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Introduction
This thesis shows different non-traditional approaches to solving high school
olympiad geometry problems. These olympiad problems are usually stated in
standard euclidian space ℝ2. However, for convenience, we will usually extend
this to the projective space ℙℝ2 or even into ℙℂ𝟚. We show example problems
with solutions. These problems are selected to best show the possibilities of the
presented techniques. Their solutions are combinations of different posts from [8]
and my contribution.

In the first chapters, we introduce algebraic notation and conics and give a
projective characterization of circles.

In the chapter about Desargues involution, we show a known result about
the linearity of the Desargues involution. We present an elementary proof of that
result, and we show an example of how to use it. More about this in [5].

In the animation section, we write about the Method of Animation from [1].
This technique uses curve parametrizations to solve geometric problems. We show
an elementary proof using resultants of a known result regarding the degree of
such a parametrized curve.

The last chapter shows how to use group operation on an elliptic curve to
solve challenging problems.
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1 Algebraic definitions
1.1 Fields
Proposition 1.1. Let 𝐾 be UFD and 𝑄 its field of fractions. Then 𝑝 ∈ 𝐾[𝑥] has
non-constant factor in 𝐾[𝑥] if and only if it has a non-constant factor in 𝑄[𝑥].
Proof. It’s a corollary of 1.16. in [4].

Proposition 1.2. Let 𝑝, be a homogenous polynomial in ℂ[𝑥, 𝑦] with degree 𝑑.
Then it factors into 𝑑 linear terms of a form (𝑎𝑥 − 𝑏𝑦), where (𝑏, 𝑎) is a root of 𝑝.
Proof. It sufficies to find one such divisor. The rest will be given by induction
on the degree of 𝑝. We distinguis two cases.

• 𝑦 ∣ 𝑝. Then we have such a divisor.
• 𝑦 ∤ 𝑝. Then we substitute 𝑦 = 1 to get a polynomial 𝑞 in ℂ[𝑥] with the same

degree. From Fundamental theorem of algebra tris polynomial has some root
𝑟 and therefore is divisible by (𝑥 − 𝑟). Thus we write 𝑞 = (𝑥 − 𝑟)𝑞′ for some
𝑞′ ∈ ℂ[𝑥]. Then we homogenize 𝑞′ by adding 𝑦 to get 𝑝′ ∈ ℂ[𝑥, 𝑦]. Then we
have gotten a factorization of 𝑝 as 𝑝 = (𝑥 − 𝑟𝑦)𝑝′. □

1.2 Projective space
Definition. Let 𝐾 be a field. Then the projective space of dimension 𝑛 over field
𝐾 is a set of all (𝑛 + 1)-tuples (𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1) ∈ 𝐾𝑛+1/{(0, 0, . . . , 0)}
up to equivalence (𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1) ∼ (𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3, . . . , 𝑘𝑎𝑛, 𝑘𝑎𝑛+1), for
every 𝑘 ∈ 𝐾/{0}. We denote it by 𝒫𝐾𝑛. For the equivalence class containing
(𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1) we use notation [𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1].

Note. When talking about (𝑛 + 1)-tuples from 𝐾𝑛+1 we will look at 𝐾𝑛+1 as
having a structure of a vector space.

Definition. Let 𝑝 be a homogenous polynomial in 𝐾[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑥𝑛+1]
with degree 𝑑. Then 𝑋 = [𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1] ∈ 𝒫𝐾𝑛 is the zero of 𝑝 if
it holds that 𝑝(𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1) = 0. This is well defined, because 𝑝 is
homogenous polynomial, we have that

𝑝(𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3, . . . , 𝑘𝑎𝑛, 𝑘𝑎𝑛+1) = 𝑘𝑑𝑝(𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1).

Definition. Let 𝑝 be a polynomial in 𝐾[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑥𝑛+1]. Then we may
uniquely write it as sum 𝑝1 + 𝑝2 + 𝑝3 + · · · + 𝑝𝑚 of homogenous polynomials. We
say that point 𝑋 ∈ 𝒫𝐾𝑛 is a zero of 𝑝 if it a zero of all 𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑚.

Definition. Let 𝑄 be a set of polynomials. Then we denote 𝑉 (𝑄) the set of all
points 𝑆 in 𝒫𝐾𝑛 such that ∀𝑝 ∈ 𝑄 and ∀𝑠 ∈ 𝑆 we have that 𝑠 is the zero of 𝑝.

Definition. For a set of points 𝑆 in 𝒫𝐾𝑛 we define 𝐼(𝑆) the set of all polyno-
mials 𝑄 such that ∀𝑝 ∈ 𝑄 and ∀𝑠 ∈ 𝑆 we have that 𝑠 is the zero of 𝑝.

Definition. Let 𝐼 be an ideal in 𝑅. Then we denote by Rad(𝐼) the set of all
𝑟 ∈ 𝑅 such that there exists 𝑛 ∈ ℕ for which 𝑟𝑛 ∈ 𝐼.

Theorem 1.3 (Projective Nullstellensatz). Let 𝐿 be a homogenous ideal in
𝐾[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑥𝑛+1]. If 𝑉 (𝐿) ≠ ∅, then 𝐼(𝑉 (𝐿)) = Rad(𝐿)
Proof. For proof see page 46. of [3].

Corollary 1.4. Let 𝑝 be an polynomial from 𝐾[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑥𝑛+1] and 𝑔
some ireducible factor of 𝑝 such that 𝑉 (𝑝) = 𝑉 (𝑔). Then for some 𝑛 ∈ ℕ, 𝑐 ∈ 𝐾
it holds that 𝑝 = 𝑐𝑔𝑛.
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Proof. Because 𝑔 is ireducible, we have 𝑔 = Rad({𝑔}). Thus from 𝑉 (𝑔) = 𝑉 (𝑝),
we have that 𝑔 = Rad({𝑔}) = 𝐼(𝑉 (𝑔)) = 𝐼(𝑉 (𝑝)) = Rad({𝑝}). Hence 𝑝 = 𝑐𝑔𝑛

for some 𝑛 ∈ ℕ, 𝑐 ∈ 𝐾. □

Definition. Let 𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛+2 ∈ 𝒫𝐾𝑛 be points. Then we say that they
are in general position if no subset of (𝑛+1) of their representants lie in less then
(𝑛 + 1) dimensional vector space.

1.3 Linear transformations
Definition. Consider a projective space 𝒫𝐾𝑛 and a regular matrix 𝑀 ∈
𝐾(𝑛+1)×(𝑛+1). Then this gives us a transformation 𝒫𝐾𝑛 → 𝒫𝐾𝑛, such that for
𝑋 = [𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1] ∈ 𝒫𝐾𝑛 we transform it to equivalence class of

𝑀(𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1)𝑇.

This is well defined, because from linearity

𝑀(𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3, . . . , 𝑘𝑎𝑛, 𝑘𝑎𝑛+1)𝑇 = 𝑘𝑀(𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎𝑛+1)𝑇.

We call this the linear transformation given by matrix 𝑀.

Observation 1.5. Multiplying a matrix of a linear transformation of 𝒫𝐾𝑛 by a
constant gives the same linear transformation.

Proposition 1.6. For given 𝑛 + 2 points 𝑝𝑖 in general position and 𝑛 + 2 points
𝑞𝑖 in general position in 𝒫𝐾𝑛. There exists exactly one linear transformation
mapping 𝑝𝑖 ↦ 𝑞𝑖 for all 𝑖.
Proof. Let 𝑎, 𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑎𝑛+1 ∈ 𝐾𝑛+1 be some representants of equiva-
lences 𝑝𝑖. Analogously let 𝑏, 𝑏1, 𝑏2, . . . , 𝑏𝑛, 𝑏𝑛+1 ∈ 𝐾𝑛+1 be some representants of
𝑞𝑖. Then for every nonzero 𝜆1, 𝜆2, . . . , 𝜆𝑛, 𝜆𝑛+1 there exists a unique linear trans-
formation 𝑓 of 𝐾𝑛+1 mapping 𝑎𝑖 ↦ 𝜆𝑖𝑏𝑖. As 𝑝𝑖 and 𝑞𝑖 are in general position,
there are unique linear combinations with nonzero coefficients

𝑎 = 𝛼1𝑎1 + 𝛼2𝑎2 + · · · + 𝛼𝑛𝑎𝑛 + 𝛼𝑛+1𝑎𝑛+1

𝑏 = 𝛽1𝑏1 + 𝛽2𝑏2 + · · · + 𝛽𝑛𝑏𝑛 + 𝛽𝑛+1𝑏𝑛+1.

From linearity we have that

𝑓(𝑎) = 𝑓(𝛼1𝑎1 + 𝛼2𝑎2 + · · · + 𝛼𝑛𝑎𝑛 + 𝛼𝑛+1𝑎𝑛+1) =
= 𝛼1𝑓(𝑎1) + 𝛼2𝑓(𝑎2) + · · · + 𝛼𝑛𝑓(𝑎𝑛) + 𝛼𝑛+1𝑓(𝑎𝑛+1) =
= 𝛼1𝜆1𝛽1 + 𝛼2𝜆2𝛽2 + · · · + 𝛼𝑛𝜆𝑛𝛽𝑛 + 𝛼𝑛+1𝜆𝑛+1𝛽𝑛+1.

This has to equal a multiple of 𝑏. Thus from uniqueness of linear combination
for 𝑏, we have that, up to a scalar multiple 𝜆𝑖 = 𝛽𝑖

𝛼1
. Such a scalar multiple just

multiplies the whole matrix by the same scalar. Thus from construction there is
an unique linear transformation mapping 𝑝𝑖 ↦ 𝑞𝑖. □

4



2 Basics of Angle chasing
We will be working in ℝ2.
Definition. We say that a set of points 𝑆 is concyclic if there exists a circle
passing through all of them.

Definition. Four points 𝐴, 𝐵, 𝐶, 𝐷 form a cyclic quadrilateral, if they are
concyclic.

Definition. Let 𝑝 be a line, we will denote ⃗𝑝 the direction of 𝑝 in degrees modulo
180∘.

Definition. Let 𝑝, 𝑞 be two lines, we denote ∠(𝑝, 𝑞) the angle by which we have
to rotate 𝑝 counterclockwise to be parallel with 𝑞. We take this angle modulo 180∘.
Hence we can also get it as ⃗𝑞 − ⃗𝑝

Definition. Let 𝐴 be a point on a circle 𝜔 with center 𝑂, then ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝜔 is the
direction of the ray 𝑂𝐴 modulo 360∘.

Proposition 2.1. Let 𝜔 be a circle with center 𝑂. Line 𝑝 intersects circle at
points 𝐴, 𝐵. If 𝑝 is tangent, then 𝐴 = 𝐵. Then

⃗𝑝 =
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝜔 + ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗𝐵𝜔

2
+ 90∘

Proof.

• If 𝐴 ≠ 𝐵, then as 𝑂 is the center, we have that triangle 𝑂𝐴𝐵 is isosceles
𝑂𝐴 = 𝑂𝐵. Hence the internal angle bisector of 𝑂𝐴𝐵 is perpendicular to 𝐴𝐵.

• If 𝐴 = 𝐵. Then 𝑝 is a tangent. Hence it’s perpendicular to 𝑂𝐴. □

Theorem 2.2 (Circumscribed angle). Let 𝐴, 𝐵, 𝐶, 𝐷 be four points in a
general position. Then 𝐴𝐵𝐶𝐷 is cyclic if and only if ∠(𝐴𝐵, 𝐴𝐶) = ∠(𝐷𝐵, 𝐷𝐶).
Proof.

• ⇒: Denote 𝜔 the circumcircle. Then from 2.1 we have

∠(𝐴𝐵, 𝐴𝐶) = (
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝜔 + ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝜔

2
+ 90∘) − (

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝜔 + ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗𝐵𝜔
2

+ 90∘) =
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝜔 − ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗𝐵𝜔

2
=

=
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝜔 − ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗𝐵𝜔

2
= (

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝜔 + ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝜔
2

+ 90∘) − (
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝜔 + ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗𝐵𝜔

2
+ 90∘) = ∠(𝐷𝐵, 𝐷𝐶)

• ⇐: Let 𝜔 be a circumcircle of 𝐴𝐵𝐶 and let 𝐷′ be the second intersec-
tion of 𝐷𝐵 with 𝜔. Then from the first part we have that ∠(𝐴𝐵, 𝐴𝐶) =
∠(𝐷′𝐵, 𝐷′𝐶) = ∠(𝐷𝐵, 𝐷𝐶), hence ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐷𝐶 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷′𝐶 and as both lines pass
through the same point 𝐶, they coincide. Hence 𝐷 = 𝐷′. ■

Definition. We denote the value of ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝜔 − ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗𝐵𝜔 as the central angle of arc 𝐵𝐶.
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3 Resultants
Let 𝐾 be UFD and let 𝑝 = 𝑎deg 𝑝𝑥deg 𝑝 + · · · + 𝑎1𝑥 + 𝑎0, 𝑞 = 𝑏deg 𝑞𝑥deg 𝑞 +
· · · + 𝑏1𝑥 + 𝑏0 be two polynomials in 𝐾[𝑥] and denote 𝑄 the field of fractions
of 𝐾. Then from Gauss lemma 1.1 𝑝, 𝑞 have a non-constant common factor iff
they have a common factor in 𝑄[𝑥]. And they have a common factor in 𝑄[𝑥] iff
deg(LCM(𝑝, 𝑞)) < deg(𝑝) + deg(𝑞). And that is iff there exists some polynomials
𝑐𝑝, 𝑐𝑞 ∈ 𝑄[𝑥] satisfying

deg(𝑐𝑝) < deg(𝑞)
deg(𝑐𝑞) < deg(𝑝)

𝑐𝑝𝑝 + 𝑐𝑞𝑞 = 0

Which is iff there exists nontrivial linear combination of vectors

𝑝, 𝑥𝑝, 𝑥2𝑝, . . . , 𝑥deg(𝑞)−1, 𝑞, 𝑥𝑞, 𝑥2𝑞, . . . , 𝑥deg(𝑝)−1

that equals zero. Which is iff determinant of this (deg(𝑝) + deg(𝑞)) × (deg(𝑝) +
deg(𝑞)) matrix of coefficients is equal to zero.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎0 𝑎1 𝑎2 · · · 𝑎deg(𝑝) 0 · · · 0
0 𝑎0 𝑎1 · · · 𝑎deg(𝑝)−1 𝑎deg(𝑝) · · · 0
...

...
. . . . . .

...
. . . . . .

...
0 · · · 0 𝑎0 · · · · · · 𝑎deg(𝑝)−1 𝑎deg(𝑝)
𝑏0 𝑏1 𝑏2 · · · 𝑏deg(𝑞) 0 · · · 0
0 𝑏0 𝑏1 · · · 𝑏deg(𝑞)−1 𝑏deg(𝑞) · · · 0
...

...
. . . . . .

...
. . . . . .

...
0 · · · 0 𝑏0 · · · · · · 𝑏deg(𝑞)−1 𝑏deg(𝑞)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Definition. The determinant of this matrix given by polynomials 𝑝 and 𝑞 in
variable 𝑥 is the resultant of 𝑝 and 𝑞 and we denote it res𝑥(𝑝, 𝑞). And we look at
it as a polynomial in coefficients of 𝑝 and 𝑞.

Observation 3.1. From construction we have that res𝑥(𝑝, 𝑞) is zero iff 𝑝 and 𝑞
have a non-constant common factor.

For last observations in this section we define 𝑝𝑥 for homogenous polynomial
𝑝 ∈ 𝐾[𝑥, 𝑦] the polynomial we get by substituting 𝑦 = 1 in 𝑝. Even if this
substitution lowered the degree, we would view 𝑝𝑥 as having the same degree
with some leading coefficients being zero. Similarly we define 𝑝𝑦 as polynomial
we get by substituting 𝑦 = 1.
Observation 3.2. Let 𝑝, 𝑞 be two homogenous polynomials in 𝐾[𝑥, 𝑦] of the
same degree. Then res𝑥(𝑝𝑥, 𝑞𝑥) = ±res(res𝑦(𝑝𝑦, 𝑞𝑦)). Consequently res𝑥(𝑝, 𝑞) =
0 ⇔ res𝑦(𝑝, 𝑞) = 0
Proof. The matricies we get for res𝑥(𝑝𝑥, 𝑞𝑥) and res𝑦(𝑝𝑦, 𝑞𝑦) differ only by a
permutation of rows and columns, hence the determinant differs by a multiple of
±1. □

Proposition 3.3. Let 𝑝, 𝑞 be two homogenous polynomials in 𝐾[𝑥, 𝑦]. Then 𝑝,
𝑞 have a common factor in 𝐾[𝑥, 𝑦] if and only if 𝑟𝑒𝑠𝑥(𝑝𝑥, 𝑞𝑥) = 0.
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Proof.

• ⇒: If they have a common factor, then if this factor contains 𝑥, then it it also
a factor of 𝑝𝑋 and 𝑞𝑥 after substitution 𝑦 = 1, hence 𝑟𝑒𝑠𝑥(𝑝𝑥, 𝑞𝑥) = 0. If it
does not contain 𝑥, it has to contain 𝑦. So after substituting 𝑥 = 1 it is a factor
of 𝑝𝑦 and 𝑞𝑦. And from 3.3 we have that 𝑟𝑒𝑠𝑥(𝑝𝑥, 𝑞𝑥) = ±𝑟𝑒𝑠𝑦(𝑝𝑦, 𝑞𝑦) = 0.

• ⇐:
• If neither 𝑝 nor 𝑞 is divisible by 𝑦. Then polynomials 𝑝𝑥 and 𝑞𝑥 have no

leading zeroes, thus if 𝑟𝑒𝑠𝑥(𝑝𝑥, 𝑞𝑥) = 0 then 𝑝𝑥 and 𝑞𝑥 have a common
factor. Homogenizing by adding 𝑦 we get a factor of 𝑝 and 𝑞.

• If both 𝑝 and 𝑞 are divisible by 𝑦. Then polynomials 𝑝𝑥 and 𝑞𝑥 both start
with zero. Thus the corresponding matrix will have the first column full
of zeroes. Hence its determinant will be zero.

• If WLOG 𝑝 is divisible by 𝑦 and 𝑞 is not. Denote 𝑘 the maximum number
such that 𝑦𝑘 ∣ 𝑝. Look at matrix corresponding to 𝑝𝑥 and 𝑞𝑥. The top
right 𝑘 × 𝑑 block will be zero. Thus using ellimination we can transform
first 𝑘 columns of rows 𝑑 to 𝑑 + 𝑘 into identity matrix. From that we see,
that any nontrivial combination of rows that equals zero must not utilize
these 𝑘 rows, hence the determinant is zero iff res(𝑝′

𝑥, 𝑞𝑥) is zero, where
𝑝′

𝑥 is 𝑝𝑥 with removed leading zeros. Thus we have a common factor of
𝑝′

𝑥 and 𝑞𝑥, which after homogenization using 𝑦 gives us a common factor
of 𝑝 and 𝑞. □

Definition. We denote res𝑥𝑦(𝑝, 𝑞) = res𝑥(𝑝𝑥, 𝑞𝑥).
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4 Conics
Definition. A conic is a homogenous quadratic form; hence it has a general
form

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 2𝐷𝑦𝑧 + 2𝐸𝑧𝑥 + 2𝐹𝑥𝑦

We can write it as a matrix form

( 𝑥 𝑦 𝑧 ) ⎛⎜
⎝

𝐴 𝐷 𝐸
𝐷 𝐵 𝐹
𝐸 𝐹 𝐶

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
𝑧

⎞⎟
⎠

Definition. When the matrix is regular, we say that the conic is nondegenerate.

Definition. We denote the polar of a point [𝑃𝑥, 𝑃𝑦, 𝑃𝑧] with respect to a non-
degenerate conic 𝛾 with matrix 𝑀 as the line given by

( 𝑃𝑥 𝑃𝑦 𝑃𝑧 ) 𝑀 ⎛⎜
⎝

𝑥
𝑦
𝑧

⎞⎟
⎠

Proposition 4.1. For every line ℓ and a nondegenerate conic 𝛾, there is precisely
one point 𝑃 such that ℓ is polar of 𝑃 with respect to 𝛾.
Proof. The line is given by some equation 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 0, hence we are
solving

( 𝑃𝑥 𝑃𝑦 𝑃𝑧 ) 𝑀 = ( 𝐴 𝐵 𝐶 )

which has exactly one solution, as the matrix 𝑀 is regular. Any 𝑘-multiple of
( 𝐴 𝐵 𝐶 ) gives the same line. But from linearity it generates the same point.

Definition. We denote this point the pole of line ℓ with respect to 𝛾.

Note. When talking about poles and polars without the conic, we refer to them
as if the matrix of a conic is the identity matrix.

Theorem 4.2 (Principle of duality). Let 𝛾 be any conic, 𝑃 some point and ℓ
some line. And denote by 𝑝 the polar of 𝑃 and by 𝐿 the pole of ℓ. Then 𝑃 ∈ ℓ if
and only if 𝐿 ∈ 𝑝.
Proof. Let 𝑀 be matrix associated with 𝛾. Then

𝑃 ∈ ℓ ⇔ 𝐿𝑇𝑀𝑃 = 0 ⇔ 𝑃 𝑇𝑀𝑇𝐿 = 0𝑇 ⇔ 𝑃 𝑇𝑀𝐿 = 0 ⇔ 𝐿 ∈ 𝑝.

■

Observation 4.3. Let 𝑃 be a point lying on some nondegenerate conic 𝛾. Let 𝑝
be its polar with respect 𝛾. Then 𝑝 is tangent to 𝛾 at 𝑃.
Proof. From definition 𝑃 ∈ 𝑝. Now suppose that 𝑝 and 𝛾 intersect at some other
point 𝑄 ≠ 𝑃. Then polar of 𝑄 from definition passes through 𝑄 and from 4.2
passes through 𝑃. But then both 𝑃 and 𝑄 are the poles of 𝑝. Which is contradicts
unique construction of the pole. □

Observation 4.4. Let 𝑃 be a point and 𝑝 its polar with respect to some nonde-
generate conic 𝛾. Then 𝑝 intersects 𝛾 at two distinct points if and only if 𝑃 ∉ 𝛾.
Proof. From previous observation we have that if 𝑃 ∈ 𝛾 then 𝑝 does not inter-
sects 𝛾 at two different points. Now if 𝑝 intersects 𝛾 at one point 𝑄. Then from
have that 𝑝 is the polar of 𝑄, as at each point of 𝛾 there is an unique tangent.
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Observation 4.5. Let 𝑇 be a regular matrix of some linear transformation and
𝑀 be a matrix of some conic. Then 𝑇 −𝑇𝑀𝑇 −1 is the matrix of 𝑀 transformed
by 𝑇.

Proposition 4.6. Let 𝑇 be a regular matrix of any linear transformation and 𝑀
matrix of some conic. Then if 𝑝 is the polar of 𝑃 with respect to 𝑀 then 𝑇 𝑝 is
polar of 𝑇 𝑃 with respect to conic 𝑇 −𝑇𝑀𝑇 −1.
Proof. Let us take any point 𝑋 ∈ 𝑝. Then

(𝑇 𝑋)𝑇𝑇 −𝑇𝑀𝑇 −1𝑇 𝑃 = 𝑋𝑇𝑀𝑃.

Thus 𝑇 𝑝 is the polar of 𝑇 𝑃. □
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5 Complex circles
5.1 Introduction to circles
The circle in ℝ2 with center (𝑐𝑥, 𝑐𝑦) and radius 𝑟 is a set of points satisfying
equation

(𝑥 − 𝑐𝑥)2 + (𝑦 − 𝑐𝑦)2 + 𝑟 = 0.
After multiplying above equation out we get that the circle equation has form

𝐴𝑥2 + 𝐴𝑦2 + 2𝐵1𝑥 + 2𝐵2𝑦 + 𝐶 = 0
for some numbers 𝐴, 𝐵1, 𝐵2 and 𝐶. As we will be working in ℙℂ𝟚 we will
homogenize this equation.
Definition. Any polynomial of a form

𝜔 = 𝐴𝑥2 + 𝐴𝑦2 + 2𝐵1𝑥𝑧 + 2𝐵2𝑦𝑧 + 𝐶𝑧2

is a circle polynomial. And the set 𝑉 ({𝜔}) is the circle.
Observation 5.1. We may write circle polynomial in a matrix form as follows

𝑥𝑇 ⎛⎜
⎝

𝐴 0 𝐵1
0 𝐴 𝐵2

𝐵1 𝐵2 𝐶
⎞⎟
⎠

𝑥 = 0

Definition. If 𝐴 = 1 we have circle polynomial in form
𝑥2 + 𝑦2 + 𝐵1𝑥𝑧 + 𝐵2𝑦𝑧 + 𝐶𝑧2.

We denote this as the normalized polynomial of a circle.
Definition. Let 𝜔 be a circle. Then the center of 𝜔 is the pole of the infinity
line with respect to 𝜔.
Observation 5.2. Center of a circle does not lie on the infinity line.
Proposition 5.3. Let 𝜔 be a circle. And denote 𝑂 = [𝑎, 𝑏, 1] its center. Then
point reflection by 𝑂 maps 𝜔 onto itself.
Proof. Let 𝑀 be the matrix of 𝜔 with following entries

⎛⎜
⎝

1 0 𝐵1
0 1 𝐵2

𝐵1 𝐵2 𝐶
⎞⎟
⎠

. That 𝑂 is the pole of the infinity line means, that 𝑂𝑇𝑀 = [0, 0, 1]. Hence we
get that 𝑎 + 𝐵1 = 0 = 𝑏 + 𝐵2. The point reflection by 𝑂 is given by the matrix

𝑇 = ⎛⎜
⎝

−1 0 2𝑎
0 −1 2𝑏
0 0 1

⎞⎟
⎠

.

Thus the transformed conic is given by the following matrix. We will use observed
conditions 𝑎 + 𝐵1 = 0 = 𝑏 + 𝐵2 to simplify expansion.

⎛⎜
⎝

−1 0 0
0 −1 0
2𝑎 2𝑏 1

⎞⎟
⎠

⎛⎜
⎝

1 0 𝐵1
0 1 𝐵2

𝐵1 𝐵2 𝐶
⎞⎟
⎠

⎛⎜
⎝

−1 0 2𝑎
0 −1 2𝑏
0 0 1

⎞⎟
⎠

=

= ⎛⎜
⎝

−1 0 −𝐵1
0 −1 −𝐵2

−𝐵1 −𝐵2 2𝐵1𝑎 + 2𝐵2𝑏 + 𝐶
⎞⎟
⎠

⎛⎜
⎝

−1 0 2𝑎
0 −1 2𝑏
0 0 1

⎞⎟
⎠

=

= ⎛⎜
⎝

1 0 𝐵1
0 1 𝐵2

𝐵1 𝐵2 −2𝐵1𝑎 − 2𝐵2𝑏 + 2𝐵1𝑎 + 2𝐵2𝑏 + 𝐶
⎞⎟
⎠

= ⎛⎜
⎝

1 0 𝐵1
0 1 𝐵2

𝐵1 𝐵2 𝐶
⎞⎟
⎠

= 𝑀
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Thus for every point 𝑃 we have that 𝑃 lies on 𝜔 if and only if 𝑇 (𝑃) lies on 𝜔. □
Definition. We denote points complex points [1, 𝑖, 0] and [1, −𝑖, 0] the circle
points.
Proposition 5.4. Conic is a circle if and only if it passes through both circle
points.
Proof. From circle polynomial it’s trivial, that all circles pass through these
points. So we will proceed to the other implication. General conic is given by
matrix equation

𝑥𝑇 ⎛⎜
⎝

𝐴 𝐵 𝐶
𝐵 𝐷 𝐸
𝐶 𝐸 𝐹

⎞⎟
⎠

𝑥 = 0

Pluging in the two points we get

𝐴 + 2𝐵𝑖 − 𝐷 = 0
𝐴 − 2𝐵𝑖 − 𝐷 = 0.

Subtracting these gives us 4𝐵𝑖 = 0, hence 𝐵 = 0, and adding them gives 𝐴 = 𝐷.
Hence we get a matrix of a circle. □

5.2 Power of a point
Definition. For a circle 𝜔, we denote its normalized polynomial as 𝒫𝜔. It is
also known as the power of a point with respect to 𝜔.
Definition. Let 𝜔, resp. Ω be circles. Then we denote the affine space generated
by 𝒫𝜔 and 𝒫Ω as pencil generated by 𝜔 and Ω. This is set of all polynomials of
form 𝜆1𝒫𝜔 + 𝜆2𝒫Ω for 𝜆1 + 𝜆2 = 1.
Proposition 5.5. All polynomials in pencil of two circles are normalized circle
polynomials.
Proof. Let 𝜔 and Ω be two circles. The coefficient at 𝑥2 and 𝑦2 is 1 in both 𝒫𝜔
and 𝒫Ω. Hence it will be 1 in any affine combination. □
Observation 5.6. Let 𝜔 and Ω be two circles and 𝑘 ∈ ℂ and 𝑘 ≠ 1. All points
𝑋 satisfying

𝒫𝜔(𝑋)
𝒫Ω(𝑋)

= 𝑘

lie on some circle from the pencil generated by 𝜔 and Ω.
Proof. We rewrite the equation as

1
1 − 𝑘

⋅ 𝒫𝜔(𝑋) + −𝑘
1 − 𝑘

⋅ 𝑃Ω(𝑋) = 0.

This is an polynomial for some circle from the pencil generated by 𝜔 and Ω. □
Corollary 5.7. Let 𝜔 and Ω be two circles and 𝑋, 𝑌 be two points such that

𝒫𝜔(𝑋)
𝒫Ω(𝑋)

= 𝒫𝜔(𝑌 )
𝒫Ω(𝑌 )

≠ 1,

then 𝑋 and 𝑌 lie on the same circle from the pencil generated by 𝜔 and Ω.
Observation 5.8. Let 𝜔 and Ω be two circles and 𝛾 be a circle from the pencil gen-
erated by 𝜔 and Ω. And let [𝑥, 𝑦, 𝑧] be a point such that 𝒫𝜔(𝑥, 𝑦, 𝑧) = 𝒫Ω(𝑥, 𝑦, 𝑧),
then 𝒫𝛾(𝑥, 𝑦, 𝑧) = 𝒫𝜔(𝑥, 𝑦, 𝑧) = 𝒫Ω(𝑥, 𝑦, 𝑧).
Corollary 5.9. When 𝑋 is one of the intersections of 𝜔 and Ω, it lies on all circles
from their pencil.
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5.3 Radical axis

Definition. For circles 𝜔 and Ω, we look at the polynomial 𝒫𝜔 − 𝒫Ω. As both
𝒫𝜔 and 𝒫Ω are normalized the terms 𝑥2 and 𝑦2 cancel out we are left with a
polynomial of the form 𝑧 ⋅ 𝑄(𝑥, 𝑦, 𝑧), where 𝑄 is linear. We denote 𝑄 the radical
axis polynomial of 𝜔 and Ω and 𝑉 ({𝑄}) as the radical axis of 𝜔 and Ω.

Proposition 5.10. Let 𝜔 and Ω be two circles. The radical axis is the same for
any pair of circles from the pencil generated by 𝜔 and Ω.
Proof. Let 𝑐1 = 𝜆1𝒫𝜔 + (1 − 𝜆1)𝒫Ω and 𝑐2 = 𝜆2𝒫𝜔 + (1 − 𝜆2)𝒫Ω for 𝜆1 ≠ 𝜆2.
Then radical axis polynomial of 𝑐1 and 𝑐2 is

𝜆1𝒫𝜔 + (1 − 𝜆1)𝒫Ω − 𝜆2𝒫𝜔 − (1 − 𝜆2)𝒫Ω = (𝜆1 − 𝜆2)(𝒫𝜔 − 𝒫Ω).

As 𝜆1 − 𝜆2 is nonzero, this radical axis polynomial is always a scalar multiple of
𝒫𝜔 − 𝒫Ω, hence the radical axis does not depend on 𝜆1, 𝜆2.

Theorem 5.11. For three circles 𝜔, Ω, and 𝛾 not lying on one pencil, their
pairwise radical axes are concurrent.
Proof. Denote ℓ(𝑐1, 𝑐2) the radical axis of circles 𝑐1 and 𝑐2. We distinguish two
cases

• ℓ(𝜔, Ω) and ℓ(Ω, 𝛾) are not parallel, hence they are not concurrent with the
infinity line. Then denote by 𝑅 their intersection point. From the definition
of radical axis we have that 𝒫𝜔(𝑅) = 𝒫Ω(𝑅) = 𝒫𝛾(𝑅), hence 𝑅 is a zero of
𝒫𝛾 −𝒫𝜔. And as it does not lie on the infinity line, it has to lie on the radical
axis of 𝛾 and 𝜔.

• ℓ(𝜔, Ω) and ℓ(Ω, 𝛾) intersect on the infinity line at point 𝑅. Then for contra-
diction suppose, that ℓ(𝛾, 𝜔) intersects ℓ(𝜔, Ω) at a point 𝑄 different from 𝑅.
Then 𝑄 does not lie on the infinity line, hence from the first part all three
radical axes pass through 𝑄, hence a contradiction. ■

Definition. We denote the intersection of radical axes of three circles not lying
on one pencil the radical center of the three circles.

Proposition 5.12. Let 𝑋 be a point and 𝜔 a circle, both in ℝ2. A line ℓ passing
through 𝑋 intersects the circle at two points 𝑍1, 𝑍2. Then after substituting
𝑧 = 1 into 𝒫𝜔 we have 𝒫𝜔𝑋 = 𝑋𝑍1 ⋅ 𝑋𝑍2, where distances are directed.
Proof. Denote 𝑂 the point [0, 0, 1]. Let 𝑀 be a matrix for the circle polynomial
of 𝜔. Len 𝑁 be an composition of rotation matrix in ℝ2 with translation matrix
such that it maps 𝑦 = 0 onto ℓ and point 𝑂 onto 𝑋. Then

𝒫𝜔𝑋 = 𝑋𝑇𝑀𝑋 = 𝑂𝑇𝑁𝑇𝑀𝑁𝑂.

In 𝑁 the top right 2 × 2 submatrix is an rotational matrix; thus an orthonormal
matrix. Furthermore from that 𝑀 is normalized, we have that its top right 2 × 2
submatrix is identity matrix. Thus the final matrix 𝑁𝑇𝑀𝑁 has the top right 2×2
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submatrix the identity matrix; hence is a normalized circle polynomial. Denote
𝑄 the circle polynomial given by matrix 𝑁𝑇𝑀𝑁 after substituting 𝑧 = 1 and
𝑦 = 0. Thus 𝑄 ∈ ℝ[𝑥]. Denote 𝑍′

1 and 𝑍′
2 points of intersection of line 𝑦 = 0 with

circle given by 𝑁𝑇𝑀𝑁 and denote 𝑧1 and 𝑧2 their 𝑥-coordinates respectively. As
rotation and translation preserves distances, we have that 𝑋𝑍1 = 𝑂𝑍′

1 = 𝑧1 and
𝑋𝑍2 = 𝑂𝑍′

2 = 𝑧2. As 𝑧1 and 𝑧2 are roots of 𝑄 and 𝑄 has leading coefficient 1,
we have from Vieta formulas that 𝒫𝜔𝑋 = 𝑄(0) = 𝑧1𝑧2 = 𝑋𝑍1 ⋅ 𝑋𝑍2. □

Problem 5.1 (CGMO 2017/7). Let the 𝐴𝐵𝐶𝐷 be a cyclic quadrilateral with
circumcircle 𝜔1. Lines 𝐴𝐶 and 𝐵𝐷 intersect at point 𝐸, and lines 𝐴𝐷, 𝐵𝐶 in-
tersect at point 𝐹. Circle 𝜔2 is tangent to segments 𝐸𝐵, 𝐸𝐶 at points 𝑀, 𝑁
respectively, and intersects with circle 𝜔1 at points 𝑄, 𝑅. Lines 𝐵𝐶, 𝐴𝐷 intersect
line 𝑀𝑁 at 𝑆, 𝑇 respectively. Show that 𝑄, 𝑅, 𝑆, 𝑇 are concyclic.

𝐴

𝐵
𝑄

𝑅
𝐶

𝐷

𝐸
𝐹

𝑀 𝑁
𝑆

𝑇 𝜔1

𝜔2

Solution. From symmetry we have that triangle 𝐸𝑀𝑁 is isosceles, hence
∠(𝐸𝑀, 𝑀𝑁) = ∠(𝑀𝑁, 𝐸𝑁). And because 𝐴𝐵𝐶𝐷 is cyclic, we conclude
that ∠(𝐵𝐶, 𝐶𝐴) = ∠(𝐵𝐷, 𝐷𝐴), hence △𝑆𝐶𝑁 ∼ △𝑇 𝐷𝑀 ⇒ 𝑆𝑁

𝑇 𝑀 = 𝑆𝐶
𝑇 𝐷 .

Analogously △𝑆𝐵𝑀 ∼ 𝑇 𝐴𝑁 ⇒ 𝑆𝑀
𝑇 𝑁 = 𝑆𝐵

𝑇 𝐴 . Thus

𝑃𝜔1
(𝑆)

𝑃𝜔2
(𝑆)

= 𝑆𝐶 ⋅ 𝑆𝐵
𝑆𝑁 ⋅ 𝑆𝑀

= 𝑇 𝐷 ⋅ 𝑇 𝐴
𝑇 𝑁 ⋅ 𝑇 𝑀

=
𝑃𝜔1

(𝑇 )
𝑃𝜔2

(𝑇 )
.

Hence 𝑆 and 𝑇 both lie on the same circle 𝛾 from pencil generated by 𝜔1 and 𝜔2.
Thus all points 𝑄, 𝑅, 𝑆, 𝑇 lie on 𝛾.

Problem 5.2. Let 𝐴𝐵 and 𝑋𝑌 be two segments in a plane. Let 𝜔 be an arbitrary
circle passing through 𝐴𝐵 and construct 𝜔′ passing through 𝑋𝑌 such that 𝜔∪𝐴𝐵
is directly similar to 𝜔′ ∪𝑋𝑌. Prove that the radical axis of 𝜔 and Ω pass through
a fixed point, not depending on the choice of 𝜔.
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𝐶
𝑀𝑇𝐶𝑀

𝑀𝑇𝐶𝑀 − 𝐶

𝑀

𝑀

Solution. All circles passing through 𝑋𝑌 form a pencil. Denote 𝐶 matrix of
some circle 𝜔′ from this pencil. As 𝜔′ ∪ 𝑋𝑌 is directly similar to 𝜔 ∪ 𝐴𝐵, there
exists a fixed linear mapping with the matrix 𝑀 such that it maps 𝐴 ↦ 𝑋, 𝐵 ↦ 𝑌
and 𝜔 ↦ 𝜔′. Hence we get that matrix for 𝜔 is 𝑀𝑇𝐶𝑀. Now the conic defined by
𝑀𝑇𝐶𝑀 − 𝐶 is the radical axis polynomial of 𝜔 and 𝜔′ multiplied by the infinity
line. As 𝑀𝑇𝐶𝑀 − 𝐶 is a linear mapping of 𝐶, these polynomials will again form
a pencil. Hence for any two radical axes 𝑝, 𝑞 we can express any other radical
axes as 𝜆1𝑝 + 𝜆2𝑞 for 𝜆1 + 𝜆2 = 1. Thus if two of the radical axes 𝑝, 𝑞 intersect
on a point 𝑃 not lying on the infinity line, all the radical axes are zero at this
point. Hence they all pass through a fixed point.
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6 Desargues involution
Definition. Let 𝐴, 𝐵, 𝐶, 𝐷 be four points in a general position and ℓ a line not
passing through any of them. Then we construct a mapping 𝜋: ℓ → ℓ as follows.
Take a point 𝑋 on ℓ, then construct the conic passing through 𝐴, 𝐵, 𝐶, 𝐷, 𝑋
and find it’s second intersection 𝑋′ with ℓ. Then 𝜋(𝑋) = 𝑋′. We call this the
Desargues involution on ℓ given by 𝐴, 𝐵, 𝐶, 𝐷.

𝐴

𝐵

𝐶
𝐷

ℓ

Observation 6.1. Desargues involution is an involution.
Theorem 6.2. Desargues involution is a linear mapping on ℓ.
Proof. Using projective transformation we may assume that ℓ is given by equa-
tion 𝑧 = 0. All conics passing through 𝐴, 𝐵, 𝐶, 𝐷 form one dimensional affine
space. Take two conics passing through 𝐴, 𝐵, 𝐶, 𝐷 and substitute 𝑧 = 0 to get

𝜔1 = 𝑎1𝑥2 + 𝑏1𝑥𝑦 + 𝑐1𝑦2

𝜔2 = 𝑎2𝑥2 + 𝑏2𝑥𝑦 + 𝑐2𝑦2 .

As all conics from statement are part of one dimensional affine space, we can get
them as linear combination of 𝜔1 and 𝜔2. For given [𝑥0, 𝑦0] denote

𝜔 = 𝜔1(𝑥0, 𝑦0)𝜔2 − 𝜔2(𝑥0, 𝑦0)𝜔1.

Then 𝜔 is a conic from given pencil, that passes through [𝑥0, 𝑦0]. We claim that
the involution 𝜋 is given by

[𝑥, 𝑦] ↦ [(𝑎1𝑐2 − 𝑎2𝑐1)𝑥 + (𝑏1𝑐2 − 𝑏2𝑐1)𝑦, (𝑏1𝑎2 − 𝑏2𝑎1)𝑥 + (𝑐1𝑎2 − 𝑐2𝑎1)𝑦].

To check it is the Desargues involution, it sufficies to show that 𝜔 equals

(𝑦0𝑥 − 𝑥0𝑦) (((𝑏1𝑎2 − 𝑏2𝑎1)𝑥0 + (𝑐1𝑎2 − 𝑐2𝑎1)𝑦0)𝑥−

−((𝑎1𝑐2 − 𝑎2𝑐1)𝑥0 + (𝑏1𝑐2 − 𝑏2𝑐1)𝑦0)𝑦)

as then it has roots [𝑥0, 𝑦0] and 𝜋([𝑥0, 𝑦0]). So we collect coefficients for 𝑥2, 𝑥𝑦
and 𝑦2. Coefficient for 𝑥2 is

𝑦0((𝑏1𝑎2−𝑏2𝑎1)𝑥0+(𝑐1𝑎2−𝑐2𝑎1)𝑦0) = 𝑏1𝑎2𝑥0𝑦0+𝑐1𝑎2𝑦2
0−(𝑏2𝑎1𝑥0𝑦0+𝑐2𝑎1𝑦2

0) =
= 𝑎2(𝑏1𝑥0𝑦0 + 𝑐1𝑦2

0) − 𝑎1(𝑏2𝑥0𝑦0 + 𝑐2𝑦2
0) =

= 𝑎2(𝑎1𝑥2
0 + 𝑏1𝑥0𝑦0 + 𝑐1𝑦2

0) − 𝑎1(𝑎2𝑥2
0 + 𝑏2𝑥0𝑦0 + 𝑐2𝑦2

0) =
= 𝑎2𝜔1(𝑥0, 𝑦0) − 𝑎1𝜔2(𝑥0, 𝑦0),
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which is exactly the coefficient for 𝑥2 in 𝜔. Analogously coefficient for 𝑦2 is

𝑥0((𝑎1𝑐2−𝑎2𝑐1)𝑥0+(𝑏1𝑐2−𝑏2𝑐1)𝑦0) = 𝑎1𝑐2𝑥2
0+𝑏1𝑐2𝑥0𝑦0−(𝑎2𝑐1𝑥2

0+𝑏2𝑐1𝑥0𝑦0) =
= 𝑐2(𝑎1𝑥2

0 + 𝑏1𝑥0𝑦0) − 𝑐1(𝑎2𝑥2
0 + 𝑏2𝑥0𝑦0) =

= 𝑐2(𝑎1𝑥2
0 + 𝑏1𝑥0𝑦0 + 𝑐1𝑦2

0) − 𝑐1(𝑎2𝑥2
0 + 𝑏2𝑥0𝑦0 + 𝑐2𝑦2

0) =
= 𝑐2𝜔1(𝑥0, 𝑦0) − 𝑐1𝜔2(𝑥0, 𝑦0),

which is exactly the coefficient for 𝑦2 in 𝜔. And finally coefficient for 𝑥𝑦 is

−((𝑏1𝑎2 −𝑏2𝑎1)𝑥0 +(𝑐1𝑎2 −𝑐2𝑎1)𝑦0)𝑥0 −((𝑎1𝑐2 −𝑎2𝑐1)𝑥0 +(𝑏1𝑐2 −𝑏2𝑐1)𝑦0)𝑦0 =
= 𝑏2𝑎1𝑥2

0+𝑐2𝑎1𝑥0𝑦0+𝑎2𝑐1𝑥0𝑦0+𝑏2𝑐1𝑦2
0−(𝑏1𝑎2𝑥2

0+𝑐1𝑎2𝑥0𝑦0+𝑎1𝑐2𝑥0𝑦0+𝑏1𝑐2𝑦2
0) =

= 𝑏2(𝑎1𝑥2
0 + 𝑐1𝑦2

0) − 𝑏1(𝑎2𝑥2
0 + 𝑐2𝑦2

0) =
= 𝑏2(𝑎1𝑥2

0 + 𝑏1𝑥0𝑦0 + 𝑐1𝑦2
0) − 𝑏1(𝑎2𝑥2

0 + 𝑏2𝑥0𝑦0 + 𝑐2𝑦2
0) =

= 𝑏2𝜔1(𝑥0, 𝑦0) − 𝑏1𝜔2(𝑥0, 𝑦0),

which is exactly the coefficient for 𝑥𝑦 in 𝜔. ■

Problem 6.1 (Butterfly theorem). Let 𝜔 be a circle and 𝐴, 𝐵, 𝑋, 𝑌 ∈ 𝜔 points
on it. Denote 𝑀 the midpoint of 𝐴𝐵. Denote 𝑋′ the second intersection of 𝑋𝑀
with 𝜔 and 𝑌 ′ the second intersection of 𝑌 𝑀 with 𝜔. Denote 𝐾 = 𝑌 ′𝑋 ∩ 𝐴𝐵
and 𝐿 = 𝑋′𝑌 ∩ 𝐴𝐵. Prove that 𝑀 is the midpoint of 𝐾𝐿.
Solution. Denote 𝜙 the involution on 𝐴𝐵 given by reflection by 𝑀. This in-
volution clearly swaps (𝐴, 𝐵), (𝑀, 𝑀). Now let 𝜋 be the Desargues involution
given by conics passing through 𝑋, 𝑌, 𝑋′, 𝑌 ′ on 𝐴𝐵. This swaps (𝐴, 𝐵), as 𝜔
is one such conic, then it swaps (𝑀, 𝑀) as 𝑋𝑋′ ∪ 𝑌 𝑌 ′ is another such conic,
and finally, it swappes (𝐾, 𝐿) as 𝑋𝑌 ′ ∪ 𝑌 𝑋′ is another such conic. As 𝜋 and 𝜙
are linear they coincide on images of 𝑀, 𝐴, and 𝐵, they are the same involution.
Hence 𝑀 is the midpoint of 𝐾𝐿.

𝐴 𝐵𝐿𝑀𝐾

𝑋
𝑌

𝑌 ′

𝑋′

𝜔
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7 Animation
Definition. We define a moving point as a polynomial mapping ℙ1 → ℙ2.
Hence it’s given by three coprime homogenous polynomials of the same degree.
We denote this degree as the degree of a moving point. For a moving point 𝑋, we
denote its polynomials as 𝑋𝑝, 𝑋𝑞, 𝑋𝑟.

Definition. We define moving line as the polar of some moving point. And we
denote degree of a moving line the degree of its pole.

7.1 Degree bounding
Proposition 7.1. Let 𝐴 and 𝐵 be two moving points with degrees 𝑑𝑎 and 𝑑𝑏.
If they coincide for 𝑘 different values, then the degree of line 𝐴𝐵 is at most
𝑑𝑎 + 𝑑𝑏 − 𝑘.
Proof. Pole of line connecting two points is calculated using the cross product
of given points, hence the moving line is given by

[𝐴𝑞𝐵𝑟 − 𝐵𝑞𝐴𝑟, 𝐴𝑟𝐵𝑝 − 𝐴𝑝𝐵𝑟, 𝐴𝑃𝐵𝑞 − 𝐴𝑞𝐵𝑝],

hence it has degree at most 𝑑𝑎 + 𝑑𝑏. But for every 𝑡 = [𝑡1, 𝑡2] ∈ ℙ1 such that

[𝐴𝑝(𝑡), 𝐴𝑞(𝑡), 𝐴𝑟(𝑡)] = [𝐵𝑝(𝑡), 𝐵𝑞(𝑡), 𝐵𝑟(𝑡)],

we get that
(𝐴𝑞𝐵𝑟 − 𝐵𝑞𝐴𝑟)(𝑡) = 0,
(𝐴𝑟𝐵𝑝 − 𝐴𝑝𝐵𝑟)(𝑡) = 0,
(𝐴𝑃𝐵𝑞 − 𝐴𝑞𝐵𝑝)(𝑡) = 0.

Hence all these three polynomials share a common factor (𝑥2𝑡1 − 𝑥1𝑡2). Thus for
every such 𝑡, we lower the degree by one. Hence the final bound is that the degree
is at most 𝑑𝑎 + 𝑑𝑏 − 𝑘. □

Observation 7.2. As a dual we get that for two moving lines ℓ1, ℓ2 with degrees
𝑑1, 𝑑1, that coincide for 𝑘 values, their intersection has degree at most 𝑑1 +𝑑2 −𝑘.

Proposition 7.3. Let 𝐴, 𝐵, 𝐶 be three moving points with degrees at most 𝑑𝑎,
𝑑𝑏, 𝑑𝑐. Then if they are collinear for 𝑑𝑎 + 𝑑𝑏 + 𝑑𝐶 + 1 choices of 𝑡 ∈ ℙ1, they are
always collinear.
Proof. Three points are collinear if they are linearly dependent, hence when

det ⎛⎜
⎝

𝐴𝑝 𝐴𝑞 𝐴𝑟
𝐵𝑝 𝐵𝑞 𝐵𝑟
𝐶𝑝 𝐶𝑞 𝐶𝑟

⎞⎟
⎠

= 0

But that is a polynomial of degree at most 𝑑1 + 𝑑2 + 𝑑3, hence if it’s nonzero, it
has at most 𝑑1 + 𝑑2 + 𝑑3 zeroes. □

Proposition 7.4. Let 𝐴, 𝐵 be two moving points with degrees 𝑑𝐴 and 𝑑𝐵 re-
spectively. If they coincide on 𝑑𝐴 + 𝑑𝐵 + 1 different values, they are the same
moving point.
Proof. To check that point [𝑎, 𝑏, 𝑐] equals point [𝑥, 𝑦, 𝑧] we have to check that
their cross product is zero

(𝑏𝑧 − 𝑐𝑦, 𝑐𝑥 − 𝑎𝑧, 𝑎𝑦 − 𝑏𝑥) = (0, 0, 0)
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That consists of three polynomials of degrees 𝑑𝐴 + 𝑑𝐵. Hence if they are zero for
𝑑𝐴 + 𝑑𝐵 + 1 different values, they are always zero. ■

Theorem 7.5. Let 𝑋 be a moving point with a degree 𝑑𝑋 > 0, then image of 𝑋
is a curve of degree 𝑑 such that 𝑑 ∣ 𝑑𝑋.
Proof. Let the homogenous polynomials 𝑋𝑝, 𝑋𝑞, 𝑋𝑟 be in 𝐾[𝑡, 𝑠]. Then for
points 𝑘 = [𝑡0, 𝑠0] such that 𝑋𝑟(𝑘) is nonzero we have that image 𝑋(𝑘) is

[
𝑋𝑝(𝑘)
𝑋𝑟(𝑘)

,
𝑋𝑞(𝑘)
𝑋𝑟(𝑘)

, 1] .

Thus a point [𝑎, 𝑏, 1] is in the image iff

𝑋𝑝(𝑘) − 𝑋𝑟(𝑘)𝑎 = 0
𝑋𝑞(𝑘) − 𝑋𝑟(𝑘)𝑏 = 0

for some 𝑘. Which is equivalent to 𝑋𝑝 − 𝑋𝑟𝑎 and 𝑋𝑞 − 𝑋𝑟𝑏 having a common
factor. Hence after homogenization we get that a point [𝑎, 𝑏, 1] is in the image iff

res𝑡𝑠(𝑋𝑝𝑐 − 𝑋𝑟𝑎, 𝑋𝑞𝑐 − 𝑋𝑟𝑏)([𝑎, 𝑏, 1]) = 0.

We denote
𝜋′

𝑎𝑏 = res𝑡𝑠(𝑋𝑝𝑐 − 𝑋𝑟𝑎, 𝑋𝑞𝑐 − 𝑋𝑟𝑏).

Observe, that for points [𝑎, 𝑏, 0] the polynomials −𝑋𝑟𝑎, −𝑋𝑟𝑏 share a nontrivial
factor 𝑋𝑟, hence 𝜋′

𝑎𝑏[𝑎, 𝑏, 0] = 0. We will take a look how exactly 𝜋′
𝑎𝑏 looks. So

let

𝑋𝑝 = 𝑝0𝑠𝑑 + 𝑝1𝑠𝑑−1𝑡 + 𝑝2𝑠𝑑−2𝑡2 + · · · + 𝑝𝑑−2𝑠2𝑡𝑑−2 + 𝑝𝑑−1𝑠𝑡𝑑−1 + 𝑝𝑑𝑡𝑑

𝑋𝑞 = 𝑞0𝑠𝑑 + 𝑞1𝑠𝑑−1𝑡 + 𝑞2𝑠𝑑−2𝑡2 + · · · + 𝑞𝑑−2𝑠2𝑡𝑑−2 + 𝑞𝑑−1𝑠𝑡𝑑−1 + 𝑞𝑑𝑡𝑑

𝑋𝑟 = 𝑟0𝑠𝑑 + 𝑟1𝑠𝑑−1𝑡 + 𝑟2𝑠𝑑−2𝑡2 + · · · + 𝑟𝑑−2𝑠2𝑡𝑑−2 + 𝑟𝑑−1𝑠𝑡𝑑−1 + 𝑟𝑑𝑡𝑑

and look a the matrix

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑝0𝑐 − 𝑟0𝑎 𝑝1𝑐 − 𝑟1𝑎 𝑝2𝑐 − 𝑟2𝑎 · · · 𝑝𝑑𝑐 − 𝑟𝑑𝑎 0 · · · 0
0 𝑝0𝑐 − 𝑟0𝑎 𝑝1𝑐 − 𝑟1𝑎 · · · 𝑝𝑑−1𝑐 − 𝑟𝑑−1𝑎 𝑝𝑑𝑐 − 𝑟𝑑𝑎 · · · 0
...

...
. . . . . .

...
. . . . . .

...
0 · · · 0 𝑝0𝑐 − 𝑟𝑜𝑎 · · · · · · 𝑝𝑑−1𝑐 − 𝑟𝑑−1𝑎 𝑝𝑑𝑐 − 𝑟𝑑𝑎

𝑞0𝑐 − 𝑟0𝑏 𝑞1𝑐 − 𝑟1𝑏 𝑞2𝑐 − 𝑟2𝑏 · · · 𝑞𝑑𝑐 − 𝑟𝑑𝑏 0 · · · 0
0 𝑞0𝑐 − 𝑟0𝑏 𝑞1𝑐 − 𝑟1𝑏 · · · 𝑞𝑑−1𝑐 − 𝑟𝑑−1𝑏 𝑞𝑑𝑐 − 𝑟𝑑𝑏 · · · 0
...

...
. . . . . .

...
. . . . . .

...
0 · · · 0 𝑞0𝑐 − 𝑟𝑜𝑏 · · · · · · 𝑞𝑑−1𝑐 − 𝑟𝑑−1𝑏 𝑞𝑑𝑐 − 𝑟𝑑𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We want to calculate it’s determinant, so we will use the Leibniz formula.
Denote indices of the first 𝑑𝑋 rows as 𝑣1, 𝑣2, . . . , 𝑣𝑑𝑋

and the indeces of the
remaninig rows as 𝑤1, 𝑤2, 𝑤3 . . . , 𝑤𝑑𝑋

. Suppose we want to calculate a term in
the final determinant, that contains 𝑐𝑑′ , where 𝑑′ < 𝑑𝑋. We get it as a sum of
some products of some permutations. Take a look at one such permutation 𝜌.
As all terms are linear in 𝑐, to get 𝑐𝑑′ we had to not take the linear term in
𝑐 from exactly 2𝑑 − 𝑑′ > 𝑑 terms. From Pidgeonhole principle we have some 𝑖
such that we’ve not taken the linear term from terms on positions (𝑣𝑖, 𝜌(𝑣𝑖)),
(𝑤𝑖, 𝜌(𝑤𝑖)). Suppose that 𝑖 is the smallest such 𝑖. Then by altering 𝜌 to 𝜌′ such
that 𝜌′(𝑣𝑖) = 𝜌(𝑤𝑖) and 𝜌′(𝑤𝑖) = 𝜌(𝑣𝑖) we get the same term in the result, but
with a different sign. Thus we got a bijection on terms containing 𝑐𝑑′ that cancels
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them out. Hence the final result is a multiple of 𝑐𝑑𝑋 . So we denote 𝜋𝑎𝑏 = 𝜋′
𝑎𝑏/𝑐𝑑𝑋 .

Analogously we define 𝜋𝑏𝑐 and 𝜋𝑐𝑎.
From construction we have that the image of 𝑋 coincides with 𝑉 ({𝜋𝑎𝑏}) on

all points such that 𝑐 ≠ 0. Analogously the image of 𝑋 coincides 𝑉 ({𝜋𝑏𝑐}) on all
points such that 𝑎 ≠ 0. And finally the image of 𝑋 coincides with 𝑉 ({𝜋𝑐𝑎}) on
all points such that 𝑏 ≠ 0.

Let us look at the matrix for 𝜋𝑏𝑐:

𝑀0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑞0𝑎 − 𝑝0𝑏 𝑞1𝑎 − 𝑝1𝑏 𝑞2𝑎 − 𝑝2𝑏 · · · 𝑞𝑑𝑎 − 𝑝𝑑𝑏 0 · · · 0
0 𝑞0𝑎 − 𝑝0𝑏 𝑞1𝑎 − 𝑝1𝑏 · · · 𝑞𝑑−1𝑎 − 𝑝𝑑−1𝑏 𝑞𝑑𝑎 − 𝑝𝑑𝑏 · · · 0
...

...
. . . . . .

...
. . . . . .

...
0 · · · 0 𝑞0𝑎 − 𝑝𝑜𝑏 · · · · · · 𝑞𝑑−1𝑎 − 𝑝𝑑−1𝑏 𝑞𝑑𝑎 − 𝑝𝑑𝑏

𝑟0𝑎 − 𝑝0𝑐 𝑟1𝑎 − 𝑝1𝑐 𝑟2𝑎 − 𝑝2𝑐 · · · 𝑟𝑑𝑎 − 𝑝𝑑𝑐 0 · · · 0
0 𝑟0𝑎 − 𝑝0𝑐 𝑟1𝑎 − 𝑝1𝑐 · · · 𝑟𝑑−1𝑎 − 𝑝𝑑−1𝑐 𝑟𝑑𝑎 − 𝑝𝑑𝑐 · · · 0
...

...
. . . . . .

...
. . . . . .

...
0 · · · 0 𝑟0𝑎 − 𝑝𝑜𝑐 · · · · · · 𝑟𝑑−1𝑎 − 𝑝𝑑−1𝑐 𝑟𝑑𝑎 − 𝑝𝑑𝑐

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We will transform 𝑀0 into 𝑀. First, we swap the first 𝑑 rows with the second
𝑑 rows, and we multiply the new first 𝑑 rows by −1 to get

𝑀 ′
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑝0𝑐 − 𝑟0𝑎 𝑝1𝑐 − 𝑟1𝑎 𝑝2𝑐 − 𝑟2𝑎 · · · 𝑝𝑑𝑐 − 𝑟𝑑𝑎 0 · · · 0
0 𝑝0𝑐 − 𝑟0𝑎 𝑝1𝑐 − 𝑟1𝑎 · · · 𝑝𝑑−1𝑐 − 𝑟𝑑−1𝑎 𝑝𝑑𝑐 − 𝑟𝑑𝑎 · · · 0
...

...
. . . . . .

...
. . . . . .

...
0 · · · 0 𝑝0𝑐 − 𝑟𝑜𝑎 · · · · · · 𝑝𝑑−1𝑐 − 𝑟𝑑−1𝑎 𝑝𝑑𝑐 − 𝑟𝑑𝑎

𝑞0𝑎 − 𝑝0𝑏 𝑞1𝑎 − 𝑝1𝑏 𝑞2𝑎 − 𝑝2𝑏 · · · 𝑞𝑑𝑎 − 𝑝𝑑𝑏 0 · · · 0
0 𝑞0𝑎 − 𝑝0𝑏 𝑞1𝑎 − 𝑝1𝑏 · · · 𝑞𝑑−1𝑎 − 𝑝𝑑−1𝑏 𝑞𝑑𝑎 − 𝑝𝑑𝑏 · · · 0
...

...
. . . . . .

...
. . . . . .

...
0 · · · 0 𝑞0𝑎 − 𝑝𝑜𝑏 · · · · · · 𝑞𝑑−1𝑎 − 𝑝𝑑−1𝑏 𝑞𝑑𝑎 − 𝑝𝑑𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This multiplied the determinant by ±1. Next for every 0 < 𝑖 ≤ 𝑑𝑋 we replace
row 𝑤𝑖 with combination of rows 𝑐

𝑎 𝑤𝑖 + 𝑏
𝑎 𝑣𝑖. This multiplies the determinant by

𝑐
𝑎 for every 𝑖, thus overall we multiplied the determinant by ± ( 𝑐

𝑎 )𝑑𝑋 . Hence we
have that 𝑐𝑑𝑥𝜋𝑎𝑏 = ± ( 𝑐

𝑎 )𝑑𝑋 ⋅ 𝑎𝑑𝑥𝜋𝑏𝑐. From this we conclude that 𝜋𝑎𝑏 = ±𝜋𝑏𝑐 and
analogously equals ±𝜋𝑐𝑎. We know that for every point at least one of 𝑉 ({𝜋𝑎𝑏}),
𝑉 ({𝜋𝑏𝑐}), 𝑉 ({𝜋𝑐𝑎}) coincides with the image of 𝑋, hence we get that 𝑉 ({𝜋𝑎𝑏})
coincides with image of 𝑋 on all points. And degree of 𝜋𝑎𝑏 is 𝑑𝑋.

Suppose that 𝜋𝑎𝑏 = 𝑔1𝑔2𝑔3 · · · 𝑔𝑚 for some nonconstant ireducible polynomi-
als 𝑔𝑖. Then suppose that 𝑉 (𝑔𝑖) is a proper subset of 𝑉 (𝜋𝑎𝑏). Define 𝑊 the set
of all points 𝑤 ∈ 𝒫1 such that 𝑋(𝑤) ∈ 𝑉 (𝑔𝑖); the preimage of 𝑊 in 𝑋. Then 𝑊
is a proper subset of 𝑃 1. Then 𝑊 is the set of zeros of polynomial in 𝒫1 given by
composition 𝑔𝑖 ∘ 𝑋. Thus it is finite. Hence 𝑉 (𝑔𝑖) is finite. As 𝑉 (𝜋𝑎𝑏) is infinite,
for some 𝑖 we have that 𝑉 (𝑔𝑖) is infinite. Thus for such 𝑖 we get 𝑉 (𝜋𝑎𝑏) = 𝑉 (𝑔𝑖).

Hence from 1.4 we have that 𝜋𝑎𝑏 = 𝑐𝑔𝑢
𝑖 for some 𝑢 ∈ ℕ, 𝑐 ∈ ℂ. Thus the

image is a curve of degree 𝑑, such that 𝑑 ∣ 𝑑𝑋. ■

7.2 Degree preserving mappings
Observation 7.6. Composing a moving point 𝐴 (a mapping ℙ1 → ℙ2) with any
linear mapping ℙ2 → ℙ2 gives a moving point of the same degree.

Proposition 7.7. Connecting a moving point with a fixed point to get a line is
a linear mapping.
Proof. Let [𝑎, 𝑏, 𝑐] be the fixed point, then the mapping is defined as

[𝑥, 𝑦, 𝑧] ↦ [𝑏𝑧 − 𝑐𝑦, 𝑐𝑥 − 𝑎𝑧, 𝑎𝑦 − 𝑏𝑥],
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hence it’s linear. □

Proposition 7.8. Intersection of a moving line with a fixed line is a linear map-
ping.
Proof. It’s dual to the proposition 7.8. □

Proposition 7.9. Let 𝛾 be a nondegenerate conic and 𝑃 a point not lying on 𝛾.
Then there exists a linear mapping that maps each point 𝑋 ∈ 𝛾 to the second
intersection of 𝑃𝑋 with 𝛾.
Proof. Let 𝑝 be the polar of 𝑃 with respect to 𝛾. As 𝑃 ∉ 𝛾 we have that 𝑝
intersects 𝛾 at two distinct points 𝐼, 𝐽. Now consider a linear mapping 𝜃 mapping
𝐼 ↦ [1, 𝑖, 0] and 𝐽 ↦ [1, −𝑖, 0]. Then this mapping maps 𝛾 to a conic passing
through circle points, thus a circle. And line 𝑝 gets mapped onto the infinity line.
Hence the point 𝑃 becomes the center of that circle. Reflection by this point 𝜏 is
a linear mapping; hence we construct the final mapping as 𝜃−1 ∘ 𝜏 ∘ 𝜃. Thus it’s
linear. □

Problem 7.1 (IMO 2010/P2). Let 𝐼 be the incentre of a triangle 𝐴𝐵𝐶 and
let Γ be its circumcircle. Let the line 𝐴𝐼 intersect Γ again at 𝐷. Let 𝐸 be a point
on the arc 𝐵𝐷𝐶 and 𝐹 a point on the side 𝐵𝐶 such that

∡𝐵𝐴𝐹 = ∡𝐶𝐴𝐸 < 1
2

∡𝐵𝐴𝐶.

Finally, let 𝐺 be the midpoint of the segment 𝐼𝐹. Prove that the lines 𝐷𝐺 and
𝐸𝐼 intersect on Γ.

𝐴

𝐵 𝐶

𝐷
𝐸

𝐾1

𝐹

𝐺

𝐼

Solution. Define 𝐾1 = 𝐸𝐼 ∩ Γ. Let 𝐸 be a moving point with degree 2 and
locus Γ. Then from 7.9 we have that the degree of 𝐾1 is 2. From 7.1, we have that
degree of the line 𝐴𝐸 is at most 1. As the reflection by angle bisector 𝐵𝐴𝐶 is a
linear mapping, we have that degree of 𝐴𝐹 is one, hence from 7.2, we have that
degree of 𝐹 is at most 1. Homothethy with coefficient 1

2 and center 𝐼 is linear.
Thus 𝐺 has a degree at most 1. Again from 7.1, we have that degree of the line
𝐷𝐺 is at most 1 and the degree of the line 𝐷𝐾1 is at most one. Thus to confirm
that 𝐷𝐾1 = 𝐷𝐺, using dual of 7.4, we have to check three different positions of
𝐸.

• If 𝐸 = 𝐷 then 𝐷𝐾1 = 𝐷𝐺 = 𝐷𝐴.
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• If 𝐸 = 𝐵. Then 𝐾1 is the center of the arc 𝐴𝐶. And it sufficies to prove
that 𝐾1𝐷 is the bisector of 𝐶𝐼. From symmetry it sufficies to prove that the
triangle 𝐼𝐷𝐶 is isosceles. Denote 𝑀 the center of the arc 𝐵𝐴. The conclusion
follows from

∠(𝐼𝐷, 𝐼𝐶) = ∠(𝐴𝐷, 𝐴𝐶) + ∠(𝐴𝐶, 𝐶𝑀) =
= ∠(𝐴𝐵, 𝐴𝐷) + ∠(𝐶𝑀, 𝐶𝐵) = ∠(𝐶𝐼, 𝐶𝐷).

• If 𝐸 = 𝐶, then from symmetry we use the same proof as for 𝐸 = 𝐵 just
rename 𝐵 and 𝐶.
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8 Cubic curves
Theorem 8.1 (Caley-Bacharach). Let 𝜔1 and 𝜔2 be two cubic curves inter-
secting at 9 different points. Then any any cubic curve passing through eight of
those points passes through the ninth.
Proof. For proof see [2] Theorem CB3 named Chasles.

Definition. Any non-singular curve of degree three is called an elliptic curve.

Definition. Take any ireducible singular cubic curve 𝛾 with singular point 𝑄.
Then will call an singular elliptic curve the set 𝛾 ∖ {𝑄}.

Theorem 8.2. We can define a group operation on any elliptic curve 𝜖 as follows.
Take any point 𝑂 ∈ 𝜖 to be the zero. Then addition for points 𝐴, 𝐵 ∈ 𝜖 is defined
as follows. First, we construct 𝐶 as the third intersection of the line 𝐴𝐵 and 𝜖.
Then construct 𝐷 as the third intersection of 𝑂𝐶 with 𝜖. Then 𝐷 = 𝐴 + 𝐵.
Proof. For singular elliptic curve see chapter Singular cubic curves in [6].
TODO singular

Observation 8.3. Independently of the choice of 𝑂 we have for points 𝐴, 𝐵, 𝐶 ∈ 𝜖
that 𝐴 + 𝐵 + 𝐶 = 0 if and only if 𝐴, 𝐵, 𝐶 are collinear.

Proposition 8.4. For points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ∈ 𝜖 we have that there is a conic
passing through 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 if and only if 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹 = 0.
Proof. Denote

• 𝑋 the third intersection of 𝐴𝐵 with 𝜖.
• 𝑌 the third intersection of 𝐶𝐷 with 𝜖.
• 𝑍 the third intersection of 𝐸𝐹 with 𝜖.

Then 𝑋 = −(𝐴 + 𝐵), 𝑌 = −(𝐶 + 𝐷) and 𝑍 = −(𝐸 + 𝐹). Hence from 8.3 we
have that 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹 = 0 if and only if 𝑋, 𝑌, 𝑍 are collinear. Now
let 𝛼 = 𝐴𝐵 ∪ 𝐶𝐷 ∪ 𝐸𝐹. Then points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝑋, 𝑌, 𝑍 are the nine
intersections of cubics 𝛼 and 𝜖. Hence from Caley-Bacharach theorem we have
that 𝑋, 𝑌, 𝑍 are collinear if and only if 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 lie on a conic. □

Problem 8.1 (IMO 2019/6). Let 𝐼 be the incentre of an acute triangle 𝐴𝐵𝐶
with 𝐴𝐵 ≠ 𝐴𝐶. The incircle 𝜔 of 𝐴𝐵𝐶 is tangent to sides 𝐵𝐶, 𝐶𝐴, and 𝐴𝐵 at
𝐷, 𝐸, and 𝐹, respectively. The line through 𝐷 perpendicular to 𝐸𝐹 meets 𝜔 at 𝑅.
Line 𝐴𝑅 meets 𝜔 again at 𝑃. The circumcircles of triangles 𝑃𝐶𝐸 and 𝑃𝐵𝐹 meet
again at 𝑄. Prove that lines 𝐷𝐼 and 𝑃𝑄 meet on the line through 𝐴 perpendicular
to 𝐴𝐼.
Solution.
Lemma. Let 𝐵, 𝐹, 𝐸, 𝐶 and 𝑇 be five points. Then the set of all points 𝑋, such
that radical axes of circumcircles of 𝐵𝐹𝑋 and 𝐸𝐶𝑋 pass through 𝑇, is cubic
passing through the circle points. Additionally we have that 𝐵, 𝐹, 𝐸, 𝐶, 𝑇 and
𝐵𝐹 ∩ 𝐸𝐶 lie on this cubic.
Proof. All circles passing through 𝐵, 𝐹 form a pencil, so choose 𝜔1, 𝜔2 any
two such circles as generators. Analogously choose 𝛾1 and 𝛾2 some generators of
circles passing through 𝐸, 𝐶. Then to get a circle passing through 𝐵𝐹𝑋, we take
a combination of 𝜔1 and 𝜔2, that is zero at 𝑋, that is

𝜔 = 𝜔1(𝑋)𝜔2 − 𝜔2(𝑋)𝜔1

Analogously we have that a circle passing through 𝐸𝐶𝑋 is

𝛾 = 𝛾1(𝑋)𝛾2 − 𝛾2(𝑋)𝛾1.
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To get the radical axes we have to normalize these circles, hence the radical axes
polynomial multiplied by 𝑧 is

(𝜔1(𝑋) − 𝜔2(𝑋))(𝛾1(𝑋)𝛾2 − 𝛾2(𝑋)𝛾1) − (𝛾1(𝑋) − 𝛾2(𝑋))(𝜔1(𝑋)𝜔2 − 𝜔2(𝑋)𝜔1)

As 𝑇 does not lie on the infinity line, 𝑇 lies on the radical axis if and only if

(𝜔1(𝑋) − 𝜔2(𝑋))(𝛾1(𝑋)𝛾2(𝑇 ) − 𝛾2(𝑋)𝛾1(𝑇 ))−
−(𝛾1(𝑋) − 𝛾2(𝑋))(𝜔1(𝑋)𝜔2(𝑇 ) − 𝜔2(𝑋)𝜔1(𝑇 )) = 0,

which is a quartic polynomial in 𝑋. We want to show, that it is divisible by 𝑧 to
get a cubic polynomial. So we look at all terms that do not contain any 𝑧. In every
circle those are exactly terms 𝑥2 and 𝑦2, but those cancel out in 𝜔1(𝑋) − 𝜔2(𝑋)
and in 𝛾1(𝑋) − 𝛾2(𝑋). Thus every final term contains 𝑧, so we can write this as
a 𝑧 ⋅ 𝜖 for some cubic 𝜖.

Now let us take one circle point [1, 𝑖, 0]. We want to substitute it for 𝑋 in 𝜖.
So every term containing 𝑧2 will be zero in 𝜖, as we set 𝑧 = 0. Every term that
comes from a multiple of (𝑥2 +𝑦2) will also be zero, as 12 +𝑖2 = 0. The remaining
important terms are 𝜆1𝑥𝑧 and 𝜆2𝑦𝑧 from every circle. So we can take a look at
expression containing only these terms:

(𝜔′
1(𝑋) − 𝜔′

2(𝑋))(𝛾′
1(𝑋)𝛾′

2(𝑇 ) − 𝛾′
2(𝑋)𝛾′

1(𝑇 ))−
−(𝛾′

1(𝑋) − 𝛾′
2(𝑋))(𝜔′

1(𝑋)𝜔′
2(𝑇 ) − 𝜔′

2(𝑋)𝜔′
1(𝑇 )).

Here every 𝜔′
𝑘 is just a line passing through the origin, multiplied by 𝑧, and so is

every 𝛾′
𝑘. But the construction remains the same, so we have some lines 𝜔′

1 and
𝜔′

2, which we weigh to get a line 𝜔′ passing through origin and 𝑇. Analogously
we get 𝛾′ as a line passing through the origin and 𝑇. And then, we normalize
them and subtract them. As they both are lines passing through the origin and
𝑇, after normalization, they are the same polynomial, so we get that the result is
the zero polynomial. Hence when plugging [1, 𝑖, 0] into 𝜖 we get 0. Analogously
for [1, −𝑖, 0]. Thus the circle points lie on 𝜖.

Substituting 𝑋 = 𝐵 we have 𝜔1(𝐵) = 𝜔2(𝐵) = 0 which cancels all terms.
Similarly with 𝑋 = 𝐹, 𝐸, 𝐶. When 𝑋 = 𝑇 we have 𝛾1(𝑇 )𝛾2(𝑇 ) − 𝛾2(𝑇 )𝛾1(𝑇 ) =
0 = 𝜔1(𝑇 )𝜔2(𝑇 ) − 𝜔2(𝑇 )𝜔1(𝑇 ), which is zero. Denote 𝐴 = 𝐵𝐹 ∩ 𝐸𝐶, as 𝐴 lies
on the radical axes of 𝜔1 and 𝜔2 we have (𝜔1(𝐴) − 𝜔2(𝐴)) = 0 and similarly
(𝛾1(𝐴) − 𝛾2(𝐴)) = 0. Thus 𝐵, 𝐹, 𝐸, 𝐶, 𝑇 and 𝐴 lie on 𝜖. □

Denote 𝑇 the intersection of 𝐷𝐼 with the line passing through 𝐴 perpendicular
to 𝐴𝐼. We want to prove, that 𝑃, 𝑄, 𝑇 are collinear. Look at triangle 𝐸𝐷𝐹 with
its circumcircle 𝜔. We have ∠(𝐹𝐷, 𝐷𝑅) = ∠(𝐹𝐷, 𝐹𝐸) + 90∘. Denote 𝑀 the
midpoint of 𝐷𝐸. From central angle we have that ∠(𝐹𝐷, 𝐹𝐸) = ∠(𝐷𝐼, 𝐼𝑀),
hence ∠(𝐷𝐼, 𝐷𝐸) = ∠(𝐹𝐷, 𝐹𝐸) + 90∘ = ∠(𝐹𝐷, 𝐷𝑅). Denote 𝐷′ the second
intersection of 𝐷𝐼 with 𝜔. From the inscribed angles we have that arcs 𝐹𝑅 and
𝐷′𝐸 have the same length, thus 𝑅𝐷′ ∥ 𝐹𝐸 ∥ 𝐴𝑇. As 𝑅𝐷′𝐷𝑃 is cyclic we
have ∠(𝑅𝑃, 𝑅𝐷′) = ∠(𝐷𝑃, 𝐷𝐷′) and because of the parallel lines we have that
∠(𝐴𝑃 , 𝐴𝑇 ) = ∠(𝐷𝑃, 𝐷𝑇 ), hence 𝐴𝑇 𝑃𝐷 is cyclic. So we can forget the original
definition of 𝑃 and redefine it as the second intersection of circles 𝜔 and the
circumcircle of 𝐴𝑇 𝐷.
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𝐴

𝐵 𝐶𝐷

𝐸

𝐹

𝐼

𝑃

𝑇

Denote 𝐽1, 𝐽2 the circle points. Observe that 𝐷𝐼𝐸𝐶 and 𝐷𝐼𝐹𝐵 are cyclic.
From lemma we have 𝐴, 𝐵, 𝐹, 𝐸, 𝐶, 𝑇, 𝑃, 𝑄, 𝐷, 𝐼, 𝐽1, 𝐽2 on one cubic 𝜖. Using
8.3 and 8.4 we have that

𝑇 = −(𝐷 + 𝐼) = 𝐸 + 𝐶 + 𝐽1 + 𝐽2

Adding 𝐴 to both sides and using 8.3 we have

𝑇 + 𝐴 = (𝐴 + 𝐸 + 𝐶) + 𝐽1 + 𝐽2 = 𝐽1 + 𝐽2.

Thus 𝑇 𝐴 ∩ 𝐽1𝐽2 ∈ 𝜖. As 𝐽1𝐽2 is the infinity line and 𝑇 𝐴 ∥ 𝐹𝐸, we get that

𝑇 + 𝐴 = 𝐹 + 𝐸

Hence finaly

𝐷 + 𝐹 + 𝐸 + 𝐽1 + 𝐽2 = 𝐷 + 𝑇 + 𝐴 + 𝐽1 + 𝐽2

From that conics 𝐷𝐹𝐸𝐽1𝐽2 and 𝐷𝑇 𝐴𝐽1𝐽2 intersect on 𝜖, as they pass through
𝐽1, 𝐽2 they are just circles circumscribed to 𝐷𝐹𝐸 and 𝐷𝑇 𝐴 respectively. Hence
𝑃 ∈ 𝜖. Thus from the definition of 𝜖, we have that the radical axis of circumcircles
of 𝑃𝐵𝐹 and 𝑃𝐸𝐹, in other words the line 𝑃𝑄, passes through 𝑇.

Problem 8.2. Let 𝐻 be the orthocenter of △𝐴𝐵𝐶 with circumcircle 𝜔 and
𝐷 = 𝐴𝐻 ∩ 𝐵𝐶. Let 𝑈, 𝑉 be the points on 𝐵𝐶 such that ∡𝐵𝐻𝑈 = ∡𝑉 𝐻𝐶. Let
𝑃𝑄 (𝑃 , 𝑄 ∈ 𝜔) be the chord of 𝜔 passing through 𝑈. Let 𝑅𝑆 (𝑅, 𝑆 ∈ 𝜔) be
the chord of 𝜔 passing through 𝑉. Let 𝐻𝑃, 𝐻𝑄, 𝐻𝑅, 𝐻𝑆 be the orthocenters of
△𝐴𝐷𝑃, △𝐴𝐷𝑄, △𝐴𝐷𝑅, △𝐴𝐷𝑆, respectively. Prove that 𝐻𝑃, 𝐻𝑄, 𝐻𝑅, 𝐻𝑆 are
concyclic.
Solution. Let 𝐻′ be 𝐻 reflected across 𝐵𝐶. As ∠(𝐴𝐵, 𝐴𝐶) = ∠(𝐶𝐻, 𝐵𝐻) =
∠(𝐵𝐻′, 𝐶𝐻′), we have that 𝐻′ ∈ 𝜔. Lines 𝐻′𝑈 and 𝐻′𝑉 meet 𝜔 for the second
times at 𝑋 and 𝑌. Denote 𝐻𝑋 and 𝐻𝑌 orthocenters of △𝐴𝐷𝑋 and △𝐴𝐷𝑌
respectively.
Lemma. Points 𝐻𝑃, 𝐻𝑄, 𝐻𝑌 are collinear. And by symmetry 𝐻𝑅, 𝐻𝑆 and 𝐻𝑋
are collinear.
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Proof. Denote 𝑇 = 𝐻𝑃𝐻𝑄 ∩ 𝐵𝐶. As 𝐻𝑃𝑃 ∥ 𝐻𝑄𝑄 ∥ 𝐻𝑌𝑌 ∥ 𝐵𝐶, we have
𝐻𝑃𝑇 : 𝐻𝑄𝑇 = 𝑃𝑈: 𝑄𝑈. Moreover

∠(𝐻𝑄𝐷, 𝐷𝑇 ) = ∠(𝐴𝑄, 𝐴𝐻′) = ∠(𝑋𝑄, 𝑋𝐻′) = ∠(𝑋𝑄, 𝑋𝑈).

Analogously ∠(𝐻𝑃𝐷, 𝐷𝑇 ) = ∠(𝑋𝑃, 𝑋𝑈). Angle observations gives us that
△𝑋𝑃𝑄 ∼ △𝐷𝐻𝑃𝐻𝑄. And the ratio observation adds, that △𝑋𝑃𝑄 ∪ 𝑈 ∼
△𝐷𝐻𝑃𝐻𝑄 ∪ 𝑇. Let 𝑋𝑌 intersect 𝐻𝑃𝐻𝑄 at 𝐻′

𝑌 and 𝑃𝑄 at 𝑊. Again from
parallel lines we have 𝑃𝑊: 𝑄𝑊 = 𝐻𝑃𝐻′

𝑌: 𝐻𝑄𝐻′
𝑌. Thus △𝑋𝑃𝑄 ∪ 𝑊 ∪ 𝑈 ∼

△𝐷𝐻𝑃𝐻𝑄 ∪ 𝐻′
𝑌 ∪ 𝑇. Hence

∠(𝐻′
𝑌𝐷, 𝐷𝑇 ) = ∠(𝑊𝑋, 𝑋𝑈) = ∠(𝑋𝑌 , 𝑋𝐻′) = ∠(𝐴𝑌 , 𝐴𝐻′).

As 𝐴𝐻′ ⟂ 𝐷𝑇 we get that 𝐴𝑌 ⟂ 𝐷𝐻′
𝑌. Thus 𝐻′

𝑌 = 𝐻𝑌. □
Lemma. Let 𝐾 be a point on 𝜔. Then locus of orthocenters of triangles 𝐴𝐷𝐾
is elliptic curve 𝜖.
Proof. Let ℓ be the infinity line. Denote ∞⟂𝐴𝐾 the intersection of the perpen-
dicular line to 𝐴𝐾 with line ℓ. Analogously denote ∞⟂𝐷𝐾 the intersection of the
line perpendicular to 𝐷𝐾 with ℓ. We animate 𝐾 on 𝜔 with degree 2. Then from
7.1, we have that degree of 𝐴𝐾 is 1 and as rotation by 90∘ around 𝐴 is linear, we
have that degree of the line perpendicular to 𝐴𝐾 is 1. Thus from 7.2 we get that
degree of ∞⟂𝐴𝐾 is one, hence from 7.1 degree of 𝐷∞⟂𝐴𝐾 is one. Similarly, we
get that degree of 𝐷𝐾 is 2. Hence the degree of 𝐴∞⟂𝐷𝐾 is 2. As the orthocenter
of 𝐴𝐷𝐾 is the intersection 𝐴∞⟂𝐷𝐾 ∩𝐷∞⟂𝐴𝐾, we have that its degree is at most
3. Hence from 7.5, it moves along a curve of degree 3. □

𝐻𝑋

𝐻𝑌

𝐴

𝐵 𝐶
𝐷

𝐻

𝐻𝑅
𝐻𝑃

𝐻𝑆

𝐻𝑞
𝑆

𝑄

𝑃

𝑉
𝑈

𝑅

Lemma. Denote ∞𝐵𝐶 the intersection of ℓ with 𝐵𝐶. Then ∞𝐵𝐶 ∈ 𝜖.
Proof. Take 𝐾 = 𝐻′ ∈ 𝜖. Then 𝐴∞⟂𝐷𝐻′ ∥ 𝐵𝐶 ∥ 𝐷∞⟂𝐴𝐻′ . Thus their
intersection is ∞𝐵𝐶 ∈ 𝜖 and it lies on 𝜖.
Lemma. Denote 𝐽1, 𝐽2 the circle points. Then 𝐽1, 𝐽2 ∈ 𝜖.
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Proof. Point 𝐽1 lies on 𝜔. Let us find the orthocenter of 𝐽1𝐴𝐷. Rotation matrix
for rotation by 90∘ around 𝐴 is a matrix of a form

⎛⎜
⎝

0 −1 𝑎
1 0 𝑏
0 0 1

⎞⎟
⎠

.

From definition it maps 𝐴 ↦ 𝐴 and it maps [1, 𝑖, 0] ↦ [−𝑖, 1, 0] = −𝑖[1, 𝑖, 0] =
[1, 𝑖, 0]. Thus it fixes line 𝐴𝐽1. Analogously rotation around 𝐷 fixes line 𝐷𝐽1.
And translation also fixes the infinity line, thus 𝐽1 lies on both 𝐴∞⟂𝐷𝐽1

and
𝐷∞⟂𝐴𝐽1

, thus it lies on 𝜖. Analogously for 𝐽2. □
Thus we have points 𝐻𝑋, 𝐻𝑌, 𝐻𝑃, 𝐻𝑄, 𝐻𝑅, 𝐻𝑆, 𝐽1, 𝐽2, ∞𝐵𝐶 on one elliptic

curve 𝜖. As 𝐻𝑋𝐻𝑌 ∥ 𝐵𝐶 and 𝐽1𝐽2 is the infinity line, we have that 𝐻𝑋𝐻𝑌∩𝐽1𝐽2 =
∞𝐵𝐶 ∈ 𝜖. Thus 𝐻𝑋 + 𝐻𝑌 = 𝐽1 + 𝐽2. From this and given lines we have

(𝐽1 + 𝐽2) + 𝐻𝑃 + 𝐻𝑄 + 𝐻𝑅 + 𝐻𝑆 = (𝐻𝑋 + 𝐻𝑌) + 𝐻𝑃 + 𝐻𝑄 + 𝐻𝑅 + 𝐻𝑆 = 0

Thus from 8.4 points 𝐽1, 𝐽2, 𝐻𝑃, 𝐻𝑄, 𝐻𝑆, 𝐻𝑅 lie on one conic and as this
conic passes through 𝐽1, 𝐽2 we have that points 𝐻𝑃, 𝐻𝑄, 𝐻𝑆, 𝐻𝑅 are concyclic.
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Conclusion
We’ve presented different algebraic techniques for olympiad geometry problems.
Usually these geometry problems are solved just using similar triangles and angle
chasing. As shown here, there can be alot of different approaches to solving a
gemetry problem.

The Method of Animation is from my own experience the strongest and most
widely usable method presented here. As it allows to solve the problem just in
some degenerate cases and from that deduce that it holds everywhere.

I believe that the method utilizing elliptic curves could become more frequent
when people find some more examples of cubic curves in olympiad problems..
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