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Introduction
In this thesis, we continue the decades-long line of research focused on nonlinear inter-
actions between whistler-mode waves and energetic electrons in space plasmas. These
interactions facilitate the formation of high amplitude coherent structures in the wave
spectrum and have an important role in electron acceleration and transport in various
plasma environments. While we will discuss these processes mainly within the frame
of the Earth’s magnetospheric dynamics, the underlying theory can be applied in the
research of other planetary magnetospheres and solar wind, and it finds use even in the
field of laboratory plasmas, with possible modifications for different wave modes and
particle species.

It is sometimes said that the Earth’s magnetosphere can be viewed as a large labo-
ratory for experiments in a tenuous magnetized plasma. However, it is a very peculiar
laboratory, where the scientists cannot control the environment and probing even a
very tiny section of the system turns out to be difficult and costly. Apart from funda-
mental research, our interest in the magnetosphere is driven by the increasing number
of man-made satellites orbiting in the near-Earth space, which can sustain damage due
to radiation exposure, not to mention the effect on the passengers of manned missions.
In this respect, the most attention is given to the outer radiation belt. This toroidal
region, typically spanning between 3.0 and 6.5 Earth’s radii near the magnetic equator
(Baker et al., 2018), exhibits large and very variable fluxes of relativistic electrons.
Understanding the fundamental physical processes behind the energization of radiation
belt particles is essential for predicting high radiation hazard events.

The particle content in the outer radiation belt is in a dynamical equilibrium. Par-
ticles that become scattered and reach low altitudes during their bounce motion along
magnetic field lines are lost to the atmosphere, and new populations of particles are
injected during substorm events from the magnetotail. New electron populations have
energies in the order of 10 keV, two orders below the MeV fluxes, which are consid-
ered a radiation hazard. The acceleration happens on various spatial and temporal
scales, with the fastest energization being due to nonlinear interactions with coher-
ent whistler-mode waves. Among the various electromagnetic emissions propagating in
the right-hand polarized whistler mode, the chorus emission is of special interest. It
consists of repeating rising-tone wave elements, which can reach very high intensities
and exhibit fast amplitude modulations within each element. The growth mechanism
of chorus and the energy exchange between resonant electrons and chorus is actively
studied, and most of the new results presented here are focused in this direction.

The contents of this thesis are divided into two parts. In Chapters 1 to 3, we
cover the essential theory of cold plasma waves and wave-particle interactions in space
plasma, as well as the recent developments in observation and analysis of the chorus
emissions and associated nonlinear effects. Chapter 1 deals with the dispersion of
whistler-mode waves and the linearized theory of plasma wave growth and also describes
selected electromagnetic emissions which can be detected by in situ measurements in
the Earth’s magnetosphere. In Chapter 2, the theory of resonant interaction of plasma
waves and particles is summarized, with most space given to the second-order cyclotron
resonance between whistler-mode waves and electrons and the related trapping effects.
Although the bulk of the theory was developed in the 1960s and 1970s, we attempt
to provide insights based on recent observational studies and numerical simulations.
The Hamiltonian approach to wave-particle resonance is briefly mentioned to explain
its limitations in the study of rising tone chorus elements. Chapter 3 is dedicated to
the chorus emissions. Starting with a succinct account of recent observational findings,
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we focus on the nonlinear growth theory of chorus emissions as presented in the works
of Omura et al. (Omura, 2021). While our primary goal is to provide the theoretical
framework for the new results presented in the second part of this work, we also review
other theories dealing with the formation of chorus emissions and discuss some open
research questions in this field.

The second part of the thesis is concerned with our new research on the structure of
chorus emissions and their effect on hot electron populations. In Chapter 4 we present
a new model of a rising tone chorus element propagating along magnetic field lines. We
connect the nonlinear growth theory with older hypotheses about the resonant current
in order to construct a wavefield with a subpacket structure comparable to observations
provided by magnetic search coils on spacecraft which probe the outer radiation belt
(Hanzelka et al., 2020). The model is used in test particle simulations in Chapter 5
to analyze the evolution of hot electron distribution during interaction with chorus.
We reveal, in agreement with some previously published research, that multiple stripes
of increased and decreased phase space density (PSD) are formed during the interac-
tion, associated with the trapping and scattering effects of individual subpackets. The
discovered perturbations in phase space density are analyzed in detail, and the measur-
ability of these perturbations is assessed. Successful experimental confirmation of the
perturbations would directly confirm the theories describing the nonlinear processes
behind the chorus growth. It is shown that the particle instruments on currently or
recently operating spacecraft lack the required pitch angle resolution to capture the
small PSD structures, and the required parameters for a successful measurement are
discussed (Hanzelka et al., 2021). In the last section, another example application of
the model is given, in which we calculate the precipitating electron fluxes due to in-
teraction with a single chorus element. Small, rapid fluctuations appear in the fluxes,
related again to the subpackets, which might be reflected in the intensity modulation
of pulsating auroras.

To keep the thesis focused and concise, we omit any general introduction to space
plasmas or any deeper discussion of the broader connections between the chorus waves
and various parts of the magnetosphere. For the same reasons, we mention the research
on wave propagation and ray tracing, which was also done and published in the frame
of this thesis work, only in passing and where it can support our assumptions about the
behaviour of chorus waves. All authored or co-authored publications related to waves
in space plasma (but not necessarily to chorus) can be found in the List of Publications
at the end of the thesis.
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1. Theory and observations of
plasma waves in space
Plasma waves are ubiquitous throughout planetary magnetospheres, arising naturally
due to the amplification of certain parts of the fluctuation spectrum through energy
transfer between particles and electromagnetic fields. The tenuous magnetised plasma
of the Earth’s magnetosphere exhibits a rich wave mode structure, which must be
understood in order to interpret data collected from electric and magnetic field receivers
carried by scientific spacecraft. The dispersion and polarisation properties of plasma
waves determine how they propagate through the medium and interact with charged
particles, making detailed knowledge of dispersion relations essential for analysing linear
and nonlinear wave-particle interactions.

In this chapter, we briefly review the hot plasma dispersion relation and its cold
plasma approximation, limiting ourselves to small-amplitude waves and ignoring the
possible trapping of particles in the wave potential. Focus is put on the propagation
properties of the whistler mode and the linear instabilities of this mode. The ray
tracing method of propagation analysis is described with examples. We then give an
overview of spacecraft instrumentation relevant to the research on whistler-mode waves,
followed by a short description of numerical methods used to process raw data from
electric antennas and magnetic search coils to obtain wave propagation properties. In
the last section, we list some of the most common and most important electromagnetic
emissions which can occur in planetary magnetospheres, again with particular attention
to the whistler-mode emissions.

1.1 Dispersion of small-amplitude plasma waves

1.1.1 The Vlasov–Maxwell equations

Most space plasmas can be described by the Vlasov-Maxwell system of equations (Ichi-
maru, 2004; Gurnett and Bhattacharjee, 2017)

∂fs
∂t

+ vs · ∂fs
∂r + Zse (E + vs × B) · ∂fs

∂u = 0 ∀s (1.1)

∇ · E = ρ

ε0
, (1.2)

∇ · B = 0 , (1.3)

∇ × E = −∂B
∂t

, (1.4)

∇ × B = µ0Jtot + µ0ε0
∂E
∂t

. (1.5)

The electromagnetic fields E(r , t) and B(r , t) are sums of internal fields induced
the through particle distribution and of external fields, e.g. the planetary magnetic
field. The charge density ρ(r , t) and the current density Jtot(r , t) are calculated
self-consistently from the single-particle phase space distributions fs(r ,u, t),

ρ = e

∫︂ ∑︂
s

Zsfsd3u , (1.6)

Jtot = J + Jext = e

∫︂ ∑︂
s

Zsfsvsd3u+ Jext , (1.7)
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where we allow for an external source of current that was not implicitly included in
the plasma description. Subscript s represents a particle species or population, with
Zs carrying the sign and magnitude of the particle charge in units of the elementary
charge e. A complete List of Symbols can be found at the end of this thesis.

The particle velocity vs is defined through the relativistic momentum u as

vs = u
γms

(1.8)

γs =
(︃

1 + u · u
m2
sc

2

)︃1/2
. (1.9)

Since a typical velocity of dominant particle populations in the Earth’s magnetosphere
and the solar wind is much smaller than the speed of light (Russell et al., 2016), time
dilation and length contraction effects have negligible impact on the plasma dispersive
properties described in the rest of the chapter. However, when discussing the resonance
curves in Chapter 2, the importance of relativistic Doppler shift becomes apparent.

By using the Vlasov equation, we reduce the plasma description to a continuous
fluid. In other words, the distributions fs are coarse-grained and do not retain the
fluctuations due to the discreteness of the particles. The fluid limit is achieved when
the number of electrons per Debye sphere

NDe = 4πne
3 λ3

De (1.10)

is much larger than one. The Debye length

λDe =
√︄
ε0kBTe
nee2 , (1.11)

along with the plasma oscillation frequency

ωpe =

√︄
nee2

ε0me
, (1.12)

are invariant scales of a plasma fluid. The product λDeωpe gives the electron thermal
speed

Ce =
√︄
kBTe
me

. (1.13)

In the definition of the Debye length and the thermal speed, it is assumed for simplicity
that the plasma is in thermal equilibrium, so that the temperature can be treated as
a scalar quantity. When the energy kBTe is equal to 1 eV, the electron component of
the plasma is said to have a temperature of 1 eV, which corresponds to approximately
11600 K.

Because the fluid limit effectively removes particle collisions that are not captured by
the collective behaviour of the averaged (macroscopic) electromagnetic field, the Vlasov
equation is sometimes called the collisionless Boltzmann equation. As a consequence,
it cannot be used to derive the wave dispersion in lower layers of the ionosphere, where
the collision frequency becomes significant (Schunk and Nagy, 2004).

1.1.2 General form of the dispersion relation

The Maxwell equations, a set of coupled linear partial differential equations, can be
transformed into a set of algebraic equations using the Fourier transform. A function
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f(r , t) of position and time can be represented by its Fourier transform f(k, ω) through
the expression

f(r , t) = 1
(2π)2

∫︂ ∞

−∞
f(k, ω)ei(ωt−k·r)dω d3k ; (1.14)

the normalization factor and sign convention given here are used throughout the text.
The vector k is the wave vector, and ω represents the angular wave frequency. The
explicit dependence on (r , t) or (k, ω) will be given only when not clear from the context.

The dispersion of small amplitude waves in a plasma is controlled by the linear
response of the medium to an electromagnetic disturbance. The induced current J(k, ω)
is connected to the electric field E(k, ω) through Ohm’s law

J(k, ω) = σ(k, ω) · E(k, ω) , (1.15)

which serves as the definition of the conductivity tensor σ. The relative permittivity
of an anisotropic dielectric is described by the dielectric tensor, ε, which is related to
the conductivity by the formula

ε = I − σ

iωε0
(1.16)

where I is a unit 3×3 matrix. The permeability is assumed to be scalar and close to the
vacuum value, as the magnetic moment of particles in a space plasma is usually very
small (Baumjohann and et al., 2012). Using the continuity equation for the induced
current

∂ρ

∂t
+ ∇ · J = 0 , (1.17)

the Fourier transformed Maxwell equations can be cast in the form

k · ε · E = 0 , (1.18)
k · B = 0 , (1.19)

k × E − ωB = 0 , (1.20)

k × B + ω

c2 ε · E = −iµ0Jext . (1.21)

By eliminating the magnetic field from Ampère’s law and Faraday’s law, we obtain(︄
ε − k2c2

ω2

(︃
I − kk

k2

)︃)︄
· E = −iJext

ωε0
. (1.22)

We can now define the dispersion tensor

D(k, ω) = ε(k, ω) − k2c2

ω2

(︃
I − kk

k2

)︃
, (1.23)

and in the case of a plasma without external sources (Jext = 0), we get the homogeneous
equation

D · E = 0 . (1.24)

Nontrivial solutions are found by setting the determinant of the dispersion tensor to
zero,

|D(k, ω)| ≡ D̄(k, ω) = 0 . (1.25)

The last equation determines the dispersion relations k(ω) for electromagnetic wave
modes in a magnetized plasma.
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We will often express the dispersion properties through a dimensionless quantity,
the refractive index

µ = kc
ω
. (1.26)

The phase velocity Vp of a wave is directed along the wave vector (or the vector
refractive index), and its magnitude is given by

Vp = ω

k
= c

µ
. (1.27)

For a pulse with a slowly varying amplitude, the inverted dispersion relation ω(k) can be
well approximated by the first-order Taylor expansion about the mean wave vector k0,

ω(k) ≈ ω(k0) + ∂ω

∂k (k − k0) . (1.28)

The coefficient of the linear term is called the group velocity,

Vg = ∂ω

∂k , (1.29)

and describes the propagation of the envelope of the packet. In the case of shorter
pulses, higher-order terms start to play a role, and the wave packet experiences spread
and decrease in amplitude, accompanied by a frequency chirp (Orfanidis, 2016).

The group velocity also represents the flow of energy carried by a wave packet. For
a loss-free plasma medium, we can write (Stix, 1992)

Vg = S + T
W

, (1.30)

where
S = 1

2µ0
(E∗ × B + E × B∗) (1.31)

is the flux of electromagnetic energy (the Poynting vector) with ∗-notation for the
complex conjugates;

T = −ωε0
2 E∗ · ∂ε

∂k · E (1.32)

is the flux of acoustic energy, and

W = 1
2

(︃ 1
µ0

B∗ · B + ε0E∗ · ∂

∂ω
(ωε) · E

)︃
(1.33)

denotes the energy density. As we show below in Section 1.1.3, a hot magnetoplasma
is not loss-free. Nevertheless, for wave modes that are not heavily damped, the energy
flow formulation of group velocity gives very accurate results.

1.1.3 Hot plasma dispersion relation

The derivation of dispersion modes of small amplitude waves in a hot magnetized
plasma starts with the linearization of the Vlasov-Maxwell system, Eqs. 1.1–1.5. Since
this thesis focuses on large amplitude waves and nonlinear effects, we present only those
parts of the linear theory that are relevant for theoretical discussion in later sections.

Assuming that the distribution function can be split into a homogeneous, time-
independent zero-order term fs0(u) and a first-order perturbation fs(t, r ,u), the linear
expansion of the Vlasov equation is given by (Gurnett and Bhattacharjee, 2017; Ichi-
maru, 2004)

(vs × B0) · ∂fs0
∂u = 0 , (1.34)
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∂fs
∂t

+ vs · ∂fs
∂r + Zse(vs × B0) · ∂fs

∂u + Zse(E + vs × B) · ∂fs0
∂u = 0 . (1.35)

Fields E and B represent perturbations associated with the plasma waves, B0 is a
constant ambient magnetic field (e.g. the geomagnetic field), and E0 = 0. In cylindrical
momentum space coordinates

ux = u⊥ cosφ , (1.36)
uy = u⊥ sinφ , (1.37)
uz = u∥ , (1.38)

the zero-order equation reads
−B0

∂fs0
∂φ

= 0 . (1.39)

We will call this formula the gyrotropic condition. Under the action of large amplitude
waves, the azimuthal symmetry can be broken, and vortex structures will emerge in
the (φ, u∥) space. This type of nongyrotropy will be reintroduced later in Chapter 3
through external currents.

The first order Vlasov equation for the perturbation fs is most easily solved through
Fourier transform in space and time. Using the cylindrical coordinates and Faraday’s
law, we arrive at

∂fs
∂φ

− i(αs + βs cosφ)fs = sgn(Zs)e
Ωs/γs

(︃
E + vs ×

(︃k × E
ω

)︃)︃
· ∂fs0
∂u . (1.40)

Here, E and fs depend on (ω, k) instead of (t, r). We have introduced the unsigned
cyclotron frequency

Ωs = B0|Zse|
ms

(1.41)

and the substitutions

αs = sgn(Zs)
k∥γsvs∥ − γsω

Ωs
, (1.42)

βs = sgn(Zs)
k⊥γsvs⊥

Ωs
. (1.43)

The formal solution fs(k, ω) enters into the calculation of current density J in Equa-
tion 1.7, which is then plugged into Ohm’s law and allows us to express the conductivity
tensor and the dielectric tensor.

The hot plasma dielectric tensor for a general normalized distribution Fs = fs/ns
takes the form (Stix, 1992; Ichimaru, 2004)

ε = I +
∑︂
s

ω2
ps

ωΩs

∫︂ ∞

0
2πu⊥du⊥

∫︂ ∞

−∞
du∥

[︄
ê∥ê∥

Ωs

γsω

(︄
1
u∥

∂Fs0
∂u∥

− 1
u⊥

∂Fs0
∂u⊥

)︄
u2

∥−

−
∞∑︂

n=−∞
sgn(Zs)

u⊥
αs + n

(︄
∂Fs0
∂u⊥

+
k∥
ω

(︄
vs⊥

∂Fs0
∂u∥

− vs∥
∂Fs0
∂u⊥

)︄)︄
Tn

]︄
,

(1.44)

where

Tn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n2J2
n

β2
s

inJnJ ′
n

βs

nJ2
nu∥

βsu⊥

− inJnJ ′
n

βs
(J ′
n)2 −

iJnJ ′
nu∥

u⊥

nJ2
nu∥

βsu⊥

iJnJ ′
nu∥

u⊥

J2
nu

2
∥

u2
⊥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.45)
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To make the formula as compact as possible, we introduced the unit vector ê∥ = (1, 0, 0)
in cylindrical coordinates (u∥, u⊥, φ) and the argument βs of the Bessel functions of the
first kind Jn and their derivatives J ′

n was omitted. The denominator αs + n reveals
divergences encountered at cyclotron harmonics,

ω − k∥v∥ − sgn(Zs)
nΩs

γs
= 0 . (1.46)

The integral over parallel momenta in Eq. 1.44 is to be taken along a deformed Landau
contour that encircles the poles (Stix, 1992). To convert the integrands to the form
which would be obtained through the Laplace transform, we can simply make the
substitution ωr + iγL → ip, where p represents a complex frequency and ωr is the real
frequency. The imaginary part of the frequency, γL, represents the growth or damping
of the given wave mode. In later sections, the subscript r is dropped and the real
frequency is denoted simply by ω.

Going back to the general form of the dispersion tensor from Eq. 1.23, we can write
the linear dispersion relation (Eq. 1.25) as⃓⃓⃓⃓

⃓⃓⃓ εxx − µ2 cos2 θk εxy εxz + µ2 sin θk cos θk
εyx εyy − µ2 εyz

εzx + µ2 sin θk cos θk εzy εzz − µ2 sin θk

⃓⃓⃓⃓
⃓⃓⃓ = 0 . (1.47)

Here we introduced the polar angle θk between the wave vector k and the ambient
magnetic field B0. Due to the complicated form of the hot plasma dielectric tensor,
the dispersion curves are usually obtained numerically or through analytical solutions
of approximated forms of the dispersion relation.

1.1.4 Cold plasma approximation

In a typical magnetospheric plasma, the wave-particle resonances associated with ther-
mal motion appear at velocities higher than the thermal velocity. The number of par-
ticles entering the resonance can be thus considered as relatively small, and the growth
rate becomes negligible compared to the frequency, |γL| ≪ |ω| (here, ω represents the
real part of frequency from Eq. 1.44). Taylor series expansion of the dispersion relation
D̄(k, ω) to the first order can be broken down into real and imaginary parts (Gurnett
and Bhattacharjee, 2017)

D̄r = 0 (1.48)

and
γL = −D̄i

∂D̄r/∂ω
. (1.49)

We will return to the imaginary part when discussing instabilities of specific wave modes
in Section 1.1.6. The real part of the dispersion relation can be further simplified if
we completely neglect the impact of resonant particles and replace the normalized
distribution Fs0 with a Dirac delta function,

Fs0 = 1
2πu⊥

δ(u⊥)δ(u∥) . (1.50)

This is called the cold plasma approximation. As a consequence of setting the temper-
ature to zero, we cannot obtain any acoustic dispersion branches in this approximation
(e.g. the ion-acoustic waves, abundant in solar wind plasma, Ṕı̌sa et al. (2021)), and
wave modes associated with Doppler-shifted resonances also disappear. Any relativistic
effects are naturally absent.
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While it is in principle possible to insert the delta function into Eq. 1.44, a more
direct approach starts from the equation of motion for particles experiencing the Lorentz
force exerted by the perturbation fields E , B and the background magnetic field B0.
Treating the particle velocity vs as a first-order perturbation, we may express the
current as J =

∑︁
s ns0Zsevs and use it to obtain the conductivity tensor. Following the

treatment in Section 1.1.2, we arrive at the cold plasma dispersion relation

D̄(µ, ω) =

⃓⃓⃓⃓
⃓⃓⃓S − µ2 cos2 θk −iD µ2 sin θk cos θk

iD S − µ2 0
µ2 sin θk cos θk 0 P − µ2 sin2 θk

⃓⃓⃓⃓
⃓⃓⃓ = 0 . (1.51)

The terms S, D and P are called the Stix coefficients (Stix, 1992; Gurnett and Bhat-
tacharjee, 2017), with definitions

S = 1
2(R+ L) = 1 −

∑︂
s

ω2
ps

ω2 − Ω2
s

, (1.52)

D = 1
2(R− L) =

∑︂
s

sgn(Zs)Ωsω
2
ps

ω(ω2 − Ω2
s)

, (1.53)

P = 1 −
∑︂
s

ω2
ps
ω2 , (1.54)

R = 1 −
∑︂
s

ω2
ps

ω(ω + sgn(Zs)Ωs)
, (1.55)

L = 1 −
∑︂
s

ω2
ps

ω(ω − sgn(Zs)Ωs)
. (1.56)

The dispersion relation can be reduced to a biquadratic equation in µ with solutions

µ2 =
RL sin2 θk + PS(1 + cos2 θk) ±

√︂
(RL− PS)2 sin4 θk + 4P 2D2 cos2 θk

2
(︁
S sin2 θk + P cos2 θk

)︁ . (1.57)

For each frequency and a given wave normal angle θk, there can be at most two cold
plasma wave modes. In Figure 1.1, we show dispersion branches in a cold plasma
with three ion species, protons, He+ and O+, with density ratios nO/ne = 0.05 and
nHe/ne = 0.1.

In the two sections below, we will summarize the properties of the two modes
that play a prominent role in nonlinear wave-particle interactions in the Earth’s outer
radiation belt: the whistler-mode waves and the electromagnetic ion cyclotron (EMIC)
waves.

Whistler mode waves

In the case of propagation parallel to the background magnetic field (θk = 0), the
cold plasma dispersion relation for P ̸= 0 has two roots, µ2 = R and µ2 = L. These
solutions correspond to right-hand and left-hand circularly polarized electromagnetic
wave modes, respectively. The polarization, tied to the direction of B0, can be obtained
by solving the homogeneous equation 1.24, converting E to B through Faraday’s law,
and looking at the ratio of the magnetic field components By/Bx. Magnetic field
polarization is preferred because B rotates in the plane perpendicular to k (a direct
consequence of Eq. 1.20). We will postpone the discussion of the left-handed mode to
the next section and focus on the R-mode.

Looking at the definition of Stix coefficient R, or at the Figure 1.1a, we can see that
the R-mode is evanescent between the electron resonance frequency Ωe and the cutoff
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Figure 1.1: Dispersion branches of the cold plasma dispersion relation. Values of refractive
index are plotted in red when the corresponding mode is left hand polarized, and in blue for
left-handed waves. The hybrid resonance frequencies ωS=0 (upper hybrid, lower hybrid and ion
hybrid, ωuh > ωlh > ωih) are represented by solid black vertical lines, and the cutoff frequencies
ωL=0 and ωR=0 are plotted in green and magenta, respectively. Gyrofrequencies Ωs of electrons
and the three ions, H+, He+ and O+, are shown as dotted lines. The wave normal angle used
in refractive index calculations is printed at the top of each panel.

frequency ωR=0. The high-frequency branch represents the free space mode (also called
the X-mode), and the lower frequency branch is called the whistler mode. Notice that
when we follow the whistler branch to low frequencies, it crosses the L-mode branches,
but it does not encounter any resonance or cutoff and converges to the fast Alfvén
mode µ2

A = 1 +
∑︁
s ω

2
ps/Ω2

s for ω → 0. However, most of the whistler-mode emissions
important for the dynamics of radiation belts occur at frequencies ω ≫ Ωp. Under such
conditions, we can neglect the motion of ions and obtain the simplified refractive index
formula

µ2 = 1 +
ω2

pe
ω(Ωe − ω) . (1.58)

In studies of the inner magnetosphere, we can often apply the high density approxi-
mation (Ωe/ωpe)2 → 0 and erase the 1 at the right-hand side of Eq. 1.58. A quick
calculation reveals that µ has its minimum at ω = 0.5Ωe, which corresponds to the
maximum of the phase velocity. The group velocity

Vg
c

=
2(Ωe − ω)3/2(ω2(Ωe − ω) + ωω2

pe)1/2

2ω(Ωe − ω)2 + Ωeω2
pe

ω2
pe≫Ω2

e
≈ 2(Ωe − ω)3/2ω1/2

Ωeωpe
(1.59)

attains its maximum at ω = 0.25Ωe in the high-density approximation. The approxi-
mate formulas also reveal that Vp = Vg at ω = 0.5Ωe.
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Figure 1.2: Propagation properties of whistler-mode waves in the frequency range Ωp < ω <
Ωe. The plasma-to-cyclotron frequency ratio is set to ωpe/Ωe = 5.0, and the effect of heavier
ions is negligible.

Dispersive properties of oblique whistler-mode waves are harder to analyze in full
generality because the whistler branch connects to the L-mode below Ωp and stops
at the ωL=0 cutoff (see Fig. 1.1b,c). For simplicity, we will apply the immobile ion
assumption and high-density approximation directly to the full dispersion relation in
Equation 1.51. Only the whistler mode can exist in the range of frequencies Ω2

p < ω2 <
Ω2

e , and its refractive index is

µ2 ≈
ω2

pe
ω(Ωe cos θk − ω) . (1.60)

We can see that the waves cannot exist at wave normal angles larger than the resonance
cone angle θres = arccos(ω/Ωe). However, as shown in Figure 1.1d, a perpendicular
whistler-mode branch exists below the lower hybrid frequency ωlh when ion motions
are included. This means that as the waves propagate from higher to lower altitudes
and ω/Ωe decreases, the wave normal angle can go through θk = 90◦. This results
in reflection of the wave packet, because the parallel component of the group velocity
always has the same sign as the parallel component of the wave vector (a consequence
of Equations 1.20 and 1.30 for T = 0).

Starting from Equation 1.60, it can be shown that the group velocity of oblique
whistler waves points along the field line as long as

θk = θG ≡ arccos
(︃2ω

Ωe

)︃
. (1.61)

Here, θG is the Gendrin angle (Gendrin, 1961), which will appear again when discussing
the detailed properties of the chorus emission in Section 3.1. The angle θG is defined as a
nonzero wave normal angle for which the waves satisfy the condition Vg ∥ B0. Another
intriguing property of the Gendrin angle is that the phase velocity as a function of
frequency maximizes at θk = θG.
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A numerical solution of the cold plasma dispersion in the frequency range Ωp < ω <
Ωe reveals additional interesting properties of the oblique whistler mode. In Figure 1.2,
we plot the (ω, θk) dependence of the phase velocity Vp, group velocity Vg, polar angle
θS = ∠(Vg,B0) and magnetic field ellipticity EB (see Section 1.2.2 for the definition
of ellipticity). Small deviations from parallel direction have a negligible effect on the
phase velocity and the group velocity, but both quantities start to quickly decrease as
θk approaches the resonance cone. The θS = 0 valley in Figure 1.2c represents the
Gendrin angle, which very closely follows the approximate formula 1.61. The ellipticity
plot shows that oblique whistler modes are nearly circularly polarized for all wave
normal angles, except near the lower hybrid frequency. However, this is not true for
the electric field ellipticity (not shown), which converges to zero as θk approaches the
resonance cone.

EMIC waves

Other modes of cold plasma waves that take part in the acceleration of radiation belt
particles are the electromagnetic ion cyclotron modes, often abbreviated as EMIC.
In the parallel approximation, they are represented by the µ2 = L dispersion branches
located between ion gyrofrequencies. Their dispersive properties are strongly dependent
on the ion composition and ion density ratios. In Figure 1.1c we can see that the
proton cyclotron mode has a left-handed polarization near the ω = Ωp resonance, then
experiences a polarization reversal at the crossover frequency ωD=0 and continues to
lower frequencies as a right-handed mode. With multiple heavier ions, additional ωL=0
cutoffs appear, and the proton branch stops at an ion-ion cutoff located between the
gyrofrequencies of the second and the third lightest ion (we always assume once-ionized
atoms). The EMIC wave associated with the heaviest ion, i.e. oxygen O+ in Figure 1.1,
is always left-hand polarized.

Due to the presence of multiple cyclotron resonances, finding a suitable approxima-
tion for the refractive index of EMIC waves is more complicated than in the case of
whistler mode waves. We can always safely assume ω ≪ Ωe, and then we get

µ2 = 1 +
∑︂
i

ω2
pi

ω(Ωi − ω) −
ω2

pe
ωΩe

(1.62)

for the parallel L-mode; the index i now runs only over the ion species. The refractive
index converges to the shear Alfvén mode at low frequencies (Gurnett and Bhattachar-
jee (2017), chapter 6.5). The group velocity is expressed as

Vg
c

=

(︄
1 −

ω2
pe

ωΩe
+
∑︁
i

ω2
pi

ω(Ωi − ω)

)︄2

1 −
ω2

pe
2ωΩe

+
∑︁
i

Ωiω
2
pi

2(Ωi − ω)2

, (1.63)

which reduces to a more straightforward form in a high-density proton-electron plasma:

Vg
c

≈ (Ωp − ω)3/2

MΩ1/2
p ωpe

(︄
1 − ω

2Ωp

)︄ , (1.64)

where M = (me/mp)1/2. The phase velocity can be written as

Vp
c

≈ Ω1/2
p (Ωp − ω)1/2

Mωpe
(1.65)
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Figure 1.3: Propagation properties of two EMIC modes with dispersion branches starting at
Ωp and ΩO. Relative ion densities are the same as in Figure 1.1, and ωpe/Ωe = 5.0. Panels
copy the format of Figure 1.2.

under the same approximation and is strictly smaller than Vg for all nonzero frequen-
cies. Unlike in the whistler-mode case, there is no simple formula for the resonance
cone. Moreover, the results obtained for a one-component plasma have very little use
in magnetospheric physics due to the ubiquitous presence of helium ions (Lee and An-
gelopoulos, 2014). The dispersive properties of EMIC change drastically at the crossover
frequency ωD=0 > ΩHe and the waves are strongly damped near Ωp, leaving a relatively
narrow range of frequencies where the approximate formulas can be used.

Wave propagation properties of two EMIC modes are plotted in Figure 1.3 as a
function of ω and θk. The oblique proton cyclotron wave is coupled to the whistler
(fast magnetosonic) wave and then to the helium wave, creating one branch with two
polarization reversals, as shown in Figure 1.3d. The second plotted branch is the oxygen
cyclotron wave, visible near the left boundary of each panel. The mode which exhibits
helium-magnetosonic coupling is not shown due to the frequency overlap. Both plotted
modes have very large resonance cone angles, allowing the EMIC wave to become highly
oblique at all frequencies. The group velocity of the right-handed wave is much larger
than that of the left-handed wave, as long as we assume a quasiparallel propagation.
However, at very high θk, the right-handed wave experiences a major decrease in Vg
at the proton-helium hybrid frequency ωS=0 (∼ 0.3Ωp with our parameter choice). As
with the whistler mode, the hybrid frequency marks the point where the resonance
cone reaches 90◦. At the same frequency, the direction of the Poynting vector of highly
oblique waves switches from parallel to nearly perpendicular; above ωS=0, the wave
packet propagates parallel to the local field line across all θk (Fig. 1.3c). Exactly at
the hybrid frequency, the magnetic field ellipticity stays near +1 across all wave normal
angles up to the resonance cone (Fig. 1.3d). There is no Gendrin angle analogy for the
coupled proton branch or any other EMIC modes.

The striking difference between the multi-ion dispersion branches and the whistler
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branch causes difficulties in the modelling of EMIC propagation and wave-particle
resonances. These dispersive properties reflect on theories that attempt to explain the
growth of discrete elements in EMIC spectra through nonlinear interaction, finding
less success than in the case of whistler-mode chorus. See Section 3.4 for additional
discussion.

1.1.5 Ray approximation of wave propagation

In many magnetospheric applications of the plasma wave theory, the wavelength stays
much smaller than the characteristic spatial scale of irregularities of the plasma medium,
and the wave period is typically much smaller than characteristic timescales of vari-
ations in the plasma. In such cases, wave propagation can be studied within the ray
approximation of geometric optics (Bernstein, 1975; Suchy, 1981). Specifically, for a
plane wave propagating through an inhomogeneous, nonstationary medium, we require
that ⃓⃓⃓⃓

∂E0
∂ri

⃓⃓⃓⃓
≪
⃓⃓⃓⃓
∂S

∂ri

⃓⃓⃓⃓
, (1.66)⃓⃓⃓⃓

∂E0
∂t

⃓⃓⃓⃓
≪
⃓⃓⃓⃓
∂S

∂t

⃓⃓⃓⃓
. (1.67)

For electromagnetic waves, the same conditions must hold for the amplitude of the
magnetic field. The amplitudes are taken as real functions here, and the eikonal function
S captures the fast variation of the phase,

E(r , t) = E0(k, ω; r , t)ei(k·r−ωt) ≡ E0(k, ω; r , t)eiS(r ,t) . (1.68)

E0 is a complex amplitude function in k-space that expresses the dependence of field
components on k and ω (i.e. it carries the dispersive properties). The wave vector and
frequency, which are related to the eikonal through

∂S

∂r = ik , (1.69)

∂S

∂t
= −iω , (1.70)

are assumed to be slowly varying in space and time.
The dispersion equation (Eq. 1.24), which was stated for a homogeneous, stationary

medium, can now be written as

D
(︃
∂S

∂r ,
∂S

∂t
; r , t

)︃
· E = 0 . (1.71)

The dispersion relation represents the solvability condition for the dispersion equation,
and it can be restated in the form

−∂S

∂t
= H

(︃
∂S

∂r , r , t
)︃
. (1.72)

This is the Hamilton-Jacobi equation of geometric optics, with H in units of frequency.
It has been shown (Horne, 1989; Maxworth and Golkowski, 2017) that for the purpose
of wave propagation studies in the magnetosphere, it is sufficient to use the real form of
the dispersion relation with the cold plasma approximation. The Hamilton canonical
equations for a stationary medium, also called the ray tracing equations in this context,
can be written as (see Budden (1985) for the relationship between H and D̄)

dr
dt = −∂D̄

∂k

(︄
∂D̄

∂ω

)︄−1

= Vg , (1.73)
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dk
dt = ∂D̄

∂r

(︄
∂D̄

∂ω

)︄−1

= −∂ω

∂r . (1.74)

Hanzelka and Santoĺık (2019) kept the full hot plasma dispersion relation in their ray-
tracing code (using the real Hamilton equations for media with moderate absorption
as derived by Suchy (1981)) but did not observe any significant changes to whistler-
mode wave trajectories compared to the ideal cold plasma dispersion. Maxworth and
Golkowski (2017) used finite temperatures to describe the cold plasma distribution and
discussed the effect of temperature on the reflection points of whistler waves near the
lower hybrid frequency, confirming that the impact of warm or hot plasma on the ray
tracing results is negligible. The variation of amplitude can be obtained by applying
the linear growth factor (Eq. 1.49) along precalculated trajectories. In the case of
field-aligned propagation, the convergence of field lines will increase the wave energy
density; to capture this effect, multiple rays starting near the field line must be traced.

An important mode of whistler wave propagation is ducting inside density enhance-
ments. It is hypothesized that the cold plasma in the inner magnetosphere is filamented
(Bell et al., 2009) and thus can guide the waves from the equatorial plane to higher
latitudes without significant attenuation. To analyze two-dimensional ducted propaga-
tion in a dipole magnetic field, the equations 1.73 and 1.74 must be solved for functions
of density ne(x, z) and magnetic field B0(x, z). However, with suitable approximations,
the basic principles can be explained in a homogeneous field case. Let us assume the
simplified dispersion 1.60, B0 directed along the z-axis and electron density ne de-
pendent on the x-coordinate only. The nonzero derivatives of the dispersion relation

D̄(k, ω) = 1 − c2k2

ω2 +
ω2

pe
ω(Ωe − ω) (1.75)

are found to be
∂D̄

∂ckz
= −ωpe(Ωe + (Ωe cos θk − 2ω) cos θk)

ω3/2(Ωe cos θk − ω)3/2 , (1.76)

∂D̄

∂ckx
= −ωpe(Ωe cos θk − 2ω) sin θk

ω3/2(Ωe cos θk − ω)3/2 , (1.77)

∂D̄

∂x
= 1
ne

∂ne
∂x

ω2
pe

ω(Ωe cos θk − ω) , (1.78)

∂D̄

∂ω
=

ω2
peΩe cos θk

ω2(Ωe cos θk − ω)2 . (1.79)

By introducing the small-angle approximation sin θk ≈ θk, cos θk ≈ 1, we get kz ≈
const., Vgz ≈ const., reducing the system to one dimension. The problem can be
further simplified by using a parabolic density profile

ne(x) = ne0

(︄
1 + sduct

x2

w2

)︄
, (1.80)

where sduct = −1 stands for a density enhancement, sduct = 1 models a density deple-
tion, and w represents a characteristic width of the duct. Finally, the ray evolution in
the (x, kx) space reduces to an elliptical/hyperbolic motion,

d(ckx)
d(x/w) = −sductR

2
yx
x/w

ckx
, R2

yx =
2ωω2

p0
2ω − Ωe

, (1.81)

where we used an additional simplification (x/w)2 ≪ 1 and denoted the plasma fre-
quency at x = 0 as ωp0. Whether the ray will be guided depends on the sign of 2ω−Ωe
and sduct. Table 1.1 summarizes the four possible combinations.
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Table 1.1: Classification of whistler mode ducting in field-aligned density inhomo-
geneities.

Upper band ω > Ωe/2 Lower band ω < Ωe/2
Density depletion ducting no ducting
Density enhancement no ducting ducting

Recalling the group velocity definition from Eq. 1.73 and combining it with the
ducted propagation described by Eq. 1.81 above, we can show that x(t) behaves like a
harmonic oscillator. The oscillation frequency is found to be

ΩHO
ω

= cΩ−1
e
w

(︃
1 − ω

Ωe

)︃(︃
2sduct

(︃2ω
Ωe

− 1
)︃)︃1/2

(︄
ω2

Ω2
e

(︃
1 − ω

Ωe

)︃
+
ωω2

pe
Ω3

e

)︄1/2 . (1.82)

For example, a whistler-wave ray with frequency ω = 0.25Ωe in a plasma with ωp0 =
5Ωe0 and a magnetic field B0 = 300 nT will oscillate in a 100 km wide duct (w = 50 km)
with frequency ΩHO = 1.1 · 10−2 ω. In this case, approximately 50 wavelengths will fit
between two crossing of x = 0.

In a typical magnetospheric environment, the wave is also affected by the radial
gradient of the magnetic field, which can be approximated as −3/(REL0) near the
magnetic equatorial plane (L0 is the L-shell at x = 0). For the small oscillations dis-
cussed above, the gradient force shifts the centre of the harmonic motion from x0/w = 0
to

x0
w

= − 3Ωew

2sduct(Ωe − ω)REL0
. (1.83)

For larger angles, the division between lower and upper frequency band is determined by
2ω− Ωe cos θk and the oscillations become anharmonic. The curvature of the magnetic
field further enhances the amplitude of oscillations and increases the probability of
rays escaping from the duct. See Figure 1.4 or the ray-tracing study of Hanzelka and
Santoĺık (2019) for more on this topic.

In cases where the density gradient ∂ne/∂x becomes large, the approximation of
geometric optics fails, and full-wave simulations must be employed to faithfully capture
the flux of wave energy. For more information on the limitations of ray tracing, see the
discussion of ray tracing applications in Hanzelka et al. (2017) and Chen et al. (2017),
and the full-wave simulations of Streltsov et al. (2012) and Shklyar and Prokhorenko
(2020).

1.1.6 Instabilities and linear wave growth

Bump-on-tail instability and Landau damping

One of the most studied linear instabilities of plasma waves is arguably the bump-
on-tail instability, which is associated with the collisionless Landau damping (Landau,
1946; Dawson, 1961; Sazhin, 1991). While our primary focus is on parallel whistler
waves, which do not experience this type of instability, the Landau damping acts as
the main source of attenuation of oblique whistler-mode waves, which is the effect that
allows us to limit our theoretical investigations to parallel propagation.

As mentioned in the paragraph after Equation 1.45, the rigorous approach to hot
plasma dispersion starts with the (one-sided) Laplace transform of the Vlasov equation
in time, changing the task to an initial value problem with a disturbance imposed at
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Figure 1.4: Examples of ray propagation in the inner magnetosphere. a) Guided propagation
in a duct modelled by a Gaussian with standard deviation σ = 96 km and peak density 6 %
above the background. Black arrows represent the wave vectors. L-shells are denoted by dotted
black lines; limiting L-shells of the density model enclose the light-green area. Initial parameters
of the color-coded ray trajectories are L = 4.0, θk = 0◦ (blue); L = 5.5, θk = −15◦ (purple);
L = 7.0, θk = 15◦ (red). Wave frequency is always f = 0.3fce0. b) Same as plot a), but with
σ = 48 km, δn = 0.05, and the initial ray parameters are L = 4.0, θk = 15◦ (blue); L = 5.5,
θk = −15◦ (purple); L = 7.0, θk = 0◦ (red). c) Oscillation about the ray path. Duct parameters:
σ = 20 km, δn = 0.06. d) Oscillations of the Poynting vector. Panels a) and b) are adapted
from Hanzelka and Santoĺık (2019), where more details about the models can be found.

t = 0. The evolution of electromagnetic perturbations is obtained through an inverse
transform of the Laplace-transformed fields, in which the integrand features one or
multiple poles associated with wave-particle resonances. For the simple case of an
electrostatic wave in a one-component unmagnetized plasma, the electric potential is
given as (Gurnett and Bhattacharjee (2017); note that in space physics, the term
electrostatic commonly refers to waves whose magnetic field can be removed by Lorentz
transform)

Φ(k, t) = 1
2πi

∫︂ σ+i∞

σ−i∞
Φ(k, p)eptdp , (1.84)

Φ(k, p) =
i ene
ε0k3

∫︂ ∞

−∞

F0(0)
vz − ip/kdvz

1 −
ω2

p
k2

∫︂ ∞

−∞

∂F0/∂vz
vz − ip/kdvz

, (1.85)

where p = γL − iω is the complex frequency, and σ is a real number. In order to
use the residue theorem in the calculation of the inverse, Φ(k, p) must be holomorphic
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Figure 1.5: a) Integration contour used to obtain the residue from Equation 1.86. The
contour is closed by a large half-circle with radius R → ∞. b) Integration contour employed in
the weak-growth approximation.

everywhere except for a finite number of points. Discontinuities in the numerator and
denominator at Re(p) = 0, which pose a problem for the analytic continuation of
Φ(k, p) to the left half-plane, are resolved by distorting the integration contour around
the vz = ip/k poles. For k > 0, Re(p) < 0, the denominator, which represents the
dispersion relation, takes the form

D̄(k, p) = 1 −
ω2

p
k2

∫︂ ∞

−∞

∂F0/∂vz
vz − ip/kdvz − 2πi k

|k|
ω2

p
k2

∂F0
∂vz

⃓⃓⃓⃓
vz=ip/k

(1.86)

The integration contour for this case is depicted in Figure 1.5a.
Under the weak growth rate approximation (Equations 1.48 and 1.49), we take the

γL → 0 limit of D̄(k, p), which effectively leads to taking only half of the residue of the
vz = ω/k pole, see Figure 1.5b. The real and imaginary parts of the dispersion relation
now read (p.v. stands for principal value)

D̄r(ω, k) = 1 −
ω2

p
k2 p.v.

∫︂ ∞

−∞

∂F0/∂vz
vz − ω/k

dvz , (1.87)

D̄i(ω, k) = −π k

|k|
ω2

p
k2

∂F0
∂vz

⃓⃓⃓⃓
vz=ω/k

, (1.88)

leading us to the linear growth coefficient

γL = π
k

|k|
ω2

p
k2

(︄
∂D̄

∂ω

)︄−1
∂F0
∂vz

⃓⃓⃓⃓
vz=ω/k

. (1.89)

The expressions in Equations 1.87 and 1.88 are a manifestations of Kramers-Kronig
relations for the susceptibility of hot unmagnetized plasmas (Ichimaru, 2004).

We must note here that while the derivation of Landau damping from electrostatic
potential gives a correct formula for the damping rate, it also leads to an erroneous
belief that the damping comes from the transfer of electrostatic wave energy to particle
kinetic energy. A careful analysis based on the law of energy conservation reveals that
both electrostatic and compressional components must contribute to the energy balance
(Swanson, 2003). Landau damping can also arise in neutral gas, where it becomes
clear that the true physical picture of Landau damping does not include charges or
electrostatic energy Stubbe and Sukhorukov (1999). We keep the electrostatic picture
here because it is the most common approach in plasma wave literature and because
it bears a close connection to the concept of nonlinear Landau damping in plasmas –
see Section 2.1 for additional details.

As an example, the dispersion relation of the Langmuir wave in a high-velocity
approximation takes the form (see also Section 2.1)

D̄r(ω, k) = 1 −
ω2

p
ω2

(︄
1 + 3 k

2

ω2 ⟨v2
z⟩
)︄
. (1.90)
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To calculate the frequency derivative, we can ignore the temperature dependence in-
troduced through ⟨v2

z⟩, and obtain the linear growth rate

γL = π

2
k

|k|
ω3

p
k2

∂F0
∂vz

⃓⃓⃓⃓
vz=ω/k

. (1.91)

Notice that the sign of γL is connected with the gradient of F0. A symmetric distribution
that decreases monotonically for vz > 0 will thus always cause damping of electrostatic
waves in an unmagnetized plasma. On the other hand, a bump near the phase velocity
changes the sign of the gradient and becomes a source for wave growth.

Landau damping affects oblique whistler waves, but it is not possible to derive a
simple algebraic formula for the growth rate without resorting to substantial approxi-
mations. The refractive index is taken in the high-density approximation, Eq. 1.60, and
the dielectric tensor (Eq. 1.44) is simplified by assuming a bi-Maxwellian distribution

F0(v∥, v⊥) = 1
(2π)3/2σ2

⊥σ∥
exp

(︄
−v2

∥

2σ2
∥

)︄
exp

(︄
−v2

⊥
2σ2

⊥

)︄
(1.92)

within a low-temperature limit c2 ≫ (ω/k)2 ≫ σ2
∥. The characteristic velocities σ∥, σ⊥

are an anisotropic generalization of the thermal speed from Equation 1.13. Following
Sazhin (1993), we can show that the Landau resonant particles cause attenuation of
oblique whistlers with a growth factor

γL0 = −
√
πc3Ωe sin2 θk exp

(︂
−c2/(2µ2σ2

∥)
)︂

23/2µ3σ3
∥ cos4 θk

. (1.93)

In the cos θk ≈ 1 approximation used to derive the oscillations of ducted whistler waves
(see Eq. 1.82), this damping effect can be neglected.

At higher wave normal angles, γL0 starts to compete with the cyclotron damping and
anisotropy-driven instability (γL1) described in the next section. For a distribution with
arbitrary temperature, the oscillatory properties of Bessel functions must be considered,
and the damping becomes dependent on perpendicular velocities of the resonant particle
population (Stix, 1992).

Cyclotron damping and anisotropy-driven instability

The hot plasma dispersion relation from Equation 1.47 simplifies considerably when we
restrict our analysis to the parallel propagation of circularly polarized electromagnetic
modes. In the Fourier transform notation, we get (Gurnett and Bhattacharjee, 2017)

D̄(k, ω) = 1 −
c2k2

∥
ω2 −

∑︂
s

ωps
ω

×

×
∫︂ ∞

−∞

∫︂ ∞

0

∂Fs0
∂u⊥

+
k∥
γω

(︄
u⊥

∂Fs0
∂u∥

− u∥
∂Fs0
∂u⊥

)︄
k∥u∥ − ω ± sgn(Zs)Ωs

πu2
⊥du⊥du∥ = 0 .

(1.94)

Let us now focus on the whistler mode (+ sign in the denominator) in the weak growth
approximation. In most magnetospheric applications, we may assume that the electron
distribution comprises a cold core fc with density ne and a hot population fh with
density nhe ≪ ne. Under such conditions, the real part of the dispersion relation is
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well-approximated by the cold plasma theory. The linear growth rate is then given by
the formula (Xiao et al., 1998)

γL =
πω2

peR

2ω +
ω2

peΩe

(ω − Ωe)2

(A−Am) , (1.95)

where we have introduced the fraction of resonant electrons

R = π
nhe
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ω − Ωe
k∥

∫︂ ∞

0
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⊥du⊥

1 − ωUR
c2k∥γR

∂Fh
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⃓⃓⃓⃓
u∥=UR

(1.96)

and the relativistic pitch angle anisotropy

A =

k∥
ω − Ωe

∫︁∞
0
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⊥
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u2
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∂Fh
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u∥=UR

. (1.97)

For the definition of resonance momentum UR (or resonance velocity VR), see Equations
2.3, 2.18 and 2.19.

In a nonrelativistic limit, the integral over u⊥ can be simplified by per partes (deriva-
tives going to 0 at integral limits), reducing the growth rate formula to (Kennel and
Petschek, 1966)

γL = πΩe

(︃
1 − ω

Ωe

)︃2
|VR|

(︃
A− ω

Ωe − ω

)︃ ∫︂ ∞

0
Fh2πv⊥dv⊥

⃓⃓⃓⃓
v∥=VR

. (1.98)

Furthermore, for a bi-Maxwellian distribution (Equation 1.92), A reduces to the tem-
perature anisotropy

A = σ2
⊥
σ2

∥
− 1 . (1.99)

The critical value of anisotropy

Am = ω

Ωe − ω
(1.100)

corresponds to the marginal instability γL = 0. For A ≡ 0, the growth rate reduces
to a pure cyclotron damping. A typical damping profile prescribed by γL(ω;A = 0) is
plotted in Figure 1.6a. When A(ω) > Am, whistler-mode fluctuations at frequency ω
become unstable, as shown in Figure 1.6a. Quasilinear theory predicts that during the
anisotropy-driven wave growth process, the hot electron distribution relaxes towards
an isotropic state (Ossakow et al., 1972).

Derivation of whistler-mode instabilities for θk > 0 is much more formidable than
the parallel case (Liu and Chen, 2019) and will not be pursued here. Under the sim-
plifications introduced in the formulation of oblique Landau damping (Equation 1.93),
the growth rate due to cyclotron resonance can be expressed as (Sazhin, 1993)

γL1 =

√
π
nhe
ne

Ωe

(︃
1 − ω

Ωe

)︃2
|VR|

(︃
A− ω

Ωe − ω
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((ω + Ωe) cos θk − Ωe)2 exp

(︄
−V 2

R
2σ2

∥

)︄
25/2ω2σ∥ cos4 θk (1 + cos θk)−2 ,

(1.101)
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Figure 1.6: Linear growth rate of parallel and quasiparallel whistler-mode waves based on the
approximate, nonrelativistic equations 1.93 and 1.101. a) Isotropic hot electron distribution.
b) Anisotropic hot electron distribution with A = 2. Wave and plasma parameters used for
these plots were: ωpe/Ωe = 5.0, nhe/ne = 0.01, σ∥/c = 0.025.

where we have added the density ratio nhe/ne to reflect the splitting of the electron
population into cold and hot components. This formula was used in combination with
Equation 1.93 to calculate the quasiparallel growth rate curves in Figure 1.6. In prac-
tice, the growth rates of plasma waves in a general setting are calculated by numerical
software (e.g. WHAMP (Rönnmark, 1983) or KUPDAP (Sugiyama et al., 2015)) di-
rectly from the hot plasma dispersion relation.

We note here that the pitch angle anisotropy is obtained through integration along
the resonance velocity curve and is thus very sensitive to changes of PSD gradients in
the resonance region. Any sharp edges that could form due to loss cone formation,
wave-particle interactions, or beam injections are highly unstable. See Section 2.2
for more information on resonance velocity curves, and Section 5.3 for an example of
gradient formation due to nonlinear wave-particle interactions.

Ion instabilities

Because the velocities of gyroresonant protons and heavier ions are typically much
lower than electron velocities, relativistic effects on the growth rate can be neglected.
Under the approximations leading to the simplified formula for proton EMIC wave
phase velocity (Equation 1.65), we can derive the weak growth rate factor (Gurnett
and Bhattacharjee, 2017)

γL = π
(Ωp − ω)2

(2Ωp − ω)
Ωp
ω

|VR|
(︄
A− ω

Ωp − ω

)︄ ∫︂ ∞

0
Fh2πv⊥dv⊥

⃓⃓⃓⃓
v∥=VR

. (1.102)

The velocity distribution Fh with anisotropy A now represents the hot proton popula-
tion, and

VR
c

= −Ω1/2
p (Ωp − ω)3/2

ωωpp
. (1.103)

Apart from the initial factors pertaining to the derivative ∂D̄r/∂ω, this result is equiv-
alent to the nonrelativistic whistler growth rate from Equation 1.98. However, in most
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magnetospheric applications, the presence of heavier ions cannot be neglected (cf. Sec-
tion 1.1.4), and they can have a significant impact on the linear growth rate of EMIC
waves (Summers and Thorne, 2003).

1.2 Observations of electromagnetic emissions in the
Earth’s inner magnetosphere

As anticipated in the introduction, in situ observations of magnetospheric plasma waves
are much harder to perform than in the case of a laboratory plasma. While it became
possible to predict the existence of ionospheric layers already in the early twentieth
century based on radio wave propagation, the true advent of space plasma science
started in 1958 when Explorer I and III discovered the existence of the inner radiation
belt (van Allen et al., 1958). The first spacecraft observation of the chorus emission,
which is the central subject of later chapters, followed soon after in 1963 (Gurnett and
O’Brien, 1964).

In this section, we briefly review the instrumentation essential to the detection and
study of the whistler-mode chorus emission: electric antennas, search coil magnetome-
ters and fluxgate magnetometers. Description of those instruments is based mainly on
the wave analysis suites from the Cluster spacecraft (Pedersen et al., 1997) and Van
Allen Probes spacecraft (Kletzing et al., 2013; Wygant et al., 2013). We follow with
a summary of signal analysis methods used to construct spectrograms and instanta-
neous frequency plots in Chapters 4 and 5. The section concludes with an overview of
some of the most abundant types of electromagnetic emissions observed in the Earth’s
magnetosphere.

1.2.1 Spacecraft and instrumentation

Electric antennas

One of the most crucial components of an instrument suite for plasma wave mea-
surements are electric antennas. The Cluster spacecraft uses four 50m wire booms
with Langmuir probes attached to their tips to measure the fluctuating electric field
(Gustafsson et al., 1997). The antennas are orthogonal to each other and rotate with
the spacecraft, utilizing the centrifugal force to remain taut. An average of probe-to-
spacecraft potential differences from the current-biased probes is used to determine the
spacecraft floating potential and estimate the local plasma density.

The Van Allen Probes have an additional, shorter rigid antenna that is aligned with
the spin axis and provides the third field component (Wygant et al., 2013). The plasma
density is determined from electrostatic fluctuations near the upper hybrid frequency
(ωuh), which are naturally triggered by electron anisotropic instability. Unlike the
potential method, the ωuh approach works even in the higher density environment of the
plasmasphere (Kurth et al., 2015), but it fails in regions of very diluted plasma, where
λDe ≳ ℓ (ℓ is the dimension of the antenna system) and where upper-hybrid emissions
thus become invisible. The knowledge of plasma frequency, which is determined from
the plasma density, is essential for comparing measured wave properties with theoretical
calculations based on the cold plasma dispersion relation.

Search coil magnetometers

The search coil magnetometer provides a time series of magnetic fluctuations derived
from the induced voltage measurements. It typically consists of three orthogonal coils
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attached to a several metre long boom to prevent interference from the spacecraft cir-
cuitry. Various implementations exist, depending on the desired sensitivity, frequency
range and noise levels (Hospodarsky, 2016). The search coils of the Cluster STAFF
instrument (Cornilleau-Wehrlin et al., 1997) provide measurements of magnetic fluctu-
ations from 10 Hz to 4 kHz, with a noise floor below 10−9 nT Hz−1 at frequencies above
100 Hz (which is the range relevant for chorus emissions). The triaxial magnetic search
coil magnetometer on the Van Allen Probes (part of the EMFISIS instrument) mea-
sures in a frequency range from 10 Hz up to 12 kHz, with noise levels in the kilohertz
range even slightly lower than on the STAFF magnetometers. Whistler emissions in the
outer radiation belt with spectral power below about 10−8 nT Hz−1 are not relevant for
nonlinear processes, making the search coil sensor sensitivity levels perfectly suitable
for our purposes.

However, at frequencies below approx 100 Hz the noise level quickly increases. At
low frequencies below 1 – 10 Hz the search coil sensors therefore loose sensitivity, and
the slowly varying magnetic field is measured using another type of sensors (fluxgate
magnetometers). The fluxgate cadence can be large enough to detect EMIC waves with
frequencies up to tens of hertz (Kletzing et al., 2013).

1.2.2 Signal analysis

The time series of electric and magnetic field measurements are often not provided
continuously due to limitations on storage capacity and downlink speed. Between the
short, high-resolution ”burst mode” periods, the data is processed onboard and stored
in the form of averaged spectral matrices. The spectrum is obtained with short-time
Fourier transform (STFT) with predetermined sample length, window overlap, time
averaging and frequency averaging. The resulting product is usually not well suited for
chorus studies due to low resolution. Therefore, we must rely on burst mode snapshots.

Waves in space plasmas are usually analyzed and classified based on a time-
frequency spectrogram. The power spectral density is obtained directly from the
STFT spectral matrices of individual electromagnetic field components. An example
of electric and magnetic wave power spectrum can be seen in the first two panels of
Figure 1.7.

Apart from the wave power and amplitude, we are also interested in various wave
propagation properties: wave vector k, Poynting vector S, sense of polarization, and
the shape of the polarization ellipse. These can be obtained from the complex power-
spectral matrices M̂B

ij = B̂iB̂j , M̂
B
ij = ÊiÊj , and the cross-spectral matrix M̂

EB
ij =

ÊiB̂j , where each frequency bin retains the necessary phase information. The wave
vector direction, up to a sign, can be obtained from the magnetic field components,
while the Poynting vector requires all six electromagnetic components – the third elec-
tric component, if missing, can be obtained from Faraday’s law. In practice, the pres-
ence of noise introduces an uncertainty into the resulting quantities, and the amount
of uncertainty depends on the signal-to-noise ratio and the chosen spectral method.
In this thesis, both natural and artificial (noiseless) spectra were processed with the
singular value decomposition method (Santoĺık et al., 2003b). This method uses an
overdetermined system defined by the 6×3 real spectral matrix to find the least square
estimate of k-vector components through the solution of the normal equation. The el-
lipticity of the wave magnetic field, shown e.g. in Figures 1.2d and 1.3d, is then defined
as the ratio of the largest and the second-largest singular value,

EB = wB
2

wB
3
. (1.104)
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For natural, noisy signals, the planarity of polarization is defined as Santoĺık et al.
(2003b)

FB = 1 −
√︄
wB

1
wB

3
, (1.105)

which is equal to 1 for an ideal plane wave. Isotropic noise contributes to all three
singular values equally, and thus reduces FB to a value below 1. The analysis of the
magnetic spectrum is preferred not only because of its direct relation to the k-vector
but also because the search-coil data is typically less noisy than the electric fields
measured by antennas. For a detailed review of the SVD methods and the effects of
signal-to-noise ratio on the resulting wave propagation properties, see Taubenschuss
and Santoĺık (2018).

In the case of narrowband emissions, the Hilbert transform of signal B(t) allows us
to obtain the analytic representation

Ba(t) = B(t) + iH(B)(t) = Bm(t)eωt+ψB , (1.106)

where Bm is the amplitude modulation, and ω = ∂ψB/∂t is the instantaneous frequency.
This phase and frequency analysis is important in studies of the frequency of rising-
tone, narrowband emissions, see e.g. Figures 4.8 and 4.9. The wave vector, Poynting
vector and ellipticity can be obtained directly in the time domain, but in practice, they
are derived from the spectral matrices even when the bandwidth is narrow.

1.2.3 Classification of electromagnetic emissions

Electromagnetic emissions in magnetospheres are classified based on their propagation
properties, spectral features, location of occurrence, and origin (natural or anthro-
pogenic). We will avoid using the VLF, ELF and ULF terminology (Very, Extremely,
Ultra Low Frequency) because the definition of these bands is not consistent across
radio science and space science, and the division bears no connection to characteristic
frequencies of a magnetized plasma environment.

As in Section 1.1.4, we will focus mostly on waves occurring below the local cyclotron
frequency. An overview of various emissions in this frequency range is presented in
Figure 1.7, which shows electric and magnetic spectra obtained from the EMFISIS
survey mode over one 9-hour orbital period of the Van Allen Probe A spacecraft. The
emission types relevant to the theoretical and numerical results presented in this thesis
are briefly described below. For the description of the other emissions appearing in the
exemplary spectrogram, see Hospodarsky et al. (2016).

Whistler-mode chorus

The two bands of intense emissions ranging from about 0.1Ωe0 to 0.8Ωe0 represent the
chorus emission. A 6-second burst mode snapshot of magnetic wave power is presented
in the form of a spectrogram in Figure 1.8. These emissions are characterized by narrow-
band spectral elements with chirping frequency (rising or falling), whose presence needs
to be confirmed in the high-cadence burst mode data to avoid confusing chorus with
the exohiss emission (see below). The emission is generated near the magnetic equator
by nonlinear resonant interactions with energetic electrons. These interactions and the
origin of the lower-band chorus (0.1Ωe0 to 0.5Ωe0) are analyzed in detail in Chapters
2 to 5.

Statistical results from the THEMIS, Cluster and Polar spacecraft have shown that
chorus occurs predominantly in the night and morning sectors at L-shells ranging from
the plasmapause to the magnetopause, with average wave power steeply decreasing
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Figure 1.7: Electron density and wave spectrograms from a full orbit of Van Allen Probe
A recorded on 29-30 August 2014, processed by the methods of Santoĺık et al. (2003b, 2010).
The panels show, in order: electron density from ωuh measurements, magnetic power spectral
density, electric power spectral density, ellipticity of the magnetic field, planarity of the mag-
netic field, wave normal angle and polar Poynting angle. The upper line in the spectrogram
marks half of the electron gyrofrequency; the lower line follows the proton gyrofrequency, which
rises into the EMFISIS frequency range only at low altitudes. (1) Plasmatrough: region of
tenuous plasma outside the plasmasphere (2) Plasmapause: outer boundary of the plasmas-
phere. (3) Plasmasphere: cold, dense plasma co-rotating with the Earth. (A) Whistler-mode
chorus/exohiss. (B) Plasmaspheric hiss. (C) Equatorial noise, coupling of electron whistler
mode and proton whistler mode. (D) Lightning generated whistlers, kHz radiation emitted
from lightning strokes. (E) Instrument noise.

Figure 1.8: Magnetic power spectral density from a 6-second burst mode snapshot taken
during the orbit in Figure 1.7, starting at 01:49:43.35 UT. It reveals narrow-band, rising-tone
chorus elements in the lower frequency band, with weaker coherent emissions in the upper band.
The emission band centred around 700 Hz is assumed to be the result of linear growth, while the
discrete elements are a product of nonlinear interaction between electrons and whistler waves.
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above 40◦ of latitude (Li et al., 2009; Bunch et al., 2012; Santoĺık et al., 2014b). How-
ever, these studies did not use high-resolution data to confirm the presence of discrete,
chirping structure in the spectrograms. Details on the fine spectral structure and prop-
agation properties of chorus are usually based on case studies – these are discussed in
Section 3.1.

Whistler-mode hiss

The incoherent broadband emission found in the plasmasphere at frequencies around
0.1Ωe and below is called plasmaspheric hiss. The name comes from the hissing, noise-
like sounds produced by the audio-converted signal of the emission. Bortnik et al.
(2009) proposed that the hiss might originate from chorus waves propagating to higher
latitudes where they penetrate the plasmapause and lose their coherent structure, but
other sources of these waves cannot be excluded Santoĺık and Chum (2009). Omura
et al. (2015) and Nakamura et al. (2018) hinted at the possible relation between chorus
and plasmaspheric hiss, showing that the hiss structure might consist of short, coherent
tones generated by the same type of nonlinear interaction as the chorus.

Hiss emissions may also occur outside the plasmapause, where they are called ex-
ohiss. The relatively narrow band of unstructured whistler-mode emission below the
lower-band chorus (Figure 1.8) can also be called exohiss. It originates from anisotropy-
driven linear instability, and it was conjectured by Trakhtengerts et al. (1996) that
rising-tone chorus emissions grow from this exohiss emission. However, the hiss band
is not always present alongside chorus.

Like chorus, hiss can cause scattering of resonant electrons, but the lack of clear,
coherent structure results in slower, diffusive processes, which can be analyzed within
the quasilinear theory.

EMIC emissions

As discussed in the paragraphs dealing with cold plasma dispersion (Section 1.1.4)
and ion instabilities (Section 1.1.6), the EMIC waves can be generated only below the
proton gyrofrequency and grow from anisotropy-driven instability of hot protons and
other, heavier ions. Their source region is in the vicinity of the magnetic equator, or the
B0-minimum of the local field-line, with radial distances ranging from the plasmapause
up to the magnetopause (Saikin et al., 2015; Grison et al., 2021).

As shown, e.g., in Grison et al. (2018) (see also Figure 1.9), the EMIC waves can
form coherent, chirping structures, with spectral and propagation features similar to
the whistler-mode chorus. However, unlike chorus, the ion waves can nonlinearly trap
and scatter both electrons and ions. The similarities in the formation process of those
two types of emissions are discussed in greater detail in Section 3.4.
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Figure 1.9: Spectrograms of EMIC emissions computed from STAFF search coil data. A
discrete, rising-tone element appears above the helium gyrofrequency (red line) after 06:49
UT, followed by less structured emissions with ambiguous frequency drift. a) Magnetic power
spectral density, with a black vertical line denoting the time at which the Cluster C3 spacecraft
left a high-density region; b) wave normal angle; c) ellipticity of magnetic field. Adapted from
Grison et al. (2018).
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2. Nonlinear wave-particle
interactions
In Section 1.1.6, we mentioned some important wave instabilities that result from the
linearized Vlasov equation. In the linear approach, the current density calculated from
phase space density perturbations determined the propagation properties of waves that
can exist in the plasma medium, but these waves did not act back on the particle
distribution. In other words, the amplitude of plasma waves in a linear theory is
assumed to be negligibly small, and the trajectories of particles passing through these
waves are considered to be unperturbed.

This chapter reviews the particle motion in large-amplitude waves, focusing chiefly
on cyclotron resonance with parallel-propagating waves. The general resonance condi-
tion has the form

ω − k∥v∥ − sgn(Zs)
nΩs

γs
= 0 , (2.1)

where ω − k∥v∥ is the Doppler-shifted frequency, Ωs/γs is the unsigned cyclotron fre-
quency of a relativistic particle of species s, and n is an integer.

For n = 0, we get the Landau resonance condition

v∥ = ω

k∥
≡ VR0 , (2.2)

showing us that a particle is in exact Landau resonance if it travels on a surface of
constant wave phase.

For n = ±1, we get the first (fundamental) cyclotron resonance condition

v∥ = 1
k∥

(︃
ω ∓ sgn(Zs)

Ωs

γsR

)︃
≡ VsR1 , (2.3)

with γsR = 1/
√︂

1 − V 2
sR/c

2 − v2
s⊥/c

2. In this case, the particle is in exact resonance
when the particle gyrophase along its trajectory follows the phase of the perpendicular
components of the wavefield.

Higher order harmonics are not considered here, since they become important only
when the perpendicular component k⊥ of the wave vector becomes large (Swanson
(2003), Section 4.3.7.2).

2.1 Landau resonance

The effect of Landau resonance is most easily shown on an electrostatic wave in an
unmagnetized plasma. The total electromagnetic field can then be expressed as

E = Ew(0, 0, sin(ωt− kz)) . (2.4)

A typical example of an electrostatic plasma wave would be the Langmuir wave with
ω2 ≈ ω2

pe + 3C2
e k

2, where Ce is the electron thermal speed.
The equation of motion of an electron propagating in the z-direction is then simply

dvz
dt = −eEw

me
sin(ωt− kz) . (2.5)
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Figure 2.1: Phase space diagram showing the behaviour of electrons near Landau resonance
as described by Equation 2.6. The velocity of particles in the trapping region oscillates around
a plane of constant wave phase η = π (green arrow). Untrapped particles (red arrow) also ‘feel’
the potential but are not phase-locked.

It is more convenient to work in the phase velocity frame and with dimensionless
coordinates of angle η = k(z − Vpt) and its time derivative η̇ = k(vz − Vp). These
substitutions lead to a pendulum equation for η,

d2η

dt2 − ω2
tr sin η = 0 , (2.6)

with oscillation frequency

ωtr =
√︄
ekEw
me

. (2.7)

Particle trajectories in (η, η̇) space are shown in Figure 2.1. Particles within the region
delimited by separatrices (thicker lines) are called trapped particles since they are
bound to a local minimum of the electrostatic wave potential.

To examine the energy exchange between particles and the wave, we set up a pe-
riodic system η ∈ (0, 2π) with an initial velocity distribution which decreases linearly
with η̇ and is homogeneous in η. It is assumed here that the loss of wave energy(︃

Ew(t)
Ew(0)

)︃2
− 1 =

∫︂ t

0
2γNL(t′)dt′ , (2.8)

where γNL stands for a nonlinear growth rate, is small enough so that we can neglect
it in the calculation of the width of the resonance region

Vtr = 4ωtr
k

= 4
√︄
eEw
kme

. (2.9)

In Figure 2.2, we capture the state of the distribution at times Ttr/4, Ttr/2, Ttr, and
5Ttr, where Ttr = 2π/ωtr. The last panel in Figure 2.2 shows the changes in particle
kinetic energy over time. After a sufficiently long time, the energy source is depleted,
and a plateau is formed in the velocity distribution, with a net increase in particle
energy.
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Figure 2.2: Evolution of velocity distribution of electrons interacting with an electrostatic wave
at the n = 0 (Landau) resonance. The initial distribution has a linear slope in velocities and
is uniform in phases. Panels a-d) show 2D distributions f(η, η̇) – with density increasing from
darker (blue) to brighter (yellow) colors – and reduced 1D distributions f(η̇) at four different
times: Ttr/4, Ttr/2, Ttr and 5Ttr. Initial 1D distribution is plotted by a dashed line. See
Section 5.2 for the simulation method used to produce the plots. Panel e) shows the evolution
of total particle kinetic energy in the resonance region. The high-frequency oscillations are
related to the simulation box size ±16ωtr and the choice of velocity distribution. Note that due
to Ew = const., these plots serve only as an illustration of phase mixing and cannot be used to
make any definite statements about the nonlinear damping rate.
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In the linear theory, the small amplitude assumption leads to large trapping periods;
therefore, the linear Landau damping coefficient relates only to a very short initial part
of the plot in Figure 2.2e where the particle energy grows exponentially (waves are
exponentially damped). The energy conservation law of the wave-particle system at
the initial stage can be cast into the form (Dawson, 1961; Gurnett and Bhattacharjee,
2017)

d
dt

⟨︃1
2neme

(︃
Vp + η̇

k

)︃⟩︃
= −π

(︄
ε0E

2
w

2

)︄
ω3

pe
k

df0(η̇)
dη̇

⃓⃓⃓⃓
η̇=0

, (2.10)

where f0(η̇) is the reduced initial velocity distribution expressed in the normalized
velocities η̇, and ⟨•⟩ denotes averaging over resonance region. Solving for Ew recovers
the weak-growth approximation of the growth coefficient as presented in Equation 1.91.
Comments about the issues of electrostatic description of Landau damping still apply
(see the paragraph after Equation 1.89).

During later stages of the resonance interaction where 0 < t ≪ Ttr does not hold
anymore, the nonlinear growth rate can be found by inserting the resonance particle
trajectories, expressed in terms of elliptic functions, into the Vlasov equation. This cal-
culation was carried out by O’Neil (1965) and is again based on the energy conservation
law. However, O’Neil assumed (as we did in Figure 2.2) a constant wave amplitude,
or in other words, a constant width of the resonance region Vtr. Furthermore, there is
no consideration of the impact of the perturbed electron velocity distribution on the
dispersive properties of present wave modes.

A different approach was used by Al’tshul’ and Karpman (1966) who expanded the
integral solution of the Fourier-transformed Vlasov equation in powers of the wavefield.
Isolation of principal secular terms in the formal expansion leads to a formula for the
electrostatic wave potential similar to the Dyson equation from quantum field theory.
While the resulting nonlinear growth coefficient provided a consistent description of
the wave amplitude evolution, they still needed to assume slow changes in amplitude
to find a closed-form expression. Al’tshul’ and Karpman also predicted the existence
of amplitude oscillations in the t → ∞ limit, meaning that the phase mixing does not
force the growth rate to zero. This unexpected asymptotic behaviour was pointed out
to be due to the assumption of negligible wave generation at higher harmonics (O’Neil,
1965; Chen and Zonca, 2016). A novel application of the Dyson equation approach in
the analysis of chorus emission growth is reviewed in Section 3.3.3.

2.2 Cyclotron resonance

In contrast to the Landau resonance, the condition for cyclotron resonance in Eq. 2.3
includes a dependence on the Lorentz factor through time dilation of the gyroperiod.
Therefore, it will be more convenient to work with momenta u = γmv and set c = 1
for the speed of light and me = 1 for electron mass. A constant ambient magnetic
field B0 pointing along the z-axis is first assumed, with effects of nonuniformity being
addressed later in Section 2.2.1.

To further simplify the analysis, we will write the equations of motion for an electron
interacting with the electromagnetic field of a right-hand polarized parallel whistler
wave

Bw = Bw (cosψB, sinψB, 0) , (2.11)
Ew = VpBw (sinψB,− cosψB, 0) , (2.12)

and we introduce a tilde notation for normalization to the electron gyrofrequency, i.e.
ω̃ ≡ ω/Ωe etc. The equations would take a similar form for positive ions and a left-hand
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Figure 2.3: Schematic depiction of the configuration of the studied system of the parallel
whistler wave and a gyrating electron. The transverse wavefield propagates in the direction of
the ambient magnetic field B0, opposite to the direction of propagation of the particle.

polarized wave, e.g. protons and EMIC waves. Further, we introduce the relative phase
difference

ζ = φ− ψB , (2.13)
where ψB is the phase of the perpendicular wave magnetic field, and φ is the phase of
the perpendicular component of the particle momentum u⊥. The configuration of the
system is depicted in Figure 2.3. The equations of motion then take the form

du∥
dt = Ωwu⊥ sin ζ

γ
(2.14)

du⊥
dt = −

(︃
u∥
γ

− Vp

)︃
Ωw sin ζ (2.15)

dζ
dt = Ωe

γ
− 1
u⊥

(︃
u∥
γ

− Vp

)︃
Ωw cos ζ − ω +

ku∥
γ

, (2.16)

where we have introduced the normalized amplitude Ωw = Bwe/me.
For typical amplitudes of whistler waves in the Earth’s radiation belt, Ω̃w ≲ 0.01,

the second term in Eq. 2.16 can be neglected unless u⊥ ≪ 1. With this term removed,
the equation reads as

dζ
dt = Ωe

γ
− ω +

ku∥
γ

, (2.17)

and setting dζ/dt = 0 recovers the resonance condition from Eq. 2.3. Since γR in that
equation is a function of VR, we can derive the resonance curve formula

UR(u⊥) =
−kΩe + ω

√︂
(k2 − ω2)(1 + u2

⊥) + Ω2
e

k2 − ω2 , (2.18)

or equivalently,

VR(v⊥) =
kω − Ωe

√︂
(Ω2

e + k2)(1 − v2
⊥) − ω2

Ω2
e + k2 . (2.19)

The curve VR(v⊥) is plotted in Fig. 2.4a for ω̃ = 0.25, ω̃pe = 5.0, and has the shape
of an elliptical arc which touches the v2

∥ + v2
⊥ = 1 circle at VR = Vp. A simple alge-

braic manipulation shows that the ratio of the major (perpendicular) axis to the minor
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Figure 2.4: a) Resonance curve VR(v⊥) based on Equation 2.19. Properties of the whistler
wave are determined by wave frequency ω̃ = 0.25 and plasma frequency ω̃pe = 5.0. The grey
region ±Vtr/2 shows the extent of the trapping potential and is based on Equation 2.32 with
Ω̃w = 0.01. The dashed curve represents the speed of light limit, and the dotted vertical line
connects to the point at which the resonance velocity reaches the speed of light. b) Resonance
curve in the momentum space.

(parallel) axis is
√︁

1 + k2/Ω2
e . In the (u∥, u⊥) space (Fig. 2.4b), the curve takes on a

hyperbolic shape.
To better understand the electron’s three-dimensional motion in the momentum

space, we first examine trajectories in the (u∥, u⊥) space. Dividing Eq. 2.15 by Eq.
2.14 results in

du⊥
du∥

=
−u∥ + γVp

u⊥
, (2.20)

This differential equation has a closed-form solution

u⊥ =
(︂
u2

∥

(︂
V 2

p − 1
)︂

+ u2
∥0

(︂
V 2

p + 1
)︂

+ 2u∥
(︂
γ0Vp − u∥0V

2
p

)︂
− 2u∥0γ0Vp

)︂ 1
2 , (2.21)

where γ0 =
√︂

1 + u2
∥0 and u∥0 denotes the u∥-intercept. Curves from this family are

ellipses with a minor (perpendicular) to major (parallel) axis ratio
√︂

1 − V 2
p and with

their centre shifted towards positive parallel momenta by

γ0Vp − u∥0V
2

p
1 − V 2

p
; (2.22)

a representative plot is shown in Fig. 2.5. Notice that there is no Ωw- or ζ-dependence,
meaning that when an electron passes through a whistler wave packet, it will stay on
one of these curves as long as the wave frequency and background magnetic field remain
constant. Changes in frequency are, however, a fundamental property of chorus emis-
sions, and will be properly discussed in Chapter 3. For adiabatic changes of frequency
(more specifically, when ∂VR/∂t ≪ Vtrωtr – see Equations 2.31 and 2.32 for definitions
of the trapping frequency and velocity, respectively), we may write γVp = u∥ + Ωe/k
and show that the centre of the phase space oscillations moves along the resonant diffu-
sion curves for a broadband wave spectrum; the exact form of these curves was derived
by Summers et al. (1998). However, as a consequence of Equation 3.46, the adiabatic
approximation does not apply to chorus waves.
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Figure 2.5: The motion of resonant particles is restricted to curves given by Equation 2.21,
plotted in blue colour for exact-resonance energies 34.6 keV and 85.7 keV. The grey patch
represents the approximate extent of the trapping potential based on Equation 2.32, while the
light blue circles show the more exact trapping boundaries derived from the numerical solution
of Equations 2.14, 2.17 and 2.21. Magenta circles show the constant energy surface, and the
red line represents the resonance curve. b) Same plots as in panel a), but in the (u∥, u⊥) space.

Since the motion in (u∥, u⊥) space does not depend on the amplitude, it comes as
no surprise that there exists a relation to the linear growth formula shown in Section
1.1.6, Eq. 1.98. Let us take the low-speed approximation of the electron motion,

dv⊥
dv∥

=
−v∥ + Vp

v⊥
, (2.23)

and compare it to isolines of a bi-Maxwellian distribution with anisotropy A, described
by a differential equation

dv⊥
dv∥

= −(1 +A)
v∥
v⊥

. (2.24)

Recall that for a bi-Maxwellian distribution, temperature anisotropy and pitch-angle
anisotropy are identical, i.e. A = T⊥/T∥ − 1 (Eqs. 1.97 and 1.99). Equating the above
two differential expressions gives

Av∥ = −Vp . (2.25)

Putting v∥ at the exact resonance defined in Eq. 2.3 (with γ = 1), we arrive at

ω

Ωe
= A

1 +A
, (2.26)

which is the marginal instability condition for anisotropy-driven whistler wave growth
(Equation 1.100). This has a clear physical meaning: electrons which oscillate on the
isolines of the bi-Maxwellian do not change the velocity space distribution, the net
change in particle energy is zero, and thus the waves cannot grow or be damped. The
equivalent formula for a relativistic case cannot be found so simply because the pitch
angle anisotropy defined in Equation 1.97 is not constant in the (u∥, u⊥) space. A
constant frequency whistler wave can thus take energy from particles in one region of
the momentum space and accelerate particles in another region at the same time.
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To analyze the evolution of the ζ angle near resonance, we start with the simplified
time evolution of ζ as given by Eq. 2.17 and define

ν ≡ dζ
dt = k

γ
(u∥ − γVR) . (2.27)

The quantity ν represents a parallel velocity shift with respect to the resonance velocity,
similar to the quantity η̇ which appeared in the discussion of Landau resonance in
Section 2.1. As a next step, we take the time derivative of ν, using

dγ
dt =

u∥
du∥
dt + u⊥

du⊥
dt

γ
= u⊥VpΩw sin ζ

γ
, (2.28)

and obtain a pendulum-like equation with a harmonic driving force

d2ζ

dt2 = ku⊥Ωw
γ2 sin ζ

(︃
1 − V 2

p − ω

k2
dζ
dt

)︃
. (2.29)

Here, it is a common approach to replace u⊥ by some constant mean value ⟨u⊥⟩, with γ
being calculated for this mean perpendicular momentum at the exact resonance (Omura
et al., 2008). We then proceed to make the expansion around the resonance by setting
ν = 0, which leads to

dν
dt = d2ζ

dt2 = ω2
tr sin ζ , (2.30)

where

ωtr =

√︂
1 − V 2

p

γR

√︂
k⟨u⊥⟩Ωw (2.31)

is the trapping frequency (frequency of oscillations in the trapping potential). This
result is sometimes called the second-order resonance equation and was first derived
by Sudan and Ott (1971). As in the case of Landau resonance, we have arrived at
a pendulum equation, but the meaning is slightly different. The resonant electron is
now phase-locked in the gyrating frame, and its perpendicular velocity vector oscillates
around −Bw. Also, as predicted by the resonance velocity formula (Eq. 2.19, Fig.
2.4a), the electrons propagate in the direction opposite to the whistler wave unless
there is a substantial gyroperiod dilation (γ ≫ 1). With plasma and wave parameters
typical for the Earth’s outer radiation belt, we get ωtr ≪ ω, which is an important
scaling relation for chorus theories discussed in Chapter 3.

The relation between ωtr and the width of the resonance region Vtr can be treated
in the same way as in Equation 2.9, resulting in

Vtr = 4ωtr
k

= 4

√︂
1 − V 2

p

γR

√︄
⟨u⊥⟩Ωw

k
. (2.32)

The ±Vtr/2 region is plotted in grey in Figures 2.4 and 2.5. However, since we are
using a fixed perpendicular momentum and calculating the Lorentz factor as γR =√︂

1 + U2
R + ⟨u⊥⟩2, it is not immediately clear if the grey areas well approximate the

full width of the trapping region. With the u⊥(u∥)-dependence from Equation 2.21,
we can get a differential equation for du∥/dζ with a separable right-hand side, but the
solutions cannot be expressed in terms of elementary functions. However, the problem
can be solved numerically, and the boundaries of the trapping region at ζ = π are
shown along with example trajectories in Figure 2.5 as blue circles. We can see that
both approaches to calculating the resonance width give nearly identical results.
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Figure 2.6: Behaviour of resonant particles with a low initial perpendicular momentum u⊥0 =
0.005. Initial parallel momenta and phase angles of each particle are specified in the figure, wave
properties are as in Figure 2.4. a,d) Particle trajectories in (u∥, u⊥) space. Red curve represents
the standard resonance momentum (Equation 2.18), dashed curves are resonance momenta
computed from Equation 2.33 for ζ at which the trapped particles experience reflection. b,e)
Trajectories in the (ζ, u∥) space. The red resonance curve is calculated at the initial point,
without ζ-dependence. c,f) Trajectories in the (ζ, u⊥) space. Note: All modified resonance
curves must start at u⊥ = 0, u∥ = γVp, the return path of curves arcing to the left is not
plotted.

For ⟨u⊥⟩ ≪ 1, changes in u⊥ during resonance dominate over changes in u∥, so
the simplified evolution of ζ, as given in Equations 2.30 and 2.31, is not valid. If we
numerically solve the two equations of motion for parallel and perpendicular momentum
(Eq. 2.14 and Eq. 2.15) together with the pendulum equation, u⊥(t) will go to negative
values during the oscillatory motion. Using time-dependent perpendicular momentum
in the definition of trapping frequency will result in deformation of the phase space
trajectories, but the pathological behaviour remains. To get rid of it, we need to use
the full equation of motion for ζ as given by Eq. 2.16. The second term is proportional
to u−1

⊥ and becomes dominant when v∥Bw ≳ v⊥B0. Due to its cos ζ dependence, this
term can shift the resonance momentum (as derived from the first-order resonance
condition ν = 0) to lower or higher values, depending on the particle’s position in the
trapping potential.

Figure 2.6 shows some examples of how the resonant particle behaviour changes
at low perpendicular momenta. Some particles can now be trapped even though they
do not cross the resonance momentum curve calculated from Equation 2.18. However,
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Figure 2.7: Phase space trapping regions for different initial values of perpendicular momen-
tum. Particles which start their motion in the grey regions of the (ζ, u∥) space are phase locked
to the whistler wave.

trapped particles always cross the modified resonance curve

U ζR =
−kΩe + ω

√︂
Ω2

e + (k2 − ω2)(1 + u2
⊥)(1 − Ω̃ζ)2

(k2 − ω2)(1 − Ω̃ζ)
, (2.33)

Ω̃ζ ≡ Ωw cos ζ/(ku⊥) , (2.34)

where the ζ-dependence is included. The curves calculated for ζ values at which the
trapped particles experience reflection are plotted in Figures 2.6a and 2.6d as red dashed
lines, and blue circles represent the crossing points. The equilibrium points ζ = {0, π}
which lay on the resonance curve UR now lie on the curves U0

R and UπR. Also, the
saddle point at ζ = 0 can become a stable point for particles with u∥0 < UR and
low perpendicular momenta. Examples of particles oscillating around ζ = 0 are in
Figures 2.6d-f.

Another view on the trapping regions is presented in Figure 2.7. Here we uniformly
sampled the (ζ, u∥) space for four different values of initial perpendicular momentum
(panels a-d) and calculated particle trajectories over the time period of 4Ttr, where
the trapping period was calculated from Equation 2.31 using the initial perpendicular
momentum. The grey regions represent sets of initial states of particles that remained
trapped – the crossing of ζ = −π or ζ = 3π was treated as an escape. We can see that at
low u⊥, there are two trapping regions divided by both ζ and u∥. As the perpendicular
momentum increases, the region of stability around ζ = 0 diminishes until the central
trapping region becomes nearly identical to the pendulum approximation results from
Equation 2.30. At relativistic velocities, the central region becomes wider, but there
are no apparent changes to the shape of the region.
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A rigorous analysis of charged particle motion trapped in a circularly polarized wave
was given by Bellan (2013) and Yoon and Bellan (2020) (see also Section 2.3 for the
Hamiltonian approach). They introduced a resonance mismatch

ξ ≡ γ
ν

Ωe
= 1 + ku∥ − γ

ω

Ωe
(2.35)

and rewrote the equations of motion for this mismatch in the form

d2ξ

dt2p
= − 1

γp

∂Ξ
∂ξ

, (2.36)

where
Ξ(ξ) = 1

8ξ
4 +

(︄
Ω2

w
Ω2

e
− ξ2

0
2 − ku⊥0

γpΩ2
e
Ωw cos ζ0

)︄
ξ2

2 − Ω2
w

Ω2
e
ξ (2.37)

is a pseudo-potential, and subscript p denotes a quantity calculated in the frame propa-
gating with phase velocity (a.k.a. the wave frame). They further show that depending
on the values of ζ0, u⊥0 and ξ0, the potential can have a single-valley shape or a two-
valley shape. The two valleys correspond to the trapping regions centred at ζ = 0 and
ζ = π, as shown in Figures 2.7a and 2.7b.

Two comments are in place. Firstly, while the change in resonant particle behaviour
seems dramatic, it has little impact on the energy flow between waves and particles.
In Figure 2.6, only particles that cross the standard resonance curve can reach higher
perpendicular momenta. Particles that are trapped but stay at low u⊥ have a neg-
ligible contribution to net energy variation because, as shown by Equation 2.28, the
time derivative of kinetic energy is proportional to u⊥. Secondly, the low-u⊥ resonant
particles may be in the loss cone where the phase space density of electrons remains
very low, which makes their impact on the energy flow even smaller.

To conclude the analysis of electron motion in a constant frequency, constant am-
plitude whistler wave, we show examples of the evolution of phase space density near
the trapping region. Unlike in Figure 2.2, we have to define a model of a hot elec-
tron velocity distribution in both parallel and perpendicular directions. We choose a
bi-Maxwellian distribution in momenta (without normalization)

f(u∥, u⊥) = exp
(︄

−u2
∥

2U2
t∥

)︄
exp

(︄
−u2

⊥
2U2

t⊥

)︄
(2.38)

with perpendicular thermal momentum Ut⊥ = 0.3 and anisotropy A = U2
t⊥/U

2
t∥ −1 = 3,

which is much larger than the non-relativistic estimate on marginal instability A = 1/3
for ω̃ = 0.25 resulting from Equation 2.26. The resulting plots in Figure 2.8 show that
hole formation proceeds at very different rates at different momenta, as predicted by
the pendulum approximation in Eq. 2.30. The trapping frequency Ttr appearing in the
labels is calculated at u⊥ = 0.3. The eye-shaped trapping region observed at u⊥ = 0.05
is less apparent at u⊥ = 0.29 and distorted near the boundaries of the periodic ζ-
domain. The distribution integrated over perpendicular momenta is impacted by the
curvature of the UR curve, resulting in a less distinct plateau in the 1D distribution
than in the case of Landau resonance. Finally, panel g) shows that the particles are
losing kinetic energy, which signifies wave growth. The rapid saturation suggests that
most of the energy comes from high-u⊥ particles, which have short bounce periods in
the trapping potential, and the approach to saturation is faster than in the case of
Landau resonance.

The illustration of the evolution of phase space density near resonance provided in
Figure 2.8 agrees with the analytical results of Palmadesso and Schmidt (1971). They

41



Figure 2.8: Evolution of an highly anisotropic (A = 3) bi-Maxwellian momentum distribution
of electrons interacting with a whistler wave at the n = −1 cyclotron resonance. The plasma
frequency is set to ω̃pe = 5, wave frequency and amplitude are ω̃ = 0.25 and Ω̃w = 0.003,
respectively. Panels a,b) show 2D distributions f(ζ, u∥), obtained as a cut of the full 3D
distribution at u⊥ = 0.06, and the integrated 1D distributions f(u∥) at two different times
Ttr/2, 2Ttr. The trapping period is calculated for the thermal momentum u⊥ = Ut⊥ = 0.3.
Initial 1D distribution is plotted by a dashed line. Panels c,d) capture the cut at u⊥ = 0.29,
and in panels e,f), the distributions integrated over perpendicular momenta are presented. See
Section 5.2 for the simulation method used to produce the plots. Panel g) shows the change of
total particle kinetic energy over time in the resonance region.
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followed the approach of O’Neil (1965) used to analyze nonlinear Landau damping (see
also Section 2.1) and applied it to the interaction of a Maxwellian velocity distribution
of electrons with a constant amplitude whistler wave. Unfortunately, this approach does
no apply to chorus emissions. The effects of the perturbed electron distribution on the
whistler wave dispersion properties are essential for explaining the growth of chorus
elements. Furthermore, the constant amplitude approximation γNLTtr/2π ≪ 1 goes
against the observations of steep amplitude gradients in chorus subpackets mentioned
in Section 1.2.3. In Chapter 3, we review theories that attempt to deal with the
shortcomings of classical computations.

2.2.1 Inhomogeneous background

In the previous section, we have assumed a homogeneous background which allowed
us to treat the system as 2π periodic in ζ. In a more realistic scenario, both magnetic
field strength and plasma density change with distance h along the field line. The
existence of a gradient ∂B0/∂h is connected to field line convergence, and in the first-
order expansion around the guiding centre motion, we can represent its effects by an
additional radial component (Gurnett and Bhattacharjee (2017), Sec. 3.4)

B0⊥ = −1
2
∂B0
∂h

rL , (2.39)

where
rL = u⊥

Ωe
(2.40)

is the Larmor radius. The equations of motion for u∥ and u⊥ become

du∥
dt = Ωwu⊥ sin ζ

γ
− u2

⊥
2γΩe

∂Ωe
∂h

, (2.41)

du⊥
dt = −

(︃
u∥
γ

− Vp

)︃
Ωw sin ζ +

u∥u⊥

2γΩe

∂Ωe
∂h

. (2.42)

The curvature drift, perpendicular to the curvature radius vector and B0, is neglected.
Since Ωe(h) is now h-dependent, we normalize to Ωe0 = Ωe(0). The second terms in
Equations 2.41 and 2.42 represent adiabatic motion in a magnetic trap. The inhomo-
geneity in plasma density ne is introduced through h-dependent ωpe, which appears in
Vp and k (see Equation 1.58).

Now we can repeat the approximate calculation leading to the pendulum equation
for resonance motion (Equation 2.30). The extra terms coming from ∂k/∂h and ∂Ωe/∂h
are not ζ-dependent, so we arrive at a pendulum equation with a torque

d2ζ

dt2 = ω2
tr(sin ζ + S) , (2.43)

where we introduced the inhomogeneity factor

S = 1
ω2

trγ
2
R

(︃
sn
∂ne
∂h

1
ne

+ sΩ
∂Ωe
∂h

1
Ωe

)︃
(2.44)

with

sn = kU2
R

2 (1 − V 2
p ) , (2.45)

sΩ = URΩe

(︄
1 +

1 − V 2
p

2
Ωe − γRω

Ωe − ω

)︄
− k⟨u⊥⟩2

2 . (2.46)
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Figure 2.9: Phase space diagram showing the behaviour of electrons near cyclotron resonance
as described by Equation 2.43. The plotted black lines represent streamlines at a given distance
h along the magnetic field line, not particle trajectories. Particles in the trapping region (green
arrow) oscillate around a constant phase ζ0. Untrapped particles (red arrow) are not phase-
locked. The 2π-periodic ζ dimension is duplicated to provide a better picture of the trajectory
shape.

A detailed derivation of the inhomogeneity factor can be found in Vomvoridis and
Denavit (1979) and Omura et al. (2008), with the additional inclusion of the wave
frequency drift rate ∂ω/∂t. We will return to this in Chapter 3.

Let us examine the particle trajectories in (ζ, ν) space. Notice that unlike in the
homogeneous case, ν is now h-dependent through k, so the particle trajectories will
have a different shape in the (ζ, u∥) space than in the (ζ, ν) space. We must therefore
normalize ν to the trapping frequency and use a fixed value of S. If we assume that
the electron is travelling from h > 0 towards h = 0, where the magnetic field strength
has a global minimum, and that density is also growing away from h = 0, then S must
be negative for UR negative. In Figure 2.9, we plot the trajectories and trapping region
for S = −0.5. The trajectories can be expressed as a family of curves

ν2 + 2ω2
tr(cos ζ − Sζ) = C , (2.47)

where C is a real constant. The separatrix, which represents the boundary of the
trapping region, has a function form

νs = ±ωtr

√︂
2(cos ζ1 − cos ζ + S(ζ − ζ1)) , ζ1 < ζ < ζ2 , (2.48)

where ζ0 = π−arcsin(−S) is at the stable point, ζ1 = arcsin(−S) is at the saddle point,
and ζ2 is at the right boundary of the separatrix. For |S| > 1, the resonance mismatch
ν(t) never changes sign, and thus the particles would never become phase-locked.

For u⊥ ≪ 1, the trajectories are more difficult to analyze. The numerical solution of
the full equations of motion (Eqs. 2.41, 2.42, 2.16) for some representative initial values
is shown in Figure 2.10. We choose ω̃ = 0.25, ω̃pe = 5 and Ω̃w = 0.01 (all constant
values), and a magnetic field with a constant gradient Ω̃e = 1 + ah. All particles start
at h = 0 and a is chosen so that S(h = 0) = −0.5 for u⊥(h = 0) = 0.3. Similar
to the analysis in Figure 2.6, we can identify two stable points at lower perpendicular
momenta, but the trajectories feature a distortion similar to the ‘fish-like’ streamlines in
Figure 2.9. It is important to notice that the inhomogeneity factor becomes very large
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Figure 2.10: Motion of low-u⊥ particles resonating with a whistler wave in an inhomogeneous
magnetic field. Particles start at angles ζ ∈ [π, 2π] in exact resonance (red circles) and are
stopped when they return to their initial ν/ωtr, or when they escape from the depicted range
of ζ. Particles in panel c) start away from the approximate resonance u∥ = UR to show the
stable trajectories around ζ = 2π.

at low u⊥ due to its proportionality to ω−2
tr ; for S = −0.5 at u⊥ = 0.01, there would

be no apparent distortion. Since S is not constant along h (result of not fixing u⊥)
and we are not using the first-order expansion near resonance, the variables ζ and ν do
not form a conjugate pair of position and momentum, so trajectory crossings become
possible.

2.2.2 Quasiparallel waves

The assumption of parallel propagation of whistler waves along magnetic field lines is
never fully satisfied in planetary magnetospheres. Even with strong field-aligned density
enhancements, the wave normal angle can reach up to about 30◦ (Katoh, 2014; Hanzelka
and Santoĺık, 2019). We will now briefly look at the motion of electrons resonating
with a whistler wave in the quasiparallel approximation sin θk = θk, cos θk = 1, which
is satisfactory in most cases of ducted propagation.

The quasiparallel approximation of cold dispersion relation has a whistler-mode
solution with a small perpendicular wave vector component k⊥ ≈ θkk∥, where k∥ is
the same as in the ideal parallel propagation case. The electric and magnetic field
components are then simply

Bw = Bw (cosψB, sinψB,−θk cosψB) (2.49)
Ew = VpBw (sinψB,− cosψB, θk sinψB) . (2.50)

The additional parallel component in Bw is negligible, θkBw ≪ B0, so we can focus
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Figure 2.11: Schematic illustration of Landau resonance influencing the cyclotron resonant
electrons of counter-streaming waves. a) Electron travelling along the field line (large dots)
resonates with a co-streaming quasiparallel whistler wave at frequency 0.42 Ωe0 (dotted line).
The parallel velocity of the electron is only slightly lower than group velocity of the wave,
resulting into a long interaction time and a large perturbation in the velocity distribution
function (grey areas in panel b: darker color represents increased PSD). The same electron
will also experience cyclotron-resonant scattering and trapping from counter-streaming waves
at slightly higher frequencies, depending on the perpendicular velocity. However, the cyclotron
interaction will not result into formation of the electron hole depicted in Figure 2.8 because
of the previous formation of a plateau in the parallel velocity distribution. The off-equatorial
position of the wave sources and the growth in frequency are inspired by the chorus studies of
Demekhov et al. (2020), Hanzelka et al. (2020) and Nogi and Omura (2022). b) n = 0 resonant
velocity for a ω̃ = 0.42 whistler wave with positive group velocity, and n = −1 resonant velocities
for three different frequencies distinguished by color. Green dots show the crossing points at
which the electron from panel a) lies in exact Landau resonance with the co-streaming wave
and in exact cyclotron resonance with the counter-streaming wave.

only on the electric component. The parallel motion of an electron is now described by

du∥
dt = Ωwu⊥ sin ζ

γ
− VpΩwθk sinψB . (2.51)

Except for ultrarelativistic particles, the n = 0 resonance represented by the second
term is always far away from the n = −1 resonance represented by the first term. Thus
when an electron is experiencing a strong resonant cyclotron interaction, the Landau
resonance will result in high-frequency, low-amplitude oscillation in u∥ with little impact
on the overall particle acceleration.

However, the Landau resonance can have a substantial impact on the whistler mode,
even in the case of short wave packets where a correspondingly short interaction time
would be expected. Using the approximate group velocity formula from Equation 1.59
(with quasiparallel corrections based on Equation 1.60), we get that Vg = VR0 for

ω = Ωe cos θk
2 ≈ Ωe

2 . (2.52)

Therefore, a particle in Landau resonance with a whistler wave packet at half of the
local gyrofrequency will not leave the packet until ω/Ωe changes. The long-term Landau
resonance activity at v∥ = Vg is recognized as one of the reasons for the observed
decrease in wave power of whistler emissions near Ωe/2 (Omura et al., 2009; Li et al.,
2019).
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Another interesting relation between the characteristic velocities near ω = Ωe/2 is

VR1 = Ωe
k

(︃1
γ

− 1
2

)︃
≈ −VR0 , (2.53)

where we have used γ ≈ 1 and the quasiparallel approximation. Conversely, the equa-
tion VR1 = −VR0 can be solved for ω with an arbitrary γ > 1, and we arrive at

ω = Ωe
2γ . (2.54)

This means that when a whistler wave with frequency just below Ωe propagates in
both direction along field line, a plateau will be formed in parallel velocity distribution
of weakly relativistic electrons due to Landau resonance, which will disturb the wave-
particle power transfer during cyclotron resonance. This connection between Landau
and cyclotron resonance may be another reason for the aforementioned power gap in
whistler-mode chorus spectrum, and is expected to play a major role in future 2D
generalizations of chorus emission models (see Hanzelka et al. (2020) or Chapter 4
for a 1D model). The time-space configuration of this process is further illustrated in
Figure 2.11.

For increasing values of θk, the n = 0 resonance motion will become strongly de-
pendent on the transverse wavefield through a term ∼ Bw⊥J1(β), where J is the Bessel
function of the first kind and β = u⊥k⊥/Ωe. Even in the quasiparallel approximation,
β can become large in a high-density plasma environment. For Ω̃e = 1, u⊥ = 0.3,
ω̃ = 0.25 and θk = 30◦, we get β = 0.96 with ω̃pe = 10. Since J1 has its first max-
imum at β = 1.84, we conclude that whistler-mode emissions which are characterized
by larger θk, e.g. the plasmaspheric hiss (see Section 1.2.3), always require a full two-
dimensional treatment. The equations of motion and second-order cyclotron resonance
condition in an inhomogeneous magnetic field for general θk can be found in Omura
et al. (2019).

2.3 Hamiltonian approach to wave-particle resonance

The Hamiltonian of a charged, relativistic particle moving through the field of an elec-
tromagnetic wave in the magnetosphere can be written in natural units as (Artemyev
et al., 2018)

H =
√︂

1 + (U − qA)2 = γ , (2.55)
where U = u + A is the canonical momentum and A = Aw + A0 is the vector potential
of the wave and the background magnetic field. For a purely electromagnetic wave like
the parallel-propagating whistler wave, there is no scalar potential. The whistler-wave
potential has two components

Awx = Aw cosψB , Awy = Aw sinψB (2.56)

with
ψB(t, h) = ωt−

∫︂ h

0
k(h′)dh′ , (2.57)

and the dipole field has one component

A0x = −yB0(h) . (2.58)

With a carefully chosen canonical transformation, the gyro-averaged electron Hamil-
tonian for the n = −1 resonance, expanded to the lowest order of the relativistic first
adiabatic invariant, can be expressed as (Albert et al., 2021; Albert, 1993)

H(I, ζ;h) = H0(I, h) + H1(I, h) sin ζ , (2.59)
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where
I = u2

⊥
2

ω

Ωe
(2.60)

is proportional to the approximate first adiabatic invariant and the distance h is an
autonomous variable which replaces time as a curve parameter (but changes sign at
reflection points). The function

H1(I, h) = −Bw
B0

√︄
Ω3

e
ωk2

√
2I
p∥

(2.61)

represents a wave-induced perturbation to the adiabatic gyromotion and bounce motion
described by

H0(I, h) = k

ω
(I − Cm) − p∥ . (2.62)

Here, Cm = I − γ is a constant of motion and

p∥ =

√︄
(I − Cm)2 − 1 − 2Ωe

ω
I (2.63)

is a momentum-like variable, reducing to the parallel momentum u∥ in an unperturbed
system.

The resonance is defined by

dζ
dt = ∂H

∂I
= 0 , (2.64)

and solutions of this equation give the resonance values

IR =
u2

∥
2ωΩe

(k2 − ω2) + k

ω
u∥ + Ωe − ω

2ω , (2.65)

and
p∥R ≈ u∥R = 1

k
(ωγ − Ωe) = UR , (2.66)

where the approximation ∂H1/∂I = 0 has been used. The Hamiltonian H(I, ζ;h) can
be then expanded around the resonance to the second order,

H(I, ζ;h) = H0(IR, h) + 1
2
∂2H0
∂I2 (I − IR)2 + H1(I, h) sin ζ , (2.67)

providing a very close approximation to the phase space motion described in Figures 2.5
or 2.6. Replacing I and u∥ by IR and UR in H1 results in electrons reaching velocities
v⊥ < 0, similar to the description provided by Equation 2.17. The nonrelativistic
form of the resonance Hamiltonian in an inhomogeneous field was already guessed by
Vomvoridis and Denavit (1979) in the form of the total energy of a mathematical
pendulum with a torque.

The advantage of the Hamiltonian approach comes from the easy identification of
conserved variables and from the reduction of the second-order equations of motion to
the first-order Hamilton’s equations, which are easily integrated by the Störmer-Verlet
algorithm or any other symplectic integrator (Press et al., 1992). Other formulations
of the resonant Hamiltonian exist that yield directly solvable quadratics (Albert et al.,
2021). Furthermore, the vector potential can be straightforwardly expanded to include
oblique whistler waves, making use of the identity

sin
(︃
ψB − u⊥k⊥

Ωe
sinφ

)︃
= −

∞∑︂
n=−∞

Jn

(︃
u⊥k⊥

Ωe

)︃
sin ζn , (2.68)
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where ζn = nφ − ψB. The resulting Hamilton’s equations are much more formidable
than the parallel case discussed above but can be treated in a similar way, performing
expansions around the nearest resonance (Albert, 1993; Albert et al., 2012).

The disadvantage of the Hamiltonian method becomes apparent when analysing
waves with variable frequency, as is the case of chorus discussed in Chapter 3. Notice
that the wave frequency in the definition of ψB in Equation 2.57 is considered to be
constant. A chirping wave with ∂ω/∂t ̸= 0 would introduce a time dependence into the
Hamiltonian that cannot be transformed away by a clever choice of coordinates, making
∂H/∂I explicitly dependent on time. The Hamiltonian formalism then loses the ad-
vantage stemming from the simple and efficient numerical solvers for time-independent
Hamilton equations.
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3. Growth and propagation of
chorus emissions
The electron motions in a whistler-wave potential analyzed in Chapter 2 form the basis
for theories of chorus wave growth. In the following paragraphs, we provide a brief
overview of the chorus spectral features and wave propagation properties, followed by a
review of the nonlinear growth theory of Omura et al. (NGTO) for parallel propagating
waves. Some other possible explanations of natural chorus generation are summarized
towards the end of the chapter. For more reviews on the history and current state of
research on chorus emissions, see Omura et al. (1991), Golkowski and Gibby (2017)
and Tao et al. (2020).

In this chapter, we retain the normalization me = 1, e = 1 form previous sections,
but the speed of light c is written explicitly. The usage of normalized quantities is
summarized in the List of Symbols at the end of the thesis.

3.1 Spacecraft observations

In the short overview of plasma wave emissions in the inner magnetosphere given in
Section 1.2.3, we established the typical spectral features of the chorus emission and
its distribution throughout the magnetosphere. Taubenschuss et al. (2014) analyzed
over 500 burst-mode snapshots gathered by the THEMIS satellite and found that the
lower band is split into two populations based on the wave normal angle: quasiparallel
waves below the Gendrin angle and oblique waves near the resonance cone. The upper
band shows no clear division, and is sometimes connected to the lower band, i.e. the
spectral gap at 0.5Ωe is not always present (Kurita et al., 2012; Teng et al., 2019; Gao
et al., 2019). As mentioned in Section 2.2.2 when discussing the effect of Landau damp-
ing on quasiparallel whistler waves, this gap is associated with obliquity and thus will
not appear in the theory of parallel chorus wave growth described in Section 3.2. As
established by many observational studies (Taubenschuss et al., 2014; Santoĺık et al.,
2014b; Agapitov et al., 2018), the very oblique chorus waves are much less common
than the parallel ones and their origin is likely associated with Landau resonant in-
teraction near the resonance cone (Soto-Chavez et al., 2014; Mourenas et al., 2015)
rather than with the cyclotron resonance. Furthermore, the oblique, lower-band chorus
consists mainly of falling tones, while risers dominate the quasiparallel propagation
(Taubenschuss et al., 2014).

Research focusing on lower-band waves reveals a very narrow average bandwidth of
0.01Ωe (Gao et al., 2014) and the frequency sweep rates ranging from about 5 · 10−6Ω2

e
to 10−4Ω2

e (Macúšová et al., 2010; Teng et al., 2017). The typical RMS magnetic
field amplitudes range from 0.01 nT to 0.3 nT (Li et al., 2011), with some elements
occasionally reaching peak amplitudes Bw > 1 nT and Bw/B0 > 0.01 (Santoĺık et al.,
2014a; Gao et al., 2014). Examples of a series of very intense chorus elements detected
by the Van Allen Probes are shown in Figure 3.1.

A unique feature of the lower-band chorus is the amplitude modulations of the
elements, often described as subpackets (Santoĺık et al., 2003a, 2014a). Figures 3.2a-
b,e-f show the time series of magnetic field components corresponding to elements
highlighted by magenta rectangles in Figure 3.1. Statistical analysis of Santoĺık et al.
(2014a) shows that the length of subpackets exhibits a large variance, with an average
near 15 ms. The rapid changes in instantaneous frequency near amplitude minima
(Figure 3.2c,g) hint at jumps in the wave phase. However, a smooth evolution of phase
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Figure 3.1: Two examples of what we consider ”typical” chorus elements, taken from the
dataset assembled by Santolik et al. (2015). Magnetic power spectral density was obtained
from a 6-second waveform snapshot recorded by the Van Allen Probes EMFISIS instrument.
Magenta boxes highlight the parts of the spectrum that were processed by Hilbert transform
in Figure 3.2.

might be more likely at the beginning of an element, as demonstrated by Crabtree
et al. (2017) and Foster et al. (2021). Based on simulations of Nogi and Omura (2022),
the character of subpackets might be strongly related to their distance from the source
region. However, the source region has a field-aligned width of thousands of kilometres
(Santoĺık et al., 2004), complicating the definition of distance travelled from the source.
An extended discussion is provided in Section 4.4 (see also the phenomenological model
of Tao et al. (2021), briefly reviewed in Section 3.3.4), but the origin of the subpacket
structure is currently still unclear.

Another interesting property of the high-amplitude chorus subpackets is the vari-
ations in wave normal angle. Since we are near the source, Landau damping at large
θk values has not acted long enough to suppress such features (Omura et al., 2009;
Hsieh and Omura, 2018). The spikes in obliquity apparently arise from a mismatch in
amplitude modulations of the perpendicular and the parallel magnetic field component,
as seen in the right half of Figure 3.2d. This suggests that a complete description of
chorus formation requires a two-dimensional treatment, possibly with the inclusion of
transverse density irregularities that modulate the field-aligned power distribution (see
Katoh (2014) and the comments about ducting below Equation 1.82). Such theories
are currently not available, and a detailed analysis of the two-dimensional behaviour
goes beyond the scope of this thesis.

Finally, it should be mentioned that the well-behaved chorus elements, with a very
narrow bandwidth and nearly constant chirping rate, are not the only form of chorus.
An example of chorus elements with more diffuse features is shown in Figure 3.3a. Sim-
ilarly, the subpacket structure is not always present, as demonstrated by the waveform
presented in Figure 3.4. The evolution of such emissions cannot be described with
the plane wave approximation employed in the nonlinear growth theory (Section 3.2);
therefore, the results of Chapters 4 and 5, which are based on the NGTO, do not apply
to these more broadband types of chorus.
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Figure 3.2: a,b) Perpendicular (Bx,y) and parallel (Bz) magnetic field components of the
highlighted chorus element from Figure 3.1. Black dots mark amplitude peaks with prominence
of at least 50 pT. The black line in the background is the total magnetic field of the fluctuations.
c) Instantaneous frequency obtained from the analytic signal. d) Wave normal angle calculated
by SVD methods from the instantaneous spectral matrices. e-g) The same plots as previous
panels, but for the element from Figure 3.1b.
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Figure 3.3: Two spectrograms constructed from EMFISIS waveform snapshots showing intense
chorus elements with a broader frequency spectrum.

Figure 3.4: Waveform of a chorus element without a clear subpacket structure. The plots
have the same format as Figures 3.2a,b.

3.2 Nonlinear growth theory of Omura et al.

In a series of papers starting with Omura et al. (2008), a theory was developed that
attempts to describe the frequency drift and amplitude growth of chorus emissions as
observed by spacecraft and in kinetic simulations. This theory is the basis for the
chorus wavefield model described in Chapter 4. The summary of the theory presented
below is largely based on the recent review paper Omura (2021). Details concerning
the oblique propagation of chorus are left out.

3.2.1 Wave equations

The parallel-propagating monochromatic whistler wave defined in Equations 2.11–2.12
can be rewritten in a complex form as

B̃w = Bw exp(iψB) , (3.1)
Ẽw = Ew exp(iψE) , (3.2)

where ψE = ψB − π/2. The Maxwell curl equations for this wavefield are

i ∂Ẽw
∂h

= −∂B̃w
∂t

, (3.3)

i ∂B̃w
∂h

= µ0(J̃c + J̃R) + 1
c2
∂Ẽw
∂t

. (3.4)
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The current density is decomposed into two components: the cold current J̃c, which
captures the flow of cold electron fluid and gives rise to the cold dispersion relation
for whistler waves, and the transverse resonant current JR that arises from the nongy-
rotropy of hot electron distribution, which forms due to cyclotron resonant interaction
of electrons with large amplitude waves. The resonant current can be decomposed into
components parallel to the wave electric and magnetic fields,

J̃R = (JB − iJE) exp(iψB) . (3.5)

Following Omura et al. (2008), we use the Lorentz force acting on electrons to eliminate
Jc and rewrite the Maxwell equations 3.3–3.4 without Ew. Dropping all higher-order
derivatives of Bw and ψB and all derivatives of J̃R, we decompose the resulting equation
into the real and imaginary part and obtain

∂Bw
∂t

+ Vg
∂Bw
∂h

= −µ0Vg
2 JE (3.6)

and

c2k2 − ω2 −
ωω2

pe
Ωe − ω

= µ0c
2k
JB
Bw

, (3.7)

where we have used the whistler-mode group velocity from the left side of Equation 1.59.
These equations have been first derived in a slightly different form by Nunn (1971).

We observe that the resonant current component JE modifies the wave amplitude,
and the JB/Bw quantity modifies the dispersion relation. While Equation 3.6 could be
in principle solved numerically, given suitable initial conditions and knowledge of JE,
Equation 3.7 is more difficult to interpret. First, it breaks for Bw → 0, unless JB goes
to 0 as Bw or faster (which will be later shown not to be the case in the NGTO).
Second, the changes in frequency indicated by the modified dispersion contradict the
initial assumption of a monochromatic wave. Omura and Nunn (2011) view the growth
of chorus elements as a triggering process, where a strong initial wave of frequency ω0
forms the resonant current and preserves its spatial structure given by a fixed wavenum-
ber k0. Under this assumption, we can write in Equation 3.7 k = k0, ω = ω0 + δω,
where δω ≪ ω0 is a small perturbation in frequency. Solving for δω, we get

δω = −µ0Vg
2

JB
Bw

. (3.8)

Nunn (1974) suggests that ω0 must be changed periodically to reflect that a triggered
wave has replaced the initial triggering wave at a higher frequency. Unfortunately, it
is unclear how to implement this stepping up in frequency. We will tackle this issue in
Chapter 4, using a modified version of the chorus equations from Section 3.2.3.

3.2.2 Resonant current

To evaluate the resonant current appearing in Equations 3.6 and 3.7, we need to find
the perturbed distribution function of hot electrons. Following Omura et al. (2009), we
choose the initial equatorial distribution to be bi-Maxwellian in momenta,

feq(u∥, u⊥) = neq
(2π)3/2Ut∥0U

2
t⊥0

exp
(︄

−
u2

∥

2U2
t∥0

)︄
exp

(︄
− u2

⊥
2U2

t⊥0

)︄
, (3.9)

where
neq =

∫︂ ∞

−∞

∫︂ ∞

0

∫︂ 2π

0
u⊥feq(u∥, u⊥)dζdu⊥du∥ (3.10)
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is the number density of the hot population. We point out that this distribution is
chosen mostly for convenient integration and works well in a weakly relativistic setting,
but for higher values of γ, a two-temperature generalization of the Jüttner distribution
should be used, as proposed, e.g., by Kuzichev et al. (2019). However, it should also be
mentioned that we need to model the electron distribution only in the range where the
interaction happens. Therefore we do not need to use a sum of Maxwellians or kappa
distributions to represent both tail and core of the electron momentum distribution.

We further assume that a bi-Maxwellian can model the electron distribution along
a magnetic field line at any distance h. From Liouville’s theorem, we have

f(u∥0, u⊥0, 0) = f(u∥(u∥0, u⊥0, h), u⊥(u∥0, u⊥0, h), h) =

= n(h)
(2π)3/2Ut∥(h)Ut⊥(h)2 exp

(︄
−

u2
∥

2Ut∥(h)2

)︄
exp

(︄
− u2

⊥
2Ut⊥(h)2

)︄
(3.11)

During adiabatic motion, kinetic energy and first adiabatic invariant are preserved and
give

u2
⊥ = B(h)

B0
u2

⊥0 , (3.12)

u2
∥ = u2

∥0 + u2
⊥0

(︃
1 − B(h)

B0

)︃
. (3.13)

By substituting into Equation 3.11 and comparing the result with Equation 3.9, we
obtain the off-equatorial thermal momenta and density

Ut∥(h) = Ut∥0 , (3.14)

Ut⊥(h) = W (h)Ut⊥0 (3.15)

and
n(h) = W (h)2neq , (3.16)

where

W (h) =
(︃

1 +
(︃

1 − B0
B(h)

)︃
A0

)︃−1/2
(3.17)

and
A0 = U2

t⊥0
U2

t∥0
− 1 (3.18)

is the equatorial temperature anisotropy.
Another simplification in the NGTO comes from reducing the distribution

f(u∥, u⊥, h) to

fδ(u∥, u⊥, h) = K exp
(︄

−
u2

∥

2U2
t∥(h)

)︄
δ(u⊥ − U⊥(h)) , (3.19)

where K is a normalization constant. By requiring that fδ(u∥, u⊥, h) and f(u∥, u⊥, h)
both integrate to the same density, n(h), and that they have the same average perpen-
dicular momentum, U⊥(h), we finally get

fδ(u∥, u⊥, h) = n(h)
(2π)3/2Ut∥(h)Ut⊥(h)

exp
(︄

−
u2

∥

2U2
t∥(h)

)︄
δ(u⊥ − U⊥(h)) (3.20)
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with
U⊥(h) =

(︃
π

2

)︃1/2
Ut⊥(h) . (3.21)

We can now evaluate the components of resonant current JE, JB. In general, they
are expressed as (me = 1, e = 1)

JE =
∫︂ ∞

−∞

∫︂ ∞

0

∫︂ 2π

0
(v⊥ sin ζ)u⊥f(ζ, u∥, u⊥)dζdu⊥du∥ , (3.22)

JB =
∫︂ ∞

−∞

∫︂ ∞

0

∫︂ 2π

0
(−v⊥ cos ζ)u⊥f(ζ, u∥, u⊥)dζdu⊥du∥ , (3.23)

where we have dropped the h-dependence for brevity. In the case of gyrotropic distri-
butions, the current density will be zero due to the dependence on sin ζ and cos ζ. We
proceed by factorization

f(ζ, u∥, u⊥) = (g0(u∥) −Qgtr(ζ, u∥))δ(u⊥ − U⊥) , (3.24)

where the simplified perpendicular distribution from Eq. 3.20 is used. Factor Q ∈ [0, 1]
represents the depth of the depletion in the trapping region, gtr is the trapped particle
distribution and g0 is the unperturbed distribution. We now assume that gtr can be
replaced by a constant G = fδ(UR, U⊥), that is, the phase space density inside the
trapping region is assumed to be perfectly mixed (a waterbag model). Recalling the
shape of the boundaries of the inhomogeneous electron trap from Equation 2.48, the
components of the resonant current can now be expressed as

JE = −J0

∫︂ ζ2

ζ1
(cos ζ1 − cos ζ + S(ζ − ζ1))1/2 sin ζ , (3.25)

JB = J0

∫︂ ζ2

ζ1
(cos ζ1 − cos ζ + S(ζ − ζ1))1/2 cos ζ (3.26)

with
J0 = (2)3/2(k)−1/2γ−1

R (1 − V 2
p /c

2)1/2QGU
5/2
⊥ B1/2

w . (3.27)
In Figure 3.5, we show the plots of −JE(S) and −JB(S) as obtained from numerical
integration of Equations 3.25 and 3.26. The quantity −JE/J0 has a peak JE,max

.= 0.98
at S .= −0.41 ≡ Smax, and −JB/J0 attains value JB,max

.= 1.29 at Smax. Note that
−JB has a maximum at S .= −0.07, which is however not relevant for maximization of
wave power transfer.

Unlike in Omura (2021), we allow for G to be h-dependent, making it a constant
in velocity space, but not in the positional space. This decision has impact on the
boundary conditions presented in the next section.

3.2.3 Chorus equations

In the NGTO, we assume that the frequency growth of each chorus element (or each
subpacket of the element, see Chapter 4) happens locally at a single point along the
chosen field line at h = h0. We call this point the source, and we assume that the
transfer of energy from particles to waves maximizes in the source, and thus JE =
JE,max, S = Smax. It is usually assumed that the strength of the ambient magnetic
field minimizes at h = 0; in that case, the linear growth rate for parallel whistler waves
reaches its maximum at the equator and serves as the energy source for the naturally
generated, narrowband triggering wave (Omura et al., 2008).

With no convective growth, the evolution equation for the wave frequency is simply

∂ω

∂t
+ Vg

∂ω

∂h
= 0 . (3.28)
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Figure 3.5: Normalized value of the components of resonant current plotted in dependence
on the inhomogeneity factor S. The dotted lines show the point where −JE maximizes and the
values of the currents at this point.

Since the frequency is now assumed to be time-dependent, the resonance frequency
VR in the source also changes with time, and the pendulum equation 2.43 needs to be
rederived. The additional term containing ∂ω/∂t can be pulled into the inhomogeneity
factor S, which now takes the form

S = 1
ω2

trγ
2
R

(︃
csΩ

∂Ωe
∂h

+ sω
∂ω

∂t

)︃
(3.29)

with

sω = −γ2
R

(︄
1 − VR

Vg

)︄2

, (3.30)

sΩ = UR
c

(︄
1 +

(1 − V 2
p /c

2)
2

Ωe − γRω

Ωe − ω

)︄
− k⟨u⊥⟩2

2cΩe
. (3.31)

The density gradient ∂ne/∂h has been set to zero, as under the conditions found in
the Earth’s outer radiation belt, it is negligible compared to the other two terms. The
partial time derivative of wave frequency, also called the frequency drift rate or the
chirp can be expressed in the source point as

∂ω

∂t

⃓⃓⃓⃓
h0

=
Smaxk⟨u⊥⟩(1 − V 2

p )
sω

Ωw − csΩ
sω

∂Ωe
∂h

⃓⃓⃓⃓
h0

. (3.32)

The trapping frequency has been written out explicitly to highlight the dependence of
frequency on amplitude. Let us remark that the wavenumber k depends not only on
frequency but also on the position h through the gyrofrequency Ωe(h). Equation 3.32
is the first of two chorus equations and serves as an initial boundary condition for the
transport equation 3.28.
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To obtain the growth factor for the absolute nonlinear instability in the source, we
first rewrite the inhomogeneous transport equation for amplitude, Eq. 3.6, as

∂Ωw
∂t

+ Vg
∂Ωw
∂h

= ΓNΩw . (3.33)

ΓN is the convective nonlinear growth rate. To proceed further, we need to estimate
the spatial gradient of the amplitude of a growing chorus subpacket. For simplicity, we
are going to assume that the ambient magnetic field strength along the field line can
be approximated by a parabolic function, and so the gyrofrequency

Ωe = Ωe0(1 + ah2) , (3.34)

a = 9
2

1
(LRE)2 , (3.35)

with a derived from the Taylor expansion of dipole field strength at h = 0. Omura et al.
(2009) propose that to achieve a self-sustaining nonlinear growth in the near-equatorial
region, the spatial gradient of the wave amplitude should be approximately constant
in space. Assuming that the chirp does not change much over distance (which is true
because the whistler wave group velocity remains almost constant near the equator and
in the frequency interval corresponding to the chorus lower band), we can neglect its
contribution to S at larger distances and make an estimate

∂Ωw
∂h

= csΩVp
(1 − V 2

p /c
2)Smaxω⟨u⊥⟩

∂2Ωe
∂h2 = 2acsΩΩe0Vp

(1 − V 2
p /c

2)Smaxω⟨u⊥⟩
. (3.36)

Here we must note that, in general, S = Smax does not have to hold away from the
source, which limits the precision of quantitative predictions of the nonlinear growth
theory. Finally, the second chorus equation, i.e. the initial boundary value condition
for amplitude growth, can be stated as

∂Ωw
∂t

⃓⃓⃓⃓
h0

= ΓN(h0)Ωw − 2acsΩVpVg
(1 − V 2

p /c
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(3.37)

with
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(3.38)
Here we substituted ⟨u⊥⟩ with γRV⊥0, which is a common simplification in the treat-
ment of the inhomogeneity factor under the NGTO.

Equations 3.6, 3.28, 3.37 and 3.32 can be solved numerically to obtain the wavefield
of a parallel propagating chorus element.

3.2.4 Threshold amplitude and optimum amplitude

To complete the description of the nonlinear growth theory, we need two additional
parameters: the threshold amplitude at which the growth rate becomes positive and
the so-called optimum amplitude at which the growth saturates. The condition on
absolute instability is

ΓN
Vg

Ωw >
∂Ωw
∂h

, (3.39)

and by inserting the expression from Equation 3.36 on the right-hand side, the ampli-
tude for which the marginal instability is encountered becomes

Ωthr = s2
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(3.40)
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Figure 3.6: Threshold amplitude and optimum amplitude in dependence on wave frequency
for two pairs of values of the free parameters τ , Q. The dotted black lines show at which
frequency does the nonlinear growth of chorus waves become theoretically possible.

The threshold amplitude is meaningful only in the source, so all variables are assumed
to be evaluated at h = h0.

Let us now return to the frequency perturbation related to −JB/Bw stated in Equa-
tion 3.8, and let us further assume that the actual frequency change within a single
subpacket proceeds gradually. We now define a nonlinear transition time TN by equat-
ing

∂ω

∂t
= δω

TN
. (3.41)

Next, we introduce a new parameter

τ = TN
Ttr

, (3.42)

where Ttr is the trapping period. In the source, the left-hand side of Equation 3.41
can be replaced with the chorus equation 3.32, and the B-component of the resonant
current can be calculated from Equations 3.25 and 3.26 with S = Smax. After these
substitutions, we can express the amplitude

Ωopt = JB,maxQsω
21/2πSmaxτ

Ω2
e0
ω
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Ωe0
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(1 − V 2
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2)SmaxωγRV⊥0

∂Ωe
∂h

.

(3.43)
Vlasov hybrid simulations have shown (Omura and Nunn, 2011) that the optimum
amplitude is close to the maximum amplitude at which the wave growth breaks down.

Together, he threshold amplitude and the optimum amplitude define a range of wave
frequencies ω : Ωthr(ω) < Ωopt(ω), in which the nonlinear growth of chorus emissions
becomes possible. In Figure 3.6, we plot Ωthr(ω) and Ωopt(ω) for two pairs of the free
parameters τ and Q. For (τ,Q) = (0.25, 1.0), the lowest frequency at which the growth
is possible is ω = 0.12Ωe0, while for (τ,Q) = (1.0, 0.25), the limiting frequency increases
to ω = 0.16Ωe0. The characteristic amplitudes themselves can change by more than
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an order of magnitude in dependence on the two free parameters. In general, these
parameters have to be estimated from simulations.

3.2.5 Summary

In essence, the nonlinear growth theory of Omura et al. provides an approximate
formula for the calculation of resonant currents arising from the nongyrotropy near
the trapping region, and it assigns meaning to the nonlinear dispersion relation by
postulating that the wavenumber remains constant within a single subpacket. Using
further simplifications based on self-consistent simulations of the triggering process,
three new features are introduced:

1. Relativistic form of the inhomogeneity ratio S, improving on the previous results
of Vomvoridis and Denavit (1979).

2. Threshold amplitude for the onset of the nonlinear growth.

3. Optimum amplitude at which the resonant current saturates.

With these tools, a plane-wave model can be constructed that predicts the growth of
amplitude and frequency of a triggered rising-tone chorus element.

Description of oblique propagation and falling tones is so far outside of the scope of
the theory; however, the relativistic inhomogeneity ratio can be generalized to Landau
and cyclotron resonance with oblique whistler waves, as shown by Omura et al. (2019).
A calculation by Omura et al. (2009) tells us how the Landau damping can contribute to
creating the spectral gap at 0.5Ωe during propagation away from the magnetic equator,
but it cannot explain existence of the gap inside the source (Li et al., 2019). Never-
theless, the theory cannot be used in its current state to model wavefields of chorus
elements with higher wave normal angles, and therefore we omitted the discussion of
oblique propagation.

Overall, the NGTO brings more clarity to the discussion of the chorus triggering
process, and it enables us to estimate the chirp and wave amplitudes based on the
properties of cold and hot plasma in the generation region. However, it has several
shortcomings. First of all, the emission source is reduced to a single point at the equa-
tor, while observations (see the discussion of chorus properties in Section 3.1) show that
the source region extends thousands of kilometres away from the B0-minimum. The ho-
mogeneous density distribution in the electron hole contradicts test-particle simulations
and PIC simulations of the trapped particle population during the initial stage. The
applicability of the plane wave approximation has been challenged by subpacket stud-
ies, e.g. Crabtree et al. (2017), and the examples in Figure 3.1 suggest that the spectral
width of a subpacket can easily reach half of the full element spectral width. The reduc-
tion of the perpendicular momentum distribution of electrons to a delta function and
the use of averaged ⟨u⊥⟩ in the second-order resonance complicates comparison with
particle simulations and decreases the credibility of quantitative predictions. Further-
more, the theory provides no description of the deformation/breakdown of the electron
hole, which is expected to happen between subpackets (Tao et al., 2017). The derivation
of threshold amplitude is based on the assumption of constant field-aligned amplitude
gradient ∂B/∂h, for which there is no clear support in self-consistent simulations. And
finally, the NGTO does not provide any mechanism that would explain the repetition
of elements, which is one of the most defining features of the whistler-mode chorus.

In conclusion, it is evident that the theoretical description of the chorus emission is
still incomplete, and while the NGTO provides us with mathematical tools for analysis
of this emission type, we need to overcome the above-mentioned shortcomings to gain
a deeper understanding of the nonlinear wave-particle interactions.
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3.3 Other chorus growth theories

The nonlinear growth theory of Omura et al. is the most widely used approach in
analytical and numerical studies of chorus in recent years (see e.g. Kurita et al. (2012),
Foster et al. (2017), Juhász et al. (2019) and the references in Omura (2021)). However,
other theories have been proposed over the last decades, with some of them being able
to describe processes omitted in the NGTO. Below, we briefly review four theories we
consider to be the most developed, most successful, or most general in their approach.
The focus of this section is on parallel propagation. Theories of very oblique whistler
wave generation on the resonance cone are left out as they cannot be compared to the
NGTO – for more about the current research on this topic, see Mourenas et al. (2015),
Fu et al. (2017) or Roytershteyn and Delzanno (2021).

3.3.1 Backward wave oscillator regime of cyclotron masers

In the inner magnetosphere, where field lines are closed, separate magnetic flux tubes
can be viewed as resonant cavities, with the conjugate ionospheres acting as mirrors for
electromagnetic waves. Whistler wave packets bouncing between the mirrors experi-
ence amplification through interaction with trapped populations of energetic electrons.
This concept is called the magnetospheric cyclotron maser and can explain the ori-
gin of certain types of electromagnetic emissions, e.g. the quasiperiodic hiss emissions
(Trakhtengerts and Rycroft, 2008). However, the predicted amplification is not fast
enough to explain the growth of chorus emissions. To achieve large wave growth, the
maser must operate in a backward wave oscillator (BWO) regime where the EM wave
packets interacts with a well-organized electron beam propagating in the opposite di-
rection. As shown by Trakhtengerts (1995), the BWO regime can also be achieved
when a step-like deformation is present in the f(v∥) distribution of hot electrons, sit-
uated close to the cyclotron resonance velocity. Their calculations demonstrated that
the presence of a hiss band could lead to the formation of coherent wavelets near the
upper frequency bound of the noise.

The basic equations of the BWO theory of chorus generation are the same as in the
NGTO: the equations of motion for electrons in a whistler wavefield (Equations 2.41,
2.42, and 2.16) and the amplitude equation 3.6 in its complex form

(︃
∂

∂t
+ Vg

∂

∂h

)︃
B̃w = −iµ0VgJ̃R

2 , (3.44)

complemented with the conservation of phase space density of electrons (Liouville’s
theorem). Assuming that the resonant current is carried mainly by particles near VR
and that the magnetic field inhomogeneity is small, the perturbation δf to the initial hot
electron distribution can be expressed in simple terms. The final set of equations of the
step-BWO system are four inhomogeneous transport equations for Bw, δf , the phase
mismatch ζ and the velocity of the step (Demekhov and Trakhtengerts , 2008). Because
the evolution of the phase space density perturbations is included in the system, we
have a self-consistent system of equations. The parameters Q and τ from the NGTO
are not needed, but we must have an estimate on the length of the resonant cavity.

The set of PDE for chorus generation through the step-BWO maser is, unfortu-
nately, a stiff numerical problem, and unlike the NGTO, it does not provide simple
analytical estimates on the amplitudes and frequencies of chorus elements. The non-
linear growth rate to which the numerical results are often compared (Demekhov and
Trakhtengerts, 2005; Demekhov, 2017) is based on exact calculations of the trapped
particle motion (monochromatic plane wave, homogeneous field) carried out by Bud’ko
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et al. (1972), resulting in

γBWO
ωtr

= 3π
32 . (3.45)

This relationship between growth rate and trapping frequency can be plugged into the
formula for inhomogeneity ratio S to express the chirp rate, resulting in the qualitative
relation

∂ω

∂t
∝ ω2

tr . (3.46)

However, as discussed in more detail in Section 3.3.2 when dealing with the sideband
instability, the above growth rate formula does not include the distortion of particle
trajectories caused by secondary waves. Nonetheless, the simulation results from the
numerical solution of the PDE system can be successfully compared with direct satellite
observations, as shown most recently by Demekhov et al. (2020).

The step-BWO theory and associated simulations successfully explained the rep-
etition of chorus elements, which is a prediction outside of the scope of the NGTO,
and Demekhov (2011) also demonstrated the possibility of falling-tone chorus forma-
tion in off-equatorial sources. A major shortcoming of the BWO theory comes from
the assumption of a step-like feature in f(v∥), which is supposed to be formed due to
cyclotron interaction of hot electrons with a hiss emission. As shown in Figure 3.1b,
the presence of low-frequency whistler-mode hiss does not always correlate with ob-
servations of chorus elements. Furthermore, the simulation results on step formation
from the hiss emission by Trakhtengerts et al. (1996) have never been experimentally
confirmed. However, as noted by Demekhov et al. (2017) and Hanzelka et al. (2021)
(see also Chapter 5), phase space density depletions caused by interaction with a cho-
rus subpacket form a step-like feature in the direction perpendicular to VR(v⊥), which
relates the electron hole formation described in the NGTO to the BWO approach. Un-
fortunately, this observation can be applied only to later stages of the chorus growth
when a strong wave packet has already been formed, leaving the processes of PSD
perturbation taking place in the initial stage of chorus growth unexplained.

3.3.2 Sideband instability

During the 1960s, it was observed that dashes in Morse code signals sent by military
VLF stations trigger rising-tone whistler-mode emissions in the plasmasphere (Helliwell
et al., 1964). The first complete dynamical theory of this phenomenon was provided
by Sudan and Ott (1971). They assumed that a sufficiently long triggering signal at
a constant frequency creates a population of strongly phase-correlated resonant elec-
trons, emitting a secondary whistler wave. Under a simplified model of the correlated
population, they found instability in sidebands with frequency shifts δω in the order
of ωtr. These shifts are significantly larger than the adiabatic frequency drift caused
by the gradual change of resonance velocity due to inhomogeneity of the geomagnetic
field, as considered by Helliwell (1967). However, Sudan and Ott (1971) noted that the
inhomogeneity of B0 is essential because as long as the correlated particles stay in res-
onance with the triggering wave, the radiated power will support amplitude growth of
this primary wave instead of the sidebands. The approximate formula for the sideband
growth rate was found to be

γ

ω
=
(︃
nR
nc

⟨v⊥⟩
c

ωpe
Ωe

)︃ 2
5
. (3.47)

Following the choice of parameters presented later in Section 4.3, we set ⟨v⊥⟩/c = 0.4,
ωpe/Ωe = 4.2, and estimate the fraction of phase-correlated particles as nR/nc ∈ [5 ·
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10−6, 5 · 10−5]. With ω = 104 s−1, we get a wave growth estimate in the approximate
range from 102 s−1 to 2 · 102 s−1. This matches the average growth of 2 · 102 s−1 of
the first model subpacket from Figure 4.6. Similarly, Sudan and Ott (1971) conclude
that the numerical results obtained from Equation 3.47 agree with the observations of
Helliwell et al. (1964).

On the other hand, Karpman (1974) criticised the above-reviewed results on the
sideband growth rate, pointing out that the perfect phase correlation assumed by Su-
dan and Ott (1971) (δ-function in parallel velocities at VR and a cosine distribution in
phases) is unrealistic, and claimed that the sideband growth rate should be much closer
to the linear growth rate γL. They based their arguments on the analytical computa-
tions of Bud’ko et al. (1972), who in turn were inspired by the exact nonlinear Landau
damping theory of O’Neil (1965) and assumed that the distribution of resonant parti-
cles reaches an ergodic state. Here, the term ”ergodic” refers to the mixing property of
the trapped particle evolution operator: for t/Ttr → ∞, a coarse-grained distribution is
asymptotically constant along phase space trajectories for any mesh size, and its value
at any point can be obtained by averaging of the initial distribution. Based on energy
conservation and the ergodic theorem, Bud’ko et al. (1972) conclude that the maximum
growth rate of the sideband is about 1.4γL, which is typically much less than the pre-
dictions based on Equation 3.47. Karpman (1974) also notes that the inhomogeneity of
the background magnetic field introduces an asymmetry between the upper and lower
sidebands, explaining the dominance of rising tone elements.

Denavit and Sudan (1975) proposed a more general distribution of resonant elec-
trons, which was still assumed to be strongly concentrated near ζ ≈ π. Unlike Bud’ko
et al. (1972), they worked with a set of secondary waves coupled to the primary wave.
The shift between the mean velocity of the resonant particles and the resonance velocity
of the primary wave, which is responsible for the frequency shift of sidebands, comes
from the slope of the initial velocity distribution along v∥. The dispersion relation de-
rived by Denavit and Sudan (1975) shows a splitting of the whistler mode determined
by the amplitude of the primary wave. Depending on the inhomogeneity of B0 and
the shape of the initial velocity distribution, the excitation coefficient of one of the
sidebands can increase, leading to a preferential rising-tone or falling tone structure.
The resulting peak growth rate formula is

γ

ω
=
(︄(︃

ωpR2
ω

)︃2 (︃
1 − ω

Ωe

)︃ ⟨v2
⊥⟩

2c2

)︄ 1
3

, (3.48)

where the density of resonant particles nR2 ∝ ω2
pR2 corresponds only to the component

of resonant current JR that contributes to the instability of magnetic field perturbations;
Denavit and Sudan (1975) estimate nR2/nc = 10−7. With this estimate and the values
of frequencies and velocities defined below Equation 3.47, we get a growth rate of
1.4 · 102 s−1. Despite the different power-law coefficients, there is little quantitative
change for the chosen representative values of input parameters.

Nunn (1986) sidestepped the difficulties of finding the analytical expression for the
resonant particle distribution by performing a backward numerical integration of elec-
tron trajectories. However, as in all of the above-discussed approaches, the amplitude
of the primary wave was slowly changing, and the amplitude of the secondary wave was
supposed to be much smaller so as not to perturb the particle trajectories.

In a realistic scenario, the triggering wave (either artificial or naturally generated
from anisotropy-driven instabilities) will experience fast growth, increasing ωtr and
widening the spectral gap between the primary wave and the sidebands. Therefore, the
power radiated by the phase-correlated electron should create a rising-frequency fluctu-
ation spectrum, similar to the continuous frequency drift assumption (Equation 3.41)
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made by Omura and Nunn (2011). Furthermore, the overlapping of trapping poten-
tials of the triggered wave and the primary wave will result in loss of phase correlation
before the ergodic state sets in, making the application of Bud’ko’s results to chorus
growth questionable. Unfortunately, a self-consistent description of the frequency drift
poses serious mathematical challenges which have yet to be fully resolved. One promis-
ing path towards a complete analytical description of the nonlinear chorus growth is
reviewed in the following paragraphs.

3.3.3 General framework of chorus excitation

A new theoretical framework developed by Zonca et al. (2022) aims to provide a self-
consistent analytical description of the interaction between a whistler-mode fluctuation
spectrum and resonant electrons. As a first step, Zonca et al. split the current den-
sity into cold and hot components, deriving a nonlinear dispersion relation equivalent
to Equation 3.7. Next, they formulate a complex wave equation analogous to Equa-
tion 3.44. However, instead of the amplitude and phase of the wave magnetic field,
they use the wave intensity and arrive at

W (h, t, ω) + iΓ(h, t, ω) ≡ µc

ω
∂D̄w
∂k

µ0Vg(˜︁JRk · ˜︁B∗
wk)

|˜︁Bwk|2

⃓⃓⃓⃓
⃓⃓⃓⃓
k=ωµ/c

, (3.49)

whereW is the temporal phase shift, Γ is the growth rate, and µ represents the refractive
index solution to the whistler-mode dispersion relation D̄w (see Equation 1.58). This
form is more similar to the energy density formulation of Karpman et al. (1975).

Unlike in the sideband theory or the NGTO, Zonca et al. (2022) do not assume a
test wave at ω + δω or a continuous shift in the frequency of a plane wave. Instead,
they write the perturbation of the hot electron density δf as a response to a dense
fluctuation spectrum, summing over all possible wavenumbers k. The spectral com-
ponents are always assumed to approximately fulfil the whistler dispersion relation.
Further, they use the Vlasov equation to derive an evolution equation of the back-
ground distribution (zeroth summation component) f0 in dependence on Bwk and δfk,
and another evolution equation for δfk in dependence on f0. By formal inversion of the
evolution operators, (∂t + v∥∂z)f0 can be cast in a form similar to the Dyson equation,
describing the emission and absorption of whistler-mode electromagnetic oscillators.
The resulting Dyson-like equation captures the self-consistent evolution of the phase
space structures and the chirping chorus element, accounting for self-interactions in
the fluctuation spectrum. We do not call this equation Schinger-Dyson because it has
been derived perturbatively by summing interaction diagrams (Al’tshul’ and Karpman,
1966), as opposed to the variational approach (Schwinger, 1951).

Due to the complexity of the general framework presented by Zonca et al. (2022), we
will not review the resulting equations in further detail, and we will rather focus on the
new concepts and their relation to older theories. The growth and chirping of chorus
emissions are shown to be associated with the maximization of wave power transfer,
in agreement with Omura et al. (2008). However, instead of excitation of discrete
whistler seeds, the chirping comes from excitation of a noise fluctuation spectrum,
with the frequency of the dominant wavenumber continuously sliding towards higher
values. Furthermore, the nonlinear phase shift is found to be associated with wave
intensity modulations (subpackets) rather than with the frequency drift. This suggests
that the connection between ∂ω/∂t and δω postulated in Equation 3.41 stems from
misidentifying the cause of chirping. Zonca et al. (2022) show that the peak phase
shift in the frequency space is locked to the peak of wave intensity, thus explaining why
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the results based on Equation 3.41 (definition of optimum amplitude, simulations in
Chapter 4) provide reasonable agreement with observations and PIC simulations.

The new theoretical framework also reveals the connection between the nonlinear
growth rate, trapping period, and chirping: γNL ∝ ωtr, ∂ω/∂t ∝ γ2

NL. These propor-
tionalities can be found in the earlier sideband and BWO theories (Bud’ko et al., 1972;
Trakhtengerts, 1999), but now, they have been placed on a rigorous mathematical foun-
dation. A reduced (velocity-space averaged) version of the Dyson-like equation can be
treated analytically to retrieve

∂ω

∂t
= ±1

2
ω2

tr
(1 − VR/Vg)2 , (3.50)

where the constant 1/2 defines the optimum value of the nonrelativistic version of the
inhomogeneity factor S as derived by Vomvoridis et al. (1982). The theory of Zonca
et al. (2022) provides the first fully analytical derivation of chirping in both rising and
falling elements, as indicated by the ± sign.

Another interesting feature of the new approach is the treatment of the magnetic
field nonuniformity. It is shown that the nonuniform initial hot electron distribution
provides the energy source for the nonlinear excitation and that the B0 field can be
treated as homogeneous. However, a nonuniform ambient magnetic field might con-
tribute to the symmetry breaking between fallers and risers, as suggested by the simu-
lations of Wu et al. (2020).

In summary, the new theoretical framework developed by Zonca et al. (2022) pro-
vides a rigorous rederivation of previous major results on the chorus growth mechanism
and rejects the nonlinear phase shift as a source of frequency chirping. On top of that,
it shows a one-to-one correspondence of chorus chirping with superradiance in free-
electron lasers and indicates the possible application of the new description in the
BWO mechanism (Chen and Zonca, 2016). Nevertheless, at this point, wavefield calcu-
lations rely on a reduction of the Dyson-like equation and its numerical solution, which
requires Savitzky-Golay filtering to prevent the loss of regularity in ∂ω. Furthermore,
the current description is nonrelativistic, assumes parallel propagation in a parabolic
magnetic field, and it cannot handle discrete steps in the frequency spectrum due to
the continuous limit introduced in the reduced model. Therefore, the explanation of
the origin of subpackets, defined in the sense of Santoĺık et al. (2003a), is currently
beyond the reach of the reduced model.

3.3.4 Trap-Release-Amplify

The Trap-Release-Amplify phenomenological model of chorus waves (TARA for short)
presented by Tao et al. (2021) describes the growth of chorus elements based on the
qualitative results of the theoretical framework from Section 3.3.3 and PIC simulations.
It also utilizes the antenna effect introduced by Helliwell (1967), which was considered
in the NGTO-based numerical model of Hanzelka et al. (2020); see Chapter 4. The
frequency drift in the TARA model does not come from the JB component of the
resonant current but instead from the selective amplification of new emissions from the
broadband whistler-wave spectrum due to the phase-locking condition (d2ζ/dt2 ≈ 0),
which is connected with the maximization of wave power transfer. The chirp is thus
partially explained due to inhomogeneity of the ambient magnetic field in the upstream,
as originally suggested by Helliwell (1967). This description differs from the analytical
results of Zonca et al. (2022), who neglected ∂B0/∂h and recovered the frequency
growth from the nonuniformity of the hot electron distribution.

Unlike in the theory of Helliwell (1967), the TARA model also acknowledges the
relation of frequency shift to the particle trapping and wave amplitude as prescribed by

66



Equation 3.50, thus taking into account the case when the sω component of Equation
3.29 dominates the sΩ component (note that the TARA model is presented in a non-
relativistic form, but the concepts easily translate to the equations of Section 3.2 based
on relativistic particle motion). This allows for the formation of rising-tone elements
in a uniform magnetic field, but the origin of the chirp for this case is not captured by
the TARA model.

The explanation of the origin of subpackets differs significantly from the NGTO.
Instead of considering each subpacket as the basic unit of wave excitation (which later
becomes the new triggering wave), in TARA, modes at all frequencies contribute to
the generation of new emissions, and the subpackets form in the downstream due to
conservation of momentum and energy between waves and phase-trapped electrons.
Oscillations of resonant particles in the order of ω−1

tr modulate the wave power transfer
(Tao et al., 2017), and this translates to amplitude modulations, which are further
accentuated due to convective growth downstream (cf. Nogi and Omura (2022)). This
poses difficulty for the spacecraft analysis of subpackets (Santoĺık et al., 2014a; Foster
et al., 2017) by suggesting that multipoint measurements are required to capture the
important convective evolution of the subpacket structure. Furthermore, wave super-
position needs to be taken into account when analyzing the fine structure of chorus
(Santoĺık et al., 2004; Zhang et al., 2020; Nunn et al., 2021).

We may conclude that while the TARA model provides an interesting novel descrip-
tion of the chorus generation mechanism, there are still many contentious points (e.g.
the role of JB, ∂B0/∂h, and wave superposition) that need to be resolved by further
theoretical and experimental investigations.

3.4 Similarity of chorus emissions and EMIC

The equations of motion of electrons in a right-hand polarized whistler wave (Eqs. 2.14–
2.16) can be easily translated to the motion of protons in a left-hand polarized EMIC
wave. Similarly, the calculation of resonant current within the nonlinear growth theory
of chorus emissions (Section 3.2.2) can be modified to describe the currents which drive
the growth of EMIC discrete elements. The proton trajectories will have the same
shape as in Figure 2.9, but instead of a hole, a so-called proton hill will form in the
trapping region that moves towards higher parallel velocities, supporting the growth of
a falling-tone emission (Figure 3.7a). A proton hole, with S ≈ +0.4, is associated with
rising tones (Pickett et al., 2010; Omura et al., 2010; Shoji et al., 2021). EMICs can
also interact with co-streaming electrons, with the resonance velocity curve

VR(v⊥) = 1
k

(︃
ω + Ωe

γ

)︃
=

ckω

Ω2
e

+

⌜⃓⃓⎷(︄1 + c2k2

Ω2
e

)︄(︄
1 − v2

⊥
c2

)︄
− ω2

Ω2
e

1 + c2k2

Ω2
e

(3.51)

forming a near-circular arc in the (v∥, v⊥) space at relativistic energies, as shown in
Figure 3.7b. Notice that this is the same formula as for the whistler-electron interaction
in Equation 2.19, but the other root of the quadratic equation is chosen. Due to the
shape of VR(v⊥), the EMIC-electron interaction results in pitch angle scattering with
negligible changes to the electron energy (Omura et al., 2013).

Unlike in the case of chorus, spacecraft observations have not detected any signs of
a spectral gap in discrete EMIC emissions, not counting the gaps between different ion
cyclotron branches (Nakamura et al., 2015). Therefore, as the wave element reaches
frequencies ω > Ωp/2, the downstream chirping rate will decrease due to the down-
ward trend of Vg; see Figure 1.3 for a visual overview of the EMIC wave propagation
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Figure 3.7: a) Schematic explanation of the connection between proton (electron) hill and
hole formation and the chirping of discrete EMIC (chorus) elements. The plot in the bottom
right corners of each panel shows the shape of the separatrix in the (ζ, v∥) space. Black arrows
point to the direction of motion of the phase space perturbation. b) Resonance velocity curve of
EMIC-electron interaction. Even at a high wave frequency of 0.75Ωp, we have γ ≫ 1, showing
that only relativistic electrons can experience resonance scattering by proton EMICs. Compare
with the results on electron-chorus interaction, Figure 2.5.

properties. Because the source location of the EMIC is not always known, estimation
of this dispersion effect is not straightforward, complicating the comparison of ∂ω/∂t
with the theory.

A more serious complication arises at lower frequencies. Wave vectors of EMIC
waves tend to be more oblique than the lower-band rising-tone chorus (Allen et al.,
2015; Taubenschuss et al., 2014), and even with a small amount of obliquity, a proton
EMIC can transition from L-mode to R-mode as it propagates towards higher B0.
Therefore, the NGTO can be used only at very low latitudes unless we focus on the
oxygen frequency band – or more generally, on the band of the heaviest ion, e.g. the
water group ions in the magnetosphere of Saturn (Leisner et al., 2006). However, even
if the crossover frequency is absent, the waves will quickly become oblique because
the EMIC ducting mechanism requires large-scale field-aligned density enhancement
(de Soria-Santacruz et al., 2013). Under these considerations, the frequency range and
latitudinal range where the NGTO and the EMIC-chorus equations (Omura et al.,
2010) are applicable is severely limited.

Furthermore, the EMIC spectrum tends to be less structured than the chorus spec-
trum, and the separation of individual elements and subpackets is often impossible
(Omura et al., 2010; Grison et al., 2013; Ojha et al., 2021). For this and the above
reasons, the NGTO-based wavefield modelling in Chapter 4 will be applied only to the
rising-tone, parallel-propagating, lower-band whistler-mode chorus.
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4. Semi-empirical model of
chorus wavefield
The nonlinear growth theory of chorus emissions (NGTO), which we described in Chap-
ter 3, can be used to model the wavefield of a parallel-propagating rising-tone chorus
element near the magnetic equator. However, additional assumptions about the res-
onant current and the triggering process must be made to reproduce the subpacket
structure. These modelling efforts serve two main purposes. First, they help us un-
derstand the parametric dependence of various chorus properties, as shown in this
chapter. Second, they provide a reasonable approximation of the real wavefield, which
can be used as an input for test-particle studies of electron acceleration and scattering
of resonant electrons. The latter application is the subject of Chapter 5.

The contents of this chapter are based on the publication Hanzelka et al. (2020),
which can be found in Attachment A.2. It must be noted here that the nonlinear
growth theory included a small inconsistency in the use of weakly relativistic electron
distributions and the calculation of resonant currents, and this inconsistency was first
corrected in Omura (2021). Because these corrections have a negligible effect on the
simulated chorus wavefield described in Hanzelka et al. (2020), we do not reflect them
in Sections 4.1 and 4.2. For discussion of the corrections, see Attachment A.1.

4.1 Basic principles and model equations

Our chorus wavefield model is based on the advection equations 3.6 and 3.28 for am-
plitude and frequency, with the chorus equations 3.37 and 3.32 serving as the initial
boundary value conditions. The quantity G(h), which carries the information about
the electron distribution, is based on the momentum distribution from Equation 3.11
and the parabolic approximation of magnetic field 3.34. The resulting formula for G(h)
is

G(h) =
(︄

1 + ah2

1 + ah2(1 +A0)

)︄ 1
2 nhe

2π2Ut⊥0Ut∥0
exp

(︄
− U2

R
2U2

t∥0

)︄
. (4.1)

As shown by the numerical solution of the system of advection and chorus equations
provided by Summers et al. (2012), the wave amplitude in the source grows without
any sign of oscillations and thus does not predict the formation of subpacket structure.
This is the expected behaviour stemming from the fact that the nonlinear growth theory
does not describe the breakdown or distortion of the vortex structure in the trapping
region (see Section 3.2.5). Following Kubota and Omura (2018), we switch the sign of
the nonlinear growth rate ΓN when the optimum amplitude is reached and let the wave
damp until the threshold amplitude is encountered. This heuristic approach ensures
that we obtain highly symmetric packet envelopes, which is in agreement with self-
consistent simulations and observations (see Section 3.1).

The NGTO assumes that the absolute instability is localized at a single point along
the field line. However, it is known that the resonant current causes instability over
a larger region of latitudes, and it has also been suggested that the source location is
shifting as the chorus element grows. Demekhov et al. (2020) used the motion of the
source to explain variations of the lowest frequency of individual chorus elements in
THEMIS spacecraft observations, and Nogi and Omura (2022) discussed the upstream
shift of the source based on particle-in-cell simulations. To include this behaviour into
our model, we assume the following scheme (see also Figure 4.1): During the growth
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Figure 4.1: Schematic representation of the sequential subpacket formation model. After
the wave amplitude reaches the optimum amplitude Ωopt at (tmax,0, h0) ∼ Point 0, it starts
decreasing until it reaches the threshold amplitude Ωthr at (tend,0, h0) ∼ Point 0′′ within a
time period δt0. At this point the radiation emitted from (t1, h1) ∼ Point 0′ arrives, where
0′ corresponds with the peak resonant current which was released from Point 0. The new
subpacket starts growing from Point 0′. This generation process is then repeated with each
subpacket (Points 1, 1′, and 1′′, etc.). Adapted from Hanzelka et al. (2020).

of a subpacket, the maximum amplitude is reached at one point, which also marks the
peak of the resonant current JE. The 3D spatial distribution of the current has a helical
shape, making the resonant electrons act as an antenna radiating whistler-mode waves
at a frequency determined by the pitch of the helix and the cold plasma dispersion
relation. We postulate that the continuous radiation from the antenna cannot replace
the previous subpacket until its normalized amplitude drops below Ωthr. This uniquely
defines the source location (ti+1, hi+1) of the new subpacket in time and space,

hi+1 = hi + VgiVRi
Vgi − VRi

δti , (4.2)

ti+1 = Vgitend,i − VRitmax,i
Vgi − VRi

(4.3)

The interval between Points (i + 1) and (i + 1)′′ in Figure 4.1 was denoted δti =
tend,i−tmax,i; the times where the previous subpacket reaches its maximum and where it
ends are called tmax,i and tend,i, respectively. Because the dispersive properties between
source points of two adjacent subpackets do not change much, we use the resonance
velocity and group velocity at (tmax,i, hi) in the calculation of the new source location.
The whole computation is repeated for each subpacket until an upper frequency limit
is reached.

Hanzelka et al. (2020) have shown that the whistler wave radiated from a perfect
helix of length hi+1 − hi could easily reach normalized amplitudes larger than Ωopt at
the end of the helix. In the model, we simply assume that the amplitude in the new
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Figure 4.2: Flowchart of the generation mechanism of the subpacket structure of a whistler-
mode chorus element. The initial stage is skipped in our model. Reprinted from Hanzelka et al.
(2020).

source is near the threshold amplitude, which is the necessary condition for nonlinear
growth. A more rigorous treatment of the antenna effect was presented by Trakht-
engerts et al. (2003), who studied the spectral and amplitude characteristics of the
secondary wave. They concluded that due to a phase mismatch along the antenna and
further acceleration and scattering of electrons by the primary wave, the energy trans-
ferred into the new subpacket significantly decreases. They found that the amplitude
of the secondary wave is of the same order of magnitude as the threshold amplitude
used in the simulation presented below.

The individual steps in our sequential model of chorus generation are summarized
in the flowchart in Figure 4.2.

4.2 Numerical simulation and results

We solved the advection equations for amplitude and frequency with an upwind inte-
gration scheme, with a spatial step hstep = 1 cΩ−1

e0 and the largest possible time step
which ensures the validity of the Courant-Friedrichs-Lewy (CFL) condition for all Vg,
i.e.

tstep ≈ hstep/max
ω,h

(Vg) . (4.4)

The starting frequency was set to ω0 = 0.2Ωe0, and the initial amplitude of each sub-
packet was chosen as Ωw(ti, hi) = 2Ωthr(ωi, hi). The choice of initial amplitude has
negligible effect on the result as long as Ωopt(ωi, hi) ≫ Ωthr(ωi, hi) and Ωw(ti, hi) ≈
Ωthr(ωi, hi). If Ωw(ti, hi) > Ωopt(ωi, hi), the calculation is terminated. Another termi-
nation condition, ω(ti, hi) ≥ ωf = 0.5 Ωe0, ensures that the growth of wave frequency
ends near the spectral gap appearing in spacecraft observations – see Sections 3.1 and
3.2.5 for the experimental and theoretical description of the gap.
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Q τ
ωpe
Ωe0

ωphe
Ωe0

V⊥0
c

Ut∥0
c

a · 107

c−2Ω2
e0

Set 0 0.5 0.5 5.0 0.3 0.4 0.15 1.36
Set 1 0.25 0.25 5.0 0.3 0.4 0.15 1.36
Set 2 0.5 1.0 6.0 0.4 0.4 0.20 0.86

Table 4.1: Three sets of input parameters used to produce Figures 4.3, 4.4 and 4.5.

Figure 4.3: Evolution of a chorus element in time and space obtained with input parameters
from Set 0 in table 4.1. The axes ranges can be converted to SI units to get t ≈ (0, 670) ms and
h ≈ (−5000, 10000) km. The components of the resonant current and its magnitude in panels
c), d), and e) are normalized by Jnorm = meΩ2

e0µ
−1
0 c−1e−1 ≈ 5.4 ·10−5 A · m−2. Reprinted from

Hanzelka et al. (2020).

In Figure 4.3, we show the time-space plots of frequency, amplitude and resonant
currents in a simulated wavefield. The input parameters for this case can be found in
Table 4.1 under the label “Set 0”. The coefficient a of parabolic approximation of the
dipole field strength corresponds to field line L = 4.5, and the gyrofrequency Ωe0 =
6.0·104 s−1 is based on equatorial magnetic field Bsurf = 3.1·10−5 T at the surface of the
Earth. Looking at Figure 4.3a, we notice that a large number of subpackets has been
produced (NS = 28) and that their source is moving upstream, with h27 = −750 cΩ−1

e0 ∼
λm = −7.5◦ being the furthest distance from the equator. The length of individual
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Figure 4.4: Plots of wave frequency and amplitude as in 4.3, but for input parameters sets 1
and 2 from Table 4.1. The choice L = 5 ∼ a = 0.86 · 10−7 c−2Ω2

e0 in Set 2 changes the SI range
of axes to t ≈ (0, 530) ms and h ≈ (−3500, 7000) km. Reprinted from Hanzelka et al. (2020).

subpackets in the source decreases from 1600 Ω−1
e0 ∼ 27 ms to 240 Ω−1

e0 ∼ 4 ms. This is
in agreement with Santoĺık et al. (2014a) who analyzed large number of high-amplitude
chorus elements detected by the Van Allen Probes and found that the majority of the
subpackets has length between 5 ms and tens of ms. The highest amplitudes reached in
observations were limited by instrumental capabilities at 3 nT, which is less than the
maximum amplitude of Ωw/Ωe0 = 0.023 ∼ Bw = 7.8 nT predicted by our simulation.
This peak amplitude can be decreased by treating the overlap of resonance regions,
which we show in Section 4.3. The wave growth should be further limited by the
Landau damping, which however does not appear in our 1D model. Moreover, the
parabolic approximation of magnetic field starts deviating from the dipole field at
larger latitudes, making the simulation unreliable in these regions even when strong
ducting is assumed.

The resonance current plots in Figures 4.3c–e show that the JE component, which
is associated with amplitude growth, attains its largest value in the source (starting
position and time) of each subpacket and then slowly decreases as the wave propagates
downstream. An exception is the subpackets near the upper-frequency limit, where JE
quickly drops down even before reaching the equator and then slowly picks up before
decreasing again at larger latitudes (λm > 15◦). The B-component grows with distance
from the subpacket sources and reaches its peak a few degrees of latitude downstream
from the equator. However, the relevant quantity for frequency growth is JB/Bw, as
dictated by Equations 3.7 and 3.8. Figure 4.3f reveals that µ0JB maximizes in the
subpacket source, which is consistent with the approximation of localized frequency
growth made in the construction of the NGTO.

Another way to look at our results is to plot the time evolution of the wave frequency
and amplitude at fixed points in space, as shown in Figure 4.5. Such visualization
resembles the results provided by spacecraft observations more closely because the ratio
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Figure 4.5: Time evolution of wave frequency and amplitude for all three simulations, plotted
as spatial sections at λm = 5◦ and λm ≈ 15◦. Reprinted from Hanzelka et al. (2020).
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of chorus group velocity and spacecraft orbital velocity is typically around 104, allowing
us to assume that the electromagnetic field detectors are not moving with respect to
the plasma. Frequency plots in panels a), c), and e) show an almost linear trend, but
we can also clearly notice the small sharp drops in between adjacent subpackets, which
come from the choice of determining frequency ωi from the shape of resonant current
at the peak of subpacket i− 1. The amplitude of subpackets has a sharp peak in their
source that smoothens downstream due to dispersion and partly also due to numerical
diffusion. Another effect of dispersion is the convergence of amplitude peaks and dips
at higher frequencies and latitudes, which becomes especially visible in Figure 4.5f.

4.3 Improved treatment of the resonance region

To improve the above-described model, Hanzelka et al. (2021) have taken into account
the width of the resonance island associated with each subpacket and considered its ef-
fects on the magnitude of the resonant current. Omura et al. (2015) derived a frequency
separability criterion to determine whether the resonance islands of two subpackets are
overlapping. For subpackets with frequencies ω0 and ω1 at a point (t, h), we require
that

|ω1 − ω0| > ∆ω , (4.5)

where
∆ω =

⟨︄(︃
∂VR
∂ω

)︃−1
Vtr

⟩︄
ω

. (4.6)

Unlike Omura et al. (2015), we include the frequency averaging ⟨•⟩ω to account for the
different frequencies of the two subpackets in the calculation of the resonance velocity
and trapping frequency. The width Vtr is defined by Equation 2.9. Evaluation of the
partial derivative results into

∆ω =
⟨︂

4ωtr(1 − VRV
−1

g )
⟩︂
ω

(4.7)

In our simulation, each subpacket starts at a higher upstream position, so their sources
never overlap. However, two waves with the same or similar frequency can meet later
during propagation. In such a case, the resonance islands will collide, and the resonant
current will be modified. Because the NGTO does not describe the dynamics of the
resonance region in detail, we simply introduce a monotonic suppression factor

si+1
J (t, h) = cos2

(︃
π

2 δω(t, h)
)︃

for δω ∈ [0, 1] ,

= 0 for δω > 1 ,
= 1 for δω < 0 , (4.8)

by which we multiply the resonant current in the (i+1)-th subpacket. We also introduce
the normalized frequency difference

δω = ∆ω − (ωi+1 − ωi)
∆ω . (4.9)

Furthermore, we drop the parabolic approximation and use the perfect dipole model
to calculate the gradient of magnetic field strength.

Figure 4.6 shows simulation results obtained with the improved model under the
following initial conditions and parameters: ω0 = 0.21 Ωe0, ωf = 0.46 Ωe0, Bsurf =
2.52 · 10−5 T, Q = 0.5, τ = 0.35, ωpe = 4.2 Ωe0, ωphe = 0.3 Ωe0, V⊥0 = 0.4 c, Ut∥0 =
0.16 c, L = 4.58. Looking at the wave amplitudes in panels a) and b), we immediately
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Figure 4.6: Chorus wavefield calculated from an improved model with resonant current sup-
pression. Time evolution of the wave magnetic field amplitude Bw of a chorus element prop-
agating along the magnetic field line towards positive h. Plotted for two values of latitude,
λm = 0◦ (red line) and λm = 10◦ (blue line). b) Evolution of amplitude in time and space.
Dotted lines show the spatial cuts at 0◦ and 10◦ of latitude. The total wavefield was obtained
as a superposition of the left- and right-propagating waves. Panels c) and d) show the wave
frequency ω and follow the format of panels a) and b), with only the right-propagating element
being plotted. Reprinted from Hanzelka et al. (2021).

notice that the first subpacket still reaches large amplitudes of about 2.6 nT, which
is a consequence of the sequential generation – the suppression factor does not apply
here. However, the rest of the wavefield features realistic amplitudes < 1 nT. Another
improvement is the increased difference between minima and maxima of each subpacket,
resulting in well defined peaks.

To analyze the effect of changes in the input parameters, we ran multiple simulations
and looked for correlations with the following output parameters: number of subpackets
NS, latitudinal shift of the source λdrift, frequency drift rate (chirp) ∂ω/∂t, total length
of the element ∆T , and maximum amplitude Bw/B0. The last three parameters were
determined at the equator. In Figure 4.7 we present the Pearson correlation coefficients
obtained from data of type Ok(Ii; {Ij ̸=i}), where Ok is the k-th output parameter, Ii is
the i-th input parameter and {Ij ̸=i} is the rest of inputs whose values are fixed. Values
of the input parameters are chosen from a range where strong nonlinear growth was en-
sured across the whole range of frequencies. Apart from the correlation coefficients, we
also plot the dependencies to demonstrate their nonlinear character and the magnitude
of their effect.

While our model is completely deterministic, it would be challenging to derive some
of the dependencies analytically due to its complexity. For example, Ut∥0 appears in the
argument of an exponential in the variable G(h), but it has minimal effect on any of the
output parameters and shows some of the lowest correlations in the table. On the other
hand, the influence of Q and τ on the input parameters can be easily traced back to the
definition of the optimum and threshold amplitudes. Both of these input parameters
show strong correlations with output variables (> 0.97 for all output parameters). In
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Figure 4.7: Table of correlation coefficients and plotted dependencies between output and
input parameters of our wave model. The full horizontal and vertical axes ranges are given in
the first column and the top row, respectively. In the first column of plots, the blue dots in
each cell denote the value of the input parameter used in the computation of the other rows.

general, correlation analyses can assist us in the construction of a wavefield that fits
closely to observational data.

4.4 Comparison with spacecraft observations

In Figure 4.8a, we show an example spectrogram of a chorus emission with a very
regular subpacket structure as detected by Van Allen Probe B on 08 Oct 2012 in the
outer radiation belt near the magnetic equator. Instantaneous amplitude and frequency
of the parallel and perpendicular components of the magnetic field are plotted in panels
b) and c). We can compare this observation with the simulation from Figure 4.6 which
was based on input parameters chosen specifically to replicate this measurement (L-
shell, electron gyrofrequency, plasma frequency and wave frequency range are identical).
The simulated duration of the element 320 ms and the equatorial maximum amplitude
0.7 nT (off-equatorial 2.7 nT) match reasonably well with the observed values of 340 ms
and 1.4 nT. On the other hand, the length of individual subpackets decreases from
38 ms to 15 ms in the simulation, while the experimental results give average subpacket
length < 10 ms.

It follows from the discussion in Section 3.3 that analysing subpackets with an-
alytical and semi-empirical models proves to be difficult because the exact origin of
the amplitude modulations is still disputed. This lack of theoretical understanding
becomes critical when comparing the instantaneous frequencies from Figure 4.8c with
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Figure 4.8: A chorus element observed by the Van Allen Probe B on October 8, 2012. a) A
power spectrogram constructed from magnetic field waveforms. The white line denotes Ωe/2.
b) Perpendicular and parallel magnetic field components from the first 200 milliseconds of the
element. Black dots denote the peaks of individual subpackets. c) Instantaneous frequency
obtained from the Hilbert transform of the time series Bx,y and Bz. Data from time intervals
corresponding to amplitudes smaller than 50 pT are omitted. d) Wave normal angles. Adapted
from Hanzelka et al. (2021).

our model. The drops in frequency found between the first two pairs of subpackets
resemble the irregular chirp rate from simulation; however, it is not apparent if these
features come from the breakdown of the resonance island, as assumed in the sequential
triggering model, or if they are a simple result of wave beating with a phase mismatch.
It was discovered with Bayesian spectral analysis (Crabtree et al., 2017) that the initial
subpackets correspond to a single chirping plane wave, but the later amplitude modu-
lations are better explained by summation of multiple plane waves. Wavelet analysis of
several RBSP observations (Tsurutani et al., 2020) even suggests that the subpackets
have constant frequency and that the chirping comes from discrete jumps.

To investigate the effects of wave beating of dephased, constant-frequency packets,
we used the statistical study of the subpacket structure by Santoĺık et al. (2014a) as
a reference and constructed an artificial waveform, presented in Figure 4.9a. A total
of 25 packets of various widths and amplitudes is summed, with each packet having
a slightly higher frequency than the previous. The phase jumps between individual
packets come from a uniform random distribution. Figure 4.9c shows the instantaneous
frequency obtained from the Hilbert transform, and we can see frequency jumps near
the amplitude minima, similar to the observational results in Figure 4.8c. Also, the
amplitude seems to be growing in certain packets purely due to wave superposition.
This observation suggests that the irregular growth of frequency towards the right
half of Figure 4.8c might come from wave beating of constant-frequency waves rather
than from a continuous chirp – compare this conclusion with the sideband theory from
Section 3.3.2. However, the frequency change within the first, long subpacket cannot
be explained this way. For the sake of completeness, we also constructed the power
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Figure 4.9: a) Normalized waveform of perpendicular magnetic field (parallel component is 0)
constructed from constant-frequency subpackets to resemble a spacecraft measurement of a
chorus element. b) Amplitude envelope obtained from the Hilbert transform of the time series
in the above panel. c) Instantaneous frequency obtained as the time derivative of the wave
phase. Data corresponding to amplitudes below 10 % of the maximum are omitted.

Figure 4.10: Time-frequency spectrogram of magnetic wave power constructed from the arti-
ficial time series in 4.9. a) 256-point FFT with a 94% window overlap. b) 256-point FFT with
a 50% window overlap.

spectra of the artificial chorus element, one with a 50% overlap of 256-point Cooley-
Tukey windows (Figure 4.10a) and another with a 94% overlap (Figure 4.10b). While
the second spectrum exhibits certain step-like features, it is clear that the chirp of
individual subpackets cannot be easily derived from STFT spectrograms.

The motion of the source can be compared to multipoint measurements from the
Cluster spacecraft fleet (Santoĺık et al., 2004). It was shown that the source position
fluctuates within 1000 km to 2000 km of the geomagnetic equator, and the extent of
the source ranges from 3000 km to 5000 km. The λdrift values from Figure 4.7 can be
recalculated to distances ranging from 900 km to 4600 km. However, the analysis of
Santoĺık et al. (2004) does not determine whether the source is in motion. The motion
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of the source was indirectly proven by Demekhov et al. (2020), who observed frequency
differences in THEMIS observation of chorus elements near the equator and linked
them to the bidirectional motion of the source. The velocity of the upstream motion
has been determined to be Vg + VR based on PIC simulations Nogi and Omura (2022).
This result does not agree with our model, where the velocity is found to be (derived
from Equations 4.2 and 4.3)

VRVg
Vgtend − VRtmax

(tend − tmax) , (4.10)

which is a strictly positive value. So far, there is no rigorous theoretical support for
the conclusion of Nogi and Omura (2022).

The chirping rates can be compared to the results of Teng et al. (2017), who studied
the relation between ∆T (element duration) and ∂ω/∂t in Van Allen Probes chorus
data. They found a dependence

Ωe0∆T = 0.04
(︃ 1

Ω2
e0

∂ω

∂t

)︃−1.1
, (4.11)

while the simulation dataset from Figure 4.7 gives

Ωe0∆T = (0.37 ± 0.06) ·
(︃ 1

Ω2
e0

∂ω

∂t

)︃−0.98±0.02
. (4.12)

Unfortunately, Teng et al. (2017) do not provide standard deviation of the fitted mul-
tiplicative factor, but we can conclude that the sweep rates in our model are higher
than average. The exponent must be approximately equal to −1 in the simulated data
because the frequency range ωf − ω0 was fixed in all runs.

When comparing wavefield models and observations, we must remember that the
NGTO describes parallel propagation, while experimental data always show a certain
degree of obliquity. Figure 4.8d shows large variation in wave normal angle, which is a
consequence of misalignment between the subpacket structure of the perpendicular and
the parallel magnetic field. The origin of the difference in wave amplitude modulation of
the two components is unknown; it might be related to propagation effects and ducting.
Nevertheless, even without the prominent peaks in θk, the average values range between
20◦ and 40◦, suggesting that a quasiparallel approximation would be more appropriate.

4.5 Conclusion

Summarizing the results of Hanzelka et al. (2020), we have shown that the nonlin-
ear growth theory, together with the theory of helical antenna radiation, can be used
to construct a numerical model of a parallel-propagating, rising-tone chorus element
with a subpacket structure. The simulated chorus elements’ amplitude, duration, and
chirping rate match well with spacecraft observations. The motion of the source and ir-
regularities in the chirping rate are a natural result of our sequential generation scheme,
which is an improvement over earlier models (Kubota and Omura, 2018).

Unfortunately, an in-depth comparison between model and observations is not pos-
sible, mostly due to two reasons. First, certain input parameters cannot be observed
with sufficient precision. As we discuss in Chapter 5, reliable measurements of phase
space density in the resonance region on scales of Ttr are currently not feasible, and
thus we cannot determine Q. The measurements of the hot electron distribution are
also plagued with large uncertainties, limiting our knowledge of ωphe, V⊥ and Ut,∥. Pa-
rameter τ is related to the nonlinear transition time for the formation of the resonant
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current JR, and JR can be directly determined only by precise measurements of phase
space density near the electron hole. And second, the model has seven input parameters
(nine when counting ω0 and ωf), which makes the sampling of the full configuration
space unfeasible.

We suggest that future modelling efforts should focus on removing the free param-
eters τ and Q, and the parallel theory should be updated to a quasiparallel version
which could explain the frequency gap near Ωe/2 and allow to expand the model to
higher latitudes. However, even such improvements might not resolve the questions
about subpackets, which may originate not only from the nonlinear generation process,
but also from convective growth, superposition of multiple plane waves, and possibly
also from propagation effects in an inhomogeneous plasma (ducting). Furthermore, a
thorough statistical analysis of the subpacket structure is missing in current literature,
limiting thus our ability to validate theoretical and numerical results.
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5. Test-particle simulations of
electron distribution interacting
with chorus emissions
Calculations of particle trajectories in Chapter 2 show that electrons interacting with
a counter-streaming, large-amplitude whistler wave can be either scattered or become
trapped in the wave potential. In the case of a rising-tone chorus emission, the res-
onance velocity gradually decreases, and the low-density trapped particles move to
higher density regions of the phase space. According to the nonlinear growth theory
(Section 3.2), this depression in the electron distribution, sometimes called the elec-
tromagnetic electron hole, forms the resonant current, which transfers energy to the
chirping wave and supports its further growth. However, because the transition be-
tween two neighbouring chorus subpackets and the associated electron holes happens
on a millisecond scale, observations of the velocity space perturbations have proven
to be quite challenging. Shoji et al. (2021) investigated an analogous phase space
feature, the proton hill associated with falling-tone EMIC emissions, and observed a
distinct nongyrotropy of the hot proton distribution during the time interval in which
the EMIC was detected. Nonetheless, no experimental study has successfully observed
these nonlinear features of the phase space evolution on subpacket timescales.

Here we use test-particle simulations to assess the resolution needed to observe elec-
tron holes in velocity space without superposition or composition of multiple measure-
ments. Unlike particle-in-cell methods or similar self-consistent approaches, backwards-
in time test-particle simulations (Section 5.2) can provide high-resolution data and allow
us to study the hole structure while keeping the requirements on computer resources
reasonably low. Results on the evolution of the hot electron distribution and the mea-
surability of the phase space hole can be found in Sections 5.3, 5.4 and 5.5. The contents
of Sections 5.1 through 5.5 are based on the publication Hanzelka et al. (2021), which
can be found in Attachment A.3.

The test-particle motion can also be adiabatically extended beyond the range of
the wavefield model to investigate the precipitation of energetic electrons into the at-
mosphere, related to the microbursts (Lampton, 1967; Lorentzen et al., 2001). These
results are presented in Section 5.6.

5.1 Wavefield model

Since test-particle simulations by definition cannot solve the Maxwell-Vlasov equations,
the chorus wavefield must be prescribed across the whole time-space range of each
simulation run. We use the semi-empirical model developed in Chapter 4; specifically,
the amplitudes and frequencies are prescribed by the results presented in Figure 4.6.
To obtain the phase of the magnetic field vector ψB, we use the eikonal approximation
from Section 1.1.5, which defines the wave frequency and wave number as

ω = ∂ψB
∂t

, (5.1)

k = −∂ψB
∂h

, (5.2)

and we integrate these in time and space. Each subpacket is integrated separately,
first in time in the source point, then in space away from the source. Values of k
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are derived from the cold plasma dispersion for parallel whistler waves, Equations
1.58 and 1.26. During particle simulation, phase angles from adjacent grid points are
bilinearly interpolated to the position of the traced particle. The initial phase in the
source is always set to zero, and because the position of the source is a variable with
complicated dependence on input parameters, we can consider the phase difference
between adjacent subpackets as random. The electric field components are obtained
by multiplication of Bw by Vp and a subsequent 90◦ phase shift in accordance with
Equation 2.12.

As an alternative to the model wavefield, we could use electromagnetic measure-
ments from spacecraft. However, the provided electric and magnetic fields follow a
single worldline, and even with multipoint measurements, we have no reliable meth-
ods that would extrapolate the observation to the whole simulation box. Therefore,
the theoretical model is preferred, but we must keep in mind that the amplitude and
frequency variations in the model element are less irregular than in situ observations,
which will impact the evolution of the electromagnetic electron hole.

5.2 Backward-in-time simulation method

The purpose of the test-particle simulations described in this chapter is to study the
evolution of velocity distributions in the 4D phase space (h, v∥, v⊥, φ). If we were to
uniformly sample this space at t = 0 and then wanted to determine the phase space
density in the vicinity of an arbitrary point at t > 0, performance-related limitations
on the number of particles would force us to either use large grid cells or to accept
high levels of noise. Therefore, we instead sample the velocity space at a final point
(tf , hf) and propagate the particles back in time until they reach a region of spacetime
where the distribution was unperturbed and known. This method relies on Liouville’s
theorem, which states that the phase space density is constant along any trajectory in
a Hamiltonian system. The bi-Maxwellian distribution function from Equation 3.11,
which serves as the initial distribution in our particle simulations, was derived so that
the phase space density is preserved along paths traced by the adiabatic motion of
particles (see the Attachment A.1 for the Jacobian of the du3 → dv3 transformation). A
schematic illustration of the method is presented in Figure 5.1. Note that we can sample
an arbitrarily small section of the phase space to increase resolution in the resonance
region, and we can also change the initial distribution a posteriori without the need
to repeat the simulation. On the other hand, the resulting perturbed distribution is
known only at one point in the spacetime, and the whole simulation has to be repeated
for each new point.

The equations of motion are solved in their Cartesian form

me
dγv
dt = −e (Ew + v × (B0 + Bw)) , (5.3)

dr
dt = v , (5.4)

with the magnetic field curvature incorporated into B0 through the perpendicular com-
ponents defined by 2.39, that is,

eB0
me

=
(︃−γvy

2Ωe

∂Ωe
∂h

,
γvx
2Ωe

∂Ωe
∂h

, Ωe

)︃
. (5.5)

The velocity of the particles is advanced in time by the relativistic Boris push in the
form presented by Higuera and Cary (2017), which was shown to preserve both the
phase space volume and the vE×B drift velocity. Additionally, we keep the gyrophase
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Figure 5.1: A schematic illustration explaining the idea behind backwards-in-time test particle
simulations. (1) The particles start from the final point (tf , hf), distributed uniformly in the
velocity space (v∥, v⊥, φ) so that each particles represents one grid cell. (2) A test particle
propagates until it reaches the initial point (ti, hi), which is the first point at which the particle
leaves the wavefield and never re-encounters it. At this point, the velocity distribution is
known. (3) A numerical value of phase space density from the initial distribution is assigned to
the particle. (4) The density is mapped to the corresponding grid cell of the final, perturbed
distribution. Reprinted from Hanzelka et al. (2021).

correction which is often omitted in the implementation of the Boris algorithm (Zenitani
and Umeda, 2018). The whole process is summarized by the following list of equations
(me = 1, e = 1, c = 1):

ri+3/2 = ri+1/2 + ∆tvi+1 , (5.6)

vi+1 = ui+1
γi+1

, (5.7)

γi+1 =
√︂

1 + |ui+1 |2 , (5.8)
ui+1 = u+ + ε , (5.9)

u+ = u− + u′ × s , (5.10)

s = 2τ

1 + |τ |2
, (5.11)

u′ = u− + u− × τ , (5.12)

τ = tan
(︃−∆t

2γ′ |Bi+1/2 |
)︃ Bi+1/2

|Bi+1/2 |
, (5.13)

γ′ =
(︃1

2

(︃
γ2

− − |β|2 +
√︂

(γ2
− − |β|2) + 4(|β|2 + (β · u−)2)

)︃)︃
, (5.14)

γ− =
√︂

1 + |u−|2 , (5.15)

β = −∆t
2 Bi+1/2 , (5.16)

u− = ui + ε , (5.17)

ε = −∆t
2 Ei+1/2 , (5.18)
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ui = γivi . (5.19)

The x and y components of the position vector are discarded as they are not needed
for further analysis.

The parameters of the initial hot electron distribution are kept consistent with the
wave model, see Section 4.3; this choice of input parameters results in a high equatorial
temperature anisotropy A0 = 3.8. Because particles in the relevant energy range are
only weakly relativistic, we choose a uniform sampling in the velocity space (v∥, v⊥, φ).
For the study of irregularities in the velocity space, we sample velocities in the range
v∥ ∈ (−0.5c, 0.0c) and v⊥ ∈ (0.0c, 1.0c) with 256 × 256 points, and phases φ ∈ [0, 2π)
with 64 points (v > c particles are removed). The evolution of phase space holes is
mapped with 1024 points in the parallel velocity and 512 points in the gyrophase, with
perpendicular velocity being fixed. In this simulation, the range of v∥ depends on the
resonance width. For additional comments on the grid choice and related uncertainties,
see Hanzelka et al. (2021), Section 2.2.

5.3 Interaction with a single subpacket

With the simulation setup described above, we investigated the evolution of the equa-
torial hot electron distribution during interaction with the first subpacket of the model
wavefield. Following the particle trajectory analysis in Figures 2.5 and 2.9, we ex-
pect that the positive chirp rate will lead to the formation of a teardrop-shaped elec-
tron hole centred at the resonance velocity associated with the plane wave. Plot of
f(ζ, v∥, v⊥ = 0.4c) in Figure 5.2a confirms the theoretical predictions, but the density
in the hole is far from uniform. Furthermore, a significant density increase is observed
at higher parallel velocities |v∥| and higher values of the ζ angle. Nevertheless, the inte-
grated distribution in the inset plot shows favourable nongyrotropy for the production
of negative resonant current. During later stages of the subpacket evolution, the width
of the resonance island decreases, and the phase distribution starts to homogenize, as
shown in Figure 5.2c. At t = 1760 Ω−1

e , when the first subpacket transitions into the
second one, the integrated parallel velocity distribution shows a step-like feature asso-
ciated with the remnant of the electron hole, representing thus a connection between
the NGTO and the BWO theory (Sections 3.2 and 3.3).

While the nonlinear growth theory assumes that the distribution in perpendicular
velocities can be well approximated by a δ-function (Equation 3.20), the effect of v⊥
on the resonance velocity is not entirely negligible. Figure 5.3 shows that although
the peak change in density appears near v⊥ = V⊥0, the perturbations due to nonlinear
interactions are significant from v⊥ = 0 up to v⊥ = 0.7c. The perturbation consists
of two stripes of increased and decreased phase space density. The density increase
is related to scattering from high to low pitch angles associated with loss of energy
and appears at larger parallel velocities, close to the resonance velocity curve defined
by the starting frequency of the subpacket. The density decrease is related to the
transport of trapped particles from low to high pitch angles and their acceleration and
appears at smaller parallel velocities, close to the resonance velocity curve defined by
the final frequency of the subpacket. Furthermore, we observe that the density decrease
disappears at low pitch angles, which is a consequence of the anomalous resonance (see
Figure 2.6 for visual explanation).
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Figure 5.2: a) Equatorial phase space density near the peak of the first subpacket. A 512×1024
grid was used in the (ζ, v∥) space, with only a single value of v⊥. The inset plot shows the
shape of the distribution integrated over parallel velocities. The black dashed line represents
the resonance velocity. b) Same as a), but at a later stage of the evolution. c) Final state of the
f(ζ, v∥, v⊥ = 0.4c) distribution before triggering of the second subpacket. d) Integrated f(v∥)
distribution in normalized units, showing the step-like feature formed by the first subpacket.
Note that this distribution was obtained from integration over perpendicular velocities and
phases based on the simulation with 3D velocity space sampling, (ζ, v∥, v⊥) ∼ 64 × 256 × 256.
Adapted from Hanzelka et al. (2021).

Figure 5.3: a) Perturbed velocity distribution after interaction with the first subpacket,
(t, h) = (1760 Ω−1

e , 0). b) Difference between the final and initial distribution. Adapted from
Hanzelka et al. (2021).
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Figure 5.4: Evolution of equatorial phase space density showing the formation of electron hole
associated with the second subpacket. The snapshot in panel a) is taken during the growth
phase, while panel b) corresponds to the peak of the subpacket. Adapted from Hanzelka et al.
(2021).

5.4 Interaction with a full chorus element

5.4.1 Transition between subpackets

The second subpacket interacts with the previously perturbed distribution and starts
entrapping particles from the low-density stripe depicted in 5.3. In our model, the slight
drops in frequency between packets increase the resonance velocity, and therefore, part
of the scattered particles from the high-density region also becomes trapped, as we can
see in the initial stage of electron hole formation in Figure 5.4a. Without the repeated
detrapping and phase mixing caused by amplitude modulations, a massive depletion
would form at resonance velocities corresponding to the wave frequencies towards the
end of the chorus element; however, such large perturbations have not been observed
(cf. Section 5.5). Figure 5.4b shows the electron hole that formed near the peak of
the second subpacket and reveals that the fine density structures within the resonance
island gradually fall below the resolution of the grid, resulting in a more homogeneous
appearance.

Let us now show that the chosen resolution is close to the limit of applicability
of statistical plasma theory. Integration of an averaged phase space density over a
single grid cell (choosing ∆v⊥ = c/256 as in the large scale simulation) reveals that
this velocity-space cell contains 3 · 10−4 particles per cubic meter. Let us define 106 as
the minimal number of particles necessary for statistical treatment. Assuming that the
phase space structure does not change much over one hundredth of a wavelength, we
conclude that the wavefield should remain nearly constant in a field-line cross section
of radius ∼ 103 m. Hanzelka and Santoĺık (2019) proposed that density filamentations
with characteristic radial dimensions of 104 m should commonly occur in the inner
magnetosphere, influencing the distribution of chorus wave amplitude. Therefore, we
can conclude that increasing the resolution will not reveal any additional features of the
velocity distribution since the concept of phase space density stops being meaningful
for smaller grid cells.

In Section 5.3, we associated the decrease in phase space density with an increase in
energy and phase angle. In Figure 5.5, we show the changes in particle kinetic energy
Ek and equatorial pitch angle αeq in the resonance region of the second subpacket.
We observe that the scattering of untrapped particles affects the unperturbed portion
of the distribution and leads to moderate changes in pitch angle (decrease by less
than 15◦). On the other hand, the trapped particles come from the previously perturbed
region and experience a successive increase in pitch angle up to 20◦ and more. This
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Figure 5.5: Changes of particle kinetic energy and equatorial pitch angle in electron holes
from Figure 5.4. Adapted from Hanzelka et al. (2021).

nonlocal transport poses difficulty for a mathematical formulation of the nonlinear
response function (Artemyev et al., 2021). For trajectory examples exhibiting successive
trapping, see Section 5.4.3. For animations showing the evolution of the electron hole
depicted in Figures 5.4 and 5.5, see digital attachments Vid1, Vid2 and Vid3.

5.4.2 Perturbed velocity distribution

Using the backwards-in-time simulation method, we sampled the equatorial distribu-
tion at amplitude minima of the chorus element at h = 0. An animation showing
the evolution of the phase space density can be found in the digital attachment Vid4.
The final state after the decay of the last subpacket is presented in Figure 5.6. The
stripe structure is still visible but becomes distorted towards smaller parallel velocities
associated with the high-frequency end of the element. Electrons that interacted with
the low-frequency end at higher latitudes arrive at the equator with increased parallel
velocities resulting from the conservation of the first adiabatic invariant. This causes
straightening of the stripes, making them visible in the reduced distribution in Fig-
ure 5.6d. The most prominent feature of the perturbed distribution is the low-density
stripe stretched approximately along the resonance velocity curve of the last subpacket.
The complete evolution of the equatorial distribution reveals that this density depletion
is always present at the leading edge of the propagating perturbation, supported by
the successive trapping of resonant electrons.

The nonlinear resonant interaction with a rising-tone chorus element results in a
decrease in PSD at high pitch angles and an increase in density in the low pitch an-
gles region. The hot electron distribution thus experiences a reduction of anisotropy,
and consequently, the growth of new triggering waves through the linear anisotropy-
driven instability diminishes. The PSD gradients formed by the perturbation stripes
are also unstable, but our simulation cannot capture their decay. We assume that the
energy stored in these instabilities transfers into the weaker part of the power spec-
trum observed to the right of the element in Figure 4.8a. These diminishing parts of
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Figure 5.6: a) Perturbed hot electron velocity distribution at h = 0 after interaction with
the whole chorus element. b) Integrated 1D distribution f(v∥) with the inset plot showing
the lack of any apparent plateau or step. c) Difference between the initial and perturbed 2D
distribution. d) Difference between initial and perturbed 1D distribution. Prominent peaks
between −0.35c and −0.2c are due to the straightening of density elevations (panel c) caused
by the adiabatic motion of electrons in the dipole magnetic field. Reprinted from Hanzelka
et al. (2021).

the spectrum are also observed in BWO-based simulation (Demekhov, 2017) and PIC
simulations (Nogi and Omura, 2022), and may sometimes appear as short falling tones
driven by the electron hills formed from the scattered particles.

The f(v∥) distribution in Figure 5.6b shows that there is no clear step in phase
space density that could serve as the source of energy for wave growth within the
BWO theory. However, we must remember that this theory was developed for non-
relativistic velocities (see Section 3.3.2) and that a relativistic extension should be
concerned with a step function in the direction perpendicular to the resonance velocity
curve (Trakhtengerts, 1995).

5.4.3 Particle trajectories in a symmetric wavefield

The vertical stripe structure of PSD elevations in Figure 5.6c is disrupted by an oblique
stripe of density depletion at higher perpendicular velocities. This is an effect of the
symmetric chorus wavefield caused by particles that first experienced trapping and
acceleration by the element propagating to negative h, reached their mirror point at
h > 0 and then returned to the equator. Some particles can also experience a second,
scattering interaction with the element propagating to positive h. However, such cases
are rare and can appear only in chorus elements with sufficiently long duration. In
Figure 5.7, we show a trajectory example with multiple interactions, crossing the equa-
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Figure 5.7: Time-space trajectory (world line) of an electron experiencing multiple nonlinear
resonant interactions, with wave amplitude of the chorus model in the background. The orange
line segment A shows where the electron was trapped and experienced an increase in pitch angle,
shifting the mirroring point closer to the equator. The short, green line segment B locates the
resonant scattering event. The amplitude pattern in regions with overlapping chorus elements
results from the perfect symmetry of the wave phase and is not important for the wave-particle
interactions. Reprinted from Hanzelka et al. (2021).

Figure 5.8: a) Evolution of the kinetic energy along the electron trajectory from Figure 5.7.
The orange and green rectangles highlight the trapping and scattering events, respectively. b)
Evolution of the equatorial pitch angle, same format as the previous panel. Reprinted from
Hanzelka et al. (2021).

tor about 60 ms after the end of the last subpacket. In a model with an asymmetric
growth rate, one of the elements could be triggered later, increasing the occurrence of
such trajectories.

Changes in kinetic energy and equatorial pitch angle along the particle trajectory
from Figure 5.7 are plotted in 5.8. As already inferred from the study of electron
holes in the previous section, successive trapping happens over larger regions of space
and time and must be treated as nonlocal, while the scattering of untrapped particles
happens on time scales shorter than subpacket duration and can be thus viewed as
local. We also further confirm that successive trapping causes larger changes in pitch
angle than the local scattering.
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Between times 0.75 ·104 Ω−1
e0 and 1.35 ·104 Ω−1

e0 , we may notice oscillations in kinetic
energy caused by the chorus element propagating in the direction of B0. This effect,
the so-called nonresonant scattering, is experienced by particles whose trajectories are
significantly modified by the presence of the resonance island without passing through
the first-order cyclotron resonance (dζ/dt does not change sign). It is best described
as a stochastic process, leading to random jumps in energy and pitch angle between
subpackets. However, unlike the (Ek, α)-diffusion in quasilinear theory, the nonresonant
scattering depends on the gradient of the amplitude envelope of the whistler wave
packet. The theory of electron interaction with EMIC waves as presented by Chen
et al. (2016) can be applied here, with suitable modifications required by the whistler
wave mode. These stochastic effects are small compared to the nonlinear resonant
interaction and will be ignored in further discussion.

5.5 Measurability analysis of perturbations to electron
distribution

Simulation results presented above reveal that the response of a hot electron population
to rising-tone chorus elements with subpacket structure is associated with the emergence
of a unique perturbation structure in the f(v∥, v⊥) distribution. And although these
perturbations appear to be very distinct, they have never been observed by spacecraft
instruments, chiefly due to their short duration.

We assume the number N of particles measured in each velocity space bin to be
Poisson distributed with a relative standard deviation 1/

√
N . A one-sigma level of

significance thus requires

Nreq =
(︃max(F, F0)

F − F0

)︃2
=
(︃max(f, f0)

f − f0

)︃2
(5.20)

particles per bin, where F = f(v)v4 is the particle flux and the subscript 0 represents
the initial state (for a more accurate treatment of the confidence intervals at low values
of N , see Section 2.3 in Hanzelka et al. (2021)). Therefore, we must now focus on
relative PSD or fluxes, instead of the absolute values. The number of detected particles
per bin per time T is

N

T
= FG(v) (5.21)

with G(v) standing for the geometric factor of the detector. The quantity F/Nreq can
be used as a replacement for the N/Nreq ratio until we specify the parameters of the
instrument.

The relative change in electron PSD after interaction with the first subpacket is
plotted in Figure 5.9a, showing that the perturbation gets more prominent towards
larger perpendicular velocities. It remains significant up to pitch angles close to 90◦

where the character of the perturbation changes due to relativistic turning acceleration
(not shown). Particle fluxes are strongest at high pitch angles in the perpendicular
velocity range from 0.4c to 0.7c (Figure 5.9b), but the relative perturbations weaken
towards higher wave frequencies due to detrapping. As a result, the highest F/Nreq
ratios can be found near resonance velocity curves corresponding to the centre of the
element. Figures 5.9c and 5.9d show plots of these ratios for Packet 1 and Packet 5. As
stated earlier, the combination of test-particle simulations with a plane wave model does
not properly capture the evolution of the stripe structure after the nonlinear interaction,
so we must limit our analysis to the active region (the most recently formed PSD
depletion). Therefore, we should look into the approximate energy range from 70 keV
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Figure 5.9: a) Relative change in equatorial phase space density after the interaction with
the first subpacket of the model chorus element. b) Equatorial Number flux of electrons at
t = 0. c) F/Nreq ratio for the single-packet pertrubation. Energy contours increase by 10 keV
per step, with thick lines denoting multiples of 50 keV. d) F/Nreq ratio after the fifth subpacket.
The black arrow points at the PSD depletion associated with the electromagnetic electron hole.
Reprinted from Hanzelka et al. (2021).

to 200 keV and sample it with a pitch-angle binning that can resolve the width of the
perturbation stripe.

In Hanzelka et al. (2021) we reviewed four electrostatic particle detectors from
instrument suites of currently or recently active spacecraft and assessed their ability to
detect the signs of nonlinear wave-particle interaction in the hot electron distribution.
These four were: FPI (MMS, Pollock et al. (2016)), HOPE (Van Allen Probes, Funsten
et al. (2013)), PEACE (Cluster, Johnstone et al. (1997)), and MEP-e (Arase, Kasahara
et al. (2018)). It was found that MEP-e offers data from energy levels that overlap with
the required energy range, but its angular resolution and geometric factor are too low
to resolve the PSD depletion and to show that the perturbation is significant. PEACE
can achieve a high angular resolution of 3.75◦ in a special single-anode mode and has
the highest geometric factor, but was not designed for measurements of energies above
30 keV and thus cannot detect electrons coming from the high-flux regions. In general,
the size of energy bins and the accumulation time per energy level are sufficient across
all available instruments, and the deficiencies come from pitch-angle resolution.
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To reproduce the data type provided by a particle detector, we ran our simulation
from 16 evenly spaced time points, covering a 15.6 ms time interval from the beginning
to the end of the fifth subpacket, measured at h = 0. The duration of the packet
happens to closely match the accumulation time of MEP-e. The logarithmic energy
levels were also based on MEP-e, and each level was further divided into 16 logarithmic
cells. The pitch angles were sampled uniformly by 256 points from 180◦ to 90◦. After
averaging over time and individual energy levels, we tried grouping the pitch angles into
bins from 3◦ to 12◦ to see which provides the most significant results. In the highest
energy bin, Ek ∈ (73.1, 87.5) keV, the lowest value of the Nreq/Nexp ratio fluctuated
between 1 and 2 for angular bins ranging from 3◦ to 6◦, and was higher than 2 otherwise.
The number of expected particles in the PSD depletion was less than 5 for the MEP-e
geometric factor G(Ek) = 0.7 · 10−8 m2 sr per ∆α = 22.5◦, confirming that the detector
could not accumulate enough particles at increased pitch angle resolutions.

In further investigation, we assumed a hypothetical instrument with an angular
bin size of 4.5◦, and also increased the geometric factor to G(Ek) = 1.4 · 10−8 m2 sr,
which is comparable to the PEACE instrument with G(Ek) = 6.0 · 10−8 m2 sr per
∆α = 15◦. Figures 5.10a-c summarize our results by showing the PSD difference
f − f0, the expected particle count Nexp, the required particle count Nreq, and the
ratio Nreq/Nexp. We can expect to capture about 50 particles per bin in the depletion
region, which is more than we need to achieve a one-sigma significant measurement.
Since Nreq/Nexp is smaller than 1/4 at the deepest point of the perturbation, we can
even reach the two-sigma level. It should be noted that the significance is based on
comparison with an ideal unperturbed state, but we can always estimate this state by
extrapolation from the neighbouring pitch angle bins where the nonlinear interaction
has not yet taken place.

In Figures 5.10d-f, we show simultaneous measurements at four different energy
levels with a hypothetical extension up to 125 keV. The stripe of decreased PSD is well
resolved, and the particle counts reach values from 50 to 100 across all pitch-angle–
energy bins where the depletion was detected. Nreq/Nexp drops down below 0.1 at
the highest energy level, confirming that the traces of nonlinear interaction could be
detected by a dedicated instrument with a high angular resolution.

5.6 Scattering into loss cone and atmospheric precipita-
tion

5.6.1 Introduction and simulation setup

Whistler mode waves are known to contribute to acceleration and precipitation of
radiation belt electrons in a wide range of energies, starting at around 10 keV and going
up to units of MeV. The theory of cyclotron interaction and the simulation results in
Section 5.4 dictate that acceleration of relativistic electrons can happen only at large
pitch angles. However, particles with high values of the equatorial pitch angle are
trapped in the dipole magnetic field and need to be strongly scattered to reach the
bounce loss cone defined by pitch angle (Porazik et al., 2014)

αloss = π

2 ±
(︃
π

2 − arcsin
(︃
Beq
Bm

)︃)︃
(5.22)

(neglecting higher-order corrections to the magnetic moment, radial diffusion, and az-
imuthal drift), where Bm is the magnetic field strength at the point where electrons stop
being able to mirror because of collisions with dense atmospheric layers. As demon-
strated by Kubota and Omura (2018), the energetic electron population must interact
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Figure 5.10: a) A normalized difference of the initial and perturbed pitch-angle distribution at
a single energy level corresponding to the upper limit of the MEP-e energy range. b) Expected
particle count based on the enhanced geometric factor G(Ek) = 1.4 · 10−8 m2 sr. Blue bars
represent the perturbed distribution, and the dotted outlines stand for the initial distribution.
c) The required particle count plotted with blue bars, with a red line overlay representing the
Nreq/Nexp ratio. The green diamonds highlight the pitch angle bins that cover the density
depletion. d-f) Similar to a-c, but for four different energy levels. Note that each level is
assumed to be sampled at the same time, and the polar plots thus do not represent a detector
sweeping over multiple energy levels. The black outline helps visually identify the PSD depletion
associated with an electromagnetic electron hole. Adapted from Hanzelka et al. (2021).
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Figure 5.11: Minimum resonant energy for cyclotron interaction over a range of frequencies
and latitudes along magnetic field line L = 4.71. Panel a) represents a low density environment
with ωpe/Ωe0 = 4.0, b) shows a higher density case with ωpe/Ωe0 = 6.0.

with 102 to 103 chorus elements to cause significant precipitating fluxes at energies
Ek > 1 MeV, which amounts to time periods in the order of 102 to 103 seconds. On
the other hand, relativistic electron bursts (duration t < 1 s) have been observed in
association with chorus wave activity (Breneman et al., 2017), but it is unclear how
would the n = −1 cyclotron resonance quickly accelerate and subsequently scatter the
electrons on such a short time scale.

The test particle method used in this chapter allows for detailed studies of precipi-
tating fluxes caused by a single parallel-propagating element and can thus predict only
subrelativistic ultra-fast precipitation events where the scattered electrons were already
near the loss cone. This restriction imposes an upper energy limit given by the first
order cyclotron resonance condition at α ≈ 0◦. In Figure 5.11, we plot the minimum
resonant energies against wave frequency and magnetic latitude for two values of ωpe.
Because the occurrence of parallel chorus emissions quickly drops above approximately
35◦ of latitude (Santoĺık et al., 2014b), and the wave frequency rarely ventures below
0.15Ωe0 (Teng et al., 2017), we can estimate that the maximum energy of electrons
scattered to the loss cone directly by the nonlinear resonance to be about 200 keV.
The precise value depends on the width of the resonance region and the definition
of the boundary between resonant and nonresonant interaction. For comparison, the
IDP particle detector onboard the low-orbit DEMETER spacecraft measured electrons
with energies 70 keV and higher (Sauvaud et al., 2006). The ELFIN CubeSat mission
provides electron fluxes of precipitating electrons with energies starting at 50 keV (An-
gelopoulos et al., 2020). Estimates from Figure 5.11 suggest that if we want to observe
the bursts of precipitating electrons with detectors available on recent spacecraft mis-
sions, we should focus on cases where the chorus elements start at very low frequencies
and where the cold plasma density is low.

Considering the energy range constraints, we decided to model the chorus wavefield
after an element observed by the Van Allen Probe A spacecraft on 01 March 2013 from
14:52:08.45 to 14:52:08.61. This element starts at ω = 0.17Ωe0, and its observation
correlates with the spacecraft’s passage through a low-density region with ωpe = 4.1Ωe0.
Using the observed amplitudes and frequencies as presented in Figures 5.12a-c, we
constructed a model of Bw and ω shown in Figures 5.12d-e. The input parameters
for the model were the following: ω0 = 0.17 Ωe0, ωf = 0.44 Ωe0, Bsurf = 2.0 · 10−5 T,
Q = 0.75, τ = 0.5, ωpe = 4.1 Ωe0, ωphe = 0.375 Ωe0, V⊥0 = 0.45 c, Ut,∥0 = 0.20 c,
L = 4.71. The advection equations are solved up to h = 2200 cΩ−1

e0 , which translates
to λm ≈ 37◦.
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Figure 5.12: Van Allen Probe measurements (a-c) used as a reference for an NGTO-based
chorus wave model (d-e). Formatting is similar to Figures 4.6 and 4.8.

In order to capture the full extent of the precipitating fluxes, the backwards-in-time
test-particle simulation must be started at h left of the source of the last subpacket.
We set hf = −268 cΩ−1

e0 and shift the starting point in time from tf = 500Ω−1
e0 to

tf = 21000Ω−1
e0 with steps of 500Ω−1

e0 . Due to this large number of different starting
points, we reduce the sampling of the (v∥, v⊥, φ) space to a 128 × 128 × 64 grid, with
the range of v∥ extending from 0.0c up to −0.6c and φ covering the full angle. The
perpendicular velocity range is limited to v⊥ < 0.06, which is sufficient to cover the
loss cone at hf . The initial bi-Maxwellian distribution from Equation 3.11 is modified
by setting

f(u∥, u⊥, h) = 0 for α < αloss , (5.23)

i.e., the loss cone is assumed to be empty, corresponding to a state without any wave
activity. The time step was decreased to 0.02Ω−1

e0 to ensure tolerable errors in the Boris
algorithm over the whole range of latitudes.

5.6.2 Phase space density perturbations at low pitch angles

We start our investigation by looking at snapshots from the evolution of the phase space
density distribution in the (v∥, v⊥) space, presented in Figure 5.13. We notice that the
loss cone region near the resonance velocity is immediately filled, nearly homogeneously
across v⊥. This behaviour can be explained by the wide range of electron perpendicular
velocity oscillations plotted in green in Figure 2.6a. Significant perturbations of PSD
along αloss are also detected at parallel velocities up to −0.15 c, much smaller than
VR/c ≈ −0.35. This effect comes from the ζ-dependence of resonance velocity at
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Figure 5.13: Evolution of the hot electron distribution f(v∥, v⊥, h = −268 cΩ−1
e0 ) at low

perpendicular velocities due to interaction with the chorus element from Figure 5.12. The
dashed white line determines the boundary of the local loss cone. The dark red dotted curve
in panel a) represents the resonance velocity for ω/Ωe0 = 0.2 (mean frequency of the second
subpacket), and the pink dotted curve stands for a ζ-dependent resonance velocity V ζ=π

R .

low v⊥. In Figure 5.13a, resonance velocity curves V π/2
R and V π

R (analogous to resonance
momentum curves from Equation 2.33) are plotted for ω/Ωe0 = 0.2, Ωw/Ωe0 = 7.5 ·
10−3. As we move forward in time, we start seeing particles that have interacted with
the high-frequency end of the chorus element, causing scattering at low energies (Fig.
5.13b,c). Towards the end of the simulation (Fig. 5.13d), resonant particles arrive from
higher latitudes where the relative frequencies and amplitudes of the subpackets become
small, resulting in weaker scattering at higher energies. There are no significant PSD
decreases outside the loss cone; as expected from the results presented in Figure 5.3b,
the depletion stripe disappears below v⊥/c = 0.1. The full time evolution is available
as an animation in the digital attachment Vid5.

To quantify the filling of the loss cone, we first carry out the coordinate transform
(v∥, v⊥) → (Ek, α), yielding (with me = 1, c = 1)

f(v∥, v⊥)v⊥dv∥dv⊥ = f(Ek, α)
(︃

1 − 1
(1 + Ek)2

)︃ 1√︁
(1 + Ek)6 − (1 + Ek)4 dEk sinα dα

Ek≪1
≈ f(Ek, α)

√︁
2EkdEk sinα dα .

(5.24)

As a second step, we integrate over pitch angles from αloss to π to obtain the distribution
of loss-cone electrons over energies. Figure 5.14 compares these energy distributions
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Figure 5.14: Evolution of the energy distribution of loss-cone electrons, plotted at the same
time points as the velocity distributions in Figure 5.13. Red lines represent the loss cone
content obtained from simulation; the blue line shows a bi-Maxwellian distribution with a full
loss cone. At energies below 0.01mc2 ≈ 5 keV, the noise in the perturbed distribution is a
low grid resolution effect, further amplified by the (v∥, v⊥) → (Ek, α) rebinning. Animated
evolution of the 1D distribution is available in the digital attachment Vid6.

to bi-Maxwellian distributions with a full loss cone. Scattering induced by the first
subpacket causes a major overfilling at resonant energies, reaching more than a double
of the bi-Maxwellian PSD. This could be seen as a side effect of the overestimation of Bw
in the first subpacket. However, perturbations plotted in Figures 5.14b-c show that the
lower amplitude, higher frequency portion of the chorus element also causes overfilling,
although only fractional. At the late stage of the evolution, where the relative amplitude
of subpackets falls below 10−3B0, the PSD in loss-cone matches the bi-Maxwellian.
This corresponds to the strong diffusion limit from the quasilinear theory (Kennel and
Petschek, 1966). The test particle simulation thus suggests that nonlinear scattering of
electrons due to cyclotron resonance with parallel-propagating chorus waves can break
the strong diffusion limit when the wave amplitudes are > 10−3B0.

5.6.3 Precipitating fluxes

Resonant electrons which have fallen into the loss cone due to nonlinear scattering can
be assumed to propagate down to atmospheric altitudes as prescribed by the adiabatic
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Figure 5.15: a) Number flux across energies as observed at the footprint of field line L = 4.71
along which the chorus element propagates. t = 0 corresponds to the start of the chorus element.
b) Integrated number flux from the first panel.

motion in a magnetic dipole field. For simplicity, we track the particles (representative
of each velocity bin) exactly to the surface of the Earth, although the path of precip-
itating electrons typically ends in the lower ionospheric layers (60 km to 150 km) due
to electron-ion recombination (Hargreaves, 1992). We define the omnidirectional flux
differential as

dF (Ek, α, t)
Ek≪1

≈ 2f(Ek, α, t)Ek sinα dα dEk . (5.25)

Our goal is to compute the evolution of number flux throughout the precipitation
event. This is done in three steps:

1. f(v∥, v⊥, tf) obtained across the 42 time points are interpolated on a finer temporal
grid with 1000 points and then transformed/rebinned to f(Ek, α, tf). The energy
grid has 128 logarithmically spaced points from 10−3mec

2 to 100mec
2, and the

pitch angle grid has 128 linearly spaced points within the loss cone.

2. (Ek, α) bins and the associated PSD are mapped to the ground, and the time of
flight of individual particles representing each bin is numerically integrated. PSD
values are interpolated to the energy-angle grid from the previous point and then
interpolated to a new 1000-point time grid ranging from 8 · 103Ω−1

e0 to 4 · 104Ω−1
e0

(approximate interval between the arrival of the first and the last precipitating
electron). f(Ek, α, t) is thus obtained.

3. Equation 5.25 is integrated over pitch angles to get the evolution of the energy
flux differential over time and then integrated over energies to get the number
flux F (t).

Figure 5.15a shows that strong flux first appears near the energy level of 50 keV,
corresponding to the resonance velocity of the first subpacket. The energy range then
widens, reaching up to about 150 keV and extending down below 10 keV. The low energy
precipitating electrons have small parallel velocities and arrive up to one second after
the initiation of the chorus element. In Figure 5.15b, we present the integrated number
flux, which confirms the effects of the very strong first subpacket, while the remaining
fine structure of chorus does not translate to any clear structure in the precipitating
flux.
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5.7 Discussion and conclusion

In summary, our research presented in Hanzelka et al. (2021) has shown that nonlinear
interaction of rising-tone chorus elements with electrons results in the formation of a
characteristic stripe structure in the velocity distribution, and this structure could be
detected with an electrostatic particle detector with an angular resolution of about 6◦

or better, which is currently not available in spacecraft instrument suites. A conclu-
sive measurement of a phase space density depletion along resonance velocity curves
could be considered as a direct confirmation of the electromagnetic electron hole on a
subpacket timescale. We must add that Mozer et al. (2018) have used particle data
from the Magnetospheric Multiscale mission to create a superposition of velocity distri-
butions with appropriate resonance velocity shifts, achieving a statistically significant
measurement of an electron hole structure associated with bipolar pulses. This statis-
tical method is unfortunately not so useful in chorus studies due to the variations of
perturbation stripes across the phase space.

The need for high angular resolution is rather unique since most experiments are
concerned with the overall shape of the f(v∥, v⊥) distribution or the f(Ek, α) distri-
bution and do not specifically focus on the resonance region. The cyclotron resonant
electrons are expected to have the highest fluxes at pitch angles between approximately
60◦ and 120◦, with energies going above approximately 100 keV. It would be possible
to shift the simulated fluxes to lower energies by using a different initial velocity dis-
tribution, but as we discussed in Chapter 4, the range of Ut⊥ that can lead to strong
nonlinear wave growth is limited. Given the energy range and benevolent require-
ments on energy bin size, semiconductor detectors might be more suitable for the task,
taking MagEIS from the Van Allen Probes as an example (Blake et al., 2013). Unfor-
tunately, we are not aware of a semiconductor electron detector programmed to store
data in sufficiently small time steps, and the design issues with the angular resolution
are ubiquitous. We conclude that the investigation of nonlinear cyclotron interaction
on subpacket timescale requires a dedicated spacecraft mission with a detector design
based on the results from Section 5.5, accompanied by a search coil for measurements
of magnetic field fluctuations induced by chorus.

The numerical study of electron precipitation is in qualitative agreement with the
self-consistent PIC simulations of Hikishima et al. (2010), who observed similar bursts
of energetic electrons in association with intense parallel-propagating chorus elements.
However, in their simulation, the energies of precipitating fluxes were mostly below
50 keV due to a higher initial frequency of chorus, and partially also because of the
limited latitudinal range of the simulation box. In the recent test-particle simulations
of Chen et al. (2021), a simplified model of ducted and unducted chorus emissions was
developed based on wave advection equations (ducted) and ray approximation (un-
ducted), and the microburst precipitation was found to reach energies around 300 keV.
Nevertheless, spacecraft observations reported by Breneman et al. (2017) show relativis-
tic microbursts associated with chorus extending to energies near 1 MeV. According to
simulations and theory presented in this thesis, such high energies can be achieved only
by scattering electrons with very high initial equatorial pitch angles that have been
previously accelerated, possibly by some other mechanism, e.g., the relativistic turning
acceleration (Omura et al., 2007).

Another interesting result of the electron loss study is the overfilling of the loss cone
due to cyclotron resonance. Zhang et al. (2022) observed loss cone overfilling (break-
ing of the strong diffusion limit) on the low-orbit ELFIN spacecraft and explained it
by nonlinear Landau resonance with oblique chorus waves. Because Landau-resonant
electrons oscillate in v∥ but not in v⊥ (at least in the nonrelativistic limit, cf. Sec-
tion 2.1), the transport happens nearly perpendicular to PSD contours at low pitch
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angles, enabling the exchange of a phase space volume from the nearly empty loss
cone with a highly populated volume just above the loss cone boundary. On the other
hand, cyclotron-resonant electrons at low pitch angles oscillate mainly in v⊥ and are
thus unlikely to cause overfilling. We ascribe our observations partly to the very high
model chorus amplitudes that extend the range of oscillations and cause non-negligible
changes in parallel electron velocity and partly to the high temperature anisotropy of
the initial hot electron distribution. Loss cone overfilling due to nonlinear cyclotron
resonance is thus expected to be a very rare event in the outer radiation belt.

Another application of the simulated number fluxes can be found in the research
of pulsating auroras. These types of auroras are associated with electron precipitation
by discrete chorus elements (Miyoshi et al., 2020), and polar station measurements of
auroral intensity have revealed peaks correlated with strong, well-defined subpackets
(Ozaki et al., 2018). These observations fully agree with the number flux profile in
Figure 5.15, which starts with a prominent peak corresponding with the first, strong
subpacket, and then transitions to minor, hardly discernible modulations associated
with the weaker packets.

The backtracing test-particle method is very efficient for studying PSD perturba-
tions caused by nonlinear interaction, providing high-resolution snapshots from the
evolution of the hot electron distribution. However, taking a longer sequence of snap-
shots proves very costly because the simulation needs to be repeated for each point.
An analogous issue would appear if we tried to study the changes in the distribution
along h. The advantage of being able to resolve fine structures is mitigated by the un-
known fluctuations, which should be added to the initial smooth distribution to achieve
more realistic results. The a posteriori choice of initial distribution can save a lot of
processing time, yet it cannot be applied when the wave model already prescribes a
distribution. For future research, we suggest either using multipoint spacecraft mea-
surements and simulating the interaction in a region limited by the data or running
a test-particle simulation through wavefield obtained from self-consistent simulations.
Such numerical experiments would be useful to obtain reliable reference values for the
design of particle detectors on future radiation belt missions.
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Conclusion and future outlook
Nonlinearities in magnetospheric wave-particle interactions are a fascinating topic with
a rich history of experimental and theoretical studies. Our contribution to the subject
focused on modelling of chorus elements and numerical investigation of electron scat-
tering and precipitation. Despite the obvious inclination towards fundamental theory
and simulations, all the presented work was done with spacecraft observations in mind,
discussing also the design of future experiments.

We used the nonlinear growth theory of Omura et al. to construct a semi-empirical
model of parallel-propagating, rising-tone chorus element in the lower frequency band.
Inspired by high-resolution observations from Van Allen Probes, we introduced a trig-
gering scheme with a moving source that produces elements with a fine subpacket
structure and irregular growth in frequency. The complicated relations between output
and input parameters were analyzed visually by marginal correlation plots. The am-
plitudes and the chirp rates were in a good agreement with experimental case studies.
We also discussed the interpretation of subpackets as a superposition of multiple plane
waves, showing possibilities for further research on this topic.

The one-dimensional wavefield model was used to investigate perturbation to hot
electron distribution through test particle methods. Reconstructions of phase space
density from back-traced energetic electrons revealed elevation and depression aligned
to resonance velocity curves of individual subpackets. Step like features in the reduced
distribution confirmed the relation between backward-wave-oscillator theory and the
nonlinear growth theory. We identified the region of phase space with the most promi-
nent density decrease and compared the change in electron flux to the resolution of
various particle analyzers on currently and recently operating spacecraft. We showed
that observation of nonlinear PSD perturbations on a millisecond scale should be pos-
sible with a dedicated instrument, but an improvement in angular resolution is needed.
Such observation would provide direct confirmation of the nonlinear effects of chorus
subpackets on energetic electrons.

The same test-particle method and numerical wave model were used to predict
the precipitation of energetic electrons due to one-hop interaction with a single chorus
element. We demonstrated that significant fluxes appear across energies up to about
150 keV, and prominent subpacket features are still apparent in the integrated flux,
which may influence pulsations of aurorae. Moreover, we discovered that loss cone
overfilling (breaking of strong diffusion limit by nonlinear interaction) could be caused
by cyclotron resonance when the packet amplitude exceeds approximately 1 % of the
ambient magnetic field. However, we concluded that cyclotron resonance is much less
likely to cause overfilling than Landau resonance.

Despite the simulation efforts presented here and in the large volume of recent liter-
ature on chorus, not all features of chorus-electron interaction have been satisfactorily
explained. The exact origin of chirp is still debated, and there is currently no efficient
way to handle the frequency changes within the hamiltonian formalism. Furthermore,
the source of obliquity and the overall significance of parallel field components in the
growth mechanism requires further investigation, possibly numerical, as self-consistent
2D simulations are slowly becoming feasible (Ke et al., 2017). Additionally, the non-
diffusive aspects of long-term electron interactions with chorus elements have not yet
been thoroughly investigated (Allanson et al., 2021), and thus precise models of chorus
elements may be needed for simulation of radiation belt dynamics on larger scales.

We believe that the future goal of microscopic chorus growth theories should be to
incorporate finite frequency band aspects of the elements, along with the inclusion of
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irregularities of the cold plasma background and their effects on amplitude modulations
and obliquity. On more macroscopic scales, we should aim to derive effective nonlinear
transport coefficients (diffusive and advective), which could be entered on the input
of Fokker-Planck simulations. In all these endeavours, observational results must be
closely followed and compared to the theory, and conversely, the analytic computations
should motivate the design of future wave and particle instruments. On the side of
data analysis, neural networks could help build data sets of chorus elements detected
from burst mode measurements, following the successful applications on atmospheric
tweeks and lightning whistlers (Maslej-Krešňáková et al., 2021; Harid et al., 2021).

All findings and discoveries made in studies of Earth’s magnetospheric chorus can be
later adapted to the discrete EMIC emissions and to magnetospheres of outer planets,
contributing to our continuous efforts towards a better understanding of magnetospheric
dynamics.
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Santoĺık, O., Gurnett, D. A., Pickett, J. S., Parrot, M., and Cornilleau-Wehrlin, N.
Spatio-temporal structure of storm-time chorus. J. Geophys. Res. Space Physics,
108:1278, July 2003a. doi: 10.1029/2002JA009791.

113
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BWO Backward Wave Oscillator
CFL Courant-Friedrichs-Lewy (condition)
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EMFISIS Electric and Magnetic Field Instrument Suite and Integrated Sci-

ence (RBSP instrument)
EMIC ElectroMagnetic Ion Cyclotron (waves)
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RBSP)
IDP Instrument de Détection de Particules (DEMETER instrument)
KUPDAP Kyoto University Plasma Dispersion Analysis Package
MagEIS Magnetic Electron Ion Spectrometer (RBSP instrument)
MEP-e Medium-Energy Particle experiments – electrons (Arase spacecraft

instrument)
MMS Magnetospheric MultiScale (spacecraft mission)
NGTO Nonlinear Growth Theory of Omura et al.
PDE Partial Differential Equation
PEACE Plasma Electron And Current Experiment (Cluster spacecraft in-

strument)
PIC Particle-In-Cell (simulation method)
PSD Phase space density
RBSP Radiation Belt Storm Probes (former name of the Van Allen

Probes)
RMS Root Mean Square
STAFF Spatio-Temporal Analysis of Field Fluctuations (Cluster space-

craft instrument)
STFT Short-Time Fourier Transform
SVD Singular Value Decomposition
TARA TrAp Release Amplify (model)
THEMIS Time History of Events and Macroscale Interactions during Sub-

storms (spacecraft)
WHAMP Waves in Homogeneous Anisotropic Magnetized Plasma (software)
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List of Symbols
The table below lists every mathematical symbol used in the thesis along with its brief
definition. Some symbols may have multiple meanings, depending on the context. To
avoid any confusion, the equation where the symbol first appears is recorded in the
right column. Particle index s can stand for electrons ’e’, protons ’p’, or unspecified
ions ’i’.

In Sections 2.2 and 2.3, we use the normalized units with c = 1, e = 1, me = 1. In
Chapters 3 and 4, the speed of light c is written explicitly, but the charge and mass
are normalized. In the rest of the text, all physical constants are explicit, unless stated
otherwise in front of individual equations.

The symbols are ordered alphabetically, with English letters first and Greek symbols
second.

Symbol Definition Equation
A (relativistic) pitch angle anisotropy 1.97
A0 equatorial pitch angle anisotropy 3.18
A magnetic vector potential 2.55
Am critical value of anisotropy 1.100
a coefficient in the parabolic approximation of magnetic

field strength
3.35

B magnetic field vector 1.1
B0,B0 ambient (zero-order) magnetic field 1.35
Bm magnetic field strength at the mirror point of bounce mo-

tion
5.22

Bsurf equatorial magentic field strength at the surface of the
Earth

4.4

Bw,Bw wave magnetic field 2.11
B̃w wave magnetic field in complex form 3.1
Cm constant of particle motion in a whistler wave 2.62
Cs thermal speed of particle species s 1.13
c speed of light in vacuo 1.9
D Stix crossover coefficient 1.53
D dispersion tensor 1.23
D̄ determinant of dispersion tensor (dispersion relation) 1.25
D̄i imaginary part of the dispersion relation 1.49
D̄r real part of the dispersion relation 1.48
D̄w whistler mode dispersion relation 3.49
dF omnidirectional flux differential 5.25
E electric field vector 1.1
EB ellipticity of magnetic field 1.104
Ek kinetic energy 2.9
Ew,Ew wave electric field 2.4
Ẽw wave electric field in complex form 3.1
e elementary charge 1.1
ê∥ unit vector parallel to the magnetic field 1.44
F particle number flux 5.20
FB planarity of magnetic field 1.105
Fh phase space distribution of hot electrons, normalized to

unity
1.96
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Symbol Definition Equation
Fs phase space distribution normalized to unity, particle

species s
1.44

feq equatorial hot electron distribution 3.9
fh phase space distribution of hot electrons 1.96
fs single-particle phase space distribution of particle

species s
1.1

first-order perturbation of PSD 1.35
fs0 zero-order perturbation of PSD 1.35
fδ reduced distribution appearing in the NGTO 3.19
g0 reduced unperturbed hot electron distribution 3.24
gtr reduced distribution of trapped electrons 3.24
G constant replacing gtr in the waterbag model of trapped

electrons
3.24

G(v),G(Ek) geometric factor of particle instruments in dependence on
velocity or energy

5.21

H Hamiltonian of a charged particle in an electromagnetic
field

2.55

H0 Hamiltonian of a charged particle’s adiabatic motion 2.62
H1 perturbation to the adiabatic Hamiltonian 2.61
h distance measured along a field line 2.39
h0 initial position of the point-like source of a chorus element 3.32
hf starting position of particle motion 5.3
hi starting position of the i-th subpacket 4.2
hi initial position of particle motion 5.3
hstep spatial dimension of a numerical grid cell 4.4
I normalized first adiabatic invariant multiplied by the wave

frequency
2.60

IR invariant I evaluated at resonance 2.65
I unit matrix 1.16
J induced current density 1.7
J0 ζ-independent factor appearing in formulation of the res-

onant current JB and JE

3.27

JB resonant current component parallel to the wave magnetic
field

3.5

JB,max −JB/J0 evaluated at Smax 3.27
J̃c cold plasma current density in complex form 3.4
JE resonant current component parallel to the wave electric

field
3.5

JE,max −JE/J0 evaluated at Smax 3.27
Jext external current density 1.7
Jnorm current density normalization 4.4
JR resonant current density 3.4
J̃R resonant current density in complex form 3.4
Jtot total current density 1.5
Jn Bessel function of the first kind of order n 1.44
K normalization constant appearing in fδ 3.19
k wavenumber 1.14
k⊥ wavenumber component perpendicular to magnetic field 1.43
k∥ wavenumber component parallel to magnetic field 1.42
k wave vector 1.14
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Symbol Definition Equation
k0 mean wave vector of a Gaussian pulse 1.28
kB Boltzmann constant 1.11
L Stix left-hand coefficient 1.56

(L-shell) equatorial standoff distance of a field line in units
of planetary radii

1.83

M square root of electron to proton mass ratio 1.64
Mij spectral matrix 1.104
ms rest mass of particle species s 1.8
N number of particles 5.20
NDs number of particles per Debye sphere 1.10
Nexp expected number of particles detected by a particle ana-

lyzer
5.21

Nreq number of particles required for a significant measurement 5.20
NS number of subpackets in a single chorus element 4.9
n order of resonance (integer) 1.46
neq equatorial hot electron density 3.9
nhe hot electron number density 1.96
ns number density of particle species s 1.10
P Stix longitudinal coefficient 1.54
p complex frequency in Laplace transform 1.85
p∥ momentum-like variable in the Hamiltonian formulation

of cyclotron resonance
2.61

Q depth of depletion in the trapping region 3.24
rL,rL Larmor radius 2.39
R Stix right-hand coefficient 1.55
R fraction of resonant electrons 1.96
Ryx axis ratio of (kx, x) oscillations of ducted rays 1.81
r position vector 1.1
r position vector 1.1
S Stix hybrid coefficient 1.52

eikonal function 1.67
inhomogeneity factor 2.43

Smax point at which −JE/J0 maximizes 3.27
S Poynting vector 1.30
s index of particle species 1.1
s normalization of rotation variable in the Boris algorithm 5.11
sduct sign of density change in a field-aligned duct 1.80
sJ suppression factor for the resonant current 4.8
sn substitution in the inhomogeneity factor S, linked with

the density gradient
2.45

sΩ substitution in the inhomogeneity factor S, linked with
the magnetic field gradient

2.46

sω substitution in the inhomogeneity factor S, linked with
the frequency drift

3.30

T flux of acoustic energy 1.30
Tn tensor appearing in the hot plasma dispersion relation 1.44
TN duration of JR formation and saturation 3.42
Ttr nonlinear trapping period 2.9
t time coordinate 1.1
tend time at which the i-th subpacket ends 4.3
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Symbol Definition Equation
tf time at the final point of particle motion 5.3
tgr time of particle arrival to the ground 5.25
ti starting time of the i-th subpacket 4.3
ti time at the initial point of particle motion 5.3
tmax time at which the i-th subpacket saturates 4.3
tstep time step in wave simulations 4.4
U canonical momentum of a charged particle in an electro-

magnetic field
2.55

U⊥,U⊥0 first perpendicular moment, ”0” stands for equatorial
value

3.19

UR relativistic resonance momentum (usually cyclotron) 2.18
U ζR modified relativistic resonance momentum 2.33
Ut⊥ perpendicular thermal momentum 2.38
Ut⊥0 perpendicular thermal momentum at the equator 3.9
Ut∥ parallel thermal momentum 2.38
Ut∥0 parallel thermal momentum at the equator 3.9
u,u relativistic particle momentum vector 1.1
u⊥ relativistic momentum perpendicular to magnetic field 1.38
u⊥0 initial relativistic momentum perpendicular to magnetic

field
1.38

u∥ relativistic momentum parallel to magnetic field 3.11
u∥0 u∥-intercept of the resonance momentum curve 1.38

initial relativistic momentum perpendicular to magnetic
field

3.11

Vg,Vg group velocity 1.29
Vp,Vp phase velocity 1.27
VR resonance velocity (usually cyclotron) 2.19
VR0 resonance velocity (n = 0) 2.2
VR1 resonance velocity (n = ±1) 2.3
vE×B E × B drift velocity magnitude 5.6
vs velocity vector of particle species s 1.1
v⊥ velocity perpendicular to magnetic field 2.3
v∥ velocity parallel to magnetic field 2.3
W energy density 1.33

factor combining the effects of magnetic field nonunifor-
mity and temperature anisotropy

3.16

phase shift in the chorus excitation theory of Zonca et al. 3.49
w characteristic width of a density duct 1.80
wi i-th singular value 1.104
x x-component of the position vector 1.80
Zs signed charge of particle species s in units of the elemen-

tary charge
1.1

z z-component of the position vector 2.4
α pitch angle of a charged particle in magnetic field 5.22
αeq equatorial pitch angle 5.22
αloss loss cone pitch angle 5.22
αs substitution in resonance condition 1.42
β magnetic field substitution in the Boris algorithm 5.16
βs argument is Bessel functions in hot plasma dispersion re-

lation
1.43
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Symbol Definition Equation
Γ growth rate in the chorus excitation theory of Zonca et

al.
3.49

ΓN convective nonlinear growth rate 3.33
γ′ averaged Lorentz factor in the Boris algorithm 5.14
γ− Lorentz factor of intermediate momentum in the Boris

algorithm
5.15

γs Lorentz factor of particle species s 1.9
γBWO sideband growth rate appearing in applications of the

BWO theory
3.45

γL linear growth rate (imaginary part of frequency) 1.49
γL0,γL1 approximate linear growth rates associated with the n = 0

and n = ±1 resonance
1.93

γNL nonlinear growth rate 2.8
γR Lorentz factor of resonant particles 1.96
∆T duration of a single chorus element 4.9
∆t time step in particle simulations 5.6
∆α angular resolution of particle detectors 5.21
∆ω frequency difference between two overlapping waves 4.5
δ Dirac delta distribution 1.50
δω normalized frequency difference 4.9
δti time interval between the saturation point and the end

point of the i-th subpacket
4.2

δω wave frequency perturbation 3.8
ε dielectric tensor 1.16

electric field substitution in the Boris algorithm 5.9
ε0 vacuum permittivity 1.2
ζ phase difference defined for n = ±1 resonance 2.13
ζ0,ζ1,ζ2 characteristic points at the inhomogeneous trapping re-

gion boundary
2.48

ζn phase difference defined for the n-th cyclotron resonance 2.13
η phase difference defined for n = 0 resonance 2.6
θG Gendrin angle 1.61
θk wave normal angle ∠(k,B0) 1.51
θS polar angle of the Poynting vector ∠(k,B0) 1.61
λDs Debye length of particle species s 1.10
λdrift upstream drift of a chorus element source in latitude 4.9
λm magnetic latitude 4.4
µ,µ refractive index (vector form) 1.26
µ0 vacuum permeability 1.5
ν resonance mismatch defined for n = ±1 resonance 2.6
ρ charge density 1.2
σ conductivity tensor 1.15
σ⊥ perpendicular thermal speed of a bi-Maxwellian electron

distribution
1.92

σ∥ parallel thermal speed of a bi-Maxwellian electron distri-
bution

1.92

τ ratio of the times TN and Ttr 3.42
τ rotation variable in the Boris algorithm 5.13
Φ electrostatic potential 1.85
φ azimuthal coordinate (particle phase) 1.38
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Symbol Definition Equation
ψB phase of wave magnetic field 2.11
ψE phase of wave electric field 3.2
Ωe0 unsigned equatorial electron cyclotron frequency 2.41
ΩHO frequency of harmonic oscillations of a ducted ray 1.82
Ωopt optimum amplitude in the NGTO 3.43
Ωs unsigned cyclotron frequency of particle species s 1.41
Ωthr threshold amplitude in the NGTO 3.40
Ωw normalized wave amplitude Bwe/me 2.14
Ω̃w normalized wave amplitude Bwe/(meΩe0) 2.16
ω wave frequency 1.14
ω̃ wave frequency normalized to Ωe0 2.19
ωf terminal frequency of a chorus element 4.4
ωi initial frequency of the i-th subpacket 4.4
ωlh lower hybrid frequency 1.52
ωps plasma frequency of particle species s 1.2
ωpe electron plasma frequency normalized to Ωe0 2.19
ωphe plasma frequency of hot electrons 3.38
ωtr nonlinear trapping frequency 2.7
ωuh upper hybrid frequency 1.52
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tion of ionospherically reflected quasiperiodic emissions by the DEMETER
spacecraft. Geophys. Res. Lett., 44(17):8721-8729, September 2017. doi:
10.1002/2017GL074883.
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A. Attachments
A.1 Comment on the corrections to nonlinear growth the-

ory presented by Omura 2021
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In the nonlinear growth theory of chorus emissions developed by Omura et al., the
electrons which contribute to the resonant current reach weakly relativistic velocities.
In Omura et al., 2009, it is argued that the electron distribution should be initially bi-
Maxwellian in relativistic momenta, but the power of Lorentz factor in the formula for
resonant current is not consistent with this choice. Omura 2021 presented the consistent
formula expressed in relativistic momenta. Below we provide additional discussion on
the non-relativistic and weakly relativistic electron distributions and their treatment
within the nonlinear growth theory.

∗ ∗ ∗

We have two velocity distributions defined as

f(v∥, v⊥, φ) = 1
(2π)3/2V 2

t⊥Vt∥
exp

(︄
−v2

∥

2V 2
t∥

)︄
exp

(︄
−v2

⊥
2V 2

t⊥

)︄
(A.1)

and

g(u∥, u⊥, φ) = 1
(2π)3/2U2

t⊥Ut∥
exp

(︄
−u2

∥

2U2
t∥

)︄
exp

(︄
−u2

⊥
2U2

t⊥

)︄
, (A.2)

where u = γv. These distributions are normalized by two different integrals,∫︂ ∞

−∞
f(v) d3v = 1 (A.3)

and ∫︂ ∞

−∞
f(u) d3u = 1 . (A.4)

In the integration over classical velocities, we allow for superluminal velocities, because
the distribution function is assumed to have negligible magnitude at these velocities.

If we wanted to integrate the distribution g over a certain volume of the classical
velocity space (to obtain the particle density which appears in the definition of current
density), we would have to carry out the change of coordinates

g(u∥, u⊥, φ)d3u → g(v∥, v⊥, φ)d3v . (A.5)

In the cylindrical coordinates, we have

d3u = du∥u⊥du⊥dφ , (A.6)

and by calculating the derivatives, we get

du∥ = (1 + v2
⊥)γ3dv∥ , (A.7)

u⊥du⊥ = (1 + v2
∥)γ4v⊥dv⊥ . (A.8)

The normalization factor becomes
1

(2π)3/2γ3V 2
t⊥Vt∥

, (A.9)

and if we combine all the expressions together, we get

g(v∥, v⊥, φ)d3v = 1
(2π)3/2V 2

t⊥Vt∥
(1+v2

∥)(1+v2
⊥)γ4 exp

(︄
−v2

∥

2V 2
t∥

)︄
exp

(︄
−v2

⊥
2V 2

t⊥

)︄
dv∥dv⊥v⊥dφ .

(A.10)
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Now we can see that the two distributions f and g are different, because
g

f
= (1 + v2

∥)(1 + v2
⊥)γ4 . (A.11)

The distribution g is well normalized, because we are not integrating the classical
velocities up to infinity as with f , but we limit them to a ball with a radius of the speed
of light. The factor g/f compensates for these bounds imposed on the integration
region.

In the calculation of resonant current within the nonlinear growth theory (source at
h = 0), the situation is slightly different. In the construction of the resonant potential,
it is assumed that all the particles have a constant parallel velocity VR and a constant
perpendicular velocity V⊥0. Accordingly, we assume that the γ-factor in the integration
of the resonant phase space region can be replaced by a constant γR = (1 − V 2

R −
V 2

⊥0)−1/2. Therefore, the velocity transformation is simply

d3u = γ3
Rd3v , (A.12)

and this factor of γ3
R is exactly compensated by the normalization factor,

1
(2π)3/2U2

t⊥Ut∥
→ 1

γ3
R

1
(2π)3/2V 2

t⊥Vt∥
. (A.13)

Therefore, if we exchange f for g in the calculation of the resonant current, the quantity
J0 will remain exactly the same. In Omura et al. 2008, between equations 46 and 47,
we have

J0 = 23/2e
ωtr
k
V 2

⊥0QF , (A.14)

with
F ∼ 1

V⊥0Vt∥
. (A.15)

If we wish to replace F by
G ∼ 1

U⊥0Ut∥
(A.16)

instead, we will get and extra factor of γ2
R, and after writing ωtr out as

χk1/2V
1/2

⊥0 Ω1/2
w γ

−1/2
R , (A.17)

we get

J0 = (2e)3/2(mekγR)−1/2(1 − V 2
p /c

2)1/2V
1/2

⊥0 V
2

⊥0γ
2
RQGB

1/2
w

= (2e)3/2(mek)−1/2γ−1
R (1 − V 2

p /c
2)1/2U

5/2
⊥0 QGB

1/2
w ,

(A.18)

which is exactly the same formula as in the Equation 3.27.

If we wish to recover the corrections to ΓN and Ωthr in Omura et al. 2009 and to
Ωopt in Omura et al. 2011, we simply observe that

ΓN ∼ JE ∼ J0 ⇒ correction γ2 , (A.19)

Ωthr ∼ Γ−2
N ⇒ correction γ−4 , (A.20)

and
Ωopt ∼ δω ∼ JB ∼ J0 ⇒ correction γ2 . (A.21)
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A.2 Hanzelka et al. [2020]

Hanzelka, M., Santoĺık, O., Omura, Y., Kolmašová, I., and Kletzing, C. A. A Model
of the Subpacket Structure of Rising Tone Chorus Emissions. J. Geophys. Res. Space
Physics, 125(8):e28094, August 2020. doi: 10.1029/2020JA028094.
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A.3 Hanzelka et al. [2021]

Hanzelka, M., Santoĺık, O., Omura, Y., and Kolmašová, I. Measurability of the Non-
linear Response of Electron Distribution Function to Chorus Emissions in the Earth’s
Radiation Belt. J. Geophys. Res. Space Physics, 126(9):e29624, September 2021. doi:
10.1029/2021JA029624.
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