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Chapter 1

Introduction

Real life situations including economical practice are typically dealing with
one common element — randomness. We base our decisions on outcomes of
critical variables (demand, return, loss, etc.) without knowing their precise
future development. The decision making process is confronted with uncer-
tainty and our effort consists of finding the best alternative under some given
restrictions (e.g. technical or legislative limits). In words of a mathematician,
we solve a decision problem of stochastic optimization.

Stochastic programs are optimization problems where some variables in
objective or in constraints are random. If the probability model is known
(i.e. all the probability distributions of underlying random variables are
completely known), the decision maker has only to face the unknown real-
ization of random variables — he solves the uncertainty problem. Stochastic
programming is also called decision making under risk. In such models one
frequently uses expectations at the place of random variables when the prob-
lem is solved repeatedly. This framework is motivated by the law of large
numbers, see Dantzig [16]. The second possible approach involves proba-
bilistic constraints, i.e. requirements that some events occur only with small
probabilities. This leads to chance-constrained optimization, see Charnes
and Cooper [15]. Another applied way of solution concerns models where in-
feasibility is penalized, called problems with recourse. Suggestion of Prékopa
[41] is to apply probabilistic constraints and at the same time, to extend
objective function for expected penalty term:

...we are convinced that the best way of operating a stochastic
system is to operate it with a prescribed (high) reliability and at
the same time use penalties to punish discrepancies.

In reality we frequently do not know the exact probability distributions of
random variables. Therefore, we also have to deal with an ambiguity (see e.g.

6



CHAPTER 1. INTRODUCTION 7

Pflug and Wozabal [39]) caused by an incomplete knowledge of probability
distributions of underlying random variables.

The knowledge of probability distribution is often limited only to a certain
set of feasible distributions - the ambiguity set, which can be characterized
e.g. by its support, moments, symmetry, unimodality, qualitative informa-
tion or by a parametric family of distributions, etc. For example, Pflug and
Wozabal [39] determine the ambiguity set to which the modeler is indifferent
as the set of all probability distributions whose distance from the hypotheti-
cal distribution is smaller than a given value. In their paper, the distance of
two probability distributions is measured by Wasserstein distance.

Such types of ambiguity sets occur in stability analysis. The incomplete
or inaccurate knowledge of input information influences the quality of the
obtained optimal decisions which may be then quite different from the truly
optimal actions, specially when estimated distributions computed from his-
torical data are used. Hence, it is important to study the behavior of optimal
solutions and of the corresponding optimal decisions with respect to small
changes in the probability distributions, to the perturbed input or to a new
information, see Römisch [50], Heitsch et al. [27], where the extensions to
the multi-stage programs are made. Stability then ensures that small modi-
fications of the underlying distributions or of the problem formulation cause
only small changes of solutions.

The basic choice of the set of feasible distributions corresponding to the
distributions specified by their moments and unimodality can be found in
Dupačová [17] and Dupačová [19]. Combination of moment conditions and
properties like symmetry and/or unimodality is presented in Popescu [40]
or Čerbáková [12], where applications to the worst-case VaR and CVaR are
derived. A family of unimodal probability distributions is also explored in
Shapiro [55].

Literature offers many approaches how to deal with ambiguity. The most
widespread application is the use of minimax, resp. maximin, decision rule,
pioneered in Žáčková [63] and further researched in Dupačová [17], Dupačová
[18], Dupačová [19]. Given an ambiguity set, the decision maker searches
for the best protection against the worst alternative of possible probability
distributions of random variables, he/she looks at the worst-case situation
and minimizes the maximum of expected costs, resp. maximizes the mini-
mum of expected returns, over the set of feasible probability distributions.
The worst-case approach contemplates all possible probability distributions
and scenarios, including those that are extremely unlikely to happen. Such
a decision rule is necessary in situations where even rare events may lead to
disastrous consequences.

An alternative treatment of ambiguity like Bayes or maximal entropy ap-
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proaches is discussed e.g. in Sengupta [53] and Jagannathan [30]. The Bayes
approach is usually applied to ambiguity sets characterized by a parametric
family of distributions. It is assumed that the distribution functions have
a specified functional form. The decision maker is supposed to have some
prior information about statistical properties of unknown random parame-
ters. This information is updated as further observations are obtained. The
decision maker chooses his/her decisions in order to minimize the expected
value of the objective function.

Using the maximal entropy principle we suppose that all possible future
realizations have the same probability. The decision maker is indifferent to-
wards any event probability. This approach corresponds to the situation
where no information is available and represents a counterpart to the quali-
tative information approach where some realizations are favored to others.

The main goal of this work is to introduce and compare two different
ways how to deal with incomplete information on probability distribution
which is often involved in real stochastic programs. The first one works with
estimated distributions and then studies what may happen if the believed
distribution or problem formulation is changed. We study there necessary
and sufficient conditions for a solution to be stable. The second robust ap-
proach includes the incomplete knowledge of probability distribution to the
problem formulation and leads to the minimax decision rule. In virtue of the
chosen approaches we limit our attention to stochastic programs whose sets
of feasible solutions do not depend on the probability distribution.

In this thesis we shall deal mainly with the set of discrete probability dis-
tributions defined by a qualitative information — the case when the decision
maker has some qualitative ideas about the future development of random
events. The knowledge of possible realizations of random variables is as-
sumed, i.e. the set of uncertain future states of nature is fixed. Further,
we assume that the available information about future realizations can be
described by a weak partial order "not less probable than". It corresponds
to an educated guess. Such an ambiguity set consistent with a qualitative
information can be represented by a convex polyhedron, see Bühler [7], Büh-
ler [8]. Its extremal points are generalized discrete uniform distributions, see
Bühler [6].

The paper is organized as follows. In chapter 2, we start with basic
continuity and convexity properties. Then our attention is turned out to
a general formulation of stochastic programming problem and to important
results from linear programming theory, which are then applied in the next
chapters, namely, results from duality theory, including Farkas lemma, serv-
ing a derivation of feasibility and optimality cuts of algorithms presented in
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chapters 5 and 6. More about these basic findings can be found e.g. in Kall
and Mayer [34] or Prékopa [42].

Chapter 3 is devoted to the Bayes decision problem. The goal is to find an
action/decision minimizing the expected loss on the set of plausible actions,
studied also in Berger [2]. The loss function expresses the consequences of
choosing a particular decision for a concrete realization of random param-
eter. The main goal is to study the behavior of minimal losses and of the
corresponding optimal actions with respect to small changes in the proba-
bility distribution. This helps us to evaluate the error caused by using an
approximated or perturbed distribution. We state conditions guaranteeing
that small changes of probability distribution cause only small changes of
solutions. We are also able to measure the maximal distance between opti-
mal values and optimal decisions with respect to the considered probability
distributions. This concept of qualitative and quantitative stability comes
from the work of Römisch [50], where the general concept of stability for
problems with the set of feasible solutions depending on a probability distri-
bution is derived. In the Bayes decision problem it is supposed instead that
the set of all feasible decisions does not depend on the choice of probability
distribution. This simplifying assumption facilitates to improve the bounds
for the maximal distance between optimal decisions presented in Römisch
[50]. Our results are introduced in theorems 3.1 and 3.2 and published in
Čerbáková [9]. We also show how these results can be related to stability of
Bayes decisions with respect to weak convergence of probability measures.
We present selected necessary and sufficient conditions for a Bayes action to
be stable. The essential contribution can be found in Salinetti [52], Kadane
and Chuang [31].

Chapter 4 is inspired by the minimax approach and its connection with
the moment problem. After a historical introduction to minimax ideas we
present the general moment problem and its dual formulation utilizing the
work of Popescu [40] and Shapiro [55]. In the moment problem it is assumed
that the knowledge of probability distributions of random variables is lim-
ited to a set of possible probability distributions defined by prescribed values
of their moments. Subsequently, we suppose that except the first two mo-
ments, we know further qualitative characteristic of the class of distributions
— symmetry and unimodality. Under various assumptions on probability
distributions we derive and compare upper bounds for two well-known risk
measures Value-at-Risk and Conditional Value-at-Risk. These bounds are
also illustrated numerically on the case of interbank exchange rate. The
chapter is based on papers Čerbáková [10], Čerbáková [11] and Čerbáková
[12]. A new result, the worst-case Conditional Value-at-Risk for symmet-
ric distributions with given expectation and variance, is presented in section
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4.1.2. We also corrected the proof of lemma 4.6, published in Popescu [40],
about the upper bounds for probability of loss for symmetric and unimodal
distributions.

In the remaining part of the thesis we restrict our attention to the mini-
max approach applied on a set of possible discrete probability distributions
consistent with some type of qualitative information. In section 4.2 we study
extreme points of this set since they help to simplify the calculation of mini-
max solutions. The considered problem of finding the worst-case probability
distribution becomes a linear programming problem on a bounded polyhe-
dron. Therefore, it is sufficient to search for the worst-case distribution
among the extreme points of the set of possible probability measures. In the
case of qualitative information we are able to specify explicit form of such
extreme points. This results were published in Bühler [6], Bühler [7], Bühler
[8] and detailed in Čerbáková [9].

In chapter 5 we modify the L-shaped algorithm for discrete two-stage
minimax stochastic programs with a linear recourse presented in Riis [45],
Riis and Andersen [47]. We simplify the algorithm by maximizing only over
extreme points of the set of feasible probability distributions and use their
special structure in the case of a qualitative information. Two versions of
L-shaped algorithm are presented. The first one solves the two-stage mini-
max problem under the assumption of relatively complete recourse, i.e. the
second-stage problem is always feasible. In each step the algorithm adds
only new optimality cuts to the solved problem. The algorithm ends by
finding an optimal decision and the worst-case probability distribution. The
second version of the algorithm is derived with relaxed assumption of rela-
tively complete recourse. We allow infeasibility of both the first-stage and
the second-stage problems. If the first-stage problem is infeasible the algo-
rithm ends with no feasible solution, otherwise in each step new feasibility
and optimality cuts are added until an optimal solution is found.

In chapter 6, we consider a multi-stage stochastic program with a linear
recourse. In the multi-stage stochastic program we assume that information
is revealed over time and the decision maker has to take an action before
knowing the actual realizations of random variables. The real probability
distribution is approximated via scenarios. Specially, we deal with a prob-
lem with a known event tree structure having only a qualitative information
about events’ probabilities, see also Bühler [8] and Čerbáková [9]. We work
with Markov type event probabilities, i.e. the probabilities of realizations
at a given time depend only on the probability of the preceding event. This
gives a possibility to characterize a non-recombining scenario tree by a special
transition matrix of a Markov chain defined on scenario nodes.

For the sake of robustness, the use of minimax approach is crucial. The
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possibility to describe a scenario tree by a Markov chain and the special
properties of its transition matrix are fundamental for a numerical solution
of a multi-stage minimax stochastic problem. Due to the Markov property
we are able to disassemble a scenario node probability to a multiplication
of transition probabilities between nodes at a scenario path. This allows to
specify the multi-stage minimax stochastic problem with regard to maximiza-
tions over transition probabilities and customize the nested decomposition
algorithm for the minimax approach. We utilize the nested decomposition
algorithm described in Kall and Mayer [34] and evolve a special form of the
algorithm for minimax problems consistent with some qualitative informa-
tion. We also employ results from Bühler [6], Bühler [7] and Bühler [8]. As
in the two-stage model we present two versions of nested decomposition with
and without the assumption of relatively complete recourse. The first one has
been already implemented in programming language C# using .NET plat-
form. The algorithm performances are illustrated on numerical examples.
We also introduce a possible application to portfolio selection problem. The
chapter is based on the work of Čerbáková [14].

The developed algorithms can be applied to multi-stage stochastic prob-
lems with a linear recourse and with a given scenario tree structure but with
(incomplete) qualitative information on probability distributions. This is
typical when we work with expert’s opinions.

Finally, chapter 7 summarizes the presented results and adverts to some
possible improvements and extensions. There are still several open problems
like stability of minimax solutions, development of extreme points generator,
comparison of numerical properties of the developed algorithms with already
existing solution techniques, etc. Some of these problems have been already
studied. As an example we mention the work of Riis [45], Riis and Schultz
[46] deriving the results on stability of two-stage minimax problems.



Chapter 2

Preliminaries

In this chapter we mention the selected essential mathematical principles and
definitions needed for the presented results. First of all we recall basic def-
initions of convex sets and continue with continuity properties of extended
real valued functions and multifunctions. Section 2.1 concludes with intro-
duction to weak and uniform convergences. The second section is devoted
to basic formulations of stochastic programming problems. In the third part
the duality statements in linear programs are presented. Finally, the list of
selected symbols used in the following chapters is introduced.

All introduced findings in the thesis are defined on some subset of R̄n

for n ∈ N and R̄ := [−∞,+∞]. Therefore, also the definitions and results
provided in this chapter are supposed to be defined on some subset of R̄n

although a generalization exists.

2.1 Basic definitions
We start with several basic convexity definitions:

Definition 2.1 (Convex set). A subset X of Rn is convex if for every choice
of x, x̄ ∈ X one has [x, x̄] ∈ X, i.e.

αx+ (1− α)x̄ ∈ X for all α ∈ (0, 1).

It can be proved, see e.g. Rockafellar and Wets [48], theorem 2.2, that
a set X is convex if and only if X contains all convex combinations of its
elements.

Definition 2.2 (Polyhedral set). A set X ⊂ Rn is said to be a polyhedral
set if it can be specified by finitely many linear constraints.

12



CHAPTER 2. PRELIMINARIES 13

Definition 2.3 (Convex hull). A convex hull of X ⊂ Rn, denoted by conv X,
is the smallest convex set that includes X.

Convex hull of X consists of all convex combinations of elements of X, i.e.

conv X := {x : x =
K∑

k=0

αjxk : xk ∈ X, αk ≥ 0,
K∑

k=0

αk = 1, K ≥ 0},

and thus every point of conv X can be expressed as a convex combination of
K + 1 points of X (not necessarily different). See e.g. Rockafellar and Wets
[48], theorem 2.27 and theorem 2.29.

Definition 2.4 (Convex polyhedron). A set X ⊂ Rn is said to be a convex
polyhedron if there exists a finite set {x0, . . . , xK} such that X = conv {x0,
. . . , xK}.

Definition 2.5 (Positive hull). By positive hull of X ⊂ Rn, denoted by
pos X, we understand the smallest convex cone that includes X.

And similarly to the case of convex hull we can prove that pos X consists
of all nonnegative linear combinations of elements of X, i.e.

pos X := {x : x =
K∑

k=0

αkxk : xk ∈ X, αk ≥ 0, K ≥ 0}.

Definition 2.6 (Convex polyhedral cone). A set X ⊂ Rn is said to be
a convex polyhedral cone if there exists a finite set {x0, . . . , xK} such that
X = pos {x0, . . . , xK}.

Definition 2.7 (Extreme point). An element x ∈ X,X ⊂ Rn, is said to be an
extreme point of X if there do not exist any two different elements x̄, x̃ ∈ X
such that

x = αx̄+ (1− α)x̃ for α ∈ (0, 1).

During reading the thesis we will meet the following properties of real-
valued functions:

Definition 2.8 (Continuity and convexity). The extended real valued func-
tion f : X → R̄ is
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(i) lower semicontinuous at x̄ ∈ X if

lim inf
x→x̄

f(x) ≥ f(x̄);

(ii) upper semicontinuous at x̄ ∈ X if

limsup
x→x̄

f(x) ≤ f(x̄);

(iii) continuous at x̄ ∈ X if it is both lower semicontinuous and upper
semicontinuous at x̄;

(iv) uniformly continuous if for all ε > 0 there exists a δ > 0 such that for
all x, x̄ ∈ X, |x̄− x| < δ implies |f(x̄)− f(x)| < ε;

(v) Lipschitz continuous on K ⊂ X if there exist κ ∈ R+ with

|f(x̄)− f(x)| ≤ κ|x̄− x| for all x̄, x ∈ K;

(vi) convex on a nonempty convex set K ⊂ X if the inequality

f(αx+ (1− α)x̄) ≤ αf(x) + (1− α)f(x̄)

holds for any two different points x, x̄ ∈ K and any α ∈ (0, 1);

(vii) concave on a nonempty convex set K ⊂ X if the inequality

f(αx+ (1− α)x̄) ≥ αf(x) + (1− α)f(x̄)

holds for any two different points x, x̄ ∈ K and any α ∈ (0, 1).

Definition 2.9 (Equi-continuity and equi-boudedness). We say that a class
C of extended real valued functions f : X → R̄ is

(i) a class of functions equi-continuous at x̄ ∈ X if for each neighbourhood
V of f(x̄) exists a neighbourhood U of x̄ such that for all f ∈ C is
f(U) ⊂ V;

(ii) a class of equi-bounded functions if there exists a bounded subset B ⊂ R̄
such that for all f ∈ C and for all x ∈ X is f(x) ∈ B.

In chapter 3 we will examine the stability of Bayes decision problem. To
this purpose we define multifunctions (or multivalued mappings, set-valued
mappings) and study their continuity properties:
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Definition 2.10 (Multifunction). By a multifunction we understand a set-
valued mapping f : X → 2U with

2U := collection of all subsets of U.

The domain and range of f are taken to be the sets

dom f := {x ∈ X : f(x) 6= ∅} and rge f := {u ∈ U : ∃x ∈ X with u ∈ f(x)}.

The multifunction f is fully described by its graph gph f := {(x, u), u ∈
f(x)} ⊂ X × U. If f is single-valued everywhere on X we say that f is
a function. Before defining the semicontinuity properties of multifunctions it
is necessary to say that it can be very confusing as there exist many definitions
of these terms in literature. Our definitions come from Rockafellar and Wets
[48].

Definition 2.11 (Semicontinuity). We say that a multifunction f : X → 2U

is

(i) upper semicontinuous at x̄ if

limsup
x→x̄

f(x) ⊂ f(x̄);

(ii) lower semicontinuous at x̄ if

lim inf
x→x̄

f(x) ⊃ f(x̄);

It is called continuous if both conditions hold.

Upper semicontinuity everywhere corresponds to f−1(C) being closed
whenever C is closed, whereas lower semicontinuity everywhere corresponds
to f−1(O) being open whenever O is open.

The main part of the thesis deals with probability distributions belonging
to some set P of possible probability distributions. It is assumed that these
distributions are defined on a measurable space (Ω,B(Ω)) with nonempty
closed set Ω ⊂ Rk and Borel σ-algebra B(Ω) of Ω. On this set we have to
define a topology in order to use general results. For our purposes the most
convenient is the topology of weak convergence:

Definition 2.12 (Weak convergence). Consider p, {pν}∞ν=1 ∈ P. The se-
quence {pν}∞ν=1 is said to converge weakly to p (written pν

w−−−→
ν→∞

p) if for any

bounded continuous function f : Rk → R we have∫
Ω

f(ω̄) dpν(ω̄) −−−→
ν→∞

∫
Ω

f(ω̄) dp(ω̄).
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In section 3.2 we also employ other type of convergence:

Definition 2.13 (Uniform convergence). Suppose f, fν : X → R are real-
valued functions. We say that the sequence {fν}∞ν=1 is uniformly convergent
with limit f if for every ε > 0, there exists N ∈ N such that for all x ∈ X
and all ν ≥ N , |fν(x)− f(x)| < ε.

2.2 Introduction to stochastic programs
By a stochastic programming problem we usually understand an optimization
problem of the form

inf
x∈X

Epf(x, ω)

s.t. Epgj(x, ω) ≥ 0, j = 0, . . . , J,
(2.1)

where ω is a random parameter, i.e. a measurable mapping ω(ξ) on proba-
bility space (Ξ,Σ, P ) with values in Ω, where Ω is nonempty closed subset
of Rk. For the sake of simplicity we omit the argument ξ of ω. By ω̄ we will
denote a realization ω(ξ) ∈ Ω, ξ ∈ Ξ.

Note that the mapping ω generates the probability distribution p :=
P ◦ ω−1 on (Ω,B(Ω)) (where B(Ω) denotes Borel σ-algebra of Ω), which
provides all relevant probabilistic information about the considered random
parameter. The probability distribution p is known and does not depend on
decision x.

By X ⊂ Rn we denote a given set of decisions not depending on ω. The
random objective function f and functions gj, j = 0, . . . , J, of a decision
x ∈ X are defined on X × Ω with values in extended reals R̄. It is assumed
that f, gj, j = 0, . . . , J, are measurable in ω and lower semicontinuous in x.
By Epf(x, ω) we understand the expectation under p, i.e.

Epf(x, ω) :=

∫
Ω

f(x, ω̄) dp(ω̄).

The expectation in the constraints and in the objective function can be re-
placed by other function of decision and random variable nonlinear in p.

A very important class of stochastic problems penalizes the infeasibility
by defining a new function Φ(x, ω), which quantifies the violation of the
stochastic constraints gj(x, ω) ≥ 0, j = 0, . . . , J . In this approach we take
Φ(x, ω) = 0 if x and ω satisfy all the above mentioned constraints. Then we
reformulate the problem (2.1) as being

inf
x∈X

f(x) + EpΦ(x, ω). (2.2)
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Models where penalties are used are also called stochastic problems with
recourse, see e.g. Prékopa [42]. These stochastic programs are considered in
chapters 5 and 6 of the thesis.

For stochastic programming the timing and sequence of decisions and re-
vealing of specific realizations of random variable is crucial. Therefore, in
stochastic programming we define stage as a point in time where some deci-
sion variable is set. A stage is followed by an event epoch where some random
variables are fixed according to their distribution. Some further decision can
be made at the next stage, etc. We talk about multi-stage programming, for
more details we refer e.g. to Prékopa [42] and to chapters 5 and 6 of the
thesis for the exact formulations and applications.

If the probability distribution p of the random variable ω is discrete, we
deal with a finite set of possible realizations of ω, i.e. Ω = {ω̄1, . . . , ω̄S},
where S denotes the number of all possible realizations (scenarios). Then
the distribution p is of the form p = (p1, . . . , pS)T with ps ≥ 0, s = 1, . . . , S,

and
S∑

s=1

ps = 1. Problem (2.1) becomes a deterministic optimization program

inf
x∈X

S∑
s=1

psf(x, ω̄s)

s.t.
S∑

s=1

psgj(x, ω̄s) ≥ 0, j = 1, . . . , J.

(2.3)

If the functions f, gj, j = 1, . . . , J, and all constraints defining X are linear,
we solve a problem of linear programming.

2.3 Linear programming and duality
As a standard formulations of a linear programming problem we find an
optimization problem like

min cTx
s.t. Ax = b,

x ≥ 0,
(2.4)

with the matrix A ∈ Rm×n, the objective’s coefficient c ∈ Rn, the right-hand
side vector b ∈ Rm and the decision vector x ∈ Rn

+.
We say that a linear problem is feasible if the set X := {x ∈ Rn

+ : Ax = b}
is nonempty.
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Lemma 2.1. The set X := {x ∈ Rn
+ : Ax = b} is either empty or it can be

expressed as a sum of convex polyhedron P and convex polyhedral cone C, i.e.

X = P + C := {z : z = x+ y, x ∈ P, y ∈ C},

where C := {y ∈ Rn
+ : Ay = 0} and P := conv {x0, . . . , xK} with x0, . . . , xK

being extreme points of X also called feasible basic solutions of problem (2.5).

Lemma 2.2. Assuming that X 6= ∅ the problem (2.5) has an optimal solution
if and only if cTy ≥ 0 for all y ∈ C. In this case an optimal solution can
be chosen among the extreme points x0, . . . , xK of X as the point minimizing
the objective function, i.e. the optimal solution x̂ ∈ argmin

k∈{1,...,K}
cTxk.

We define the dual problem to problem (2.5) as follows

max bTy
s.t. ATy ≤ c,

(2.5)

where y ∈ Rm stands for the dual decision variable. The set of feasible
solutions of the dual problem is denoted by Y := {y ∈ Rm : ATy ≤ c}. Note,
the dual of the dual problem is the primal problem again.

Between the primal and the dual problem there exist several relations.
We present theorems applied in the next chapters of the thesis. For the
proofs we refer e.g. to Kall and Mayer [34].

Lemma 2.3 (Weak duality). For any pair of feasible solutions x ∈ X and
y ∈ Y it holds that

bTy ≤ cTx.

Lemma 2.4 (Strong duality). If the primal problem is solvable, i.e. the
optimal solution of primal problem exists, then so is the dual problem, and
the optimal values of the two problems coincide, i.e.

min
x∈X

cTx = max
y∈Y

bTy.

Lemma 2.5 (Farkas lemma). The set of feasible solutions of primal problem
X is nonempty if and only if

ATy ≤ 0 implies bTu ≤ 0.
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2.4 Notation
Chapter 3 Stability of Bayes actions:

x decision variable;
X set of all feasible decisions/actions, X 6= ∅, X ⊂ Rn;
(Ξ,Σ, P ) probability space;
(Ω,B(Ω)) measurable space with B(Ω) Borel σ-algebra of Ω, Ω 6= ∅,

Ω ⊆ Rk;
ω random loss vector, measurable mapping ω : Ξ → Ω;
ω̄ realization ω(ξ) ∈ Ω, ξ ∈ Ξ;
p, q, {pν}∞ν=1 probability distributions of ω defined on (Ω,B(Ω));
P set of all probability distributions of ω on (Ω,B(Ω));
L(x, ω) loss random lower semicontinuous function, L : X× Ω → R̄;
f(x, ω) auxiliary function defined by f(x, ω) := L(x, ω)− L(x̂, ω);
x̂ Bayes (optimal) decision/action;
X̂(p) the set of all Bayes (optimal) actions with respect to proba-

bility distribution p;
ϑ(p) optimal value of Bayes decision problem with re-

spect to probability distribution p, i.e. ϑ(p) :=

inf

{∫
Ω

L(x, ω̄) dp(ω̄) : x ∈ X
}

;

U nonempty open subset of Rn;
B Euclidean unit ball;
X̂U(q) the set of all Bayes (optimal) actions of a perturbed model

(defined on X ∩ clU) with respect to probability distribution
q;

ϑU(q) optimal value of a perturbed Bayes decision problem (defined
on X ∩ clU) with respect to probability distribution q;

PLU subset of P ensuring that Bayes optimization problem is well-
defined for all p ∈ PLU ;

dLU (p, q) probability pseudometric measuring the uniform distance of
p, q ∈ PLU ;

ζh(p, q) Fortet-Mourier metric of h-order, h ≥ 1;
ψp(τ) growth function defined by ψp(τ) :=

min

{∫
Ω

L(x, ω̄) dp(ω̄)− ϑ(p) : d(x, X̂(p)) ≥ τ, x ∈ (X ∩ clU)

}
,

p ∈ PLU .
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Chapter 4 Minimax approach:
(Ξ,Σ, P ) probability space;
(Ω,B(Ω)) measurable space with B(Ω) Borel σ-algebra of Ω, Ω 6= ∅,

Ω ⊆ R;
ω random variable, measurable mapping ω : Ξ → Ω;
ω̄ realization ω(ξ) ∈ Ω, ξ ∈ Ξ;
p probability distribution of ω defined on (Ω,B(Ω));
Fω left-continuous distribution function of random variable ω;
P set of all probability distributions of ω on (Ω,B(Ω));
Pm set of all probability distributions of ω on (Ω,B(Ω)) fulfilling

the moment conditions E[ω] = µω and E[(ω − µω)2] = σ2
ω ;

Ps set of all symmetric probability distributions of ω on
(Ω,B(Ω));

Pm,s set of all symmetric probability distributions of ω on (Ω,B(Ω))
fulfilling the moment conditions E[ω] = µω and E[(ω−µω)2] =
σ2

ω;
Ps,u set of all symmetric and unimodal probability distributions of

ω on (Ω,B(Ω));
Pm,s,u set of all symmetric and unimodal probability distributions

of ω on (Ω,B(Ω)) fulfilling the moment conditions E[ω] = µω

and E[(ω − µω)2] = σ2
ω;

α probability level α ∈ (0, 1];
J number of moment constraints;
f value function, f : Ω → R;
g vector of moment functions, g := (g0, . . . , gJ), gj : Ω → R,

j = 0, . . . , J ;
q vector of moment constraints, q ∈ RJ+1;
y vector of dual decisions, y ∈ RJ+1;
VaRα(ω) Value-at-Risk at probability level α of random variable ω;
CVaRα(ω) Conditional Value-at-Risk at probability level α of random

variable ω;
VaRα,N(ω) Value-at-Risk at probability level α of normally distributed

random variable ω;
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VaRwc
α,P(ω) worst-case Value-at-Risk at probability level α of random vari-

able ω with distribution in P ;
CVaRwc

α,P(ω)worst-case Conditional Value-at-Risk at probability level α of
random variable ω with distribution in P .

Chapter 5 Minimax rule in two-stage programs:
c first-stage cost vector, c ∈ Rn1 ;
x first-stage decision;
x̂ optimal first-stage decision;
X set of feasible first-stage decisions, X := {x ∈ Rn1

+ : Ax = d};
θ auxiliary first-stage decision variable, θ ∈ R;
θ̂ optimal value of auxiliary first-stage decision variable θ;
(Ξ,Σ, P ) probability space;
(Ω,B(Ω)) measurable space with B(Ω) Borel σ-algebra of Ω, Ω 6= ∅,

Ω ⊆ Rk;
ω random second-stage vector, measurable mapping ω : Ξ → Ω;
ω̄ realization ω(ξ) = {q(ξ), b(ξ),W (ξ), T (ξ)} ∈ Ω, ξ ∈ Ξ;
q random second-stage cost vector, q(ξ) ∈ Rn2 ;;
b random second-stage right-hand side vector, b(ξ) ∈ Rm;
W random second-stage recourse matrix, W (ξ)m×n2 ;
T random second-stage technology matrix, T (ξ)m×n1 ;
S number of scenarios;
s scenario index, s = 1, . . . , S;
qs realization of second-stage cost vector under scenario s, s ∈

{1, . . . , S};
bs realization of second-stage right-hand side vector under sce-

nario s, s ∈ {1, . . . , S};
Ws realization of second-stage recourse matrix under scenario s,

s ∈ {1, . . . , S};
Ts realization of second-stage technology matrix under scenario

s, s ∈ {1, . . . , S};
p probability distribution of second-stage random vector ω de-

fined on (Ω,B(Ω));
P set of feasible second-stage probability distributions of ω on

(Ω,B(Ω));
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K number of extreme points of P ;
k index of extreme points of P ;
pk k-th extreme point of P , k = 1, . . . , K;
Tk admissible support corresponding to pk, k-th extreme point

of P , k = 1, . . . , K;
y second-stage decision vector, y ∈ Rn2

+ ;
π second-stage dual decision variable, π ∈ Rm;
π̂s optimal second-stage dual decision for scenario s, s ∈

{1, . . . , S};
Φ(x, ω) second-stage value function.

Chapter 6 Minimax rule in multi-stage programs:
T number of stages;
t stage index, t = 1, . . . , T ;

ω stochastic data process, ω = (ω1, . . . , ωT−1);
ωt−1,• path of stochastic process ω preceding stage t, t = 2, . . . , T ,

ωt−1,• := (ω1, . . . , ωt−1);
pt marginal probability distribution of ωt, t = 1, . . . , T − 1;
x decision process, x = (x1, . . . , xT );
Kt index of the last scenario tree node at stage t, t = 1, . . . , T ;
N set of all scenario tree nodes, N = {1, . . . , KT};
Nt set of all scenario tree nodes at stage t, Nt = {Kt−1, . . . , Kt},

t = 1, . . . , T ;
G(n) set of all nodes corresponding to a subtree rooted at the node

n, n ∈ N ;

n index of node, n ∈ N ;
a(n) index of an unique ancestor of node n, n ∈ N \ {1};
D(n) set of node n descendants, n ∈ N \ NT ;
xn decision vector corresponding to node n, 0 ≤ xn ≤ un, xn ∈

Rkn , n ∈ N ;
un upper bound on decision xn corresponding to node n, un ∈

Rkn , n ∈ N ;
cn cost vector corresponding to node n, cn ∈ Rkn , n ∈ N ;
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bn right-hand side vector corresponding to node n, bn ∈ Rhn ,
n ∈ N ;

Wn recourse matrix corresponding to node n, Wn ∈ Rhn × Rkn ,
n ∈ N ;

Tn technology matrix corresponding to node n, Tn ∈ Rhn × Rkn ,
n ∈ N ;

pn marginal probability of node n, n ∈ N ;
pn,m transition probability of getting from node n to node m, n ∈

Nt−1, m ∈ Nt, t = 2, . . . , T ;
ln number of immediate descendants of node n, n ∈ N \ NT ,

ln = |D(n)|;
pn vector of transition probabilities {pn,m}m∈D(n), pn ∈ Rln

+ ,∑
m∈D(n)

pn,m = 1;

Mt matrix of transition probabilities between nodes nt−1 ∈ Nt−1

and nt ∈ Nt, t = 1, . . . , T − 2;
Pn set of all feasible probability distributions pn, n = 1, . . . KT−1;
ePn number of extreme points of Pn ,n = 1, . . . , KT−1;
T Pn

k admissible support corresponding to k-th extreme point of Pn,
k = 1, . . . , ePn , n = 1, . . . , KT−1;

F1 optimal value of multi-stage minimax stochastic program;
Fn(xa(n)) optimal value of descendant problem defined on a subtree

rooted at node n, n ∈ N \ {1};
θn auxiliary decision variable at node n, n ∈ N \ NT ;
vn dual variable at node n corresponding to the constraint

Wnxn = Bn − Tnxn, n ∈ N ;
wn dual variable at node n corresponding to the constraint ob-

tained by optimality cut, n ∈ N \ NT ;
λn dual variable at node n corresponding to the upper bound on

decision variable xn, n ∈ N ;
zn dual variable at node n corresponding to the constraint ob-

tained by feasibility cut, n ∈ N \ NT ;
sn number of optimality cuts added at node n, n ∈ N \ NT ;
rn number of feasibility cuts added at node n, n ∈ N \ NT .



Chapter 3

Stability of Bayes actions

Incomplete or unprecise knowledge of input parameters of solved models in-
fluences the quality of the obtained optimal decisions which may be then
quite different from the truly optimal actions. In Bayes models, the uncer-
tainties are incorporated into the model and there is a chance to analyze
stability of decisions with respect to the perturbed input, new information,
etc. Simple economic applications of Bayesian methods have been frequently
used in practice, see e.g. Wonnacott and Wonnacott [62]. The remaining
part of this chapter is devoted to stability analysis for Bayes decision models
and based on Čerbáková [13].

In Bayes decision model, see Berger [2], the only unknown quantity is the
parameter ω(ξ) ∈ Ω, where the set of admissible values Ω is a non-empty
closed subset of Rk. For the simplicity we will omit the argument ξ of ω and
write ω̄ for a realization ω(ξ). We assume that ω is random with probability
distribution p belonging to a class of all probability distributions P defined
on (Ω,B(Ω)), where B(Ω) denotes Borel σ-algebra of Ω. The decision maker
chooses his action (decision) x from the set of all admissible actions X, where
X is supposed to be a non-empty closed subset of Rn. He makes his decision
on the basis of random lower semicontinuous loss function L : X × Ω → R̄
which represents the loss caused by action x when the true value of random
parameter is ω̄.
Definition 3.1 (Bayes action). An action x̂ ∈ X is called Bayes if and only
if it minimizes the expected loss

x̂ ∈ argmin
x∈X

∫
Ω

L(x, ω̄) dp(ω̄), (3.1)

where p is the assumed probability distribution at the time of decision mak-
ing. The set of all Bayes actions, i.e. the set of optimal solutions of (3.1)
with respect to p, is denoted by X̂(p).

24
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Distribution p can represent the prior probability distribution or, in statis-
tical decision problems, the posterior probability distribution after observing
the data. The posterior distribution combines the prior information with the
sample information represented by the likelihood function according to the
Bayes theorem, see Berger [2]. In view of stability discussed in the thesis, it
is not important to distinguish between p representing a prior or a posterior
distribution.

In real problems we usually do not know the exact probability distribution
of random parameters. We have to estimate them. Therefore, it is very
important to be able to calculate an error, which can be caused by using
estimated distribution or be confident the error will be sufficiently small.
And this is the problem of stability, i.e. small modifications of the underlying
probability distribution or problem formulation are supposed to cause only
small changes of solutions.

In this chapter we shall give not only the usual continuity results, see def-
inition 3.2 below, but we shall also quantify the errors in minimal expected
loss and in the Bayes actions due to perturbations. Such results are of im-
portance in real-life problems, e.g. in robustness analysis of the obtained
results.
Definition 3.2 (Stable action). We say that a Bayes action x̂ ∈ X̂(p) is
stable if for every sequence of probability distributions {pν , ν ∈ N} weakly
converging to p, pν

w−−−→
ν→∞

p, where p, pν ∈ P ,∀ν, and for every sequence of
loss functions {Lν , ν ∈ N} converging (in some topology) to L∫

Ω

Lν(x̂, ω̄) dpν(ω̄)− inf
x∈X

∫
Ω

Lν(x, ω̄) dpν(ω̄)

 −−−→
ν→∞

0 (3.2)

holds true.
It was shown in Kadane and Chuang [31] that for {Lν , ν ∈ N} converging

to L uniformly in x and ω̄, the condition (3.2) is equivalent to∫
Ω

L(x̂, ω̄) dpν(ω̄)− inf
x∈X

∫
Ω

L(x, ω̄) dpν(ω̄)

 −−−→
ν→∞

0, (3.3)

which can be rewritten as

inf
x∈X

∫
Ω

[L(x, ω̄)− L(x̂, ω̄)] dpν(ω̄) −−−→
ν→∞

inf
x∈X

∫
Ω

[L(x, ω̄)− L(x̂, ω̄)] dp(ω̄) = 0. (3.4)
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The stability of x̂ then becomes the question of the continuity, at p, of the
infimum integral functional

inf


∫
Ω

f(x, ω̄) dp(ω̄) : x ∈ X

 , (3.5)

where f(x, ω̄) := L(x, ω̄) − L(x̂, ω̄). We will assume that the loss function
L does not depend on ν, thus (3.3) can be used in definition of stability in-
stead of (3.2). All presented results can be extended to uniformly convergent
{Lν , ν ∈ N}.

Other formulations of stability of the Bayes decision problem can be found
in Kadane and Srinivasan [32]. The authors introduce two definitions of the
Strong Stability for ε-minimal solutions of the Bayes problem and derive
sufficient conditions for their equivalence. They also prove stability results
with respect to weak convergence of probability distributions based on the
work of Berger and Salinetti [3], Billingsley and Topsøe [4], Kadane and
Chuang [31] and Sallinetti [52]. The most important findings are mentioned
in section 3.2.

Using general stability results of Römisch [50] in the context of Bayes
decision analysis we shall be able to obtain error bounds for optimal values
(minimal expected losses) and for the solution sets (Bayes actions) caused
by perturbations of the underlying distribution. This concept of stability is
formulated in section 3.1, the main results on improved distances of solutions
sets are presented in theorems 3.1 and 3.2.

3.1 Stability theorems
According to definition 3.1, Bayes decision analysis deals with the problem

inf


∫
Ω

L(x, ω̄) dp(ω̄) : x ∈ X

 , (3.6)

namely with the behavior of the set of optimal solutions X̂(p) and optimal
values ϑ(p) in dependence on small changes of probability distribution p.
Together with the original problem (3.6) we consider a perturbed model with
another distribution q ∈ P instead of p. We apply the following notation:

ϑU(q) := inf


∫
Ω

L(x, ω̄) dq(ω̄) : x ∈ X ∩ clU
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for the optimal value of the perturbed model and

X̂U(q) :=

x ∈ X ∩ clU :

∫
Ω

L(x, ω̄) dq(ω̄) = ϑU(q)


for the set of optimal solutions of the perturbed model.

To measure the distance of probability distributions we define for any
nonempty and open subset U of Rn the set

PLU :=

{
q ∈ P : −∞ <

∫
Ω

inf
x∈X∩rB

L(x, ω̄) dq(ω̄) ∀r > 0,

sup
x∈X∩clU

∫
Ω

L(x, ω̄) dq(ω̄) <∞

} (3.7)

to ensure all mentioned optimization problems are well defined. On PLU we
establish the following probability pseudometric

dLU (p, q) := sup
x∈X∩clU

|
∫
Ω

L(x, ω̄) dp(ω̄)−
∫
Ω

L(x, ω̄) dq(ω̄)|. (3.8)

A uniform distance of the form (3.8) is called a distance having ζ-structure.

Example 3.1. An important class of probability metrics with ζ-structure
are the Fortet-Mourier metrics defined for h ≥ 1 by

ζh(p, q) := sup
L∈Lh

|
∫
Ω

L(ω̄) dp(ω̄)−
∫
Ω

L(ω̄) dq(ω̄)|,

where

p, q ∈ Ph :=

q ∈ P :

∫
Ω

‖ω̄‖h dq(ω̄) <∞


and Lh denotes the classes of locally Lipschitz continuous functions that
increase with h, i.e.

Lh := { L : Ω → R : |L(ω̄1)− L(ω̄2)| ≤ max{1, ‖ω̄1‖, ‖ω̄2‖}h−1‖ω̄1 − ω̄2‖,
∀ω̄1, ω̄2 ∈ Ω } .

In the one-dimensional case we can use the following explicit formula

ζh(p, q) =

∞∫
−∞

max{1, |t|h−1}|G(t)−H(t)| dt,
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where G,H are distribution functions associated with p, q, see Dupačová and
Römisch [20], Rachev [44]. For example, for two 0-1 random variables

X1 =

{
0 with probability p1,

1 with probability 1− p1,

and

X2 =

{
0 with probability q1,

1 with probability 1− q1,

p1, q1 ∈ [0, 1], with probability distributions p, q we obtain ζh(p, q) = |p1−q1|
for h ≥ 1.

To state the main stability results for optimal decisions we need to intro-
duce the growth function

ψp(τ) := min


∫
Ω

L(x, ω̄) dp(ω̄)− ϑ(p) : d(x, X̂(p)) ≥ τ, x ∈ (X ∩ clU)


and its inversion ψ−1

p (t) := sup {t ∈ R+ : ψp(τ) ≤ t} .

Theorem 3.1. Let L : Rn × Ω → R̄ be a random lower semicontinuous
function, X̂(p) 6= ∅ and U ⊂ Rn be an open bounded neighbourhood of X̂(p),
where p ∈ PLU .

Then the multifunction X̂U : (PF , dF ) → Rn is upper semicontinuous at
p and for any q ∈ PFU , the following properties hold

|ϑ(p)− ϑU(q)| ≤ dLU (p, q), (3.9)

∅ 6= X̂U(q) ⊂ X̂(p) + ψ−1
p (2dLU (p, q))B (3.10)

with B denoting the Euclidean unit ball.

For more general problem a similar result is proved in Römisch [50], the-
orem 5 and theorem 9. We present here a version of proof for our special
problem where the set X does not depend on probability distribution and we
obtain a tighter bound (3.10) for optimal decisions.

Proof. For x ∈ X∩clU and q ∈ PLU define the function f from (X∩clU)×PLU

to R by f(x, q) :=
∫
Ω

L(x, ω̄) dQ(ω̄). The function is lower semicontinuous and

finite with respect to (3.7), see theorem 3 in Römisch [50]. Hence, X̂U(q) is
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nonempty for each q ∈ PLU . For x̂ ∈ X̂(p) and x̃ ∈ X̂U(q) the inequalities
(3.9) follows:

|ϑ(p)− ϑU(q)| ≤ max

{
|
∫
Ω

L(x̂, ω̄)(q − p) (dω̄)|, |
∫
Ω

L(x̃, ω̄)(p− q) (dω̄)|
}

≤ dLU (p, q).

The mapping X̂U is closed at p ∈ PLU and, hence, upper semicontinuous at
p.

By definition of ψ, dLU (p, q) and with x̃ ∈ X̂U(q) ⊂ (X ∩ clU) =: XU(p)
we derive

ψ(d(x̃, X̂(p))) ≤ |
∫
Ω

L(x̃, ω̄) dp(ω̄)− ϑ(q)|

≤ |
∫
Ω

L(x̃, ω̄)(p− q) (dω̄) + ϑU(q)− ϑ(p)|

≤ |
∫
Ω

L(x̃, ω̄)(p− q) (dω̄)|+ |ϑU(q)− ϑ(p)|

≤ 2dLU (p, q).

From here we obtain d(x̃, X̂(p)) ≤ ψ−1
p (2dLU (p, q)), which implies (3.10).

Theorem 3.1 stands as a basic tool for measuring errors caused by em-
ploying an inaccurate probability distribution. We illustrated under which
conditions it can be declared that small changes of the underlying distri-
bution do neither evoke a significant distance of Bayes actions (3.10) nor
difference in suffered losses (3.9).

If, in particular, the problem (3.6) has k-order growth at the solution set
X̂(p) for some k ≥ 1, i.e. ψp(τ) ≥ γτ k for each small τ ∈ R+ and some
γ > 0, then for x̃ ∈ X̂U(q) and p, q ∈ PLU ,

γd(x̃, X̂(p))k ≤ ψ(d(x̃, X̂(p)) ≤ 2dLU (p, q).

Hence,

∅ 6= X̂U(q) ⊂ X̂(p) +

(
2

γ
dLU (p, q)

) 1
k

B.

Localized optimal values ϑU(q) and solution sets X̂U(q) can be replaced
by their global versions ϑ(q) and X̂(q), e.g. if the problem (3.6) is convex,
X̂U(q) ⊂ U and ∃δ > 0 such that ∀q ∈ PLU : dLU (p, q) < δ (cf. Römisch [50]).

In the next theorem we combine convexity with properties of locally Lip-
schitz functions. A similar theorem can be also found in Römisch [50].
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Theorem 3.2. Let the assumptions of theorem 3.1 be satisfied. Furthermore,
let X be convex and L(·, ω̄) be convex on X for each ω̄ ∈ Ω. If there exist
constants K > 0, h ≥ 1 such that 1

K
L(x, ·) ∈ Lh for each x ∈ X ∩ clU then

∃δ > 0 such that
|ϑ(p)− ϑ(q)| ≤ Kζh(p, q),

∅ 6= X̂(q) ⊂ X̂(P ) + ψ−1
p (2Kζh(p, q))B,

whenever p, q ∈ Ph and ζh(p, q) < δ.

Proof. The statement follows by application of theorem 3.1 and the fact that
1
K
L(x, ·) ∈ Lh implies dLU (p, q) ≤ Kζh(p, q).

For convex model (3.6) it can be proved, see Rockafellar and Wets [48],
theorem 7.69 and Römisch [50], theorem 13, that the ε-minimal solution sets
behave Lipschitz continuously in terms of the Pompeiu-Hausdorff distance

D∞(C,D) := inf{η ≥ 0 : C ⊂ D + ηB, D ⊂ C + ηB}

defined for nonempty closed sets C,D ⊂ Rn. By ε-minimal solution set we
understand, for some ε > 0, the set

X̂ε(p) := {x ∈ X :

∫
Ω

L(x, ω̄) dp(ω̄) ≤ ϑ(p) + ε}.

Theorem 3.3. Let L be a random lower semicontinuous convex function, X
closed convex, p ∈ PLU and X̂(p) be nonempty and closed. Then there exist
constants ρ > 0 and ε̄ > 0 such that the estimate

D∞(X̂ε(p), X̂ε(q)) ≤
2ρ

ε
dLU (p, q)

holds for U := (ρ+ ε̄)B and any ε ∈ (0, ε̄), q ∈ PLU such that dLU (p, q) < ε.

3.2 Stability with respect to weak convergence
of probability measures

Let us return to the definition 3.2 of stability of Bayes actions with respect to
weak convergence of {pν ∈ P , ν ∈ N} to p ∈ P . We derived that the stability
of Bayes actions is under uniform convergence of loss functions equivalent to
the convergence

inf
x∈X

∫
Ω

f(x, ω̄) dpν(ω̄) −−−→
ν→∞

inf
x∈X

∫
Ω

f(x, ω̄) dp(ω̄). (3.11)
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In previous section we introduced how we can measure the distance of the two
optimal values from (3.11), cf. (3.9). Now we show under which assumptions
this distance converge to 0, i.e. when x̂ ∈ X̂(p) is stable.

The most cited conditions of stability come from Salinetti [52], we present
them in the next theorem.

Theorem 3.4. Assume that

(i) L : X× Ω → R is lower semicontinuous on X× Ω,

(ii) L(x̂, ·) is continuous on Ω,

(iii) L has locally equi-lower-bounded growth, i.e. ∀x ∈ X there exist a neigh-
bourhood U(x) of x and b(x) ∈ R such that for all x̃ ∈ U(x),

L(x̃, ω̄)− L(x̂, ω̄) ≥ b(x), ∀ω̄ ∈ Ω.

Then x̂ ∈ X̂(p) is stable if and only if for any sequence pν
w−−−→

ν→∞
p and every

ε > 0 the sequence  inf
x∈X

∫
Ω

f(x, ω̄) dpν(ω̄), ν ∈ N


has a bounded sequence of ε-minimal solutions. It means that for any ε > 0
there exist a compact subset Kε ⊂ X and a sequence {xν ∈ Kε, ν ∈ N} such
that for all n ∫

Ω

f(xν , ω̄) dpν(ω̄) < inf
x∈X

∫
Ω

f(x, ω̄) dpν(ω̄) + ε.

Assumptions (i) and (ii) imply that f (defined in (3.5)) is lower semicon-
tinuous on X×Ω. Condition (iii) is trivially satisfied for L bounded on X×Ω.
The existence of bounded sequence of ε-minimal decisions is guaranteed e.g.
when X is compact.

To derive other sufficient conditions for stability in sense of definition 3.2
we employ the following representation∫

Ω

L(x̂, ω̄) dpν(ω̄)− inf
x∈X

∫
Ω

L(x, ω̄) dpν(ω̄).



CHAPTER 3. STABILITY OF BAYES ACTIONS 32

Adding terms ± inf
x∈X

∫
Ω

L(x, ω̄) dp(ω̄) and ±
∫
Ω

L(x̂, ω̄) dp(ω̄) we can write

∫
Ω

L(x̂, ω̄) dpν(ω̄) − inf
x∈X

∫
Ω

L(x, ω̄) dpν(ω̄)

=
∫
Ω

L(x̂, ω̄) dp(ω̄)− inf
x∈X

∫
Ω

L(x, ω̄) dp(ω̄)

+
∫
Ω

L(x̂, ω̄) dpν(ω̄)−
∫
Ω

L(x̂, ω̄) dp(ω̄)

+ inf
x∈X

∫
Ω

L(x, ω̄) dp(ω̄)− inf
x∈X

∫
Ω

L(x, ω̄) dpν(ω̄)

=
∫
Ω

L(x̂, ω̄) dpν(ω̄)−
∫
Ω

L(x̂, ω̄) dp(ω̄)

− sup
x∈X

(
−

∫
Ω

L(x, ω̄) dp(ω̄)

)
+ sup

x∈X

(
−

∫
Ω

L(x, ω̄) dpν(ω̄)

)
≤

∫
Ω

L(x̂, ω̄) dpν(ω̄)−
∫
Ω

L(x̂, ω̄) dp(ω̄)

+ sup
x∈X

[(
−

∫
Ω

L(x, ω̄) dpν(ω̄)

)
−

(
−

∫
Ω

L(x, ω̄) dp(ω̄)

)]
≤ |

∫
Ω

L(x̂, ω̄) dpν(ω̄)−
∫
Ω

L(x̂, ω̄) dp(ω̄)|

+ sup
x∈X

|
∫
Ω

L(x, ω̄) dp(ω̄)−
∫
Ω

L(x, ω̄) dpν(ω̄)|

≤ 2dL(pν , p),

where
dL(pν , p) := sup

x∈X
|
∫
Ω

L(x, ω̄) dpν(ω̄)−
∫
Ω

L(x, ω̄) dp(ω̄)|.

The problem of stability of Bayes action x̂ ∈ X becomes now the task of
p-uniformity of a class Lx := {Lx(·) := L(x, ·) , x ∈ X}, i.e. under which
conditions

lim
ν→∞

dL(pν , p) = 0 (3.12)

holds true for every pν weakly convergent to p.
In Kadane and Srinivasan [32] , theorem 5.1, necessary (A1) and sufficient

(A2) conditions ensuring (3.12) can be found for Lx, a class of bounded, real
valued, measurable functions defined on Ω:

(A1) sup
x ∈ X

ω̄1, ω̄2 ∈ Ω

|L(x, ω̄1)− L(x, ω̄2)| <∞,

(A2) lim
ε↓0

sup
x∈X

[∫
Ω

sup
ω̄1,ω̄2∈B(ω̄,ε)

|L(x, ω̄1)− L(x, ω̄2)| dp(ω̄)

]
= 0

with B(ω̄, ε) the ball of radius δ centered at ω̄.
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Condition (A1) is satisfied if Lx is the class of equi-bounded functions. The
assumption of equi-continuity of La then implies (A2). Equi-continuity is
fulfilled for L(x, ω̄) continuous in ω̄ uniformly in x. Other sufficient condition
for equi-continuity is local Lipschitz continuity, i.e. existence of function
g(x, ω̄), α > 0, ε > 0 :

(a) |L(x, ω̄1)− L(x, ω̄2)| ≤ g(x, ω̄1) ‖ ω̄1 − ω̄2 ‖α,

(b) sup
x∈X

∫
Ω

g(x, ω̄) dp(ω̄) <∞.

hold true ∀ω̄2 ∈ B(ω̄1, ε).
For a detailed discussion of above mentioned requirements on stability see

Billingsley and Topsøe [4], Kadane and Chuang [31], Kadane and Srinivasan
[32], Lucchetti and Salinetti [37] and Salinetti [52].

Moreover, results presented in section 3.1 can be also applied to sample
based Bayes actions (solutions of (3.6) with respect to empirical probability
distributions), see Berger and Salinetti [3].



Chapter 4

Minimax approach

Consider a general framework for stochastic programs

inf
x∈X

Epf(x, ω), (4.1)

where X ⊂ Rn denotes a given set of decisions, ω is a random parameter with
values in Ω, where Ω is closed subset of Rk, and with a known probability
distribution p which does not depend on x. The random objective function
f of a decision x ∈ X is defined on X×Ω, Ep denotes the expectation under
p. Assume now that all infima are attained, which is related to the relatively
complete recourse, and that all expectations exist.

In many applications of stochastic programs there is some ambiguity
about the probability distribution p. The available information on proba-
bility distribution can be described by assuming that p belongs to a specific
class P of feasible probability distributions. The most common choices of P
are:

• P consists of probability distributions which fulfill certain moment con-
ditions, see Dupačová [17], Dupačová [18];

• P contains probability distributions with additional information, such
as symmetry or unimodality, see Čerbáková [12], Dupačová [19], Popescu
[40], Shapiro [55];

• P is a neighborhood of a hypothetical probability distribution p0, see
Pflug and Wozabal [39];

• P is the set of probability distributions consistent with some qualitative
information, see Bühler [6], Bühler [7], Bühler [8], Čerbáková [9];

34
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and their combinations as well. For other examples see Dupačová [21] and
references therein.

In this thesis we contemplate on sets of distributions determined by mo-
ment conditions, on symmetric and unimodal distributions and on probabil-
ity distributions consistent with some qualitative information. As a solution
technique we choose the minimax approach introduced e.g. in Žáčková [63].
There the decision maker searches for the best protection against the worst-
case probability distribution, i.e. he/she solves the problem

min
x∈X

sup
p∈P

Epf(x, ω). (4.2)

In 1963 Iosifescu and Theodorescu [28] defined the solution of stochastic
minimax program by the first player optimal mixed strategy in a two-person
zero-sum game

(X,P , F (x, p)) (4.3)

with F (x, p) := Epf(x, ω). Žáčková [63] introduced the notation of minimax
solution as an optimal pure strategy of the first player in the game (4.3). In
the most cases the corresponding mixed strategy is unknown and we only
have to settle for the knowledge of a set of possible probability distributions.

The minimax solutions exist under quite general assumptions, see e.g.
Simons [54]:

Theorem 4.1 (Minimax theorem). Let X be a nonempty and convex, com-
pact subset of some linear topological space X and P is a nonempty, convex
subset of some linear topological space Y. Assume that F : X × P → R is
lower-semicontinuous and quasi-convex on X and upper-semicontinuous and
quasi-concave on P. Then

min
x∈X

sup
p∈P

F (x, p) = sup
p∈P

min
x∈X

F (x, p).

We can apply the minimax decision rule and solve the problem (4.2) also
in cases when the Minimax theorem does not hold true. This allows us to
construct bounds for the optimal value of (4.1) valid for all p ∈ P and pro-
vides the worst-case analysis. In literature there are various applications of
the minimax approach, we refer e.g. to Dupačová [21] and reference therein.

The following parts of the thesis are denoted just to the minimax ap-
proach. In section 4.1 we present possible applications on the moment prob-
lem to derive risk measures the worst-case Value-at-Risk and the worst-case
Conditional Value-at-Risk under different assumptions on probability distri-
bution of a loss random variable. In section 4.2 and chapters 5 and 6 we
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consider a set of discrete probability distributions consistent with some qual-
itative information and derive algorithms for the two-stage and the multi-
stage stochastic minimax problems with linear recourse.

4.1 Moment problem
This part is devoted to possible applications of minimax approach to the
moment problem, discussed e.g. in Dupačová [20]. We derive and compare
upper bounds for two well-known risk measures Value-at-Risk and Condi-
tional Value-at-Risk under different available information on a probability
distribution of the underlying random variable. To overcome the incomplete
information about the distribution we will apply the worst-case strategy and
define the worst-case VaR and the worst-case CVaR.

We assume that the incomplete information on probability distribution
can be described by the set P of all possible distributions. Specially, our
choice of P will always correspond to specification of the distributions by
its first and second order moments. Therefore, the application of general
moment problem theory will be basic. The most important results of this
chapter come from the dual formulation of moment problem. Essential out-
comes in duality are derived in Popescu [40], Shapiro [55], Smith [59]. As
the next step, besides the knowledge of expected value and variance, we will
suppose other properties of considered distributions — symmetry and uni-
modality. Results are applied and illustrated on interbank exchange rate
data.

Recall the formulation of a general moment problem. We deal with uni-
variate random variable ω(ξ) with values in Ω, where Ω is nonempty closed
subset of R. For the simplicity we omit the argument ξ of ω. A realization
ω(ξ) is denoted by ω̄. The set of all probability distributions of ω defined on
(Ω,B(Ω)) is denoted by P which is supposed to be a convex set. Existence
of all mentioned expected values is assumed.

Suppose that every finite subset of Ω is B(Ω)-measurable. For a given
vector of functions g = (g0, . . . , gJ) : Ω → R and a sequence q = (q0, . . . , qJ)
we define the moment problem as

sup
p∈P

Ep[f(ω)]

s.t. Ep[g(ω)] = q.
(4.4)

Real valued functions f, gi, j = 0, . . . , J, are assumed to be B(Ω)-measurable
and p-integrable. We explicitly include the probability mass constraint by
setting q0 ≡ 1, g0 ≡ IΩ, where I denotes the indicator function.
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Actually, it suffices to solve the problem (4.4) with respect to discrete
probability distributions with a finite support on at most J + 1 points. First
results of this type date to the mid 1950.

Lemma 4.1. Let p be a probability distribution on (Ω,B(Ω)) such that real
valued functions gj, j = 0, . . . , J, are p-integrable and measurable on (Ω,B(Ω)).
Then there exists a probability distribution p̂ on (Ω,B(Ω)) with a finite sup-
port of at most J + 1 points such that Ep[gj(ω)] = Ep̂[gj(ω)] for all j =
1, . . . , J.

For the proof see e.g. Rogosinky [49] or Shapiro [55].
The moment problem restricted to probability distributions with a finite

support of at most S = J + 1 points can be written in the form of a linear
programming problem

sup
p ∈ RS

+

{ω̄1, . . . , ω̄S} ⊂ Ω

S∑
s=1

psf(ω̄s)

s.t.
S∑

s=1

psgj(ω̄s) = qj, j = 1, . . . , J,

S∑
s=1

ps = 1.

(4.5)

If we designate Υδ as the set of all Dirac distributions δω̄, ω̄ ∈ Ω1, then
we can also write

P = cl(conv(Υδ)). (4.6)

Due to lemma 4.1 and representation (4.6) we can formulate the correspond-
ing dual problem in the following way

inf
y∈RJ+1

yT q

s.t. y′g(ω̄)− f(ω̄) ≥ 0 ∀ω̄ ∈ Ω,
(4.7)

as the expected values from (4.7) are related now to Dirac distributions
δω̄, ω̄ ∈ Ω.

The weak duality holds, i.e. the optimal value of dual problem (4.7) is
greater or equal to the optimal value of primal problem (4.5). To fulfil the
strong duality we need some additional assumptions, e.g. Slater condition
(see Smith [59]):

1Recall that Dirac distribution δω̄ is the measure of mass one at ω̄.
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Lemma 4.2. If q is an interior point of {q ∈ RJ+1 : Ep[g(ω)] = q, p ∈ P},
then the optimal value of problem (4.5) is equal to the optimal value of the
corresponding dual problem (4.7).

For more details about duality and its application on the moment problem
we refer to Shapiro [55], Shapiro and Kleywegt [56], Smith [59].

4.1.1 Worst-case VaR and CVaR

Let ω represent random loss variable. We define by VaRα(ω) the minimal
level γ such that the probability the random loss ω achieves or exceeds γ is
not greater than given α ∈ (0, 1]. We are interested in small α close to 0.
Then we solve the problem

VaRα(ω) := min
γ∈R

γ

s.t. P (ω ≥ γ) ≤ α.
(4.8)

When the distribution of ω is perfectly known, using its left continuous dis-
tribution function Fω we obtain the optimal value

γ̂ = F−1
ω (1− α),

where F−1
ω is the inverse of Fω, i.e. F−1

ω (α) := inf{x : Fω(x) ≥ α}. Specially
if ω is normally distributed with expected value µω and variance σ2

ω we get

VaRα,N(ω) = µω + Φ−1(1− α) · σω,

where Φ is the distribution function of univariate normal distribution N(0, 1).
The second considered risk measure is Conditional Value at Risk. CVaR

expresses the expectation of values beyond the VaR. For α ∈ (0, 1) it can be
defined by

CVaRα(ω) := inf
a∈R
{a+

1

α
E[(ω − a)+]}, (4.9)

where (c)+ := max{0, c}. For more details about VaR and CVaR see e.g.
Acerbi and Tasche [1], Pflug [38] or Uryasev and Rockafellar [61].

In most cases we do not exactly know the distribution of random variable
ω. We are only able to specify the set P of feasible probability distributions
(e.g. the set of all distributions that fulfil some moment conditions, or the
set of symmetric or unimodal distributions, see the introduction to chapter
4). Then we can apply the minimax strategy and define the worst-case VaR,
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resp. the worst-case CVaR, with respect to the set of considered probability
distributions P by

VaRwc
α,P(ω) := min

γ∈R
γ

s.t. sup
p∈P

Pp(ω ≥ γ) ≤ α.
(4.10)

and
CVaRwc

α,P(ω) := sup
p∈P

inf
a∈R
{a+

1

α
Ep[(ω − a)+]}. (4.11)

The worst-case CVaR remains a coherent risk measure, for more details and
other possible approach see Zhu and Fukushima [64].

Worst-case Value-at-Risk
Denote the set of all probability distributions of ω fulfilling the first two
moment conditions by Pm, i.e. for given µω and σ2

ω, σω > 0, we have

Pm := {p ∈ P : Ep[ω] = µω, Ep[ω − µω]2 = σ2
ω}.

Lemma 4.3 (one-sided Chebyshev bound). Consider the moment problem
(4.4) with the set of feasible probability distributions Pm. Then the upper
bound for the upper tail Pp(ω ≥ γ), p ∈ Pm, is given by

sup
p∈Pm

Pp(ω ≥ γ) =

{
σ2

ω

σ2
ω+(µω−γ)2

for γ > µω,

1 for γ ≤ µω.
(4.12)

The lemma follows from Isii [29]. Applying this result to the definition of
the worst-case VaR (4.10) we get for γ > µω

VaRwc
α,Pm = µω +

√
1− α

α
σω. (4.13)

Worst-case Conditional Value-at-Risk
For the given expected value µω and variance σ2

ω we can rewrite the definition
(4.11) of the worst-case CVaR in successive steps. Firstly, due to the finite
expected value and convexity of the inner objective function in (4.11) we can
interchange supremum and infimum. From Dupačová [20] we obtain

max
p∈Pm

Ep[(ω − a)+] =
1

2
[µω − a+

√
σ2

ω + (µω − a)2].

Then by solving the problem

min
a∈R

{a+
1

2α
[µω − a+

√
σ2

ω + (µω − a)2]}
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we obtain for α ∈ (0, 1
2
] and a > µω the optimal solution

â = µω +
1− 2α

2
√
α(1− α)

σω

and then the formula

CVaRwc
α,Pm(ω) = µω +

√
1− α

α
σω. (4.14)

For a probability distribution identified by its first two moments and for
γ > µω the expression (4.14) coincides with that for VaRwc

α,Pm(ω).

4.1.2 Worst-case VaR and CVaR for symmetric distri-
butions

We focus on the possibility to improve the obtained upper bounds for the
worst-case VaR and the worst-case CVaR with given the first two moments by
adding supplemental information on symmetry of the underlying distribution
p of ω.

Definition 4.1. Let Ω = I ⊆ R be either a compact interval, or I = R.
We say that a distribution p of random variable ω defined on (Ω,B(Ω)) is
µω-symmetric if p[µω − ω̄, µω] = p[µω, µω + ω̄] ∀ω̄ ∈ Iµω , where Iµω := {ω̄ ≥
0 : µω − ω̄ ∈ I and µω + ω̄ ∈ I}.

The set Ps
µω

of all µω-symmetric probability distributions is convex and
closed under weak limits. We can also write Ps

µω
= cl(conv(Υs

µω
)), where

Υs
µω

= {p =
1

2
δµω+ω̄ +

1

2
δµω−ω̄, ω̄ ∈ Iµω}

is the set of µω-symmetric Dirac distributions. For more details see Popescu
[40].

We can rewrite the dual problem (4.7) for µω-symmetric distributions in
the following way

inf
y∈RJ+1

y′q

s.t. y′[g(µω − ω̄) + g(µω + ω̄)]− [f(µω − ω̄) + f(µω + ω̄)] ≥ 0 ∀ω̄ ∈ Iµω .
(4.15)

The expectations are calculated with respect to distributions from the set
Υs

µω
. If the bound obtained by solving (4.15) is achievable, then there exists
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an optimal distribution which is a convex combination of J+1 µω-symmetric
Dirac distributions. It holds under Slater condition, see Popescu [40], Shapiro
[55].

Worst-case Value-at-Risk

Lemma 4.4. Consider the moment problem (4.4) with

P ≡ Pm,s
µω

:= {p ∈ P s
µω

: Ep[ω] = µω, Ep[(ω − µω)2] = σ2
ω}.

Then the upper bound for the upper tail P (ω ≥ γ) identified by µω and σ2
ω is

given by

sup
p∈Pm,s

µω

Pp(ω ≥ γ) =

{
1
2
min{1, σ2

ω

(µω−γ)2
} for γ > µω,

1 for γ ≤ µω.

The proof can be found in Popescu [40]. Application of results from
lemma 4.4 to the definition of the worst-case VaR (4.10) for γ > µω leads to
the problem

min
γ>µω

γ

s.t. 1
2
min{1, σ2

ω

(µω−γ)2
} ≤ α.

The optimal value is attained for α < 1
2

and is equal to

VaRwc
α,Pm,s

µω
= µω +

√
1

2α
σω. (4.16)

For α ≥ 1
2

there exists only the infimum µω. If γ ≤ µω then the infimum
exists only for α = 1 and its value is −∞.

Worst-case Conditional Value-at-Risk
To compute the worst-case CVaR for symmetric probability distributions
with the given first two moments we need to calculate an upper bound for
the expectation of the term (ω − a)+.

Lemma 4.5. Let ω be a random variable with symmetric probability distri-
bution and given finite expected value µω and variance σ2

ω then

sup
µ∈Pm,s

µω

Ep[(ω − a)+] =


σ2

ω

8(a−µω)
for a > µω + σω

2
,

µω − a+ σ2
ω

8(µω−a)
for a < µω − σω

2
,

σω−a+µω

2
for µω − σω

2
≤ a ≤ µω + σω

2
,

(4.17)
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Proof. Consider the dual formulation (4.15) of moment problem and substi-
tute f(ω) := (ω − a)+, g(ω) := (IΩ, ω, ω

2)T and q = (1, µω, σ
2
ω + µ2

ω). Then
we solve the problem

min
y∈R3

y0 + µωy1 + (σ2
ω + µ2

ω)y2

s.t. 2y0 + 2µωy1 + 2(µω + ω̄)2y2 ≥ (µω − ω̄ − a)+ + (µω + ω̄ − a)+ ∀ω̄ ≥ 0.
(4.18)

In order to simplify let µω = 0. The results for µω 6= 0 can be derived by
substituting a− µω for a.

We obtain the following problem

min
y∈R2

y0 + y2σ
2
ω

s.t. 2y0 + 2y2ω̄
2 ≥ (−ω̄ − a)+ + (ω̄ − a)+ ∀ω̄ ≥ 0.

(4.19)

Evidently y2 > 0. We distinguish three cases:

• a > 0:
Constraints of the problem (4.19) imply

2y0 + 2y2ω̄
2 ≥

{
0 for 0 ≤ ω̄ ≤ a,
ω̄ − a for ω̄ > a.

(4.20)

First suppose that the parabola tangents the ray ω̄ − a, i.e.

2y0 + 2y2xω̄
2 = ω̄ − a.

We get y0 = 1
16y2

− a
2
> −a

2
. In that case the parabola cannot have

more than one common point with the ω̄-axis, therefore 2y0+2y2ω̄
2 ≥ 0.

The discriminant cannot be greater than zero. We realize the condition
y0 ≥ 0 and thereout y2 ≤ 1

8a
. Problem (4.19) reduces to

min 1
16y2

− a
2

+ y2σ
2
ω

s.t. 0 < y2 ≤ 1
8a
.

In case when Lagrangian multiplier corresponding to the upper con-
strain is equal to zero we the obtain solution ŷ2 = 1

4σω
, a ≤ σω

2
and

the optimal value σω−a
2

. Otherwise for a nonzero multiplier is ŷ2 = 1
8a

,
a > σω

2
and the optimal value is equal to σ2

ω

8a
. If we assume that the

parabola 2y0 + 2y2ω̄
2 tangents the ω̄-axis, we obtain the same results.

• a < 0:
Constraints of the problem (4.19) are reduced to

2y0 + 2y2ω̄
2 ≥

{
−2a for 0 ≤ ω̄ ≤ −a,
ω̄ − a for ω̄ > −a. (4.21)
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At first let the parabola 2y0 + 2y2ω̄
2 tangent the ray ω̄− a. We realize

the condition y0 = 1
16y2

− a
2
> −a

2
. The parabola cannot have more than

one common point with the ray −2a. By analogy with the case a > 0
we get y0 ≥ −a and y2 ≤ − 1

8a
. We obtain the optimal values σω−a

2
for

−a ≤ σω

2
and −a− σ2

ω

8a
for −a > σω

2
. The same result is obtained when

assuming that the parabola tangents the ray −2a.

• a = 0:
We solve problem (4.19) under the condition

2y0 + 2y2ω̄
2 ≥ ω̄ for ω̄ ≥ 0.

The parabola cannot have more than one common point with the axis
of the first quadrant, from here it follows y0 ≥ 1

16y2
. The problem (4.19)

reduces to
min
y2>0

1

16y2

+ y2σ
2
ω.

The minimum is achieved for ŷ2 = 1
4σω

. The optimal value is equal to
σω

2
.

The proof can be also found in Čerbáková [10]. If the bounds of lemma 4.4
are achievable, then they are attained for a discrete distribution concentrated
on a finite support.

The worst-case CVaR for symmetric distribution identified by its first two
moments is then calculated as

CVaRwc
α,Pm,s

µω
(ω) := inf

a∈R
{a+

1

α
sup

µ∈Pm,s
µω

Eµ[(ω − a)+]}.

Applying lemma 4.5 we obtain the solution

CVaRwc
α,Pm,s

µω
(ω) =


µω +

√
1
2α
σω for α < 1

2
,

µω +
√

1−α
2

σω

α
for α > 1

2
,

µω + σω for α = 1
2
.

(4.22)

Note, that for α < 1
2

the worst-case VaR and the worst-case CVaR are
identical.
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4.1.3 Worst-case VaR for symmetric and unimodal dis-
tributions

Assume that except the knowledge of the first two moments of ω we have
the information p is symmetric and unimodal.

Definition 4.2. Let Ω = I ⊆ R be either a compact interval, or I = R.
Distribution ω of random variable X defined on (Ω,B(Ω)) is said to be µω-
unimodal on I 3 µω if the corresponding distribution function is convex on
the left of µω and concave on the right of µω.

Let Pu
µω

denotes the set of continuous µω-unimodal probability distribu-
tions. Then Pu

µω
is convex and cl(Pu

µω
) is the set of all µω-unimodal distribu-

tions.
For univariate real random variables we can find continuous transforma-

tion from the set of all probability distributions P to the set of all unimodal
distributions cl(Pu

µω
). This result has been presented e.g. in Dupačová [20].

In consequence, we can write cl(Pu
µω

) = cl(conv(T u
m)), where

Υu
µω

= {δ[ω̄,µω ] : ω̄ ∈ I, ω̄ 6= µω}.

By δ[a,b] we denote probability distribution with uniform density on [a, b]. For
other properties of unimodal distributions, see Shapiro [57].

We obtain the convex set of all µω-symmetric unimodal distributions as
cl(Ps,u

µω
) = Ps

µω
∩ cl(Pu

µω
) = cl(conv(Υs,u

µω
)), where

Υs,u
µω

= {δ[µω−ω̄,µω+ω̄] : ω̄ ∈ Iµω , ω̄ 6= 0}.

For details see Popescu [40].
The corresponding dual problem (4.7) is

inf
y∈RJ+1

y′q

s.t. y′
µω+ω̄∫
µω−ω̄

g(z) dz −
µω+ω̄∫
µω−ω̄

f(z) dz ≥ 0 ∀ω̄ ∈ Iµω , ω̄ 6= 0,

y′g(µω)− f(µω) ≥ 0.

(4.23)

The last condition arises from adding δµω to the generating set Υs,u
µω

in order
to obtain closure.

By analogy with symmetric case, the optimal distribution exists if the
bound is achievable. Then it is a convex combination of J + 1 µω-symmetric
unimodal distributions, possibly including a Dirac distribution at µω.

Denote the set of all µω-unimodal and symmetric probability distribution
fulfilling the first two moment conditions by

Pm,s,u
µω

:= {p ∈ P s
µω

: Ep[ω] = µω, Ep[(ω − µω)2] = σ2
ω}.
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Lemma 4.6. Let ω be a random variable with symmetric unimodal distribu-
tion and given finite expected value µω and variance σ2

ω then

sup
µ∈cl(Pm,s,u

µω )

Pp[ω ≥ γ] =

{
1
2
min{1, 4

9
σ2

ω

(γ−µω)2
} for γ > µω,

1 for γ ≤ µω.
(4.24)

Proof. We substitute q = (1, µω, σ
2
ω), f(ω) = I[ω≥γ], g0(ω) = I[ω∈Ω], g1(ω) = ω

and g2(ω) = (ω − µω)2 to (4.23) and obtain the problem

min
y∈R3

y0 + µωy1 + σ2
ωy2

s.t. 2ω̄y0 + 2ω̄µωy1 + 2
3
ω̄3y2 ≥

µω+ω̄∫
µω−ω̄

I[z≥γ] dz ∀ω̄ > 0, ω̄ 6= 0

y0 + µωy1 ≥ I[µω≥γ].

(4.25)

Without loss of generality, we may assume that µω = 0. The results for
µω 6= 0 can be derived by substituting γ − µω for γ. We distinguish two
cases:

• γ ≤ 0:
We solve the following problem

min
y∈R2

y0 + σ2
ωy2

s.t. y0 + 1
3
ω̄2y2 ≥ 1 for 0 < ω̄ ≤ −γ,

2ω̄y0 + 2
3
ω̄3y2 ≥ ω̄ − γ for ω̄ > −γ,

y0 ≥ 1.

(4.26)

By the first condition we must have y2 ≥ 0. The optimum is achieved
for y0 = 1, y2 = 0. The bound is equal to 1.

• γ > 0:
We reformulate the problem (4.25) as

min
y∈R2

y0 + σ2
ωy2

s.t. ω̄y0 + 1
3
ω̄3y2 ≥ 0 for 0 < ω̄ < γ,

ω̄(2y0 − 1) + 2
3
ω̄3y2 ≥ −γ for ω̄ ≥ γ,

y0 ≥ 0.

(4.27)

The first constraint implies y2 ≥ 0. For y0 ≥ 1
2
, or y2 = 0, the optimum

is achieved for y0 = 1
2
, y2 = 0, and the bound is 1

2
.

In the case when 0 ≤ y0 <
1
2

and y2 > 0 the second condition holds

for ω̄ ≥ γ iff g(ω̃) ≥ 0, where ω̃ =
√

1−2y0

2y2
is the non-negative local
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minimum of the function g(ω) = γ+ω̄(2y0−1)+ 2
3
ω̄3y2. The requirement

g(ω̃) ≥ 0 is equivalent to the constraint y2 ≥ 2
9

(1−2y0)3

γ2 . The minimum

is achieved at y0 = 0 and y2 = 2
9γ2 , the optimal value is 2

9
σ2

ω

γ2 .

The proof was presented in Popescu [40] and corrected in Čerbáková [9].
By analogy with symmetric case, the discrete optimal distribution exists if
the bound is achievable.

Now we can handle the univariate worst-case VaR for symmetric unimodal
distribution of loss random variable ω with known expected value µω and
variance σ2

ω. The optimal value is solution of the problem

VaRwc
α,Pm,s,u

µω
(ω) := min

γ>µω

s.t. 1
2
min{1, 4

9
σ2

ω

(µω−γ)2
} ≤ α.

(4.28)

For α < 1
2

the minimum is

VaRwc
α,Pm,s,u

µω
(ω) = µω +

√
2

9α
σω.

For α ≥ 1
2

there exists only the infimum µω. If γ ≤ µω then the infimum
exists only for α = 1 and its value is −∞.

4.1.4 Numerical illustrations

The assumption of normality is frequently used in practice. When it is not
fulfilled, the maximal error in VaR, resp. CVaR, caused by holding to the
fixed normal distribution can be evaluated as the difference between the
worst-case VaR, resp. the worst-case CVaR, and VaR, resp. CVaR, value
provided by a specific distribution.

This numerical study compares the worst-case VaR for arbitrary, normal,
symmetric and symmetric unimodal distributions with the given first two
moments. Results for a random variable ω with expected value µω = 0 and
variance σ2

ω = 1 are summarized in Table 4.1 Figure 4.1.
In the next example we study interbank exchange rate increments be-

tween Norwegian Kroner NOK and Swedish Krona SEK during the time
period 1.1.2004 – 31.12.2004, see Figure 4.2. Our data represent increments
of daily closing values to insure data independence. We have chosen these
two currencies because of their long-standing stability. Hence, there is a per-
spective to fulfil the assumptions of symmetry, respectively unimodality.
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α VaRwc
α,Pm VaRwc

α,Pm,s
µω

VaRwc
α,Pm,s,u

µω
VaRα,N

0.01 9.9499 7.0711 4.7140 2.3263
0.02 7.0000 5.0000 3.3333 2.0537
0.03 5.6862 4.0825 2.7217 1.8808
0.04 4.8990 3.5355 2.3570 1.7507
0.05 4.3589 3.1623 2.1082 1.6449
0.1 3.0000 2.2361 1.4907 1.2816

Table 4.1: Comparison of the worst-case VaR for random variable ω with
µω = 0 and σ2

ω = 1, where VaRα,N is VaR computed for normal distribution.
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Figure 4.1: Comparison of the worst-case VaR for random variable ω with
µω = 0 and σ2

ω = 1 in dependence on α.

We apply the last 30 observations to estimate expected value and variance
for a calculation of the next worst-case level. The results are presented in
Figure 4.3. Real values of increments achieve or exceed the 5% worst-case
value VaRwc

α,Pm,s,u
µω

only in 3%, whereas the level VaRα,N in 6%. A possible
improvement of these bounds is in using robust estimations of expected value
and variance.

We tested symmetry by a test derived in Gupta [25]. This test is one
of the classical tests of symmetry based on the observed skewness. We test
null hypothesis that the coefficient of skewness is equal to zero against the
alternative that it is different from zero. The null hypothesis is rejected at
the probability level α = 0.05 only in few cases. For testing unimodality
we use a Hartigan’s DIP test of unimodality derived in Hartigan and Har-
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Figure 4.2: Interbank exchange rate between Norwegian Kroner NOK and
Swedish Krona SEK.

tigan [26]. DIP is defined as the maximum distance between the empirical
distribution and the best fitting unimodal distribution. We test unimodal-
ity against the alternative of multimodal probability distribution. We do
not reject unimodality at the probability level α = 0.05 in these intervals:
1.1.2004 – 27.5.2004, 24.6.2004 – 27.8.2004, 19.9.2004 – 17.10.2004, 7.11.2004
– 26.11.2004. We also tested normality by D’Agostino test. The normality
was rejected at probability level α = 0.05 approximately in one third of all
cases. Therefore, it makes sense to study the release of assumptions about
the underlying probability distribution.

The numerical experiments and tests of symmetry, unimodality and nor-
mality have been computed in R 1.7.0 using packages base and diptest, see
[43].
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Figure 4.3: The worst-case VaR for increments of NOK - SEK interbank
exchange rate.
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4.2 Qualitative information
Assume that P is the set of probability distributions with a finite support
Ω = {ω̄1, . . . , ω̄S} which are consistent with some qualitative information.
By qualitative information we understand an expert’s opinion formulating
probability relations of the type "realization ω̄i is not less probable than
realization ω̄j" (1 ≤, i, j ≤ S). This probability relation will be denoted by
�.

From the intuitive meaning of � it is clear that � should be reflexive and
transitive, i.e. we assume:

1. There exist at least two comparable realizations ω̄i, ω̄j ∈ Ω. We are
able to decide, wheatear the realization ω̄i is not less probable than the
realization ω̄j or vice-versa the realization ω̄j is not less probable than
the realization ω̄i.

2. Consider ω̄i ∈ Ω which is not less probable than ω̄j ∈ Ω and in addition
ω̄j ∈ Ω is not less probable than ω̄k ∈ Ω. Then ω̄i is not less probable
than ω̄k.

3. For all realizations ω̄ ∈ Ω it holds that ω̄ is not less probable than ω̄.

Hence, the qualitative information � is a weak partial order on Ω×Ω. Each
partial order can be represented by a directed graph. We denote the directed
graph corresponding with � by Γ.

The set of probability distributions consistent with a qualitative informa-
tion is then defined by

P =

{
p = (p1, . . . , pS)T ∈ RS

+ : pi ≥ pj if ω̄i � ω̄j,

ω̄i, ω̄j ∈ Ω, i, j = 1, . . . , S,
S∑

j=1

pj = 1

}
.

By pi we denote the probability of realization ω̄i, i.e. pi = p(ω̄i) for i =
1, . . . , S.

Such a set is a bounded polyhedron and a maximum of linear function of
p is attained at least at one of its extreme points, see lemma 2.2. Therefore
a characterization of its extreme points is crucial. We remind the definition
of extreme points:

Definition 4.3. The probability distribution p ∈ P is an extreme point of
P if there do not exist any probability distributions p̃, p̂ ∈ P , p̃ 6= p̂ and
λ ∈ (0, 1) such that

p = λp̃+ (1− λ)p̂.
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To simplify the computation of inner optimization problem of (4.2) we
define an admissible support of p ∈ P by

T (p) := {i ∈ {1, . . . , S} : pi > 0}. (4.29)

If p = (p1, . . . , pS)T ∈ P is an extreme point then

ps =

{ 1
|T (p)| for s ∈ T (p),

0 otherwise.
(4.30)

Moreover, the set T (p) is connected in the sense, that between two different
realizations ω̄i 6= ω̄j such that i, j ∈ T (p) (also nodes of graph Γ) there exists
a connecting undirected path in Γ. For more details see also Bühler [6] and
Bühler [8]. The following theorem summarizes properties of extreme points
of the set of discrete probability distributions consistent with qualitative
information �.

Theorem 4.2. Probability distribution p = (p1, . . . , pS)T ∈ P defined on
a finite set Ω = {ω̄1, . . . , ω̄S} is an extreme point of P, the set of all probability
distributions consistent with qualitative information �, iff for all ω̄i, ω̄j ∈ Ω
the following conditions hold

(i) pi > 0 and pj > 0 ⇒ pi = pj,

(ii) ω̄i � ω̄j ⇒ pi ≥ pj,

(iii) pi = pj > 0 ⇒ there exists an undirected path in graph Γ connecting
nodes ω̄i, ω̄j. Each node on this path has nonzero probability.

Proof. Condition (ii) ensures that the distribution p is consistent with the qual-
itative information �.

⇐: Firstly assume that the distribution p is an extreme point of the set P .
From the equality (4.30) it follows

ps =

{ 1
|T (p)| for s ∈ T (p),

0 otherwise.
(4.31)

Hence, for all ω̄i, ω̄j ∈ Ω such that pi > 0, pj > 0, we obtain ω̄i, ω̄j ∈
T (p) and consequently

pi = pj =
1

|T (p)|
.

The condition (i) is satisfied.
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Let pi = pj > 0. The set T (p) is connected, i.e. between any two real-
izations ω̄i 6= ω̄j such that i, j ∈ T (p), there exists an undirected path
{i, i1}, . . . , {im, j} in graph Γ connecting realizations ω̄i, ω̄ij , . . . , ω̄im , ω̄j

with i1, . . . , im ∈ T (p). Therefore, pi1 > 0, . . . , pim > 0. The condition
(iii) is fulfilled.

⇒: Suppose that p ∈ P agrees with assumptions (i) – (iii), but it is not an
extreme point of P , i.e. there exist p̃, p̂ ∈ P and λ ∈ (0, 1) : p̃ 6= p̂ such
that p = λp̂+ (1− λ)p̃. It follows that

T := {i ∈ T (p) : p̃i > pi} = {i ∈ T (p) : p̂i < pi} 6= ∅.

Evidently, T ⊂ T (p). Consider j ∈ T (p) \ T 6= ∅ and i ∈ T . In graph
Γ there exists an undirected path {i, i1}, . . . , {in, j} between nodes i, j
such that all nodes on this path have nonzero probability. Assumptions
(i) then implies pi = pi1 = · · · = pin = pj > 0.

From i ∈ T it follows

p̃i > pi = pi1 = · · · = pin = pj,

p̂i < pi = pi1 = · · · = pin = pj.

Hence, T = T (p) and it must hold

S∑
i=1

p̃i > 1 =
S∑

i=1

pi >
S∑

i=1

p̂i.

This is a contradiction with p̃, p̂ ∈ P and hence p must be an extreme
point of P .

These results were discussed in Bühler [7] and detailed in Čerbáková [9].
Theorem 4.2 implies that all extreme points of P are generalized discrete
distributions defined on a connected undirected subgraph of Γ.

Let {p1, . . . , pK} be the set of all extreme points of P and define Tk :=
T (pk), k = 1, . . . , K. Then we may significantly simplify the calculation of
problem (4.2) as follows:

min
x∈X

max
p∈P

S∑
i=1

pif(x, ω̄i) = min
x∈X

max
k∈{1,...,K}

∑
s∈Tk

1

|Tk|
f(x, ω̄s). (4.32)
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Example 4.1. Consider the set P defined on Ω = {ω̄1, ω̄2, ω̄3, ω̄4} of proba-
bility distributions consistent with the qualitative information

ω̄1 � ω̄3, ω̄4 � ω̄3.

Then P := {p = (p1, p2, p3, p4)
T ∈ R4

+ : p1 ≥ p3, p4 ≥ p3,
4∑

i=1

pi = 1}.

This information structure can be described by the directed graph Γ pre-
sented in the figure 1. Each oriented path in the graph corresponds to one
probability relation.

ω1
__

ω2ω3

ω4
__

__ __

Figure 4.4: Graph Γ.

There exist 4 extreme points which fulfil the conditions of theorem 4.2.
Namely, p1 = (1, 0, 0, 0)T , p2 = (0, 1, 0, 0)T , p3 = (0, 0, 0, 1)T , p4 = (1

3
, 0, 1

3
, 1

3
)T

with the corresponding admissible supports T1 = {1}, T2 = {2}, T3 = {3},
T4 = {1, 3, 4}.

No other admissible support generating an extreme point of P can be
obtained. Confront e.g. p5 = (1

2
, 1

2
, 0, 0)T ∈ P and T5 = {1, 2}. This vector

cannot be an extreme point of P because there does not exist any undirected
path in Γ connecting nodes ω̄1 and ω̄2.

In the following chapters 5 and 6 we introduce algorithms for solving
the two-stage and the multi-stage stochastic minimax programs with linear
recourse with the set of probability distributions consistent with the qual-
itative information � introduced in this section. However, the presented
algorithms work also for more general sets of probability distributions when-
ever P = conv{p1, . . . , pK}, where pi, i = 1, . . . , K, are extreme points of P .
Such an example is

P = {p ∈ RS
+ : Dp ≤ 0,

S∑
j=1

pj = 1},

where D is a fixed matrix composed of 0, 1 and −1. However, in general the
characterization of extreme points of P can be difficult, cf. Bühler [6] and
references therein.



Chapter 5

Minimax rule in two-stage
programs

This chapter deals with the minimax approach applied to the two-stage
stochastic programs with linear recourse and with discrete probability distri-
butions of random parameters consistent with the qualitative information �
introduced in the section 4.2. We deal with two different situations. Firstly,
it is assumed that the considered problem always has an optimal solution, i.e.
the assumption of relatively complete recourse holds. The second situation
does not require this assumption any more. For both cases a modified multi-
cut L-shaped decomposition method for solving two-stage minimax problems
is developed. Finally, other possible solution techniques described in litera-
ture are discussed.

Consider the minimax two-stage problem with linear recourse, i.e.

min
x∈X

sup
p∈P

{
cTx+ EpΦ(x, ω)

}
, (5.1)

where the random vector ω(ξ) = {q(ξ), b(ξ),W (ξ), T (ξ)} constitutes of the
components of the second-stage cost q(ξ) ∈ Rn2 , the second-stage right-hand
side b(ξ) ∈ Rm, the recourse matrix W (ξ)m×n2 and the technology matrix
T (ξ)m×n1 . The second-stage value function is given by

Φ(x, ω(ξ)) := min
{
q(ξ)Ty : W (ξ)y = b(ξ)− T (ξ)x, y ∈ Rn2

+

}
.

The nonempty set of feasible first-stage decisions is denoted by X = {x ∈
Rn1

+ : Ax = d}, where A and d are known matrix and vector with correspond-
ing dimensions. It is also assumed that c ∈ Rn1 is a known vector. The set
of all feasible probability distributions of ω defined on (Ω,B(Ω)) is denoted

53
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by P . For the sake of simplicity the argument ξ of ω will be omitted where
it is not necessary and we will write ω̄ for a realization ω(ξ).

Let the following assumptions hold:

(A1) The set of feasible distributions P is defined as the set of all probability
distributions p with finite support in fixed finite set Ω = {ω̄1, . . . , ω̄S},
which are consistent with the qualitative information �. We establish
the notation ω̄s = {qs, bs,Ws, Ts}, s = 1, . . . , S.

(A2) For all x ∈ X and s ∈ {1, . . . , S} there exists y ∈ Rn2
+ such that

Wsy = bs − Tsx.

(A3) For all s ∈ {1, . . . , S} there exists π ∈ Rm such that πTWs ≤ (qs)
T .

Relatively complete recourse assumption (A2) ensures feasibility of the
second-stage problem. Assumption (A3) of dual feasibility is applied to en-
sure boundedness of the second-stage problem.

Applying assumption (A1) we may reformulate the problem (5.1) in terms
of the scenario probabilities p1, . . . , pS, as follows

min
x∈X

{
cTx+ max

p∈P

S∑
s=1

psΦ(x, ω̄s)

}
, (5.2)

where

P =

{
p ∈ RS

+ : pi ≥ pj if ω̄i � ω̄j, ω̄i, ω̄j ∈ Ω, i, j = 1, . . . , S,
S∑

j=1

pj = 1

}
.

(5.3)
The inner maximization problem is now a linear programming problem over
a bounded polyhedron and hence the maximum value is always attained at
one of extreme points of the set P , see lemma 2.2. The objective function
of the first-stage problem (5.2) is a real-valued, piecewise linear and convex
function on X, see Riis and Andersen [47].

Let us now focus on the set of probability distributions consistent with
some qualitative information. Let K be the number of extreme points of
P and {T1, . . . , TK} the set of corresponding admissible supports defined in
(4.29).

Due to (4.32) it is sufficient to solve problem (5.2) only at extreme points
of P , i.e.

min
x∈X

{
cTx+ max

k∈{1,...,K}

∑
s∈Tk

1

|Tk|
Φ(x, ω̄s)

}
. (5.4)
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This is equivalent to the form with auxiliary decision variable θ

min cTx+ θ

s.t. θ ≥
∑

s∈Tk

1
|Tk|

Φ(x, ω̄s), k ∈ {1, . . . , K},

x ∈ X,
θ ∈ R.

(5.5)

This approach leads directly to the following modification of the L-shaped
algorithm.

5.1 L-shaped algorithm – with the assumption
of relatively complete recourse

The L-shaped decomposition method works as follows. We solve problem
(5.5) relaxing the first group of constraints. During the iteration process we
add to this problem further linear constraints as optimality cuts.

Optimality cuts ensue from dual formulation of the second-stage problem

Φ(x, ω̄s) := max
{
πT (bs − Tsx) : πTWs ≤ (qs)

T
}
, (5.6)

where π is vector of dual decision variables. By a linear programming duality,
we have for all x ∈ X and s = 1, . . . , S, that

Φ(x, ω̄s) ≥ (π̂s)
T (bs − Tsx),

where π̂s are optimal dual solutions for s = 1, . . . , S.
Defining Q(x, k) := EpkΦ(x, ω) (pk is the k-th extreme point of P , k =

1, . . . , K) we obtain for all x ∈ X

Q(x, k) ≥
∑
s∈Tk

1

|Tk|
(π̂s)

T (bs − Tsx).

If the solutions (x̂, θ̂) of problem (5.5) and π̂s, s = 1, . . . , S, of the correspond-
ing dual problems (5.6) are such that θ̂ < Q(x̂, k) for some k = 1, . . . , K, we
obtain the optimality cut for the first-stage decision x̂

θ̂ ≥
∑
s∈Tk

1

|Tk|
(π̂s)

T (bs − Tsx̂). (5.7)

Algorithm 5.1. Multicut L-shaped algorithm for the two-stage minimax
problem with qualitative information — with the assumption of relatively
complete recourse:
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Step 1 (Initialization) Let ν = 0 be the number of optimality cuts. Add the
constraint θ = 0 to the master problem

min cTx+ θ

s.t. x ∈ X,
θ ∈ R. (5.8)

Step 2 (Solve master and dual problems)

1. Solve the master problem (5.11) and store its solution (x̂, θ̂).

2. For all s ∈ Tk, k = 1, . . . , K, solve the dual problem (5.6) with
x = x̂ and store the solution π̂s.

Step 3 (Add optimality cuts) Set γ = True1. For all k = 1, . . . , K, check
whether θ̂ ≥ Q(x̂, k) holds for (x̂, θ̂):

Yes The current solution is optimal. STOP.

No Add optimality cuts:

1. Set γ = False.
2. If ν = 0 then drop the constraint θ = 0.
3. For those k ∈ {1, . . . , K} (let their number be K̄) for which
θ̂ < Q(x̂, k) add optimality cuts (5.7) to the master problem
(5.11).

4. Set ν = ν + K̄.
5. Return to Step 2.

The algorithm terminates in a finite number of iterations whenever a so-
lution to the minimax problem exists (e.g. problem is feasible and bounded).
This is a consequence of the fact that the set of dual feasible solutions for
scenarios s ∈ {1, . . . , S} defined by

{π ∈ Rm : πTWs ≤ (qs)
T}

is due to assumption (A3) nonempty convex polyhedral set with a finite
number of extreme points. Linear objective function of dual problem is then
maximized in one of these extreme points. Therefore, only a finite number
of optimality cuts can be generated since only a finite number of different
optimal dual solutions of problem (5.6) exists. Similar proof can be found

1The Boolean variable γ = True indicates that no optimality cut has been added in
this pass.
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in Riis and Andersen [47], Riis [45]. Assumptions (A1) - (A3) and X 6= ∅
ensure the existence of the optimal solution.

For classical L-shaped decomposition in the two-stage stochastic program-
ming problems with known probability distribution we refer e.g. to Kall and
Wallace [35].

5.2 L-shaped algorithm – without the assump-
tion of relatively complete recourse

Let us now consider the situation in the two-stage minimax problem without
the assumption (A2) of relatively complete recourse, i.e. we allow empty
set of feasible second-stage decisions for some x ∈ X. We have to adapt
the algorithm 5.1 by incorporating feasibility cuts to cut off such first-stage
decisions which cause an infeasibility of the second-stage problem. We also
accept empty set X of feasible primal solutions. In such a situation the
algorithm will terminate with problem infeasibility.

Farkas lemma 2.5 gives us a necessary and sufficient condition for a set of
feasible solution to be nonempty. Therefore, if for any first-stage decision x̂ ∈
X and scenario s ∈ {1, . . . , S} the set of the second-stage feasible solutions
is empty, i.e.

{y ∈ Rn2
+ : Wsy = bs − Tsx̂} = ∅

then there exist a vector πs such that

πT
s Ws ≤ 0 and πT

s (bs − Tsx̂) > 0. (5.9)

Adding feasibility cut of the form

πT
s (bs − Tsx̂) ≤ 0 (5.10)

to the first-stage problem we cut off the first-stage decision x̂ ∈ X which has
led to the infeasible dual problem.

Algorithm 5.2. Multicut L-shaped algorithm for the two-stage minimax
problem with qualitative information — without the assumption of relatively
complete recourse:

Step 1 (Initialization) Let ν = 0 be the number of optimality cuts and n = 0
be the number of feasibility cuts. Add the constraint θ = 0 to the
master problem

min cTx+ θ
s.t. x ∈ X,

θ ∈ R. (5.11)
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Step 2 (Solve master and dual problems)

1. Solve the master problem (5.11) and store its solution (x̂, θ̂). If
infeasible then STOP. The problem has no solution.

2. For all s ∈ Tk, k = 1, . . . , K, solve dual problem (5.6) with x =
x̂ and store its solution π̂s. If one of them is unbounded then
continue with Step 4. Otherwise go to Step 3.

Step 3 (Add optimality cuts) Set γ = True2. For all k = 1, . . . , K, check
whether θ̂ ≥ Q(x̂, k) holds for (x̂, θ̂):

Yes The current solution is optimal. STOP.
No Add optimality cuts:

1. Set γ = False.
2. If ν = 0 then drop the constraint θ = 0.
3. For those k ∈ {1, . . . , K} (let their number be K̄) for which
θ̂ < Q(x̂, k) add optimality cuts (5.7) to the master problem
(5.11).

4. Set ν = ν + K̄.
5. Return to Step 2.

Step 4 (Add feasibility cuts) For those s ∈ {1, . . . , S} (let them be S̄) for
which the dual second-stage problem is unbounded add feasibility cuts
(5.10). Set n = n+ S̄. Return to Step 2.

Theorem 5.1. If the problem is solvable, then Algorithm 5.2 terminates with
an optimal solution in a finite number of iterations.

Proof. The assumption (A3) ensures that for all s ∈ {1, . . . , S} the dual
problem (5.6) is always feasible. This implies that the dual objective function
Φ(x̂, ω̄s) is either finite or equal to +∞ (i.e. the primal second-stage problem
is infeasible).

If Φ(x̂, ω̄s) = +∞ then by Farkas lemma 2.5

{πs : πT
s Ws ≤ 0, (bs − Tsx̂)

Tπs > 0} 6= ∅.

By the definition 2.6 we have finitely many generating elements for the convex
polyhedral cone {πs : πT

s Ws ≤ 0} such that, after having used all of them to
construct feasibility cuts, for all feasible x, we should have

(bs − Tsx)
Tπs ≤ 0 ∀πs : πT

s Ws ≤ 0

2The Boolean variable γ = True indicates that no optimality cut has been added in
this pass.
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and hence solvability of the second-stage problem. Hence, Φ(x̂, ω̄s) = +∞
may appear only finitely many times for a finite number of scenarios. And
also only a finite number of optimality cuts can be generated, see discussion
below the algorithm 5.1.

It remains to prove that the algorithm terminates with the optimal solu-
tion x̂. In any iteration i for the optimal solution (x̂i, θ̂i) we have

cT x̂i + θ̂i ≤ cT x̂+ max
k∈{1,...,K}

∑
s∈Tk

1

|Tk|
Φ(x̂, ω̄s),

This is a consequence of the fact that the master problem is a relaxation of
problem (5.5). Optimality cuts cut of those solutions for which

θ̂i < max
k∈{1,...,K}

∑
s∈Tk

1

|Tk|
Φ(x̂i, ω̄s).

Therefore, after a finite number of iterations (let them be I) we have

θ̂I = max
k∈{1,...,K}

∑
s∈Tk

1

|Tk|
Φ(x̂I , ω̄s)

and hence x̂ = x̂I .

See also Kall and Wallace [35] for more details about L-shaped decompo-
sition algorithm. Its modification in case of minimax approach is discussed
in Riis and Andersen [47], Riis [45].

There are also other techniques for solving minimax stochastic programs
(with incomplete information). The one of numerical method for the stochas-
tic minimax problem was proposed by Ermoliev et al. in [23]. They combine
a projected quasi sub-gradient approach and generalized linear programming
techniques. Their procedure can be applied to general probability distribu-
tions and two-stage problems.

Later, Breton and Hachem [5] proposed two algorithms for the solution
of multi-periods dynamic minimax problems based on projected sub-gradient
and bundle methods. They suppose that the set of possible realizations of
random data is discrete and known. The set of possible probability distribu-
tions is assumed to satisfy a number of general moment conditions. Under
the same assumptions Takriti and Ahmed [60] developed a cut-and-branch
procedure for a two-stage stochastic minimax mixed-integer problem with an
application to electricity trading.
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Stochastic minimax problems have also been considered in approximation
techniques based on discretizations of general probability distributions. They
can be used to provide bounds for the original problem. See e.g. Freuendorfer
and Marohn [24] and references therein.

Applications of the worst-case approach to risk management are described
in Rustem and Howe [51].



Chapter 6

Minimax rule in multi-stage
programs

Consider a multi-stage linear stochastic programming model having decision
variables and constraints divided into groups corresponding to stages t =
1, . . . , T . Information structure of such models is crucial.

We adopt the general T -stage stochastic program formulation from Du-
pačová [22]. It can be defined by a stochastic data process ω = (ω1, . . . , ωT−1)
and by a decision process x = (x1, . . . , xT ). The components ω1, . . . , ωT−1 of
ω and the decisions x2, . . . , xT are assumed to be random vectors, not nec-
essarily of the same dimension, defined on some probability space (Ξ,Σ, P ),
while x1 is non-random vector-valued variable. The decision process is non-
anticipative.1 The sequence of decisions and observations is

x1, ω1, x2(x1, ω1), ω2, . . . , xT (x1, ω1, . . . , ωT−1).

Let us denote ωt−1,• := (ω1, . . . , ωt−1) the path of the stochastic data
process ω which precedes stage t. By pt, t = 1, . . . , T − 1, we understand the
marginal probability distribution of ωt and pt(ω

t−1,•), t = 2, . . . , T − 1, its
conditional probability distribution.

For applications we approximate the true probability distribution p of ω
by a discrete probability distribution carried by a finite number of atoms.
Hence, the supports of pt, t = 1, . . . , T − 1, and pt(ω

t−1,•), t = 2, . . . , T − 1,
are finite sets.

For disjoint sets of indicesNt = {Kt−1+1, . . . , Kt}, t = 2, . . . , T , let us list
ω̄nt all possible realizations of ωt−1,•, nt ∈ Nt. The total number of scenarios

1By non-anticipative we understand such conditions that our decisions cannot be influ-
enced by the future realizations of random outcomes. Our decisions depend only on past
decisions and past realizations of random variables involved in the model.

61
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is equal to the number of elements of NT . Each scenario thus generates
sequences of coefficients {cnt}T

t=2, {bnt}T
t=2, {Tnt}T

t=2, {Wnt}T
t=2, {unt}T

t=2. For
the first stage, vectors and matrices c1, b1, u1 and T1,W1 are known.

This information structure of multi-stage problem is represented by a non-
recombining scenario tree. Its nodes are determined by all considered real-
izations ω̄nt , nt ∈ Nt, t = 2, . . . , T , and by the root indexed as n1 = 1 ∈ N1.
Each realization ω̄nt+1 of ωt,•, t = 1, . . . , T − 1, has an unique ancestor (a re-
alization of ωt−1,•) denoted by a(nt+1) and a finite number of descendants
(realizations of ωt+1,•); their set will be denoted by D(nt+1). The set of all
nodes is represented by N = {1, . . . , KT}.

The path probabilities pnt > 0, nt ∈ Nt,
∑

nt∈NT

pnt = 1, t = 2, . . . , T, of nt-

th node realizations (i.e. realizations of ωt−1,•) may be obtained by stepwise
multiplication of the marginal probabilities pn2 , n2 ∈ N2, by the conditional
arc (transition) probabilities, say, pnτ−1,nτ , τ = 3, . . . , t, nτ ∈ Nτ , i.e.

pnt = pn2pn2,n3 · · · pnt−1,nt .

n2

...
Root ntnt-1n3

Figure 6.1: Scenario path.

Example 6.1. Consider the scenario tree in the figure 6.2. The number of
stages is T = 4 with K1 = 1, K2 = 4, K3 = 11 and K4 = 24.

Figure 6.2: Scenario tree.
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We introduce the following arborescent form of the T -stage stochastic
program:

min
xnt

, nt ∈ Nt

t = 1, . . . , T

cT1 x1 +

K2∑
n2=2

pn2c
T
n2
xn2 + · · ·+

KT∑
nT =KT−1+1

pnT
cTnT

xnT


s.t. W1x1 = b1,

Tnx1 + Wn2xn2 = bn2 , n2 ∈ N2,
Tn3xa(n3) + Wn3xn3 = bn3 , n3 ∈ N3,

. . .
TnT

xa(nT ) + WnT
xnT

= bnT
, nT ∈ NT ,

0 ≤ xnt ≤ unt , nt ∈ Nt, t = 1, . . . , T, (6.1)

in which the non-anticipativity constraints are included implicitly.

Let us assume:

(B1) There exists 0 ≤ x1 ≤ u1 such that W1x1 = b1 and for all xa(nt) and
nt ∈ Nt, t = 2, . . . , T , there exists 0 ≤ xnt ≤ unt such that Wntxnt =
bnt − Tntxa(nt). The ancestors a(nt) and the corresponding decision
variables xa(nt) come from constraints for the corresponding indices
nt−1 and variables xa(nt) ∼ xnt−1 .

Due to this assumption of relatively complete recourse we guarantee the
problem feasibility, i.e. the set of feasible solutions is nonempty. The problem
boundedness is ensured by finite (real) upper bounds unt (of xnt), nt ∈ Nt, t =
2, . . . , T . Therefore, the optimal solution always exists and hence the problem
(6.1) is also dual feasible.

6.1 Probability distributions consistent with
a qualitative information

The data process ω is modeled as a Markov chain with the corresponding
state space N , marginal probabilities pn2 , n2 ∈ N2 and transition probabil-
ities pnt−1,nt , nt−1 ∈ Nt−1, nt ∈ Nt, t = 2, . . . , T, of moving from state nt−1

to state nt. The Markov property ensures that the conditional probability
distribution of future states of the process, given the present state and all
past states, depends only upon the present state and not on any past states,
i.e. it is conditionally independent of the past states given the present state.
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Any scenario tree and the corresponding transition probabilities can be
unambiguously described by a transition matrix with pnt−1,nt , nt−1, nt ∈
N\{1}, representing the transition probabilities between nodes nt−1 and nt

and pn2 , n2 ∈ N2, standing for marginal distributions.
We may write the transition matrix as follows:

M =



(p1)T 0 0 · · · 0
0 M 1 0 · · · 0
0 0 M 2 · · · 0
...

... . . . . . . ...
0 0 · · · 0 MT−2

0 0 · · · 0 I


,

where

Mt =

 pKt+1,Kt+1+1 · · · pKt+1,Kt+2

...
...

pKt+1,Kt+1+1 · · · pKt+1,Kt+2

 .

and (p1)T = (p2, . . . , pK2)
T .

We also assume that there exists only one nonzero element in each column
of Mt, t = 1, . . . , T − 2, to guarantee a non-recombining scenario tree.

We will simplify the notation of tree nodes in situations where it is not
important to distinguish particular stages of the tree; we will then write just
n ∈ N instead of nt ∈ N .

Example 6.2. The scenario tree in the figure 6.2 can be described by a tran-
sition matrix with the following nonzero blocks (p1)T , M1 and M2:

2 3 4
1 p2 p3 p4

5 6 7 8 9 10 11
2 p2,5 p2,6 0 0 0 0 0
3 0 0 p3,7 p3,8 p3,9 0 0
4 0 0 0 0 0 p4,10 p4,11

12 13 14 15 16 17 18 19 20 21 22 23 24
5 p5,12 p5,13 p5,14 0 0 0 0 0 0 0 0 0 0
6 0 0 0 p6,15 0 0 0 0 0 0 0 0 0
7 0 0 0 0 p7,16 p7,17 0 0 0 0 0 0 0
8 0 0 0 0 0 0 p8,18 0 0 0 0 0 0
9 0 0 0 0 0 0 0 p9,19 p9,20 0 0 0 0
10 0 0 0 0 0 0 0 0 0 p10,21 p10,22 p10,23 0
11 0 0 0 0 0 0 0 0 0 0 0 0 p11,24
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Due to the form of the transition matrix M the objective of problem
(6.1) can be reformulated as follows

min
xn,n∈N

{
cT1 x1 + (p1)T

 cT2 x2
...

cTK2
xK2

 + (p1)T M1

 cTK2+1xK2+1
...

cTK3
xK3

 + . . .+

+ . . .+ (p1)T M1 · · ·MT −2

 cTKT−1+1xKT−1+1

...
cTKT

xKT

 }
. (6.2)

Let ln := |D(n)| denote the number of immediate descendants of node n,
n ∈ N\NT . Assume now that our information on probability distribution
of process ω is incomplete. The only available information is described by
a tree structure (e.g. as in the figure 6.1) and by the following sets of feasible
distributions:

P1 represents the set of possible marginal distributions p1 = {pn2}n2∈N2 ∈
Rl1

+ with finite support Ω1 (Ω1 is finite set of all possible realizations of
ω1, i.e. Ω1 = {ω̄n2 : n2 ∈ N2} = {ω̄2, . . . , ω̄K2}).

Pn, n = 2, . . . , KT−1, stand for the sets of feasible conditional probability
distributions pn = {pn,m}m∈D(n) ∈ Rln

+ , with finite supports Ωn :=
{ω̄m : m ∈ D(n)}, n = 2, . . . , KT−1. Note that

∑
m∈D(n)

pn,m = 1 for all

n = 2, . . . , KT−1.

We further suppose:

(B2) All sets Pk, k = 1, . . . .KT−1, are consistent with some qualitative infor-
mation �, i.e. the sets can be described in the following way

P1 =
{
p1 = {pn}n∈N2 ∈ Rl1

+ : pn1 ≥ pn2 if ω̄n1 � ω̄n2 , ω̄n1 , ω̄n2 ∈ Ω1,

n1, n2 = 1, . . . , l1,

l1∑
n=1

pn = 1

}
,

and for k = 2, . . . , KT−1,

Pn =

{
pn = {pn,m}m∈D(n) ∈ Rln

+ : pn,m1 ≥ pn,m2 if ω̄m1 � ω̄m2 ,

ω̄m1 , ω̄m2 ∈ Ωn,m1,m2 = 1, . . . , ln,
ln∑

m=1

pn,m = 1

}
.
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Ω11

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

Ω9

Ω10

Ω8

Figure 6.3: Admissible supports.

Example 6.3. Consider the scenario tree in the figure 6.2. Corresponding
supports are illustrated in the figure 6.3. Then we have Ω1 = {ω̄2, ω̄3, ω̄4},
Ω2 = {ω̄5, ω̄6}, Ω3 = {ω̄7, ω̄8, ω̄9}, Ω4 = {ω̄10, ω̄11}, Ω5 = {ω̄12, ω̄13, ω̄14}, Ω6 =
{ω̄15}, Ω7 = {ω̄16, ω̄17}, Ω8 = {ω̄18}, Ω9 = {ω̄19ω̄20}, Ω10 = {ω̄21, ω̄22, ω̄23},
Ω11 = {ω̄24}.

Suppose that the available qualitative information is of the form ω̄1 � ω̄2,
ω̄1 � ω̄3, ω̄5 � ω̄6, ω̄7 � ω̄8, ω̄8 � ω̄9, ω̄11 � ω̄10, ω̄12 � ω̄14, ω̄20 � ω̄19,
ω̄23 � ω̄21.

We obtain sets of probability distributions consistent with the above men-
tioned qualitative information:

P1 =
{
p1 ∈ R3

+ : p1 ≥ p2, p1 ≥ p3, p1 + p2 + p3 = 1
}
,

P2 =
{
p2 ∈ R2

+ : p2,5 ≥ p2,6, p2,5 + p2,6 = 1
}
,

P3 =
{
p3 ∈ R3

+ : p3,7 ≥ p3,8 ≥ p3,9, p3,7 + p3,8 + p3,9 = 1
}
,

P4 =
{
p4 ∈ R2

+ : p4,11 ≥ p4,10, p4,10 + p4,11 = 1
}
,

P5 =
{
p5 ∈ R3

+ : p5,12 ≥ p5,14, p5,12 + p5,13 + p5,14 = 1
}
,

P6 = P8 = P11 = {1} ,
P7 =

{
p7 ∈ R2

+ : p7,16 + p7,17 = 1
}
,

P9 =
{
p9 ∈ R2

+ : p9,20 ≥ p9,19, p9,19 + p9,20 = 1
}
,

P10 =
{
p10 ∈ R3

+ : p10,23 ≥ p10,21, p10,21 + p10,22 + p10,23 = 1
}
.

The sets Pn, n = 1, . . . , KT−1, are bounded polyhedrons with generalized
uniform distributions as extreme points, see section 4.2.
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6.2 Minimax formulation
Let us now focus on a reformulation of problem (6.1) according to the in-
complete information on underlying probabilities as defined in the previous
section. We apply the minimax decision rule, i.e. we consider the worst-
case probability distribution. The minimax objective function of T -stage
stochastic program takes the form

min
xn,n∈N

max
p1 ∈ P1

pn ∈ Pn,
n = 2, . . . ,KT−1

{
cT1 x1 +(p1)T


 cT

2 x2

...
cT
K2

xK2

 + M1


 cT

K2+1xK2+1

...
cT
K3

xK3

 +

+ · · ·+ MT −2

 cT
KT−1+1xKT−1+1

...
cT
KT

xKT




}
,

(6.3)
where the non-zero elements of particular rows of matrices M t, t = 1, . . . , T−
2, consist of vectors pn.

The inner optimization problem of (6.3) has an optimal solution, since the
objective function is continuous with respect to p1, pn, n = 2 . . . , KT−1, and
the sets of probability distributions consistent with a qualitative information
are compact and nonempty.

Since the transition matrix Mt enters only the last T − t − 1 terms
of the objective function (6.3), and since the products (p1)T M1 · · ·Mt−1

are nonnegative, the worst transition matrix M∗
t (i.e. the worst vectors

pn∗, n = Kt + 1, . . . , Kt+1) does not depend on (p1)T M1 · · ·Mt−1 and we
may rewrite the objective (6.3) in the following way

min
xn,n∈N

cT
1 x1 + max

p1∈P1

(p1)T


 cT

2 x2

...
cT
K2

xK2

 + max
pn ∈ Pn,

n = 2, . . . ,K2

M1


 cT

K2+1xK2+1

...
cT
K3

xK3

 +

+ · · ·+ max
pn ∈ Pn,

n = KT−2 + 1, . . . ,KT−1

MT −2

 cT
KT−1+1xKT−1+1

...
cT
KT

xKT





 .

(6.4)
If we return to the formulation based on transition probabilities we obtain

the following minimax problem
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min
xnt

, nt ∈ Nt

t = 1, . . . , T

cT1 x1 + max
p1 ∈ P1

p1 = {pn2}n2∈N2

K2∑
n2=2

pn2

[
cTn2
xn2+

max
pn2 ∈ Pn2

pn2 = {pn2,n3}n3∈D(n2)

K2∑
n3=2

[
pn2,n3c

T
n3
xn3 + · · ·+

+ max
pnT−1 ∈ PnT−1

pnT−1 = {pnT−1,nT
}nT∈D(nT−1)

KT∑
nT =KT−1+1

pn2pn2,n3 · · · pnT−1,nT
cTnT

xnT

]]
s.t. W1x1 = b1,

Tn2x1 + Wn2xn2 = bn2 , n2 ∈ N2,
Tn3xa(n3) + Wn3xn3 = bn3 , n3 ∈ N3,

. . .
TnT

xa(nT ) + WnT
xnT

= bnT
, nT ∈ NT ,

0 ≤ xnt ≤ unt , nt ∈ Nt, t = 1, . . . , T. (6.5)

Henceforward, we will follow the derivation of nested decomposition algo-
rithm for the multi-stage stochastic problem with a linear recourse presented
in Kall and Mayer [34] and modify it for the multi-stage minimax problems
with a qualitative information.

The properties mentioned above allow as to formulate the multi-stage
minimax stochastic program (6.3) in the nested form based on the following
sequence of programs:

• for node n = 1

F1 = min
x1

cT1 x1 + max
p1 ∈ P1

p1 = {pn}n∈N2

K2∑
n=2

pnFn(x1)


s.t. W1x1 = b1,

0 ≤ x1 ≤ u1;
(6.6)
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• generally for any node in stage t = 2, . . . , T − 1, i.e. n = Kt−1 +
1, . . . , Kt,

Fn(xa(n)) = min
xn

cTnxn + max
pn ∈ Pn

pn = {pn,m}m∈D(n)

∑
m∈D(n)

pn,mFm(xn)


s.t. Wnxn = bn − Tnxa(n),

0 ≤ xn ≤ un;
(6.7)

• for nodes in stage T , i.e. n = KT−1 + 1, . . . , KT ,

Fn(xa(n)) = min
xn

cTnxn

s.t. Wnxn = bn − Tnxa(n),
0 ≤ xn ≤ un.

(6.8)

Note that the functions Fn(xa(n)) are piecewise linear and convex in xn and
the additive terms

∑
m∈D(n)

pn,mFm(xn) are linear in pn,m. Hence, we maximize

the linear function over a bounded polyhedron Pn. The maximum will be
attained at one of extreme points of the set Pn.

Maximization over set Pn can be replaced by a new condition applied
to all pn ∈ Pn. We can rewrite problem (6.7) to the form (denoted by
Dest(n, xa(n))):

Fn(xa(n)) = min
xn

cTnxn + θn

s.t. θn ≥
∑

m∈D(n)

pn,mFm(xn), ∀pn = {pn,m}m∈D(n) ∈ Pn,

Wnxn = bn − Tnxa(n),

0 ≤ xn ≤ un, n ∈ Nt, t ∈ {2, . . . , T − 1}.
(6.9)

The first group of constraints is satisfied whenever it holds true for all
extreme probability distributions of Pn indexed by k = 1, . . . , ePn , that are
fully characterized by admissible supports T Pn

k , k = 1, . . . , ePn . Hence, the
first group of constraints can be replaced by

θn ≥
∑

m∈T Pn
k

1

|T Pn
k |

Fm(xn), ∀k = 1, . . . , ePn , n ∈ Nt, t ∈ {2, . . . , T − 1}.

(6.10)
The main idea of the forthcoming algorithm is to solve (6.9) relaxing

the first group of constraints. During the iteration process we add to this
problem further linear constraints as optimality cuts.
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We will solve the following sequence of successively built relaxed master
problems denoted by Mast(n, xa(n)):

F̃n(xa(n)) = min
xn

cTnxn + θn

s.t. Wnxn = bn − Tnxa(n),
dT

nlxn + θn ≥ δnl, l = 1, . . . , sn,
0 ≤ xn ≤ un, n ∈ Nt, t ∈ {2, . . . , T − 1},

(6.11)

with the parameter vector xa(n) and the optimal-value function F̃n. For
the root node we define F̃1(xa(1)) ≡ F̃1. Constraints in the second group of
constraints are called optimality cuts. Their number is denoted by sn.

Due to (B1), Mast(n, xa(n)) has an optimal solution. It is also dual feasible
for all n ∈ N , for all xa(n).

6.3 Construction of optimality cuts

Let (x̂m, θ̂m) be an optimal solution of Mast(m, x̂n), m ∈ D(n). Take into
consideration the dual formulation of problem Mast(m, x̂n):

max (bm − Tmx̂n)Tvm +
sm∑
l=1

δmlwml + uT
mλm

s.t. W T
mvm +

sm∑
l=1

dmlwml + 1Tλm ≤ cm,

sm∑
l=1

wml = 1,

wml ≥ 0, l = 1, . . . , sm,
λj ≤ 0, j = 1, . . . , km,

where km is the dimension of vector xm.
If (v̂m, ŵm, λ̂m) are the corresponding dual solutions then we have

F̃m(x̂n) = cTmx̂m + θ̂m = (bm − Tmx̂n)T v̂m +
sm∑
l=1

δmlŵml + uT
mλ̂m, (6.12)

for all m ∈ D(n).
Weak duality ensures that for any feasible xn

F̃m(xn) ≥ (bm − Tmxn)T v̂m +
sm∑
l=1

δmlŵml + uT
mλ̂m. (6.13)
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Hence, any current solution (x̂n, θ̂n) of Mast(n, xa(n)) has to fulfil the
following conditions for all k ∈ {1, . . . , ePn}

θ̂n ≥
∑

m∈T Pn
k

1

|T Pn
k |

[
(bm − Tmx̂n)T v̂m +

sm∑
l=1

δmlŵml + uT
mλ̂m

]
. (6.14)

For those k (let their number be k̄ePn
) for which the condition (6.14) does not

hold we add the following optimality cuts to the master problem Mast(n, xa(n)):

dT
nνxn + θn ≥ δnν , ν = sn + 1, . . . , sn + k̄ePn

, (6.15)

where

dnν :=
∑

m∈T Pn
k

1

|T Pn
k |

T T
mv̂m,

δnν :=
∑

m∈T Pn
k

1

|T Pn
k |

[
bTmv̂m +

sm∑
l=1

δmlŵml + uT
mλ̂m

]
.

(6.16)

Definition 6.1. An optimality cut dT
nlxn + θn ≥ δnl in Mast(n, xa(n)) will be

called valid, if the inequality

δnl − dT
nlxn ≤ max

pn ∈ Pn

pn = {pn,m}m∈D(n)

∑
m∈D(n)

pn,mFm(xn)

holds for any feasible xn.

Validity of optimality cuts ensures that the objective function of the re-
laxed master problem provides a lower bound to the objective function of
the descendant recourse problem, i.e. F̃n(xa(n)) ≤ Fn(xa(n)) holds for any
feasible xn. Optimality cuts generated by the algorithm presented below are
valid, see theorem 6.1 below.

6.4 Nested decomposition – with the assump-
tion of relatively complete recourse

Algorithm 6.1. Multicut nested decomposition for the multi-stage minimax
problem with a qualitative information — with the assumption of relatively
complete recourse:
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Step 1 (Initialization) Let sn = 0, γn = False2 and add the constraint θn = 0
to Mast(n, xa(n)) for all n ∈ N . Set t = 1.

Step 2 (Forward pass) For n ∈ Nt : γn = False do:

1. Solve Mast(n, x̂a(n)).

2. Store the solution (x̂n, θ̂n). If t = T then store also the dual
solution (v̂n, ŵn, λ̂n).

3. Set γn = True and γν = False, ∀ν ∈ G(n)\{n}3.

4. Take the next node in Nt.

If t = T then continue with Step 3, else set t = t+1 and repeat Step 2.

Step 3 (Backward pass) Set γ = True4. For n ∈ Nt−1 check whether (6.14)
holds for (x̂n, θ̂n):

Yes Take the next node in Nt−1.

No Add optimality cuts:

1. Set γ = False.
2. If sn = 0 then drop the constraint θn = 0.
3. Add optimality cuts (6.15) to Mast(n, x̂a(n)) (let them be ēpn)

with ν = sn + 1, . . . , sn + ēPn . Set sn = sn + ēPn .
4. Solve Mast(n, x̂a(n)) and temporarily store the dual solution

(v̂n, ŵn, λ̂n). Set γν = False, ν ∈ G(n) \ {n}.
If t = 1 and γ = True then no optimality cut has been added and
the current solution is optimal. STOP.
If t > 1 then set t = t− 1 and repeat Step 3.
If t = 1 and γ = False then return to Step 2.

Theorem 6.1. The following statements hold:

(i) The optimality cuts generated by the algorithm are valid. Moreover,
F̃n(xa(n)) ≤ Fn(xa(n)) for all n ∈ N and all xa(n).

2The Boolean variable γn = True indicates that the current master problem
Mast(n, x̂a(n)) has a solution. The current solution (x̂n, θ̂n) can be used whenever node
n is encountered during the subsequent iterations. The value γn = False indicates that
Mast(n, x̂a(n)) has to be solved whenever node n is encountered.

3G(n) represents the set of all nodes corresponding to a subtree rooted at the node n.
4The Boolean variable γ = True indicates that no optimality cut has been added in

this backward pass.
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(ii) The algorithm terminates in a finite number of iterations finding an
optimal solution (x̂n, n ∈ N ) and extremal probability distributions p̂1 ∈
P1, p̂

n ∈ Pn, n ∈ N \ {1}.

Proof. (i) Let (x̂n, θ̂n) be the current solution of Mast(n, x̂a(n)). Take into
consideration inequalities (6.13) and (6.15). We may derive

pn,m

[
(bm − Tmx̂n)T v̂m +

sm∑
l=1

δmlŵml + uT
mλ̂m

]
≤ pn,mF̃m(x̂n)

and hence, for all feasible xn,

δnl−dT
nlxn ≤

∑
m∈D(n)

pn,mF̃m(xn) ≤ max
pn ∈ Pn

∑
m∈D(n)

pn,mF̃m(xn). (6.17)

For n ∈ NT the problems Mast(n, xa(n)) and Desc(n, xa(n)) are identical
and we have F̃n(xa(n)) = Fn(xa(n)) for all feasible xa(n).

(1) Assume n ∈ NT−1. We may write

cTnxn + θn ≤ cTnxn + max
l∈{1,...,sn}

(
δnl − dT

nlxn

)
≤ cTnxn + max

pn ∈ Pn

∑
m∈D(n)

pn,mF̃m(xn)

= cTnxn + max
pn ∈ Pn

∑
m∈D(n)

pn,mFm(xn).

(6.18)

The last equality comes from the identity of Mast(m,xa(m)) and
Desc(m,xa(m)) for m ∈ NT . Thus taking minima on both sides
of (6.18) over the feasible domain we obtain F̃n(xa(n)) ≤ Fn(xa(n))
for n ∈ NT−1. Using formula (6.17) we have the validity of cuts

δnl − dT
nlxn ≤ max

pn ∈ Pn

∑
m∈D(n)

pn,mFm(xn), n ∈ NT−1.

(2) Let us now assume n ∈ NT−2. From previous results we may
derive

cTnxn + θn ≤ cTnxn + max
l∈{1,...,sn}

(
δnl − dT

nlxn

)
≤ cTnxn + max

pn ∈ Pn

∑
m∈D(n)

pn,mF̃m(xn)

≤ cTnxn + max
pn ∈ Pn

∑
m∈D(n)

pn,mFm(xn).

(6.19)
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The last inequality is the consequence of (1), i.e. F̃m(xa(m)) ≤
Fm(xa(m)) for m ∈ NT−1. Thus taking again minima on both
sides of (6.19) we conclude F̃n(xa(n)) ≤ Fn(xa(n)) for n ∈ NT−2.
Using formula (6.17) we have

δnl − dT
nlxn ≤ max

pn ∈ Pn

∑
m∈D(n)

pn,mFm(xn), n ∈ NT−2.

(3) By backward induction we derive these results for all n ∈ {1, . . . ,
KT−1}.

(ii) The algorithm terminates in a finite number of iterations due to the
fact that for any node n ∈ {1, . . . , KT−1} there exist finitely many
different dual solutions of relaxed master problems Mast(m, x̂n) asso-
ciated with the child-node. Its dual feasible region does not depend on
x̂n and therefore only a finite number of different optimality cuts can
be generated, see discussion in chapter 5 and the proof of theorem 5.1;
we also refer to Kall and Mayer [34].

Assumptions (B1) and (B2) ensure the existence of feasible solutions
of the multi-stage minimax problems consistent with the qualitative
information �. Hence, the optimal solutions always exist.

Let (x̂n, θ̂n) be the optimal solution of Mast(n, x̂a(n)) in which the al-
gorithm terminates. Considering (6.14) we obtain

θ̂n ≥ max
k={1,...,ePn}

∑
m∈T pn

k

1

|T Pn
k |

F̃m(x̂n) = max
pn ∈ Pn

∑
m∈D(n)

pn,mF̃m(x̂n).

(6.20)
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Applying (6.20) to an arbitrary node n ∈ N we get

F̃n(xa(n)) = cTn x̂n + θ̂n

≥ cTn x̂n + max
pn ∈ Pn

∑
m∈D(n)

pn,m(cTmx̂m + θ̂m)

≥ cTn x̂n + max
pn ∈ Pn

∑
m∈D(n)

pn,m

[
cTmx̂m+

+ max
pm ∈ Pm

∑
µ∈D(m)

pm,µ(cTµ x̂µ + θ̂µ)

]

= cTn x̂n + max
pn ∈ Pn

pm ∈ Pm,m ∈ D(n)

[ ∑
m∈D(n)

pn,mc
T
mx̂m+

+
∑

m∈D(n)

∑
µ∈D(m)

pn,mpm,µ(cTµ x̂µ + θ̂µ)

]
...
≥ cTn x̂n + max

pn ∈ Pn

pm ∈ Pm,m ∈ D(n)
...

pσ ∈ Pσ, σ ∈ D(a(σ)

∑
ν∈G(n)

pn,mpm,µ · · · pσ,νc
T
ν x̂ν

≥ Fn(xa(n)).

Together with results from (i) we conclude F̃n(xa(n)) = Fn(xa(n)) for any
node n ∈ N and finish the proof.

For a more detailed discussion see Kall and Mayer [34], where the general
nested decomposition algorithm for the multi-stage stochastic programs is
presented. The proof technique used for the minimax approach is quite
similar.

The algorithm is implemented in .NET platform using programming lan-
guage C#. We also use the existing linear programming solver lpsolve55
downloadable from [36]. Since the solution procedure is a modification of
a well-known algorithm, its efficiency is immediate.

The algorithm works also for more general sets of probability distribu-
tions, see the discussion at the end of section 4.2.

6.5 Construction of feasibility cuts
Let us consider the multi-stage minimax stochastic program in the nested
form as presented in section 6.2 but now without the assumption (B1) of rel-
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atively complete recourse. We allow infeasibility of all stage primal problems,
i.e. unboundedness of the corresponding dual objective functions.

We will have to modify Algorithm 6.1 by incorporating feasibility cuts
into the solution procedures. If the problem Mast(m, x̂n) is infeasible for
m ∈ D(n) then we add some further linear constraints

aT
njxn ≥ αnj, j = 1, . . . , rn, (6.21)

into the relaxed master problem Mast(n, xa(n)) to ensure the finiteness of
objective function F̃m,m ∈ D(n). By rn we denote number of feasibility cuts
added to the node n.

The sequence of successively built relaxed master problems Mast(n, xa(n))
now takes the form:

F̃n(xa(n)) = min
xn

cTnxn + θn

s.t. Wnxn = bn − Tnxa(n),
dT

nlxn + θn ≥ δnl, l = 1, . . . , sn,
aT

nkxn ≥ αnj, k = 1, . . . , rn,
0 ≤ xn ≤ un, n ∈ Nt, t ∈ {2, . . . , T − 1}.

(6.22)

Let (x̂m, θ̂m) be an optimal solution of Mast(m, x̂n),m ∈ D(n). Take into
consideration the dual formulation of problem Mast(m, x̂n):

max (bm − Tmx̂n)Tvm +
sm∑
l=1

δmlwml +
rm∑
k=1

αmkzmk + uT
mλm

s.t. W T
mvm +

sm∑
l=1

dmlwml +
rm∑
k=1

amkzmk + 1Tλm ≤ cm,

sm∑
l=1

wml = 1,

wml ≥ 0, l = 1, . . . , sm,
zmk ≥ 0, k = 1, . . . , rm,
λj ≤ 0, j = 1, . . . , km.

(6.23)

The infeasibility of Mast(m, x̂n),m ∈ D(n) implies that the objective
function of problem (6.23) is unbounded from above. We will follow the
derivation of feasibility cuts presented in Kall and Mayer [34].

Farkas lemma 2.5 gives us the following conditions on empty set of feasible
solutions of problem Mast(m, x̂n):

(C1) There must exist a vector (ṽm, w̃m, z̃m, λ̃m) such that

(bm − Tmx̂n)T ṽm +
sm∑
l=1

δmlw̃ml +
rm∑
k=1

αmkz̃mk + uT
mλ̃m ≤ 0 (6.24)
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and

W T
mṽm +

sm∑
l=1

dmlw̃ml +
rm∑
k=1

amkz̃mk + 1T λ̃m > 0, (6.25)

1T w̃m = 0, w̃m ∈ Rsm
+ , (6.26)

z̃m ∈ Rrm
+ , λ̃m ∈ Rkm

− and ṽm ∈ Rhm5.

Condition (6.26) implies w̃ml = 0 for all l = 1, . . . , sm.
Hence, during the iteration process we add to the Mast(n, xa(n)) a feasi-

bility cut of the form (6.21), where

an := T T
mṽm

and

αn := bTmṽm +
rm∑
k=1

αmkz̃mk + uT
mλ̃m,

to cut off x̂n, which has led to the infeasible problem Mast(m, x̂n).
Before we formulate the algorithm for the multi-stage minimax program

without the assumption of relatively complete recourse, we have to modify
optimality cuts by involving dual variables corresponding to feasibility cuts.

Any current solution (x̂n, θ̂n) of Mast(n, xa(n)) has to fulfil the following
conditions for all k ∈ {1, . . . , ePn}

θ̂n ≥
∑

m∈T Pn
k

1

|T Pn
k |

[
(bm − Tmx̂n)T v̂m +

sm∑
l=1

δmlŵml +
rm∑
k=1

αmkẑmk + uT
mλ̂m

]
.

(6.27)
For those k (let their number be k̄ePn

) for which the condition (6.27) does
not hold we add the following optimality cuts to the problem Mast(n, xa(n)):

dT
nνxn + θn ≥ δnν , ν = sn + 1, . . . , sn + k̄ePn

, (6.28)

where
dnν :=

∑
m∈T Pn

k

1

|T Pn
k |

T T
mv̂m,

δnν :=
∑

m∈T Pn
k

1

|T Pn
k |

[
bTmv̂m +

sm∑
l=1

δmlŵml +
rm∑
k=1

αmkẑmk + uT
mλ̂m

]
.

(6.29)

According to the definition 6.1, such optimality cuts stay valid. The proof
would be similar to the proof of theorem 6.1.

Definition 6.2. A feasibility cut aT
nkxn ≥ αnk in Mast(n, xa(n)) will be called

valid, if for any feasible solution x̄ν , ν ∈ G(n), of the descendant recourse
problem rooted at node n, the inequality ankx̄n ≥ αnk holds.

5By hm we denote the number of matrix Wm rows.
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6.6 Nested decomposition – without the assump-
tion of relatively complete recourse

Feasibility cuts generated by the algorithm presented below are valid. The
algorithm will terminate in a finite number of iterations finding the optimal
solutions if the solved problem is feasible. The argumentation is similar as
in the two-stage problem, see the proof of theorem 5.1. The proof of validity
of feasibility cuts generated by the algorithm is similar as in the multi-stage
stochastic linear program, we refer e.g. to Kall and Mayer [34].

Algorithm 6.2. Multicut nested decomposition for the multi-stage mini-
max problem with a qualitative information — without the assumption of
relatively complete recourse:

Step 1 (Initialization) Let sn = 0, rn = 0, γn = False and add the constraint
θn = 0 to Mast(n, xa(n)) for all n ∈ N . Set t = 1.

Step 2 (Forward pass) For n ∈ Nt : γn = False do:

1. Solve Mast(n, x̂a(n)). If the problem is infeasible then store dual
solution (ṽn, z̃n, λ̃n) which fulfils condition (C1) and continue with
Step 4.

2. Store the solution (x̂n, θ̂n). If t = T then store also the dual
solution (v̂n, ŵn, ẑn, λ̂n).

3. Set γn = True and γν = False, ∀ν ∈ G(n)\{n}.
4. Take the next node in Nt.

If t = T then continue with Step 3, else set t = t+1 and repeat Step 2.

Step 3 (Backward pass) Set γ = True. For n ∈ Nt−1 check whether (6.27)
holds for (x̂n, θ̂n):

Yes Take the next node in Nt−1.

No Add optimality cuts:

1. Set γ = False.
2. If sn = 0 then drop the constraint θn = 0.
3. Add optimality cuts (6.28) to Mast(n, x̂a(n)) (let them be ēpn)

with ν = sn + 1, . . . , sn + ēPn . Set sn = sn + ēPn .
4. Solve Mast(n, x̂a(n)) and temporarily store the dual solution

(v̂n, ŵn, ẑn, λ̂n). Set γν = False, ν ∈ G(n) \ {n}.
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If t = 1 and γ = True then no optimality cut has been added and
the current solution is optimal. STOP.
If t > 1 then set t = t− 1 and repeat Step 3.
If t = 1 and γ = False then return to Step 2.

Step 4 (Backtracking) If n = 1 the STOP. Then the multi-stage minimax
problem is infeasible. Otherwise

1. Set m := n and n := a(n).

2. Add feasibility cut (6.21) to Mast(n, x̂a(n)). Set rn = rn + 1. Set
γν := False for all ν ∈ G(n).

3. Solve Mast(n, x̂a(n)).

If the problem is infeasible then store the dual solution (ṽn, z̃n, λ̃n)
which fulfils condition (C1) and continue with Step 4. Otherwise set
γn := True, store the solution (x̂n, θ̂n) and return to Step 1.

6.7 Numerical study
In the next three examples we apply the algorithm 6.1 to simple illustrative
problems. The fourth example shows a possible application to the multi-stage
stochastic minimax problem of portfolio selection having only a qualitative
information about the probability distributions. Both examples were com-
puted by the above mentioned developed solver.

Example 6.4. Consider a scenario tree in the figure 6.4, withN = {1, . . . , 7}
and T = 3. The only available information on probability distribution is of
the form p2 ≥ p3, p2,4 ≥ p2,5 and p3,7 ≥ p3,6. We obtain the following extreme
probability distributions

(1, 0)T , (
1

2
,
1

2
)T ∈ P1, (1, 0)T , (

1

2
,
1

2
)T ∈ P2, (0, 1)T , (

1

2
,
1

2
)T ∈ P3, (6.30)

with the corresponding admissible sets T P1
1 = {2}, T P1

2 = {2, 3}, T P2
1 =

{4}, T P2
2 = {4, 5}, T P3

1 = {7}, T P3
2 = {6, 7}.

Figure 6.4: Scenario tree.
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The problem to be solved is

min
xi ∈ R2

i = 1, . . . , 7

[(
1

0.2

)T

x1 + p2

(
1.5
0.2

)T

x2 + p3

(
0.9
0.2

)T

x3 +

+p2p2,4

(
1.8
0.2

)T

x4 + p2p2,5

(
1.4
0.2

)T

x5 + p3p3,6

(
1.4
0.2

)T

x6+

+p3p3,7

(
0.9
0.2

)T

x7

]

s. t.
(

1
−1

)T

x1 = 10,(
0
1

)T

x1 +

(
1
−1

)T

x2 = 15,(
0
1

)T

x1 +

(
1
−1

)T

x3 = 8,(
0
1

)T

x2 +

(
1
−1

)T

x4 = 17,(
0
1

)T

x2 +

(
1
−1

)T

x5 = 10,(
0
1

)T

x3 +

(
1
−1

)T

x6 = 10,(
0
1

)T

x3 +

(
1
−1

)T

x7 = 5,(
0
0

)
≤ xi ≤

(
100
3

)
, i = 1, . . . , 7.

During the first forward pass we calculate solutions

Objective Primal Dual
F̃1 10 (10,0,0) (1,0,0),
F̃2(x̂1) 22.5 (15,0,0) (1.5,0,0),
F̃3(x̂1) 7.2 (8,0,0) (0.9,0,0),
F̃4(x̂2) 30.6 (17,0) (1.8,0,0),
F̃5(x̂2) 14 (10,0) (1.4,0,0),
F̃6(x̂3) 14 (10,0) (1.4,0,0),
F̃7(x̂3) 4.5 (5,0) (0.9,0,0).
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Primal solutions in sequence represent the optimal values of xi, i = 1, . . . , 3,
and θi, i = 1, . . . , 7. Dual solutions correspond to the equality constraints
and upper bounds on xi, i = 1, . . . , 7.

In backward pass we obtain optimality cuts

Mast(1) :

(
0

1.5

)T

x1 + θ1 ≥ 52.8,

(
0

1.2

)T

x1 + θ1 ≥ 34.55,

Mast(2, x̂1) :

(
0

1.8

)T

x2 + θ2 ≥ 30.6,

(
0

1.6

)T

x2 + θ2 ≥ 22.3,

Mast(3, x̂1) :

(
0

0.9

)T

x3 + θ3 ≥ 4.5,

(
0

1.15

)T

x3 + θ3 ≥ 9.25,

and updated optimal solutions

Objective Primal Dual
F̃1 61.9 (13,3,48.3) (1,0,-0.3,1,0),
F̃2(x̂1) 48.3 (15,3,25.2) (1.5,0,-0.1,1,0),
F̃3(x̂1) 13.6 (8,3,5.8) (0.9,0,-0.05,0,1),
F̃4(x̂2) 25.2 (14,0) (1.8,0,0),
F̃5(x̂2) 9.8 (7,0) (1.4,0,0),
F̃6(x̂3) 9.8 (7,0) (1.4,0,0),
F̃7(x̂3) 1.8 (2,0) (0.9,0,0).

Dual solutions are extended by the values corresponding to new optimality
cuts.

In the next backward pass no optimality cut is added. The current solu-
tion is optimal.

From the dual solutions we obtain the coefficients of optimality cuts
(6.29), which are active for the probability distributions

(1, 0)T ∈ P1, (1, 0)T ∈ P2, (
1

2
,
1

2
)T ∈ P3, (6.31)

among all extreme probability distributions (6.30). The active cuts are(
0

1.5

)T

x1 + θ1 = 52.8,

(
0

1.8

)T

x2 + θ2 = 30.6,

(
0

1.15

)T

x3 + θ3 = 9.25,

corresponding to the worst-case probability distributions (6.31).
Paths with nonzero probabilities are illustrated in the figure 6.5 with

a blue color. Only the scenario 1− 2− 4 is significant for the optimal value
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Figure 6.5: Final scenario tree.

of the objective function. The extremal transition probabilities (1
2
, 1

2
)T ∈ P3

between node 3 and its child nodes will not influence the optimal value. The
contribution of a subtree rooted at node 3 will be erased by the fact that
there is zero probability for getting to node 3 from node 1.

In fact, the algorithm returns the worst-case probability distributions for
all paths of the considered scenario tree. Due to the Markov property the
worst-case transition probabilities from node 3 to node 7 cannot depend on
the worst-case marginal probability of node 3. Therefore, we also obtain the
nonzero worst-case transition probabilities for nodes, which cannot influence
the value of the objective function.

Example 6.5. Consider the scenario tree and the optimization problem as
in example 6.4 with the different qualitative information p3 ≥ p2, p2,4 ≥ p2,5

and p3,7 ≥ p3,6.
We also obtain a different optimal value of the objective function and dif-

ferent worst-case probability distributions. There exist two optimal decision
strategies:

Objective Primal Dual
F̃1 44.55 (13,3,30.95) (1,0,0,0,1),
F̃2(x̂1) 48.3 (15,3,25.2) (1.5,0,-0.1,1,0),
F̃3(x̂1) 13.6 (8,3,5.8) (0.9,0,-0.05,0,1),
F̃4(x̂2) 25.2 (14,0) (1.8,0,0),
F̃5(x̂2) 9.8 (7,0) (1.4,0,0),
F̃6(x̂3) 9.8 (7,0) (1.4,0,0),
F̃7(x̂3) 1.8 (2,0) (0.9,0,0),

and
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Objective Primal Dual
F̃1 44.55 (10,0,34.55) (1,0,0,0,1),
F̃2(x̂1) 52.8 (18,3,25.2) (1.5,0,-0.1,1,0),
F̃3(x̂1) 16.3 (11,3,5.8) (0.9,0,-0.05,0,1),
F̃4(x̂2) 25.2 (14,0) (1.8,0,0),
F̃5(x̂2) 9.8 (7,0) (1.4,0,0),
F̃6(x̂3) 9.8 (7,0) (1.4,0,0),
F̃7(x̂3) 1.8 (2,0) (0.9,0,0).

The worst-case probability distributions

(
1

2
,
1

2
)T ∈ P1, (1, 0)T ∈ P2, (

1

2
,
1

2
)T ∈ P3.

are illustrated in the figure 6.6:

Figure 6.6: Final scenario tree.

Example 6.6. Consider again the example 6.4 with no additional qualitative
information on probability distributions, i.e. using only constraints

P1 = {p ∈ R2
+ : p1 + p2 = 1},

P2 = {p2 ∈ R2
+ : p2,4 + p2,5 = 1},

P3 = {p3 ∈ R2
+ : p3,6 + p3,7 = 1}.

We obtain the following optimal solutions:

Objective Primal Dual
F̃1 61.9 (13,3,48.3) (1,0,-0.3,1,0),
F̃2(x̂1) 48.3 (15,3,25.2) (1.5,0,-0.1,1,0),
F̃3(x̂1) 17.6 (8,3,9.8) (0.9,0,-0.3,1,0),
F̃4(x̂2) 25.2 (14,0) (1.8,0,0),
F̃5(x̂2) 9.8 (7,0) (1.4,0,0),
F̃6(x̂3) 9.8 (7,0) (1.4,0,0),
F̃7(x̂3) 1.8 (2,0) (0.9,0,0).
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Figure 6.7: Final scenario tree.

The worst-case probability distributions

(1, 0)T ∈ P1, (1, 0)T ∈ P2, (1, 0)T ∈ P3

are illustrated in the figure 6.7:
Compare these results with example 6.4. The additional information

could not improve the optimal value in the example 6.4. Such an information
can be also interpreted as worthless.

Example 6.7. We review a multi-stage stochastic minimax model for port-
folio selection. The model we present determines an expected minimal trans-
action and borrowing costs strategy for bonds whose incomes are used to
meet given cash requirements or liabilities. We apply the following notation:

xj0 initial holding of bond j at the beginning of period 1 (j = 1, . . . , J);

z0 initial cash at the beginning of period 1;

xjnt quantity of bond j held at node nt (nt ∈ Nt, t = 1, . . . , T );

bjnt quantity of bond j purchased at node nt (nt ∈ Nt, t = 1, . . . , T );

sjnt quantity of bond j sold at node nt (nt ∈ Nt, t = 1, . . . , T );

zb
jnt

unit purchasing price of bond j at node nt (nt ∈ Nt, t = 1, . . . , T );

zs
jnt

unit selling price of bond j at node nt (nt ∈ Nt, t = 1, . . . , T );

fjnt cash flow produced by bond j held at node nt at the beginning of period
t (nt ∈ Nt, t = 1, . . . , T );

ynt additional cash requirements at node nt (nt ∈ Nt, t = 2, . . . , T );

unt total cumulative borrowed cash up to node nt (nt ∈ Nt, t = 2, . . . , T );

znt cash surplus at node nt (nt ∈ Nt, t = 1, . . . , T );

Lnt cash requirements or liabilities at node nt (nt ∈ Nt, t = 1, . . . , T );
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cjnt transaction costs for buying/selling bond j at node nt (j = 1, . . . , J, nt ∈
Nt, t = 1, . . . , T );

dnt present value factor at node nt (nt ∈ Nt, t = 2, . . . , T );

i+nt
interest rate factor for savings at node nt (nt ∈ Nt, t = 2, . . . , T );

i−nt
interest rate factor for borrowing at node nt (nt ∈ Nt, t = 2, . . . , T );

pnt probability of node nt (nt ∈ Nt, t = 1, . . . , T ).

The problem is to minimize over ynt , znt , unt , xjnt , bjnt , sjnt and maximize over
pn the expected present value of total transaction and borrowing costs, i.e.

J∑
j=1

cj1(bj1 + sj1) +
∑

n2∈N2

pn2dn2

[
yn2 +

J∑
j=1

cjn2(bjn2 + sjn2)

]
+ · · ·+

+
∑

nT∈NT

pnT
dnT

[
ynT

+
J∑

j=1

cjnT
(bjnT

+ sjnT
)

]
s.t.

xj0 + bj1 − sj1 = xj1, j = 1, . . . , J, (6.32)
J∑

j=1

zs
j1sj1 +

J∑
j=1

fj1xj0 + z0 = L1 + z1 +
J∑

j=1

zb
j1bj1 +

J∑
j=1

cj1(bj1 + sj1), (6.33)

xja(nt) + bjnt − sjnt = xjnt , j = 1, . . . , J, (6.34)

u1 = 0, unt = ua(nt) + ynt , (6.35)
J∑

j=1

zs
jnt
sjnt +

J∑
j=1

fjntxja(nt) + (1 + i+nt
)za(nt) + ynt =

= Lnt + znt +
J∑

j=1

zb
jnt
bjnt +

J∑
j=1

cjnt(bjnt + sjnt) + i−nt
ua(nt),

(6.36)

for nt ∈ Nt, t = 2, . . . , T .
We also assume all decision variables are nonnegative and upper bounded.

Conditions (6.32) and (6.34) represent inventory constraints. Budget con-
straints are involved in (6.33) and (6.36). Condition (6.35) defines total
cumulative borrowed cash.

We apply the model on the scenario tree with a given qualitative infor-
mation about probability distributions presented in the example 6.3 with the
following input data:

• initial values T = 4, J = 3, z0 = 100, and xj0 = 30, j = 1, 2, 3;
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• upper bounds on decision variables:

node unt
ynt

znt
b1nt

b2nt
b3nt

1 10000 100 100 100
2 - 4 10000 10000 10000 100 100 100

5 - 11 10000 10000 10000 5 5 5
12 - 24 10000 10000 10000 10 10 10

node s1nt
s2nt

s3nt
x1nt

x2nt
x3nt

1 100 100 100 100 100 100
2 - 4 100 100 100 100 100 100

5 - 11 5 5 5 100 100 100
12 - 24 10 10 10 100 100 100

• bid and ask bonds’ prices:

node zb
1nt

zb
2nt

zb
3nt

zs
1nt

zs
2nt

zs
3nt

1 102 92 83 98 88 79
2 103 89 81 99 85 77
3 101 94 88 97 90 84
4 102 88 72 98 84 68
5 92 92 73 88 88 69
6 93 81 76 89 77 72
7 104 88 77 100 84 73
8 107 86 75 103 82 71
9 111 93 83 107 89 79

10 101 98 84 97 94 80
11 100 87 71 96 83 67
12 93 83 75 89 79 71
13 96 79 79 92 75 75
14 92 91 80 88 89 76
15 110 94 83 106 90 79
16 112 95 73 108 91 69
17 106 89 74 102 85 70
18 99 88 79 95 84 75
19 100 83 69 96 79 65
20 105 79 79 101 75 75
21 104 86 74 100 82 70
22 98 90 66 94 86 62
23 95 84 79 91 80 75
24 97 88 80 93 84 76
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• transaction costs, cash flows produced by bonds holding and cash re-
quirements:

node i−nt
i+nt

dnt f1nt f2nt f3nt Lnt

1 110
2 0.026 0.026 0.9876 0.05 0.05 0043 1010
3 0.024 0.024 0.9768 0.055 0.055 0.0443 1010
4 0.03 0.03 0.9788 0.06 0.06 0.063 1010
5 0.02 0.02 0.7657 0.054 0.055 0.048 1100
6 0.018 0.018 0.6785 0.045 0.055 0.044 1100
7 0.026 0.026 0.8765 0.066 0.066 0.066 1100

node i−nt
i+nt

dnt
f1nt

f2nt
f3nt

Lnt

8 0.016 0.016 0.7444 0.05 0.05 0.04 1100
9 0.017 0.017 0.7564 0.045 0.056 0.049 1100

10 0.017 0.017 0.7566 0.055 0.054 0.044 1100
11 0.016 0.016 0.7456 0.054 0.055 0.048 1100
12 0.02 0.02 0.5643 0.0554 0.0555 0.0444 1250
13 0.026 0.026 0.5678 0.0478 0.0578 0.0478 1250
14 0.022 0.022 0.4567 0.049 0.059 0.049 1250
15 0.032 0.032 0.5443 0.057 0.057 0.047 1250
16 0.025 0.025 0.4786 0.039 0.039 0.039 1250
17 0.04 0.04 0.6785 0.06 0.06 0.06 1250
18 0.028 0.028 0.4899 0.062 0.062 0.062 1250
19 0.031 0.031 0.5666 0.056 0.056 0.046 1250
20 0.033 0.033 0.5866 0.053 0.053 0.043 1250
21 0.018 0.018 0.4788 0.055 0.055 0.044 1250
22 0.038 0.038 0.6522 0.048 0.058 0.048 1250
23 0.022 0.022 0.5324 0.067 0.067 0.067 1250
24 0.029 0.029 0.5866 0.066 0.066 0.066 1250

The algorithm terminated in 7 iterations with the following results:

• nonzero optimal decisions:

node znt s1nt s2nt s3nt x1nt x2nt x3nt

1 1110.65 11.44 0 0 18.56 30 30
2 211.72 0.79 0 0 17.77 30 30
3 477.08 3.56 0 0 15 30 30
4 138.68 0 0 0 18.56 30 30
5 0 5 5 0 12.77 25 30
6 0 5 5 0.70 12.77 25 29.30
7 0 5 1.26 0 10 28.74 30
8 0 5 1.18 0 10 28.82 30
9 0 5 0.85 0 10 29.15 30

10 0 5 5 0 13.56 25.00 30
11 0 5 5 0.90 13.56 25 29.10
12 0 10 4.51 0 2.77 20.49 30
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node znt s1nt s2nt s3nt x1nt x2nt x3nt

13 0 10 4.35 0 2.77 20.65 30
14 0 4.05 10 0 8.72 15 30
15 0 10 2.07 0 2.77 22.93 29.30
16 0 10 1.84 0 0 26.90 30
17 10 0 2.66 0 0 26.09 30
18 0 10 3.52 0 0 25.30 30
19 0 10 3.63 0 0 25.52 30
20 0 10 3.16 0 0 25.99 30
21 0 10 3.01 0 3.56 21.99 30
22 0 10 3.56 0 3.56 21.44 30
23 0 10 4.19 0 3.56 20.81 30
24 0 10 3.76 0 3.56 21.24 29.10

• optimal values of objectives functions and worst-case nodes probabili-
ties:

node obj. pa(nt)nt
node obj. pa(nt)nt

node obj. pa(nt)nt

1 28.26 1 9 12.15 0 17 8.59 1
2 16.63 0.33 10 16.41 0.5 18 6.62 1
3 17.55 0.33 11 16.19 0.5 19 7.72 0.5
4 16.30 0.33 12 8.19 1 20 7.72 0.5
5 15.85 1 13 8.15 0 21 6.23 0
6 13.83 0 14 6.42 0 22 8.85 1
7 14.07 1 15 6.57 1 23 7.56 0
8 11.22 0 16 5.67 0 24 8.07 1
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Figure 6.8: Optimal asset allocations at scenario nodes (Node 0 represents
the initial allocation).



Chapter 7

Summary and open problems

In the thesis, the stochastic programming problems with incomplete informa-
tion on probability distributions were discussed. The incomplete information
inheres many real applications, where the perfect knowledge of probability
distribution is concealed from us. Therefore, it is very important to under-
stand and deal with such situations. We considered the following ways of
solutions.

Firstly, we dealt with problems with estimated or believed probability
distributions. For obtained solutions the analysis of stability becomes cru-
cial task ensuring that small input modifications cause only small changes in
optimal values and optimal decisions. General stability results were applied
to the Bayes decision problem and improved error bounds for the optimal
Bayes actions related to perturbations of the input were provided. In ad-
dition, classical stability properties with respect to weak convergence were
analyzed.

The second possible approach incorporates the incomplete knowledge of
probability distribution to the problem formulation. The decision maker
includes all possible probability distributions of modeled random variables
to a set of feasible distributions. His optimal decision then reflects all the
considered distributions in an effort to protect himself against the worst-case
alternative. This leads to the minimax approach. We mentioned the most
common choices of distributions’ sets and studied two of them in detail.

The worst-case approach applied on the set of probability distributions
fulfilling certain moment conditions was used on two well-known risk mea-
sures — Value-at-Risk and Conditional Value-at-Risk. We derived upper
bound for these measures under different assumptions on probability dis-
tributions. Except the knowledge of the first two moments we supposed
subsequently other properties like symmetry and unimodality. Newly, we
introduced the worst-case CVaR for symmetric distributions and correctly
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deduced the worst-case VaR for symmetric and unimodal distributions, both
for the given mean and variance. The duality statements in the moment
problem theory were crucial for presented results.

The set of probability distributions consistent with a special type of quali-
tative information was the second choice. Such a set is a bounded polyhedron
and a linear function of probability distribution is maximized at least at one
of its extreme points. For the considered type of qualitative information
defined on a given finite set of possible realizations and corresponding to
the educated guess of the form that "one realization is more probable than
the other" we were able to precisely express all extreme probability distribu-
tions and significantly simplify computations of such minimax problems. We
derived algorithms with and without the assumption of relatively complete
recourse for the two-stage and the multi-stage minimax stochastic problems
with linear recourse. The algorithms for the two-stage problems are based
on the L-shaped algorithm. In the multi-stage case the nested decomposition
was modified.

Considering the presented algorithms some improvements and extensions
are possible:

• Nodes with zero probability in each extreme probability distribution
can be excluded from the computation. This should make the algo-
rithms faster.

• Other sequencing protocols in the multi-stage case can be considered.
The variant which has been discussed in the thesis implements the
FFFB (fast-forward-fast-backward) protocol.

• The algorithms have not been tested on very large multi-stage stochas-
tic programs yet. The comparison of efficiency with other existing
methods would be also an interesting task.

• Development of an extreme points generator and considering other
types of distributions’ sets can be the subject of further research.

Eventually, some open theoretical problems still remain:

• Definitely, other necessary and sufficient conditions for the Bayes deci-
sion problem to be stable with respect to a weak convergence of prob-
ability measures can be find in literature. It makes sense to study
relations among them and their possible compatibility.

• Stability analysis of the two-stage minimax problem is rare; see e.g.
in Riis [45], Riis and Andersen [47] for case of the two-stage minimax
(integer) problems.
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• The asymptotic properties of optimal values of the minimax stochastic
programming problem is open for a further research, see Shapiro [58].



Bibliography

[1] Acerbi, C., Tasche, D. (2002): On the Coherence of Expected Shortfall.
J. of Bank. Fin., 26, 1487 – 1503.

[2] Berger, J. O. (1980): Statistical Decision Theory: Foundations, Con-
cepts and Methods. Springer Series in Statistics, Springer Verlag, New
York.

[3] Berger, J. O., Salinetti, G. (1995): Approximations of Bayes Decision
Problems: The Epigraphical Approach. Annals of Operations Research
56, 1 – 13.

[4] Billingsley, P.,Topsøe, F. (1967): Uniformity in Weak Convergence.
Z. Wahrsheinlichkeitstheorie verw. Gebiete, 7, 1 – 16.

[5] Breton, M., Hachem, S. E. (1994): Algorithms for the Solutions of
Stochastic Dynamic Minimax Problems. Computational Optimization
and Applications, 4, 317 – 345.

[6] Bühler, W. (1975): Characterization of the Extreme Points of a Class
of Special Polyhedra. Zeitschrift für Operations Research, 19, 131 –
137.

[7] Bühler, W., Gehring, H. (1978): Short-Term Financial Planning with
Uncertain Receipts and Disbursements. European Journal of Opera-
tions Research, 2, 158 – 167.

[8] Bühler, W. (1981): Capital Budgeting under Qualitative Data Informa-
tion. Capital Budgeting under Conditions of Uncertainty, Crum, R. L.,
Denkinderen, F. G. J. (eds.), Martinus Nijhoff Publishing, Boston, 81
– 117.

[9] Čerbáková, J. (2004): Minimaxové kritérium ve finančním rozhodování.
Master thesis, Charles University, Prague.

93



BIBLIOGRAPHY 94

[10] Čerbáková, J. (2005): Moment Problem and Value-at-Risk. WDS’05
Proceedings of Contributed Papers, Part I, Šafránková, J. (ed.), Mat-
fyzpress, 102-107.

[11] Čerbáková, J. (2005): Moment Problem and Worst-Case Value-at-Risk.
Proceedings of the 23rd International Conference MME2005, Skan-
ská, H. (ed.), Gaudeaumus, 33-38.

[12] Čerbáková, J. (2006): Worst-case VaR and CVaR. Operation Research
Proceedings 2005: Selected Papers of the Annual International Confer-
ence of the German Operations Research Society (GOR), Haasis, H. D,
Kopfer, H., Schönberger, J. (eds.), Springer Verlag, New York, 817 –
822.

[13] Čerbáková, J. (2006): Stability of Bayesian Actions. Proceedings of the
24th International Conference MME2006, L. Lukáš (ed.), 99-104.

[14] Čerbáková, J. (2008): Input Information for Multi-Stage Stochastic
Programs. Accepted in IMA Journal of Management Mathematics.

[15] Charnes, A., Cooper, W. W. (1959): Chance Constrained Program-
ming. Management Science, 6, 73 – 79.

[16] Dantzig, G. (1995): Linear Programming under Uncertainty. Manage-
ment Science, 1, 197-206.

[17] Dupačová, J. (1977): Minimaxová úloha stochastického lineárního pro-
gramování a momentový problém. Ekonomicko-matematický obzor, 13
(3), 279 – 307.

[18] Dupačová, J. (1980): On Minimax Decision Rule in Stochastic Lin-
ear Programming. Studies in Mathematical Programming: A. Prékopa
(eds.), Akadémiai Kiadó, 47 – 60.

[19] Dupačová, J. (1987): The Minimax Approach to Stochastic Program-
ming and an Illustrative Application. Stochastics, 20, 73 – 88.

[20] Dupačová, J., Römisch, W. (1998): Quantitative Stability for Scenario-
based Stochastic Programs. Prague Stochastics ’98, Hušková, M. et al.
(eds.), JČMF, 119 – 124.

[21] Dupačová, J. (2001): Stochastic Programming: Minimax Approach.
Encyclopedia of Optimization, Floudas, Ch. A., Pardalos, P. M. (eds.),
Kluwer Academic Publishers, V, 327 – 330.



BIBLIOGRAPHY 95

[22] Dupačová, J. (2006): Contamination for Multistage Stochastic Pro-
grams. Proc. of Prague Stochastics, Hušková, M., Janžura, M. (eds.),
Matfyzpress, 91 – 101.

[23] Ermoliev, Y., Gaivoronsky, A., Nedeva, C. (1985): Stochastic Opti-
mization Problems with Incomplete Information on Distribution Func-
tions. SIAM Journal on Control and Optimization, 23, 697 – 716.

[24] Freuendorfer, K., Marohn, Ch. (1996): Refinement Issues in Stochas-
tic Multistage Linear Programming. Stochastic Programming Methods
and Technical Applications, Lecture Notes in Economics and Mathe-
matical Systems, Springer Verlag, New York, 458, 305 – 328.

[25] Gupta, M. K. (1967): An Asymptotical Nonparametric Test of Sym-
metry. Ann. Math. Stat, 3, 846 – 866.

[26] Hartigan, J. A., Hartigan, P. M. (1985): The DIP Test of Unimodality.
Annals of Statistics, 13 (1), 70 – 74.

[27] Heitsch, H., Römisch, W., Strugarek, C. (2006): Stability of Multistage
Stochastic Programs. SIAM Journal on Control and Optimization, 17,
511 – 525.

[28] Iosifescu, M., Theodorescu, R. (1963): Sur la Programmation Linéaire.
C. R. Acad. Sci. Paris, 256, 4831 – 4833.

[29] Isii, K. (1963): On the Sharpness of Chebyshev-Type Inequalities. Ann.
Inst. Stat. Math., 14, 185 – 197.

[30] Jagannathan, R. (1985): Use of Sample Information in Stochastic Re-
course and Chance-Constrained Programming Models. Management
Science, 31 (1), 96 – 108.

[31] Kadane, J., Chuang, D. T. (1978): Stable Decision Problems. Annals
of Statistics, 10, 1095 – 1110.

[32] Kadane, J., Srinivasan, C. (1998): Bayes Decision Problems and Sta-
bility. Indian Journal of Statistics, 60, 383 – 404.

[33] Kadane, J., Salinetti, G., Srinivasan, C. (2000): Stability of Bayes
Decisions and Applications. Robust Bayesian Analysis, Lecture Notes
in Statistics, Springer Verlag, New York, 152, 187 – 196.



BIBLIOGRAPHY 96

[34] Kall, P., Mayer, J. (2005): Stochastic Linear Programming: Models,
Theory, and Computations. Springer’s International Series in Opera-
tions Research & Management Science, Kluwer Academic Publishers.

[35] Kall, P., Wallace, S. W. (1995): Stochastic Programming. John Wiley
& Sons.

[36] Open source Linear Programming system lpsolve 5.5. URL
http://lpsolve.sourceforge.net.

[37] Lucchetti, R., Salinetti, G., Wets, R, J-B (1994): Uniform Convergence
of Proability Measures: Topological Criteria. Journal of Multivariate
Analysis 51, 252 – 264.

[38] Pflug, G., Ch. (2000): Some Remarks on the Value-at-Risk and the
Conditional Value-at-Risk. Probabilistic Constrained Optimization:
Methodology and Applications, Uryasev, S. (ed.), Kluwer Academic
Publishers.

[39] Pflug, G. Ch., Wozabal, D. (2007): Ambiguity in Portfolio Selection.
Quantitative Finance, 7 (4), 435 – 442.

[40] Popescu, I. (2005): A Semidefinite Programming Approach to Optimal
Moment Bounds for Convex Classes of Distributions. Mathematics of
Operations Research, 30 (3), 632 – 657.

[41] Prékopa, A. (1973): Contribution to the Theory of Stochastic Pro-
gramming. Math. Prog, 4, 202 – 221.

[42] Prékopa, A. (1995): Stochastic Programming. Kluwer Academic Pub-
lishers, Dordrecht and Akadémiai Kiadó, Budapest.

[43] R Development Core Team (2003): R: A Language and Environment
for Statistical Computing. R Found. for Stat. Comp., Vienna, Austria,
URL http://www.R-project.org.

[44] Rachev, S. T. (1991): Probability Metrics and the Stability of Stochas-
tic Models, John Wiley & Sons.

[45] Riis, M. (2003): Classical and Non-Classical Stochastic Recourse Pro-
grams with Applications in Telecommunications. PhD thesis. Depart-
ment of Operation Research, University of Aarhus.



BIBLIOGRAPHY 97

[46] Riis, M., Schultz, R. (2003): Applying the Minimum Risk Criterion in
Stochastic Recourse Programs. Computational Optimization and Ap-
plications, 24, 267 – 287.

[47] Riis, M., Andersen, K. A. (2005): Applying the Minimax Criterion
in Stochastic Recourse Programs. European Journal of Operation Re-
search, 165, 569 – 584.

[48] Rockafellar, R. T., Wets, R. J-B (1998): Variational Analysis. A Series
of Comprehensive Studies in Mathematics 317, Springer Verlag, New
York.

[49] Rogosinsky, W. W. (1958): Moments of Non-Negative Mass. Proc. Roy.
Soc. London, Ser. A, 245, 1 – 27.

[50] Römisch, W. (2003): Stability of Stochastic Programming Problems.
Handbooks in Operation Research and Management Science: Stochas-
tic Programming, Ruszczyński, A., Shapiro, A. (eds.), Elsevier Science
B. V., 10, 486 – 554.

[51] Rustem, B., Howe, M. (2002): Algorithms for Worst-Case Design and
Applications to Risk Management. Princeton University Press.

[52] Salinetti, G. (1994): Stability of Bayesian Decisions. Journal of Statis-
tical Planning and Inference 40, 313 – 329.

[53] Sengupta, J. K. (1991): Robust Decisions in Economic Models. Com-
puters and Operations Research, 18, 221 – 232.

[54] Simons, J. (2001): Minimax Theorems. Encyclopedia of Optimization,
Ch. A. Floudas, P. M. Pardalos (eds.), III, 284 – 289.

[55] Shapiro, A. (2001): On Duality Theory of Conic Linear Prob-
lems. Semi-Infinite Programming: Recent Advances, Goberna, M. A.,
Lopez, M. A. (eds.), Kluwer Academic Publishers, 165 – 165.

[56] Shapiro, A., Kleywegt, A. (2002): Minimax Analysis of Stochastic
Problems. Optimization Methods and Software, 17, 523 – 542.

[57] Shapiro, A. (2006): Worst-Case Distribution Analysis of Stochastic
Programs. Mathematical Programming, Ser. B, 107, 91 – 96.

[58] Shapiro, A. (2008): Asymptotics of Minimax Stochastic Programs.
Statistics and Probability Letters, 78, 150 – 157.



BIBLIOGRAPHY 98

[59] Smith, J. E. (1995): Generalized Chebychev Inequalities: Theory and
Applications in Decision Analysis. Operations Research, 43 (5), 807 –
825.

[60] Takriti, S., Ahmed, S. (2002): Managing Short-Term Electricity Con-
tracts under Uncertainty: A Minimax Approach. ISyE Technical Re-
port.

[61] Uryasev, S., Rockafellar, R. T. (2002): Conditional Value-at-Risk for
General Loss Distributions. J. of Bank. Fin., 26, 1443 – 1471.

[62] Wonnacott, T. H., Wonnacott, R. J. (1990): Decision Trees. Introduc-
tory Statistics for Business and Economics, 4th Edition, John Wiley &
Sons, 21, 639 – 663.

[63] Žáčková, J. (1966): On Minimax Solution of Stochastic Linear Pro-
gramming Problems. Čas. Pěst. Mat., 91, 423 – 430.

[64] Zhu, S. S., Fukushima, M. (2005): Worst-Case Conditional Value-at-
Risk with Application to Robust Portfolio Management. Technical Re-
port 2005-2006 (July 05, 2005), Department of Applied Mathematics
& Physics, Kyoto University.


