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Introduction
Many real world phenomena have temporal or even spatial-temporal character.
For instance, we can consider behaviour of a population of flowers in a meadow.
In this example, the temporal character (points in time when individual flowers
occur) is indeed complemented by the spatial one as well (positions in the meadow
in which these flowers occur). It is important to be capable of analysing the data
created by these spatial-temporal phenomena and of obtaining insights about
the underlying mechanisms. Fundamental tools for dealing with these types of
data, whether it is predicting future events or indeed generating insights, are
stochastic processes modelling the phenomena of interest. In this thesis we will
concentrate mostly on modelling of spatial-temporal phenomena in which individ-
ual events/objects have a random lifetime. For instance, in the aforementioned
example of flowers in a meadow, every individual flower is born at some time T
and position X, it lives and influences its surroundings for some random period
M and at time T + M it eventually dies. When analysing real or simulated
spatial-temporal point patterns (with random lifetimes), we will use the max-
imum likelihood estimation (the exact form of the likelihood function will be
derived in the thesis).

In the first chapter we introduce some fundamental concepts, which will be
used throughout the whole thesis, in context of purely temporal point processes.
In the second chapter we generalise concepts from the first chapter to spatial-
temporal point processes with random lifetimes. We introduce an appropriate
stochastic process to model these processes and discuss generation of its realisa-
tions. Furthermore, in this chapter we derive the form of the likelihood function.
In the third chapter we introduce some simple parametric models, state condi-
tions under which they are non-explosive and present some examples. We show
that the likelihood function can be in special cases maximised analytically. In
the fourth chapter we deal with more realistic assumption of censored lifetimes
and we derive the form of the likelihood function in this context. A part of the
thesis is our own implementation of the algorithm which generates a realisation of
a given spatial-temporal point process with random lifetimes in addition to the
implementation of the likelihood-based estimation. The relevant source codes
are provided in the electronic attachment to the thesis. Details of our imple-
mentations are given in the fifth chapter. In the sixth chapter we demonstrate
the use of the derived methods on simulated data and discuss properties of the
corresponding estimates. Finally, in the seventh chapter we analyse the spatial
dynamics in the real data consisting of observations of Succisa pratensis (a flow-
ering plant). The plants were observed once a year, which causes discretisation
and presents further challenges to the analysis. We propose two types of models,
one with multiplicative and one with additive structure of interactions, and use a
Monte Carlo based goodness of fit test to assess how well these models describe
the observed data.
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1. Temporal point processes
In order to develop concepts which will be useful in the study of spatial-temporal
point processes, which are of our primary interest, we will start by considering
purely temporal processes first. This chapter is based on Rasmussen [2018]. Pre-
sented theory can also be found in Daley and Vere-Jones [2003] in a much more
technical setting of random measures.

A temporal point process is, in essence, just a collection of times of events. It
can be modelled as a measurable mapping Φ from some probability space (Ω, F , P)
to the space N – the space of locally finite counting measures operating on (R, B),
which is endowed with a σ-algebra N – the smallest σ-algebra with respect to
which all projections πB : N → [0, ∞], B ∈ B, defined as πB(µ) = µ(B), are
measurable. We assume that we have a simple point process – P(Φ ∈ {ν ∈ N :
ν({t}) ≤ 1, ∀t ∈ R}) = 1, i.e. no two events are allowed to coincide.

Alternatively, and because of the existence of the total ordering on R (the
usual ”less than or equal to”) perhaps more conveniently, it is possible to model
a temporal point process as a stochastic process (Tn)∞

n=1, where Tn is a non-
negative random variable representing the time of the n-th event. Indeed, since
we have this order of time it is natural to define a temporal point process by
specifying a stochastic model for the time of the (n + 1)-th event Tn+1 given
that we know times of all the previous events T1, . . . , Tn. That is, we can specify
the conditional probability density function of Tn+1 given T1, . . . , Tn, i.e. we can
specify fTn+1 | T1,...,Tn(tn+1 | t1, . . . , tn).
Remark. We will usually prefer abbreviated notation of densities in which we try
to suppress names of random variables when they are clear from the context, e.g.
instead of fTn+1 | T1,...,Tn(tn+1 | t1, . . . , tn) we would write just f(tn+1 | t1, . . . , tn).
Furthermore, instead of explicitly writing the whole condition t1, . . . , tn, we will
prefer Htn , which will stand for this whole history of the process up to (and
including) time of the n-th event tn, e.g. the aforementioned density could be
written as f(tn+1 | Htn).

As a consequence of specifying all conditional densities f(tn+1 | Htn), n ∈ N0,
the system of all finite-dimensional distributions of the stochastic process (Tn)∞

n=1
is specified as well, since

n∏︂
i=1

f(ti | Hti−1) = f(t1, . . . , tn).

Remark. Here, Ht0 stands for no condition at all. By f(t1 | Ht0) we mean simply
the unconditional density of T1 at the point t1, i.e. the density f(t1).

Nevertheless, in order to define the conditional distribution of Tn+1 given
Htn , it is sometimes more intuitive to do it by specifying the so-called conditional
intensity function λ∗(t) instead of the conditional density f(tn+1 | Htn). This
conditional intensity function is defined as

λ∗(t) = f(t | Htn)
1 − F (t | Htn) , t > tn and F (t | Htn) < 1,

where F (t | Htn) denotes the cumulative distribution function corresponding to
f(t | Htn). Technically, it is a system of functions defined for any n ∈ N0 and for
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any history Htn (that is, for any n-tuple t1, . . . , tn) as a function from {t ∈ R :
t > tn, F (t | Htn) < 1} to R.
Remark. Again, in the special case of n = 0 we understand that t0 = 0 and that
λ∗(t) is defined through the unconditional density (and distribution function) of
T1 as λ∗(t) = f(t)/(1 − F (t)), t > 0.

The interpretation of the conditional intensity function λ∗(t) is rather similar
to that of the density f(t | Htn). For some t > tn and some small neighbourhood
of t denoted by dt it holds that

f(t | Htn) |dt| ≈
∫︂

dt
f(s | Htn) ds = P(Tn+1 ∈ dt | Htn).

Analogously, for λ∗(t), where t > tn, and some small punctured right neighbour-
hood of t denoted by dt we have that:

λ∗(t) |dt| = f(t | Htn) |dt|
1 − F (t | Htn) ≈ P(Tn+1 ∈ dt | Htn)

P(Tn+1 > t | Htn) = P(Tn+1 ∈ dt | Htn , Tn+1 > t).

From a given conditional intensity function λ∗(t) the cumulative distribution
function F (t | Htn) or the probability density function f(t | Htn) can be obtained.

Theorem 1. It holds that

F (t | Htn) = 1 − exp
(︃

−
∫︂ t

tn

λ∗(s) ds
)︃

(1.1)

and
f(t | Htn) = λ∗(t) exp

(︃
−
∫︂ t

tn

λ∗(s) ds
)︃

. (1.2)

Proof. From the relation

λ∗(t) = f(t | Htn)
1 − F (t | Htn) = − d

dt
log(1 − F (t | Htn))

and from the fact that F (tn | Htn) = 0 it follows that∫︂ t

tn

λ∗(s) ds = − log(1 − F (t | Htn)) + log(1 − F (tn | Htn)) = − log(1 − F (t | Htn)),

which directly implies (1.1). Equation (1.2) then follows from differentiation of
(1.1).

Theorem 1 is essential in supporting the aforementioned assertion that a con-
ditional intensity function λ∗(t) can be used to define the conditional distribution
of Tn+1 given Htn . Indeed, once we are given λ∗(t), thanks to equations (1.1) and
(1.2) we know also F (tn | Htn) and f(tn | Htn). We still, however, have to make
sure that 1 − exp (−

∫︁ t
tn

λ∗(s) ds) (as a function of t) is truly a cumulative dis-
tribution function or that λ∗(t) exp (−

∫︁ t
tn

λ∗(s) ds) is truly a probability density
function.

Theorem 2. If a system of functions λ∗(t) satisfies for any n ∈ N0 and for any
history Htn that
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• λ∗(t) is non-negative,

• ∀t > tn :
∫︁ t

tn
λ∗(s) ds < ∞ and

•
∫︁ t

tn
λ∗(s) ds → ∞ as t → ∞,

then it uniquely defines a temporal point process (Tn)∞
n=1 and it is its conditional

intensity function.

Proof. Uniqueness follows from Theorem 1. Thus, it is sufficient to realise
that F (t) := 1 − exp (−

∫︁ t
tn

λ∗(s) ds) is truly a cumulative distribution function.
Continuity of F (t), hence also right-continuity, follows from the fundamental the-
orem of calculus. Furthermore, when t < u, then

∫︁ t
tn

λ∗(s) ds ≤
∫︁ u

tn
λ∗(s) ds, from

which it follows that 1 − exp (−
∫︁ t

tn
λ∗(s) ds) ≤ 1 − exp (−

∫︁ u
tn

λ∗(s) ds). Hence,
we have that F (t) is non-decreasing. Finally, F (t) has appropriate limits because
F (tn) = 0 and limt→∞ F (t) = 1.

When analysing a given realisation of a temporal point process, it is often a
question of interest to find an appropriate model for the observed point pattern.
If we have some parametric model (specified, for instance, by the conditional
intensity function λ∗

θ(t), which depends on some parameter θ ∈ Θ) then in order
to estimate the unknown parameter it is a popular choice to use the maximum
likelihood inference. Let us define the integrated conditional intensity function
as

Λ∗(t) =
∫︂ t

0
λ∗(s) ds.

Remark. Here we understand that with the arrival of the next point tn+1 the
definition of λ∗(t) is updated – instead of the history Htn it now depends on the
history Htn+1 . More precisely, if we suppose that in an observation interval [0, T ]
we have observed a point pattern t1, . . . , tn, then it is understood that λ∗(t) is
defined in a piecewise manner, i.e. on the interval (ti, ti+1] it is defined through
the history Hti

as λ∗(t) = f(t | Hti )
1−F (t | Hti ) .

Theorem 3. Suppose that in an observation interval [0, T ] we have observed a
point pattern t1, . . . , tn. Then the likelihood function is given by

L(θ) =
(︄

n∏︂
i=1

λ∗
θ(ti)

)︄
exp (−Λ∗

θ(T )).

Proof. The joint density fθ(t1, . . . , tn) does not contain all the information
available from the observed point pattern. It does not take into account that
the time of the (n + 1)-th event is greater than T , although this information is
contained in the observed realisation as well. Therefore the likelihood is of the
form

L(θ) = fθ(t1, . . . , tn)(1 − Fθ(T | Htn)) =
(︄

n∏︂
i=1

fθ(ti | Hti−1)
)︄

(1 − Fθ(T | Htn))

=
(︄

n∏︂
i=1

λ∗
θ(ti) exp

(︄
−
∫︂ ti

ti−1
λ∗

θ(s) ds

)︄)︄
exp

(︄
−
∫︂ T

tn

λ∗
θ(s) ds

)︄

=
(︄

n∏︂
i=1

λ∗
θ(ti)

)︄
exp

(︄
−
∫︂ T

0
λ∗

θ(s) ds

)︄
.
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In the third equation we used the relations (1.1) and (1.2) and our agreement
that t0 = 0.
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2. Spatial-temporal point
processes
Once we have acquainted ourselves with purely temporal point processes, we can
shift our attention to point processes which are spatial-temporal. In this chapter
we adapt definitions and theorems regarding marked temporal point processes
from Rasmussen [2018] to our specific setting where marks contain both spatial
locations as well as lifetimes of objects.

In contrast with a temporal point process, which is just a collection of times
of events, a spatial-temporal point process contains not only information about
times of events but also about their positions in space. That is, it can be modelled
as a stochastic process (Tn, Xn)∞

n=1, where Tn represents time of the n-th event
while Xn represents its position in space.

We want to study point processes in which every event has an associated ran-
dom mark, which determines for how long this event influences its surroundings
(or ”for how long it lives”). It is natural to model a point process of this type
by a stochastic process (Tn, Xn, Mn)∞

n=1, where Tn represents time, Xn position
in space and Mn mark of the n-th event. So far we have been speaking about
events and their positions in space, in this new context of point processes with
marks (Mn), however, it will be more appropriate to introduce a slightly different
terminology. Instead of events we will speak about objects and their times of
births Tn, their times of deaths Tn + Mn, their lifetimes Mn and their positions
in space Xn.

So far we have not specified in what space we observe positions of objects.
From now on it will be always assumed that we observe them in some space
W ⊂ Rd such that W is a bounded Borel set with positive Lebesgue measure, i.e.
∃r > 0 : W ⊂ B(0, r), W ∈ B(Rd) and |W | > 0.

To summarize, we are going to concentrate on stochastic processes of the form
(Tn, Xn, Mn)∞

n=1, where we assume that Tn and Mn are non-negative random
variables and that Xn is a random variable with values in W . In addition we
assume, just as we did in case of temporal point processes, that times of births
(Tn)∞

n=1 constitute a simple point process, i.e. T1 < T2 < T3 < . . .. Once again,
we understand that Tn represents time of birth, Mn lifetime and Xn position in
space of the n-th object.
Remark. When integrating over the whole space W , we will usually omit the
symbol W from under the integral sign, i.e. instead of

∫︁
W we will write only

∫︁
.

Remark. To shorten the notation, we will use the concept of history of the stochas-
tic process (Tn, Xn, Mn)∞

n=1. By Htn we will again understand the whole history
of the process up to time of birth of the n-th object (tn), that is, times of births,
positions in space and lifetimes of the first n objects. Once again, Htn will stand
for t1, x1, m1, . . . , tn, xn, mn. It will be again useful to understand that t0 = 0 and
that Ht0 stands for no condition at all.

Analogously as in the case of temporal point processes, we can define stochas-
tic process (Tn, Xn, Mn)∞

n=1 by specifying conditional densities

f(tn+1 | Htn), f(xn+1 | Htn , tn+1), f(mn+1 | Htn , tn+1, xn+1), n ∈ N0, (2.1)
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because once these densities are specified, the system of all finite-dimensional
distributions of the process (Tn, Xn, Mn)∞

n=1 is specified as well, since
n∏︂

i=1
f(ti | Hti−1)f(xi | Hti−1 , ti)f(mi | Hti−1 , ti, xi) = f(t1, x1, m1, . . . , tn, xn, mn).

Remark. Similarly as in the previous chapter we prefer abbreviated notation of
densities in which we try to suppress names of random variables when they are
clear from the arguments, e.g. f(mn+1 | Htn , tn+1, xn+1) is a shorter notation of
fMn+1 | T1,X1,M1,...,Tn+1,Xn+1(mn+1 | Htn , tn+1, xn+1).

2.1 Conditional intensity function
Again, in order to define the process (Tn, Xn, Mn)∞

n=1, instead of prescribing the
densities in (2.1) we will rather prescribe a conditional intensity function.

First, we will define the ground intensity as

λ∗(t) = f(t | Htn)
1 − F (t | Htn) , t > tn and F (t | Htn) < 1.

The conditional intensity function is then defined as

λ∗(t, x) = λ∗(t)f(x | Htn , t), t > tn, F (t | Htn) < 1 and x ∈ W.

Remark. Note that the ground intensity is defined exactly as the conditional
intensity function for temporal point processes with the exception that now the
history Htn contains not only times of births t1, . . . , tn but also positions in space
and lifetimes x1, m1, . . . , xn, mn.

Since the definition of the ground intensity λ∗(t) is the same as was the def-
inition of the conditional intensity function for purely temporal point processes,
their interpretations are the same as well. For some t > tn and some small
punctured right neighbourhood of t denoted by dt it holds that

λ∗(t) |dt| = f(t | Htn) |dt|
1 − F (t | Htn) ≈ P(Tn+1 ∈ dt | Htn)

P(Tn+1 > t | Htn) = P(Tn+1 ∈ dt | Htn , Tn+1 > t).

Furthermore, the interpretation of the conditional intensity function λ∗(t, x) is
given by the following. For some t > tn, some small punctured right neighbour-
hood of t denoted by dt and some small neighbourhood of x denoted by dx it
holds that

λ∗(t, x) |dt| |dx| = f(t | Htn)f(x | Htn , t) |dt| |dx|
1 − F (t | Htn) = f(t, x | Htn) |dt| |dx|

1 − F (t | Htn)

≈
∫︁

dt

∫︁
dx f(s, y | Htn) dy ds

1 − F (t | Htn) = P(Tn+1 ∈ dt, Xn+1 ∈ dx | Htn)
P(Tn+1 > t | Htn)

= P(Tn+1 ∈ dt, Xn+1 ∈ dx | Htn , Tn+1 > t).

In analogy to Theorem 1, it holds that from a given conditional intensity
function λ∗(t, x) densities f(t | Htn) and f(x | Htn , t) can be obtained.
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Theorem 4. It holds that ∫︂
λ∗(t, x) dx = λ∗(t),

F (t | Htn) = 1 − exp
(︃

−
∫︂ t

tn

λ∗(s) ds
)︃

, (2.2)

and
f(t | Htn) = λ∗(t) exp

(︃
−
∫︂ t

tn

λ∗(s) ds
)︃

. (2.3)

Proof. The first point follows from∫︂
λ∗(t, x) dx =

∫︂
λ∗(t)f(x | Htn , t) dx = λ∗(t).

In order to prove relations (2.2) and (2.3) it is sufficient to replicate the proof of
Theorem 1 with the exception that now Htn stands for times of births, positions
in space as well as lifetimes of the first n objects, whereas in Theorem 1 it stood
only for times of the first n events.

Similarly as it was in case of purely temporal point processes, when we want
to define a spatial-temporal point process by specifying the conditional intensity
function λ∗(t, x) we cannot expect to get a valid model by specifying this function
arbitrarily, e.g. it cannot be negative.

Theorem 5. If a system of functions λ∗(t, x) satisfies for any n ∈ N0 and for
any history Htn that

• λ∗(t, x) is non-negative,

• ∀t > tn : 0 <
∫︁

λ∗(t, x) dx < ∞,

• ∀t > tn :
∫︁ t

tn

∫︁
λ∗(s, x) dx ds < ∞ and

•
∫︁ t

tn

∫︁
λ∗(s, x) dx ds → ∞ as t → ∞,

then it, together with a model for lifetimes of objects (i.e. with the densities
f(mn+1 | Htn , tn+1, xn+1)), uniquely defines a spatial-temporal point process with
random lifetimes of objects (Tn, Xn, Mn)∞

n=1 and it is its conditional intensity
function.

Proof. Let us put λ∗(t) =
∫︁

λ∗(t, x) dx. Then, since 0 < λ∗(t) < ∞ we
can put f(x | Htn , t) = λ∗(t, x)/λ∗(t). Function f(x | Htn , t) is a probability den-
sity function because it is non-negative and it integrates to 1. It remains to
show that F (t | Htn) obtained from λ∗(t) by relation (2.2) is truly a cumulative
distribution function. Continuity of F (t | Htn), hence also right-continuity, fol-
lows from the fundamental theorem of calculus. Furthermore, when t < u, then∫︁ t

tn
λ∗(s) ds ≤

∫︁ u
tn

λ∗(s) ds, from which it follows that 1 − exp (−
∫︁ t

tn
λ∗(s) ds) ≤

1−exp (−
∫︁ u

tn
λ∗(s) ds). Hence, we have that F (t | Htn) is non-decreasing. Finally,

F (t | Htn) has appropriate limits because F (tn | Htn) = 0 and limt→∞ F (t | Htn) =

9



1. Therefore, we have all the densities from (2.1), which, together, specify all
finite-dimensional distributions of the process (Tn, Xn, Mn)∞

n=1.
For the uniqueness it suffices to realise that all the densities from (2.1) are

determined uniquely (almost everywhere). We assume that the conditional den-
sities of lifetimes f(mn+1 | Htn , tn+1, xn+1) are given, thus it suffices to show
the uniqueness of f(tn+1 | Htn) and f(xn+1 | Htn , tn+1). Suppose that the con-
ditional intensity function λ∗(t, x) factorises into λ∗(t, x) = λ∗

1(t)f1(x | Htn , t) =
λ∗

2(t)f2(x | Htn , t). Then, by integrating λ∗(t, x) with respect to x we get that
λ∗

1(t) = λ∗
2(t), which also implies that f1(x | Htn , t) = f2(x | Htn , t). Hence,

we have shown the uniqueness of the densities f(xn+1 | Htn , tn+1). The unique-
ness of the densities f(tn+1 | Htn) then follows from the relation (2.3) because
λ∗

1(t) = λ∗
2(t).

2.2 Maximum likelihood estimation
Suppose that based on an observed realisation t1, x1, m1, . . . , tn, xn, mn observed
in some time window [0, T ] we need to choose the most appropriate model for a
spatial-temporal point process (Tn, Xn, Mn)∞

n=1 from a given parametric family of
models (specified, for instance, by the conditional intensity function λ∗

θ(t, x) and
by the conditional densities of lifetimes fγ(mn+1 | Htn , tn+1, xn+1), which depend
on some parameters θ ∈ Θ and γ ∈ Γ). In the rest of the thesis we will indeed
assume that the conditional densities of lifetimes and the conditional intensity
function are parametrised by different vectors of model parameters γ ∈ Γ and
θ ∈ Θ, i.e. no component of θ influences the distribution of lifetimes and no
component of γ influences the conditional intensity function. Similarly as in the
case of temporal point processes, the maximum likelihood inference can be used
to estimate the unknown parameters.
Remark. The assumption that we observed exactly t1, x1, m1, . . . , tn, xn, mn is a
little unrealistic because the chances are that at time T some objects are still
alive. A more realistic assumption is that instead of t1, x1, m1, . . . , tn, xn, mn we
actually observed t1, x1, min {m1, T − t1}, . . . , tn, xn, min {mn, T − tn} together
with indicators 1 [mi ≤ T − ti]. This assumption of censored lifetimes will be
discussed later.

Let us define the integrated ground intensity as

Λ∗(t) =
∫︂ t

0
λ∗(s) ds.

Remark. Here we understand that with the arrival of the next ((n + 1)-th) object
the definition of λ∗(t, x) is updated – instead of the history Htn it now depends
on the history Htn+1 .

Theorem 6. Suppose that in a time window [0, T ] we have observed a point
pattern t1, x1, m1, . . . , tn, xn, mn. Then the likelihood function is given by

L(θ, γ) =
(︄

n∏︂
i=1

fγ(mi | Hti−1 , ti, xi)
)︄(︄

n∏︂
i=1

λ∗
θ(ti, xi)

)︄
exp (−Λ∗

θ(T )).
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Proof.

L(θ, γ) = fθ,γ(t1, x1, m1, . . . , tn, xn, mn)(1 − Fθ(T | Htn))

=
(︄

n∏︂
i=1

fθ,γ(ti, xi, mi | Hti−1)
)︄

(1 − Fθ(T | Htn))

=
(︄

n∏︂
i=1

fθ(ti | Hti−1)fθ(xi | Hti−1 , ti)fγ(mi | Hti−1 , ti, xi)
)︄

(1 − Fθ(T | Htn))

(2.4)

=
(︄

n∏︂
i=1

λ∗
θ(ti) exp

(︄
−
∫︂ ti

ti−1
λ∗

θ(s) ds

)︄
fθ(xi | Hti−1 , ti)

)︄
(︄

n∏︂
i=1

fγ(mi | Hti−1 , ti, xi)
)︄

exp
(︄

−
∫︂ T

tn

λ∗
θ(s) ds

)︄

=
(︄

n∏︂
i=1

fγ(mi | Hti−1 , ti, xi)
)︄(︄

n∏︂
i=1

λ∗
θ(ti, xi)

)︄
exp

(︄
−
∫︂ T

0
λ∗

θ(s) ds

)︄
.

In the fourth equation we used the relations (2.2) and (2.3) and our agreement
that t0 = 0.

Note that the likelihood function L factorises into two terms, out of which
one depends on γ and the other depends on θ. Therefore, when maximising the
likelihood it is sufficient to maximise these two terms separately. Indeed, when
we have two non-negative functions f(x) and g(y) attaining their maximums in
x̂ and ŷ respectively, then f(x)g(y) ≤ f(x̂)g(y) ≤ f(x̂)g(ŷ).

If we assume i.i.d. lifetimes (Mn)∞
n=1 independent of both times of births

as well as positions in space or lifetimes given by geostatistical marking using
some random field Z(t, x), then the term ∏︁n

i=1 fγ(mi | Hti−1 , ti, xi) further simpli-
fies. First, suppose that the lifetimes are i.i.d. and independent of (Tn, Xn)∞

n=1
with distribution given by a density fγ(m). Then ∏︁n

i=1 fγ(mi | Hti−1 , ti, xi) =∏︁n
i=1 fγ(mi). In case of geostatistical marking, that is when we assume that

Mn = Z(Tn, Xn) where Z(t, x) is some random field independent of (Tn, Xn)∞
n=1,

it holds that

fMi | T1,X1,M1,...,Ti−1,Xi−1,Mi−1,Ti,Xi
(mi | t1, x1, m1, . . . , ti−1, xi−1, mi−1, ti, xi)

= fZ(Ti,Xi) | T1,X1,Z(T1,X1),...,Ti−1,Xi−1,Z(Ti−1,Xi−1),Ti,Xi
(mi | Hti−1 , ti, xi)

= fT1,X1,Z(t1,x1),...,Ti,Xi,Z(ti,xi)(t1, x1, m1, . . . , ti, xi, mi)
fT1,X1,Z(t1,x1),...,Ti,Xi

(t1, x1, m1, . . . , ti, xi)

= fZ(t1,x1),...,Z(ti,xi)(m1, . . . , mi)fT1,X1,...,Ti,Xi
(t1, x1, . . . , ti, xi)

fZ(t1,x1),...,Z(ti−1,xi−1)(m1, . . . , mi−1)fT1,X1,...,Ti,Xi
(t1, x1, . . . , ti, xi)

= fZ(ti,xi) | Z(t1,x1),...,Z(ti−1,xi−1)(mi | m1, . . . , mi−1).

Therefore, the term ∏︁n
i=1 fγ(mi | Hti−1 , ti, xi) simplifies to the joint density

fZ(t1,x1),...,Z(tn,xn)(m1, . . . , mn), which can again depend on some unknown param-
eter γ ∈ Γ.

Term exp (−
∫︁ T

0 λ∗
θ(s) ds) from the likelihood is a little problematic since∫︁ T

0 λ∗
θ(s) ds =

∫︁ T
0
∫︁

λ∗
θ(s, x) dx ds requires integration over space as well as over
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time, which is computationally demanding. Since this term arose from the densi-
ties fθ(ti | Hti−1) present in (2.4), it is a promising idea to just omit them from the
likelihood function. This leads us to a definition of the partial likelihood [Cox,
1975, Diggle et al., 2010]

Lp(θ) =
n∏︂

i=1
fθ(xi | Hti−1 , ti). (2.5)

By maximising the partial likelihood we, roughly speaking, maximise probability
that conditionally on histories and times of births their positions would be exactly
where we observed them. Since

∫︁
λ∗

θ(ti)fθ(x | Hti−1 , ti) dx = λ∗
θ(ti), it holds that

fθ(xi | Hti−1 , ti) = λ∗
θ(ti)fθ(xi | Hti−1 , ti)∫︁

λ∗
θ(ti)fθ(x | Hti−1 , ti) dx

= λ∗
θ(ti, xi)∫︁

λ∗
θ(ti, x) dx

.

Hence, the partial likelihood can be expressed as

Lp(θ) =
n∏︂

i=1

λ∗
θ(ti, xi)∫︁

λ∗
θ(ti, x) dx

. (2.6)

We see that the partial likelihood simplifies the integration over space-time to n
integrations over space only. An unpleasant disadvantage of the partial likelihood
is that it may not identify some parameters. This problem will be exemplified
later.

2.3 Generation of realisations
When analysing a spatial-temporal point process it is often useful to be capable
of simulating realisations from a particular model. Indeed, being able to simulate
from a given model is helpful for model verification, prediction, Monte Carlo tests,
estimation of distribution of summary statistics, etc.

Suppose that we are given a conditional intensity function λ∗(t, x) together
with the model for generating lifetimes, i.e. densities f(mn+1 | Htn , tn+1, xn+1).
Then a realisation of the point process determined by this system can be generated
(in a time interval [0, T ]) by the following algorithm [Diggle, 2013].

1. Put t0 = 0, n = 0.

2. While (TRUE):

(a) Generate S ∼ Exp(1).
(b) Find t such that

∫︁ t
tn

λ∗(u) du = S.
(c) If (t > T ): break.
(d) Put n = n + 1.
(e) Put tn = t.
(f) Generate xn from the density proportional to λ∗(tn, ·).
(g) Generate mn from the density f(m | Htn−1 , tn, xn).

3. Output (t1, x1, m1, . . . , tn, xn, mn).

12



Theorem 7. Suppose that we are given a conditional intensity function λ∗(t, x)
together with a model for generating lifetimes, i.e. together with a collection of
densities f(mn+1 | Htn , tn+1, xn+1). Then the aforementioned algorithm generates
a realisation of the spatial-temporal point process with random lifetimes of objects
that is uniquely determined by this system.

Proof. The following proof is a little generalisation of the proof for purely tem-
poral point processes, which is given in Rasmussen [2018]. The given conditional
intensity function λ∗(t, x) uniquely determines the ground intensity λ∗(t) and thus
also densities f(tn+1 | Htn) and f(xn+1 | Htn , tn+1). This uniqueness was discussed
in Theorem 5. We need to show that conditional distributions of times of births,
positions in space and lifetimes in the process generated by the algorithm coin-
cide with the uniquely determined densities f(tn+1 | Htn), f(xn+1 | Htn , tn+1) and
f(mn+1 | Htn , tn+1, xn+1). Let us start with the conditional distributions of times
of births in the generated process. Let F ∗

Tn+1(t | Htn) denote the conditional cu-
mulative distribution function of the time of birth of the (n + 1)-th object (Tn+1)
in the generated process. Then it holds for t > tn that

F ∗
Tn+1(t | Htn) = P(Tn+1 ≤ t | Htn) = P(Λ∗(Tn+1) ≤ Λ∗(t) | Htn)

= P(Λ∗(Tn) + S ≤ Λ∗(t) | Htn) = P(S ≤ Λ∗(t) − Λ∗(tn) | Htn)

= 1 − exp (−(Λ∗(t) − Λ∗(tn))) = 1 − exp
(︃

−
∫︂ t

tn

λ∗(u) du
)︃

= F (t | Htn),

where F (t | Htn) denotes the cumulative distribution function associated with the
uniquely determined density f(tn+1 | Htn). In the last equality we used the rela-
tion (2.2). Hence, we showed that the conditional distributions of times of births
in the process generated by the algorithm coincide with the densities f(tn+1 | Htn)
uniquely determined by the given conditional intensity function λ∗(t, x). Since
the conditional distributions of lifetimes in the generated process also coincide
with the given densities f(mn+1 | Htn , tn+1, xn+1) (that is how we chose them in
the algorithm), it remains to verify that the conditional distributions of positions
of objects coincide with the densities f(xn+1 | Htn , tn+1). In the algorithm, posi-
tion of the (n + 1)-th object Xn+1 was generated from the density proportional
to λ∗(tn+1, ·), which is exactly f(xn+1 | Htn , tn+1).
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3. Parametric models

3.1 Existence and examples
We will deal with models defined by the conditional intensity functions of the
following form. Suppose that the number of objects which were born before time
t is nt. That means that t1 < . . . < tnt < t. Then, given the whole history of
the process before time t, that is, given times of births, positions in space and
lifetimes of the first nt objects t1, x1, m1, . . . , tnt , xnt , mnt , the conditional intensity
function will be specified as

λ∗(t, x) =
nt∏︂

i=1

(︃
h(∥x − xi∥)g(|t − ti|)

)︃1 [|t−ti|≤mi]
, (3.1)

where t > tnt and x ∈ W . Here, h and g are some interaction functions from
[0, ∞) to [0, ∞).

This choice of the conditional intensity function has a relatively clear inter-
pretation. At time t and position in space x it is affected by only those objects
which were born before and are still alive at this time t. Furthermore, we suppose
that their effects act multiplicatively and have a specific form. Namely, the effect
of the i-th object on λ∗(t, x) depends only on the distance from its position in
space xi to x through some function h and on the distance from its time of birth
ti to t through some function g.

In (3.1) we have introduced a model for the conditional intensity function
λ∗(t, x). So far we have not, however, addressed the question of validity of the
resulting model. When speaking about point processes, it is required that their
supports are random locally finite sets, i.e. their supports intersect an arbitrary
compact set in just finitely many points. Similarly, we would like the stochas-
tic process defined by the conditional intensity function from (3.1) to be non-
explosive in the sense that almost surely it holds that

(A) positions in space of objects which are alive at the same time intersect an
arbitrary compact subset of W in finitely many points,

(B) times of births intersect an arbitrary compact subset of R in finitely many
points.

Theorem 8. Consider a stochastic process with the conditional intensity function
from (3.1). Suppose that the interaction functions h and g are bounded and that
∃δ0 > 0, ∀x ∈ [0, δ0], h(x) = 0. Then this stochastic process almost surely satisfies
conditions of non-explosiveness (A) and (B).

Proof. Condition (A) follows directly from the hard-core property of the inter-
action function h that ∃δ0 > 0, ∀x ∈ [0, δ0], h(x) = 0. Indeed, the conditional
density of the position of the next ((n + 1)-th) object (given the history Htn and
the time of birth of this (n + 1)-th object tn+1) f(x | Htn , tn+1) is proportional to
the conditional intensity function at time tn+1, i.e. it is proportional to λ∗(tn+1, ·).
Hence, it is equal to zero on δ0-neighbourhoods of positions of those objects that
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are alive at time tn+1. Therefore, the distance between positions of arbitrary two
objects that are alive at the same time is greater than δ0.

It remains to show condition (B). First, we can realise that the conditional
intensity function λ∗(t, x) is under our assumptions bounded by some constant
C. Indeed, thanks to boundedness of W and the hard-core property of h there
exists an upper bound on the number of objects that can be alive at the same
time , i.e. ∃NMax ∈ N such that at an arbitrary time t the number of objects
that are at this time alive is less than or equal to NMax. Therefore, the number
of factors in the product from (3.1) is less than or equal to NMax, which together
with boundedness of h and g implies also boundedness of λ∗(t, x). Consequently,
the ground intensity λ∗(t) is bounded by K := C |W |.

Let us now concentrate on the period between two consecutive times of births,
e.g. Tn − Tn−1, n ∈ N (we will understand that T0 = 0). From the representation
of the studied stochastic process in the algorithm above Theorem 7 it holds that
Tn−Tn−1 ≥ 1

K
Zn, where Zn is a random variable with Exp(1) distribution. Hence,

the time of explosion

ξ =
∞∑︂

n=1
Tn − Tn−1 ≥ 1

K

∞∑︂
n=1

Zn = ∞ a.s.,

where {Zn}∞
n=1 are i.i.d. random variables with Exp(1) distribution. The last

equality follows from the strong law of large numbers:

lim
N→∞

N∑︂
n=1

Zn =
(︃

lim
N→∞

N
)︃(︃

lim
N→∞

1
N

N∑︂
n=1

Zn

)︃
= ∞ a.s.

Remark. The validity of Theorem 8 is not restricted only to models whose con-
ditional intensity function is given by (3.1). From the proof of Theorem 8 it is
obvious that for the almost sure validity of conditions (A) and (B) it is sufficient
to assume that ∃δ0 > 0, ∀t > 0, λ∗(t, ·) is zero on δ0-neighbourhoods of positions
of those objects which are alive at time t and that λ∗(t, x) is bounded by some
constant C.

Let us present some examples of models whose conditional intensity functions
are given by (3.1).
Example. Let us define the interaction functions g and h as g(t) ≡ 1.15 and

h(x) =
⎧⎨⎩0, if x ≤ 0.05,

1 − 0.6 exp
(︂
− (x−0.05)2

0.03

)︂
, if x > 0.05.

(3.2)

Plot of the interaction function h defined in this way is in Figure 3.1. Furthermore,
we will put W = [0, 1]2 and we will assume that the lifetimes of objects (Mn)∞

n=1
are i.i.d. random variables independent of both times of births as well as positions
in space, i.e. independent of (Tn, Xn)∞

n=1, with gamma distribution with the shape
parameter equal to 10 and the scale parameter equal to 0.5.

Stochastic process (Tn, Xn, Mn)∞
n=1 defined in this way models a spatially re-

pulsive behaviour of objects with random lifetimes in a unit square. Effects of
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Figure 3.1: Plot of h function from (3.2).

the function h on the spatial interactions of positions of objects are rather clear.
Consider an object O0 whose position in W is x0. Then the function h causes that
when a new object is born while this object O0 is still alive, the position at which
it is born is with probability 1 further than 0.05 from x0, i.e. positions in W
whose distance from x0 is less than or equal to 0.05 are forbidden. Furthermore,
positions in space whose distance from x0 is greater than 0.05 but still relatively
small are quite strongly disfavoured. This penalisation decreases as the distance
from x0 increases.

In a simulated realisation of this model one object was born at time t = 70.22.
The position of this object was generated from the density proportional to λ∗(t, ·)
(Figure 3.2). Plot of λ∗(t, ·) exemplifies the spatially repulsive behaviour of the
model: λ∗(t, ·), and hence also the proportional density, attains largest values in
regions which are unoccupied by already existing objects (namely, in the central
part of W , in the upper right corner and in the lower right corner). Configurations
of positions of objects which were alive at some selected times in this simulated
realisation can be seen in Figure 3.3.
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Figure 3.2: Configuration of positions of objects in a simulated realisation of a
repulsive model at time t = 70.22 and the plot of λ∗(t, ·).
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Figure 3.3: Configurations of positions of objects in a simulated realisation of a
repulsive model at times 71, 72, 73, 74, 120 and 180.
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Figure 3.4: Plot of h function from (3.3).

Example. Let us define the interaction functions g and h as g(t) ≡ 0.55 and

h(x) =
⎧⎨⎩0, if x ≤ 0.05,

1 + 1.7 exp
(︂
− (x−0.05)2

0.1

)︂
, if x > 0.05.

(3.3)

Plot of the interaction function h defined in this way is in Figure 3.4. Again, we
will put W = [0, 1]2 and we will assume that the lifetimes of objects (Mn)∞

n=1 are
i.i.d. random variables independent of both times of births as well as positions in
space, i.e. independent of (Tn, Xn)∞

n=1, with uniform distribution on the interval
[3.5, 6.5].

Stochastic process (Tn, Xn, Mn)∞
n=1 defined in this way models a spatially at-

tractive behaviour of objects with random lifetimes in a unit square. Effects of
the function h on the spatial interactions of positions of objects are again rather
clear. Consider an object O0 whose position in W is x0. Then the function h
causes that when a new object is born while this object O0 is still alive, the
position at which it is born is with probability 1 further than 0.05 from x0, i.e.
positions in W whose distance from x0 is less than or equal to 0.05 are forbid-
den. On the contrary, positions in space whose distance from x0 is greater than
0.05 but still relatively small are quite strongly favoured. This attractive effect
gradually decreases as the distance from x0 increases.

In a simulated realisation of this model one object was born at time t =
68.81. The position of this object was generated from the density proportional to
λ∗(t, ·) (Figure 3.5). Plot of λ∗(t, ·) exemplifies the spatially attractive behaviour
of the model: λ∗(t, ·), and hence also the proportional density, attains largest
values in the vicinity of already existing objects (namely in the upper part of W ).
Configurations of positions of objects which were alive at some selected times in
this simulated realisation can be seen in Figure 3.6.
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Figure 3.5: Configuration of positions of objects in a simulated realisation of an
attractive model at time t = 68.81 and the plot of λ∗(t, ·).
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Figure 3.6: Configurations of positions of objects in a simulated realisation of an
attractive model at times 69, 70, 71, 72, 143 and 183.
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3.2 Maximum likelihood estimation
Thanks to Theorem 6 we know that the likelihood function of a given realisation
t1, x1, m1, . . . , tn, xn, mn observed in a time window [0, T ] is of the form

L(θ, γ) =
(︄

n∏︂
i=1

fγ(mi | Hti−1 , ti, xi)
)︄(︄

n∏︂
i=1

λ∗
θ(ti, xi)

)︄
exp

(︄
−
∫︂ T

0

∫︂
λ∗

θ(t, x) dx dt

)︄
.

We have explained that since the densities fγ(mi | Hti−1 , ti, xi) depend on a differ-
ent parameter than the conditional intensity function λ∗

θ(t, x), in order to max-
imise L(θ, γ) it is sufficient to maximise the terms

L1(γ) =
(︄

n∏︂
i=1

fγ(mi | Hti−1 , ti, xi)
)︄

and
L2(θ) =

(︄
n∏︂

i=1
λ∗

θ(ti, xi)
)︄

exp
(︄

−
∫︂ T

0

∫︂
λ∗

θ(t, x) dx dt

)︄
separately.

For the conditional intensity function given by (3.1), assuming that the in-
teraction functions h and g depend on some unknown parameter θ ∈ Θ, is the
logarithm of L2(θ) of the form

log (L2(θ)) =
n∑︂

i=1
log

⎛⎝nti∏︂
j=1

(︃
hθ(∥xi − xj∥)gθ(|ti − tj|)

)︃1 [|ti−tj |≤mj ]
⎞⎠

−
∫︂ T

0

∫︂ nt∏︂
i=1

(︃
hθ(∥x − xi∥)gθ(|t − ti|)

)︃1 [|t−ti|≤mi]
dx dt.

Similarly, from (2.6) we know that the partial likelihood is of the form

Lp(θ) =
n∏︂

i=1

λ∗
θ(ti, xi)∫︁

λ∗
θ(ti, x) dx

,

which means that for the conditional intensity function given by (3.1) it holds
that

log (Lp(θ)) =
n∑︂

i=1
log

⎛⎝nti∏︂
j=1

(︃
hθ(∥xi − xj∥)gθ(|ti − tj|)

)︃1 [|ti−tj |≤mj ]
⎞⎠

−
n∑︂

i=1
log

⎛⎝∫︂ nti∏︂
j=1

(︃
hθ(∥x − xj∥)gθ(|ti − tj|)

)︃1 [|ti−tj |≤mj ]
dx

⎞⎠ .

Example. Perhaps the simplest example arises by choosing g(t) ≡ 1 and h(x) =
1 [x ≥ δ], where δ > 0 is an unknown parameter, which needs to be estimated.
This choice of interaction functions g and h leads to a hard-core model, in which
objects influence the conditional intensity function only through spatial interac-
tions given by h. The main effect of this function is that any two objects which
live at the same time have to satisfy that the distance between their positions in
space is not smaller than δ. Beyond this hard-core property, no further spatial
interactions, neither attractive nor repulsive, are present.
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First, let us concentrate on maximising log (L2(δ)). For the current choice of
g and h it holds that

log (L2(δ)) =
n∑︂

i=1
log

⎛⎝nti∏︂
j=1

1 [∥xi − xj∥ ≥ δ]1 [|ti−tj |≤mj ]

⎞⎠
−
∫︂ T

0

∫︂ nt∏︂
i=1

1 [∥x − xi∥ ≥ δ]1 [|t−ti|≤mi] dx dt.

Once we denote

δ0 = min {∥xi − xj∥ : i, j ∈ N; i ≤ n; j < i; |ti − tj| ≤ mj}

it holds that if δ ≤ δ0, then

n∑︂
i=1

log
⎛⎝nti∏︂

j=1
1 [∥xi − xj∥ ≥ δ]1 [|ti−tj |≤mj ]

⎞⎠ = 0,

whereas if δ > δ0, then this term is equal to −∞ (with the convention that
log (0) = −∞). Furthermore, the term
∫︂ T

0

∫︂ nt∏︂
i=1

1 [∥x − xi∥ ≥ δ]1 [|t−ti|≤mi] dx dt =
∫︂ T

0
|W | −

⃓⃓⃓⃓ ⋃︂
ti<t

|t−ti|≤mi

B(xi, δ) ∩ W
⃓⃓⃓⃓
dt

is monotonic in δ. Indeed, when δ1 < δ2, then⃓⃓⃓⃓ ⋃︂
ti<t

|t−ti|≤mi

B(xi, δ1) ∩ W
⃓⃓⃓⃓
≤
⃓⃓⃓⃓ ⋃︂

ti<t
|t−ti|≤mi

B(xi, δ2) ∩ W
⃓⃓⃓⃓

and thus∫︂ T

0
|W | −

⃓⃓⃓⃓ ⋃︂
ti<t

|t−ti|≤mi

B(xi, δ1) ∩ W

⃓⃓⃓⃓
dt ≥

∫︂ T

0
|W | −

⃓⃓⃓⃓ ⋃︂
ti<t

|t−ti|≤mi

B(xi, δ2) ∩ W
⃓⃓⃓⃓
dt.

Therefore, log (L2(δ)) attains its maximum in δ0.
Analogously, we can try to maximise

log (Lp(δ)) =
n∑︂

i=1
log

⎛⎝nti∏︂
j=1

1 [∥xi − xj∥ ≥ δ]1 [|ti−tj |≤mj ]

⎞⎠
−

n∑︂
i=1

log
⎛⎝∫︂ nti∏︂

j=1
1 [∥x − xj∥ ≥ δ]1 [|ti−tj |≤mj ] dx

⎞⎠ .

Behaviour of the first term was already discussed – if δ ≤ δ0, then it is equal to
0 and if δ > δ0, then it is equal to −∞. The second term is again monotonic in
δ. Hence, log (Lp(δ)) attains its maximum in δ0 as well.

In this example we have been able to maximise both the full likelihood as
well as the partial likelihood analytically. In more complicated models numerical
optimisation will be necessary.
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4. Censoring of lifetimes
As it was already stated (before Theorem 6), the assumption of observing exactly
t1, x1, m1, . . . , tn, xn, mn in a given time window [0, T ] is not entirely realistic
because at time T some objects might be still alive. If we suppose that the time
of death of the i-th object is greater than T , i.e. ti + mi > T , then instead of
observing the exact value of its lifetime mi we only have the information that it
is greater than T − ti. Basic introduction to the analysis of censored data can be
found in Kalbfleisch and Prentice [2002].

Let us introduce a stochastic process (Tn, Xn, Cn, ∆n)∞
n=1, where Tn and Xn

still represent time of birth and position in space of the n-th object, Cn =
min {Mn, T − Tn} stands for the censored lifetime and ∆n = 1 [Mn ≤ T − Tn]
indicates whether the n-th lifetime Mn is actually censored (∆n = 0) or not
(∆n = 1).

In contrast with random variable Mn, random variables Cn and ∆n are actu-
ally observable (provided that Tn ≤ T ). Let us suppose that Tn ≤ T . Then there
are two options for the time of death Tn + Mn. It can happen that Tn + Mn ≤ T
or that Tn + Mn > T . In the first case we observe even the exact lifetime Mn

and therefore also Cn and ∆n. It holds that Cn = Mn and ∆n = 1. In the sec-
ond case we do not observe the exact lifetime Mn, however, we do observe that
the n-th object is at time T still alive. Thus, we do have the information that
Tn + Mn > T , which is sufficient to determine the values of Cn and ∆n. It holds
that Cn = T − Tn and ∆n = 0.
Remark. We need to be able to distinguish that for some objects we do not know
the exact values of their lifetimes, but only know that their times of deaths are
greater than T . Therefore, it will be useful to denote t1, x1, c1, δ1, . . . , tn, xn, cn, δn

by H′
tn

. That is, while Htn represents times of births, positions in space and exact
lifetimes of the first n objects, H′

tn
tolerates that for some objects information

about their exact times of deaths is not available and it is only known that they
are greater than T .

Let us now introduce a condition for the conditional densities of times of births
and the conditional densities of positions in space, which will be referred to in
the following theorem.

Condition 9. In the considered model it is satisfied that ∀i ∈ N \ {1}, ∀H′

t̃i−1
=

(t̃1, x̃1, c̃1, δ̃1, . . . , t̃i−1, x̃i−1, c̃i−1, δ̃i−1), ∀t̃i ∈ (t̃i−1, T ] and ∀x̃i ∈ W :

fθ(t̃i | H′

t̃i−1
) = fTi | T1,X1,M1,...,Ti−1,Xi−1,Mi−1;θ(t̃i | t̃1, x̃1, c̃1, . . . , t̃i−1, x̃i−1, c̃i−1)

and

fθ(x̃i | H′

t̃i−1
, t̃i) = fXi | T1,X1,M1,...,Ti−1,Xi−1,Mi−1,Ti;θ(x̃i | t̃1, x̃1, c̃1, . . . , t̃i−1, x̃i−1, c̃i−1, t̃i).

Condition 9, which we just introduced, deserves a short comment. Vaguely
speaking, this condition states that the probability that the next object is born
at some particular time t ≤ T is not altered by changing the condition in a way
that instead of assuming that some times of deaths are greater than T we just
assume that they are equal to T . Similarly for the position in space of the next
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object. Roughly speaking, the condition states that the probability that the next
object occurs at some particular position x ∈ W is not altered by changing the
condition in a way that instead of assuming that some times of deaths are greater
than T we just assume that they are equal to T .

Theorem 10. Let us suppose that in a given time window [0, T ] we observed
a realisation t1, x1, c1, δ1, . . . , tn, xn, cn, δn. In addition, suppose that Condition 9
holds. Then, the likelihood function is of the form

L(θ, γ) =
(︄

n∏︂
i=1

(︂
fMi;γ(ci | H′

ti−1
, ti, xi)

)︂δi
(︂
1 − FMi;γ(T − ti | H′

ti−1
, ti, xi)

)︂1−δi

)︄
(︄

n∏︂
i=1

λ∗
θ(ti, xi)

)︄
exp (−Λ∗

θ(T )),

where in the terms from the first product subscript Mi was added in order to
emphasize that we mean conditional density or distribution function of Mi.

Proof. Similarly as in the proof of Theorem 6 the likelihood function can be
written as

L(θ, γ) = fθ,γ(t1, x1, c1, δ1, . . . , tn, xn, cn, δn)(1 − Fθ(T | H′

tn
))

=
(︄

n∏︂
i=1

fθ(ti | H′

ti−1
)fθ(xi | H′

ti−1
, ti)fγ(ci, δi | H′

ti−1
, ti, xi)

)︄
(1 − Fθ(T | H′

tn
)).

Let us examine the term fγ(ci, δi | H′
ti−1

, ti, xi). If δi = 0, then

fγ(ci, δi | H′

ti−1
, ti, xi) = 1 − FMi;γ(T − ti | H′

ti−1
, ti, xi),

whereas if δi = 1, then

fγ(ci, δi | H′

ti−1
, ti, xi) = fMi;γ(ci | H′

ti−1
, ti, xi).

Indeed, the first relation follows from (4.1), which is implied by the following
sequence of implications

[∆i = 0] = [Mi > T − Ti] ⊂ [Ci = T − Ti] ⇒
[∆i = 0, Ci = T − Ti] = [∆i = 0] = [Mi > T − Ti] ⇒
[∆i = 0, Ci = T − Ti, Ti = ti] = [Mi > T − Ti, Ti = ti] ⇒
[∆i = 0, Ci = T − ti, Ti = ti] = [Mi > T − ti, Ti = ti]. (4.1)

Similarly, the second relation follows from (4.2):

[∆i = 1] = [Mi = Ci] ⇒
[∆i = 1, Ci = ci, Ti = ti] = [Mi = ci, Ci = ci, Ti = ti] = [Mi = ci, Ti = ti], (4.2)

where the last equality is implied by the inclusion

[Mi = ci, Ti = ti] ⊂ [Ci = ci],
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which holds as long as ci ≤ T − ti. Hence,

fγ(ci, δi | H′

ti−1
, ti, xi) =

(︂
fMi;γ(ci | H′

ti−1
, ti, xi)

)︂δi
(︂
1 − FMi;γ(T − ti | H′

ti−1
, ti, xi)

)︂1−δi

.

The remaining terms, thanks to the assumptions imposed on the considered
model, can be treated in the same way as in Theorem 6. Again, they trans-
form into (︄

n∏︂
i=1

λ∗
θ(ti, xi)

)︄
exp

(︄
−
∫︂ T

0
λ∗

θ(s) ds

)︄
.

Similarly as in the discussion after Theorem 6, if we assume i.i.d. lifetimes
(Mn)∞

n=1 independent of both times of births as well as positions in space, i.e.
independent of (Tn, Xn)∞

n=1, with distribution given by a density fγ(m) (whose
associated cumulative distribution function is Fγ(m)) then the term

n∏︂
i=1

(︂
fMi;γ(ci | H′

ti−1
, ti, xi)

)︂δi
(︂
1 − FMi;γ(T − ti | H′

ti−1
, ti, xi)

)︂1−δi

simplifies to
n∏︂

i=1
(fγ(ci))δi (1 − Fγ(T − ti))1−δi .

Furthermore, let us comment on the feasibility of Condition 9, which we as-
sumed in Theorem 10. Models whose conditional intensity function has a causal
character in a sense that it does not depend on the future (e.g. the one given
by (3.1)) satisfy it. Indeed, let us consider two histories:

H1
tn

= t1, x1, m1, . . . , tn, xn, mn,

H2
tn

= t1, x1, min {m1, T − t1}, . . . , tn, xn, min {mn, T − tn},

where tn < T . Then, in models with causal conditional intensity functions, these
two histories induce conditional intensity functions, which coincide in the time
window (tn, T ]. That, however, implies that ∀tn+1 ∈ (tn, T ], ∀xn+1 ∈ W :

f(tn+1 | H1
tn

) = f(tn+1 | H2
tn

),
f(xn+1 | H1

tn
, tn+1) = f(xn+1 | H2

tn
, tn+1).
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5. Implementation details
In order to be able to simulate a realisation of a spatial-temporal point process
by the algorithm described above Theorem 7 or in order to calculate the (partial)
likelihood function we need to be capable of integrating the conditional intensity
function λ∗(t, x).

5.1 Integration over space
First, let us discuss the numerical integration of the conditional intensity function
λ∗(t, x) for t fixed as a function of x, i.e. the numerical integration of

∫︁
λ∗(t, x) dx.

We use Monte Carlo integration [Caflisch, 1998, Kroese et al., 2011]. Consider
a sequence of i.i.d. random variables {Xn}∞

n=1 with uniform distribution on our
space W . From the following relation, where PX1 denotes the distribution of
X1, it follows that

∫︁
λ∗(t, x) dx can be approximated by |W | 1

N

∑︁N
i=1 λ∗(t, Xi).

Indeed, ∫︂
λ∗(t, x) dx =

∫︂
λ∗(t, x) |W |

|W |
dx = |W |

∫︂
λ∗(t, x) d PX1(x)

= |W | E λ∗(t, X1) ≈ |W | 1
N

N∑︂
i=1

λ∗(t, Xi),

where the last step is justified by the strong law of large numbers (which holds
if E λ∗(t, X1) = 1

|W |
∫︁

λ∗(t, x) dx < ∞). The question of practical significance is
what value of N to choose. We choose this value with the aid of the central limit
theorem and Slutsky’s theorem. If we in addition have that 0 < var λ∗(t, X1) <
∞, then it holds that

√
N
(︂

1
N

∑︁N
i=1 λ∗(t, Xi) − 1

|W |
∫︁

λ∗(t, x) dx
)︂

√︂
S2

N

D−−−→
N→∞

N(0, 1),

where S2
N denotes the sample variance of {λ∗(t, Xi)}N

i=1. This convergence implies
that

P
⎛⎝⃓⃓⃓⃓ |W | 1

N

N∑︂
i=1

λ∗(t, Xi) −
∫︂

λ∗(t, x) dx

⃓⃓⃓⃓
<

√︂
S2

N√
N

|W | u1− α
2

⎞⎠ −−−→
N→∞

1 − α,

where u1− α
2

denotes the (1 − α
2 )-quantile of N(0, 1) distribution. This means

that for sufficiently large N , probability that the error of our numerical inte-
gration is less than

√
S2

N√
N

|W | u1− α
2

is approximately 1 − α. Hence, we would

like to choose the value of N so that
√

S2
N√

N
|W | u1− α

2
≈ 0.01

∫︁
λ∗(t, x) dx because

then with probability of approximately 1 − α the relative error of the numer-
ical integration is less than 1%. Unfortunately, we do not know the value of∫︁

λ∗(t, x) dx, hence we have to approximate it by |W | 1
N

∑︁N
i=1 λ∗(t, Xi). That

means that during the numerical integration we will keep increasing the value of
N until

√
S2

N√
N

|W | u1− α
2

≤ 0.01 |W | 1
N

∑︁N
i=1 λ∗(t, Xi) or until some maximal admis-

sible value for N is reached. In our implementation we choose α = 0.05 and the
maximal admissible value for N as 50 000.
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5.2 Integration over space-time
As it was already mentioned, when generating a realisation of a spatial-temporal
point process by the previously described algorithm or when calculating the like-
lihood function, we need to be able to integrate the conditional intensity function
λ∗(t, x) not only over space but also over space-time, i.e. we need to be able to
calculate integrals of the form

∫︁ T2
T1

∫︁
λ∗(t, x) dx dt =

∫︁ T2
T1

λ∗(t) dt. In order to ap-
proximate such an integral we can take a partition {ti}n

i=0 of the interval [T1, T2]
such that T1 = t0 < t1 < . . . < tn−1 < tn = T2 and use the trapezoidal rule:

∫︂ T2

T1

∫︂
λ∗(t, x) dx dt =

∫︂ T2

T1
λ∗(t) dt ≈

n∑︂
i=1

λ̂
∗(ti−1) + λ̂

∗(ti)
2 (ti − ti−1),

where λ̂
∗(ti) denotes the numerical approximation of λ∗(ti) =

∫︁
λ∗(ti, x) dx as

described above. A little inconveniently, the ground intensity λ∗(t) might have
discontinuity points, e.g. when an object is born or when it dies. To avoid
making unnecessary integration errors which might arise by not including these
discontinuity points in the partition {ti}n

i=0, we choose this partition not only as
a regular grid of points in [T1, T2] but as a union D ∪ G, where D denotes the
set of discontinuity points of the ground intensity λ∗(t) which lie in the interval
[T1, T2] and G denotes a regular dense grid in [T1, T2]. Furthermore, we modify
our numerical approximation by using one-sided limits:

∫︂ T2

T1

∫︂
λ∗(t, x) dx dt =

∫︂ T2

T1
λ∗(t) dt ≈

n∑︂
i=1

λ̂
∗(ti−1+) + λ̂

∗(ti−)
2 (ti − ti−1),

where λ̂
∗(ti−) denotes the approximation of limt→ti− λ∗(t) (similarly for the +

sign).
Let us remark that in our implementation we choose the regular grid of points

G so that the distance between two consecutive points is 0.01 when generating re-
alisations of a spatial-temporal point process and (due to computational reasons)
0.1 when calculating the likelihood function.

5.3 Optimisation
Let us now discuss problems associated with maximisation of the (partial) likeli-
hood function.
Remark. In the following we will speak about the partial likelihood Lp, however,
virtually everything applies also to the maximisation of the likelihood function L
(or more precisely to its factor L2).

The partial likelihood Lp is generally too complicated to be maximised an-
alytically, hence it is necessary to use the numerical optimisation. We use the
Nelder–Mead method.

The Nelder-Mead method is a direct search optimisation method based on
function comparisons. The main idea of the algorithm is to construct a simplex
(a convex hull of d + 1 affinely independent vertices in Rd) and in each iteration
of the algorithm try to improve the worst vertex (in case of minimisation, the one
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with the largest value of the objective function). More precisely, if we denote the
vertices x1, . . . , xd+1 so that f(x1) ≤ . . . ≤ f(xd+1), then in each iteration of the
algorithm a new point xr is proposed (a reflection of xn+1 around the centroid of
the remaining vertices) and if f(xr) < f(xn) then a new simplex without xn+1
is constructed. If, however, f(xr) ≥ f(xn), then to construct the new simplex
some kind of contraction or shrink around the best vertex is used. More extensive
description of the algorithm can be found in Nelder and Mead [1965] or Lagarias
et al. [1998]. Let us remark that we use this algorithm as implemented in function
optim in R [R Core Team, 2022].

A little inconveniently, for a given parameter θ we cannot calculate the exact
theoretical value of Lp(θ) (or of log (Lp(θ)), which we actually try to maximise)
but rather some approximation of this true value affected by the random integra-
tion error. From the relation (2.6) we have that

log (Lp(θ)) =
n∑︂

i=1
log

(︃
λ∗

θ(ti, xi)
)︃

−
n∑︂

i=1
log

(︃ ∫︂
λ∗

θ(ti, x) dx
)︃

.

Moreover, from section 5.1 we know how we approximate
∫︁

λ∗
θ(ti, x) dx. There-

fore, we approximate log (Lp(θ)) by

l̂p(θ) =
n∑︂

i=1
log

(︃
λ∗

θ(ti, xi)
)︃

−
n∑︂

i=1
log

(︃
|W | 1

Ni

Ni∑︂
j=1

λ∗
θ(ti, X i

j)
)︃

,

where {X i
j : i, j ∈ N, j ≤ Ni} are i.i.d. random variables with uniform distribution

on the space W .
What typically happened when we ran the Nelder-Mead algorithm with the

default (strict) stopping criterion is that in relatively few function evaluations the
algorithm converged to the vicinity of the point which was eventually declared
as the achieved maximum, however, it took many more function evaluations for
the algorithm to actually stop. This phenomenon is caused by the fact that
we are unable to compute the exact theoretical value of log (Lp(θ)) but only
this value plus some stochastic noise, which means that when the Nelder-Mead
simplex converges to the vicinity of the optimal solution, it is difficult for the
calculated functional values in the vertices of the simplex to be sufficiently close
for the algorithm to terminate. A sample run of the algorithm demonstrating
the problem can be seen in the appendix A.1. Therefore, in order to reduce
time consumption of a single optimisation, we would like to set the stopping
criterion less strictly. We would like to estimate with what variance we calculate
the objective function on the neighbourhood of the optimal solution and use
this information to set the stopping criterion. This variance could be estimated
by calculating many values of the objective function (in the true value of the
parameter or in its neighbourhood) and then calculating their sample variance.
This approach, however, would be too time consuming. Fortunately, we can
estimate this variance of interest in only one function evaluation.

29



Indeed,

var l̂p(θ) = var
⎡⎣ n∑︂

i=1
log

(︃
|W | 1

Ni

Ni∑︂
j=1

λ∗
θ(ti, X i

j)
)︃⎤⎦

=
n∑︂

i=1
var

⎡⎣ log
(︃

|W | 1
Ni

Ni∑︂
j=1

λ∗
θ(ti, X i

j)
)︃⎤⎦

≈
n∑︂

i=1
var

⎡⎣ log
(︃ ∫︂

λ∗
θ(ti, x) dx

)︃

+ log′
(︃ ∫︂

λ∗
θ(ti, x) dx

)︃(︃
|W | 1

Ni

Ni∑︂
j=1

λ∗
θ(ti, X i

j) −
∫︂

λ∗
θ(ti, x) dx

)︃⎤⎦
=

n∑︂
i=1

var
⎡⎣ log′

(︃ ∫︂
λ∗

θ(ti, x) dx
)︃

|W | 1
Ni

Ni∑︂
j=1

λ∗
θ(ti, X i

j)
⎤⎦

=
n∑︂

i=1

(︃ 1∫︁
λ∗

θ(ti, x) dx

)︃2 |W |2

Ni

var λ∗
θ(ti, X i

1)

≈
n∑︂

i=1

(︃ 1
|W | 1

Ni

∑︁Ni
j=1 λ∗

θ(ti, X i
j)

)︃2 |W |2

Ni

var λ∗
θ(ti, X i

1)

≈
n∑︂

i=1

1(︂
1

Ni

∑︁Ni
j=1 λ∗

θ(ti, X i
j)
)︂2

1
Ni

S2
Ni,i

,

where S2
Ni,i

denotes the sample variance of {λ∗
θ(ti, X i

j)}Ni
j=1. In the first approx-

imation we approximated by the first-order Taylor polynomial of logarithm ex-
panded about point

∫︁
λ∗

θ(ti, x) dx. Furthermore, all equalities follow from the
formula var(aX + b) = a2 var(X) and from the fact that {X i

j} are i.i.d.
Hence, we can set the stopping criterion so that the algorithm terminates if

the calculated functional values in the vertices of the simplex satisfy that the
difference of the largest and the smallest value is comparable to the estimate
of the standard deviation with which we calculate the objective function on the
neighbourhood of the optimal solution, i.e. when it is comparable to⌜⃓⃓⃓

⎷ n∑︂
i=1

1(︂
1

Ni

∑︁Ni
j=1 λ∗

θ(ti, X i
j)
)︂2

1
Ni

S2
Ni,i

. (5.1)

Let us remark that in our implementation we set the parameter reltol in the
function optim as a quotient of the estimate from (5.1) calculated for the true
value of the unknown parameter and the absolute value of the objective function
calculated at the starting point of the optimisation. This choice causes that
the algorithm terminates if the calculated functional values in the vertices of the
simplex satisfy that the difference of the largest and the smallest value is less than
or equal to the estimate from (5.1) calculated for the true value of the unknown
parameter.
Remark. Described stopping criterion is a viable option mainly in simulation stud-
ies, when the true value of the parameter is known. In practice, other stopping
criteria are more appropriate. For example an iterative approach - first run the
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algorithm with a benevolent tolerance for the difference of functional values in the
worst and the best vertex, once the algorithm converges, estimate the variance
with which we calculate the objective function on the neighbourhood of the point
to which we converged, use this estimate to update the tolerance and run the al-
gorithm again. Furthermore, a suitable stopping criterion is to stop the algorithm
once the vertices of the simplex are sufficiently close or once the algorithm does
not improve the value in the best vertex during a specified number of iterations.
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6. Simulation study
In this chapter we would like to demonstrate usage of estimation methods de-
scribed in previous chapters, namely the likelihood function (see Theorem 6 or
Theorem 10) and the partial likelihood (see (2.6)).

First, let us introduce a parametric family of models we will be interested in.
We will consider models in which the conditional intensity function is again given
by (3.1) and in which lifetimes of objects (Mn)∞

n=1 are i.i.d. random variables
independent of both times of births as well as positions in space, i.e. independent
of (Tn, Xn)∞

n=1, with distribution given by a density fγ(m). Furthermore, we will
suppose that the interaction functions g and h satisfy that g(t) ≡ c and that

h(x) =
⎧⎨⎩0, if x ≤ δ,

1 + α exp
(︂
− (x−δ)2

β

)︂
, if x > δ,

where c > 0, δ > 0, α ≥ −1 and β > 0. We will consider models in which
positions of objects lie in a unit square, i.e. we will put W = [0, 1]2.

In our simulation we will assume that parameters c and δ are known and that
parameters α and β need to be estimated. We would like to assess the accuracy
with which we estimate these parameters by particular methods in different time
windows. That is, for every considered choice of parameters we will simulate N =
100 realisations from the model determined by this combination of parameters
in some time window [0, T ]. Then, we will estimate α and β from every one
of those 100 simulated realisations (either by the likelihood function or by the
partial likelihood), after which we will estimate the relative bias and the relative
mean squared error of our estimators.

Let us denote by α̂i the estimate of α calculated from the i-th simulated
realisation. Then we estimate the relative bias of the estimator of α (when α ̸= 0)
by

rbias(α) =
1
N

∑︁N
i=1 α̂i − α

|α|
and the relative mean squared error of the estimator of α by

rMSE(α) =
1
N

∑︁N
i=1 (α̂i − α)2

α2 .

Similarly for β.
Let us remark that for a given combination of parameters we did not simulate

N realisations for every considered time window separately. We simulated N re-
alisations only in the longest considered time window and subsequently restricted
them to shorter time windows as required. In addition, let us remark that in our
simulations we were choosing the starting point for the optimisation algorithm so
that its coordinates were approximately three times smaller or greater than the
corresponding coordinates of the true parameter. This corresponds to the incor-
poration of some expert knowledge regarding the relevant scale of the parameter
values.

We simulated from 6 models – 4 spatially repulsive (Table 6.1, Table 6.2,
Table 6.3, Table 6.4) and 2 spatially attractive (Table 6.5, Table 6.6).
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The first thing we can notice from all the tables is that as the considered time
window extends, our estimates (by the likelihood as well as the partial likelihood)
get more accurate. This is completely natural, because when the time window
extends, more objects are observed, and therefore more information is available
to estimate the unknown parameters.

Similarly, we would expect estimates by the likelihood function to be more
accurate than the corresponding estimates by the partial likelihood. This is
because while in the partial likelihood we only consider conditional densities of
positions of observed objects (see (2.5)), in the likelihood function we consider also
conditional densities of times of births of observed objects (can be seen in (2.4)).
Thus, when we estimate unknown parameters by the likelihood function, we use
more information than when we estimate them by the partial likelihood. Indeed,
when we compare estimates of relative MSEs for likelihood and partial likelihood
between rows corresponding to same time windows, we can notice that estimates
by the likelihood function are generally more accurate. However, there are some
exceptions. For instance, in Table 6.4 we can see that rMSE(β) corresponding
to estimates by the partial likelihood from simulated realisations in time window
[0, 100] is 0.857, whereas the value corresponding to estimates by the likelihood
is 2.607. Curves corresponding to the estimates of unknown parameters from
the simulated realisations are shown in Figure 6.1. In both plots in Figure 6.1
there are two curves which are extremely flat. They correspond to two largest
estimates of β – values 0.397 and 0.481 in case of the partial likelihood and values
0.678 and 0.925 in case of the likelihood. When we calculate rMSE(β) without
these two largest estimates, we obtain value 0.301 instead of 0.857 in case of the
partial likelihood and value 0.368 instead of 2.607 in case of the likelihood. Value
0.368 is still larger than 0.301 but not as much as it was before. Other situations,
where rMSE(β) for the likelihood was larger than the corresponding rMSE(β) for
the partial likelihood can be seen in Table 6.3, Table 6.4 and Table 6.5, always
in rows corresponding to time window [0, 50]. This situation is always caused by
a couple of extreme estimates of β by the likelihood function, which considerably
increased the value of rMSE(β). From our simulations it seems that estimation
by the likelihood function might be more susceptible to this occasional extreme
estimate of β.

Moreover, we can observe that rbias(α) is in case of estimation by the likeli-
hood function very small in virtually all simulations. A similar thing can be said
about rbias(α) in case of estimation by the partial likelihood but only in strongly
repulsive models. Parameter β is a scaling parameter and is more difficult to
estimate, because we need to see pairs of points at different distances from each
other to assess the gradual changes in the interaction function h. Hence, rbias(β)
and rMSE(β) is for short time windows typically large (because the number of
observed points is small) but decreases with increasing length of the observation
window.

Let us add a short observation about qualitative behaviour of the estimates
by the likelihood function and by the partial likelihood. From plots of h functions
corresponding to the estimates of α and β (such as the ones in Figure 6.1) it seems
that the envelopes around the theoretical h function are of slightly different nature
in case of estimation by the partial likelihood than in case of estimation by the
likelihood. In case of the likelihood, envelopes tend to get narrower somewhere
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around the point at which the theoretical h function increases (or decreases)
most sharply. In Figure 6.2 we can see plots of h functions corresponding to the
estimates of α = −0.6 and β = 0.03 by the likelihood (realisations from which
unknown parameters were estimated were simulated in time window [0, 150])
separated into two plots according to the value of the estimate of α (h functions
corresponding to the estimates for which α̂i > −0.6 were included in the upper
plot, whereas h functions corresponding to the estimates for which α̂i ≤ −0.6
were included in the lower plot). Similarly for Figure 6.3, in which h functions
corresponding to the estimates by the partial likelihood are displayed. We can
notice that in Figure 6.2, most of the simulated h functions ”cross” the true h
function (most of the simulated curves corresponding to α̂i > −0.6 satisfy that at
x = 0.3 they are already below the true h function, whereas most of the simulated
curves corresponding to α̂i ≤ −0.6 satisfy that at x = 0.3 they are already above
the true h function). On the contrary, simulated curves in Figure 6.3 do not have
such a strong tendency to ”cross” the true h function. Described behaviour might,
to some extent, be explained by the fact that the likelihood function considers
not only conditional densities of positions but also conditional densities of times
of births of observed objects. The time at which a new object is born depends
on the integral of the conditional intensity function (see the algorithm above
Theorem 7), which might explain why the simulated h functions corresponding
to the estimates of α and β by the likelihood tend to ”cross” the true h function.
Underestimation of the values of the true h function for smaller values of x results
in smaller values of the integrals of the conditional intensity function, an effect
which needs to be corrected by overestimation of the values of the true h function
for larger values of x.

This observation also explains why the estimation by the likelihood function
appeared to be more susceptible to the occasional extreme estimate of β. Bond
between α and β in the integral of the conditional intensity function in the like-
lihood function could have caused these extreme estimates. Similarly, it explains
why in attractive models in estimation of α the likelihood function performed so
much better than the partial likelihood. It prevented estimates of α from being
too large as this would also extremely increase the integral of the conditional
intensity function.
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Estimates of relative bias and relative MSE
Partial likelihood

T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
30 0.032 0.003 0.190 0.319 46.65
50 0.020 0.002 0.099 0.123 80.34
100 0.012 0.000 0.075 0.046 165.71
150 0.010 0.000 0.078 0.035 248.65

Likelihood
T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
30 0.033 0.004 0.238 0.252 46.65
50 0.021 0.002 0.142 0.073 80.34
100 0.010 0.000 0.070 0.021 165.71

Table 6.1: Estimates of relative biases and relative MSEs in particular time win-
dows when α = −1 and β = 0.02 in addition to average numbers of observed
objects in these time windows. Lifetimes from U(3.5, 6.5) distribution, δ = 0.025
and c = 1.15.

Estimates of relative bias and relative MSE
Partial likelihood

T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
30 -0.018 0.014 0.044 0.328 43.03
50 -0.018 0.010 0.005 0.115 73.55
100 -0.006 0.004 0.007 0.070 147.52
150 -0.001 0.002 0.006 0.046 221.14

Likelihood
T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
30 -0.002 0.013 0.154 0.161 43.03
50 -0.010 0.009 0.062 0.054 73.55
100 -0.002 0.004 0.045 0.024 147.52

Table 6.2: Estimates of relative biases and relative MSEs in particular time win-
dows when α = −0.85 and β = 0.05 in addition to average numbers of observed
objects in these time windows. Lifetimes from U(3, 6) distribution, δ = 0.05 and
c = 1.25.
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Estimates of relative bias and relative MSE
Partial likelihood

T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
50 0.018 0.077 0.335 0.750 81.57
100 -0.012 0.032 0.092 0.254 168.48
150 -0.003 0.022 0.066 0.141 254.89
200 -0.008 0.013 0.027 0.090 342.19

Likelihood
T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
50 0.016 0.059 0.362 0.986 81.57
100 -0.004 0.028 0.115 0.171 168.48
150 0.002 0.018 0.092 0.092 254.89

Table 6.3: Estimates of relative biases and relative MSEs in particular time win-
dows when α = −0.6 and β = 0.03 in addition to average numbers of observed
objects in these time windows. Lifetimes from Γ(shape = 10, scale = 0.5) distri-
bution, δ = 0.05 and c = 1.15.

Estimates of relative bias and relative MSE
Partial likelihood

T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
50 -0.152 0.228 0.597 7.426 46.51
100 -0.043 0.069 0.197 0.857 93.20
150 -0.049 0.051 0.143 0.695 140.20
200 -0.048 0.037 0.074 0.221 186.95

Likelihood
T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
50 -0.078 0.144 0.591 13.951 46.51
100 0.001 0.054 0.412 2.607 93.20
150 -0.004 0.042 0.190 0.530 140.20

Table 6.4: Estimates of relative biases and relative MSEs in particular time win-
dows when α = −0.4 and β = 0.07 in addition to average numbers of observed
objects in these time windows. Lifetimes from Γ(shape = 8, scale = 1) distribu-
tion, δ = 0.1 and c = 1.135.
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Estimates of relative bias and relative MSE
Partial likelihood

T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
50 0.489 2.331 0.209 1.278 30.54
100 0.292 0.954 0.271 1.012 60.46
150 0.147 0.319 0.185 0.501 90.36
200 0.105 0.164 0.139 0.375 120.79

Likelihood
T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
50 -0.041 0.183 0.720 9.520 30.54
100 -0.034 0.040 0.102 0.195 60.46
150 -0.031 0.028 0.062 0.108 90.36

Table 6.5: Estimates of relative biases and relative MSEs in particular time win-
dows when α = 1.7 and β = 0.1 in addition to average numbers of observed
objects in these time windows. Lifetimes from U(3.5, 6.5) distribution, δ = 0.05
and c = 0.55.

Estimates of relative bias and relative MSE
Partial likelihood

T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
50 0.230 0.490 0.118 0.409 45.78
100 0.066 0.075 -0.014 0.057 108.93
150 0.015 0.036 -0.009 0.034 170.20
200 0.029 0.020 0.016 0.027 235.59

Likelihood
T rbias(α) rMSE(α) rbias(β) rMSE(β) Avg. # obs.
50 0.011 0.021 -0.065 0.081 45.78
100 0.015 0.009 -0.066 0.035 108.93

Table 6.6: Estimates of relative biases and relative MSEs in particular time win-
dows when α = 2.5 and β = 0.05 in addition to average numbers of observed
objects in these time windows. Lifetimes from Γ(shape = 6.5, scale = 1) distri-
bution, δ = 0.075 and g(t) = 0.65 1 [t > 0.5].
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Figure 6.1: Plots of h functions corresponding to estimates of α = −0.4 and
β = 0.07 by both the partial likelihood as well as the likelihood, realisations from
time window [0, 100].
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Figure 6.2: Plots of h functions corresponding to estimates of α = −0.6 and
β = 0.03 by the likelihood, realisations from time window [0, 150].
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Figure 6.3: Plots of h functions corresponding to estimates of α = −0.6 and
β = 0.03 by the partial likelihood, realisations from time window [0, 150].
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In Chapter 4 we have discussed how to estimate parameters of the distribution
of lifetimes in the presence of censoring. We will now describe a short simulation
demonstrating estimation of distribution of lifetimes in extending time windows
[0, T ] when (A) using lifetimes of all objects observed in this time window (in-
cluded in the likelihood as in Theorem 10) as well as when (B) using lifetimes of
only those objects whose exact lifetimes were observed, i.e. of objects whose times
of death are less than or equal to T . In the first part of this chapter when we
generated N = 100 realisations from the model in which α = −0.4 and β = 0.07,
lifetimes of objects were generated from the gamma distribution with the shape
parameter k = 8 and the scale parameter θ = 1, i.e. from the distribution given
by the density

f(x) = 1
Γ(k)θk

xk−1e− x
θ 1(0,∞)(x), x ∈ R,

where k = 8 and θ = 1. We will use these 100 simulated realisations (restricted
to different time windows [0, T ]) to estimate k and θ in two different ways: (A)
and (B). We will refer to (A) as having a correction for censored lifetimes, and
to (B) as having no correction for censored lifetimes. Subsequently, we will use
the calculated estimates of k and θ to estimate the relative bias and the relative
mean squared error of the estimators of k and θ (as in the first part of this chapter
with α and β). These estimates, together with the average number of observed
objects and the average proportion of censored (time of death is greater than
T ) observations can be seen in Table 6.7. In the upper part of the table we
can see that the estimates by (A) get more accurate as the length of the time
window increases. The same conclusion can be reached for estimates by (B) from
the lower part of the table. This is completely natural because as the length
of the time window increases more observations are available (average number of
observations in individual time windows can be seen in sixth column of the table).
Comparing the corresponding values in the upper and in the lower part of the
table we can observe the following. As the length of the time window increases,
estimates by (A) and (B) become more and more similar. This is caused by
the fact that with extending time window proportion of censored observations
decreases, which means that the effect of censoring weakens. Furthermore, we
can observe that estimates by (B) are generally more biased than estimates by
(A).
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Estimates of relative bias and relative MSE
With correction for censored lifetimes

T rbias(k) rMSE(k) rbias(θ) rMSE(θ) Avg. # obs. Avg. prop. cens.
25 0.204 0.211 -0.068 0.137 23.18 0.316
35 0.128 0.107 -0.050 0.074 32.42 0.233
50 0.060 0.054 -0.009 0.055 46.51 0.155
100 0.037 0.025 -0.017 0.023 93.20 0.080
200 0.007 0.012 0.003 0.011 186.95 0.042

Without correction for censored lifetimes
T rbias(k) rMSE(k) rbias(θ) rMSE(θ) Avg. # obs. Avg. prop. cens.
25 0.277 0.400 -0.159 0.119 23.18 0.316
35 0.154 0.135 -0.096 0.082 32.42 0.233
50 0.067 0.056 -0.039 0.054 46.51 0.155
100 0.036 0.025 -0.026 0.023 93.20 0.080
200 0.007 0.012 -0.003 0.010 186.95 0.042

Table 6.7: Estimates of relative biases and relative MSEs, average numbers of
observations and average proportions of censored observations in particular time
windows when k = 8 and θ = 1.
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7. Real data application
In this chapter we will demonstrate application of the partial likelihood to the real
data. We are thankful to RNDr. Zdeněk Janovský, Ph.D., from the Faculty of
Science, Charles University, for providing us with the dataset. We are interested
in reproductive patterns of Succisa pratensis (a flowering plant also known as
devil’s-bit, which can be seen in Figure 7.1) in an observed meadow. Our data
come from 6 observation squares in the meadow, each having dimensions 100cm×
100cm. All the squares were observed once a year. Furthermore, for all the
squares, the year of the first observation is 2008, whereas the year of the last
observation is 2019. For each observed plant, we know its location in a particular
square and the years in which it was observed. Population of plants associated
with one particular square can be seen in Figure 7.2 (positions of plants which
were observed in years 2008 − 2013) and Figure 7.3 (positions of plants which
were observed in years 2014 − 2019).

The number of plants which were born in a particular year is quite variable.
This is caused by the fact that in some years conditions for plants were simply
more favourable than in others, e.g. some years were unusually dry. In addition,
the number of years from which we have available data is quite limited. Hence,
we will only try to model positions in which new plants are born but not the
time at which they are born (or rather, due to discretisation, the number of new
plants which occur from one year to another). Thus, we will only use the partial
likelihood instead of the full likelihood function (Theorem 6) in our analysis.

It is known that Succisa pratensis can reproduce either by seeds or by creating
clones. The seeds are not adapted to being spread by the wind. Hence, we
would expect that for a given plant its daughter is most likely to occur up to
some distance δ1 from this plant (where δ1 is the distance at which the ability of
clonal reproduction fades away) because up to this distance effects of reproduction
by seeds and clonal reproduction combine. Furthermore, we would expect that
positions at distances greater than δ1 but less than δ2 (where δ2 is the distance
at which the ability of reproduction be seeds fades away) are also quite likely but
not as likely as the ones at distances less than δ1 because at these positions effects
of clonal reproduction are already very small whereas effects of reproduction by
seeds are still considerable. Finally, we would expect that positions at distances
greater than δ2 from the given plant are least likely or even forbidden.

In the observed meadow, however, an additional external effect is present –
turning of the hay. This causes that the seeds get randomly dispersed. Hence, it
is reasonable to assume that the seeds are equally likely to appear in all positions
in the meadow (apart from positions occupied by already existing plants). This
means that it might be reasonable to model reproductive patterns of these plants
by a model similar to the ones presented in Chapter 3 or Chapter 6.

So far we have always assumed that times of events, or times of births of
objects, constitute a simple point process. In the current situation we do not
know the exact times at which the observed plants were born, we only know in
which year they were observed for the first time. We will deal with this problem by
calculating the partial likelihood (see (2.6)) in a way that in the term associated
with every particular plant we will consider the conditional intensity function
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Figure 7.1: Succisa pratensis (Wikimedia Commons, distributed under a CC-BY-
SA-3.0 licence).

determined by those objects which were alive in the previous year. This approach
is quite natural because when two plants are born in the same year they probably
did not arise from each other but from the plants which were alive in the previous
year. Furthermore, plants which were observed already in the first year for which
data are available will not be included in the partial likelihood since we do not
know how the observed squares looked in the previous year. In addition, we will
aim at estimating unknown parameters in the proposed parametric models using
the data from all 6 observed squares at the same time by maximising the product
of partial likelihoods associated with every individual square. This step will be
justified by the independence of these squares and by the fact that conditions in
all of them are practically identical.
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Figure 7.2: Population of plants observed in square 1 in years 2008 − 2013.
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Figure 7.3: Population of plants observed in square 1 in years 2014 − 2019.
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7.1 Multiplicative model
Let us start with the basic multiplicative model we are already acquainted with.
We will slightly modify the specification of the conditional intensity function given
by (3.1) so that it reflects the current situation discussed before. Suppose that
the number of plants which were observed (in a particular square) in year t − 1 is
nt−1 and that they were observed in positions x1, . . . , xnt−1 then the conditional
intensity function in year t and position x will be specified as

λ∗(t, x) =
nt−1∏︂
i=1

h(∥x − xi∥), (7.1)

where h is again some interaction function from [0, ∞) to [0, ∞). Notice that
the parameters of the interaction function g from (3.1) are not identifiable by
the partial likelihood. Indeed, from the expression (2.6) it is obvious that the
terms g(|t − ti|) get factored out. In the present situation we are interested only
in spatial dynamics of the model and can thus omit these terms, which leads
to (7.1). Furthermore, we will suppose that

h(x) =
⎧⎨⎩0, if x ≤ δ,

1 + α exp
(︂
− (x−δ)2

β

)︂
, if x > δ,

where α ≥ −1 and β > 0 are unknown parameters and where δ = 0.6 was chosen
as the smallest observed distance in which two plants can coexist. We will refer
to this model as the multiplicative model.

Let us first begin by estimating the unknown parameters from each observed
square individually. Estimates from each individual square can be seen in Ta-
ble 7.1. The corresponding h functions are plotted in grey in Figure 7.4. We
can see that the estimated curves show some natural variability but all of them
correspond to spatial attraction on similar scales. Next, we will try to accumu-
late the information included in individual squares and estimate the unknown
parameters from all squares simultaneously (by maximising the product of par-
tial likelihoods associated with every individual square). We obtain estimates
α̂ = 2.5 and β̂ = 3.9, the corresponding h function is plotted in red in Figure 7.4.
We would like to evaluate how reliable our estimate is. We will estimate un-
known parameters from each quintuple of observed squares (each time leaving
the remaining square out). We would like these leave-one-out estimates to be
relatively close to the cumulative estimate obtained from all 6 observed squares.
These new estimates can be seen in Table 7.2, while the corresponding h functions
are plotted in Figure 7.5. We can see that the h functions corresponding to the
leave-one-out estimates reproduce the h function estimated from all 6 observed
squares very closely, which means that behaviour of the plants in all the squares is
very similar and there is no outlier. Let us remark that this procedure would not
necessarily reveal an outlier if the given square contained extremely few points,
which, however, is not our case.
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Estimates in individual squares
Estimate in square α̂ β̂

1 2.1 3.8
2 2.3 4.7
3 4.0 2.0
4 4.0 3.8
5 2.6 3.7
6 2.8 6.8

Cumulative estimate 2.5 3.9

Table 7.1: Estimates of α and β in the multiplicative model in individual observed
squares.
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Figure 7.4: Estimated h functions in the multiplicative model in individual
squares and h function estimated cumulatively from all observed squares.
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Leave-one-out estimates
Left out square α̂ β̂

1 2.8 3.9
2 2.5 3.8
3 2.4 4.1
4 2.3 3.9
5 2.4 4.0
6 2.6 3.3

Cumulative estimate 2.5 3.9

Table 7.2: Estimates of α and β in the multiplicative model when one of the
observed squares is left out.
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Figure 7.5: Estimated h functions in the multiplicative model when one of the
observed squares is left out and h function estimated cumulatively from all ob-
served squares.
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We have estimated α and β, however, we do not know whether the resulting
model is actually a suitable model for our data. In order to answer this question
we would like to perform a Monte Carlo based goodness of fit test. First, we
need to propose a suitable test statistic. One option is to consider some kind of
nearest neighbour distances. In our observed data we will go through all objects
whose year of first observation is greater than 2008 and for every such object we
will calculate its distance from the configuration of points which were observed
in the year preceding the year of first observation of this object. Similarly for
the simulated realisations. For every object from the observed data whose year of
first observation is greater than 2008 we will do the following: supposing that this
object’s year of first observation is t, we will generate a position from the density
proportional to the conditional intensity function determined by those objects
from our observed data which were alive in year t − 1 (in the same square as the
considered object), then we will calculate distance from the generated position to
the configuration of points which determined the density from which this position
was generated. Hence, in 1 simulated realisation we will generate exactly as many
positions as is the number of objects in our data whose year of first observation
is greater than 2008.
Remark. Let us emphasise that in simulated realisations it would be possible
to simulate a new position in year t from the density induced by the simulated
positions associated with year t − 1. This approach, however, would increase
variability of simulated realisations, leading to a test with smaller power. There-
fore, we prefer generation of new positions from densities induced by the observed
configurations of points.

Subsequently, we can perform a global envelope test [Myllymäki et al., 2017]
for empirical cumulative distribution functions calculated from simulated dis-
tances and from distances observed in the data. Let us remark that we performed
the test using function global_envelope_test from Myllymäki and Mrkvička
[2020]. We simulated 500 realisations, which create an envelope, which can be
seen (together with the empirical cumulative distribution function for the ob-
served data) in Figure 7.6. The curve associated with the observed data is ex-
treme (p-value of 0.004), compared to the simulated curves. That means that
the proposed model does not describe observed data sufficiently well. Figure 7.6
also suggests how our estimated model differs from the observed data. In the
observed data smaller distances (2cm − 8cm) are more frequent.

50



0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
r

T
(r

)

Central function Data function

Global envelope test: p = 0.004

Figure 7.6: Goodness of fit test for the estimated multiplicative model.

51



7.2 Additive model
It seems that the multiplicative model (7.1) is not an appropriate model to de-
scribe in which positions new plants tend to occur. We believe that the reason why
the multiplicative model is not really suitable is that in the observed data there
are several relatively large clusters (5 − 7 plants in very close proximity), which
do not produce a new plant in the following year. If the estimated h function
had a much greater jump at 0.6, then the density proportional to the conditional
intensity function would have extremely large values on the neighbourhoods of
these clusters, hence, we would expect new plants to be born almost exclusively
in these neighbourhoods, which is not always the case as we have said. Con-
sequently, in our estimated model isolated plants might not have such a strong
attractive power as they might have in reality. Some kind of additive model
instead of the multiplicative one might be less susceptible to this effect.

Let us now define an additive model by specifying the conditional intensity
function in the following way. Suppose that the number of plants which were
observed (in a particular square) in year t−1 is nt−1 and that they were observed
in positions x1, . . . , xnt−1 (let us denote M = {x1, . . . , xnt−1}) then the conditional
intensity function in year t and position x will be specified as

λ∗(t, x) =
⎧⎨⎩0, if dist(x, M) ≤ 0.6,

1 +∑︁nt−1
i=1 h(∥x − xi∥), if dist(x, M) > 0.6,

where

h(x) =
⎧⎨⎩0, if x ≤ 0.6,

α exp
(︂
− (x−0.6)2

β

)︂
, if x > 0.6.

We will refer to this model as the additive model. Again, we will begin by es-
timating unknown parameters α and β from each observed square individually.
Estimates from each individual square can be seen in Table 7.3. The correspond-
ing h functions are plotted in grey in Figure 7.7. Immediately we can see that in
the estimated models the attractive power of isolated plants is much larger than it
was in the multiplicative model. Let us now combine information contained in all
6 observed squares and estimate the unknown parameters from all these squares
simultaneously (by maximising the product of partial likelihoods associated with
every individual square). We obtain cumulative estimates α̂ = 11.6 and β̂ = 2.7,
the corresponding h function is plotted in red in Figure 7.7. Again, we would
like to evaluate how reliable our estimate is. We will estimate unknown param-
eters from each quintuple of observed squares (each time leaving the remaining
square out). We would like these leave-one-out estimates to be relatively close to
the cumulative estimate obtained from all 6 observed squares. These new esti-
mates can be seen in Table 7.4, while the corresponding h functions are plotted
in Figure 7.8. We can see that the h functions corresponding to the leave-one-out
estimates reproduce the h function estimated from all 6 observed squares very
closely, which means that behaviour of the plants in all the squares is very similar
and there is no outlier.
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Estimates in individual squares
Estimate in square α̂ β̂

1 11.2 2.3
2 7.1 2.5
3 13.1 1.3
4 12.1 2.4
5 12.9 3.6
6 13.6 4.8

Cumulative estimate 11.6 2.7

Table 7.3: Estimates of α and β in the additive model in individual observed
squares.
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Figure 7.7: Estimated h functions in the additive model in individual squares
and h function estimated cumulatively from all observed squares.
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Leave-one-out estimates
Left out square α̂ β̂

1 11.6 2.7
2 12.4 2.7
3 11.8 3.2
4 10.9 2.9
5 11.2 2.4
6 11.5 2.3

Cumulative estimate 11.6 2.7

Table 7.4: Estimates of α and β in the additive model when one of the observed
squares is left out.
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Figure 7.8: Estimated h functions in the additive model when one of the ob-
served squares is left out and h function estimated cumulatively from all observed
squares.
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Figure 7.9: Goodness of fit test for the estimated additive model.

Similarly as in the case of multiplicative model, we would like to address the
question whether the estimated model is actually a suitable model for the observed
data. We performed a Monte Carlo based goodness of fit test exactly as in the case
of multiplicative model, again simulating 500 realisations. An envelope created
by the simulated empirical distribution functions of nearest neighbour distances
to the last year’s configuration of points in addition to the empirical distribution
function associated with the observed data can be seen in Figure 7.9. We can
see that the estimated additive model captures the behaviour of the empirical
distribution function of the observed data much better (p-value of 0.467) than
the estimated multiplicative model. Hence, this model seems to describe the
spatial dynamics of propagation of the observed plants in an acceptable manner.
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Conclusion
In this thesis, we studied point processes of objects with random lifetime. We
started by presenting theory for purely temporal point processes, which we then
generalised to spatial-temporal processes with random lifetimes by considering
the corresponding spatial locations and lifetimes as marks. We derived sufficient
conditions for the conditional intensity function to uniquely define (together with
a model for lifetimes of objects) a spatial-temporal point process with random
lifetimes. In addition, we derived the form of the likelihood function for spatial-
temporal point patterns with observed lifetimes. Furthermore, we addressed the
question of non-explosiveness of the proposed parametric models as well as the
question of how the presence of censoring of lifetimes affects the form of the likeli-
hood function. A part of the thesis was our own implementation of the generating
algorithm and the (partial) likelihood function, which we used to assess behaviour
of estimates of unknown parameters in considered parametric models in a simu-
lation study. Finally, we demonstrated application of the partial likelihood to the
real data. We proposed two types of models that describe the spatial dynamics of
propagation of Succisa pratensis in an observed meadow, one with multiplicative
structure and one with additive structure of interactions. Then, we used a Monte
Carlo based goodness of fit test (based on construction of a global envelope for
a suitable functional statistic) to assess how well these models describe observed
data. The multiplicative model was rejected, whereas the additive one was not.
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A. Attachments

A.1 Sample run of the Nelder-Mead method
We attach a sample run of the Nelder-Mead method applied on the partial likeli-
hood with the default stopping criterion. We show the progress of the algorithm
between 1. and 17. function evaluation, between 61. and 75. function evalua-
tion and between 292. and 307. function evaluation. In the attached run of the
algorithm, rows starting with the word Tracing signify individual function eval-
uations. Details of these evaluations can be seen in the subsequent rows, i.e.
rows starting with [1]. The first two numbers in these rows correspond to the
coordinates of the point at which the objective function was evaluated, whereas
the third number is the calculated functional value at this point (affected by
the stochastic noise from the numerical integration). Remaining rows (the ones
starting with the words LO-REDUCTION, EXTENSION, etc.) show which steps the
algorithm took. We can see that after 70 function evaluations the algorithm was
already very close to the point which was eventually declared as the achieved
optimum. Nevertheless, it took 307 function evaluations for the algorithm to
actually terminate.

> optim(c(0, 0.25), partial_likelihood, method="Nelder",
control=list(fnscale=-1, parscale=c(-0.85, 0.05), trace=1))

Nelder-Mead direct search function minimizer
Tracing fn(par, ...) on exit
[1] 0.00000 0.25000 3.71671
function value for initial parameters = -3.716710

Scaled convergence tolerance is 5.53833e-08
Stepsize computed as 0.500000
Tracing fn(par, ...) on exit
[1] -0.42500 0.25000 14.84387
Tracing fn(par, ...) on exit
[1] 0.000000 0.275000 3.743526
BUILD 3 -3.716710 -14.843872
Tracing fn(par, ...) on exit
[1] -0.42500 0.27500 14.52651
Tracing fn(par, ...) on exit
[1] -0.31875 0.26875 12.52375
LO-REDUCTION 5 -3.743526 -14.843872
Tracing fn(par, ...) on exit
[1] -0.8500 0.2500 10.8101
Tracing fn(par, ...) on exit
[1] -0.63750 0.25625 16.41589
LO-REDUCTION 7 -14.526509 -16.415894
Tracing fn(par, ...) on exit
[1] -0.63750 0.23125 17.19978
Tracing fn(par, ...) on exit
[1] -0.743750 0.209375 17.370715
EXTENSION 9 -14.843872 -17.370715
Tracing fn(par, ...) on exit
[1] -0.956250 0.215625 4.121492
Tracing fn(par, ...) on exit
[1] -0.5578125 0.2414063 16.6428559
HI-REDUCTION 11 -16.415894 -17.370715
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Tracing fn(par, ...) on exit
[1] -0.6640625 0.1945313 18.6536263
Tracing fn(par, ...) on exit
[1] -0.6773438 0.1636719 19.9761063
EXTENSION 13 -16.642856 -19.976106
Tracing fn(par, ...) on exit
[1] -0.8632812 0.1316406 21.1420068
Tracing fn(par, ...) on exit
[1] -1.016016e+00 7.675781e-02 -1.000000e+10
REFLECTION 15 -17.370715 -21.142007
Tracing fn(par, ...) on exit
[1] -0.7968750 0.0859375 24.3700604
Tracing fn(par, ...) on exit
[1] -0.82343750 0.02421875 21.38131210
.
.
.
.
.
Tracing fn(par, ...) on exit
[1] -0.87016888 0.06211344 25.39386972
LO-REDUCTION 61 -25.420880 -25.464197
Tracing fn(par, ...) on exit
[1] -0.86956965 0.06141885 25.39540081
Tracing fn(par, ...) on exit
[1] -0.87016888 0.06211344 25.38883918
Tracing fn(par, ...) on exit
[1] -0.86998292 0.06210081 25.39591302
Tracing fn(par, ...) on exit
[1] -0.86996914 0.06188191 25.33276593
SHRINK 65 -25.332766 -25.464197
Tracing fn(par, ...) on exit
[1] -0.86961100 0.06207553 25.33144553
Tracing fn(par, ...) on exit
[1] -0.86987960 0.06193032 25.38078106
HI-REDUCTION 67 -25.380781 -25.464197
Tracing fn(par, ...) on exit
[1] -0.86970054 0.06202713 25.41871120
Tracing fn(par, ...) on exit
[1] -0.86974530 0.06200293 25.38357195
LO-REDUCTION 69 -25.395913 -25.464197
Tracing fn(par, ...) on exit
[1] -0.86931484 0.06178296 25.34935477
Tracing fn(par, ...) on exit
[1] -0.86981590 0.06202135 25.35832014
Tracing fn(par, ...) on exit
[1] -0.86979007 0.06197872 25.37671101
Tracing fn(par, ...) on exit
[1] -0.86964888 0.06194188 25.39017520
SHRINK 73 -25.376711 -25.464197
Tracing fn(par, ...) on exit
[1] -0.8694560 0.0618198 25.3644456
Tracing fn(par, ...) on exit
[1] -0.86970656 0.06193899 25.38072773
.
.
.
.
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.
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.38816056
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.38538736
LO-REDUCTION 293 -25.388161 -25.503503
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.26827178
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.43424875
HI-REDUCTION 295 -25.426385 -25.503503
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.33268128
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.35284744
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.30812259
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.33933608
SHRINK 299 -25.308123 -25.503503
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.40525427
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.42434863
LO-REDUCTION 301 -25.339336 -25.503503
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.35761833
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.34595514
LO-REDUCTION 303 -25.357618 -25.503503
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.37782773
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.35706658
LO-REDUCTION 305 -25.377828 -25.503503
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.29122457
Tracing fn(par, ...) on exit
[1] -0.86959718 0.06185662 25.37769351
Polytope size measure not decreased in shrink
Exiting from Nelder Mead minimizer

307 function evaluations used
$par
[1] -0.86959718 0.06185662

$value
[1] 25.5035

$counts
function gradient

307 NA

$convergence
[1] 10

$message
NULL
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