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Introduction
Cryptography is a study of methods of secure communication in the presence of
an adversary. Its original goal was to construct and analyze algorithms and pro-
tocols which would prevent private messages from being exposed to the public.
Though the original goal prevails, there are many other applications of cryptog-
raphy in addition to secure communication, for example computer passwords and
digital currencies.

Modern cryptography is based on both mathematical theory and computer
science practice. Today’s cryptographic algorithms are designed using computa-
tional hardness assumptions. Though it is theoretically possible to brake such
algorithms, it is very hard, typically infeasible, in actual practice to do so for any
adversary. Information-theoretically secure algorithms, which cannot be broken
even with unlimited computational power, exist, however, they are very diffi-
cult to use in practice. Of course, advances in mathematical theory or computer
technology may cause today’s designs to be insecure in the future. That is why
cryptographic algorithms have to be continuously analyzed and updated.

Recently, devices with constrained computational power have become very
popular, especially in connection to the Internet of Things systems. Since such
devices can also be targets of cyberattacks, it is important to protect their data
by encryption as well. For example, imagine a situation where a large number of
sensors with limited power is installed to collect real world data. The data is sent
to a server which analyzes them, and, based on the analysis, it autonomously
controls complex devices or technological systems, for example in a factory. If
an attack would falsify the collected data, results of the analysis would be incor-
rect and suboptimal control would be performed, leading potentially to higher
costs or damage. Lightweight cryptography is a branch of cryptography where
the goal of the cryptographic algorithms is to achieve very low computational
complexity and very low hardware requirements.

Although numerous lightweight ciphers have been proposed, none of them
has been chosen as a standard so far. Nevertheless, studying these ciphers is
still a valuable contribution to the research in the field of cryptography. New
concepts, ideas or attacks efficient against lightweight ciphers may be applied to
other, classical symmetric ciphers, or may be improved later.

In August 2018, NIST1 started a competition whose goal is to standardize
lightweight cryptographic algorithms which are suitable for use in situations where
performance of the current NIST standards is not sufficient. There were 56 candi-
dates submitted and selected to the first round of the competition in April 2019,
of which 32 were announced to be selected to the second round in August 2019.
Ten finalist candidates2 were selected and announced in March 2021. The stan-
dardization process is not finished yet. It is expected that the results of the
competition will be known later in 2022.

1National Institute of Standards and Technology
2Ciphers ASCON, Elephant, GIFT-COFB, Grain128-AEAD, ISAP, Photon-Beetle, Romu-

lus, Sparkle, TinyJambu, and Xoodyak were selected as the finalist candidates.
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The cipher PRINCE3 was published in 2012 in [1] by a team of creators from
the Technical University of Denmark, INRIA4, the Ruhr-University Bochum and
NXP Semiconductors.

After the cipher had been published, the Ruhr-University Bochum announced
a competition, called The PRINCE Challenge5, to encourage finding practical
attacks on round-reduced versions of PRINCE. Specifically, 4, 6, 8, 10 and 12
rounds of the cipher were considered in each category. There were two settings to
choose from, either a chosen plaintext attack with at most 220 chosen plaintexts
or a known plaintext attack with at most 230 known plaintexts. Several rounds
of the competition were held until it ended in 2016.

In cases of four through six rounds of PRINCE, integral cryptanalysis seems
to be the most powerful tool. After the challenge had started, integral distin-
guishers for four through six-round attacks were published in [2] and [3]. Integral
attacks, along with several other techniques, were later improved in [4]. In cases
of eight and more rounds, meet-in-the-middle attacks seem to be efficient. Ar-
guably the most practical ones were published in [5].

Rounds Time * Data Concept Reference
4 27.5 26 CP integral [4], explained in Sec. 3.3
5 213 213 CP integral [4], explained in Sec. 3.3
5 211.1 211 CP integral Sec. 3.2.2, Sec. 3.3
6 226.5 213 CP integral [4], explained in Sec. 3.4
6 224.6 211 CP integral Sec. 3.2.2, Sec. 3.4
6 233.7 216 CP mitm [5], explained in Sec. 4.1
7 244.3 233 CP h.-o. diff. [4]
7 265.8/262.4 216 CP mitm Section 4.3
8 282.4/249.7 216 CP mitm [5], explained in Sec. 4.2

* Offline/Online complexity.

Table 1: A table of the current most practical attacks on round reduced versions
of PRINCE. The time complexity is measured in encryption units.

The goal of this thesis is to survey several successful attacks from the above
mentioned challenge and explain them in detail and, if possible, provide some
contributions, such as new attacks, an extension of an existing attack or an expla-
nation of nontrivial details omitted in the original papers. Specifically, the setting
of chosen plaintext attack is considered. The thesis focuses on integral analysis
and meet-in-the-middle attacks, which are the concepts that the current best
attacks on round-reduced versions of the cipher use.

3A Low-latency Block Cipher for Pervasive Computing Applications
4The National Institute for Research in Digital Science and Technology
5Visit https://informatik.rub.de/emsec/research/prince/ to see the homepage of the

challenge.
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1. Introduction to symmetric
block ciphers

1.1 Construction of symmetric block ciphers
Let us first introduce the notation which we will use when speaking about ciphers.

A cipher consists of sets P , C, K ⊆ {0, 1}∗ and functions Enc : P × K → C,
Dec : C × K → P such that ∀p ∈ P , ∀k ∈ K : Dec (Enc (p, k) , k) = p.

The symbol P denotes the space of possible plaintexts - these are the mes-
sages that we might want to encrypt. The symbol C denotes the space of possible
ciphertexts - these are the encrypted messages. The symbol K denotes the space
of possible keys - these are the keys used for encrypting plaintexts and decrypting
ciphertexts. The function Enc stands for encryption, the function Dec stands for
decryption.

Ciphers can be categorized in several different ways. One possible categoriza-
tion says how the encryption and decryption processes are related. We say that
a cipher is symmetric if there is one key k which is shared among all involved
parties, and is used for both encryption and decryption. Apart from symmetric
ciphers, there are also asymmetric ciphers where the key comprises a public part
used for encryption and a secret part used for decryption. This work, however,
focuses only on symmetric ciphers.

If the set of possible plaintexts is restricted to plaintexts of certain fixed length
(P = {0, 1}b, b ∈ N), we call the cipher a block cipher. The integer b denotes
the block size of the cipher. The size of the key is often fixed as well, though it
can be different from the block size.

Symmetric block ciphers are usually constructed by using one or several
construction schemes. Some of the most commonly used ones are for example
the substitution-permutation network (SPN) or the Feistel network1.

In this section, we will focus on the construction schemes which are used in
the PRINCE cipher. The details of how exactly are the construction schemes
used will be presented later in Chapter 2.

1.1.1 Substitution-permutation network
A SPN consists of several substitution-permutation rounds. Each round com-
prises a key addition layer, a substitution layer and a permutation layer, except
for the last round, which consists of a key addition layer, a substitution layer
and another key addition layer.

1For example, DES (Data Encryption Standard) is one of the most famous ciphers which
uses the Feistel network.
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The key addition layer. In this layer, a round key (derived from the orig-
inal key using a key schedule algorithm) is combined with the input, usually by
performing the bitwise XOR operation (see Fig. 1.1).

input output

round key

Figure 1.1: A typical key addition layer

The substitution layer. This layer substitutes the input bits by different
output bits. The substitution is usually performed by one or more substitution
boxes (S-boxes). Each of them simply takes a block of bits and substitutes it by
another block of bits of the same size. A typical substitution layer consists of
several S-boxes of a small input size arranged in parallel. Figure 1.2 shows both
the case with a single S-box and the case with several parallel S-boxes.

input outputS-box

input

S S S S

output

Figure 1.2: A scheme of a substitution layer

The permutation layer. The permutation layer simply permutes all input
bits (see Fig. 1.3).

input bits

output bits

permutation layer

Figure 1.3: A scheme of a permutation layer

Altogether, several rounds of a SPN can achieve some of desired cryptographic
properties, for example Shannon’s confusion and diffusion properties2. We usually

2Shannon’s confusion and diffusion properties were introduced in [6] in 1949.
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want the S-box to have a property that changing one input bit results in a change
of approximately half of the output bits. Every output bit of the S-box should
also depend on every input bit. For the P-layer, we usually want the permutation
to diffuse the output bits from one S-box to a lot of S-boxes of the next round.

A scheme of a 3-round SPN is depicted in Figure 1.4. As mentioned earlier,
the last round of the network ends with a key addition layer instead of a permuta-
tion layer. This is because if there was no final key addition layer, the last S-layer
and the last P-layer would be useless since both the substitution and the permu-
tation are public. Moreover, having a P-layer in the last round of the network
would be useless even with the final key addition layer present since we could
simply permute the ciphertext and the final key.

input bits

round-key addition

S S S S

permutation layer

round-key addition

S S S S

permutation layer

round-key addition

S S S S

round-key addition

output bits

Figure 1.4: Multiple rounds of SPN

If we choose the S-boxes and the permutations carefully, the Shannon’s con-
fusion and diffusion properties will be satisfied after few rounds of the network.
As we change one bit of the plaintext, several bits change during the first S-layer,
the changes are distributed by the first P-layer into a lot of S-boxes of the second
S-layer, after which most of the bits are already changed. The same effect occurs
if we change one bit of the key.
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1.1.2 FX construction
The FX construction is used to strengthen the original cipher, mostly to protect
it from exhaustive key search attacks.

Apart from the original cipher (referenced to as the CORE cipher), two key
addition layers are added. The plaintext is at first combined with a pre-whitening
key (usually by bitwise XOR operation), then processed by the CORE cipher, and
finally combined with a post-whitening key (again, usually by bitwise XOR oper-
ation). The pre-whitening and the post-whitening keys can be of a different size
than the key of the CORE cipher. The scheme is depicted in Figure 1.5.

input

pre-whitening key

CORE

key

post-whitening key

output

Figure 1.5: A scheme of the FX construction

1.2 Attacks on symmetric block ciphers
Symmetric block ciphers can be attacked in many different ways. This section
provides a general description of the attacks and concepts studied later in the the-
sis.

Before we introduce the attacks themselves, let us first realize what goals do
attacks have and what powers do attackers possess. A typical goal of an attack
is to figure out the secret key, or at least a part of it. This can indeed be done
by performing an exhaustive search - we can simply try all possible key values
and see which one of them is correct. However, as the space of all possible keys
gets bigger, this approach gets less practical, so we try to find different, more
efficient methods of retrieving the key. The efficiency of the methods usually
depends on our knowledge and our powers. The general taxonomy of attacks by
attacker’s powers is as follows.

If the attacker only knows some ciphertexts, we call this attack a ciphertext
only attack. If the attacker knows multiple random plaintexts and their corre-
sponding ciphertexts, we call the attack a known plaintext attack. If the attacker
knows multiple plaintexts of his choice as well as the corresponding ciphertexts,
we call the attack a chosen plaintext attack. If the attacker knows multiple ci-
phertexts of his choice along with the corresponding plaintexts, we call the attack
a chosen ciphertext attack.

All the attacks studied later in this work fall into the category of chosen plain-
text attacks.
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When attacking symmetric block ciphers, we have a number of techniques
and concepts at our disposal. Perhaps the best known techniques are the dif-
ferential cryptanalysis, the linear cryptanalysis and the meet-in-the-middle at-
tacks. The following sections introduce the concepts of meet-in-the-middle at-
tacks and integral cryptanalysis which are later discussed in Chapters 3 and 4
in connection to PRINCE.

1.2.1 Integral cryptanalysis
The first concept we are going to introduce is the integral cryptanalysis. The in-
tegral cryptanalysis was presented in 2002 in [7] by Lars Knudsen3. The inte-
gral attack is a chosen plaintext attack where the general idea is to create a set
of plaintexts with specific properties which we can track through several rounds
of the cipher and see in which steps they hold. Typically, the set eventually loses
all the properties as it goes through more rounds of the cipher, and we can use
that to create an integral distinguisher.

Let us consider the following example. Suppose we have a cipher consisting of
a four round substitution-permutation network with 64-bit plaintexts, ciphertexts
and keys. Suppose there are sixteen 4-bit S-boxes arranged in parallel. Consider
a set of sixteen plaintexts {0, . . . , 15}. Note that the XOR sum of the whole set is
zero. Suppose that the XOR sum of the whole set is also zero just before the last
substitution layer of the cipher and the XOR sum of the whole set is generally
unknown after the last substitution layer.

We can then retrieve the key easily as follows. First, we encrypt the sixteen
plaintexts through the cipher. Second, we guess four bits of the key such that
it enables us to decrypt the ciphertexts through the last key addition layer and
through the last substitution layer. Third, we check if the XOR sum of the sixteen
partially decrypted ciphertext is zero. If our guess is wrong, the XOR sum will
not be equal to zero with high probability. On the other hand, if our guess is
correct, the XOR sum has to be zero. Figure 1.6 depicts our situation.

Note the difference in efficiency in comparison to the exhaustive search. The
exhaustive search requires trying 264 values whereas the integral attack only re-
quires 16 + 16 × 24 (approximately 28) encryptions or decryptions.

1.2.2 Meet-in-the-middle attacks
The meet-in-the-middle attack is a generic attack that enables us to trade the time
complexity for the memory complexity. It was first introduced by W. Diffie and
M. E. Hellman in 1997 in [9]. It is typically used against ciphers which consist
of multiple subciphers that use different keys. The basic version of this attack
can be performed as a known plaintext attack, however, having the powers of
a chosen plaintext attack may lead to even more efficient versions of this attack.

3The work [7] gives a name to the concept and studies it in detail however the first basic
integral attack was introduced a few years earlier in context of the cipher Square in [8].
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key addition

S S S S S S S S S S S S S S S S

P-layer

key addition

S S S S S S S S S S S S S S S S

P-layer

key addition

S S S S S S S S S S S S S S S S

P-layer

key addition

XOR sum equal to zero partially decrypted ciphertexts

S S S S S S S S S S S S S S S S

guessed key bitsXOR sum unknown

key addition

16 plaintexts

16 ciphertexts 16 ciphertexts

Figure 1.6: An example of an integral attack

As an example, let us consider a symmetric block cipher consisting of two sub-
ciphers using 64-bit keys ka and kb, respectively. If we have a single known plain-
text, we can decrypt it through the first subcipher by all 264 values of the key ka

and store the results in a lookup table. We can then ask for the full encryption
of the plaintext and decrypt the ciphertext through the second subcipher by all
264 values of the key kb. If a decrypted value meets with a stored value from
the lookup table, we can mark the corresponding values of ka and kb as key can-
didates. On the other hand, if a decrypted value cannot be found in the lookup
table, the key kb is incorrect. Figure 1.7 depicts the situation.

The memory complexity of such an attack is indeed 264 stored values. The time
complexity is 2 × 264 encryptions or decryptions in contrast to the exhaustive
search which would require searching through 2128 possible values of ka and kb.

The meet-in-the-middle attack can sometimes be divided into two phases -
an offline phase and an online phase. The former represents a preprocessing
phase which is only run once. The latter represents the actual attack which uses
the results from the offline phase. The results from the offline phase can be used

9



plaintext plaintext

subcipher 1ka

264 stored values decrypted ciphertexts

subcipher 2 kb

ciphertext ciphertext

Figure 1.7: An example of a meet-in-the-middle attack

in several consecutive attacks, for example when recovering different secret keys.
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2. PRINCE cipher description
PRINCE is a lightweight symmetric block cipher, first presented in [1] in 2012.
In this chapter, we will describe the cipher and all its components in detail as
it is presented in [1]. Our Python 3 reference implementation of the cipher is
attached in A.1.

2.1 Overview
As we said earlier, PRINCE is a symmetric block cipher. The block size of
PRINCE is 64 bits, the key size is 128 bits. In terms of the notation from
Sec. 1.1, P = F64

2 , C = F64
2 , K = F128

2 .
The cipher is based on the FX construction. Three 64-bit sub-keys k0, k′

0 and
k1 are derived from the original key. The former two are used as the pre/post-
whitening keys, the latter one is used as the key for the CORE cipher, as shown
in Figure 2.1.

p

k0

PRINCEcore

k1

k′
0

c

Figure 2.1: The scheme of PRINCE

2.1.1 The key schedule
PRINCE uses the following rules to derive the three sub-keys. At first, the original
key k is split into two 64-bit halves, k = k0 ∥ k1. The third sub-key k′

0 is then
obtained as k′

0 = (k0 ≫ 1) ⊕ (k0 ≫ 63) where the ≫ operator stands for
the right circular shift and the ≫ operator stands for the right logical shift. We
say that (k0 ∥ k′

0 ∥ k1) is the extended key.

2.2 PRINCEcore

The CORE cipher, referred to as PRINCEcore, is a 12-round SPN. Each round
consists of a key addition layer, a round constant addition layer, a substitution
layer and a linear layer. The PRINCEcore key k1 is used as a round key in every
round of the SPN. The scheme of PRINCEcore is depicted in Figure 2.2. The first
five rounds will be occasionally referred to as the forward rounds, the next two
rounds will be referred to as the middle rounds and the last five rounds will be
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referred to as the backward rounds.

k1

RC 0 k1 k1 k1 k1 k1

R1

RC 1

R2

RC 2

R3

RC 3

R4

RC 4

R5

RC 5

S M ′ S−1

k1 k1 k1 k1 k1

R−1
6

RC 6

R−1
7

RC 7

R−1
8

RC 8

R−1
9

RC 9

R−1
10

RC 10

RC 11

k1

R1

S M

RC 1 k1

R−1
6

M−1 S−1

RC 6 k1

Figure 2.2: The scheme of PRINCEcore

The key addition layer. The 64-bit state of the cipher is xored with
the round key k1.

The substitution layer. The PRINCEcore uses the following 4-bit S-box.
There are 16 such S-boxes arranged in parallel in every substitution layer.

x

S[x]
0 1 2 3 4 5 6 7 8 9 a b c d e f
b f 3 2 a c 9 1 6 7 8 0 e 5 d 4

Figure 2.3: The PRINCE S-box

The linear layer. The 64-bit state of the cipher is multiplied by a 64×64 ma-
trix M ′. In most rounds, the sixteen 4-bit words of the cipher state are in addition
permuted by a shift rows operation (meaning that M = SR ◦M ′). The matrix M ′

and the sift rows operation SR will both be described later in Section 2.2.1.

The round constant addition layer. The 64-bit state of the cipher is
xored with a 64-bit round constant RC i (see Figure 2.4).

2.2.1 The linear layer
As we can see in Fig. 2.2, two different linear layers M and M ′ are used dur-
ing the PRINCE encryption or decryption. The layer M ′ is only used once in
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RC 11

RC 10

RC 9

RC 8

RC 7

RC 6

RC 5

RC 4

RC 3

RC 2

RC 1

RC 0

0xc0ac29b7c97c50dd
0xd3b5a399ca0c2399
0x64a51195e0e3610d
0xc882d32f25323c54
0x85840851f1ac43aa
0x7ef84f78fd955cb1
0xbe5466cf34e90c6c
0x452821e638d01377
0x082efa98ec4e6c89
0xa4093822299f31d0
0x13198a2e03707344
0x0000000000000000

Figure 2.4: The round constants of PRINCE

the middle of the encryption or decryption and it comprises a simple multipli-
cation by the matrix M ′. The layer M is used once in every round function
Ri or R−1

i . It is defined as M = SR ◦M ′, where SR is a permutation on the 16
four-bit words of the cipher state. The SR permutation is described in Figure 2.5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

Figure 2.5: The shift rows operation

To build the matrix M ′, we first define four 4 × 4 matrices M0 through M3.

M0 =

⎛⎜⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ , M1 =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ , M2 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎠ , M3 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎠
Next, we construct two 4 × 4 block matrices M̂

(0) and M̂
(1).

M̂
(0) =

⎛⎜⎜⎜⎝
M0 M1 M2 M3
M1 M2 M3 M0
M2 M3 M0 M1
M3 M0 M1 M2

⎞⎟⎟⎟⎠ , M̂
(1) =

⎛⎜⎜⎜⎝
M1 M2 M3 M0
M2 M3 M0 M1
M3 M0 M1 M2
M0 M1 M2 M3

⎞⎟⎟⎟⎠
Finally, we build a 64×64 block diagonal matrix using (M̂ (0)

, M̂
(1)

, M̂
(1)

, M̂
(0))

as the diagonal blocks which we denote by M ′.
Note that the matrix M ′ is an involution (M ′−1 = M ′) which allows the cipher

to have the so called α-reflection property discussed in the following section.
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2.2.2 The alpha-reflection property
PRINCE has an interesting property that allows using the same circuit for both
encryption and decryption easily. We note that for all 0 ≤ i ≤ 11 it holds
that RC i ⊕ RC 11−i = 0xc0ac29b7c97c50dd =: α. Since M ′ is an involution and
RC i ⊕ RC 11−i is constant, the inverse of PRINCEcore with a key k1 is equal to
PRINCEcore with a key (k1 ⊕ α). We call this property the α-reflection property.

It follows that a PRINCE decryption with an extended key (k0∥k′
0∥k1) can be

performed as a PRINCE encryption with an extended key (k′
0∥k0∥k1 ⊕ α).

2.3 Round reduced versions
When studying the strength of the cipher, it can be beneficial to study its reduced
versions. There are several ways of how to reduce the number of rounds. Since
the rounds of PRINCE are arranged symmetrically, the typical way (and perhaps
the most natural one) is to cut the rounds out symmetrically. If we want to work
with n-round reduced PRINCE, we only keep ⌈(n − 2)/2⌉ forward rounds, two
middle rounds and ⌊(n − 2)/2⌋ backward rounds. Another possibility is to ignore
the FX construction as well and focus on PRINCEcore only. However, all attacks
mentioned in Chapters 3 and 4 assume that the FX construction is preserved.
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3. Integral attacks on PRINCE
The following chapters present some of the current most practical attacks on
round reduced versions of PRINCE.

The first concept we are going to study is the integral cryptanalysis (see Sec-
tion 1.2.1). The integral cryptanalysis is especially efficient against four, five
and six rounds of PRINCE, the attacks in Sections 3.3 and 3.4 are the current
most efficient chosen plaintext attacks on the corresponding versions of the ci-
pher. The basic integral attacks were presented by P. Morawiecki in [2]. They
were later improved by R. Posteuca and G. Negara in [3] and sped up by S. Ra-
soolzadeh and H. Raddum in [4]. This chapter provides the necessary theory,
studies the 3.5-round distinguisher from [2], the 4.5-round distinguisher from [3],
the faster key recovery technique from [4], and, based on the ideas from [3], it
presents a new, even more efficient, 4.5-round integral distinguisher.

Apart from the new 4.5-round integral distinguisher, this chapter contributes
to the research in the following ways. First, an inaccuracy in the original 3.5-
round distinguisher is found and corrected. Second, more detailed description of
all parts is given, including explicit algorithms for recovering the whole key of
four, five and six round reduced versions of PRINCE. Third, a reference Python 3
implementation of some of the attacks is attached.

3.1 3.5-round integral distinguisher
This section studies the 3.5-round PRINCE integral distinguisher and the corre-
sponding 4-round integral attack which were first introduced by P. Morawiecki
in [2]. Specifically, this section presents the transformation of a PRINCE state
into a square scheme, provides the elementary theory necessary for understand-
ing the following attacks, explains the distinguisher in detail and gives a basic
algorithm for a 4-round integral attack.

The square scheme. First, it is advantageous to look at the state of the ci-
pher as a square scheme. Recall that PRINCE operates on 64-bit blocks. The 64-
bit block can be divided into sixteen 4-bit parts that we can arrange in a 4 × 4
square scheme (see Figure 3.1). The 4-bit parts are also called nibbles and can
be indexed by numbers 0 through 15.

For addressing individual nibbles or bits of the states, square brackets will
be used. For example, if p is a PRINCE state, then p[i] denotes the i-th nibble
of the state and p[j]b denotes the j-th bit of the state.

Applying SPN layers. Applying the PRINCE layers can be done in the fol-
lowing way. The key addition and the round constant addition are straightfor-
ward, we can simply split the key (or the round constant) into sixteen words and
XOR each of them with the corresponding nibble of the cipher state.

The substitution layer can be performed by applying the S-box to each nibble
of the cipher state individually.
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Figure 3.1: Arranging the PRINCE state into a square scheme

The linear layer is the most complicated one. Since the M ′ matrix is block di-
agonal with each block being a 16×16 matrix (for more details see Section 2.2.1),
each 16-bit column of the square can be multiplied separately by one of the di-
agonal blocks M (0)ˆ , M (1)ˆ . To get the first or the fourth output column, we can
apply the matrix M (0)ˆ to the first (or the fourth) input column. To get the sec-
ond or the third output column, we can apply the matrix M (1)ˆ to the second (or
the third) input column. The bitwise equations important for further analysis
are as follows. An input column of nibbles (x0, x1, x2, x3) is transformed into an
output column of nibbles (y0, y1, y2, y3), individual bits of the nibbles are denoted
by superscripts.

M (0)ˆ :
y0

0 = x0
1 ⊕ x0

2 ⊕ x0
3 y1

0 = x1
0 ⊕ x1

2 ⊕ x1
3 y2

0 = x2
0 ⊕ x2

1 ⊕ x2
3 y3

0 = x3
0 ⊕ x3

1 ⊕ x3
2

y0
1 = x0

0 ⊕ x0
1 ⊕ x0

2 y1
1 = x1

1 ⊕ x1
2 ⊕ x1

3 y2
1 = x2

0 ⊕ x2
2 ⊕ x2

3 y3
1 = x3

0 ⊕ x3
1 ⊕ x3

3

y0
2 = x0

0 ⊕ x0
1 ⊕ x0

3 y1
2 = x1

0 ⊕ x1
1 ⊕ x1

2 y2
2 = x2

1 ⊕ x2
2 ⊕ x2

3 y3
2 = x3

0 ⊕ x3
2 ⊕ x3

3

y0
3 = x0

0 ⊕ x0
2 ⊕ x0

3 y1
3 = x1

0 ⊕ x1
1 ⊕ x1

3 y2
3 = x2

0 ⊕ x2
1 ⊕ x2

2 y3
3 = x3

1 ⊕ x3
2 ⊕ x3

3

M (1)ˆ :
y0

0 = x0
0 ⊕ x0

1 ⊕ x0
2 y1

0 = x1
1 ⊕ x1

2 ⊕ x1
3 y2

0 = x2
0 ⊕ x2

2 ⊕ x2
3 y3

0 = x3
0 ⊕ x3

1 ⊕ x3
3

y0
1 = x0

0 ⊕ x0
1 ⊕ x0

3 y1
1 = x1

0 ⊕ x1
1 ⊕ x1

2 y2
1 = x2

1 ⊕ x2
2 ⊕ x2

3 y3
1 = x3

0 ⊕ x3
2 ⊕ x3

3

y0
2 = x0

0 ⊕ x0
2 ⊕ x0

3 y1
2 = x1

0 ⊕ x1
1 ⊕ x1

3 y2
2 = x2

0 ⊕ x2
1 ⊕ x2

2 y3
2 = x3

1 ⊕ x3
2 ⊕ x3

3

y0
3 = x0

1 ⊕ x0
2 ⊕ x0

3 y1
3 = x1

0 ⊕ x1
2 ⊕ x1

3 y2
3 = x2

0 ⊕ x2
1 ⊕ x2

3 y3
3 = x3

0 ⊕ x3
1 ⊕ x3

2
(3.1)

Properties of nibbles. There are several properties that each nibble can
have with respect to a set of PRINCE states, that we are interested in. We might
not mention the set explicitly in further text if it is clear from the context or if we
talk about a fixed set of PRINCE states. For the purpose of following definitions,
let k = 2l, l ∈ Z, l ≥ 0, let b denote the size of the nibbles in bits (b = 4 in case
of PRINCE) and let ∆ =

{︂
x(0), . . . , x(k−1)

}︂
denote the set of k PRINCE states

(64-bit vectors).
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Definition 1 (An active nibble). Let k, b, ∆ be as described above. A nibble is
called active (with respect to ∆), if it takes all 2b possible values through the set ∆
and each value is taken exactly k/2b times. We denote active nibbles by A.

Definition 2 (A quasi-active nibble). Let k, b, ∆ be as described above. A nibble
is called quasi-active (with respect to ∆), if it takes n distinct values (n ∈ N)
through the set ∆ and each of the values is taken exactly k/n times. We denote
quasi-active nibbles by An.

Remark. Notice that A denotes the same property as A2b .

Definition 3 (A constant nibble). Let k, b, ∆ be as described above. A nibble
is called constant (with respect to ∆), if it only takes one distinct value through
the set ∆. We denote constant nibbles by C.

Remark. Notice that C denotes the same property as A1.

Definition 4 (An even nibble). Let k, b, ∆ be as described above. A nibble
is called even (with respect to ∆), if each of the values taken through the set ∆
occurs an even number of times. We denote even nibbles by E.

Remark. Similarly, we say that a nibble is odd with respect to a set of PRINCE
states, if each of the values taken through the set occurs an odd number of times.

Definition 5 (A balanced nibble). Let k, b, ∆ be as described above. A nibble i
is called balanced (with respect to ∆), if the XOR sum of the values taken over
the whole set ∆ equals zero. That is, if ⨁︁k−1

j=0 x(j)[i] = 0. We denote balanced
nibbles by B.

Let us now take a look at the relations between the above mentioned prop-
erties. Recall that we consider k = 2l, l ∈ Z, l ≥ 0, nibbles of bit size b,
∆ =

{︂
x(0), . . . , x(k−1)

}︂
the set of k PRINCE states.

Observation 1. An active nibble is balanced.

Proof. It is sufficient to show that ⨁︁2b−1
i=0 i = 0. Since the value of each bit (over

the integers 0 through 2b − 1) is balanced, the equation holds.

Observation 2. An even nibble is balanced.

Proof. Since ∀z ∈ Zb
2 : z ⊕ z = 0, occurrences of each value (which is taken even

number of times) cancel out and the nibble is balanced.

Corollary. A quasi-active nibble is also balanced.

Proof. A quasi-active nibble is by definition active or even. By Observations 1
and 2, it is also balanced.
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Remark. A constant nibble is balanced as well, since we only allow the set of
PRINCE states to comprise an even number of states.

The 3.5-round distinguisher. We now have all necessary definitions and
observations to describe the 3.5-round integral distinguisher from [2]. First, let
us take a look at the parameters of the nibbles and the set of chosen plaintexts.
As mentioned earlier, PRINCE nibbles are of bit size 4 (see Fig. 3.1). The set
of plaintexts used for this attack is as follows. We (arbitrarily) choose one nibble
to be active at the start and we let all other nibbles be constant. That is, we
have a set of plaintexts where the value of one selected nibble varies through
all possible values and the value of all other nibbles is constant. In terms of
the preceding definitions, k = 24 = 16.

If we now track the set through four rounds of PRINCE, all nibbles are bal-
anced in each step up to the last substitution layer, which destroys all of the prop-
erties. This observation can be used to form a 4-round attack. If we encrypt all
16 plaintexts of our set (by 4-round reduced PRINCE), we can then guess one
nibble of the key k1 ⊕ k′

0 and partially decrypt the corresponding nibble of all 16
ciphertexts through the S-box of the fourth round. If we guess the key correctly,
the decrypted values must be balanced. If our guess is incorrect, the decrypted
values will not be balanced with high probability.

Before we formulate the algorithm precisely and discuss its complexity, let us
first take a look at the properties of the nibbles with respect to our set in de-
tail. Figure 3.2 shows the properties of the set of 16 chosen plaintexts through
four rounds of PRINCE supposing the nibble 0 is chosen as the one active nib-
ble at the start. Note that both key addition and round constant addition do
not change any of the properties and are therefore omitted from the scheme.
P. Morawiecki introduces the distinguisher in his work [2, Chap. 3]. However,
the scheme provided in [2, Chap. 3, Fig. 2] is inaccurate. The following dis-
cussion shows that the nibbles of the third round are even but generally not
quasi-active as the scheme in [2] states. This inaccuracy, however, does not af-
fect the functionality of the distinguisher since the nibbles are still balanced after
3.5 rounds.

Theorem 3. Consider a set ∆ of 16 plaintexts with nibble 0 active and all
other nibbles constant. Suppose we encrypt all plaintexts in ∆ by four rounds
of PRINCE. In each step of the encryption, the properties of nibbles (with respect
to the set of the 16 corresponding states) are as depicted in Figure 3.2.

Proof. As we have already mentioned, the key addition and the round constant
addition layers preserve all properties. Since S-box is just a permutation, it
preserves the A, An, E and C properties as well.

The only layer that is a bit more complicated is the linear layer. As mentioned
earlier, the linear layer can be performed as applying matrices M (0)ˆ and M (1)ˆ to
the columns of the square scheme individually.

In the first round, the constant columns remain constant and the column
with the active nibble transforms into a column with all nibbles quasi-active.
The former case is trivial. The latter case follows from a fact that the value of
each output nibble depends only on 3 bits of the value of the active nibble. Thus,
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Figure 3.2: The scheme of the 3.5-round integral distinguisher

for each output nibble, two different input values of the active nibble produce
the same output value.

In the second round, a column containing one quasi-active nibble and three
constant nibbles is transformed into a column with all nibbles even. This is
because the quasi-active nibble takes each distinct value exactly twice. For each
output nibble, every such pair of equal input values is mapped to the same output
value. Another pair of input values may be mapped to the same value as well
however the number of occurrences of each output value in each output nibble
stays even.

In the last round, a column with all nibbles even is transformed to a column
with all nibbles balanced. Recall that each output bit of each output nibble is
obtained as a XOR sum of three input bits. Since the input nibbles are even, if
we iterate over the set of 16 plaintexts, each input bit is equal to one even number
of times and is equal to zero even number of times. Therefore the XOR sum of
each input bit taken over all 16 plaintexts equals zero and so does the XOR sum
of each output bit.

The last S-box destroys the balance because no additional properties of the
state with all nibbles balanced are guaranteed.
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The basic 4-round attack. Algorithm 1 gives the basic 4-round integral
attack based on the 3.5-round distinguisher described in Figure 3.2. The goal of
the basic attack is to recover one nibble of the key (k1 ⊕ k′

0).

Algorithm 1 The basic 4-round integral attack
1: Let ∆ = {p(0), . . . , p(15)} be a set of plaintexts with one active nibble.
2: Encrypt each plaintext from ∆ to get ciphertexts C = {c(0), . . . , c(15)}.
3: for i = 0, . . . , 15 do
4: for j = 0, . . . , 15 do
5: Partially decrypt the attacked nibble t of c(j) through the S-box of the

last round using i as the key (k1 ⊕ k′
0)[t] to get m(j)[t].

6: end for
7: if ⨁︁15

j=0 m(j)[t] = 0 then
8: Mark i as a candidate for the key (k1 ⊕ k′

0)[t].
9: end if

10: end for

Remark. Several candidates for the value of the attacked nibble of the key (k1 ⊕
k′

0) may remain after performing the attack once. In such case, we can repeat
the attack with another set of plaintexts to eliminate the false key candidates.
Remark. If we want to recover the whole key (k1 ⊕ k′

0), we can simply perform
Step 3 from Algorithm 1 sixteen times - once for each nibble.

The complexity of this attack is as follows. We only need 16 chosen plaintexts.
Each plaintext is encrypted once and then decrypted 16 times, which gives a time
complexity of 24 + 28 encryptions or decryptions.

The basic attack gives us an opportunity to recover the key (k1 ⊕k′
0), however,

it is not enough to figure out the original keys k0 and k1. To get the original keys
as well, it suffices to find the round key k1. The knowledge of the key (k1 ⊕ k′

0)
empowers us to peel off the last round of the cipher so we would only need to at-
tack a 3-round version of the cipher. This can be done using a 2.5-round integral
distinguisher. The 2.5-round distinguisher requires a set of 16 chosen plaintexts
with four nibbles active such that one inverse shift rows operation would trans-
form the active positions to the same column. The scheme of the distinguisher is
depicted in Figure 3.3 and its correctness follows from the correctness of the 3.5-
round distinguisher (see Theorem 3).

Theorem 4. Consider a set ∆ of 16 plaintexts with nibbles 0, 7, 10, 13 active and
all other nibbles constant. Suppose we encrypt all plaintexts in ∆ by three rounds
of PRINCE. In each step of the encryption, the properties of nibbles (with respect
to the set of the 16 corresponding states) are as depicted in Figure 3.3.

Proof. The correctness of all steps involving a S-box follows directly from the fact
that it preserves the A, An, E and C properties.

The correctness of the second step (the first linear layer) follows directly from
Theorem 3. The only step left to study is the second linear layer. A column of
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Figure 3.3: The scheme of the 2.5-round integral distinguisher

quasi-active nibbles is transformed into a column of all nibbles balanced. How-
ever, since those quasi-active nibbles are even, the correctness of this step follows
from the correctness of the corresponding step in Theorem 3.

The last S-box destroys the balance because no additional properties of the
state with all nibbles balanced are guaranteed.

3.2 4.5-round integral distinguishers
This section studies two 4.5-round integral distinguishers. Both of them can be
used for practical attacks on 5 and 6 rounds of PRINCE. The first one, stud-
ied in 3.2.1, was introduced by R. Posteuca and G. Negara in [3]. Although
the work [3] introduces the distinguisher and the attacks, there is no scheme or
an explanation of why the distinguisher holds provided. This section describes
the distinguisher in detail, provides its basic scheme and discusses its functional-
ity. The second distinguisher, presented in 3.2.2, is a new distinguisher, making
the integral attacks on five and six rounds of PRINCE even faster.

3.2.1 The original 4.5-round integral distinguisher
This time, the set of chosen plaintexts is as follows. We choose three nibbles of
the same column to take all possible 212 values and we let all remaining nibbles be
constant. Thus, we get a set of 212 chosen plaintext which we then track through
five rounds of PRINCE (see Fig. 3.4). Similarly to the 3.5-round distinguisher, all
nibbles are balanced in each step up to the last substitution layer, which destroys
all of the properties. This can be used to recover the key k1 ⊕ k′

0 nibble by nibble
as in the 4-round attack.
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Observation 5. Consider a set ∆ of 212 plaintexts with nibbles 0, 1, 2 taking all
212 possible values and all other nibbles constant. Suppose we encrypt all plain-
texts in ∆ by five rounds of PRINCE. In each step of the encryption, the properties
of nibbles (with respect to the set of the 212 corresponding states) are as depicted
in Figure 3.4.
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Figure 3.4: The scheme of the original 4.5-round integral distinguisher. The proof
of the highlighted layer seems to be difficult.

There is no theoretical proof of why this should be true in the original paper.
However, we can experimentally determine the following scheme of the distin-
guisher (Fig. 3.4) by running the corresponding attack many times and storing
the intermediate states of the cipher. Based on our observations, we can verify
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the correctness of all steps of the distinguisher except for the fourth substitution
layer.

Let us take a look at the scheme in detail. There are three active nibbles
in the first row at the beginning. The first substitution layer does not change
anything. The first matrix multiplication activates the fourth nibble of the first
column as its value depends on all four nibbles of the column. The second substi-
tution layer does not change anything, again. The second matrix multiplication
activates all nibbles in each column. Each output nibble takes only eight distinct
values because two input values of the one active nibble in each column produce
the same output. Again, the third substitution layer does not change anything.
The third and the fourth matrix multiplications keep all nibbles balanced (recall
that quasi-active nibbles are always balanced, see Observation 2).

The only step we cannot verify by our observations is the fourth substitution
layer. For the balance to be preserved through a substitution layer, it is not
sufficient that the input nibbles are balanced, the input nibbles need to have
some stronger property. Based on computer experiments, our hypothesis is that
the extra property, allowing the balance to be preserved, is that the input nibbles
are either even or odd (see Def. 4).

3.2.2 The new 4.5-round integral distinguisher
By computer experiments, we have found a new distinguisher which only requires
a set of 210 chosen plaintexts. The set of chosen plaintexts is as follows. We choose
two nibbles of the same columns to take all possible 28 values. We set the two
remaining nibbles of the column to be quasi-active, taking only two distinct values
each. We let all remaining nibbles be constant. Thus, we get a set of 210 chosen
plaintexts which we can track through five rounds of PRINCE. As in the case
of the previous distinguisher, all nibbles are balanced in each step up to the last
substitution layer.

The scheme of such a distinguisher would be the same as in the case of the orig-
inal 4.5-round distinguisher in Fig. 3.4, except for the first two states. The first
two states are depicted in Figure 3.5. The correctness of all steps can be verified in
the same way as it is discussed in the previous subsection. Again, our observations
are not sufficient to verify that the fourth substitution layer preserves the balance.
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Figure 3.5: The first two states of the new 4.5-round integral distinguisher

The basic 5-round attack. Both the original and the new 4.5-round in-
tegral distinguishers can be used for the following 5-round attack. Algorithm 2
gives the basic 5-round integral attack based on the new 4.5-round distinguisher
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described in this subsection. The goal of the basic attack is to recover one nibble
of the key (k1 ⊕ k′

0).

Algorithm 2 The basic 5-round integral attack
1: Let ∆ = {p(0), . . . , p(210−1)} be a set of plaintexts as described in Sec. 3.2.2.
2: Encrypt each plaintext from ∆ to get ciphertexts C = {c(0), . . . , c(210−1)}.
3: for i = 0, . . . , 15 do
4: for j = 0, . . . , 210 − 1 do
5: Partially decrypt the attacked nibble t of c(j) through the S-box of the

last round using i as the key (k1 ⊕ k′
0)[t] to get m(j)[t].

6: end for
7: if ⨁︁210−1

j=0 m(j)[t] = 0 then
8: Mark i as a candidate for the key (k1 ⊕ k′

0)[t].
9: end if

10: end for

Remark. Several candidates for the value of the attacked nibble of the key (k1 ⊕
k′

0) may remain after performing the attack once. In such case, we can repeat
the attack with another set of plaintexts to eliminate the false key candidates.
Remark. If we want to recover the whole key (k1 ⊕ k′

0), we can simply perform
Step 3 from Algorithm 2 sixteen times - once for each nibble.

The complexity of this attack is as follows. We need 210 chosen plaintexts.
Each plaintext is encrypted once and then decrypted 16 times, which gives a time
complexity of 210 + 214 encryptions or decryptions.

The basic attack gives us an opportunity to recover the key (k1 ⊕k′
0), however,

it is not enough to figure out the original keys k0 and k1. To get the original keys
as well, it suffices to find the round key k1. The knowledge of the key (k1 ⊕ k′

0)
empowers us to peel off the last round of the cipher so we would only need to
attack a 4-round version of the cipher. This can be done by performing the 4-
round attack from Section 3.1.

3.3 Faster key recovery technique
This section shows a technique of speeding up the attacks from previous sections
and provides algorithms for full versions of four and five-round attacks. The faster
key recovery method was introduced in and is taken from [4] by S. Rasoolzadeh
and H. Raddum.

Recall that we have 16 nibbles of bit size b. This technique uses binary arrays
of size 2b. We only consider the case of PRINCE, so b = 4. For each nibble (for
which we want to recover a part of the key), we define a 16-bit binary array A
and we initially set all the bits to zero. As we encrypt messages from our set
of chosen plaintexts, instead of guessing the key and decrypting the ciphertext
through the last round of the cipher, we only switch one bit of A - the bit at
the position corresponding to the ciphertext value. After we encrypt the whole
set, we proceed to guessing the key and decrypting values through the last round,
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however, we only need to decrypt such values a, that A[a] = 1. Typically, not all
16 positions of A are set to 1 and thus we save some time.

The speed-up factor is studied in detail in [4]. It turns out that the average
number of ciphertexts which need to be processed converges to approximately 6.5
for large sets of plaintexts. If we consider the 5-round attack from the previous
section, this is a huge improvement since we would have to process all 210 cipher-
texts otherwise.

The full 4-round attack. We have already described the basic attack for
recovering the key (k1 ⊕ k′

0) in Section 3.1. The full Algorithm 3 incorporates
the faster key recovery technique from this section and shows how to recover
keys k1 and k0 by peeling off the last round of the cipher and running the 2.5-
round distinguisher as discussed in Section 3.1.

Algorithm 3 The full 4-round integral attack
1: Initialize sixteen 16-bit binary arrays A0, . . . , A15 (see Section 3.3).
2: Encrypt a set of 24 plaintexts with one active nibble and flip the corresponding

bits of A0, . . . , A15.
3: for each nibble n do
4: for all values k of (k′

0 ⊕ k1)[n] do
5: Partially decrypt all values v where An[v] = 1 through the S-box of

the last round using the guessed key k.
6: Sum the partially decrypted values calculated in Step 5.
7: If the sum equals zero, then k remains a candidate for (k′

0 ⊕ k1)[n].
8: end for
9: end for

10: Repeat Steps 1 through 9 until there is only one (k′
0 ⊕ k1) candidate for each

nibble.
11:
12: Initialize sixteen 16-bit binary arrays A0, . . . , A15 (see Section 3.3).
13: Encrypt a set of 24 plaintexts with four active nibbles (such that one inverse

shift rows operation would shift the active positions to the same column),
decrypt the ciphertexts through the last round of the cipher using (k′

0 ⊕ k1)
from Step 10 and flip the corresponding bits of A0, . . . , A15.

14: for each nibble n do
15: for all values k of k1[n] do
16: Partially decrypt all values v where An[v] = 1 through the S-box of

the third round using the guessed key k.
17: Sum the partially decrypted values calculated in Step 16.
18: If the sum equals zero, then k remains a candidate for k1[n].
19: end for
20: end for
21: Repeat Steps 12 through 20 until there is only one k1 candidate for each

nibble.
22:
23: Recover key k0 from keys k1 and (k1 ⊕ k′

0).
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Let us investigate the complexity of the attack. Steps 2 and 13 require us to
generate and encrypt 24 plaintexts. Thanks to arrays A, we only need to store
16 × 16 bits in memory. In Steps 5 and 16, we need to decrypt 6.5 ciphertexts on
average (see Section 3.3) with 16 keys for all 16 nibbles. Steps 10 and 21 tell us to
repeat the preceding steps until there is only one key candidate left for the whole
key. It is shown in [4] by S. Rasoolzadeh and H. Raddum that it is sufficient to
perform Steps 1-9 and 12-20 twice with very high probability.

Altogether, the data complexity is 2×2×24 plaintexts, the memory complex-
ity is saving the key candidates for each nibble plus saving arrays A. The time
complexity is 2 × 2 × 24 4-round encryptions, 2 × 24 one-round decryptions and
2 × 2 × 16 × 16 × 6.5 partial one-round decryptions, that is approximately 27.5

4-round PRINCE encryptions. To the best of our knowledge, this seems to be
the fastest known attack on the 4-round reduced version of PRINCE.

The full 5-round attack. The five-round attack is similar to the four-round
one, except it uses the 4.5-round distinguisher. Again, the basic version of Algo-
rithm 4 has already been described in Section 3.2.2, faster key recovery technique
from this section is incorporated and recovering k1 and k0 by peeling off the last
round and running the 4-round attack is included as well.

Similarly to the 4-round case, the data complexity of the 5-round attack is
2 × 210 + 2 × 24 plaintexts, the memory complexity is saving the key candidates
for each nibble plus saving arrays A. The time complexity is 2 × 210 + 2 × 24

5-round encryptions, 2×24 one-round decryptions and 2×2×16×16×6.5 partial
one-round decryptions, that is approximately 211.1 5-round PRINCE encryptions.
To the best of our knowledge, this seems to be the fastest known attack on the 5-
round reduced version of PRINCE.
Remark. In Step 13, we can actually use a subset of the set of plaintexts used
in Step 2 instead of generating new 24 plaintexts. However, it requires saving
the corresponding ciphertexts of the subset in Step 2.

Python 3 implementations of both basic and full four and five-round attacks
and their variants are provided as an attachment in A.2.

3.4 6-round integral attack
After explaining the four and five-round attacks, we conclude this chapter by
investigating how an extra round of the cipher can be attacked and discussing
the six-round attack algorithm.

The full 6-round attack. The six-round attack described by Algorithm 5
is similar to the five-round one, except it extends the attack for one additional
round. To be able to partially decrypt one more round of the cipher (so we could
use the 4.5-round distinguisher), we need to guess four nibbles of the last round
key. If we do so, we can decrypt a column of the ciphertexts through the extra
round of the cipher and use the 4.5-round distinguisher (along with the faster key
recovery technique) to recover the round key k1.
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Algorithm 4 The full 5-round integral attack
1: Initialize sixteen 16-bit binary arrays A0, . . . , A15 (see Section 3.3).
2: Encrypt a set of 210 plaintexts as described in Sec. 3.2.2 and flip the corre-

sponding bits of A0, . . . , A15.
3: for each nibble n do
4: for all values k of (k′

0 ⊕ k1)[n] do
5: Partially decrypt all values v where An[v] = 1 through the S-box of

the last round using the guessed key k.
6: Sum the partially decrypted values calculated in Step 5.
7: If the sum equals zero, then k remains a candidate for (k′

0 ⊕ k1)[n].
8: end for
9: end for

10: Repeat Steps 1 through 9 until there is only one (k′
0 ⊕ k1) candidate for each

nibble.
11:
12: Initialize sixteen 16-bit binary arrays A0, . . . , A15 (see Section 3.3).
13: Encrypt a set of 24 plaintexts with one active nibble, decrypt the ciphertexts

through the last round of the cipher using (k′
0 ⊕ k1) from Step 10 and flip

the corresponding bits of A0, . . . , A15.
14: for each nibble n do
15: for all values k of k1[n] do
16: Partially decrypt all values v where An[v] = 1 through the S-box of

the fourth round using the guessed key k.
17: Sum the partially decrypted values calculated in Step 16.
18: If the sum equals zero, then k remains a candidate for k1[n].
19: end for
20: end for
21: Repeat Steps 12 through 20 until there is only one k1 candidate for each

nibble.
22:
23: Recover key k0 from keys k1 and (k1 ⊕ k′

0).

Remark. Note that in Step 10, if there is a nibble with no key candidates,
the key K cannot be the correct column key and we can therefore skip to the next
value of K immediately.

Similarly to the previous attacks, the data complexity is 2 × 210 plaintexts,
the memory complexity is saving 210 ciphertexts, saving key candidates and saving
arrays A. The time complexity is 2 × 210 6-round encryptions, 2 × 4 × 216 × 210

partial (one-column) one-round decryptions and 2 × 4 × 216 × 4 × 24 × 6.5 partial
(one-nibble) one-round decryptions, that is approximately 224.6 6-round PRINCE
encryptions. To the best of our knowledge, this seems to be the fastest known
attack on the 6-round reduced version of PRINCE.
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Algorithm 5 The full 6-round integral attack
1: Initialize sixteen 16-bit binary arrays A0, . . . , A15 (see Section 3.3).
2: Encrypt a set of 210 plaintexts as described in Sec. 3.2.2.
3: for each column c do
4: for all values K of (k′

0 ⊕ k1) column c do
5: Decrypt the column c of the ciphertexts from Step 2 through the last

round using the key K and flip the corresponding bits of the corresponding
arrays A.

6: for each corresponding nibble n do
7: for all values k of k1[n] do
8: Partially decrypt all values v where An[v] = 1 through the S-

box of the fifth round using the guessed key k.
9: Sum the partially decrypted values calculated in Step 8.

10: If the sum equals zero, then k remains a candidate for k1[n]
and K remains a candidate for (k′

0 ⊕ k1) column c.
11: end for
12: end for
13: end for
14: end for
15: Repeat Steps 1 through 14 until there is only one (k′

0 ⊕ k1) and k1 candidate
for each nibble.

16:
17: Recover key k0 from keys k1 and (k1 ⊕ k′

0).
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4. Meet-in-the-middle attacks on
PRINCE
This chapter studies meet-in-the-middle attacks (see Section 1.2.2) on PRINCE
in detail. The six and eight-round attacks have been introduced by P. Derbez
and L. Perrin in [5]. The chapter starts with a 6-round meet-in-the-middle attack
and moves on to an 8-round meet-in-the-middle attack, which is arguably the cur-
rent best attack on 8 round reduced PRINCE. An extension of these attack to
a 7-round attacks is mentioned and the chapter is concluded with a new 7-round
meet-in-the-middle attack.

The theory of Sections 4.1 and 4.2, the corresponding attacks and the graphics
of the corresponding figures is taken from the original paper [5]. This chapter
contributes to the research in the following ways. First, the proofs of the meet-
in-the-middle criteria of the six and eight-round attacks are explained in better
detail. Second, an explicit, more detailed description of how to recover the full key
in case of six rounds is provided in Attachment A.3. Third, attacks on 7 rounds
of PRINCE are discussed. An extension of the previous attacks is presented and
a new 7-round meet-in-the-middle attack with low data complexity is proposed.

4.1 6-round meet-in-the-middle attack
This section studies the 6-round meet-in-the-middle attack from [5]. Although
the integral attack from Section 3.3 is more practical, understanding this attack
helps with understanding all remaining meet-in-the-attacks from the following
sections.

It is once again convenient to look at the PRINCE states as a square scheme,
as discussed in Section 3.1 in Figure 3.1. Moreover, we will denote states of the ci-
pher by symbols xi, x′

i, yi and y′
i in such way that xi is the state before the i-th

S-box, yi is the state after the i-th S-box, y′
i is the state before the (n + 1 − i)-th

S-box and x′
i is the state after the (n+1−i)-th S-box, where n is the total number

of S-boxes. The notation is illustrated in Figure 4.1. Recall that square brackets
are used for addressing individual nibbles or bits of the states.

Let us start with definitions of specific sets of PRINCE states that will be
used among these meet-in-the-middle attacks.

Definition 6 (A δ-set). Consider ∆ a set of 16 PRINCE states. We call such set
a δ-set, if there are exactly one active nibble and 15 constant nibbles with respect
to ∆.

Remark. Recall that a PRINCE state a is an element of {0, 1}64. In the no-
tation of nibbles, the state a can be written as a = a[0] ∥ . . . ∥ a[15], where
∀i ∈ {0, ..., 15} : a[i] ∈ {0, 1}4. A set ∆ of 16 states {a(0), . . . , a(15)} is a δ-set if
∃! j ∈ {0, . . . , 15} : ∀i ∈ {0, ..., 15}, i ̸= j : a(0)[i] = a(1)[i] = · · · = a(15)[i] and
∀ k, l ∈ {0, . . . , 15}, k ̸= l : a(k)[j] ̸= a(l)[j].

29



k1

RC 0 k1 k1 k1 k1 k1

R1

RC 1

R2

RC 2

R3

RC 3

R4

RC 4

R5

RC 5

S M ′ S−1

k1 k1 k1 k1 k1

R−1
6

RC 6

R−1
7

RC 7

R−1
8

RC 8

R−1
9

RC 9

R−1
10

RC 10

RC 11

k1

R1

S M

x1 y1 RC 1 k1

R−1
6

M−1 S−1

y′
5 x′

5RC 6 k1

Figure 4.1: The notation of the PRINCE states

Definition 7 (A structured δ-set). Let ∆ = {a(0), . . . , a(15)} be a δ-set where
the nibble j is the one active nibble. We call ∆ a structured δ-set, if

∀i = 1, . . . , 15: a(0)[j] ⊕ a(i)[j] = i.

The following attack considers a δ-set with the nibble 8 chosen as the active
nibble. The attack relies on the two following observations. Figure 4.2 depicts
the situation from Observation 6.

Observation 6. Consider a set of 16 plaintexts {p(0), . . . , p(15)} and its encryp-
tion through 6-round reduced PRINCE. If the set {y

(0)
2 , . . . , y

(15)
2 } is a structured

δ-set, then the sequence [y′(1)
2 [8]⊕y

′(0)
2 [8], . . . , y

′(15)
2 [8]⊕y

′(0)
2 [8]] is fully determined

by nibbles x
(0)
3 [2, 5, 8, 15] and x

′(0)
3 [2, 5, 8, 15]. In other words, there are only 232

possible values of such 60-bit sequence.

Proof. Since we know the differences

y
(0)
2 ⊕ y

(i)
2 ∀i = 0, . . . , 15,

we can compute the values of

x
(i)
3 [2, 5, 8, 15] ⊕ x

(0)
3 [2, 5, 8, 15] ∀i = 1, . . . , 15

through one M -layer and one key addition layer.
Choosing the value of x

(0)
3 [2, 5, 8, 15] allows us to compute the values of

x
(i)
3 [2, 5, 8, 15] ∀i = 0, . . . , 15.

Since y3 = S(x3), we also know the values of

y
(i)
3 [2, 5, 8, 15] ∀i = 0, . . . , 15.
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Figure 4.2: The scheme of Observation 6. White nibbles are constant. Gray
nibble is active. Black nibbles serve as parameters. The difference of dotted
nibbles is known. Hatched nibbles play no role.

The middle M ′-layer gives us the values of

y
′(i)
3 [2, 5, 8, 15] ⊕ y

′(0)
3 [2, 5, 8, 15] ∀i = 1, . . . , 15,

and by choosing the values of x
′(0)
3 [2, 5, 8, 15], we can compute y

′(0)
3 [2, 5, 8, 15], and

consequently

y
′(i)
3 [2, 5, 8, 15] ∀i = 0, . . . , 15, x

′(i)
3 [2, 5, 8, 15] ∀i = 0, . . . , 15.

Thus we can compute the values of y
′(i)
2 [8] ⊕ y

′(0)
2 [8] ∀i = 1, . . . , 15 through one

key addition layer and one M -layer.

Observation 7. The values of nibbles (k0 ⊕ k1)[8..11], k1[8] and (k′
0 ⊕ k1)[8..11]

of the PRINCE keys can be computed from the following 33 key bits:

(k0 ⊕ k1)[36..47]b, (k′
0 ⊕ k1)[36..47]b, k1[32..35]b, k0[31..35]b.

Proof. Thanks to the key schedule algorithm of PRINCE (see Sec. 2.1.1),
the value of k′

0[32..35]b can be computed from k0[31..34]b. The values of (k0 ⊕
k1)[32..35]b and (k′

0 ⊕ k1)[32..35]b can be computed from k′
0[32..35]b, k0[32..35]b

and k1[32..35]b.

The 6-round attack. We now have all necessary observations for forming
a 6-round chosen plaintext attack. The attack can be divided into an offline
phase and an online phase. In the offline phase, we compute and store all 232

60-bit sequences from Observation 6. The online phase goes as follows. We
generate 216 chosen plaintexts such that nibbles 8 through 11 take all possible
values and all other nibbles are constant and we encrypt all of the plaintexts
through 6-round reduced PRINCE to get 216 ciphertexts. We arbitrarily choose
one of the plaintexts to be p(0). We guess several bits of (k0 ⊕ k1) and k1 to
obtain a nibble of the state y

(0)
2 . We create a structured δ-set {y

(0)
2 , . . . , y

(15)
2 }

and decrypt the set back to get a set of plaintexts {p(0), . . . , p(15)} (which will
be a subset of the original 216 chosen plaintexts). We find the corresponding
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ciphertexts {c(0), . . . , c(15)}. We guess several bits of (k′
0 ⊕ k1) and k1 to obtain

a nibble of the states y
′(i)
2 ∀i = 0, . . . , 15 and compute the sequence [y′(0)

2 [8] ⊕
y

′(1)
2 [8], . . . , y

′(0)
2 [8] ⊕ y

′(15)
2 [8]]. If there is such sequence among the 232 possible

sequences stored from the offline phase, then the guessed key bits are candidates
for the actual key bits. The attack is depicted in Figure 4.3 and Algorithm 6
gives its pseudocode.

k0 ⊕ k1 k′
0 ⊕ k1

S Sp c

y1 y′
1

k1 k1

M ′ M ′SR SRS S

y2 y′
2

k1 k1

M ′ M ′SR SRS S

M ′

y3 y′
3

Figure 4.3: The 6-round meet-in-the-middle attack. Blue parts are connected to
the online phase, red parts are connected to the offline phase. Gray nibbles need
to be guessed during the online phase. Black nibbles need to be guessed during
the offline phase. White nibbles are constant. The difference in dotted nibbles is
known. Hatched nibbles play no role.

Let us inspect the complexity of the attack. First, the probability of an in-
correct guess to pass the meet-in-the-middle criterion is 232 × 2−60 = 2−28. Since
we guess 233 key bits, we expect to get 25 key candidates after one iteration of
the attack and only one key candidate after two iterations of the attack.

The data complexity is 216 chosen plaintexts. The memory requirements are
232 × 15 × 4 bits to store the sequences from the offline phase and 216 × 64 bits
to store the ciphertexts during the online phase. The time complexity of the
online phase is 216 6-round PRINCE encryptions for producing ciphertexts plus
(233+25)×16 encryptions through 10 S-boxes for creating the δ-sets and the states
y′

2. Altogether, it is approximately 233.7 6-round PRINCE encryptions. The time
complexity of the offline phase is computing the 232 sequences, which requires
encryption through 216 × 16 × 4 + 232 × 16 × 4 S-boxes, which is approximately
231.4 6-round PRINCE encryptions.

Note that this attack only recovers 33 out of 128 key bits. To recover the re-
maining 95 key bits, we might run different variants of the attack without signif-
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Algorithm 6 The 6-round meet-in-the-middle attack
1: Precompute the set S of all 232 possible sequences of

[y′(0)
2 [8] ⊕ y

′(1)
2 [8], . . . , y

′(0)
2 [8] ⊕ y

′(15)
2 [8]].

2: Set P a set of 216 chosen plaintexts such that nibbles 8 − 11 take all possible
values and all other nibbles are constant.

3: Encrypt all plaintexts in P to get 216 ciphertexts.
4: Arbitrarily choose a plaintext p(0) ∈ P .
5: for all 233 values of (k0 ⊕ k1)[8..11], (k′

0 ⊕ k1)[8..11] and k1[8] do
6: Find y

(0)
2 [8].

7: For i = 1, . . . , 15 set y
(i)
2 [8] so that y

(i)
2 [8] ⊕ y

(0)
2 [8] = i.

8: Find p(i) ∀i = 1, . . . , 15.
9: Find the corresponding ciphertexts c(i) ∀i = 0, . . . , 15.

10: Find y
′(i)
2 [8] ∀i = 0, . . . , 15.

11: Compute the sequence s = [y′(0)
2 [8] ⊕ y

′(1)
2 [8], . . . , y

′(0)
2 [8] ⊕ y

′(15)
2 [8]].

12: If s /∈ S, then the guessed value is not a key candidate.
13: end for
14: Repeat Steps 4 through 13 until there is only one key candidate.

icantly increasing the overall time and data complexity. The idea behind the at-
tacks remains the same as the idea behind the attack studied in this section, only
different nibbles are considered. Example schemes of attacks leading to recovery
of the whole key are provided in Attachment A.3.

4.2 8-round meet-in-the-middle attack
This section studies the 8-round meet-in-the-middle attack from [5]. The 8-round
attack is similar to the previous one. Again, it considers a δ-set with the nibble 8
chosen as the active nibble and relies on the following observations. Figure 4.4
depicts the situation from Observation 8.

Observation 8. Consider a set of 16 plaintexts {p(0), . . . , p(15)} and its en-
cryption through 8-round reduced PRINCE. If the set {M(y(0)

1 ), . . . , M(y(15)
1 )} is

a structured δ-set, then the sequence

[M(y′(1)
1 )[8] ⊕ M(y′(0)

1 )[8], . . . , M(y′(15)
1 )[8] ⊕ M(y′(0)

1 )[8],
y

′(1)
2 [9] ⊕ y

′(0)
2 [9], . . . , y

′(15)
2 [9] ⊕ y

′(0)
2 [9]]

is fully determined by nibbles:

x
(0)
3 [2, 5, 8, 15], x

′(0)
3 [2, 5, 8, 15], x

(0)
2 [8], x

′(0)
2 [8], x

(0)
4 [0..15].

Proof. The values of y
(i)
2 [8] ∀i = 0, . . . , 15 can be computed from

x
(i)
2 [8] ∀i = 0, . . . , 15
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Figure 4.4: The scheme of Observations 8 and 9. White nibbles are constant.
Black nibbles serve as parameters. The difference of dotted nibbles is known.
Hatched nibbles play no role.

which are known since x
(0)
2 [8] is a parameter and {x

(0)
2 , . . . , x

(15)
2 } is a structured

δ-set. The values of

x
(i)
3 [2, 5, 8, 15] ⊕ x

(0)
3 [2, 5, 8, 15] ∀i = 1, . . . , 15

can be computed through one M -layer and one key addition layer.
Choosing x

(0)
3 [2, 5, 8, 15] allows us to compute

x
(i)
3 [2, 5, 8, 15] ∀i = 0, . . . , 15, y

(i)
3 [2, 5, 8, 15] ∀i = 0, . . . , 15.

Again, the values of x
(i)
4 ⊕ x

(0)
4 ∀i = 1, . . . , 15 can be computed through one

M -layer and one key addition layer.
Choosing x

(0)
4 allows us to compute x

(i)
4 ∀i = 0, . . . , 15 and y

(i)
4 ∀i = 0, . . . , 15.

Furthermore, x′
4 = S−1(M ′(y4)), so y

′(i)
4 ∀i = 0, . . . , 15 and x

′(i)
4 ∀i = 0, . . . , 15

can be computed as well. The values of

y
′(i)
3 [2, 5, 8, 15] ⊕ y

′(0)
3 [2, 5, 8, 15] ∀i = 1, . . . , 15

can be computed through one key addition layer and one M -layer.
Choosing x

′(0)
3 [2, 5, 8, 15] allows us to compute y

′(0)
3 [2, 5, 8, 15], and in conse-

quence

y
′(i)
3 [2, 5, 8, 15] ∀i = 0, . . . , 15, x

′(i)
3 [2, 5, 8, 15] ∀i = 0, . . . , 15.

The values of y
′(i)
2 [8, 9] ⊕ y

′(0)
2 [8, 9] ∀i = 1, . . . , 15 can be computed through one

key addition layer and one M -layer.
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Choosing x
′(0)
2 [8] allows us to compute y

′(0)
2 [8] and consequently

y
′(i)
2 [8] ∀i = 0, . . . , 15, x

′(i)
2 [8] ∀i = 0, . . . , 15.

Observation 9. The nibble parameters from Observation 8 can be computed from
x

(0)
4 [0..15] and (M−1(k1))[2, 5, 8, 12]. In other words, there are only 280 possible

values of the 120-bit sequence from Observation 8.

Proof. The values of x
(0)
3 [2, 5, 8, 15] and x

′(0)
3 [2, 5, 8, 15] can be computed from

(M−1(k1))[2, 5, 8, 12] and x
(0)
4 . The values of x

(0)
2 [8] and x

′(0)
2 [8] can be computed

from (M−1(k1))[8], x
(0)
3 [2, 5, 8, 15] and x

′(0)
3 [2, 5, 8, 15].

Observation 10. The values of nibbles (k0 ⊕k1)[8..11], k1[13] and (k′
0 ⊕k1)[8..15]

of the PRINCE keys can be computed from the following 49 key bits:

(k0 ⊕ k1)[32..35, 39..47]b, (k′
0 ⊕ k1)[32..36, 40..63]b, k1[36..39]b, k0[36..38]b

Proof. Thanks to the key schedule algorithm of PRINCE, the value of k′
0[37..39]b

can be computed from k0[36..38]b. The values of (k0 ⊕ k1)[36..38]b and (k′
0 ⊕

k1)[37..39]b can be computed from k1[36..39]b, k0[36..38]b and k′
0[37..39]b.

The 8-round attack. The 8-round attack is similar to the 6-round one from
Section 4.1. In the offline phase, we compute and store all 280 120-bit sequences
from Observation 9. The online phase goes as follows. We again consider a set
of 216 chosen plaintexts with nibbles 8 − 11 taking all possible values and other
nibbles being constant. We encrypt the set through 8-round reduced PRINCE
to get 216 ciphertexts. We arbitrarily choose one of the plaintexts to be p(0).
We guess several bits of (k0 ⊕ k1) to obtain a nibble of the state M(y(0)

1 ). We
create a structured δ-set {M(y(0)

1 ), . . . , M(y(15)
1 )} and decrypt the set back to get

a set of plaintexts {p(0), . . . , p(15)}, a subset of the original 216 chosen plaintexts.
We find the corresponding ciphertexts {c(0), . . . , c(15)}. We guess several bits of
(k′

0 ⊕ k1) and k1 to obtain a nibble of the states y
′(i)
2 ∀i = 0, . . . , 15 and a nibble

of the states M(y′(i)
1 ) ∀i = 0, . . . , 15 and compute the sequence

[M(y′(0)
1 )[8] ⊕ M(y′(1)

1 )[8], . . . , M(y′(0)
1 )[8] ⊕ M(y′(15)

1 )[8],
y

′(0)
2 [9] ⊕ y

′(1)
2 [9], . . . , y

′(0)
2 [9] ⊕ y

′(15)
2 [9]].

If there is such sequence among the 280 possible sequences stored from the offline
phase, then the guessed key bits are candidates for the actual key bits. The at-
tack is depicted in Figure 4.5 and Algorithm 7 gives its pseudocode.
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k0 ⊕ k1 k′
0 ⊕ k1

S Sp c

y1 y′
1

k1 k1

M ′ M ′SR SRS S

y2 y′
2

k1 k1

M ′ M ′SR SRS S

y3 y′
3

k1 k1

M ′ M ′SR SRS S

M ′

y4 y′
4

Figure 4.5: The 8-round meet-in-the-middle attack. Blue parts are connected to
the online phase, red parts are connected to the offline phase. Gray nibbles need
to be guessed during the online phase. Black nibbles need to be guessed during
the offline phase. White nibbles are constant. The difference in dotted nibbles is
known. Hatched nibbles play no role.

Again, let us take a look at the complexity of the attack. First, the probability
of an incorrect guess to pass the meet-in-the-middle criterion is 280×2−120 = 2−40.
Since we guess 249 key bits, we expect to get 29 key candidates after one iteration
of the attack and only one key candidate after two iterations of the attack.

The data complexity is 216 chosen plaintexts. The memory requirements are
280 × 30 × 4 bits to store the sequences from the offline phase and 216 × 64 bits
to store the ciphertexts during the online phase. The time complexity is 216

8-round PRINCE encryptions for producing ciphertexts plus (249 + 29) × 16 en-
cryptions through 13 S-boxes for creating the δ-sets and the states M(y′

1) and
y′

2. Altogether, it is approximately 249.7 8-round PRINCE encryptions. The com-
plexity of the online phase is computing the 280 possible sequences. This requires
encryption through

24 × 16 + 216 × 16 × 4 + 2 × 280 × 16 × 16 + 280 × 16 × 4 + 280 × 16

S-boxes, which is approximately 282.2 8-round PRINCE encryptions. To this date,
this is arguably the most practical attack on 8-rounds of PRINCE.
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Algorithm 7 The 8-round meet-in-the-middle attack
1: Precompute the set S of all 280 possible sequences of

[M(y′(0)
1 )[8] ⊕ M(y′(1)

1 )[8], . . . , M(y′(0)
1 )[8] ⊕ M(y′(15)

1 )[8],
y

′(0)
2 [9] ⊕ y

′(1)
2 [9], . . . , y

′(0)
2 [9] ⊕ y

′(15)
2 [9]].

2: Set P a set of 216 chosen plaintexts such that nibbles 8 − 11 take all possible
values and all other nibbles are constant.

3: Encrypt all plaintexts in P to get 216 ciphertexts.
4: Arbitrarily choose a plaintext p(0) ∈ P .
5: for all 249 values of (k0 ⊕ k1)[8..11], (k′

0 ⊕ k1)[8..15] and k1[13] do
6: Find M(y(0)

1 )[8].
7: For i = 1, . . . , 15 set M(y(i)

1 )[8] so that M(y(i)
1 )[8] ⊕ M(y(0)

1 )[8] = i.
8: Find p(i) ∀i = 1, . . . , 15.
9: Find the corresponding ciphertexts c(i) ∀i = 0, . . . , 15.

10: Find M(y′(i)
1 )[8] ∀i = 0, . . . , 15.

11: Find y
′(i)
2 [9] ∀i = 0, . . . , 15.

12: Compute the sequence

s = [M(y′(0)
1 )[8] ⊕ M(y′(1)

1 )[8], . . . , M(y′(0)
1 )[8] ⊕ M(y′(15)

1 )[8],
y

′(0)
2 [9] ⊕ y

′(1)
2 [9], . . . , y

′(0)
2 [9] ⊕ y

′(15)
2 [9]].

13: If s /∈ S, then the guessed value is not a key candidate.
14: end for
15: Repeat Steps 4 through 14 until there is only one key candidate.

Note that this attack only recovers 49 out of 128 key bits. To recover the re-
maining key bits, we can run different variants of this attack which share the same
idea as the attack studied in this section but consider different nibbles. These
additional attacks do not significantly increase the time or the data complexity.
An example scheme of such an attack can be found in Attachment A.4.

4.3 7-round meet-in-the-middle attack
The paper [5] does not consider any attacks on 7 rounds of PRINCE. This might
be because there was no such category in the original PRINCE challenge. How-
ever, there does not seem to be any attack on 7 rounds of PRINCE meeting the
criterion of only 220 chosen plaintexts (this was the requirement for all existing
categories in the challenge) studied so far. The current most practical 7-round
attacks require slightly above 232 chosen plaintexts.

This section shows a way to build a 7-round meet-in-the-middle attack from
the 8-round one mentioned in the previous section and proposes a new 7-round
meet-in-the-middle-attack with lower time complexity of the offline phase. Both
of these attacks only need 216 chosen plaintexts.

Reducing the 8-round attack. The first, rather obvious, way to create
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a 7-round attack is to use the 8-round attack from the previous section and omit
the eighth round of the cipher. The key observation would be as follows.

Consider a set of 16 plaintexts {p(0), . . . , p(15)} and its encryption through 7-
round reduced PRINCE. If the set {M(y(0)

1 ), . . . , M(y(15)
1 )} is a structured δ-set,

then the 120-bit sequence

[y′(1)
1 [8] ⊕ y

′(0)
1 [8], . . . , y

′(15)
1 [8] ⊕ y

′(0)
1 [8], y

′(1)
1 [9] ⊕ y

′(0)
1 [9], . . . , y

′(15)
1 [9] ⊕ y

′(0)
1 [9]]

only depends on 80 bits.

k0 ⊕ k1

Sp

k′
0 ⊕ k1

S c

k1

M ′ SR S

y1

y2 y′
1

k1 k1

M ′ M ′SR SRS S

y3 y′
2

k1 k1

M ′ M ′SR SRS S

M ′

y4 y′
3

Figure 4.6: The 7-round meet-in-the-middle attack derived from the original
8-round attack. Blue parts are connected to the online phase, red parts are
connected to the offline phase. Gray nibbles need to be guessed during the online
phase. Black nibbles need to be guessed during the offline phase. White nibbles
are constant. The difference in dotted nibbles is known. Hatched nibbles play no
role.

The online phase of the attack would require guessing four nibbles of the key
k0 ⊕ k1 and two nibbles of the key k′

0 ⊕ k1. Therefore, 24 bits of the whole
key would be recovered with a time complexity of approximately 223.8 7-round
PRINCE encryptions. The time complexity of the offline phase would be encrypt-
ing through 24 × 16 + 216 × 16 × 4 + 2 × 280 × 16 × 16 + 280 × 16 × 4 S-boxes, which
is approximately 282.4 7-round PRINCE encryptions. To recover the remaining

38



Algorithm 8 The basic 7-round meet-in-the-middle attack
1: Precompute the set S of all 280 possible sequences of

[y′(0)
1 [8] ⊕ y

′(1)
1 [8], . . . , y

′(0)
1 [8] ⊕ y

′(15)
1 [8],

y
′(0)
1 [9] ⊕ y

′(1)
1 [9], . . . , y

′(0)
1 [9] ⊕ y

′(15)
1 [9]].

2: Set P a set of 216 chosen plaintexts such that nibbles 8 − 11 take all possible
values and all other nibbles are constant.

3: Encrypt all plaintexts in P to get 216 ciphertexts.
4: Arbitrarily choose a plaintext p(0) ∈ P .
5: for all 224 values of (k0 ⊕ k1)[8..11] and (k′

0 ⊕ k1)[8..9] do
6: Find M(y(0)

1 )[8].
7: For i = 1, . . . , 15 set M(y(i)

1 )[8] so that M(y(i)
1 )[8] ⊕ M(y(0)

1 )[8] = i.
8: Find p(i) ∀i = 1, . . . , 15.
9: Find the corresponding ciphertexts c(i) ∀i = 0, . . . , 15.

10: Find y
′(i)
1 [8] ∀i = 0, . . . , 15.

11: Find y
′(i)
1 [9] ∀i = 0, . . . , 15.

12: Compute the sequence

s = [y′(0)
1 [8] ⊕ y

′(1)
1 [8], . . . , y

′(0)
1 [8] ⊕ y

′(15)
1 [8],

y
′(0)
1 [9] ⊕ y

′(1)
1 [9], . . . , y

′(0)
1 [9] ⊕ y

′(15)
1 [9]].

13: If s /∈ S, then the guessed value is not a key candidate.
14: end for
15: Repeat Steps 4 through 14 until there is only one key candidate.

key bits, additional attacks would have to be performed. Both the offline phase
and the online phase of this attack are depicted in Figure 4.6. A pseudocode is
given in Algorithm 8.

The new 7-round attack. Another way to create a 7-round attack is to find
a different meet-in-the-middle criterion. This new attack uses the same idea as
the previous ones however it presents a new meet-in-the-middle-criterion which
focuses on differences in individual bits rather than on differences of nibbles.
The meet-in-the-middle criterion used in the offline phase of the attack is pre-
sented in Observation 11 and the number of key bits guessed during the online
phase is discussed in Observation 12.

Observation 11. Consider a set of 16 plaintexts {p(0), . . . , p(15)} and its encryp-
tion through 7-round reduced PRINCE. If the set {y

(0)
2 , . . . , y

(15)
2 } is a structured

δ-set, then the sequence

[y′(1)
2 [11, 20, 32, 42, 63]b ⊕ y

′(0)
2 [11, 20, 32, 42, 63]b, . . . ,

y
′(15)
2 [11, 20, 32, 42, 63]b ⊕ y

′(0)
2 [11, 20, 32, 42, 63]b]

is fully determined by nibbles x
(0)
3 [2, 5, 8, 15] and x

(0)
4 [0..11].
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In other words, the 75-bit sequence can only have 264 values.

Proof. The proof is similar to the proofs of Observations 6 and 8. The only
step worth mentioning is the transition from x′

3 to y′
2. Just before the M ′ layer,

we know the differences in 3 nibbles in each column. Recall the bitwise formulas
for M ′ (see 3.1) from Section 3.1. The knowledge of three nibbles of one column
allows us to compute exactly one bit of each nibble through the M ′ layer.

k0 ⊕ k1

Sp

k′
0 ⊕ k1

S c

k1

M ′ SR S

y1

y2 y′
1

k1 k1

M ′ M ′SR SRS S

y3 y′
2

k1 k1

M ′ M ′SR SRS S

M ′

y4 y′
3

Figure 4.7: The new 7-round meet-in-the-middle attack. Blue parts are connected
to the online phase, red parts are connected to the offline phase. Gray nibbles
need to be guessed during the online phase. Black nibbles need to be guessed
during the offline phase. White nibbles are constant. The difference in dotted
nibbles is known. Hatched nibbles play no role.

Observation 12. The values of nibbles (k0⊕k1)[8..11], k1[2, 5, 8, 10, 15] and (k′
0⊕

k1)[0..3, 8..11] of the PRINCE keys can be computed from the following 61 key bits:

(k0 ⊕ k1)[36..39, 44..47]b, (k′
0 ⊕ k1)[0..15, 36..39, 44..47]b,

k1[8..11, 20..23, 32..35, 40..43, 60..63]b, k0[31..35, 40..43]b
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Proof. Thanks to the key schedule algorithm, the value of k′
0[32..35, 40..43]b can

be computed from k0[31..35, 39..43]b. The value of k0[39]b can be computed from
k0[35]b, (k0 ⊕ k1)[36..39]b and (k′

0 ⊕ k1)[36..39]b.
The values of (k0 ⊕ k1)[31..35, 40..43]b and (k′

0 ⊕ k1)[31..35, 40..43]b can be
computed from k1[31..35, 40..43]b, k0[31..35, 40..43]b and k′

0[31..35, 40..43]b.

The attack, depicted in Figure 4.7, follows the same strategy as the previous
meet-in-the-middle attacks. We precompute the 264 75-bit sequences from Ob-
servation 11 in the offline phase, we guess the 61 key bits from Observation 12 in
the online phase and we repeat the attack until there is only one key candidate
left. The pseudocode of the attack is given in Algorithm 9.

Algorithm 9 The new 7-round meet-in-the-middle attack
1: Precompute the set S of all 264 possible sequences of

[y′(0)
2 [11, 20, 32, 42, 60]b ⊕ y

′(1)
2 [11, 20, 32, 42, 60]b,

. . . , y
′(0)
2 [11, 20, 32, 42, 60]b ⊕ y

′(15)
2 [11, 20, 32, 42, 60]b].

2: Set P a set of 216 chosen plaintexts such that nibbles 8 − 11 take all possible
values and all other nibbles are constant.

3: Encrypt all plaintexts in P to get 216 ciphertexts.
4: Arbitrarily choose a plaintext p(0) ∈ P .
5: for all 262 values of (k0 ⊕ k1)[8..11], (k′

0 ⊕ k1)[0..3, 8..11] and k1[2, 5, 8, 10, 15]
do

6: Find y
(0)
2 [8].

7: For i = 1, . . . , 15 set y
(i)
2 [8] so that y

(i)
2 [8] ⊕ y

(0)
2 [8] = i.

8: Find p(i) ∀i = 1, . . . , 15.
9: Find the corresponding ciphertexts c(i) ∀i = 0, . . . , 15.

10: Find y
′(i)
2 [11, 20, 32, 42, 60]b ∀i = 0, . . . , 15.

11: Compute the sequence

s = [y′(0)
2 [11, 20, 32, 42, 60]b ⊕ y

′(1)
2 [11, 20, 32, 42, 60]b,

. . . , y
′(0)
2 [11, 20, 32, 42, 60]b ⊕ y

′(15)
2 [11, 20, 32, 42, 60]b].

12: If s /∈ S, then the guessed value is not a key candidate.
13: end for
14: Repeat Steps 4 through 13 until there is only one key candidate.

One round of the attack is expected to reduce the number of key candidates
by a factor of 275 ×2−64 = 211, so several iterations must be performed. The time
complexity of the offline phase is encrypting through 216 ×16×4+2×264 ×16×12
S-boxes, which is approximately 265.8 7-round PRINCE encryptions. The time
complexity of the online phase of the attack is (261 +250 +239 +228 +217 +26)×16
encryptions through 18 S-boxes, that is approximately 262.4 7-round PRINCE
encryptions. As we have already mentioned, the data complexity is only 216

chosen plaintexts. The memory required is 264 × 75 bits to store the sequence
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from the offline phase and 216 × 64 bits to store the ciphertexts during the online
phase.

The attack recovers 61 key bits. To get the remaining bits, one option is to
continue by guessing one additional nibble (one of nibbles 0, 7, 13) of the key k1
each time. Note that the sequence from the offline phase would have to be ex-
tended for 264 × 15 bits to cover the corresponding bit of y′

2 as well. Finding
the key nibbles k1[0, 7, 13] is enough for us to be able to perform an exhaustive
search to find the remaining key bits as only 14 key nibbles are left unknown.

As we can see, the first 7-round attack has an offline phase with time complex-
ity of 282.4 and an online phase with time complexity of 223.8 7-round PRINCE
encryptions. This new attack has an offline phase with time complexity of 265.8

and an online phase with time complexity of 262.4 7-round PRINCE encryptions.
Both of them require only 216 chosen plaintexts. In comparison, the current most
practical attack on 7 rounds of PRINCE, a higher order differential attack pre-
sented in [4], has a time complexity of 244.3 7-round PRINCE encryptions but
needs 233 chosen plaintexts.
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Conclusion
In this work, we have studied the current best attacks on round reduced versions
of the cipher PRINCE in detail. We have provided our own Python 3 imple-
mentations of PRINCE and of the integral attacks on four and five rounds of
the cipher. We have presented a theoretical proof of the 3.5-round integral dis-
tinguisher, which was omitted in the original paper, and we have presented a new
4.5-round integral distinguisher, allowing more efficient attacks on five and six
rounds of the cipher. We have also proposed a new meet-in-the-middle attack on
7 rounds of PRINCE with low data complexity.
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A. Attachments

A.1 Attachment one - PRINCE Python 3 im-
plementation

The source code of our Python 3 reference implementation of PRINCE is available
at https://github.com/DavidTvrdy/PRINCE/blob/main/Prince.py. The im-
plementation works on the test vectors provided by the authors of the cipher
in [1]. It is a straightforward, unoptimized implementation. No effort has been
made to defend against side-channel or any other kind of attacks.

The function Encrypt(key, message) is used for encryption. The function
Decrypt(key, message) is used for decryption. To check the test vectors pro-
vided in [1], use the function Test().

The instructions and comments are included in the file itself as well.

A.2 Attachment two - Python 3 implementa-
tion of round reduced integral attacks

The source code of our Python 3 implementation of the integral attacks on round
reduced version of PRINCE is available at https://github.com/DavidTvrdy/
PRINCE/blob/main/Integral_attacks_on_prince.py.

The file is divided into several sections. The first section contains the reference
implementation of PRINCE. Each one of the remaining sections provides one
attack on round reduced version of PRINCE.

The attack in the Square4BasicSingle(secret key) function performs the
basic attack from Section 3.1, Algorithm 1 and recovers one nibble of the key (k′

0⊕
k1) in the case of four rounds.

The attack in the Square4BasicFull(secret key) function performs the ba-
sic attack from Section 3.1 and recovers the whole key k0, k1 in the case of four
rounds.

The attack in the Square4ArraysFull(secret key) function performs the
full attack from Section 3.3, Algorithm 3 and recovers the whole key k0, k1 in
the case of four rounds.

The attack in the Square5ArraysFull(secret key) function performs the
full attack on five rounds of the cipher and recovers the whole key k0, k1. In this
case, the original distinguisher from Sec. 3.2.1 is used.

The attack in the Square5ArraysFullNew(secret key) function performs
the full attack on five rounds of PRINCE and recovers the whole key k0, k1. In
this case, the new distinguisher from Sec. 3.2.2 is used.

The instructions and comments are included in the file itself as well.
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A.3 Attachment three - Recovery of the remain-
ing key bits after the 6-round meet-in-the-
middle attack

The 6-round meet-in-the-middle attack from Section 4.1 recovers 33 key bits. This
section shows a possible way to recover the remaining key bits. Figure A.1 shows
a similar attack which shares the same idea but recovers different key nibbles,
specifically the bits (k′

0 ⊕ k1)[0..15]b and k1[40..43]b. The time complexity of this
attack is indeed lower than the complexity of the attack presented in Section 4.1
as only 16 unknown key bits are guessed this time. Note that the whole column
k1[8..11] can be derived from k1[8], (k0 ⊕ k1)[8..11] and (k′

0 ⊕ k1)[8..11], which are
already known. The complexity of the offline phase remains the same however
the meet-in-the-middle sequence computed is different.

k0 ⊕ k1 k′
0 ⊕ k1

S Sp c

y1 y′
1

k1 k1

M ′ M ′SR SRS S

y2 y′
2

k1 k1

M ′ M ′SR SRS S

M ′

y3 y′
3

Figure A.1: The alternative 6-round meet-in-the-middle attack. Blue parts are
connected to the online phase, red parts are connected to the offline phase. Gray
nibbles need to be guessed during the online phase. Black nibbles need to be
guessed during the offline phase. White nibbles are constant. The difference in
dotted nibbles is known. Hatched nibbles play no role.

The alternative attack can be performed in different variants. One of them is
guessing the bits (k′

0⊕k1)[16..31]b and k1[44..47]b. Another one is guessing the bits
(k′

0 ⊕k1)[48..63]b and k1[36..39]b. Each of the variants mentioned recovers at most
16 additional key bits. If we use all of them, the whole key (k′

0 ⊕ k1) is recovered.
A column of the key k1 can be recovered using a different attack that uses the

knowledge of the whole key (k′
0 ⊕ k1). The idea of the attack is again the same,

the scheme is depicted in Figure A.2. The complexity of the additional attack is
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indeed lower than the complexity of recovering the previous key bits.

k0 ⊕ k1 k′
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y3 y′
3

Figure A.2: The additional 6-round meet-in-the-middle attack. Note that the
whole key k′

0 ⊕ k1 is known. Blue parts are connected to the online phase, red
parts are connected to the offline phase. Gray nibbles need to be guessed during
the online phase. Black nibbles need to be guessed during the offline phase.
White nibbles are constant. The difference in dotted nibbles is known. Hatched
nibbles play no role.

After performing such an attack, only two columns of k1 are left to find. We
can recover them by performing an exhaustive search without increasing the over-
all complexity.

A.4 Attachment four - Recovery of the remain-
ing key bits after the 8-round meet-in-the-
middle attack

The 8-round meet-in-the-middle attack from Section 4.2 recovers 49 key bits.
This section shows how to recover the remaining key bits. The attack and
the graphics of the figure is taken from [5]. Figure A.3 shows a similar attack
which shares the same idea but recovers different key nibbles, specifically the bits
(k′

0 ⊕ k1)[0..31]b and k1[40..47]b. The time complexity of this attack is indeed
lower than the complexity of the attack presented in Section 4.2 as only 33 un-
known key bits are guessed this time. Note that k1[32..47]b and k0[32..47]b can
be computed from k1[47]b since the whole key k′

0 ⊕ k1 and (k0 ⊕ k1)[32..47] have
already been guessed or are known. The complexity of the offline phase remains
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the same however the meet-in-the-middle sequence computed is different.

k0 ⊕ k1 k′
0 ⊕ k1
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Figure A.3: The alternative 8-round meet-in-the-middle attack. Blue parts are
connected to the online phase, red parts are connected to the offline phase. Gray
nibbles need to be guessed during the online phase. Black nibbles need to be
guessed during the offline phase. White nibbles are constant. The difference in
dotted nibbles is known. Hatched nibbles play no role.

After performing the above mentioned attack, only nibbles k1[0..7, 12..15] need
to be recovered. These key bits can be found by exhaustive search without
increasing the overall time complexity.
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