the heat flux q, we
will start assuming forms of two scalars: the Helmholtz free energy ξ and the rate of
entropy production h, and we determine the forms for T 〈0〉, T 〈1〉 and q by maximizing h
(defined in (2.163) and (2.165) below) considered as a non-negative function of gradients
of the state variables keeping track of all relevant constraints. We will first illustrate the
efficiency of the whole procedure on the classical compressible (Navier–Stokes–Fourier)
fluid, and then we apply this methodology to dipolar viscous fluid.

We start, analogously as in Section 2.5, with the system of balance equations (2.115)–
(2.118) or rather with their “equivalent” forms (2.115), (2.116), (2.140) and (2.155), and
we introduce the rate of entropy production ζ through

%ζ = %η̇ −∇x ·
(q
θ

)
. (2.158)

Then by (2.119), the second law of thermodynamics is automatically met if

%ζ ≥ 0 . (2.159)

Using (2.158) and recalling the definition of the Helmholtz free energy ξ in (2.141) we
obtain the following system of governing equations

%̇+ %∇x· u = 0 , (2.160)

%u̇ = ∇x · T 〈0〉 , (2.161)

%ν̇ = T 〈0〉ij

∂ui
∂xj

+
∂T 〈1〉ijk

∂xk

∂ui
∂xj

+ T 〈1〉ijk

∂2ui
∂xj∂xk

+
∂qi
∂xi

, (2.162)

%θζ = T 〈0〉ij

∂ui
∂xj

+
∂T 〈1〉ijk

∂xk

∂ui
∂xj

+ T 〈1〉ijk

∂2ui
∂xj∂xk

+
qi
θ

∂θ

∂xi
− %ξ̇ − %ηθ̇ . (2.163)

Note that the equation (2.163) together with the inequality (2.159) forms a stronger
variant of the Clausius–Duhem inequality, as stated in (2.119).

We assume that the second order tensor

T 〈0〉 +∇x · T 〈1〉 =

[
T 〈0〉ij +

∂T 〈1〉ijk

∂xk

]3

i,j=1

(2.164)

is symmetric, hence the balance equation of angular momentum (2.155) holds.
The thermodynamic framework developed by K. R. Rajagopal and his coworkers (see

a nice survey article [RS04] where the references to earlier works and to articles in which
the framework is applied to modelling responses pertinent to visco-elasticity, solid to solid
transformation, twinning crystallization in polymers, single crystal super alloys etc., can
be found) starts with the constitutive assumptions for the rate of entropy production

h = %θζ , (2.165)

and the Helmholtz free energy ξ and requires that (2.163) (or its consequences (2.171)
resp. (2.180) specified bellow) holds in all admissible processes. The forms for T 〈0〉, T 〈1〉
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and q are then determined by requiring that the rate of entropy production is maximal
for the selected forms. We might refer to Málek, Rajagopal [MR05, p. 390–391] or [RS04]
for a discussion concerning this assumption.

In what follows, we firstly apply this approach to classical (monopolar) Navier–Stokes–
Fourier fluids, and then we use it to develop the constitutive relations for dipolar viscous
fluids.

Case I: Navier–Stokes–Fourier (monopolar) fluid

In order to explain the main ideas of the framework as simple as possible we first restrict
ourselves to monopolar fluid, i.e.,

T 〈1〉 ≡ 0 .

Next, we assume that
ξ = ξ̃(%, θ) (2.166)

and

h = h̃(Dδ(u),∇x· u,∇xθ) = µ̃ |Dδ(u)|2 + λ̃ |∇x· u|2 + κ̃ |∇xθ|2 ,

µ̃ = µ̃(%, θ) ≥ 0 , λ̃ = λ̃(%, θ) ≥ 0 , κ̃ = κ̃(%, θ) ≥ 0 .
(2.167)

Here we use the index δ to denote the deviatoric part of (3x3) tensors Aδ := A− 1
3
(TrA)I,

and we recall that D is the symmetric velocity gradient D(u) = 1
2
(∇xu+∇T

x u) .
With such a choice of h the second law of thermodynamics (in the form (2.159)) is

automatically fulfilled.
Inserting (2.166) into (2.163), we conclude with help of (2.160) and (2.164) that

h = T 〈0〉 : D(u) + q · ∇xθ
θ

+ %2 ∂ξ̃(%, θ)

∂%
∇x· u− %

(
η +

∂ξ̃(%, θ)

∂θ

)
θ̇ . (2.168)

Setting

η = −∂ξ̃(%, θ)
∂θ

, (2.169)

and denoting

p = p(%, θ) := %2 ∂ξ̃(%, θ)

∂%
, (2.170)

the identity (2.168) simplifies to

h = [T 〈0〉]δ : Dδ(u) + q · ∇xθ
θ

+
(

1
3

Tr T 〈0〉 + p
)
∇x· u . (2.171)

Next, the constitutive equations for T 〈0〉 and q are determined by maximizing h̃ with
respect to Dδ(u), ∇x· u and ∇xθ provided that (2.171) holds as the constraint.

Setting

Φ(Dδ(u),∇x· u,∇xθ) = h̃(Dδ(u),∇x· u,∇xθ)

+ `
[
h̃(Dδ(u),∇x· u,∇xθ)− [T 〈0〉]δ : Dδ(u)− q · ∇xθ

θ
−
(

1
3

Tr T 〈0〉 + p
)
∇x· u

]
,
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this constrained maximization leads to the following set of necessary (and due to a convex
character of h̃ also sufficient) conditions for extrema:

1 + `

`

∂h̃

∂Dδij(u)
= [T 〈0〉]δij , i, j = 1, 2, 3 , (2.172)

1 + `

`

∂h̃

∂∇x· u
= 1

3
Tr T 〈0〉 + p , (2.173)

1 + `

`

∂h̃

∂ ∂θ
∂xi

=
qi
θ
, i = 1, 2, 3 . (2.174)

In order to evaluate the Lagrange multiplier `, we multiply each equation in (2.172)
by Dδij(u), in (2.174) by ∂θ

∂xi
, and (2.173) by ∇x· u, take a sum of them and compare the

result with (2.171). We conclude that

1 + `

`
=

h̃
∂h̃

∂Dδij(u)
Dδij(u) + ∂h̃

∂∇x·u
∇x· u+ ∂h̃

∂ ∂θ
∂xi

∂θ
∂xi

=
1

2
, (2.175)

where the last equality is a consequence of directly calculated derivatives of h̃ of the form
(2.167).

Using these direct calculations together with (2.175), we obtain that

T 〈0〉 = [T 〈0〉]δ + 1
3

Tr T 〈0〉 I = −p(%, θ) I + λ̃(%, θ)∇x· u I + µ̃(%, θ)Dδ(u) , (2.176)

and

q = θ κ̃(%, θ)∇xθ , (2.177)

which are the constitutive equations for Newtonian compressible fluids, where the heat
flux is given by the Fourier law.

Case II: Dipolar viscous fluid

From the point of view discussed in Case I, it seems natural to call a fluid dipolar viscous
fluid if the Helmholtz free energy (taking into account non-dissipative (elastic) processes
that occur inside the fluid) remains as in (2.166), and the rate of entropy production
depends both on the quantities stated in (2.167) and their first derivatives. Because of
the identity

∂2ui
∂xj∂xk

=
∂Dij(u)

∂xk
+
∂Dik(u)

∂xj
+
∂Djk(u)

∂xi
,

we for simplicity consider h in the form

h = h̃(Dδ(u),∇x· u,∇xθ,∇2
xu,∇2

xθ)

= µ̃ |Dδ(u)|2 + λ̃ |∇x· u|2 + κ̃ |∇xθ|2 + µ̃1 |∇2
xu|2 + κ̃1 |∇2

xθ|2 .
(2.178)

Inserting ξ of the form (2.166) into (2.163), using again (2.160), (2.169), (2.170), and also
(2.164), we observe that (2.166) simplifies to

h =

(
T 〈0〉ij +

∂T 〈1〉ijk

∂xk

)
Dij(u) + T 〈1〉ijk

∂2ui
∂xj∂xk

+
qi
θ

∂θ

∂xi
+ p∇x· u . (2.179)
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Denoting just for simplicity, Sij := T 〈0〉ij +
∂T 〈1〉ijk

∂xk
, and decomposing S and D(u) into their

deviatoric parts and the rest, we can rewrite (2.179) as

h = Sδij Dδij + T 〈1〉ijk

∂2ui
∂xj∂xk

+
qi
θ

∂θ

∂xi
+
(

1
3

TrS + p
)
∇x· u . (2.180)

Proceeding as in Case I, i.e., maximizing h̃ of the form (2.178) with respect to Dδ(u),
∇x· u, ∇xθ, ∇2

xu, and ∇2
xθ over all possible values fulfilling (2.180) considered as the

constraint, we arrive at the following set of conditions

1 + `

`

∂h̃

∂Dδij(u)
= Sδij = [T 〈0〉]δij +

[
∂T 〈1〉ijk

∂xk

]δ
, i, j = 1, 2, 3 , (2.181)

1 + `

`

∂h̃

∂∇x· u
= 1

3
TrS + p = 1

3

[
Tr T 〈0〉 + Tr(∇x · T 〈1〉)

]
+ p , (2.182)

1 + `

`

∂h̃

∂ ∂θ
∂xi

=
qi
θ
, i = 1, 2, 3 , (2.183)

1 + `

`

∂h̃

∂ ∂2ui
∂xj∂xk

= T 〈1〉ijk , i, j, k = 1, 2, 3 , (2.184)

1 + `

`

∂h̃

∂ ∂2θ
∂xi∂xj

= 0 , i, j = 1, 2, 3 , (2.185)

It clearly implies that h̃ should be independent of ∇2
xθ, i.e., κ̃1 = 0, and again 1+`

`
given

by the equation similar to (2.175) satisfies

1 + `

`
=

1

2
. (2.186)

Using this and computing explicitly the derivatives of h̃ we come to the following forms
of the constitutive equations:

T 〈1〉ijk = µ̃1(%, θ)
∂2ui
∂xj∂xk

, i, j, k = 1, 2, 3 , (2.187)

∂T 〈1〉ijk

∂xk
=

∂

∂xk

(
µ̃1(%, θ)

∂2ui
∂xj∂xk

)
, i, j = 1, 2, 3 , (2.188)

qi = θκ(%, θ)
∂θ

∂xi
, i = 1, 2, 3 , (2.189)

T 〈0〉ij = −p(%, θ) δij + λ̃(%, θ)∇x· u+ µ̃(%, θ)Dδij(u)

− ∂

∂xk

(
µ̃1(%, θ)

∂2ui
∂xj∂xk

)
, i = 1, 2, 3 .

(2.190)

The set of equations (2.187), (2.189) and (2.190) forms the set of constitutive relations
we were looking for.

2.7 Conclusion

Comparison of results

In this chapter we have demonstrated the three different approaches to the theory of
multipolar viscous fluids, i.e., fluids where the higher order gradients of the density, the
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velocity and the temperature are involved in the constitutive quantities.
The first, kinetic approach includes some higher order details of binary collisions in the

kinetic equation (2.47) and the fluid dynamic limit of this equation leads to the balance
equations of mass (2.83), momentum (2.84) and energy (2.85) for bipolar viscous fluids.
Also the constitutive relations (2.88)–(2.90) for linear bipolar viscous fluids are obtained.

The second, classical approach of the continuum thermodynamics assumes very general
constitutive relations (2.127) and their further simplifications are based on the second law
of thermodynamics (2.143) in combination with the principle of material frame indifference
and the balance equations. Finally, we obtain the general constitutive relations for linear
bipolar viscous fluids (2.152)–(2.154).

The third one, takes into account the higher order gradients of the velocity and the
temperature as the new origins of entropy production (2.178). The constitutive relations
(2.187), (2.189) and (2.190) for bipolar viscous fluids are obtained by the maximization
of the rate of entropy production (2.178) influenced by the constraint (2.180).

The main difference between the second and third approach is in the complexity of
obtained constitutive relations. The second one gives us very general relations where a lot
of coefficients plays the role and it is difficult to identify the influence of each coefficient
individually. The third one introduces only the necessary set of additional coefficients in
the constitutive relations, hence their influences and meanings are easier to understand.

Let us compare the constitutive relations (2.88)–(2.90) obtained from the kinetic model
with the general constitutive relations (2.152)–(2.154) of the linear dipolar viscous fluid
of type (2, 1, 3). We find out that

λ̄ = −2
3
ε µα ,

µ̄ = ε µα ,

ᾱ = −2
3
ε3 µβ ,

β̄1 = β̄2 = ε3 µβ ,

γ̄ = 0 ,

c̄1 = c̄3 = c̄5 = ε3 µγ ,

c̄4 = c̄7 = c̄8 = 2ε3 µγ ,

c̄2 = c̄6 = c̄9 = 0 ,

k̄ = ε κα ,

d̄1 = 0 ,

d̄2 = −ε2 κγ ,

where µα, µβ, µγ, κα, κβ and κγ are positive coefficients given by relations (2.91)–(2.92).
The additional term ε2 κβ∇∆xθ in the constitutive relation (2.90) of the heat flux

q depends linearly on the third gradient of temperature. It is in accordance with the
principle of material frame-indifference (see the paragraph above the formula (2.139)),
but there is not any corresponding term in the theory of J. Nečas and M. Šilhavý [NS91]
as they considered only the first gradient of temperature.

The term −εκγ ∆xu in the constitutive relation for the heat flux q has an exclusive
character because it is the only term of the order ε in all relations, the coefficient of which
depends on the density square and it is directly implied by the solvability conditions for
g.

We recall that in the scope of this work there are the three fundamental ways of the
transport of mass, momentum and energy between two regions, i.e., across an imaginary
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boundary. The first way is the free motion of particles, and the particles carry the mass,
the momentum and the energy itself. This process plays the most important role in the
equilibrium, and leads to the system of compressible Euler equations. The second way
are the collisions of point particles occurring on the imaginary surface. This process is
also presented in the equilibrium, but the rate of change of mass, momentum and energy
between two regions is non-zero in the non-equilibrium state. From the macroscopic
point of view it originates the stress tensor and the heat flux, and it leads to the Navier–
Stokes model of fluids. The third way is the collisional transfer of momentum and energy
across the distance between two interacting particles. The first approximation of such
a phenomena was studied by Enskog who showed that it quantitatively specifies the
constitutive relations of the pressure, the stress tensor and the heat flux.

In this paper we showed that the higher order approximations of the collisional trans-
fer call for introducing of the multipolar stress tensors and this leads to the model of the
multipolar fluids. This can be immediately observed from the source term (2.48) origi-
nating at the term E1; see (2.16). In fact, we considered only the first two non-zero terms
in the Taylor series (2.40), as the structure of that expansion and Appendix A.1 predict
that all remaining terms are of the form

ε2r∇∆r
x ·
{
γ(r)(θ) %M(V)V

}
, r = 2, 3, . . . .

Such a form is very close to the Cauchy stress tensor for the linear multipolar fluid tensor
T 〈0,V 〉 (see [NS91, Equation 5.15]):

T 〈0,V 〉ij = λ̄
∂uk
∂xk

δij + µ̄

(
∂ui
∂xj

+
∂uj
∂xi

)
+
∑
r=0

(
ᾱ(r) ∆r+1

x

∂uk
∂xk

δij + β̄
(r)
1 ∆r+1

x

∂ui
∂xj

+ β̄
(r)
2 ∆r+1

x

∂uj
∂xi

+ γ̄(r) ∆r
x

∂3uk
∂xi∂xj∂xk

)
.

Notices on the fluid dynamic limit

The important step in the derivation of the model of dipolar viscous fluids from the kinetic
equation (2.47) is the modified Chapman–Enskog method which overlooks the dependence
of the source term s(M) on the Knudsen number ε and keeps the higher order terms in the
equation (2.66) for g – the first order approximate solution. We do not have very strong
support for that, but we can make the observation to motivate it. The compressible
Navier–Stokes equations

∂t%+∇x · (%u) = 0 ,

%(∂t + u·∇x)u+∇x(%θ) = ε∇x · [µσ(u)] ,
3
2
%(∂t + u·∇x)θ + %θ∇x· u = ε 1

2
µσ(u) : σ(u) + ε∇x · [κ∇xθ] ,

are invariant due to the transformation of the variables t and x given by

t′ = ε t , and x′ = εx .

The equations of the multipolar fluids (2.83)–(2.85) are a generalization of the compress-
ible Navier–Stokes equations and they are invariant due to the same transformation. As
the equations of the multipolar fluids are more close to the compressible Navier–Stokes
equations than the Burnett or Superburnett equations we have not any other choice and
we have to keep the whole source term s(M) in the equation for g.
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The moot point of the derivation is the quantity K = β(θ)%2θ; see (2.73). Because of
the solvability condition (2.72), this quantity should contribute to the pressure p̂, i.e., the
state equation of a gas should be

p̂ = %θ (1 + α(θ)%) + ε2∆x

[
β(θ)%2θ

]
.

But such state equation is not suitable for our purposes as it is out of the common frame
of the thermodynamics (see below).

The fundamental element of the thermodynamics of fluids (fluids without chemical
reactions) is the Helmholtz free energy ξ given by relation (2.141).

From the point of view of the statistical physics (see [Ba91], [Kv98]), the fluid is a
canonical ensemble, and the absolute temperature θ and the density % are its natural
parameterization. The Helmholtz free energy ξ = ξ(%, θ) is a thermodynamic potential,
tightly connected with the canonical ensemble, which has a minimum at an equilibrium
and whose partial derivatives with respect to the parameters %, θ have simple interpreta-
tions. The partial derivative with respect to the density gives us the pressure (2.149) and
the partial derivative with respect to the temperature gives us the entropy (2.144).

In the paper [NS91, Theorem 4.2] the authors J. Nečas and M. Šilhavý proved that
the most general constitutive relation for the Helmholtz free energy of multipolar viscous
fluids depends only on the density, the gradients of density and the temperature, and is
independent of the gradients of velocity and of the gradient of temperature. (We have
demonstrated their result by relations (2.144) in the case of linear multipolar viscous
fluids and these relations determine ξ = ξ(%, θ) again; see (2.145).)

The pressure p̂ has to be independent of the gradients of temperature and gradients
of density because of relation (2.149), and this hints us to make the assumption about
the spatial derivatives of K. The direct benefit of this assumption is the linearization of
the multipolar stress tensors and of the heat flux.

We would like to notice that the equation (2.86) for pressure p is in the form of the
virial series [Ba91, Part 9.2.4] because of the term with the square of the density. It
demonstrates the importance of the collisional transfer again, and it is in the accordance
with the assumption of binary collisions because of the correspondence of powers of the
density and the number of particles which are involved in collisions.

Drawbacks

Recently, there is a drawback in the kinetic approach because it leads to the constitutive
relations where some coefficients have bad signs. It is mainly the coefficient µβ which sign
is problematic from the point of view of the second law of thermodynamics. This can be
observed comparing the coefficient µβ with the coefficient µ̃1 from the third approach, see
relations (2.88) and (2.190). Also the mathematical theory of multipolar viscous fluids is
based on the opposite sign of µβ.

The approximations (2.107) and (2.108) in the derivation should be discussed, too. We
believe that this approximation is the reason why the coefficients of the linear multipolar
stress tensors do not satisfy relation (2.157) implied by the law of balance of angular
momentum. In our approach, the terms c̄2, c̄6 and c̄9 of the constitutive relation (2.153)
of T 〈1,V 〉 are missing. We can observe that these terms have such a combinations of indices
which cannot be obtained by partial derivation of the term |V |2V , but the higher order
moments of velocity V , for example V⊗V⊗V , have to be included. In addition, we have

44



no idea how to obtain the local law of balance of angular momentum in the form (2.118)
where both multipolar stress tensors T 〈0〉 and T 〈1〉 are presented.

The evaluation of the coefficient β(θ) = 1
60
πσ5 for the hard sphere potential implies

that the coefficients in the constitutive relations of linear dipolar viscous fluids are really
small as they are proportional to ε3 σ5 where ε = Ma/Re equals to the ratio of the Mach
number Ma and the Reynolds number Re (von Karman’s relation) and σ is the diameter
of particles.

We believe that this is a serious reason why the influence of the multipolar terms is
so hard to observe and measure.

2.8 Acknowledgements
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Chapter 3

Acoustic Regime of the Generalized
Boltzmann Equation

The generalized Boltzmann equation takes into account the changes of the prob-
ability density on the scale of the collision time order. We study the fluctuations of
such system near the spatially homogeneous state and we establish the fluid dynamic
limit of these fluctuations to the system of the generalized acoustic equations. Also
some analytical aspects of the linearized problem are presented.

3.1 Introduction

Let us introduce a generalization of the Boltzmann equation proposed by B. V. Alexeev
[Al94]. His idea can be briefly described from the following heuristic point of view.

Let f(x,v, t) be the probability density of one particle in the phase space – the position
x, the velocity v compose its coordinates. We assume that there are not external forces,
so the element of the phase space dxdv stays constant. The changes of the probability
density f along a streamline are caused by the collisions of particles, thus the evolution
of f is driven by the equation

f(x+ v dt, v, t+ dt)− f(x,v, t) = Q
(
f, f
)
(x,v, t) dt (3.1)

where Q is the Boltzmann collision operator (e.g., [Ce88, Chapter II])

Q(f, f) =

∫∫
R3×S2

+

[f(v′)f(v′∗)− f(v)f(v∗)] b(|v − v∗|,η) dηdv∗ . (3.2)

The vector η is a outer unit normal vector to the half sphere S2
+ = {η ∈ R3 : |η| = 1

and (v− v∗) ·η > 0}. The vectors v′ and v′∗ are the pre-collision velocities related to the
post-collision ones through the relations

v′ = v − η[(v − v∗) · η] , (3.3)

v′∗ = v∗ + η[(v − v∗) · η] . (3.4)

We will even use the same notation for functions f∗ = f(x,v∗, t), f
′
∗ = f(x,v′∗, t), ...

The term b(|v − v∗|,η) is the Boltzmann kernel, it is a non-negative measurable
function, and it hides the details of particles interactions. Here we assume that the
particles interact with a spherically symmetric potential, and the interactions have a
short range (cutoff potential). The additional assumptions on b will be imposed later.
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The Boltzmann collision operator only has regard to the binary collisions. Two par-
ticles entering collision must be in the spatial volume b(|v − v∗|,η)dη dt in order to hit
each other during the time interval (t, t + dt), and only the collisions where one of the
pre-collision or post-collision velocities is v are taken into account. The binary collisions
(v′,v′∗)→ (v,v∗) increase f , and the binary collisions (v,v∗)→ (v′,v′∗) decrease it. We
integrate the probability of such collisions over all possible values of the velocity v∗ and
the unit vector η, i.e., (v−v∗) ·η > 0 holds, and we obtain the right hand side of equation
(3.1).

We expand the left hand side of (3.1) into the Taylor series. The terms up to the first
order give us the Boltzmann equation

∂tf + (v · ∇x)f = Q(f, f) , (3.5)

and the terms up to the second order give us the generalized Boltzmann equation

∂tf + (v · ∇x)f ± τ
{
∂2
t f + 2 ∂t(v · ∇x)f + (v ⊗ v) : ∇2

xf
}

= Q(f, f) . (3.6)

Here τ = dt/2 > 0 and the operator ⊗ denotes a tensor product.
The heuristic arguments mentioned above give us the positive sign in front of the

additional terms in the generalized Boltzmann equation, but according to Alexeev there
should be the negative one. We discuss this question in more details, in the next section,
and we believe that the right sign is the plus. In any case, the generalized Boltzmann
equation is a perturbation of the classical Boltzmann equation, and the different signs
give us the different characters of these perturbations. The plus sign is a hyperbolic
perturbation which keeps the evolutionary character of our problem. The minus sign
is a elliptic perturbation which changes the evolutionary character to a boundary value
problem.

Alexeev described more precise derivation of the generalized Boltzmann equation in
his paper [Al94]. He had started from the BBGKY hierarchy and he had obtained the
same result by the appropriate scaling of that hierarchy on the level of the collision time
order. For further details, we refer the reader to his paper.

Let us list some important items of the theory of the Boltzmann equation (see [Ce88],
[CIP94]).

We define the transport operator Λ

Λ ≡ ∂t + v · ∇x , (3.7)

then the generalized Boltzmann equation (3.6) has the compact form

Λ (f ± τ Λf) = Q(f, f) . (3.8)

The equilibrium distribution is the Maxwellian

M =
%

(2πθ)3/2
exp

(
−|v − u|

2

2θ

)
, (3.9)

where %, u and θ are the density, the bulk velocity and the temperature of the system.
The Boltzmann collision operator has the equilibrium property

Q(f, f) = 0 if and only if f = M (3.10)
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and the property of the collision invariants∫
R3

ψ(v)Q(f, f) dv = 0 if and only if ψ(v) ∈ span(1, v1, v2, v3, |v|2) . (3.11)

In the next section, the right sign of the additional terms in the generalized Boltzmann
equation is discussed, and it is followed by the section where the formal fluid dynamic
limit from the generalized Boltzmann equation to the system of the generalized acoustic
equations is described. Furthermore, the linearized problem is studied, and the formal
results are specified in the next two sections where both signs are treated separately. The
paper is concluded with the comparison of our results with the results obtained for the
Boltzmann equation.

3.2 Sign of the additional term

According to Alexeev [Al94] there can be a minus sign in front of the additional terms
because of the possibility to take the backward difference instead of the forward one in
equation (3.1)

f(x,v, t)− f(x− v dt, v, t− dt) = Q
(
f, f
)
(x,v, t) dt. (3.12)

His further arguments are based on the properties of the entropy given bellow.
As usual in the kinetic theory of gases, the entropy of a spatially homogeneous gas

that occupies a bounded container Ω is given by the relation

H =

∫∫
Ω×R3

f lnf dvdx . (3.13)

Recall that the multiplication of the classical Boltzmann equation

Λf = Q(f, f) (3.14)

by the term 1 + lnf , followed by the integration over the whole phase space, leads to the
H-theorem: the entropy H of a system never increases with time and it is steady if and
only if the distribution function f is the Maxwellian

dH
dt

=

∫∫
Ω×R3

lnf Q(f, f) dvdx ≤ 0 . (3.15)

The H-theorem implies that the entropy should be a convex function with the global
minimum at the equilibrium, therefore we have

d2H
dt2
≥ 0 . (3.16)

This inequality is the Prigogine principle of the minimum entropy production.
We can use the same procedure and multiply the generalized Boltzmann equation by

the term 1 + lnf . Upon integration over the whole phase space, we obtain the following
relation

dH
dt
± τ

(
d2H
dt2
−
∫∫

Ω×R3

(∂tf)2

f
dvdx

)
=

∫∫
Ω×R3

lnf Q(f, f) dvdx . (3.17)
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Alexeev pointed out that if we choose the minus sign in this relation, we obtain the
inequality 0 ≤ τ d2H/dt2 − dH/dt which combines the H-theorem with the Prigogine
principle.

Let us look at equation (3.12) again. There is Q
(
f, f
)
(x,v, t) dt, not Q

(
f, f
)
(x −

vdt,v, t− dt) dt, on the right hand side. It means that the collision operator is expressed
in terms of the post-collision velocities instead of the pre-collision ones. Such approach
is formally possible, but it is in the contradiction with the derivation of the Boltzmann
equation where the principle of the molecular chaos is assumed.

From the mathematical point of view, the collision operator expressed in terms of the
post-collision velocities is not the Boltzmann collision operator, but the minus Boltzmann
collision operator. Hence both inequalities (3.15), (3.16) are reversed, and the argument
of Alexeev does not hold.

The other point of view can be the formal limit τ → 0+ from the generalized Boltz-
mann equation to the Boltzmann equation. Let us look at the problem(

fτ + τ Λfτ
)
(x, t) = h(x, t) ,

fτ (x, t)|t=0 = h0(x) .

We can write the formal solution of this problem

fτ (x, t) = h0(x− vt) e−t/τ +
1

τ

∫ t

0

e−(t−s)/τ h(x− v(t− s), s) ds

= h0(x− vt) e−t/τ + h(x, t)− h0(x− vt) e−t/τ

−
∫ t

0

e−(t−s)/τ d

ds
h(x− v(t− s), s) ds .

Such family of solutions {fτ} converges to h for any t > 0 if τ → 0+, but it is not true
for the opposite sign.

The arguments mentioned above express our opinion that the right sign in the gen-
eralized Boltzmann equation (3.8) is the plus as this approach keeps the evolutionary
character of the problem, and it is in the formal accordance with the heuristic derivation
of the Boltzmann equation.

The opposite, i.e., minus sign is also possible, and it poses a well-formed problem (see
Section 3.5). But we would rather interpret it as a possible perturbation than the right
one.

3.3 Formal solution and the fluid dynamic limit

The dimensionless form of the generalized Boltzmann equation reads

Λ (fε ± τ Λfε) =
1

ε
Q(fε, fε) , (3.18)

where ε > 0 is a small parameter called the Knudsen number, and it is the ratio of the
mean free path to the macroscopic length scale of the system. The dependency of the
solution fε on the parameter τ will not be explicitly stated as the parameter τ > 0 is
fixed.

Several methods based on the expansion of the solution in a series of powers of ε were
developed. The most famous methods are the Hilbert method and the Chapman–Enskog
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method (see, e.g., [Ce88, Chapter IV]). The main difference between both methods is
that the Hilbert method also expands the corresponding macroscopic quantities, like the
density %, the bulk velocity u and the absolute temperature θ, into the series of powers
of ε, while the Chapman–Enskog method does not.

The formal solution and the fluid dynamic limit of the generalized Boltzmann equa-
tion was investigated by Alexeev. He used the Chapman–Enskog method and developed
the system of the generalized compressible Euler equations and also the system of the
generalized compressible Navier–Stokes equations.

Here we study the acoustic limit for the generalized Boltzmann equation and the results
described here are similar to ones obtained by C. Bardos, F. Golse and C. D. Levermore
[BGL00] for the Boltzmann equation.

The acoustic limit investigates the fluctuations about a spatially homogeneous fluid
state – the state near the absolute Maxwellian

m(v) =
1

(2π)3/2
exp

(
−1

2
|v|2
)
. (3.19)

If we express the macroscopic quantities, the density %, the bulk velocity u and the
absolute temperature θ, in the form of fluctuations (the homogeneous parts of these
quantities are the same as in the absolute Maxwellian)

% = 1 + εs%′ , u = εsu′ , θ = 1 + εsθ′ , s > 0 , (3.20)

and we substitute these quantities into the compressible Euler equations, we derive
the system of acoustic equations for the fluctuations %′, u′ and θ′:

∂t%
′ +∇x · u′ = 0 ,

∂tu
′ +∇x(%′ + θ′) = 0 ,
3
2
∂tθ
′ +∇x · u′ = 0 .

(3.21)

This system of equations has an adjective “acoustic” because from the first and the
third equation we obtain the equation for the pressure p′ = %′ + θ′ which together with
the second equation forms the system

∂tp
′ + 5

3
∇x · u′ = 0 ,

∂tu
′ +∇xp′ = 0 .

Then we have the wave equation for the pressure p′ (or similarly for the velocity u′)

∂2
t p
′ − 5

3
∆xp

′ = 0 , (3.22)

where the speed of waves (the speed of sound) is c =
√

5/3.
We assume that there exists a family {fε} of the non-negative solutions of the gener-

alized Boltzmann equation (3.18) in the form

fε = m(1 + εsgε)

which implies that gε is the formal solution of the problem

Λ (gε ± τ Λgε) = 1
εLgε + εs−1Γ(gε, gε) . (3.23)
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The nonlinear operator Γ is

Γ(g, h) =

∫
R3×S2

+

(
g′h′∗ + g′∗h

′ − gh∗ − g∗h
)
b(|v − v∗|,η) dηm(v∗)dv∗ ,

and the linear operator L is

Lg = 2

∫
R3×S2

+

(
g′ + g′∗ − g − g∗

)
b(|v − v∗|,η) dηm(v∗)dv∗.

We denote by L2
v the Hilbert space of all square integrable complex-valued functions

with respect to the Borel measure m(v)dv on R3 and for the inner product we use the
notation

〈g, h〉 =

∫
R3

g(v)h(v)m(v)dv . (3.24)

H. Grad proved [Gr63] that the linear operator L is a closed self-adjoint and non-
positive operator on the space L2

v with the domain of definition

D(L) =
{
g ∈ L2

v

∣∣ νg ∈ L2
v

}
and that the operator can be decomposed into two parts

L = K − νI ,

where ν is a multiplication operator called the collision frequency

ν(v) =

∫
R3×S2

+

b(|v − v∗|,η) dηm(v∗)dv∗ ,

and K is a compact self-adjoint operator on L2
v. Such decomposition is valid if we impose

the additional requirements on the Boltzmann kernel b (so-called the Grad’s cutoff).
Particularly, we assume the collision frequency ν(v) is a monotone function in |v| and

0 < ν0 ≤ ν(v) ≤ ν1(1 + |v|α) where 0 ≤ α ≤ 1 . (3.25)

(Case α = 0 corresponds to the Maxwellian potential and case α = 1 to the hard spheres;
see [Ce88, Chapter IV].)

The linear operator L has the kernel Ker(L) = span(1, v1, v2, v3, |v|2), and the following
formulas hold for each g ∈ D(L):

〈Lg, g〉 ≤ 0 with equality iff g ∈ Ker(L),

〈Lg, g〉 ≤ −µ ‖g‖2
L2

v
whenever g ∈ Ker(L)⊥ (µ > 0).

The Hilbert space L2
t and L2

x is the set of all square integrable functions with respect
to the Lebesgue measure dt on (0, T ) and dx on R3. The indices t, x, v will be combined
in the straightforward way.

We start with a formal theorem about the fluid dynamic limit of our system (3.18) in
the acoustic regime.
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Theorem 3.1. (Formal) Let s > 0 and T > 0. Let fε be a family of weak solutions to
the generalized Boltzmann equation (3.18), whose fluctuations gε converge, as ε → 0, in
the sense of distributions to a function g ∈ L∞(0, T ;L2

xv). Furthermore, assume that the
moments

〈gε〉 , 〈v gε〉 , 〈v⊗v gε〉 , 〈v⊗v⊗v gε〉 ,
〈
|v|2v⊗v gε

〉
satisfy the local conservations laws and converge in the sense of distributions as ε→ 0 to
the corresponding moments

〈g〉 , 〈v g〉 , 〈v⊗v g〉 , 〈v⊗v⊗v g〉 ,
〈
|v|2v⊗v g

〉
and assume that

Lgε → Lg = 0, εsΓ(gε, gε)→ 0

in the sense of distributions. Then g has the form of the infinitesimal Maxwellian, i.e.,

g = %+ u·v +
(

1
2
|v|2 − 3

2

)
θ, (3.26)

where (%,u, θ) solve the generalized acoustic equations

∂t%+∇x · u± τ
{
∂2
t %+ 2 ∂t∇x · u+ ∆x(%+ θ)

}
= 0,

∂tu+∇x(%+ θ)± τ
{
∂2
tu+ 2 ∂t∇x(%+ θ) + ∆xu+ 2∇x(∇x · u)

}
= 0,

3
2
∂tθ +∇x · u± τ

{
3
2
∂2
t θ + 2 ∂t∇x · u+ ∆x(%+ 7

2
θ)
}

= 0,

(3.27)

and satisfy the initial conditions (the case with positive sign)

%(0,x) = %0(x), ∂t%(0x) = %1(x),

u(0,x) = u0(x), ∂tu(0x) = u1(x),

θ(0x) = θ0(x), ∂tθ(0x) = θ1(x),

or boundary conditions (the case with negative sign)

%(0,x) = %in(x), %(T,x) = %out(x),

u(0,x) = uin(x), u(T,x) = uout(x),

θ(0,x) = θin(x), θ(T,x) = θout(x).

Proof. We multiply the equation (3.23) by ε and we take the limit of ε → 0. From
the assumptions of the theorem we obtain Lg = 0. Since we assume g ∈ L2

v we have
g ∈ Ker(L), so g must have the form of the infinitesimal Maxwellian. Due to the property
of collision invariants the fluctuations gε satisfy

∂t 〈gε〉+∇x · 〈v gε〉 ± τ
{
∂2
t 〈gε〉+ 2 ∂t∇x · 〈v gε〉+∇2

x : 〈v⊗v gε〉
}

= 0,

∂t 〈v gε〉+∇x · 〈v⊗v gε〉
± τ

{
∂2
t 〈v gε〉+ 2 ∂t∇x · 〈v⊗v gε〉+∇2

x : 〈v⊗v⊗v gε〉
}

= 0,

∂t
〈

1
2
|v|2 gε

〉
+∇x ·

〈
v 1

2
|v|2 gε

〉
± τ

{
∂2
t

〈
1
2
|v|2 gε

〉
+ 2 ∂t∇x ·

〈
v 1

2
|v|2 gε

〉
+∇2

x :
〈
v⊗v 1

2
|v|2 gε

〉}
= 0.

The theorem now follows by letting ε → 0 in these equations, using the convergences
assumed above and finally using the limiting form of g given by (3.26).
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Remark. The system of the generalized acoustic equations (3.27) can be obtained by
the linearization of the generalized compressible Euler equations, introduced in [Al94,
eq.(3.52)–(3.54)]

∂t%+∇x · (%u)± τ
{
∂2
t %+ 2 ∂t∇x · (%u) +∇2

x : (%u⊗u) + ∆xp
}
,= 0 ,

∂t(%u) +∇x · (%u⊗u) +∇xp± τ
{
∂2
t (%u) + 2 ∂t∇x · (%u⊗u)

+ 2 ∂t∇xp+ ∆x(pu) + 2∇x∇x · (pu) +∇2
x : (%u⊗u⊗u)

}
= 0 ,

∂t
(

1
2
%|u|2 + 3

2
p
)

+∇x ·
(
u1

2
%|u|2 + 5

2
pu
)

± τ
{
∂2
t

(
1
2
%|u|2 + 3

2
p
)

+ 2 ∂t∇x ·
(
u1

2
%|u|2 + 5

2
pu
)

+ ∆x

(
1
2
%|u|2 + 5

2
p2/%

)
+∇2

x :
[(

1
2
%|u|2 + 7

2
p
)
u⊗u

]}
= 0 ,

around the equilibrium state with the zero bulk velocity and the density and the temper-
ature equal to 1, see (3.19):

% = 1 + εs%′, u = εsu′ and θ = 1 + εsθ′.

The pressure p is governed by the state equation of an ideal gas p = %θ.

In the next two sections we present the analytical results for both signs in the gener-
alized Boltzmann equation. Because of the different fundamentals of such problems we
present both problems separately.

3.4 Initial value problem

The initial value problem of the Boltzmann equation was extensively studied in a context
of the theory of semigroups by authors [Gr63], [Uk74], [EP75], [Uk76] and [NI76]. Here
we would like to prove the existence of the Boltzmann semigroup of our problem.

We omit the nonlinear operator Γ in the equation (3.23) and define the initial value
problem (the parameters τ > 0 and ε > 0 are fixed)

τ Λ2gε + Λgε − 1
εLgε = 0 , t ≥ 0 and (x,v) ∈ R3 ×R3 ,

gε(0) = g0 , (x,v) ∈ R3 ×R3 ,

∂tgε(0) = g1 , (x,v) ∈ R3 ×R3 .

(3.28)

We assume the initial conditions to be independent of the parameter ε.
We denote

hε = (ε/τν)1/2(gε + τΛgε) (3.29)

and we transform the equation (3.28) into the linear system

∂t

(
gε
hε

)
=

(
−v ·∇x − τ−1I (ν/τε)1/2I

− (ν/τε)1/2I + (ντε)−1/2K −v ·∇x

)(
gε
hε

)
. (3.30)

The Fourier transform of a complex-valued Lebesgue integrable function

f̂(k) =
1

(2π)3/2

∫
R3

f(x)e−ik·x dx for k ∈ R3

gives us

∂t

(
ĝε
ĥε

)
=
(
Ek + F

)(ĝε
ĥε

)
= Gk

(
ĝε
ĥε

)
,

55



where Ek is the multiplication operator

Ek =

(
− iv ·k (ν/τε)1/2

− (ν/τε)1/2 − iv ·k

)
and F is a bounded perturbation (independent of k) of the operator Ek

F =

(
− τ−1 I 0

(ντε)−1/2K 0

)
.

We consider the Hilbert space

M̂0 = L2
v × L2

v

of complex valued functions with the scalar product〈(
g1

h1

) ∣∣∣∣ (g2

h2

)〉
=

∫
R3×R3

g1g2 m(v)dv +

∫
R3×R3

h1h2 m(v)dv ,

and we define

M̂q =

{(
g
h

)
∈ M̂0

∣∣∣∣ |v|q (gh
)
∈ M̂0 .

}
The adjoint operator E∗k to the multiplication operator Ek is

E∗k = ETk =

(
iv ·k − (ν/τε)1/2

(ν/τε)1/2 iv ·k

)
= −Ek (3.31)

Definition 3.2 ([Pazy83], definition 4.1). Let X be a Banach space and let X∗ be its
dual. For every x ∈ X we define x∗ ∈ X∗ such that 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2. A linear
operator A in X is dissipative if for every x ∈ D(A) there is a x∗ such that Re〈Ax, x∗〉 ≤ 0.

Proposition 3.3 ([Pazy83], corollary 4.4). Let A be a densely defined closed linear
operator. If both A and its adjoint operator A∗ are dissipative, then A is the infinitesimal
generator of the strongly continuous C0 semigroup of contractions on X.

Lemma 3.4. Let k ∈ R3 be a fixed parameter. The operator Ek is a closed linear operator
with the domain densely defined in the space M̂0

D(Ek) =

{(
ĝ

ĥ

)
∈ M̂0

∣∣∣∣ (ν1/2 + iv · k)

(
ĝ

ĥ

)
∈ M̂0

}
⊇ M̂1 .

This operator is an infinitesimal generator of C0 semigroup of contractions on the space
M̂0.

Proof. By Proposition 3.3, it suffices to prove that both operators Ek and E∗k are dissipa-
tive. It however follows from〈

Ek
(
ĝ

ĥ

) ∣∣∣∣ (ĝĥ
)〉

=− i

∫
R3×R3

(k·v)
(
|ĝ|2 + |ĥ|2

)
m(v)dv

− 2i

∫
R3×R3

(ν/τε)1/2 Im
(
ĝĥ
)
m(v)dv

=−
〈
E∗k
(
ĝ

ĥ

) ∣∣∣∣ (ĝĥ
)〉

.
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Since the operator F is a bounded perturbation of an infinitesimal generator of C0

semigroup ([Pazy83]), we can state the following lemma about the operator Gk

Lemma 3.5. Operator Gk is an infinitesimal generator of C0 semigroup T̂k(t) with the
estimate

‖T̂k(t)‖ ≤ eCBt .

The constant CB is independent of the parameter k ∈ R3.

Proof. For an arbitrary f̂ ∈ D(Gk) ≡ D(Ek) we have

d

dt
‖T̂k(t)f̂‖2 =

〈
GkT̂k(t)f̂

∣∣ T̂k(t)f̂〉+
〈
T̂k(t)f̂

∣∣ GkT̂k(t)f̂〉 =
〈
(Gk + G∗k)T̂k(t)f̂

∣∣ T̂k(t)f̂〉
≤ ‖Gk + G∗k‖ · ‖T̂k(t)f̂‖2 .

As the operator Gk + G∗k is independent of k

Gk + G∗k =

(
−2/τI (τνε)−1/2K

(τνε)−1/2K 0

)
,

the estimate now follows for CB = ‖Gk + G∗k‖/2 ≤ ‖F‖.

Let us define

Mp,q =

{(
g
h

)
=

1

(2π)3/2

∫
R3

(
ĝ

ĥ

)
eik·v dk

∣∣∣∣ |k|p|v|q (ĝĥ
)
∈ L2

kv × L2
kv

}
.

For f ∈M0,0 we can define the Boltzmann semigroup

T (t)f =
1

(2π)3/2

∫
R3

T̂k(t)f̂(k,v) eik·v dk (3.32)

and we have obtained

Theorem 3.6. The operator T (t) is a C0 semigroup on M0,0 with the norm

‖T (t)‖ ≤ eCBt

and it gives the unique solution of the system (3.30) with the initial conditions (g0, h0) ∈
M1,1.

3.5 Boundary value problem

We omit the nonlinear operator Γ in the equation (3.23) and we define the boundary value
problem (the parameters T > 0, τ > 0 and ε > 0 are fixed)

−τΛ2gε + Λgε − 1
εLgε = f in U = (0, T )×R3 ×R3,

gε(0) = ginε and gε(T ) = goutε (x,v) ∈ R3×R3,
(3.33)

We introduce the following notation and recall some well-known facts:
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• The Hilbert space
W 1 =

{
g ∈ L2

txv

∣∣ Λg ∈ L2
txv

}
which is endowed with the inner product and the norm

((g, h)) = (Λg,Λh) + (g, h) and |||g||| = ((g, g))1/2.

Proposition 3.7 ([CIP94], p. 246). For piecewise C1 boundary, there exists trace
operator from W 1 to L2

xv.

In our case, there exists C > 0 such that

‖g(0)‖L2
xv

+ ‖g(T )‖L2
xv
≤ C |||g|||.

The space W 1 is continuously embedded into the space L∞(0, T ;L2
xv), from the

identity

1
2
‖g(t)‖2

L2
xv
− 1

2
‖g(0)‖2

L2
xv

=

∫ t

0

∫
R3

∫
R3

gΛg m(v)dv dxdt for all 0 ≤ t ≤ T,

we see immediately

‖g‖L∞(0,T ;L2
xv) ≤ C

(
‖g(0)‖L2

xv
+ ‖Λg‖L2

txv

)
≤ C |||g|||. (3.34)

• The Hilbert space W 1
0 is the closure of D(U) with respect to the norm ||| · |||. There

D(U) is the set of all infinitely differentiable functions with the compact support.
The space W 1

0 is identical with the set of all functions from W 1 with the zero trace.
Due to the previous inequality we have the equivalence of the norms

1

C
‖Λg‖L2

txv
≤ |||g||| ≤ C ‖Λg‖L2

txv
for all g ∈ W 1

0 .

• The bilinear form B : (W 1∩D(L))×W 1
0 → R is defined through

B[g, ϕ] := τ(Λg,Λϕ) + (Λg, ϕ)− 1
ε (Lg, ϕ).

To maximally simplify our treatment we suppose the boundary conditions to be ε inde-
pendent.

Assumption. The boundary conditions (gin, gout) are in the form

gin = %in + v · uin +
(

1
2
|v|2 − 3

2

)
θin,

gout = %out + v · uout +
(

1
2
|v|2 − 3

2

)
θout,

(3.35)

where (%in, %out), (uin,uout) and (θin, θout) are the traces of some functions %•, u• and θ•

from the Sobolev space H1((0, T )×R3).

Then we can choose the non-homogeneous part of the solution gε to be

g• = %• + v · u• +
(

1
2
|v|2 − 3

2

)
θ•

and we see g• ∈ W 1 ∩D(L) with Lg• = 0 independently of ε.
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Definition 3.8. We say that gε ∈ W 1 ∩D(L) is the weak solution of (3.33) iff:

(i) B[gε, ϕ] = (f, ϕ) for all ϕ ∈ W 1
0

(ii) gε(0) = ginε a.e. and gε(T ) = goutε a.e.

Theorem 3.9. Let f ∈ L2
txv. Problem (3.33) has the unique weak solution g ∈ L∞(0, T ;L2

xv).

Proof. (based on the Lax–Milgram theorem)

1. We split gε = g• + g◦ε, where g◦ε ∈ W 1
0 ∩D(L) than our equation reads

B[g◦ε, ϕ] = 〈〈f ∗, ϕ〉〉 for all ϕ ∈ W 1
0 .

〈〈f ∗, ·〉〉 is the continuous functional on W 1
0 given by the formula

〈〈f ∗, ϕ〉〉 = (f, ϕ)− τ(Λg•,Λϕ)− (Λg•, ϕ).

2. For fixed g◦ε ∈ W 1
0 ∩D(L) we see B[g◦ε, ·] is the continuous functional on W 1

0 and by
the Riesz Representation theorem, we can introduce the operator A : DA → W 1

0

B[g◦ε, ϕ] = ((Ag◦ε, ϕ)) for all ϕ ∈ W 1
0 . (3.36)

The domain of definition DA = W 1
0 ∩ D(L) is dense in W 1

0 and the operator A is
closed. Indeed, assume hk → h ∈ W 1

0 , {hk} ⊂ DA and Ahk → w ∈ W 1
0 . From the

definition of the operator A for fixed ϕ∣∣(Lhk − Lh`, ϕ)
∣∣ ≤ C

(
|||hk − h`|||+ |||Ahk −Ah`|||

)
|||ϕ|||,

so (Lhk, ϕ) is the Cauchy sequence. Operator (L·, ϕ) : DA → R is closed (composed
map of a bounded and a closed operator), which gives

h ∈ DA and lim
k→∞

(Lhk, ϕ) = (Lh, ϕ).

Now we can pass to the limit ε→ 0 in (3.36)

B[h, ϕ] = lim
k→∞
B[hk, ϕ] = lim

k→∞
((Ahk, ϕ)) = ((w,ϕ))

and we have get Ah = w, too.

3. The operator A is 1-1 with R(A) = W 1
0 . As the operator L is non-positive and as

we have the equivalence of the norms, there exists β > 0, such that

B[h, h] ≥ τ ‖Λh‖2 ≥ β |||h|||2 for all h ∈ DA. (3.37)

It follows that the operator A and also the adjoint operator A∗ are 1-1, R(A) =
Ker(A∗)⊥ = W 1

0 . The positive constant β is the minimum modulus of the closed
operator A and it assures that range is closed, R(A) = W 1

0 . The inverse A−1 is the
bounded operator by the theorem of closed graphs.

4. By the Riesz Representation theorem each element f ∗ of the dual space
(
W 1

0

)∗
can

be uniquely associated with wf∗ ∈ W 1
0 and we found the solution of our problem

g◦ε = A−1wf∗ . Inequality (3.37) gives even the uniqueness of the weak solution.
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Next step in the rigorous proof of our formal Theorem 3.1 is the existence and the
uniqueness of the weak solution of acoustic system (3.27).

Theorem 3.10. Let (%in, %out), (uin,uout) and (θin, θout) be the traces of the functions
from the Sobolev space H((0, T )×R3). Then there exists the unique weak solution of the
generalized acoustic equations (3.27).

Proof. We can split density, velocity and temperature into the homogeneous◦ and the
non-homogeneous• part:

% = %• + %◦, u = u• + u◦ and θ = θ• + θ◦.

We test the first equation by %◦, the second by u◦ and the third by θ◦ and sum together.
It gives the identity ‖·‖=‖·‖

L2
tx

:

1
2
‖%◦(t)‖2

L2
x

+ 1
2
‖u◦(t)‖2

L2
x

+ 3
4
‖θ◦(t)‖2

L2
x

+ τ
{
‖∂t%◦‖2 + ‖∂tu◦‖2 + 3

2
‖∂tθ◦‖2

+‖∇x%◦‖2+‖∇xu◦‖2+2‖∇x·u◦‖2+7
2
‖∇xθ◦‖2+2(∇x%◦,∇xθ◦)+4(∇x·u◦, ∂t%◦+∂tθ◦)

}
= I0

where I0 is the sum of the inner products of the non-homogeneous part and the homoge-
neous part and can be proceeded by the Young and Gronwall inequality

I0 =− (∂t%
• +∇x · u•, %◦)−

(
∂tu

• +∇x(%• + θ•),u◦
)
− (3

2
∂tθ
• +∇x · u•, θ◦)

− τ
{

(∂t%
• + 2∇x · u•, ∂t%◦) +

(
∂tu

• + 2∇x(%• + θ•), ∂tu
◦)+

(
3
2
∂tθ
• + 2∇x · u•, ∂tθ◦

)
+
(
∇x(%• + θ•),∇x%◦

)
+ (∇xu•,∇xu◦) + 2(∇x · u•,∇x · u◦) +

(
∇x(%• + 7

2
θ•),∇xθ◦

)}
.

The main difficulty here is caused by the last two terms on the left hand side. As the
coefficients in front of the L2-norms of the derivatives of the density and of the temperature
are non-symmetric, we introduce the parameter ε ∈ (0, 1) and split the last two terms as

2 (∇x%◦,∇xθ◦) + 4 (∇x · u◦, ∂t%◦ + ∂tθ
◦) = I1 + I2,

where

I1 = 2 (ε∇x%◦, ε−1∇xθ◦) + 2ε (∂tu
◦, ε∇x%◦ + ε−1∇xθ◦)

= ε ‖∂tu◦ + ε∇x%◦ + ε−1∇xθ◦‖2 + (1− ε) ‖ε∇x%◦ + ε−1∇xθ◦‖2

− ε ‖∂tu◦‖2 − ε2 ‖∇x%◦‖2 − ε−2 ‖∇xθ◦‖2

and
I2 = (4− 2ε2)(∇xu◦, ∂t%◦) + 2(∇x · u◦, ∂tθ◦).

Now we have to assure the term I2 can be proceeded with the Young inequality on the
right hand side. Let γ, δ ∈ (0, 1) then

|I2| ≤ (4− 2ε2)γ ‖∂t%◦‖2 + 2δ ‖∂tθ◦‖2 +
(

2− ε2
2γ + 1

2δ

)
‖∇x · u◦‖2.

We compare the coefficients and we obtain

δ <
3

4
and γ <

1

4− 2ε2
=⇒ 2− ε2 < 8γ

3
<

4

3(2− ε2)
=⇒ ε >

√
2(1− 1/

√
3)

.
= 0.92 .

We see that %◦,u◦ and θ◦ are in the space H1
0 ((0, T )×R3)∩L∞(0, T ;L2

x). For the difference
of two distinct solutions we have the same estimate with I0 = 0, so the solution has to be
unique.
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Let gε be the weak solution of (3.33) with f = 0, so

B[gε, ϕ] = 0 for all ϕ ∈ W 1
0 .

We have the estimates:

β

2
|||g◦ε|||2 +

µ

ε
‖g◦ε⊥‖2 ≤ C |||g•ε|||2,

|(Lgε, ϕ)| ≤ ε |||gε||| |||ϕ||| for all ϕ ∈ W 1
0 ,

with the constant C > 0 independent of ε. The function g◦ε
⊥ is the part of g◦ε from the

orthogonal complement to the Ker(L). We see immediately, that there is weak conver-
gence g◦ε ⇀ g◦ in W 1

0 with g◦ ∈ W 1
0 ∩ Ker(L) and part g◦ε

⊥ converges even strongly to
zero in L2

txv. The choice of the test functions

ϕ(t, x, v) = ψ(t, x)ω(v),

where ψ ∈ H1
0 ((0, T )×R3) and ω(v) ∈ {1, v, |v|2}, shows the validity of the acoustic

system.

Theorem 3.11. With the additional assumptions (3.35) on the initial conditions we
proved that

gε ⇀ g = %+ v·u+
(

1
2
|v|2 − 3

2

)
θ in W 1,

〈gεω〉⇀ 〈gω〉 in H1((0, T )×R3),

g⊥ε → 0 in L2
txv,

Lgε → 0 in D′(U),

where %,u, θ is the weak solution of the acoustic system (3.27).

3.6 Conclusion

The generalized Boltzmann equation (3.6) is the perturbation of the Boltzmann equation
(3.5) where the changes on the small time scale τ > 0 (τ has order of the mean free time)
are counted in.

The character of this perturbed equation depends on the sign of the additional terms.
The positive sign keeps the evolutionary character, the negative sign switch to the bound-
ary problem. The arguments for and against of both signs were discussed in Section 3.2,
but we believe that the right sign is the positive one.

The analogy (3.17) of the H-theorem (3.15) can be derived, but the interpretation is
not so clear as in the case of the Boltzmann equation. There arise new sources of entropy
which are compensated by the smallness of the perturbation parameter τ > 0 and by the
strict convexity of the entropy.

Theorem 3.1 about the acoustic limit for the generalized Boltzmann equation is given
and the final system of the generalized acoustic equations (3.27) is, as can be expected,
the perturbation of the acoustic equations (3.21). The additional terms in the generalized
Boltzmann equation requires the knowledge of the higher velocity moments of solution gε
and this breaks the symmetry between the fluctuations of the density % and the tempera-
ture θ in the generalized acoustic equations. Therefore the analogy of the wave equation
for the pressure (3.22) is difficult to obtain.
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The formal results are specified in the case of the linearized problem. In the case of the
positive sign the existence of the Boltzmann semigroup (3.32) is proved which corresponds
to the results obtained for the linearized Boltzmann equation. In the case of the negative
sign the existence and uniqueness of the weak solution is proved, the proof is base on
the Lax–Milgram theorem, and some convergence assumptions of the formal theorem are
proved.
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Appendix A

Appendix

A.1 Tensors formed from a unit vector

In this appendix we refer the results1 about the integration of nth-order tensor formed
from a unit vector over all orientations of such a unit vector, i.e., integration over the unit
sphere S2 = {η ∈ R3 : |η| = 1}:∫

S2

n
⊗η dη =

{
0 if n is odd,
4π (n/2)! 2n/2

(n+1)!
·
[

all nth-order tensor
combinations of unit tensors

]
if n is even.

(A.1)

Particularly useful integrals are ∫
S2

dη = 4π , (A.2)∫
S2

η⊗η dη =
4π

3
I , (A.3)∫

S2

η⊗η⊗η⊗η dη =
4π

15
(I ⊗I + [[[[ ]]]] + [[I]]) , (A.4)

where the last relation in the components reads:∫
S2

ηiηjηkηl dη =
4π

15
(δijδkl + δikδjl + δilδjk) , i, j, k, l = 1, 2, 3 .

1Snider, R. F. and Curtiss, C. F.: Kinetic Theory of Moderately Dense Gases. The Physics of Fluids,
Vol. 1, No. 2, 122–138 (1958); Appendix A
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A.2 Ortogonal conditions

In this appendix we calculate the equations (2.78) and (2.79). We use the Einstein con-
vention of summation over the same indices. The upper index denotes a component of
vector or tensor and the lower index denotes the partial derivative with respect to the
space coordiate corresponding to the index. In this notation the equation (2.70) becomes∫

ψ ϑiijj dV =
( ∫

ψ ϑi dV
)
ijj
−
( ∫

ψi ϑ
j dV +

∫
ψj ϑ

i dV +
∫
ψm ϑ

m δij dV
)
ij

+
( ∫

ψij ϑ
j dV +

∫
ψji ϑ

j dV +
∫
ψmm ϑ

j δij dV
)
i
−
( ∫

ψijj ϑ
i dV

)
,

where ϑi = β(θ)%M(V)V i.
At first, we consider ψ = V⊗V−θI and we calculate its spatial derivatives. We denote

c a generic constant with respect to the variable V and we remember the assumption that
all derivatives of the quantity K = β(θ)%2θ are negligible

ψkl = VkV l + c

ψkli = −uki V l − Vk uli + c

ψklij = −ukij V l − Vk ulij + c

ψklijj = −ukijj V l − Vk ulijj + c

it follows∫
ψkl ϑiijj dV

.
= +K(uki δ

lj + uli δ
kj + ukj δ

li + ulj δ
ki + ukm δ

lm δij + ulm δ
km δij)ij

−K(2ukij δ
lj + 2ulij δ

kj + ukmm δ
lj δij + ulmm δ

kj δij)i

+K(ukijj δ
li + ulijj δ

ki)

= K∆x(ukl + ulk) .

This result can be rewriten in more comprehensive form. Let Pψ be the projection on the
subspace generated by ψkl, 1 ≤ k ≤ l ≤ 3, then

Pψϑ =
∑

1≤k≤l≤3

ψkl τ
kl

(1 + δkl)%θ2
=

3∑
k,l=1

ψkl τ kl

2%θ2

where
τ kl = K∆x(ukl + ulk) .

Tensor τ has the following trace and traceless part

Tr τ = 2K∇∆x · u ,
τ − 1

3
Tr τ I = K∆x σ(u) .

Applying the symmetry of tensors τ and ψ, we develop the formula

Pψϑ =
V ⊗V − 1

3
|V |2I

2%θ2
:
(
τ − 1

3
Tr τ I

)
+

1
2
|V |2 − 3

2
θ

2%θ2
· 2

3
Tr τ

or equally with respect to the above formulas

Pψϑ =
V ⊗V − 1

3
|V |2I

2%θ2
: K∆xσ(u) +

1
2
|V |2 − 3

2
θ

%θ2
· 2

3
K∇∆x · u
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Next, we consider ψ = (1
2
|V |2 − 5

2
θ)V and we calculate its spatial derivatives

ψk = (1
2
|V |2 − 5

2
θ)Vk

ψki = −uliV lVk − 5
2
θiVk − 1

2
|V |2uki + c

ψkij = −ulijV lVk + uliu
k
jV l + uliu

l
jVk − 5

2
θijVk + ulju

k
iV l − 1

2
|V |2ukij + c

ψkijj = −ulijjV lVk + 2uliju
l
jVk + 2uliju

k
jV l + uliu

l
jjVk

+ uliu
k
jjV l − 5

2
θijjVk + uljju

k
iV l + 2ulju

k
ijV l − 1

2
|V |2ukijj + c

it follows∫
ψk ϑiijj dV

.
=

−K(5
2
θi δ

kj + 5
2
θj δ

ki + 5
2
θm δ

km δij)ij

+K(2uliu
l
j δ

kj + 2uliu
k
j δ

lj + 2ulju
k
i δ
lj − 5

2
θij δ

kj + ulju
l
j δ

ki + 2ulju
k
j δ

li − 5
2
θjj δ

ki)i

−K(2uliju
l
j δ

ki + 2uliju
k
j δ

li + 2ukiju
l
j δ

li + uljju
l
i δ
ki + ukjju

l
i δ
li + uljju

k
i δ
li − 5

2
θijj δ

ki)

= 5
2
K∇∆xθk +K(∆xu

i δjk + ∆xu
j δik + ∆xu

k δij)uij + 2K(uijk + ukij + ummj δ
ik)uij .
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