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ABSTRACT

Molecular and biochemical features of three enzythasmay serve as new drug
targets inCryptosporidium parvum.
(2008)
Mgr. VlastaCtrnacta

Cryptosporidium parvumis a unicellular parasite belonging to the Phylum
Apicomplexa. This parasite can infect both humamg animals, causing an acute
diarrhea in immunocompetent persons, and a chrifeidhreatening infection in
immunocompromised individuals. Although many druggs,combat this parasite,
have been empirically tested, there is no completdfective therapy to treat
cryptosporidiosis in humans or animals. In receeary, the completion of the
genome sequencing projects along with advances afeaular methods have
significantly helped to increase our general urdeding of theC. parvum
metabolic machinery. However, our knowledge conogrmany specific pathways
and enzymes ilCryptosporidiumis still limited. Their better understanding insth
organism would aid in experimentation of new dragsl new strategy development

to treat cryptosporidiosis in humans and animals.

The long-term research goal of our laboratory icharacterize the molecular and
biochemical features of enzymes involved in theegoetabolism o€. parvumin an
effort to develop novel therapeutics. The speabgectives of our research described

in this dissertation are:

1. To determine the subcellular localization of one tbé core metabolic
enzymes, pyruvate:NADPoxidoreductase (PNO), which is responsible for
converting pyruvate to acetyl-CoA. This unique PMCa fusion of an N-
terminal pyruvate:ferredoxin oxidoreductase domand a C-terminal
cytochrome P-450 reductase domain. This proteinbeas found to target

the mitochondria in the distantly related protiSuglena gracilis The



determination of PNO localization either in the asgl or in the relict
mitochondrion ofC. parvumis critical in assigning the enzyme biological

role in this parasite.

. To characterize aarf-like gene inCryptosporidiumthat resembles [Fe]-
hydrogenases in other anaerobic protists and tmexthis unique gene as a

potential drug target.

. To characterize S-adenosylhomocysteine hydrolase €. parvum This is
an enzyme regulating the S-adenosylhomocysteinabokt pathway, which
has been considered important in the target-basegdesign of antiviral and
antiparasitic drugs. Therefore, recombinant enzgare be used to evaluate
the efficiency of potential inhibitors, leading sbudies in elucidating their

effect on than vitro growth ofC. parvum
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GENERAL INTRODUCTION TO Cryptosporidium

HISTORY

Approximately 100 years ago (1907), Ernest Edwaydz@r described an unknown
protozoan in the gastric mucosa of asymptomaticemighich he later named
Cryptosporidiummuris (Tyzzer, 1907). In 1912, he published a study tiescribed

C. parvumisolatedfrom small intestine of mice (Tyzzer, 1918). parvumis one of
the most troublesome speciesCriyptosporidium causing diarrheal illnesses in both
humans and animals. The initial discovery ©f parvumdid not attract much
attention, partly becaugeryptosporidiumwas not regarded as a pathogen until 1955
when it was associated with an outbreak of diarrheaturkey flock (Slavin, 1955).
The first case of cryptosporidiosis in humans waseoved 21 years later in a 3-year
old child with enterocolitis (Nimet al, 1976), in spite of this, cryptosporidiosis was
still not regarded as a threat to humans. This g@bdnduring 1980s when
Cryptosporidiuminfection was found to have caused the first deaftpatients with
acquired immunodeficiency syndrome (AIDS) (Pitliket al, 1983).
Cryptosporidiosis, practically unknown before thibA& outbreak, has become one
of the most common intestinal protozoan infectiomoth immunocompromised
and immunocompetent persons. Since then, reseanclCrgptosporidium has
expanded, and a wide range of new molecular featuae been discovered through
conventional experimental studies. These inclugmtification of new organelles,
metabolic pathways, therapeutic targets and chamwaation of inhibitorsEven more
importantly, both theC. parvumandC. hominisgenomes have been sequenced (Xu
et al, 2004; Abrahamsert al, 2004) revealing all nuclear-encoded sequences.
These genome analyses confirmed the reduction &edndining of metabolic
pathways inCryptosporidiumand further clarified potential parasite-specificig
targets. Despite these numerous advances thet#l isosreliable vaccine or drug

available for treating humans infected with crypimsdiosis.



Il PHYLOGENY AND TAXONOMY

With the aid of electron microscopy many uniquetdess ofCryptosporidiumwere
identified that confirmed the taxonomic position tbis parasite into the Phylum
Apicomplexa. This phylum contains many medicallyportant pathogens, all
intracellular, and it is divided into four majoraskes: Gregarina (gregarines,
Monocysti$, Coccidia Eimeria, Toxoplasma, Cyclospgra Haemosporida
(Plasmodiuny and Piroplasmida Theileria, Babesip The most fundamental
difference among these classes is the number oétganproduced during gamogony.
Cryptosporidiumhas a single macro- and microgamete which fuderta a zygote
that becomes an oocyst. Therefore, this genus l@asg within the Class Coccidia.
However, there are unique features that clearlyindjgish Cryptosporidiumfrom
Coccidia and other apicomplexan protozoa: i) thesual localization of within the
host cell (i.esequestered between the host cell cytoplasm anckthemembrane); ii)
the absence of flagellated microgametes; iii) #®oadary loss of the plastid; iv) the
presence of a highly reduced mitochondrion; v)dhtinfection that occurs within
the host; vi) an apparent innate resistance targerbials; and vii) general absence
of host specificity (especiallfC. parvun). These structural details together with
recent molecular and phylogenetic studies are cmmyr with the idea that
Cryptosporidiumis only distantly related to Coccidia and probabigre closely
related to gregarine protozoa (Leanderl, 2003). Phylogenetic reconstructions do
not support the monophyly @ryptosporidiumlinstead, these studies suggested that
Cryptosporidiumforms an independent evolutionary linage as anydamdnching
clade at the base of the apicomplexans (&tual, 2000). Although highly
controversial at this time, a new class termed @ggoridae has been proposed
(Slapeta, 2007).

Cryptosporidiuntaxonomy and the naming of species have underggme changes
due to the collaboration of classical descriptieehhiques and new PCR based
molecular methods. Originally, oocyst morpholodye anatomical site of infection
and an isolate’s host specifity were the criters®difor classification (Fayer and
Ungar, 1986). Although morphology remains an irakgnethod for classification



and naming species, more current molecular teclesicand DNA analysis are
usually required. Currently, there are 16 descriqaeties oCryptosporidiunfrom a
wide array of hosts including mammals, reptilesy &sh. Of theseC. parvumhas
the widest host range (although still limited tommaalian hosts) and displays the
greatest intra-specific variability. There are 2&ngtypes ofCryptosporidium

parvumcurrently recognized (Chacin-Bonilla, 2007; Rral, 2008).

1 ULTRASTUCTURE

All developmental stages iCryptosporidiumwere studied in detail by light-,
transmission electron-, and scanning electron-rmaopy, as well as by other
techniques. Morphological knowledge is crucial imderstanding the uniqueness of

this parasite.

All apicomplexans possess a group of organelletidst cell invasion at the anterior
end of sporozoites called tlapical complex(Fig. 1). This complex is present only
in the motile cell invasive stages of the parasiypically the sporozoites and
merozoites (Blackman and Bannister, 2001). The ahparganelles (rhoptries,
micronemes, dense granules) are secretory vesdidesake part in cell adhesion and
entry into the host cell (micronemes), formation afparasitophorous vacuole
(rhoptries), modifying the host cell after invasi@ense granules), and enabling the
gliding motility of the parasite (micronemes). Thentent of the apical complex
differs between the species and genémgptosporidiumhas only one rhoptry, but
multiple micronemes and dense granules (Gtal, 2004).

Cryptosporidiumhas highly reducechitochondrion without cristae and with rather
expanded internal compartments. It is located itween the nucleus and a
crystalloid body (Fig. 1) (Keithlet al, 2005). The existence of ti&ryptosporidium
mitochondrion was not recognized for a long time tgnsmission electron
microscopists. The organelle observed next to thedens was considered to be an
apicoplast (remnant plastid) that is present ireotdpicomplexans (Tetlegt al,
1998). However, genome sequencinglfparvumand C. hominisconfirmed that



both species o€ryptosporidiumlack apicoplast genes (Abrahamsral, 2004; Xu

et al, 2004). Furthermore, both species do contain séwganes with N-terminal
mitochondria targeting sequences including anradteére oxidase (AOX) (Robertt

al., 2004), chaperonin 60 (Riorda al, 2003) and heat shock protein 70 (HSP70)
(Slapeta and Keithly, 2004). However, none of thioohondrial genes for oxidative
phosphorylation are present, which is reflectedh@ overall reduced size of the
organelle and by the absence of mitochondrialagisthich are associated with ATP
generation (Xuet al, 2004). In contrast to other apicomplexa@syptosporidium
does not possess a mitochondrial genome, and tdthandrial genes are encoded
by the nucleus (Abrahamsenal, 2004). The discovery that several genes encoding
mitochondrial-type iron-sulphur clusters (IscS,U¥are targeted to this organelle
suggests a possible reason for retaining thistretganelle (LaGieet al, 2003).

An additional organelle, therystalloid body (CB), can be observed in the close
apposition to the relict mitochondrion as well aghie nucleusThis organelle was
described in Archichregarines (specieSelenidiunp a sister group to
Cryptosporidium(Schrével, 1971). The CB is at least equal in mauo that of the
nucleus, but despite its large volume, its functi®rstill unknown. Initial electron
tomographic reconstructions revealed that the tlgsacked membrane vesicles of
the CB may be interconnected, but additional reteds needed to resolve this
guestion, as well as whether a limiting membraneosids this organelle (Keithigt
al., 2005). Experiments with mitotracker vital dyes itditacker Green FM,
Rhodamine B, Rhodamine 123) revealed that botliC®@nd mitochondrion exhibit
a membrane potential (Ctrnaatal, 2006).

Many granules made of amylopectinare dispersed throughout the cytoplasm of
Cryptosporidium These granules are present in different life etagf the parasite
and are used as a carbohydrate storage (Hrails 2004).



Figure 1. Transmission electron microscopy @.gparvumsporozoite. The mitochondrion

(*) is located between the nucleus (N) and crystdlbody (CB). There is a typical apical

complex (X) with micronemes (M), one rhoptry (R)dadense granules (D). A Golgi

complex (G) is located next to nucleus. Amylopecfianules for carbohydrate storage (A)
are dispersed through the sporozoite.

v THE LIFE CYCLE

A monoxenous life cycle is typical for speciesGriyptosporidium meaning that the
parasite can complete its entire life cycle withirsingle host. Th€. parvumlife
cycle (Fig. 2) occurs within the host gastrointesititract, and begins with the
ingestion of mature sporulated oocysts. Once ingtstrointestinal tract, changes in

temperature, pH, and the presence of bile salts gamtreatic enzymes trigger



excystation which results in the release of foutilmanfective sporozoites from the
oocyst (Redukeet al, 1985). Free sporozoites then actively invadestireounding

intestinal epithelial cells.

Internalization and localization of sporozoiteshiitthe microvilli of the host cell is
a unique processnternalization starts with the attachment of the sporozoite & th
apical membrane of a host epithelial cell via thegea complex of the parasite. The
single rhoptry of the parasite is recruited anceds to the attachment site, followed
by secretion of microneme and dense granule enzyonesng several vacuoles at
the parasite-host membrane interface (Huetrgj, 2004). It is at this location that an
actin-containing electron-dense band is establishexined the feeder organelle,
which directly separates the parasite from the beBtcytoplasm (Elliott and Clark,
2000). SimultaneouslyCryptosporidium invasion induces host cell membrane
protrusions along the edge of the host-parasierfate which leads to the parasite
being enveloped by the host cell plasma membrams.pFocess eventually results in
a mature parasitophorous vacuole (PV) containimgparasite within the host cell
but outside the host cell cytoplasm. This intradel but extracytoplasmic
localization enables the parasite to both develog be protected from the host
immune system and extracellular environment (Lueblal, 1988). Although PVs
were observed in other apicomplexans, includttgsmodium(Laddaet al, 1969)
andEimeria (Jensen and Edgar, 1976), thaCoyptosporidiumis unique because of
its localization at the apical site of the hostl cgther than deep within the

cytoplasm.

Within the cell,Cryptosporidiumundergoes asexual and sexual reproduction. During
the asexual reproduction (Careyet al, 2004) the sporozoite differentiates into a
trophozoite that divides and gives rise tbgeneration (type 1) meronts — a process
known as merogony. Type | meronts contain eightlisoval merozoites (Hijjawiet

al., 2004), which actively invade other epitheliallsgb undergo a second round of
merogony. This usually results in the productiortygfe 11 meronts containing four
merozoites. Alternatively, instead of developingpitype Il meronts, the first-round
merozoites can form more type | meronts. This feaia thought to be partially



responsible for the common autoinfection that oscwith Cryptosporidium

infection.

Type 1l merozoites then further develop into gamsathirough a process known as
gamogony. Duringgamogony (Current and Garcia, 1991) these second-stage
merozoites infect other epithelial cells in order produce microgamonts or
macrogamonts. The macrogamont is extracytoplasmid eontains only one
macrogamete, whereas the microgamont will undeeyeeral rounds of division
producing 16 motile microgametes. These microgasnbtel from the surface of

microgamonts and are subsequently released intotésinal lumen.

A microgamete will fuse with a macrogamete to yialdzygote which undergoes
sporogony, the only sexual stage of the life cycle. Upontilieation, the
macrogamont divides twice to develop into an ooeytt four naked and infectious
sporozoites. During sporogony, both thin-walled atfick-walled oocysts are
formed. About 20% of oocysts are thin-walled, sunded only by a thin single
membrane. These oocysts are not able to surviveoamvental conditions, and
remain within the host causing additional roundauwtbinfection, which can be very
detrimental for immunocompromised individuals. Amamately 80% of the oocysts
formed are thick-walled. The thick wall consists ah outer layer of acidic
glycoproteins, an intermediate layer of elasticcglpid/lipoprotein material and a
thick inner glycoprotein filamentous layer (Caretyal, 2004). Thick-walled oocysts
are excreted in the feces are fully-infectiousureng no external maturation.



Figure 2. The life cycle dEryptosporidium parvum
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V CRYPTOSPORIDIOSIS
Outbreaks and routes of transmission of cryptospodiosis

Cryptosporidiumhas become increasingly recognized as a pathaggomsible for
outbreaks of diarrheal illnesses in both immunocet@pt and immunocompromised
persons. Infection is thought to occur primarilyrotgh ingestion of water
contaminated with oocysts. To date, at least 32fomeater-associated outbreaks
due to parasitic protozoans have been reporteddwité, andCryptosporidium
parvum accounts for the majority of them (165; 50.8%) r@tas et al, 2007).
BecauseCryptosporidiumoocysts are chlorine-resistant, the outbreaks oéiien
associated with recreational water (Insulaneteal, 2005) or water parks (Wheeler
et al, 2007) and can be a particular threat to otheragge drinking water supplies.

In the USA, the parasite was identified in morentl@b% of all surface waters



(LeChevallieret al, 1991). Several cases of contaminated municipamsupply
systems were reported, even though in some casesdtier met all state and federal
safety standards. The most significant outbreakimed in Milwaukee, Wisconsin,
USA. in April 1993, when an estimated 400,000 peopére sickened resulting in
the death of more than 100 immunocompromised iddals (MacKenzieet al,
1995).

While not as widespread as waterborne transmis$omaborne Cryptosporidium
transmission has been documented. For example, in 1993 in B, @n outbreak
of cryptosporidiosis (154 cases) was due to drigpkimpasteurized fresh-pressed
apple juice. The apples were most likely contan@ddiy cattle feces when they fell
to the ground in a cow pasture (Millaetial, 1994).

Person-to-person transmissionhas been documented in outbreaks among close
social groups suchs households, nurseries and hospitals. In nussenfants are
clustered together as they share play areas andeaasily infected, as well as
employers who change diapers. In an outbreak alyacdre center in the USA, 49%
of the center's 79 children and 13% of its 23 sth#came infected with
Cryptosporidiumthrough person-to-person transmission (Tangernedrad, 1991).
Cryptosporidiosis can be also transmitted duringuakpractices, especially among

homosexuals (Hellardt al, 2003).

Zoonic transmissionis a well established mode of transmission. Mapgradic

cases of cryptosporidiosis are due to human comattt infected farm animals
(Feltuset al, 2006). For example, cryptosporidiosis among aaivas transmitted to
11 of 19 (58%) infants and young children 10 toriénths old, and three of 27

children in a closed agricultural community (Miretal, 1991).

Global distribution of cryptosporidiosis

Both human and animal cryptosporidiosis has beentifled on all continents. It has
been predominantly caused by two main spec@s:parvumand C. hominis
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C. parvum is typically found in Europe and England and hls tidest host
specificity, wherea€. hominisis responsible for 62% of cryptosporidiosis in thor
America, South America, Australia and Africa (Cacet al, 2005). In addition to
these, 5 other speciesC. maleagridis, C. canis, C. felis, C. sasdC. murisare
known to cause human disease. Th&sgptosporidiumspecies have different
animal reservoirs including cattle, mice, pigs, tgphorses, turkeys, cats, dogs, deer,
monkeys, human and others (Guwital, 2001; Xiaoet al, 2001; Gateiet al,
2003).

The prevalence of cryptosporidiosis is higher imadeping countries; mainly due to
the lack of clean water and sanitary facilitiegwaded housing conditions and large
numbers of domestic animals near homes (potendéisérvoir hosts). In these
countries Cryptosporidium infection is diagnosed up to 37% of those with
gastrointestinal complains (Tumwinet al, 2005), whereas cryptosporidial
infections in individuals with diarrhea in industized countries is about 2.9%
(Hormanet al, 2004). There is a significantly greater prevaéemcchildren (Samie
et al, 2006) which also correlates with the warmer anettev months
(Wongstitwilairoonget al, 2007). However, these studies are always diffitoll
compare because studied populations may not betigderor different stool
sampling and oocyst detection methods are usedtigaally, many laboratories do
not routinely test stool specimens foryptosporidiumunless specifically requested,
resulting in significant underreporting of diseammong the immunocompetent

population.

The prevalence of cryptosporidiosis in immunocompueed patients was previously
very high but cryptosporidiosis among HIV/AIDS matis in developed countries
has significantly decreased due to the routineafigdighly Active Anti-Retroviral
Treatment (HAART) which began in the late 19903. &@ample, one study reported
a prevalence of 20% among HIV-positive patientd 994, which had fallen to 6%
by 1998 (Inunguet al, 2000). However, in developing countries the plawee of
cryptosporidiosis among HIV/AIDS patients is séb high as 63% due to the high
cost of antiretroviral treatment (Adjet al, 2003).
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Human cryptosporidiosis in the Czech Republic

Both in Europe and in the Czech Republic, the gesxtaspecies oCryptosporidium
in humans iC. parvum.A genotyping study identifie€. parvumas the only strain
in isolates from a limited number of Czech childr@gfajduseket al, 2004). In
another study from South Bohem@, parvumwas detected in 5.8% of children aged
2 — 36 months and hospitalized with acute diarrf@&amelik et al, 1998). These
clinical findings are also reflected in the envinmental detection oCryptosporidium
oocysts in fresh water sources. Even though thebewofCryptosporidiumoocysts
were elevated up to 7400 oocysts per 100 | in oatemreservoir after floods in
1997, and a relatively high number©fyptosporidiumoocysts was found in treated
water, no waterborn€ryptosporidiumoutbreak has been reported to date (Dadejs
al., 2000). The absence of outbreaks in the Czech litiepghas been attributed to a
strong serological response agai@sgptosporidiumspecific antigens by 33% - 72%
of the population from four different parts of tlig&zech Republic. The strong
serological response of the population indicatesevipus contact with
Cryptosporidium,which could result in protective immunity for ctggporidiosis.
This might be the reason why no waterborne outlsreadce reported (Kozisedt al,
2007). The national reference laboratory in Praas been reporting individual
cases of cryptosporidiosis (Table 1), but cryptosiosis in the Czech Republic is
underreported. The majority of cases occur in srohlldren and the cause of

diarrhea is not alwaydiagnosed.

Table 1. Incidence of cryptosporidiosis among pasién the Czech Republic. Data provided

by Dr. Tolarova from the national reference labamain Prague.

Year 2000 2001 2002 2003 2004 2005 20p6 2007

5 and
1 9 12 7 5 5 5 7
import

Cryptosporidium

parvum
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Vi OOCYSTS AND WATER TREATMENT

Oocysts and their resistance to common infectants

Species ofCryptosporidiumare distributed worldwide, which is largely dueth®
infective thick-walled oocysts that are very stabllean environment. Oocysts are
commonly found in surface and ground water (Lisld ose, 1995), soil (Anguish
and Ghiorse, 1997), sea water (Johnsbml, 1997) and even in swimming pools
(Insulanderet al, 2005). The survival of oocysts ultimately dependsthe outdoor
conditions. Oocysts of. parvumcan retain infectivity in 15 °Gresh water up to
seven months (Jenkirs al, 2003), and 6 - 8 °Gea waterfor as long as 12 months.
Even though dilution of the sea is enormous andrigie of oocyst ingestion for
swimmers is very low, the oocysts can be concesdrdtring water filtration on the
gills of musselsand be a potential danger for gourmands who eat tncooked. As
few as 10 oocysts from gill washings were deternhitee be infective in neonatal
BALB/c mice (Tamburrini and Pozio, 1999).

Infected people and animals can pass up to 1@bi@i parvumoocysts per gram of
feces (O'Handleyet al, 1999). Therefore, only a few animals (or humace
contaminate large quantities of water. Because clehi of environmental
contamination include agricultural runoff as wedl sewage effluent, the survival of
oocysts in human and bovine feces andail was previously studied. After 176
days, 44 % ofC. parvumoocysts in feces at ambient temperatures welevithle
(Robertsoret al, 1992). From - 4 to 4 °C, the oocysts could swvivwater and soll
for >12 weeks, but degradation was accelerated &b@2b °C and in feces or soil
containing natural microorganisms. It was suggethed after at least 12 weeks of
storage contaminated cattle feces should be diséwbon fields during warmer
weather to reduce the potential of waterborne trasson following heavy rainfalls
that result in agricultural runoffs (Olsat al, 1999).

Extreme temperatures, as well as desiccation #reatifor the viability of oocysts

(Fayer, 1994). At high temperatures (> 64 °C fani), the oocyst wall is disrupted
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by denaturation of oocyst wall proteins, exposingorezoites to a hostile
environment. Both rapid freezing in liquid nitrogeand desiccation for 2 h
inactivates 100 % of oocysts. However, slow fregzmhich occurs naturally during
environmental stress, is less effective in killthg oocysts. After 152 hours at -22°C,
10% of oocysts remained viable (Robertsbal, 1992).

Infectivity

Very small numbers of infectious, viable thick-veall oocysts excreted into the
environment are sufficient to cause infection. &sigherformed on healthy volunteers
showed that the median infective dose for eitbeparvum(DuPontet al, 1995) or

C. hominis(Chappellet al, 2006) was 132 oocysts (minimum 30) or 83 oocysts
(minimum 10), respectively. However, it was shovmattonly a single oocyst can
produce infection and disease in susceptible h@Btseiraet al, 2002). The
infectivity of Cryptosporidium also varies within isolates of a single species
(Okhuysen et al, 1999). It has been suggested that when 10-30 stocygf
Cryptosporidiumper 100 | in treated water is detected, preverdstgons against an

outbreak of cryptosporidiosis should be taken (H2a60).

Water treatment

Cryptosporidium oocysts are resistant to modisinfectants and antiseptics
Exposure to undiluted househditeach (5%) for 30 minutes lowers viability only
by 7% (Deng and Cliver, 1999). Evelorination, the method most commonly
used by water treatment plants to cleanse wateotetially harmful pathogens, will
not kill oocysts. They are resistant at concerdraisignificantly higher than that
commonly used for water treatment (Koriehal, 1990).Cryptosporidiumoocysts
are more resistant to chlorination than cysts odfieotprevalent waterborne
microorganisms, for instandgiardia intestinalis which accounts for 40.6% (132 of
325) of parasitic disease outbreaks (Karaial, 2007).
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There are two effective treatments that lead toatpnofCryptosporidiumoocysts;
ozone (Peeterset al, 1989) andultra-violent light (Craik et al, 2001). Although
these techniques are very expensive and cannogusatk the water against
additional exposure that may occur as the wateranideyond the treatment facility

and further along the distribution chain.

The traditional physical removal of particles isianportant step in treating drinking
water. The improveanicro-filtration system is able to reduce the risk of oocysts
appearing in the drinking water supply. Howevertboeaks have more often been
associated with filtered water than unfiltered waRathogens and other debris were
concentrated on the filters and after a breakthrangthe filters there was a local
increase in the number of oocysts in the waterltiaguin an increased risk of
infection. These filtration failures are usuallyedto operational problems of water

treatment plants rather than inherent treatmentidaties (MacKenziet al, 1995).

Studies from the USA and Spain showed that evesr afater plant treatment in
industrialized countries the drinking water stiintain a small number of oocysts
(LeChevallier et al, 1991; Carmenaet al, 2007). Thus for prevention,
immunocompromised patients are recommended to osgahpe filters to avoid
potential infection or boil the water for at leasie minute. BothC. parvumand
C. hominisusually pass through most conventional filtershvatpore size of 8 - 10
um. Specialized reverse-osmosis portable waterdilte filters which are designed
to remove parasitesG{ardia/Cryptosporidium have an "absolute” pore size of
0.1 — 1 um, and therefore, may also remove most diarrheakitguacteria (CDC:
Preventing cryptosporidiosis). These filters canubed by travelers in areas where

tap water is not chlorinated or where sanitatiopaer.
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Vil HUMAN DISEASE

Clinical manifestation

Clinical symptoms typically appear within seven slagfter the ingestion of
Cryptosporidiumoocysts (Jokipii and Jokipii, 1986). They inclual@rofuse watery
diarrhea without the presence of blood or leukazyt@ther less common clinical
features are nausea, vomiting, abdominal cramps andasionally fever.

Dehydration and weight loss result directly frora gymptoms.

The course of the infection largely depends upanithmune status of a patient.
Infection in immunocompetent individuals usually lasts for two weeks or less,
although during that time clinical symptoms migimprove and then worsen.
Occasionally, the illness may last for more thao tmeeks, or the infection can be
asymptomatic. Cryptosporidiosis in immunocompeteosts is usually self-limited

and results in spontaneous, complete recovery ¢guand Garcia, 1991).

People with severely weakened immune systamsjunocompromised such as
AIDS patients, the elderly or organ transplantpesits often have great difficulty in
clearing the parasite. They often suffer a moreeseviarrhea that can last long
enough to become life threatening (Colford,etral, 1996). The cholera-like fluid
loss in patients with AIDS can be as much as 1ffwatery stool per day. In severe
cases, the parasite can spread to other partedfdtty such as the lungs, stomach,
biliary tract or pancreas (Clark, 1999). In casd®re suppression of the immune

system cannot be reversed, symptoms may persistiaath.

Pathogenesis and immunology of the disease

Studies in neonatal mice, calves and pigs haveeased our understanding of the
course of infection in humans (Farthing, 2000). Tih&ection moves from the
proximal to distal end of the intestinal tract wdémtestinal enterocytes are infected

and damaged by the invasion of parasites. Thiuuded the displacement of the
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microvillus brush border causing villi shorteningdacrypt hyperplasia occurs. Thus,
the intestinal surface area is decreased, memliaumed digestive enzymes are lost,
and nutrient and electrolyte transport is impair@hen et al, 2002). The
malabsorption may result in subsequent overgrowtimtestinal microflora, change
in osmotic pressure across the gut wall and awxndif fluid into the lumen of the
intestine. While the infection in the small intestioften leads to severe diarrhea,
infections in the distal ileum, large intestine gmdoric region of the stomach are
usually asymptomatic. Occasionally, the gastric osag bile duct, gall bladder and

respiratory epithelium are also infected (Thompsbal, 2005).

Both humoral and cell-mediated immune responses iavelved in parasite
elimination. The most important role is that ofedl-mediated immune responséy
CD4" T cells - especially intraepithelial lymphocytesdaheir production of IFNg
This interferon induces host enterocyte resistdogearasite invasion. Humans and
animals without a sufficient number of CD4& cells are unable to clear
Cryptosporidiuminfection. CD8 T cells are important later during recovery frora th
infection (Denget al, 2004).

During infection, thehumoral immune responsedevelops. Although both serum
and mucosal antibodies are elevated, their preeable is unclear at this time.
Parasite-specific immunoglobulin A (IgA) antibodyesponses have been
demonstrated in animals and humans without paraditeination (Dannet al,
2000). However, it has been shown that passive immation using IgG polyclonal
antibodies derived from the sera or colostrum afmimized cattle reduced oocyst
shedding and clinical signs both in experimental aatural infections of animals
(Doyle et al, 1993). Thus, a search for immunogenic antigenSrgptosporidium
was initiated, and a number of them associated péttasite motility, attachment,
invasion and development were subsequently idedtifsibley, 2004). Monoclonal
antibodies to some of these antigens were prodacddested for protection against
cryptosporidiosis, but in most cagésy/ptosporidiumnfection was only reduced and
not eliminated (Riggset al, 2002). The polyvalent neutralizing antibodies ever

shown to provide better protection than monoclamaibodies (Thompsoet al,
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2005). However, an effective vaccine aga@stptosporidiums still not available.

Diagnosis

Most laboratories do not test f@ryptosporidiumunless requested by a physician.
Parasites are typically identified by microscopxamination of the stool where the
most simple method of detecting oocysts is by medifcid-fast staining (Milacek
and Vitovec, 1985). Many other tests with a différeange of sensitivity and
specificity can be used. These include immunochtimmtests (Crypto-strips),
immunofluorescent microscopic assays (direct flsogat antibody), enzyme
immunoassay (ELISA), agglutination assays, molec#i@R-based techniques or
usage of histological detection. Serological tests of limited value because many
healthy persons have antibodies agairgptosporidium(Chenet al, 2002).

Therapy

Before the introduction dHAART in the 1990s, cryptosporidiosis was an important
cause of morbidity and mortality in AIDS patien€@henet al, 2002). This therapy
helps improve the immune status of the patientsismechy the prevalence of AIDS-
related opportunistic infections connected with 1&D4" cell counts has been
significantly reduced. Still, cryptosporidiosis raims among the most common

causes of diarrhea in patients with AIDS (Morpetld ahielman, 2006).

Interestingly, most of the chemotherapeutic agesffective against coccidian
parasites and other apicomplexans are ineffectjaeat cryptosporidiosis. Although
the overall treatment faCryptosporidiumis still unsatisfactory, one promising drug
has been “rediscovered’nitazoxanide (NTZ, a 5-nitro-2-thiazolylbenzamide
derivate). This compound was originally developed the treatment of intestinal
helmintic infections (Rossignol and Maisonneuve84)9and in 2002, became the
first Food and Drug Administration (FDA)-approvededication for treating

cryptosporidiosis in American children. There weeveral encouraging results in

clinical trials. These randomized, double-blindgelao-controlled studies in children
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and immunocompetent adults treated with NTZ at 8pmigkg twice daily for three
days or 500 mg doses twice daily for three dayspeetively reduced both the
duration of diarrhea and oocyst shedding (Rossjghd06). The same course of
treatment also reduced mortality among the malsbed young children with
cryptosporidiosis (Amadet al, 2002). Another study involving AIDS patients also
produced remarkable results. Of the patients etedi®6% responded to NTZ and
most of them within the first two weeks of theragythough this study showed that
doses of 3,000 mg per day may be safely admindtéhe optimum recommended
dose was 1,000 mg per day. Two weeks of treatment \generally sufficient for
patients with > 50 CD%cells/mnt , while at least eight weeks of treatment were
required for patients with < 50 CDdells/mn?t (Rossignol, 2006).

In Europe, NTZ has not yet been approved for usaumans. Thus the drug of
choice is paromomycin or azithromyciRaromomycin (PRM, an aminoglycoside
antibiotic) has been tested in double-blind placetatrolled trials of adults with
AIDS exhibiting < 150 CD# cells/mni. In these studies, PRM was no more
effective than the placebo. However, when combiwél interleukin (IL)-12 PRM
appeared to act synergistically agai@stparvuminfection, and up to 73% of mice
infected with the parasite were cured from infatt{Gamra and el-Hosseiny, 2003).
Remarkable results were also obtained in a smahdpal in which PRM was
combined withazithromycin (a macrolide antibiotic). A significant reductiaf
clinical symptoms in AIDS patients with < 100 CDeklls/mni was observed when
they were treated with both drugs for four weeks] then with PRM alone for an
additional eight weeks (Smitt al, 1998).

Although passive immunotherapy and some chemotbhatapagents (e.g. PRM or
NTZ) improve clinical signs and symptoms, none loése completely clear the
patient ofCryptosporidium Most of these agents do not eliminate the pardsim
the host, but simply reduce oocyst shedding andraw® clinical well-being
(Thompsonet al, 2005). The treatment of immunocompetent patientasually
limited to supportive care (fluid replacement, careful hygiene), since thare no
specific and safe anticryptosporidial medicatidha. safe and effective therapy were
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available most clinicians would probably treat sewvacute diarrheal illness with it.

VIl GENOME

The C. parvum(Abrahamseret al, 2004) andC. hominis(Xu et al, 2004) genome
projects have provided us with the valuable cluedhe complicated biology of
Cryptosporidium It was found that th€ryptosporidiumgenome is relatively small
and compact: the 9.1 Mbase genome is distributex erght chromosomes. When
compared to itd. falciparumrelative, theCryptosporidiumgenome is 2.5 times
smaller (Gardneret al, 2002). This difference is due to the lack of bdkte
apicoplast and mitochondrial genomes, as well agb@ence of many nuclear genes
that function in these organelles. In additidryptosporidium contains coding
sequences containing relatively few introns andalimost devoided of repetitive
DNA, and its genes are smaller in overall size thawse inP. falciparum It is
estimated that about 3,800 predicted proteins mceded by th&. parvumgenome.
This implies that many biochemical pathways areastilined or completely absent.
For example, the degeneration of the mitochondaind a lack of enzymes for the
Krebs cycle suggest that the parasite relies sotaly glycolysis for energy
production. Enzymes required for the fatty aciddexive pathway are also absent,
indicating that fatty acids are apparently not aergy source (Abrahamsest al,
2004).

On the other hand, a significant number of gengmeapto have been acquired by
lateral gene transfer (LGT) from bacteria and byldation eventsCryptosporidium
also possess several “plant-like” enzymes thaediher absent in mammals or highly
divergent, and these may be essential to the perastquired enzymes seem to
contribute to the extreme parasitic adaptation amplay specific enzymatic
activities and metabolic processes that are distiom those in mammals, providing

unique opportunities for chemotherapy (Thompsbal, 2005).
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IX BIOCHEMICAL PROCESSES

The fate of glucose

With the loss of almost all mitochondrial functioi&yptosporidiumis incapable of

completely oxidizing substrates to carbon dioxidel avater. There is no electron
transport-linked ATP-generation. Instead, this piea relies upon cytosolic
substrate-level phosphorylation during fermentagieolysis for energy production
(Entrala and Mascaro, 1997).

Glucose, as well as its oligomers and polymersyesass carbohydrate sources of
energy forCryptosporidium The parasite has the capacity to transport aed th
metabolize monosugars (glucose, fructose) as welltoa store, synthesize and
catabolize carbohydrate polymers (e.g. amylopectiehalose). The plant-like
branched polymer of glucose, amylopectin, is thénneaergy storage granule seen
throughout the cytoplasm i@ryptosporidium(Harris et al, 2004).C. parvumcan
utilize amylopectin to produce glucose-1-phospha@eglycogen phosphorylase. It
has been shown that sporozoites depleted of anugtiopexhibited decreased
infectivity for host cellsin vitro (Fayeret al, 2000). Unlike most amitochondrial
protists, the nucleus ofryptosporidiumdoes not encode glycerol kinase so no
glycerol is produced (Thompsat al, 2005). AlthoughCryptosporidiumcan utilize
maltose (a dimer of glucose), its activity is quimv in C. parvum oocyst
homogenates (Entrala and Mascaro, 1997). The abs#gnmost of enzymes of the
pentose phosphate pathw@yoxidation and for catabolism of proteins suggdiss
amino acids, nucleotides and lipids do not suppodrgy metabolism (Xet al,
2004).

Both homogenates @. parvumoocysts and sporozoites display activities forrlyea
all glycolytic enzymes (Entrala and Mascaro, 199#)e step-wise conversion of
glucose to fructose-6-phosphate is similar to thfabther eukaryotes. It is at this
point that core carbohydrate metabolism divergesorgm mammals and

microaerophilic protists. Like other amitochondrfaotists, Cryptosporidiumuses
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inorganic pyrophosphate (PR) instead of ATP in some glycolytic reactions. The
assumed physiological significance of this substituis a decreased investment of
ATP with an overall increase in ATP productidd. parvumutilizes PP, linked
phosphofructokinase PR-PFK), a plant-like enzyme different from human ATP
dependent phosphofructokinase (Dentoml, 1996; Abrahamseet al, 2004). This
enzyme catalyzes the phosphorylation of fructogpi@sphate to fructose-1,6-
bisphophate, and spares the consumption of ATPhglgiycolysis, so the overall
yield of ATP per glucose is three rather than twaeuules. This increase is critical
for anaerobic protists relying only on substratelephosphorylation. Consecutive
reactions lead to the productionpiosphoenolpyruvate which is a branch site for
the formation of pyruvate that is synthesized prilmdy ADP-dependent pyruvate
kinase (Dentort al, 1996). There is an alternative pathway to pyt@eivarmation in
which oxalacetate is carboxylated and then redumednalate dehydrogenase to
malate. Malate decarboxylase can then decarboxylatate to yield pyruvate
(Thompsoret al, 2005).

Glycolysis in Cryptosporidiumresults in the production of three well-known end
products: lactate, acetate and ethanol (Abraharaeseh, 2004). The final product
depends upon the initial glucose concentratioglutose is in excess, pyruvate can
be converted to lactate or ethanol to regenerat®™NRactate is formed in one step
from pyruvate using an-proteobacterial typ&actate dehydrogenas€LDH) which
has been characterized (Zhu and Keithly, 2002; Muaeal, 2004).

Ethanol may be produced by two independent pathways, reftben pyruvate or
from acetyl-CoA. In the first pathway, pyruvate satabolized first by a
decarboxylase and then a monofunctional alcoholdtelyenase (ADH). In the
second pathway, ethanol is produced from acetyl-@yAa typical prokaryotic
bifunctional alcohol/acetaldehyde dehydrogenas@AdhE), which also is observed
in the anaerobic protistSiardia andEntamoebabut not other apicomplexans (Dan
and Wang, 2000).

Under glucose-limiting conditions, conversion ofegt-CoA to acetate occurs
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through the action of an ADP-forming acetyl-CoA thgtiase (ACS) in substrate
level phosphorylation (Abrahamsenhal, 2004).

The fate of pyruvate

The most significant divergence of amitochondriagamisms from those with a
mitochondria is in the mechanism of oxidative dboaylation of pyruvate to acetyl-
CoA, a central step of core energy metabolism. gkjanisms with an aerobic
mitochondria utilize theyruvate dehydrogenase compleXPDH), which consists
of the stepwise transfer of electrons via an acetyup to CoA, then from
dihydrolipoamide to FAD, and finally to NAD Under anaerobic conditions,
pyruvate is usually converted into lactate and mtha

In amitochondrial anaerobic protists, two distipdtifferent enzymatic systems for
metabolizing pyruvate have evolved. Both of them@tygen sensitive and function
only under anaerobic conditions. Onepiguvate formate lyase (PFL) present in
facultatively anaerobic eubacteria and some micopdelic unicellular eukaryotes
(e.g.Eschericha co)i Flavodoxins or ferredoxins serve as electroreptars for PFL
in Euglenaor Clostridium (Gelius-Dietrich and Henze, 2004). The other syste
occurs in anaerobic prokaryotes and microaerophgigkaryotes including
Trichomonas vaginalijEEntamoeba histolytiGaandGiardia intestinalis.The enzyme
responsible for oxidative decarboxylation in thesganisms is the iron-sulphur
protein, pyruvate feredoxin oxidoreductase(PFO), which converts pyruvate to
acetyl-CoA with the transfer of a pair of electrdosferredoxin. PDH and PFO are
not homologous enzymes, i.e. both localization atilization of cofactors differ
(Muller, 2003).

In contrast to all other anaerobic protists andargotes Cryptosporidiumutilizes a
unique enzyme for oxidative decarboxylatigoyruvate-NADP oxidoreductase
(PNO) containing an N-terminal pyruvate:ferredoxixidoreductase domain fused
with a C-terminal NADPH-cytochrome P450 reductaSR) domain (Rottet al,
2001). Such a PFO-CPR fusion has been previouskerebd only in the
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euglenozoan protisEuglena gracilis(Inui et al, 1987), and was also recently
detected in the genome of the centric diafbimalassiosira pseudonar(&trnactaet
al., 2006). InE. gracilis PNO catalyzes both a reversible pyruvate oxidabgn
NADP® and a pyruvate CQOexchange, similar to the reactions catalyzed b@.PF

However, unlike PFO, the PNO Bliglenadoes not react with ferredoxin.

Fatty acid synthesis

Unlike Cryptosporidium other apicomplexansPlasmodium Toxoplasma and
Eimeria) possess a relict chloroplast, an apicoplast, ¢batain a plant-like type Il
fatty acid synthase for theee novosynthesis of fatty acids. These enzymes consist of
discrete monofunctional proteins for fatty acid thygsis (Goodman and McFadden,
2007). Becaus€ryptosporidiumlacks an apicoplast, the pathway for type Il fatty
acid synthesis is also lacking (Zhu, 2004). Instgadparvumpossess a cytosolic
giant type | fatty acid synthase(CpFASL1), and is the only FAS in this parasite.
CpFAS1 is a multifunctional protein consisting ot Znzymatic domains that
function in the elongation of fatty acids using nuwed to long chain fatty acids as
precursors. The absence of a type Il fatty acidlese and the presence of a single
type | FAS incapable of using short-chain fattydacas loading units indicates that
Cryptosporidiumis unable to synthesize fatty acide novo(Zhu et al, 2004). In
addition to CpFAS1, &ype | polyketide synthase(CpPKS1) has been discovered
(Zhu et al, 2002). The biosynthesis mechanisms of both typ&$s and FASs are
nearly identical. Some polyketides serve as mdgicahportant antibiotics,
antitumor agents and immunosuppressive molecutesiii®n and Weissman, 2001).
Genes for CpFAS1 and CpPKS1 together comprise ri@e 0.5% of the entire
C. parvum genome (Abrahamseret al, 2004). Their presence indicates that
C. parvummay have the capacity to elongate medium-chaty &tids or saturated
and unsaturated long-chain fatty acids and polgksti instead of salvaging them

from the intestine of the host.
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In addition to CpFAS1 and CpPKS1, a number of odremymes involved in fatty
acid metabolism have also been identified. Theskude a long chain fatty acyl
elongase (CpLCEL), a cytosolic acetyl-CoA carbosgléACCase), three acyl-CoA
synthetases (ACS), and an unusual "long-type" @o/- binding protein (ACBP).
However,C. parvumlacks enzymes for the oxidation of fatty acidgligating that

fatty acids are not an energy source for this parésritzleret al, 2007; Zhu, 2004).

Nucleic acid synthesis

All enzymes for thede novo synthesis of nucleic acids imare absent in
Cryptosporidium This parasite depends upon nucleic acid trangpmort the host for
both purine and pyrimidine salvage. Consistent whthlack ofde novaosynthesis for
pyrimidines, C. parvumlacks the entire pentose phosphate pathviayparvum
purine metabolism has been reduced to include anfgw enzymes. Among the
retained enzymes are adenosine kinase and enzyeredgzing the conversion of
AMP to IMP, XMP and GMP. All of the enzymes necegda produce ATP, GTP,
dATP and dGTP from adenosine are present in therge{Thompsormrt al, 2005).
One of these enzymes, IMP dehydrogenase (IMPDHReigeved to have been
acquired by horizontal gene transfer from aprobacterium, and has been
characterized and investigated as a potential dauget (Umejiegoet al, 2004;

Umejiegoet al.,2008).

In contrast toCryptosporidium all other apicomplexans have retained a synthetic
pathway for the de novo synthesis of pyrimidines. An algal-type uracil
phospohoribosyltransferase and uracil kinase, disawe bacterial thymidine kinase
acquired by horizontal transfer compensate for bes of this pathway in
Cryptosporidium(Donald and Roos, 1995None of these three enzymes, which
enable the parasite to produce UTP, CTP, TTP anbPdftom uracil, have been
detected in other apicomplexans (Striepéml, 2004). Nucleic acid transporters for
uracil, uridine, cytosine and adenosine have alsenb identified in the

Cryptosporidiumgenome (Abrahamsest al, 2004).
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Amino acid synthesis

Cryptosporidium like other anaerobic parasites, lives in an amamd-rich
environment, and relies upon uptake from the hestgua set at least Hmino acid
transporters (Abrahamsenet al, 2004). It has been suggested that the
Cryptosporidiumgenome once contained genes for the biosynthesal gimino
acids but has lost the ability to synthesize méshem. AlthoughCryptosporidium
has maintained the ability to synthesize a fewctete amino acids, most of these
pathways are coupled with the generation co-fadtwrsther reactions The retained
amino acid synthetic pathways include those folaesgine, glutamine, glycine and
proline (Payne and Loomis, 2006). Becawdeparvumalso lacks the recycling
enzymes methionine synthetase and methylene-telraijate reductase, it is

suspected that methionine is obtained from the ¢wlkt(Thompsoret al, 2005).

Methionine cycle and polyamine biosynthesis

Most intracellular methionine is converted into d&&aosylmethionine (AdoMet) by
S-adenosyl-L-methionine synthase (SAMS). AdoMetars integral part of the
methionine cycle included in sulphur-containing mmacid metabolism (Nozalet
al., 2005). It is a major methyl donor @. parvumas AdoMet donates its methyl
moiety to almost all known biological methylatiogactions except for the reactions
involved in methylation of homocysteine. In humah$as been estimated that about
95% of AdoMet is consumed in the methyl transfact®ns (Mudd and Pool, 1975).
The methionine cycle is regulated throu§hadenosylhomocysteine hydrolase
(SAHH). C. parvumSAMS and SAHH have been both characterized anplagis
significant differences from mammalian homologu@&bey are being studied as
potential drug targets (Slapegtal, 2003; Ctrnactat al, 2007).

The remainder of AdoMet is interconnected closelthvpolyamine metabolism
Polyamins are biologically active triamines thatlude putresceine, spermidine and
spermine. These polyamines play a key role in oflimtg important biological

processes such as regulation of transcription aadslation of many genes,
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modulation of enzyme activities, regulation of iohannels, and the regulation of
posttranslational modification (Bacchi and Yarle&002). Their necessity has been
demonstrated by elevated levels of polyaminesprdhagrowing cells (Pegg, 1988).
In Cryptosporidium polyamine metabolism differs from its host busembles that
of plants and some bacteria. Data from the gen@yaencing project revealed that
polyamine metabolism is probably reduced as geoesdveral key enzymes have
not been identified (e.g. AdoMet decarboxylase,rmpgge synthase, methionine
synthase). The lack of spermine synthase indichtgsspermine is salvaged from the
host cell, and corresponds to fact that the vetiyeaback-conversion pathway from
spermine to spermidine is present @ parvum This pathway might be more
essential for salvaging polyamines than the bidsstic forward pathway (Bacchi
and Yarlett, 2002).

In mammalian cells, and the majority of protozomtkesis of polyamines occurs by
the decarboxylation of ornithine to putresceineodbyithine decarboxylase (Yarlett,
1988). In C. parvum arginine, rather than ornithine, is utilized by iange
decarboxylase, agmatine iminohydrolase and N-carimgutresceine
amidohydrolase to produce putresceine. The forvpatthway from putresceine to
spermine is present in most eukaryotes. AdoMeteseras a substrate in the
production of decarboxylated AdoMet, which is fenthutilized for the formation of
spermidine from putrescine. Although no AdoMet dboaylase gene has been
identified inC. parvum its activity has been detected in sporozoitestfieet al,
1997).
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AIMS OF THE DISSERTATION

This dissertation builds on a long term researcil gbour laboratory. The focus of
our laboratory is to characterize the molecular hiog¢hemical features of enzymes
involved in the core metabolism Gfyptosporidium parvurn an effort to characterize

a new drug targets for novel therapeutics developme

The specific objectives of the research describdtlis dissertation are following:

* To determine the subcellular localization of one tbé core metabolic
enzymes, pyruvate:NADP oxidoreductase, which is responsible for

converting pyruvate to acetyl-CoA.

* To characterize &arf-like gene inCryptosporidiumthat resembles [Fe]-
hydrogenases in other anaerobic protists and ttexthis unique gene as a

potential drug target.

* To characterize S-adenosylhomocysteine hydrolasa €. parvum This is
an important enzyme regulating the S-adenosylhosteaye metabolic
pathway considered important in the target-basad design of antiviral and
antiparasitic drugs.

 To validate adenosine analogues capable inhibitioth the recombinant

enzyme S-adenosylhomocysteine hydrolaseimndro growth ofC. parvum.

Objectives are dealt with in individual chaptersend the research results are
described in detail.
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METHODS

ORGANISMS

Following organisms were used in the course of rilesd studies:

Euglena gracilis -culturing

Euglena gracilisstrain B without a plastid was originally obtainedm the Pasteur
Institute in Paris, France and subcultured at tlaeuRy of Sciences, Charles
University in Prague, Czech Republic. The cultuediam L25 forEuglenaconsists

of 2 g sodium acetate, 1 g proteose peptone imfldistilled water, pH 6.0. Cells
were grown aerobically in the dark at 20°C. Aftentrifugation, cells were washed

in PBS and immediately frozen in liquid; ldnd later used for western blot assay.

Cryptosporidium parvum

C. parvum(lowa strain) was isolated from calves at BunclssrFarms, Drury, 1D,
USA. All oocysts examined were less than three hmotd since the time of harvest
from infected calves. Upon arrival to our laborgtonocysts were Clorox-treated,
PBS-washed and purified by CsCI gradient centrifioga(Zhu and Keithly, 1997).

The excystation of sporozoites was performed farat 37 1°C in Hanks’ balanced
salt solution (HBSS) containing 0.25% trypsin and@5@o taurodeoxycholic acid
(Zhu and Keithly, 1997). Sporozoites were used iatately for DNA and RNA
isolation, microscopy or frozen in PBS at -80 °Cwiestern blots.
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The human colorectal cell line HCT-8 — culturing aml parasite infection

The host cells used fdZ. parvuminfection were HCT-8 cells (ATCC CCL-244).
They were seeded at a concentration of 1.0°p&® well in a 48-well plate format.
Cells were grown overnight until they reached ~8@%fluency at 37°C, in 5% GO
in RPMI 1640 medium (Sigma) containing 10% fetaline serum (FBS), 15 mM
HEPES and other supplements (Cai et al. 2004, Ugitah 1995).

Host cells were infected with 10-fold serial ditris ofC. parvumoocysts with host-
cell to parasite ratios ranging from 2:1 to 20,00@&: 50,000 to 5 oocysts per well) to
generate standard curves. The drug testing proeedgtuded 5,000 oocysts per
well, and parasites were incubated for 4 h at 37t6Gallow enough time for
excystation and invasion into host cells. At tliset an exchange of culture medium
(described above, containing drug or control medid no drug) was performed to
remove parasites that failed to infect the hodsc&he drugs used in this study were
S-DHPA, R-DHPA, EritA (all provided by Prof. AntamiHoly, Institute of Organic
Chemistry and Biochemistry, Academy of SciencethefCzech Republic) and Ara-
A (Sigma). Stock solutions of S-DHPA, R-DHPA, Eritkere dissolved in water,
and Ara-A was dissolved in dimethyl sulfoxide (DMBS@rugs were then added to
the infected cultures at various concentrationgnduthe medium exchange. Cultures
were then allowed to incubate at 37°C in 5% ,CiOr 44 hours. Each drug
concentration was assayed in at least duplicateseach experiment was repeated at

least three times.

Escherichia coli —culturing

E. coli TB1 cells (New England Biolabs) were used as a dpacihd organism for
MBP-SAHH expression. TB1 cells with the construetrg/preincubated overnight in
3 ml LB medium with 0.2% glucose and 100 pganipicillin at 37°C. Overnight

culture was added into fresh medium and was grawihthe ODyo reached ~ 0.5.
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Il NUCLEIC ACID METHODS

Library screening, subcloning, sequencing

A gene fragment similar to [Fe]-hydrogenases ofeamiaic protists (gn1/CVMUMN
5807/ cparvum contig 2535) was identified by BLASdarch using aikntamoeba
histolytica [Fe]-hydrogenase query. Th@@. parvumfragment was PCR-amplified,
random-primer labeled witlu}**P]-dATP and used as a probe for library screening.

Gene fragment similar to SAHH of anaerobic protigtas identified within the
C. parvum genome sequence survey (GSS) (Strong and NelsdodQ).2 The
corresponding plasmid was obtained from Dr. R. dleldJniversity of California,
San Francisco, CA, USA. This insert was compleselguenced and was used as a

radioactively labeled probe for library screening.

The complete open reading frames for both genes weduced from sequences of
overlapping clones isolated frofcoRl and Hindlll C. parvum gDNA libraries
constructed in pBluescript SKStratagene). The amplified full-length genes were
cloned into the pCR2.1 TOPO vector (Invitrogen)ey¥hwere sequenced on both
strands to confirm their identities. Both genesenaubmitted to the GeneBank under
accession numbers AY145118 (CpNARF) and AY 1610885/ HH).

Alignments and phylogenetic analysis

The recovered DNA sequences@dNARFand CpSAHHwere translated to amino
acids. Multiple protein sequence alignments of bBNARF and CpSAHH with

their homolog proteins from different taxa wereateel (Clustal X program, PAM
250 amino acid matrix) and related proteins conmghaldie conservative or active

residues were identified.

A total of 292 amino acid positions of putative GiRF protein including the H-
cluster domains and one neighboring iron-sulful~¢4tS]) cluster were used to
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calculate trees in three different phylogenetiogpaomns. Both a maximum likelihood
(ML) tree analysis using WAG@+6 model of amino acid evolution (1,000 quartet
puzzling values) and a likelihood mapping analy&3,000 values) were performed
using the TREE-PUZZLE v. 5.0 program. A Bayesialpgenetic search for tree
space using a variant of the Markov Chain MontdcC&ICMC) was performed in
the MrBayes 2.01 program. Metropolis-coupled MCM@ilgsis used the JTTH+0

model of amino acid evolution.
DNA and RNA isolation

Total genomic DNA (gDNA) and RNA were isolated fran parvumsporozoites
and from mock-infected HCT-8 cells, as well as framltures infected with
C. parvum For isolation, DNA Mini Kit (Qiagen) and RNeasyim Kit (Qiagen)

were used according to manufacture’s instructions.
Southern blot

For Southern blot analysis @pNARFandCpSAHHgenes, total gDNA was isolated
from C. parvumsporozoites. The gDNA was digested wHtoRl or Hindlll,
separated by electrophoresis and transferred t@a-@atebe Nylon membranes (Bio-
Rad). [->*P]-dATP random-primer-labeled DNA fragment of ti@pNARF or
CpSAHH gene was used to probe blots under conditions igh Istringency
(Sambrook and Russel, 2001).

RT-PCR analysis for gene expression

Total RNA was isolated fronC. parvumsporozoites, from mock-infected HCT-8
cells, as well as from HCT-8 infected wi€ parvum.The first strand cDNA was
synthesized from DNase treated RNA (SuperScripgtfStrand Synthesis for RT-
PCR), using a CpNARF-specific reverse primer or pSAHH-specific reverse
primer. Further, PCR amplification used gene-spegifimer pairs either CoNARF-
F, CPNARF-R or CpSH-F, CpSH-R. Identity of the RT#R products was confirmed
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by sequencing.

gRT-PCR

Total RNA was isolated from infected cultures 44fter infection using an RNeasy
RNA isolation kit (Qiagen). RNA concentration andatjty from each sample were
determined by measuring their absorbances at 26@2&m nm, and all RNA samples
were adjusted to 20 ng/ul. Both parasite 18S rRMA Buman 18S rRNA were
detected via gqRT-PCR using the following primerg18S-1011F (5° TTG TTC
CTT ACT CCT TCA GCA C 3’), Cpl18S-1185R (5" TCC TTCTA TGT CTG GAC
CTG 3’), Hs18S-1373F (5° CCG ATA ACG AAC GAG ACT @I G 3), and
Hs18S-1561R (5° TAG GGT AGG CAC ACG CTG AGC C 3gach of these
primers has been widely used by our laboratoryathdrs in detecting Cp18S rRNA
and Hs18S rRNA. A SYBR green-based real-time RT-R@#hod was employed
using the QuantiTect SYBR Green RT-PCR kit (Qiag&®actions contained 20 ng
of total RNA. Appropriate amounts of reagents anders were first incubated at
48°C for 30 min to synthesize cDNA, heated at 95315 min to inactivate the
reverse transcriptase, and then subjected to 4th#hecycles (95°C for 20 s, 50°C
for 30 s, and 72°C for 30 s) of PCR amplificatiothaan iCycler iQ real-time PCR
detection system (Bio-Rad). At least two replicaactions were performed for each
sample. Analysis of Cp1l8S rRNA and Hs18S rRNA Isvahd the eventual

calculations of parasite inhibition were calculaf€ai et al. 2005).

1 PROTEIN METHODS

Cloning and expression opMAL-CpSAHH

The full-lengthCpSAHHsequence was PCR amplified fr&@n parvumgDNA using
sense F1 and antisense R1 primers. Gel-extractgdicams of CoSAHH were
ligated into the polylinker cloning site of the pMA2x vector (New England
Biolabs) cleaved witlBanHI and Pst. The pMAL-SAHHconstruct was transformed
to E. coli TB1 cells. Plasmids isolated from transformed celeye subjected to
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restriction analyses and subsequently sequencexbrifirm their identities before
expression. Expression of the MBP-CpSAHH was indwgigh 0.3 mM IPTG for 15
h at 30°C.

Purification of pMAL-CpSAHH

Cells expressing MBP-CpSAHH were harvested by degation, and resuspended
in column buffer (20mM Tris-HCI, 200mM NaCl, 1mM HB, pH 7.2). After
sonication on ice, bacteria were centrifuged téepekll debris. The MBP-CpSAHH
fusion protein was affinity purified using amylosesin-based chromatography
according to the manufacturer’'s instructions (Newglgnd Biolabs). Protein
concentration was estimated using the Bradfordyassth bovine serum albumin
(BSA) as a standard. The identity of MBP-CpSAHH wasfirmed by SDS-PAGE
and western blotting. Aliquots of protein were stbat -20°C and used either for the

SAHH assay or were cleaved with Factor Xa to reléehe MBP tag.

Cleavage of MBP-CpSAHH with Factor Xa

A reaction mixture of the fusion protein and 1.5%ctér Xa was incubated in a
column buffer with 10 mM maltose for two days aC4After cleavage, this buffer
was replaced by a 20 mM sodium phosphate buffer7 @Hand concentrated using

an Amicon Centricon ultrafilter with 30 kDa cutdMillipore).

Purification of CpSAHH on hydroxyapatite column and determination of its

size

The concentrated sample was applied to a CHT 5drdxyapatite column,
equilibrated with 20 mM sodium phosphate buffere T®pSAHH protein was then
eluted over a linear gradient from 0 - 1 M sodiumogphate buffer, pH 7.2. Fractions
containing purified CpSAHH were subjected to SDSEFA and stained with
Coomassie blue. Aliquots of protein were storeeR@fC and were later assayed for
SAHH activity. The size of the active recombinaiHKH enzyme was analyzed
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under native conditions by size exclusion columnootatography (Superdex 200
10/300 GL column).

SAHH activity assay

The enzymatic activities of both the MBP-CpSAHH ifus protein and cleaved
CpSAHH were spectrophotometrically assayed in tydrdiytic direction (Yuanet
al., 1996; Lozada-Ramirezt al, 2006) using S-adenosylhomocysteine as a substrat
During the catalytic conversion of S-adenosylhonsteye by CpSAHH, adenosine
and L-homocysteine are formed, and the concentratb L-homocysteine is
measured using 5,5'-dithiobis (2-nitrobenzoic a¢@NTB = Ellman’s reagent). The
extinction coefficient of 13,600 Mcm™ for 5-thio-2-nitrobenzoate (TNB), the
product of the DNTB reaction, was used to calculateamount of L-homocysteine
formed. Adenosine deaminase was used in the assapdure that the reaction
proceeds in the hydrolytic direction by convertamgenosine to inosine. The reaction
mixture contained various concentrations of S-adgihomocysteine (0.8—100 uM),
4U Ado deaminase, 250 uM DNTB in 50 mM potassiunogphate buffer with
1 mM EDTA, pH 7.2. CpSAHH was added just before asgagctivity at 412 nm,
37°C in a Shimadzu UV 601 spectrophotometer. Contactions contained all
components except the enzyme. The measurementsepeated at least four times,
and one unit of enzyme activity was defined asaim@unt of protein catalyzing the

consumption of 1 uM of TNB per minute.

SAHH inhibition assay

Inhibition assays were carried out by the preintobaof 5 pl of 500 pg/mi
CpSAHH with different concentrations of Ara-A, S-PA and D-eritadenine for 15
min at 37°C. After incubation SAHH activity was aged by adding 50 uM S-
adenosylhomocysteine at a final volume of 1 ml tartsthe reaction. The same
experiment was repeated four times with differenttibitor concentrations: 0, 10,
100, 500 nM and 1 pM.
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Western blot

Sonicated sporozoite extract and extract fEngracilis trophozoites were subjected
to SDS-PAGE and then transferred to a nitrocelkllosembrane. Both primary
polyclonal antibodies against PFO and CPR domammepéred using synthetic
oligopeptides) were used to reveal the expressiaimeo complete PNO protein in
C. parvumandE. gracilis. The membrane was blocked, incubated with the pgmar
antibodies overnight at 4°C, washethd incubated for 1 h with horseradish
peroxidase-conjugated immunoglobulin G: either witti0,000 anti-rabbit, or
1:2,000 anti-goat secondary conjugate (Bio-Rad landrogen, respectively). The
membrane was finally washed and blots were visedlizsing the ECLTM Western
Blotting Analysis System (Amersham Biosciences).

Peptide competition assay for specifity of antibodis

As a control of antibody specifity, a peptide comitpen assay was employed. The
oligopeptide used for producing antibody was preirated with the appropriate
antibody. Specificity was evaluated and confirmedthee lack of a signal on the
western blot due to antibody interaction with thigapeptide leaving no antibody to
bind on the nitrocellulose membrane. The negativantrol included the

preincubation of heterologous oligopeptides witke #mntibody in which case the

signal on western blot should was detected.

IV MICROSCOPY: LOCALIZATION

The polyclonal primary antibodies against both O and CPR domains of
CpPNO were prepared using synthetic oligopeptides rabbit and a goat by ProSci
Inc. Poway, CA, USA. As a control, a primary antlgagainst cytosolic fatty acid
phosphopantetheinyl transferase (CpPPT) was uggePT was a gift from Dr. Guan
Zhu (Texas A&M University, College Station, TX, UsAAnother control antibody
againstC. parvumspecific mitochondrial heat shock protein CpCpm&® provided
by Dr. Jan S. Keithly (Wadsworth Center, Albany, NYSA).
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Confocal microscopy

Freshly excysted sporozoites were fixed in 4% (w/paraformaldehyde,

permeabilized using 0.2% (v/v) Triton X-100 in PBf&cked with 5% (w/v) BSA in

PBS and single or double stained with primary amib(anti-PFO, anti-CPR, anti-
CpPPT or anti-CpCpn60) at 4°C overnight. After waghwith PBS, secondary
fluorescent antibodies were subsequently applied foour. The nucleus was labeled
with DAPI. For visualization of the mitochondriofresh living sporozoites were
stained with MitoTracker Green FM for 30 minutesiteA washing, slides were
mounted using a Slow Fade Light antifade kit (Malac Probes), and were

examined with a Zeiss LSM 510 confocal microscope.

Transmission electron microscopy

Freshly excysted sporozoites were fixed in methéea 4% (v/v) formaldehyde
(Polysciences) and embedded in LR White (Riorefaal., 2003). Semi thin sections
were blocked blocked for 30 min in a solution camteg 20 mg/ml BSA in TBS
(containing 20mM Tris, 0.1% BSA, 0.05% Tween-200mB/4 NaCl, 20mM Naly,
pH 7.4), single or double stained (anti-PFO, aRRC anti-CpPPT or anti-CpCpn60)
at 4°C overnight. After being washed the sectioesewabeled for 1 h with a 1:100
dilution of TBS containing 10 mg/ml reconstitutedhale goat serum and to which
one or two of the following EM-grade secondary laodly gold conjugates had been
added: 10-nm gold particles conjugated to goatrabidit IgG antibodies, 6-nm gold
particles conjugated to donkey anti-goat IgG amies and/or 15-nm gold particles
conjugated to donkey anti-rabbit IgG antibodiexti®as were then washed in TBS,
exposed to 1% (v/v) glutaraldehyde in water forid to covalently link the primary
antibody to the secondary one, stained with 2% Ywahueous uranyl acetate for 20
min, and finally washed three times in water. Fayative controls, primary
antibodies were replaced by TBS. Sections were mathat 80 and 120 kV with a

Zeiss 910 transmission electron microscope.
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The materials and methods were described in detgilee published articles entitled:
“Localization of Pyruvate:NADP+ Oxidoreductase ipoBozoites ofC. parvuni
(Ctrnactaet al, 2006); “A Narf-like gene fromC. parvumresembles homologues
observed in aerobic protists and higher eukaryotéstejskal et al, 2003);
“Characterization of S-adenosylhomocysteine hyd®iomC. parvuni (Ctrnacta
et al, 2007). The methods that have not been publisbedrg described in details in
this chapter.



38

RESULTS AND DISCUSSIONS

I LOCALIZATION OF PYRUVATE: NADP * OXIDOREDUCTASE
(PNO) IN SPOROZOITES OF Cryptosporidium parvum

PNO in Euglena gracilismitochondrion

Pyruvate:NADP oxidoreductase (PNO) is a rare fusion of an N-terminal
pyruvate:ferredoxin oxidoreductase domain (Fe-Semp fused with a C-terminal
NADPH-cytochrome P450 reductase domain (flavodammdt An activity of
complete PNO fusion was firstly described in thagéllated photosynthesing
protozoanEuglena gracilis.It was shown thak. gracilis PNO (EgPNO) is able to
catalyze the oxidative decarboxylation of pyruvatiéh NAD® as the electron
acceptor (Inuiet al, 1984; Inuiet al, 1987). The EgPNO was isolated from the
E. gracilis mitochondria which are unique facultatively andéroorganelles that
produce ATP in the presence and absence ,0(Rotte et al, 2001). Aside from
EgPNO, the mitochondria also contain functional usits of pyruvate
dehydrogenase (PDH) typical for aerobic metabolignder anaerobic conditions
pyruvate is decarboxylated to acetyl-CoA by EgPNi@cv serves as a building unit
for the synthesis of fatty acids and wax esterg Jtored waxes are degradated via
aerobic dissimilation in mitochondrion after theéura to aerobic conditions (Int

al., 1987).In the presence of @, both EQPNO and PDH are expressed and acetyl-
CoA is produced, even though the expression of EYRSI significantly lower
compared to the expression under anaerobic conditmd compared to the PDH
expression (Hoffmeisteet al, 2004). The resulting acetyl-CoA then enters a
modified citric acid cycle and respiratory chairofte et al, 2001). Thus, oxidative
decarboxylation, via PFO as a domain of PNO, isptaliwith a Krebs cycle. The
simultaneous presence of PNO and PDH in the mitwdh® and its ability to
function both under aerobic and anaerobic condstimwlicate that this organelle in

E. gracilis is unique in that it unites biochemical properéserobic and anaerobic
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mitochondria and hydrogenosomes.

PNO from Cryptosporidium parvum

In C. parvum a PFO-like fragment was identified in the genqgiiie et al, 1999)
and after cloning and sequencing the entire geémeas found that it consists of two
domains as ift. gracilis PNO is the only enzyme that is capable of diceciverting
pyruvate to acetyl-CoA irC. parvum BecauseCryptosporidiumrelies solely on
glycolysis as an energy source, CpoPNO might plesuaial role in the carbohydrate
metabolism. This role and the absence of PNO in malan cells suggest this

enzyme is a potential drug target.

Southern blot analysis showed that PNO is a singfgy gene (Rottet al, 2001),
which was later confirmed by whole genome sequen@iibrahamsert al, 2004).
The PNO expression profile was determined with FKRPanalysis, and gene
expression was identified to occur both in sporezoand in the intracellular stages.
Multiple sequence analysis of CpPNO, EgPNO andrgihakaryotic and eukaryotic
PFO and CPR homologues indicated that CoPNO cataimost of the amino acid
residues and motifs necessary for enzymatic aesviHowever, its exact enzymatic

function and its localization i€. parvumremained unclear (Rotgt al, 2001).

PNO, its fragments and evolution

Complete PFO-CPR fusions have been previously vedawnly in the Euglenozoan
protistE. gracilis (Inui et al, 1987) and irC. parvum(Rotteet al, 2001). All fusions
contain a PFO domain and a CPR domain with FMN, Fehid NADP subdomains
(Fig. 3). EgPNO and CpPNO are 40% identical inrtla@nino acid sequences and
share 30%-35% amino acid identity with eukaryotid @ubacterial PFOs, but only
20%-25% identity with archaebacterial PFOs. Therenly 25% identity of the FMN
subdomain between CpPNO CPR and EgPNO CPR. Noedabterial homologue
of CPR was found (Rottet al, 2001). Incomplete PNO fusions were found in yeast

as part of the sulfite reductageand 3 subunits (Hanse al, 1994). It is possible
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that these sulfite reductase subunits are thetreduihe reduction and the gene
fragmentation of the same ancestral PNO as in CpBMNCEgPNO.

Figure 3. The module organization 6f parvumPFO/CPR gene and its prokaryotic and
eukaryotic homologues.

Domains PFO Flavoprotein Sideroheme

Heteromeric PFO ' R
(Archea, Eubacteria)  ERM b B

Homodimeric PFO
(Eubacternia, protists)

FMN FAD NAD(P)H
Hahs e R N e N
(C.parvum, E gracilis) : R .

Flavodoxin & NADP+
ferredoxin reductase
(bacteria, platnts)

a-sulfite reductase m

(yeast)

B-sulfite reductase e

(yeast)

Wide phylogenetic analysis of PFO or PNO proteinggests that the common
ancestor of diplomonads, trichomona#sitamoeba euglenids, apicomplexans and
fungi possessed the same inherited eubacterial g#@. Similar to PFO, PNO
seems to have been acquired only once and eatheievolutionary process (Rotte
et al, 2001). However, PFO subdomain in EgPNO probabhctions differently

from the other PFOs that are present in anaeraigianisms because unlike other
PFOs, PNO enzyme froBuglenadoes not react with ferredoxin (Roéeal.,2001).

It is well-established that the PFO of certain paes can be either cytosolic (e.g. in
G. intestinalis, Entamoeba histolyticar organellar (e.g. if. vaginalis, Nyctoterus
ovalis) within double membrane bounded hydrogenosomesnBcet al., 2005;



41

Muller, 2003). To clarify whether CpPNO is locakizprimarily within the cytosol or
within the relict mitochondrionC. parvumsporozoites were analyzed by confocal
immunofluorescence and transmission electron neomg (TEM) and the results are

described in this dissertation.

Results

Using parasite-specific anti-CpPFO and anti-CpCRPRbadies,the presence of
CpPNO in C. parvum sporozoiteswas confirmed by western blotting (Fig. 4).
Amino acid sequence analysis revealed that CpPN@usturally similar to EQPNO
as they share significant sequence homology andattoorganization. However,
their function and localization are not identichlo CpPNO activity inC. parvum
sporozoites was detected, in spite of detectableNEYy activity in theE. gracilis
positive control (Hrdy, Stejskal, Ctrnacta, unpsb&d results). The forward reaction
of this enzyme was assayed using pyruvate as atraledonor, and methyl
violagen, NADP, NAD" or FAD as electron acceptors (Inat al, 1987). The
reverse reaction irC. parvumwas assayed using methods well-established for
E. gracilis, clostridia and photosynthetic bacteria (Inei al, 1987). Positive
controls included both mitochondrial EQPNO and higdrogenosomalrichomonas
vaginalis PFO. It is difficult to learn why CpPNO, but na$ iactivity, is present in
sporozoites without an efficienh vitro Cryptosporidiumcultivation system. The
guantity of CoPNO may be below the detection lingfsour enzymatic assays in
sporozoites, or the functional protein may onlyex@ressed by intracellular stages
multiplying in the intestinal epithelium under nmoeerophilic conditions, similar to
that for the PFO of diplomonads, entamoebids aictidmonads. It is also possible
that the biochemistry of this organism is so dgfdrthat assay systems currently
used for detection of the PFO or PNO activitie®tiher organisms are deficient in

some essential cofactor required@®@yparvum

Despite we have not managed to detect any activityassumed that PNO might be
responsible for the transfer of electrons to NTZdiag to the drug activation and

formation of toxic metabolites. It is suspectedt timaC. parvum a more significant
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domain might be the PFO domain of CpPNO, which megitivate NTZ in a manner
similar to anaerobic protists and bacteria. ltsstemed that the 5-nitro group of NTZ
is reduced by PFO. This reduction could resulh@fbrmation of nitro-radical forms
that bind to DNA and cause their breakage (Coombshuller, 2002). However, on
the contrary, another report claims that NTZ cdugdactivated by cytochrome P450
domain of CpPNO (Coombs and Muller, 2002).

Figure 4. Western blot analyses of sonicated etgtrrom Cryptosporidium parvurmand
Euglena gracilis respectively. The arrows designate the positiothe PNO protein. Lane
A. Goat anti-CpPFO recognizes a 217-kDa CpPNO lya@ parvumsporozoites. Lane B.
Rabbit anti-CpPFO recognizes an identically sizaddbinC. parvumsporozoites. Lane C.
Rabbit anti-CpCPR recognizes both a 217-kDa bamtdamadditional 75-kDa band .
parvumsporozoites (probablg. parvumcytochrome P450 reductase-like protein, CpoCPR2).
Lane D. Cross-reactivity: rabbit anti-CpPFO alsoognizes a ~200-kDa EgPNO band in
Euglena gracilis
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As previously described, CpPNO is phylogeneticedhated to the PFO of anaerobic
protists and it is well established that the PFOthdse parasites can be either
cytosolic or organellar (Emblegt al, 2003). It was determined that EQPNO is
localized inE. gracilismitochondrion (Inuet al, 1984). Whereas EgQPNO apparently
contains a signal peptide sequence to the mitocimmado signal peptide sequence
was identified in CpPNO (Rottet al, 2001). These data are consistent with the idea
that the mitochondrial targeting presequence of NEpPnight have been secondarily
lost in this apicomplexan lineage during the retheceévolution of its mitochondrion
(Williams and Keeling, 2003), and that the enzymbsgquently became cytosolic
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(Rotte et al, 2001). Before this study, the possibility thatRB{ could still be
targeted to its relict mitochondrion by an alteiveaimechanism could have not been
excluded. It is known that some mitochondrial pirigehave internal import signals
and that N-terminal targeting sequences may beingckespecially in proteins
involved in electron transport in lower eukaryo{&nanuelsson and von Heijne,
2001; Henriqueet al, 2005).

By confocal immunofluorescence and TEM it has beaown thatCpPNO is
localized within the cytosol rather than within therelict mitochondrion (Fig. 5 -
8). C. parvumspecific polyclonal antibodies against CpPFO, ¢iimsolic CpPPT,
and the mitochondrial CpCpn60 were used for colibation and TEM experiments.
The absence of gPNO in the C. parvum relict mitochondrion supports the
suggestion that the relict mitochondrion primardgrves as an organelle for the
import and maturation of Fe-S clusters (Keitatyal, 2005).

Interestingly, both immunofluorescence and TEM expents showed thafpPNO

is also localized in the crystalloid body(CB) - an organelle whose function is
currently unknown (Fig. 6 — 8, 11 - 14). The sizdle CB is significant as it is at
least equal in volume to the nucleus. The 3-D rstantion of this organelle
indicates that the closely packed vesicles obsebyedEM might be a series of
interconnected channels. This organelle is alwdgsety positioned to the relict
mitochondrion, outer nuclear membrane and rougloiagmic reticulum (Keithly
et al, 2005). Even though there were no clear obsemstad limiting membrane
made, it was shown that the CB takes up MitoTrackeren FM dye, suggesting
there is some kind of membrane, possibly with agaoellar membrane potential
(Fig. 9, 10). Recently, the refractile bodies (RiB) Eimeria tenellahave been
characterized (de Venevellesd&®.al, 2006). Both RBs and the CB are differentially
expressed during the life cycle of the parasiteh(lorganelles are found only in
sporozoites and type | meronts). After invasiorgsth organelles disappear, and
reappear only in newly shed oocysts. It has beeggesied that RBs contain
numerous proteins and lipids that might play a pduting invasion process

(deVenevelles Pet al, 2006). The function of the CB i€. parvummight be
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consistent with RBs iiE. tenella Furthermore, CpPNO localization within the CB
may indicate the presence of additional ATP germrab power the invasion of the

parasite to the host cell.

Figure 5 - 8. Confocal microscopic immunolocaliaatiof pyruvate:NADPoxidoreductase
(CpPNO) inCryptosporidium parvumsporozoites. Scale bars yB. 5. Control localization
of cytosolic fatty acid phosphopantetheinyl trans$ée (CpPPTase) using Alexa-488 donkey
anti-rabbit secondary antibody shows diffuse grid@orescence throughout the cytoplasm.
6. Using Alexa-633 donkey anti-goat secondary aatjbagainst goat IgG anti-CpPFO, both
the CpPNO in the cytosol and the crystalloid baatydws) exhibit red fluorescence. 7. The
sporozoites are stained with Alexa-488 donkey matibit secondary antibody against rabbit
IgG anti-CpPFO. The same pattern of the fluoresedndoth the cytosol and crystalloid
body (CB) is seen in Fig. 6. The arrows show thetgr@r region where the CB is situated.
The nucleus is stained with DAPI (blue). 8. Whery.F» and Fig. 6 are merged, co-
localization of CpPNO and CpPPTase within the atas observed (yellow). The higher
concentration of CpPNO within the crystalloid bddgd) is readily apparent. The nucleus is
stained with DAPI (blue).
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Figure 9 - 10. The uptake of MitoTracker Green Fitbithe mitochondrion and crystalloid
body of Cryptosporidium parvursporozoites. Scale bars . 9. Dye uptake indicates the
presence of an organellar membrane potential. Becafithe close juxtaposition of these
two organelles, and the small size of the mitochiomg the fluorescence of individual
mitochondria separate from the crystalloid bodiasnot be determined. 10. Phase contrast
image of the same sporozoites showing the antépiand posterior (P) of an individual
sporozoite (arrows). The crystalloid body is oftelnserved at the posterior end (green
fluorescence), but can also be observed in theregibn of the sporozoite where it wraps
around the nucleus.
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Figure 11 — 14. Transmission electron microscopgZfptosporidium parvunsporozoites
showing immunogold localization of pyruvate:NARRidoreductase (CpPNO). Scale bars -
0.5um. 11. Longitudinal section of sporozoite at higagmification showing the crystalloid
body (CB), cytosol, and other organelles. The @it@s double-labeled with control 15-nm
gold anti-CpPPTase particles, and with 6-nm goldt gmti-CpPFO particles (arrows). The
inset clearly shows clusters of 6-nm anti-CpPFQigas within the crystalloid body. 12.
Single-labelingC. parvumsporozoites with 10-nm gold rabbit anti-CpPFO shahat both
the cytosol and crystalloid body (arrow) are label@ this section, the CB can be seen to
wrap around the nucleus. 13-14. Longitudinal seatiothe posterior end of the sporozoites.
The mitochondrion (*) is posterior to nucleus, died between the nucleus and the CB. It is
labeled by mitochondrion-specific 15-nm gold anti€pn60 particles. Small, 6-nm gold
goat anti-CpPFO particles (arrows) show the loe#itin of CpPNO. There is no localization
of 6-nm gold particles within the mitochondrion.
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Il A Narf-LIKE GENE FROM Cryptosporidium parvunRESEMBLES
HOMOLOGUES OBSERVED IN AEROBIC PROTISTS AND
HIGHER EUKARYOTES

[Fe]-hydrogenases irhydrogenosomes

Formation of hydrogen is the key reaction, catalybg [Fe]-hydrogenases, which
takes place in hydrogenosomes - organelles presesgveral types of anaerobic
protists. InTrichomonas pyruvate is oxidized by PFO and generated elestare
transferred to ferredoxin which, under anaerobindaions, is reoxidized by Fe-
hydrogenase that produces the molecular hydrogerl€iM 1993). This process led
to the naming of the hydrogenosome organelle (Lewdkmand Muller, 1973).
Hydrogenosomes are organelles that evolved indemtlydin phylogenetically
diverse groups of unicellular protists as they agdpo microaerophilic environment
where they make energy and produce molecular hgdroghey have been best
studied in trichomonads, ciliates or chytrid fur(@oger and Silberman, 2002).
Hydrogenosomes are related to mitochondria withsdrae origin of endosymbiotic
a-probacterium (Embleyet al, 2003). Together with hydrogenosomes, other
derivates of mitochondria have been identified ahebkcribed: mitochondrial
remnants (mitosomes) Bntamoeba histolyticéTovar et al, 1999), microsporidian
Trachipleistophora hominiéWilliams et al, 2002),Giardia intestinalis(Tovaret al,
2003) and the relict mitochondrion @ parvum(Slapeta and Keithly, 2004; Keithly
et al, 2005) Their common features include a double membrangagung a
membrane potential, mitochondrial-type chaperomesthe absence of Krebs cycle
and respiratory chain enzymes. The possible redbah these highly reduced
organelles have been retained, is probably foisdparation of iron metabolism and
the [FeS] cluster assembly, which may be toxidliercell (LaGieret al, 2003).
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[Fe]-hydrogenases versus NARF-like proteins

[Fe]-hydrogenases are metabolically active metalloproteins contagian N-
terminal [Fe-S] clusters and enzymaticaly activeltisters that forms the catalytic
center of iron-only hydrogenases (Nicotdtal, 2000). The presence of hydrogen
producing [Fe]-hydrogenases is limited to anaeropiotozoa (trichomonads,
entamoebas, diplomonads, ciliates), chytrid fuagid green algae (Emblest al,
2003). There may be one or more copies of [Fe]dgeinases in a genome. For
example,T. vaginaliscontains genes for three [Fe]-hydrogenases déréifit lengths
and different content of [Fe-S] clusters that argeted to hydrogenosome (Horegr
al., 2002) wherea&. intestinaliscontains only one short [Fe]-hydrogenase localized
in cytoplasm (Nixoret al, 2003) (Fig. 15).

Figure 15. Prokaryotic and eukaryotic hydrogenasadiogues.
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Traces of [Fe]-hydrogenase genes can be foundcim @akaryotic organism, even in
our own genome and in all higher eukaryotes andlgrefar. However, these related
genes code proteins lacking detectable hydrogesasaty. They are calletlARF-
like proteins according to the first [Fe]-hydrogenase-like gdiseovered in humans
(NARF protein; nuclear prelamin A recognition fagt@arton and Worman, 1999),
which function is well known. Human NARF is a nuaerotein that interacts with
prenylated prelamin A, the precursor form of lanmmolved in the maintenance of
the structural integrity of the nucleus (Barton amMdrman, 1999). Théarf-like
genes show extensive similarity to the genes of-flydrogenases, especially with
respect to the conservation of residues in the usigctive hydrogen cluster (H
cluster) that is found in all [Fe]-hydrogenassarf-like genes are shorter then [Fe]-
hydrogenase genes and some of them contain ndotedization sequences. NARF-
like proteins localization together with their abse of hydrogen production suggests
that these proteins are probably not involved iergn metabolism (Horneet al,
2000). Recently, it has been shown that yeast Nafprotein (Narl protein) is
involved in the cytoplasmic and nuclear [FeS] melisin (Balket al.,2004).

Even though [Fe]-hydrogenases or NARF-like protdiase been identified in all
eukaryotes analyzed so far, no eukaryotic linedge tontains both a functional
[Fe]-hydrogenase and a NARF-like protein have deand yet. It is unclear whether
[Fe]-hydrogenases and NARF-like proteins sharerangon function or if they are
both essential for eukaryotes. However, one exparireshowed that the deletion of a
Narf-like gene RNarl) was lethal to haploid yeast cells, which indisat#s
importance in their overall metabolism and its ssdg in at least one species
(Winzeleret al, 1999).

Results

In C. parvum a [Fe]-hydrogenase-like fragment was identifistejskalet al, 2003).

The entire ORF was cloned into a pCR2.1 TOPO veatwt sequenced. The
nucleotide sequence GpNARFgene was deposited to GenBank. The Southern blot
analysis revealed th&pNARFis a single copy gene (Fig. 16). Its expressios wa
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confirmed in both extracellular and intracelluldaages of the parasite by RT-PCR
(Fig. 16).

Figure 16. Southern blot and RT-PCR analysis of 8RN. A: Southern blot analysis. 5 pug
of genomic DNA per lane was digested wihoR (E), Hindlll (Hi) or Hadll (Ha). The
probe was ano-32P]JdATP random-primer-labeled DNA fragment of G@RF (positions
534-1387). B: RT-PCR analysis. Lane 1: negativarobPCR without cDNA template);
lane 2: PCR using gene-specific primers (cDNA fr@mparvuminfected cells); lane 3:
positive control (PCR with gene-specific plasmid A)Nlane 4: 100-bp ladder.
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Multiple amino acid sequence alignment of [Fe]-logimases with NARF-like
proteins revealed a close relationshigCofparvumprotein with NARF-like proteins
from aerobic protists and higher eukaryotes inste@hd[Fe]-hydrogenases of
microerophilic protists and anaerobic bacteria (Fig). This was confirmed by
phylogenetic analysis of 37 taxa as it revealed e gene fronC. parvumclusters
with the Narf-like genes from yeast, animals and higher plants ot with [Fe]-
hydrogenases of anaerobic protig. (histolytica, G. intestinalis, T. vaginalis,
Nyctotherus ovalis(Fig. 18). ThusC. parvumgene has been classified ablarf-
like gene and was nam&@pNARF.
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Figure 17. Multiple sequence alignment of conservedidues of [Fe]-hydrogenase
homologues.Trichomonas vaginaliutative hydrogenosomal targeting sequence (dashed
underline);Homo sapiengutative nucleus localization sequences (solidediree). FS4B
and FS4A= two N-terminal accessory [4Fe—-4S] bindilhugters: * = conservative cysteines
(C) within FS4B; + = conserved C within FS4A. Mstit—4 belong to the H-cluster: =
conserved C within H-cluste® = polar andO = hydrophobic amino acid residues of the H-
cluster active site determined from the crystalcture ofClostridium pasteurianunfFe]-
hydrogenase. Abbreviations: Cl@lostridium pasteurianuml.vA, Trichomonas vaginalis
hydA3; E.hi, Entamoeba histolyticaG.in, Giardia intestinalis Ch.r, Chlamydomonas
reinhardtii hydA; C.pa, Cryptosporidium parvumn L.ma, Leishmania majgr S.ce,
Saccharomyces cerevisidarl; E.cu,Encephalitozoon cunicylH.sa,Homo sapiendNarf
(#AAD51446); A.th,Arabidopsis thalianaT.go, Toxoplasma gondiiincomplete Narf-like
ORF: gIn/TIGR 5811/contig:5468:t gondii. Note: Ctlaes not contain the N-terminal FS4B
and FS4A clusters; T.go partial ORF contains a secg homologous to [Fe]-hydrogenase
motifs 2, 3 and 4 within the H-cluster.
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Figure 18. The phylogenetic relationship among mf@]-hydrogenase clusters is based
upon amino acids conceptually translated from repced DNA sequences of 37 taxa. The
phylogram was reconstructed in TREE-PUZZLE base{Feihydrogenase andARFlike
amino acid sequence alignments using the WAG+H8 model of amino acid evolution (log
- Ln =-15912). The numbers at the internal bhes represent the quartet puzzling values
(n=1000). The inset diagram represents a likelihmaghping analysis of [Fe]-hydrogenase
sequence alignments. The regions at the three rsoofi¢he triangle represent well-resolved
phylogeny. The central region represents stardkelution. The three sides of the triangle
represent regions where it was difficult to distiiglp between two of three topologies with
an equal likelihood, and in which the third topoldgad a probability of zero.Candida
albicansfull length Narf-like ORF: gIn/SDSTC_5476/C.albicans Contig6-2352.
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To summarize the obtained data; @ parvum i) the residues of H-cluster
(composed of [4Fe-4S] and [2Fe] clusters) and F8dwain (an adjacent medial Fe-
S cluster) were identified; ii) neither electroncegting domain nor organellar
targeting signal or nuclear localization sequeneeie detected; iii) a putative proton
donating Cconserved in hydrogen producing hydrogenases wasfaund in

CpNARE iv) alike most of NARF like-proteins, CoNARF was fouta contain a

conserved tryptophan residue at the C-terminugurthermore, [Fe]-hydrogenases
enzymatic activity could not be detected @ parvum sporozoite extract using
standard assays (Hrdy and Stejskal, unpublishex).dalthough the function of this
gene is as yet unknown, our phylogenetic analysggest that CoNARF belongs to
the group of NARF-like proteins from aerobic prtdiand higher eukaryotes, which
are thought to have had an ancestor in common {f#}-hydrogenases. [Fe]-
hydrogenases appear to have diverged in both steucnd function as core
metabolism changed in aerobic and anaerobic eukaryimeages over evolutionary

time.
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1 CHARACTERIZATION OF S-ADENOSYLHOMOCYSTEINE
HYDROLASE FROM Cryptosporidium parvum

S-adenosylmethionine metabolic pathway

Amino acids containing sulphur: methionine and elyst, are a part of virtually
every protein. Despite sulphur amino acids gendrhtly, sulfur itself is toxic and its
handling needs to be carefully regulated. Its ragoh includes transsulfuration,
sulfur assimilatoryde novocysteine biosynthesis, methionine cycle and degiaal
which involve at least two dozen intermediates gmdducts. If these sulphur
containing amino acids and some of their interntediaare not completely
metabolized, their accumulation can have a verygeéams and even fatal impact to
the overall metabolism. Although these two amin@s@re indispensable for all
living organisms, there are remarkable differendestheir biosynthesis and
catabolism between parasitic protozoa and their malan hosts (Nozaket al,
2005). Our understanding of these differencesusial as it can help us to identify
and exploit unique targets to develop novel cheeraibeutic and prophylactic

agents.

One of the important sulphur-containing intermegBais S-adenosylhomocysteine.
This compound is catabolized by the enzyme S-ag#immsocysteine hydrolase

(SAHH) into adenosine and L-homocysteine (De La &abd Cantoni, 1959). If

SAHH is inhibited, S-adenosylhomocysteine accuneslan the cytoplasm where it
acts as a potent feedback inhibitor and blocks ytetibn reactions by inhibiting S-

adenosylmethionine-dependent methyltransferasess tnfluencing the overall

methylation capacity of the cell (Fig. 19) (Turretral, 2000).
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Figure 19. S-adenosylmethionine metabolic pathwhg. abbreviations are:
S-adenosylmethionine (AdoMet), S-adenosylhomocystéhdoHcy),
S-adenosylhomocysteine hydrolase (SAHH), methiosyrghetase (MetS): no orthologs of
this enzyme have yet been found @nyptosporidium parvun{Abrahamseret al, 2004;
Thompson et al, 2005), S-adenosylmethionine synthetase (SAMS).e TK-
adenosylhomocysteine degradation pathwayescherichia coliis indicated with dashed
lines. Enzymes in this pathway are (1) S-adenosyliuysteine nucleosidase, (2) S-
ribosylhomocysteinase.
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SAHH from different organisms

SAHH has been isolated from many organisms incdinmans (Hershfieldt al,
1985), rats (Fujioka and Takata, 1981), plants &&owski and Pawelkiewicz, 1977;
Sebestoveet al, 1984), yeast (Knudsen and Yall, 1972), protoZbachomonas
vaginalis (Bagnaraet al, 1996), Plasmodium falciparun(Creedonet al, 1994),
prokaryotes (Porcelket al, 1993; Porcelliet al, 2005) and characterized. Several of
these SAHH have been examined, their biochemicapeties and enzymatic
activities have been measured (Creedbal, 1994; Minottoet al, 1998; Porcelliet
al., 2000) and several crystal structures of SAHH Hasen elucidated: e.g. human
(Yang et al, 2003), rat (Huet al, 1999; Huanget al, 2002), andPlasmodium
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falciparum (Tanakaet al, 2004). However, not all organisms contain thigyeme.
For example Escherichia colidispenses with SAHH (Shimizeat al, 1984), and
because of its absence this bacterium is explaited background free organism for

cloning.

For instance, SAHH fronP. falciparumhas been studied extensively as a potential
drug target against malaria for a long time. Newadss, it has not been proposed to
use this enzyme as a target protein for treatmgainatCryptosporidium Here, we
characterized CpSAHH and showed that this proteimso suitable as a drug target

againstC. parvum.
Results

In drug development against any parasite it is ragdeto select targets from
pathways that are present in the parasite but afsen humans. In the case of
SAHH, this potential target is common in both thargsite and the host.
Nevertheless, even if the target is common in pirasd host, slight structural
difference such as single amino acid variation ikely to improve inhibitor
selectivity. For instance, it has been shown thaingle substitution of Cy3 in

P. falciparum and Thf® in humans accounted for the differential inter@usi with
nucleoside inhibitors (Tanakat al, 2004). Furthermore, in contrast to human
SAHH, CpSAHH contains a 49 aa long plant-like itiser (Fig. 20). Similar short
amino acid insertions have been found in planfewaeubacteria and some protists
such asP. falciparum T. vaginalis and E. histolytica This insertion is absent in
animals, fungi, kinetoplastids, Archaebacteria aswime Eubacteria. The exact
function of this insertion is not known. Howeverhet crystal structure of
P. falciparumSAHH revealed that its plant like insertion isdted at the edge of the
substrate binding domain and might participatene ltinding of a substrate (Tanaka
et al, 2004).
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Figure 20. The partial alignment of CpSAHH and 1Beo organisms. CpSAHH differs
substantially from mammalian SAHH as it contaif®®aamino acid plant-like insertion.

plant-like insertion sequence

C. parvum DGGDATLI LH EGVKAEI EYE KYNKI PEYLE TELDENGKQL SMDLKCMYKV LKMELLKNPF RARGVLKDLY
P. fal ci parum DGGDATLLVH KGVEYEKLYE EKNI LPDPEK AK........ NEEERCFLTL LKNSI LKNPK KWINI AKKI |

C.roseus DGGDATLLI H EGVKAEEEYK KNGALPDPSS TD. . ...... NAEFQ VLTI | RDGLKSDPT KYTRMKERLV
T.vaginalis DGGDATLLI S KGFEFE. . .. TAGAVPEPTE AD........ NLEYRCVLAT LKQVFNQDKN HWHTVAAGWN
E. histol ytica DEGDATLM H TGYHAEExxx KNI QEI LDVK G ........ TEEVNALHNV LKKQLKENPR FWHNI LPEI R
M t ubercul osis DGGDATMLVL RGWQ. . .. YE KAGWPPAEE DDP. ... ... . AEVKVFLNL LRTRFETDKD KWKl AESVK
H. sapi ens DGGDLTNLI H o e e e e T KYPQLLPG F
D. el anogaster DGGDLTNLVH E. .. ... o e e e KFPQFLKNI k
S. cerevi si ae DGGDLTTLVH E. . .ot e e e e KHPEM.EDCF
P.carinii DGGDVTSLVH . .. e e e e N KYPDYLKNCk
L. donovani DGGDLTNLVE Dottt e e e HHPELVPKI F
Synechocysti s DGSDWATLY Q . oottt e e e e s e ERQHQLSDI |
P. hori koshi i DGADM SLVH K. . oo e e e ERQELLDEI \

Using Southern blot analysis, it was revealed @@$AHH is present in the genome
as a single copy gene which was later confirmedwhple genome sequencing
(Abrahamseret al, 2004). The CpSAHH expression profile was deteedimvith
RT-PCR analysis (Fig. 21) which showed that@@SAHHgene was expressed both
in sporozoites and in the intracellular stages iplylhg in HCT-8 cells. Multiple
sequence analysis of CpSAHH and other selectedcapyotic and eukaryotic SAHH
homologues indicated that CpSAHH contains mosthef dmino acid residues and
motifs necessary for enzymatic activities. The ctgCpSAHHgene was cloned
into the pMAL-c2X vector and was expressedincoli TB1 cells as an MBP-fusion
protein. After purification, the cleaved denatudaggrotein was subjected to SDS-
PAGE to establish its subunit molecular mass (ER). and the recombinant native
protein was subjected to the size-exclusion chrography on a Superdex 200
column. The apparent molecular mass of the natteéem is about 244-kDa. This
suggested that @SAHH is a tetramer which is in agreement with SApitdteins in
variety of organisms (Fujioka and Takata, 1981;cBltiret al, 1993; Tanakat al,
2004).
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Figure 21. RT-PCR analysis 6pSAHH expression ilCryptosporidium parvunsporozoites
(lanes 2, 3) an€. parvumintracellular stages in HCT-8 cells (lanes 4—te Ppresence of
RNA and reverse transcriptase (RTase) are indicdiade 1, negative control — reaction
without RNA; lanes 2 and 3, expression in spore@spitanes 4 and 5, RNA isolated from
uninfected HCT-8 cells; lanes 6 and 7, RNA isoldteth 24 hC. parvum- infected

HCT-8 cells; lane 8, positive control — CpSAHH DNA.

©
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Figure 22. SDS-PAGE analysis of the purificatiorthad recombinant SAHH. The molecular
mass standard is a Precision Plus protein starfBaveRad). Lane 1, crude cell lysate before
its application to the amylose column; lane 2, ratfji purified fusion protein MBP-

CpSAHH; lane 3, cleaved fusion protein by Factor, ¥ame 4, CpSAHH eluted from a

hydroxyapatite column.
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As was predicted from amino acid sequence comp@isGpSAHH retained its
enzymatic activity. Its activity was tested speptrotometrically in the hydrolytic
direction. The enzyme kinetic profiles {KKca, Vmay 0f both CpSAHH and MBP-
CpSAHH were determined (Fig. 23). Results showeat the kinetic profiles of
CpSAHH and MBP-CpSAHH differed as the MBP tag segriwe slow down the
enzymatic reaction. However, in comparison to kndimetic profiles from other
organisms, CpSAHH falls within their range (Table Zhe catalytic turnover of
CpSAHH was determined to be.d(= 0.69 & which falls in the range of known
values Kq = 0.13 — 3.8 (Fujioka and Takata, 1981; Yua al, 1996; Porcelliet
al., 2000) .

Figure 23. Michaelis—Menten kinetics of MBFpSAHH (O) andCpSAHH (@) displayed in
a Lineweaver—Burk plot for determination of.¥ and K,. S-adenosylhomocysteine was
used as a substrate.
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Table 2. Comparison @ryptosporidium parvun$AHH activity with SAHH activities from
other organisms measured in the hydrolytic directio

Source Km (UM) V max (UM.min.mg") Keat (S
C. parvumSAHH 1.31£0.20 0.74t 0.07 0.69
C. parvumMBP-SAHH 2.69+0.11 0.29+0.05 0.46
L. donovaniSAHH 21.00+ 3.00 0.17 0.48
P. falciparumSAHH 1.2+ 0.10 - 0.02
R. ratusSAHH 15.20+ 1.11 1.08t 0.03 0.85
H. sapiensSAHH 7.80+ 0.20 - 0.53
S. solfataricuSAHH 14.00 0.17 0.13

In a pilot experiment, it was found that three coopds Ara-A, S-DHPA and EritA
were able to inhibit CpSAHH at low concentratiofalfle 3). One of these inhibitors
is the cyclic compoundAra-A. This drug has been approved and primarily used as
an antiviral agent that displays a wide antiviraé&rum. Inhibition of SAHH by
Ara-A has been studied in detail. Ara-A targets #iotive site of the enzyme, and
causes the irreversible inactivation of isolatedemombinant SAHH and reduces the
enzyme bound NAD (Helland and Ueland, 1982). It seems that Ara-A &an
directed to a number of targets. In agreement imitibition of recombinant SAHH
from T. vaginalis (Minotto et al, 1998), 500 nM Ara-A inhibited CpSAHH by
17.5% (Table 3). The other two inhibitors usedaaenosine analogues with acyclic
sugar moieties and both of them are known potetivieal agents (Holyet al,
1985). Neither of them hzsbeen tested against SAHH from parasitic protozoa.
S-DHPA displayed similar inhibition as Ara-A. At a conceatton of 500 nM, the
enzymatic activity of CpSAHH remained at the 86%tlo¢é control, so S-DHPA
inhibited CpSAHH by 14% (Table 3). Howevéseritadenine (EritA) proved to be
very efficient inhibitor of CpSAHH. 500 nM EritA mbited CpSAHH activity by
95.3%, the remaining enzymatic activity was 4.7%MQ(€ 3). EritA seemed to be a
very promising drug especially in the light of theevious success as an efficient
antiviral agent. In the experiments with EritA avatcinia virus, vesicular stomatitis
virus or measles virus in primary rabbit kidneylgeEritA proved to be rather
selective. Inhibition of the replication of virusescurred in concentrations of 10 -

100 pg/ml, whereas host cell cytotoxicity was not obserwuntil 400ug/ml (De
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Clercqget al, 1984).

Table 3. Effect of nucleoside analogues on theviigf recombinanCpSAHH.

Inhibitors Concentration (nM) Enzyme activity (Y%aintrol)
Control 0 100
D-eritadenine 10 91.58
100 69.34
500 4.74
1000 5.18
S-DHPA 10 97.32
100 93.31
500 86.09
1000 66.91
Ara-A 10 100
100 90.36
500 83.51
1000 73.30

Unpublished results

Even though there has been shown a certain levehdition of the recombinant
CpSAHH by aliphatic adenosine analogues in thet pikperiment, inhibition of
CpSAHH needed to be further tested in the micraenwnent of the host cell and in
the context of the whole organism. That is why; ititebition of CoSAHH has been

tested undein vitro conditions.

The measurements of SAHH inactivation, in paradited infected human HCT-8
cells, were based on quantitative real-time reveraescription-PCR (QRT-PCR).
The relative expression was determined by deteatiohoth host cell 18S rRNA
(Criviss) as an internal control and parasite 18S rRNApes). The level of
parasite 18S rRNA was subsequently calculated estia of G values ACt =
Crpiss) - CrjHiss)- The data was further processed and statistiealblyzed (Caet
al., 2005). We employed qRT-PCR assay to evaluateftltogeacy of used aliphatic
inhibitors, which were previously shown to haveoadstiviral activity (Holyet al,
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1985), on the growth o€. parvum in vitro All used inhibitors displayed a dose-
dependent inhibition of the intracellular stagesCofparvumcultured with HCT-8
cells (Fig. 24- 26). The I§g was determined by nonlinear curve regression.|Tgg
values for (S)-DHPA, (R)-DHPA and EritA were detémed to be 4.3 uM, 11.6 uM
and 44.8 uM, respectively. No significant cytotaidco HCT-8 cells was observed
at used concentrations by the MTT assay (a standatdrimetric assay for

measuring cellular growth and cytotoxicity of pdtehmedicinal agents).

Figure 24. Efficacy of (S)-DHPA on the growth Gf parvumin vitro, as determined by
gRT-PCR.
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Figure 25. Efficacy of (R)-DHPA on the growth Gf parvumin vitro, as determined by
gRT-PCR.
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Figure 26. Efficacy of EritA on the growth Gf parvumin vitro, as determined by
gRT-PCR.
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The drug efficiencies were compared with two goldeandards used in drug testing
againstC. parvum paromomycin, a compound that inhibits proteintegsis by
binding to 18S rRNA (Marshall and Flanigan, 1992(l aitazoxanide, a drug, which
is approved for the treatment of infectious diaarheaused byC. parvumand
G. intestinalisin patients 1 year of age and older in USA (Badeyl Erramouspe,
2004). After comparison, the data showed that itibito of the growth ofC. parvum

in vitro with (S)-DHPA, (R)-DHPA and EritA, respectively,a& more potent than
when using paromomycin (k= 137 uM) (Caket al, 2005). The potential to inhibit
intracellular stages of. parvumwas also elucidated with NTZ from other study
(ICs0 = 0.98 puM) (Caiet al., 2005). The inhibition of CpSAHH using (S)-DHPA
was efficient enough even though it did not redwhlevel of NTZ. Nevertheless, it
can be claimed that (S)-DHPA and (R)-DHPA may bpl@ed as potential drug
targets for the control a. parvuminfection. Interestingly, the most potent inhilpito
of the recombinant protein, EritA was the leasepoinhibitor of the CpSAHH im
vitro experiment. This results is in agreement with ey studies (Holyet al,
1985) describing that particular inhibitors can ey potent against isolated and
recombinant proteins but to have only minimal dfi@e SAHH catabolism in intact

cells or vice versa. For example, (S)-DHPA causethactivation of isolated SAHH
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from rat hepatocytes although it proved efficiegstam inhibitor in intact liver cells
(Schancheet al., 1984) This effect could have been caused by thakepof (S)-
DHPA, the inhibitor might have been modified in timcroenvironment of the cell
and become more toxic. On the other hand, somebitols such as 2-
chloroadenosine proved to be extremely efficieninimbiting the isolated enzyme
but not very efficient in intact lymphocytes (Zimmeanet al., 1980). This suggests
that if these inhibitors actually penetrate an orga then they get rapidly
metabolized. Furthermore, SAHH from different ongams responds differently to
the same inhibitor because their amino acid contiposis not usually completely
congruent. All these unpredictable factors makegiésg of potential drugs difficult
and each inhibitor must be carefully tested in cahditions. Further studies are
needed to asses whether these adenosine analoguldsbe developed into new

anticryptosporidial drugs.
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SUMMARY

Cryptosporidium parvumis a unicellular parasite that belongs to the PRinylu
Apicomplexa. This parasite can infect both humamg animals, causing an acute
diarrhea in immunocompetent individuals, and a siuréife threatening infection in
immunocompromised persorSryptosporidiumis a problematic species that almost
does not respond to commonly used drugs againsléted parasites (e.g. Coccidia)
because in contrast to other parasi@&sparvummetabolism has been streamlined to
include only components of vital concern. The péealas lost or diverted many
enzymes and metabolic pathways present in othepmgulexans. Thus;. parvum
does not posses many well-studied potential drugeta (e.g. HXGPRT, ODC,
mannitol cycle, shikimate pathway, Krebs cycle andentire apicoplast). However,
the parasite does encode several other potentig thrgets, some of which are
unique, gained by horizontal transfer from anotbeganism such as plants or
bacteria. Additionally, it possesses some asphatdiave been likely gained through
endosymbiosis and contains proteins that are highigrgent or absent in humans
and animals (Huanet al, 2004).

Even though our general understanding of@hg@arvummetabolic machinery have
significantly increased by now, our knowledge ofnyaspecific pathways and
enzymes inCryptosporidiumis still limited. A better understanding of impamt

metabolic pathways and enzymes in this organismidvaid in the experimentation
of new drugs and developing new strategies to tit@atinfection in humans and

animals.

Via the fulfillments of given research objectivas this dissertation the results
presented bring a characterization of three pakntiug targets fronC. parvum

pyruvate:NADPoxidoreductase, S-adenosylhomocysteine hydrolad@&pNARFE
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Pyruvate:NADP+ oxidoreductase

In contrast to PNO inEuglena gracilis CpPNO is a cytosolic, not
mitochondrial protein, which was confirmed by botltonfocal
immunofluorescence and immunogold labeling for THWis new data is in
agreement with the suggestion that the relict miboclrion of C. parvum
serves primarily as an organelle for the import andturation of Fe-S

clusters and that it plays no major role in corergy metabolism.

Both confocal images and immunogold labeling showleat CpPNO is
localized also within the crystalloid body, as wasl within the cytosol. These
data, together with the close juxtaposition of tG@® and the relict
mitochondrion, as well as their distinctive intdriséructure, indicate that
there may be some interesting evolutionary implcet for why the CB
remains a unique subcompartment witl@n parvum Because CpPNO is
compartmentalized in a novel way, it opens the ipdgg that this
apicomplexan may display yet another unique type cofe energy
metabolism in microaerophilic protists that migbad to new strategies for
drug development against human cryptosporidiosis.

The uptake and localization of fluorescent dyestdiMacker Green FM,
Rhodamine B and Rhodamine 123) into both the CB é&mal relict
mitochondrion was shown, which might indicate agamellar membrane
potential in spite of neither TEM nor tomographieconstruction could

resolve whether the CB is membrane bounded.
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CpNARF gene

= In C. parvum an [Fe]-hydrogenase-like gene had been identited
characterized. This gene contains a single higbhserved N-terminal iron-
sulfur cluster ([4Fe-4S]) binding site, as well a®st of the H-cluster
conserved residues and lacks the obvious N-termimganelle-targeting

signal, present in most metabolically active [Fgihtogenases.

= RT-PCR analysis revealed thapNARF gene is expressed by the
intracellular stages of. parvumand it encodes putative protein of 560 amino

acids, which was named CpNARF.

= Phylogenetic analysis revealed that @8pNARF gene fromC. parvum
clustered with theNarf-like genes from yeast, animals and higher plants.
CpNARFgene did not cluster with [Fe]-hydrogenases ofealaic protists
(E. histolytica, G. intestinalis, S. barkhanus, dgwalis, Nyctotherus ovalis

= Although the function of this gene is unknown, bethylogenetic analyses
and sequence data suggest that CoNARF belonge tgrélup of NARF-like
proteins from aerobic protists and higher eukamgothich are thought to

have had an ancestor in common with [Fe]-hydrogenas
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S-adenosylhomocysteine hydrolase

= CpSAHH has been cloned and analyzed. The protdfarglisubstantially
from mammalian SAHH homologues and other nonapidexam protists as

it contains a 49 amino acid plant-like insertion.

= CpSAHH is expressed both in intracellular stagesdi parvuminfected

HCT-8 cells) and in sporozoites.

= CpSAHH was expressed as a fusion protein MBP-CpSAElelaved and
purified. Enzymatic activities of both MBP-CpSAHHd CpSAHH (Ky,
Vmax Kca) Were determined using the Michaelis-Menten pldthen
compared to known Kkinetic profiles of SAHH from ethorganisms,
CpSAHH falls within their range.

= Tertiary structure of the recombinant CpSAHH istamer like most of the
studied SAHH proteins.

= The enzymatic activity of CpSAHH was inhibited byetadenine, (S)-
DHPA and Ara-A. The most efficient inhibitor of tmecombinant CpSAHH
was D-eritadenine; 500 nM D-eritadenine inhibite@SBHH activity by
95.3%

= Inhibitors (S)-DHPA, (R)-DHPA and D-eritadenine wearbserved to inhibit
C. parvumgrowthin vitro, in infected human HCT-8 cells. TheslGralues
for S-DHPA, R-DHPA and D-eritadenine were 4.3 pM,6LuM and 44.8
UM, respectively. Based on results presented i dmssertation both (S)-
DHPA and (R)-DHPA were proven to be good candidéesnext step in

drug development against cryptosporidiosis.
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