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DIPLOMOVÁ PRÁCE
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softvéru.
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1.3.1 Itô’s Integral . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Risk-Neutral Measure . . . . . . . . . . . . . . . . . . 20
1.3.3 Martingale Representation . . . . . . . . . . . . . . . 23

2 Interest Rate Models 25
2.1 Categories of Interest Rate Model . . . . . . . . . . . . . . . 25
2.2 Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Simple Model under the Risk Neutral Measure . . . . 27
2.3 Heath-Jarrow-Morton Framework (HJM) . . . . . . . . . . . 31
2.4 Equilibrium Models . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 One-Factor Models . . . . . . . . . . . . . . . . . . . 34
2.4.2 Vasicek Model . . . . . . . . . . . . . . . . . . . . . . 35
2.4.3 Cox-Ingersoll, and Ross Model (CIR) . . . . . . . . . 37

2.5 No-Arbitrage Models . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1 Ho and Lee Model . . . . . . . . . . . . . . . . . . . 40
2.5.2 Hull and White Model . . . . . . . . . . . . . . . . . 41
2.5.3 Black and Karasinski Model . . . . . . . . . . . . . . 42

3 Convexity Adjustment 43
3.1 Forward and Future Contracts . . . . . . . . . . . . . . . . . 44

3.1.1 Forwards . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Futures . . . . . . . . . . . . . . . . . . . . . . . . . 45

1



3.1.3 Forward-Futures Spread . . . . . . . . . . . . . . . . 47
3.1.4 Empirical Research Done So Far . . . . . . . . . . . . 48

3.2 General Framework . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 CA in Hull-White Model . . . . . . . . . . . . . . . . . . . . 49
3.4 CA in Ho-Lee Model . . . . . . . . . . . . . . . . . . . . . . 52
3.5 CA in Other Models . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Our Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Ho-Lee Model Parameters Estimation . . . . . . . . . 57
3.6.2 CA for Our Data Set . . . . . . . . . . . . . . . . . . 58
3.6.3 Forward rates . . . . . . . . . . . . . . . . . . . . . . 60

4 Arbitrage Analysis 61
4.1 Currency Forwards . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Construction of the Arbitrage . . . . . . . . . . . . . . . . . 62
4.3 Futures Quotes vs. Implied Quotes . . . . . . . . . . . . . . 63
4.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 68

2



Abstrakt
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Abstrakt: Ciělom diplomovej práce je predstavǐt pravdepodobnostné sto-
chastické modely úrokových mier v spojitom čase. Uvádzané modely sú
Itôové procesy definované parametrami, pomocou ktorých sa čo najlepšie
snažia poṕısať vývoj úrokových mier v reálnom svete. Pre vybrané modely
bude diskutovaný rozdiel medzi forward a futures úrokmi, nazývaný con-
vexity adjustment. V závere práce je prevedená analýza existencie arbitráže
medzi úrokovými sadzbami a zmennými kurzami, aplikovaná na základný
Ho-Lee model.
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defined by parameters, which are trying to describe interest rate behavior in
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of the thesis the analysis of arbitrage existence between interest rates and
currency exchange rates, applied to the simplest Ho-Lee model, is presented.
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Chapter 1

Introduction

Financial mathematics is today going through a time of intensive develop-
ment, especially in the stochastic analysis area. The methods of the general
theory of random processes have turned out to be the most adequate for a
suitable description of the evolution of basic and derivative securities. In this
work we would like to present the methods and results of the contemporary
theory of financial computations and its representation of basic techniques
in stochastic analysis: martingales, Itô’s formula, Girsanov’s theorem and
others. We will cover the main interest rate modeling techniques, most used
models and the basic theory behind the formulas. We will then focus mainly
on the derivative securities (forwards and futures contracts) and try to ex-
amine how much different they are from each other. Afterwards we will have
a closer look on the arbitrage existence between interest rates and currency
exchange rates.

In the first chapter the fundamental ideas and concepts of interest rate
modeling are examined. We will discuss and define basic ideas of interest
rates markets. Later we introduce interest rates, basic interest rate instru-
ments and general modeling features. Some simple interest rate models are
presented and compared. We will introduce the key ideas of martingale mea-
sure, numeraire, changes of measure and some basic modeling tools.

The second chapter brings in concrete interest rate models, presents the
main model categories and frameworks. We focus specially on the Heath-
Jarrow-Morton framework and the Vasicek and Cox, Ingersoll (CIR), Ross
models. To illustrate some of the many issues in modeling, we give a detailed
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comparison of the characteristics of the Vasicek and CIR models. We will
also describe very important no-arbitrage models such as Ho-Lee and Hull-
White, which are designed to reflect perfectly the today’s term structure.

In the third chapter we introduce two of the most common derivative
securities- forwards and futures contracts. We will look at the amount how
different they are- the convexity adjustment, and investigate its value for se-
lected models. We briefly mention the empirical research in other papers. At
the end of the chapter we provide our study for real Euribor and Eurodollar
rates from 2007, together with appropriate parameter estimates.

The last, fourth chapter, looks at the eventual arbitrage existence be-
tween the Euribor and Eurodollar futures quotes and appropriate currency
forwards. We will use the basic Ho-Lee model to calculate the theoretical
quotes in case of no-arbitrage and compare them with the real ones. We will
discuss the results and possibilities of bringing the computed arbitrage into
reality.

1.1 Introduction to Interest Rates

In this section we will look at some basic concepts of interest rate. We begin
with an introduction of interest rate behaviour and then briefly discuss the
application of interest rate models, interest rate markets and modelling.
An interest rate can represent, from one point of view, a price of substitution;
given the choice between getting x units (dollars) now or 1 unit in let’s
say one year’s time for sure, what would x have to be for the agent to
be indifferent between the alternatives? Our x is the present value of one
dollar received in one year’s time. The today’s cost of receiving one dollar
at time t is the discount factor, denoted here by δt. At time to maturity t
the continuously compounded spot interest rate rt satisfies

e−
∫ t
0 rudu = δt.

The discount function is the set of discount factors for all future maturities.
For positive interest rates the discount factor is less than 1.
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Yield Curve

The term structure of interest rates, the yield curve, is the set of interest
rates for different investment maturities, or periods. A yield curve typically
slopes upwards, with longer terms being higher, although there are examples
of inverted term structure where long rates are smaller than short one.

Interest Rate Market

Interest rate market is an institution where the price of money (interest
rate) is set. It takes into account two main factors; length of the term and
instantaneous fluctuation of the interest rate market. Bonds, bond options,
interest rate swaps, exotic contracts and some others are the most common
derivatives of interest rate market.

Well established organizations for selling and buying all kinds of deriva-
tives or commodities are exchanges. Many exchanges use a clearing house,
which facilitates the settlement of contracts and can reduce a counterparty’s
exposure to credit risk. All derivative exchange contracts are marked to mar-
ket (their value is benchmarked to current market prices). For example, a
futures contract is an agreement to make a future purchase at a price agreed
today. The contract is closed out at the end of each trading day and it is
replaced by a new contract at the day’s future settlement price. The owner’s
margin account is then credited/debited by the difference in the prices of
two contracts. Instead of taking physical delivery of the underlying at the
settlement day, the exchange settles by paying cash to the margin account,
equal to the difference between the agreed price and the actual price on the
delivery date.

The market is efficient if prices on traded assets already reflect all known
information and therefore are unbiased in the sense that they reflect the col-
lective beliefs of all investors about future prospects. This is also called as
efficient market hypothesis. It states that it is not possible to consistently
outperform the market by using any information already known on the mar-
ket. Every interest model used in real market assumes that the market is
efficient. (There are more precise definitions of efficiency, but the definitions
here catches the intuition behind the concept so far.) When not considering
an efficient market, an interest model will fail to explain prices.
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Historical and Current Data

In deeper analysis we usually deal with ”historical” data set, what is a set of
rates/ prices covering some considered past period (for instance a set of in-
terest rates of different maturities for the last few years). On the other hand,
what means ”current”, depends on trader’s situation. In a fast moving mar-
ket, rates five minutes old might be no longer ”current”. However, for some
daily valuation purposes, the closing rates on the day may be considered as
”current” for couple of hours.

Applications

Interest rate models are needed to provide a quantitative framework for
describing interest rate movements and valuing interest rate products. We
would like to discover the dynamics of interest rates and the way that interest
rates and derivative prices relate together by fitting a model to available
interest rate data. Most of the models developed so far cannot be used to
precisely predict daily ups and downs, but we can already create models
describing distributional properties of interest rate movements. Interest rate
models do not attempt to give accurate forecast, but describe statistical
properties like distribution width and shape, or the likelihood of reaching
certain levels. Then, under certain conditions, by knowing the distributional
properties of interest rate movements, we can find the values of interest rate
derivatives as expected discounted values. It is very difficult to compare the
performance of different models, as well as to determine which model is the
best one in any particular circumstances. Reasons are that most of available
data are sparse and of poor quality and that through time there is a huge
variability in market conditions.

Features of a Good Model

When testing and using interest rate models, the priority is pricing and
hedging, where the model is fitted to available current market data. The
process of calibration adjusts the model’s parameters until the model prices
match those seen in the market. In the market, models are often being
improved and tested for their goodness of fit to current prices. However,
even if it is difficult to determine which model is the best one, it is still
possible to say what features a good model should have in general.
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Precise valuation of market instruments: model should provide accurate
prices for liquid market instruments.

Ease of calibration: In a fast moving market the speed of calibration is
critical. The market instruments to which the model is calibrated should be
liquid and easily observed.

Robustness: Some models are not recommended for some interest rate
regimes. A good model should perform well in all markets.

Extensibility to new instruments: Possibility to value and hedge new in-
struments gives the institution a huge advantage in the market. Some exotic
instruments cannot be valued by too simple models.

One of the main purpose, where interest rate models are needed, is ob-
taining prices and hedges. The traders are focused upon accurate current
valuation of different financial instruments, less concerned about historical
prices. Risk managers use interest rate models to simulate market behaviour,
what may enable them to put limits on the range of future values that a
deal may have. Another main purpose of interest rate models is explaining
interest rate movements in terms of an underlying model. It is of critical
importance when interest rate control is a key part of economic policy.

Modeling interest rates is a very complex problem; we will need tech-
niques for describing interest rate movements, obtaining prices from model
and estimating parameters. Interest rate behaviour does not have any defini-
tive model, it is still not totally understood, but on the other hand, for
practical uses, like valuating and hedging, there are already well-founded
techniques developed.

1.2 Introduction to Interest Rate Modeling

In this section we will look in more detail at money market instruments,
describing how quoted market rates convert into cashflows. We introduce
the notation of stochastic process and the concept of probability space with
filtration. We will present basic interest rate models and compare them using
an appropriate set of criteria.

Bonds

A bond is a securitized form of loan. The buyer of a bond lends the issuer
(national and regional governments, banks, corporations and companies) an
initial price P in return for a predetermined sequence of payments. These
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payments can be fixed in nominal terms (a fixed-interest bonds) or they can
be linked to some index (an index-linked bond), e.g. the consumer prices
index. They are often named differently, dependent on particular country;
in USA- treasury bills or treasury notes, in GB- gilts, etc. Bonds that have
identical characteristics but are sold by different issuer may not have the
same price; for example the bond issued by company might be traded at
lower price than the government bond because the market makers will take
into account the possibility of default on the coupon payments.

1.2.1 Yield Curves

We will start here with idealized definitions on continuously compounded
spot and forward rate and we will define corresponding instruments on the
market, as Libor and forward rate agreements. As a yield it is usually re-
ferred the average interest rate offered by a bond, rt(T ), which denotes the
continuously compounded interest rate for a zero-coupon bond (bond with
coupon rate zero and nominal value 1) sold at t with maturity T .

Discount Factors, Spot and Forward Rates

The concept of present or discounted value is used in pricing most of financial
instruments. Let us denote P (t, T ) the value at time t of EUR 1 received
for sure at time T , what means that P (t, T ) is the pure discount bond
(without coupons) value with maturity at time T and maturing value 1.
Then, {P (t, T )|t ≤ T} is the discount curve at time t. Suppose now a bond
or bond portfolio with riskless cashflows Ci at times t1, . . . , tn. The present
value P of the cashflow stream {Ci}i=1,...,n , or the value of the portfolio of
cashflows is then simple given by a sum of discounted cashflows

P =
n∑

i=1

CiP (t, ti).

Continuolsly-compounded spot interest rate: The term structure
of interest rates is the set of yields to maturity R(t, T )t<T ,

R(t, T ) = − 1

T − t
ln P (t, T ), t < T (1.1)

where {P (t, T )}t<T is a given set of pure discount bond prices. We often use
expression time to maturity, τ = T − t. From above, it follows that

eR(t,T )τP (t, T ) = 1, (1.2)
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which means that the continuously compounded spot interest rate is a con-
stant rate that is consistent with the zero-coupon-bond prices. From the
last equation we can express the bond price in terms of the continuously
compounded rate r

P (t, T ) = e−R(t,T )τ , (1.3)

The rate of instantaneous lending or borrowing is the short rate R(t, t) ≡
r(t), which we will use in order to calculate the value of money market
account- a sum of 1 unit (USD) invested in the short rate at time zero and
continuously rolled over. Its value, denoted by Bt at time t, is then

Bt = exp

(∫ t

0

rsds

)
.

Even if not exactly the same, as a surrogate for the short rate is very often
a short Libor rate (e.g. three-month rate) or overnight rate used. Forward
rate is rate that is possible to lock into today for borrowing or lending in
the future. More concretely, continuously compounding forward rate
f(t, T1, T2) at time t which applies between times T1 and T2 (t ≤ T1 ≤ T2,
where we borrow at time T1 and repay at time T2) is defined as

f(t, T1, T2) =
1

T2 − T1

ln
P (t, T1)

P (t, T2)
(1.4)

or

f(t, T1, T2) =
1

T2 − T1

[R(t, T2)(T2 − t)−R(t, T1)(T1 − t)]. (1.5)

The forward rate is arising within the terms of forward contract, under which
we agree at time t that we will invest e.g. 1 USD at time T1 in return for
e(T2−T1)f(t,T1,T2) at time T2.

The property from the definition of the forward rate must be fulfilled,
otherwise an arbitrage would be possible: For example if we suppose

f(t, T1, T2) >
1

T2 − T1

ln
P (t, T1)

P (t, T2)
,

we can consider that a portfolio of one forward contract (with value 0 at

time t), +1 units of the T1-bond and −P (t,T1)
P (t,T2)

units of the T2-bond. If we will

hold this portfolio (with total cost 0 at time t) to maturity of the respective
contracts, it will produce a pure cashflow of zero at time T1 and cashflow of
e(T2−T1)f(t,T1,T2) − P (t,T1)

P (t,T2)
units at time T2, what is (as assumed) larger than
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0. That means, we have started with zero-valued portfolio and we have sure
positive profit at time T2. Analogously, by constructing a reverse portfolio we
will deny the possibility of f(t, T1, T2) < 1

T2−T1
ln P (t,T1)

P (t,T2)
in non-arbitrage case.

Summarized, if we assume a non-arbitrage case, the forward rate f(t, T1, T2)
must satisfy the equation 1.4 or 1.5 respectively.

The instantaneous forward rate at time t of maturity T is, for t < T ,

f(t, T ) ≡ f(t, T, T ) = lim
T2→T

f(t, T, T2) (1.6)

and it can be read off the discount curve (yield curve)

f(t, T ) = lim
T2→T

f(t, T, T2) = − ∂

∂T
(ln P (t, T )) = −∂P (t, T )/∂T

P (t, T )
(1.7)

= R(t, T ) + (T − t)
∂R(t, T )

∂T

from what we get

P (t, T ) = exp

[
−

∫ T

t

f(t, u)du

]
. (1.8)

Arbitrage consideration indicate that f(t, T ) must me positive for all
T ≥ t, so P (t, T ) must be a decreasing function of T .

It is important to realize that:

• We assume here that all rates are riskless, so that there is no default
risk.

• Forward rates defined above correspond to FRA’s, described below.

• Spot rates are in fact forward rates for immediate delivery, R(t, T ) =
f(t, t, T ) = limT1→t f(t, T1, T ), and rt ≡ f(t, t) = f(t, t, t).

• Rolling over at instantaneous forward rates is equivalent to investing
at an appropriate spot rate,

eR(t,T )(T−t) = e
∫ T

t f(t,s)ds.
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Future rates are in no way the same as forward rates; to convert fu-
ture prices into equivalent forward rates we will need an adjustment, called
convexity adjustment, which we cover in detail in the third chapter.

There are many different ways of quoting rates at the market. From the
most conventional algorithms to convert quoted rates into actual cashflows
we mention here Libor and then describe FRAs in more detail.

The Libor rate (London InterBank Offered Rate) may be introduced
as the most important interbank rate usually considered as a reference for
contracts. However, there are also analogous interbank rates fixing in other
markets (e.g. the EURIBOR rate, fixing in Brussels), and when referring to
Libor, we actually refer to any of these interbank rates.

As derived in James, Webber [13], p. 41-42, to avoid an arbitrage we
must have

P (t, t + τ) =
1

1 + L(t, τ)αL(t, τ)
, (1.9)

for every maturity period τ 1, where L(τ, t) denotes the Libor rate at time t
with maturity τ and αL(t, τ) is the proportion of L paid out at time t + τ
and is calculated as a fraction of a year.

FRAs- Forward Rate Agreements are market equivalents of the the-
oretical forward rates defined earlier. For the FRA rate agreed at time 0 for
time t and tenor τ we will write F0(t, τ) = F , where the rate F is fixed.
More generally, the simply-compounded forward interest rate prevailing at
time t for the expiry T and maturity τ , where τ > T > t, we denote by
Ft(T, τ) and it is given by

Ft(T, τ) =
1

τ

(
P (t, T )

P (t, τ)
− 1

)
. (1.10)

At time t the holder of FRA is receiving a quantity

c =
L(t, τ)αL(t, τ)− FαL(t, τ)

1 + L(t, τ)αL(t, τ)
(1.11)

1The maturity τ of the Libor rate is considered as the period from the point of invest-
ment to the time that interest is paid. This maturity is in literature often called as the
tenor of an interest rate.
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which is the present value (at time t) of the difference between borrowing at
Libor of tenor τ at time t and borrowing at the FRA fixed rate F (premium
at time 0 is 0). This quantity can be negative or positive, and one can sell or
buy FRAs, analogously to future borrowing or lending at the FRA rate. To
avoid an arbitrage the F rate must be related to market Libor rates, what
implies

1+L(0, t+τ)αL(0, t+τ) = (1+L(0, t)αL(0, t))(1+F0(t, τ)αL(t, τ)), (1.12)

what is more in detail discussed e.g. in James, Webber [13], p.41-42. Not
considering the transaction costs, if the equation 1.12 is not fulfilled, an ar-
bitrage is possible; we could lend at the more expensive rates, hedging by
borrowing at the cheaper rates.

Day count conventions: Unfortunately, different markets and coun-
tries have different conventions for calculating cashflows and timings from
quoted rates. The differences can amount to significant sums when large
principals are involved even though they are generally small in percentage
terms. Exceptional situations are handled differently in different markets,
and details and possible circumstances are sometimes confusing. The usual
way of calculating the size of interest cashflows to particular instrument is
cashflow = annual coupon × the year fraction the cashflow relates to. We
denote by d1 and d2 the start and end dates of some calendar period. Here
we will list just some conventions used in a number of major markets.

Euribor use count convention 30/360 what count the whole number of
calendar months in between d1 and d2 and then adds on the fractions of
each month at the start and end of the period. The method assumes that
a year has 12 months of 30 days each. The year fraction α(d1, d2) is here

broadly calculated as α(d1, d2) = 1
12

(
m2−d1

30
+ (n− 3) + d2−mn−1

30

)
, where mi

are month end dates2, and m1 ≤ d1 ≤ m2 < . . . < mn−1 ≤ d2 ≤ mn. As a
start day Euribor and most others use same day +2. As the end day many
currencies use the ’modified following business day’ convention. The end day
is on the following business day, unless it is in a different month, in which
case it is on the previous business day.

2Markets vary in how they treat situations, for example, d2 = mn and mn = 31 or
mn = 29. Further description can be found e.g. in Carmona, Tehranchi [5], p.17-18 , or
in Reuters [24] p.161-163.
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1.2.2 Interest Rate Processes

In this part we provide basic ideas for modeling financial time series, stan-
dard specification of appropriate stochastic processes and probabilistic frame-
work that allows us to introduce important concepts such as conditional
expectations, and the way they change through time. Ideas introduced here
are used in the entire field of interest rate modeling. Most of them are ex-
tensively used in theoretical pricing framework, but this will not be goal of
this text.
All stock prices and interest rate processes are stochastic processes. They are
changing randomly over time, but the manner in which they change can be
modeled. We will divide the changes in their values into two parts; the first
will be a deterministic component, called the drift process, and the second
will be a ’noise’ term, which we call the volatility component of the process.
More precisely, the process can be under certain assumptions decomposed
into a finite or bounded component (drift) and a component of infinite vari-
ation (volatility). For more decomposition details we refer to Protter [18],
p.88-94.

The Deterministic Component

Consider now that the deterministic drift for a stock price might by geo-
metric growth. The stock price St with no noise and the exponential growth
rate µ would satisfy then the differential equation

dSt

dt
= µSt, (1.13)

of which the solution is
St = S0e

µt. (1.14)

Equation 1.13 can be rewritten as dSt = µStdt. We might expect the interest
rate processes to have a tendency to return to a mean value or some area of
values, what we can model as

drt

dt
= α(µ− rt), α > 0, (1.15)

or equivalently
drt = α(µ− rt)dt. (1.16)

The solution to 1.15 is

rt = µ + (r0 − µ)e−αt. (1.17)
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From 1.15 we see, that if rt < µ, then drt/dt is positive and rt tends to
increase. For rt > µ the rate rt will tend to decrease. So far we can conclude
that the rate rt trends towards the level µ, the mean reversion level, and α,
the mean reversion rate, is the speed the rt goes to µ at.

The Volatility Component

For a financial time series without jumps, the volatility component is as-
sumed to be a function of a Wiener process, also called Brownian mo-
tion, denoted here by W = (Wt, t ≥ 0) that is defined as centered Gaussian
process with cov(Ws,Wt) = s ∧ t for all s, t > 0. The existence is provided
by

Theorem 1.2.1 A process W is a Brownian motion iff W0 = 0, it has
independent increments, and L(Wt−Ws) = N(0, |t−s|) holds for t, s ∈ R+.
Brownian motion exists and each Brownian motion can be modified to a
continuous process.

The proof and further details are presented in Shreve [22] p.94-97, or [9],
p.238-240. Here we present some most important properties of Wiener pro-
cess:

• W0 = 0 and L(Wt) = N(0, t).

• the paths of Wt are continuous, but differentiable almost nowhere

• for arbitrary time instants 0 ≤ s < t the distribution of increments
(Wt −Ws) is N(0, σ2(t− s)), σ > 0

• the increments (Wt−Ws) are independent, stationary and orthogonal

• Bownian motion hits every real value, infinitely often

To introduce noise to a stock price process St or an interest rate rt we add
here dWt, which is scaled by σSt, so that returns to St have a constant
standard deviation σ,

dSt = µStdt + σStdWt. (1.18)

This process is called geometric Brownian motion. The interest rate process
will then look like

drt = α(µ− rt)dt + σdWt, (1.19)

called also an Ornstein-Uhlenbeck process.
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The Principal Definitions of Stochastic Calculus

Prices of financial instruments are dependent upon the probabilities of events
occurring in the market. Here we present some necessary concepts.

Definition 1.2.1 Continuous-time stochastic process X is a family
of random variables, {Xt, t ∈ R}, defined on probability space (Ω,F , P ) with
values in some measurable space.

Definition 1.2.2 Considering a measurable space (Ω,F) we call its filtra-
tion the set (Ft, t ≥ 0), if any Ft ⊂ F is a σ-algebra and Fs ⊂ Ft for s ≤ t.
We will denote F∞ := σ

(⋃
t≥0Ft

)
. Assume E to be a metric space and X

to be an E-valued process on the space (Ω,F), then we denote

FX
t := σ(X(s), s ≤ t),FX

∞ := σ(X(s), t ≥ 0). (1.20)

Definition 1.2.3 Having a filtration (Ft) of the space (Ω,F) we call an
E-valued process X on (Ω,F) an Ft-adapted process is FX

t ⊂ Ft for all
t ≥ 0. In other words, X is an Ft-adapted process if and only if for all t ≥ 0
the variable Xt is an Ft-measurable E-valued random variable.

Definition 1.2.4 Let (Ω,F , P ) be a probability space and let Ft, 0 ≤ t ≤ T
be a filtration of sub-σ-algebras of F . For an adapted process Mt, 0 ≤ t ≤ T
we say that this process is

• a martingale, if E[Mt|Fs] = Ms for all 0 ≤ s ≤ t ≤ T ,

• a submartingale, if E[Mt|Fs] ≥ Ms for all 0 ≤ s ≤ t ≤ T ,

• a supermartingale, if E[Mt|Fs] ≤ Ms for all 0 ≤ s ≤ t ≤ T .

Martingales are extremely important type of stochastic processes. For exam-
ple, a Wiener process Wt is a martingale by definition. A stock of share price
processes dSt = µStdt + σStdWt is a martingale just for µ = 0, otherwise it
has a drift and its expected value will move farther from its value today as
time goes on.
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1.3 Theoretical Background

This section will provide summary of basic modeling tools, main results of
no-arbitrage, the existence of an equivalent martingale measure and concept
of changes of numeraire. (We will not provide all the proves here, since most
of them would take large space and they are not the main point of this paper.
All of them can be found with varying depth e.g. in Shreve [22], Protter [18],
or Steele [23].)

1.3.1 Itô’s Integral

Itô ’s integral is used to model the value of a portfolio that results from
trading assets in continuous time. The manipulation with these integrals is
based on the Itô-Doeblin formula. The difference from ordinary calculus is
based on the fact that Brownian motion has a nonzero quadratic variation.

For a simple adapted process ∆(t) on [0, T ] , i.e. for

∆(t, ω) =
∞∑

k=1

I[tk,tk+1) ·∆(tk, ω) (1.21)

we will define the Itô’s Integral as

I(t) =

∫ t

0

∆(u)dWu :=
k−1∑
j=0

∆(tj)[Wtj+1
−Wtj ]+∆(tk)[Wt−Wtk ], tk ≤ t ≤ tk+1

(1.22)
where 0 = t0 ≤ t1 ≤ . . . ≤ tn = T is a partition of [0, T ]. In general, it is
possible to choose a sequence ∆n(t) of simple processes, such that for n →∞
the processes converge to the continuously varying process ∆(t) in the sense
of

lim
n→∞

E

∫ T

0

|∆n(t)−∆(t)|2dt = 0

Then we define the Itô’s Integral of the general adapted process by

I(t) =

∫ t

0

∆(u)dWu := lim
n→∞

∆n(u)dWu, 0 ≤ t ≤ T. (1.23)

The Itô’s Integral has following properties:

• Continuity: the paths of I(t) are continuous (they are function of the
upper limit of integration t)
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• Adaptivity: I(t) is Ft-measurable for each t

• Linearity: If I(t) =
∫ t

0
∆(u)dWu and J(t) =

∫ t

0
Γ(u)dWu, then cI(t)±dJ(t) =∫ t

0
(c∆(u)± dΓ(u)) dWu for every c, d ∈ R

• Martingale: I(t) is a martingale

• Itô isometry: EI2(t) = E
∫ t

0
∆2(u)du

• Quadratic Variation: [I, I](t) =
∫ t

0
∆2(u)du

Definition 1.3.1 Let Wt, t ≥ 0, be a Brownian motion and let Ft, t ≥ 0,
be an associated filtration. We will define an Itô process as a stochastic
process of the form

X(t) = X(0) +

∫ t

0

∆(u)dWu +

∫ t

0

Θ(u)du, (1.24)

where ∆(u) and Θ(u) are adapted stochastic processes, X(0) is nonrandom
and we assume that both

∫ t

0
∆2(u)du and

∫ t

0
|Θ(u)|du are finite for all t > 0.

Definition 1.3.2 Let X(t), t ≥ 0, be an Itô process from the definition above
and let Γ(t), t ≥ 0, be an adapted process. We define the integral with
respect to an Itô process as

∫ t

0

Γ(u)dX(u) =

∫ t

0

Γ(u)∆(u)dWu +

∫ t

0

Γ(u)Θ(u)du. (1.25)

Theorem 1.3.1 (Itô-Doeblin Formula) Let X(t), t ≥ 0, be an Itô pro-

cess of the form X(t) = X(0)+
∫ t

0
∆(u)dWu+

∫ t

0
Θ(u)du, such that E

∫ t

0
∆2(u)du

and
∫ t

0
|Θ(u)|du are both finite, and let f(t, x) be a function with defined and

continuous partial derivatives ft(t, x), fx(t, x) and fxx(t, x). Then, for every
T ≥ 0,

f(T, X(T )) = f(0, X(0)) +
∫ T

0
ft(t,X(t))dt +

∫ T

0
fx(t, X(t))dX(t)

+
1
2

∫ T

0
fxx(t,X(t))d[X, X](t)

= f(0, X(0)) +
∫ T

0
ft(t,X(t))dt +

∫ T

0
fx(t, X(t))∆(t)dWt

+
∫ T

0
fx(t,X(t))Θ(t)dt +

1
2

∫ T

0
fxx(t,X(t))∆2(t)dt, (1.26)
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or, in differential notation,

df(t,X(t)) = ft(t, X(t))dt + fx(t,X(t))dX(t) +
1
2
fxx(t,X(t))dX(t)dX(t)

= ft(t, X(t))dt + fx(t,X(t))∆(t)dW (t) + fx(t,X(t))Θ(t)dt

+
1
2
fxx(t, X(t))∆2(t)dt (1.27)

The left-hand side of 1.26, f(T, X(T )), is reduced to a sum of a nonran-
dom quantity f(0, X(0)), three Lebesgue integrals with respect to time and
one Itô integral.

An important example of 1.27 use is e.g. modeling the value of a portfolio.
We suppose here that f is the value of a portfolio denoted by St, so we can
write f = f(t, St) and stock is modeled by the geometric Brownian motion,
dSt = µStdt + σStdWt. Then f follows the process

df(t, S(t)) =
∂f

∂t
dt + σ

∂f

∂S
dWt + µ

∂f

∂S
dt +

1

2
σ2 ∂2f

∂S2
. (1.28)

For simplicity, we will try to keep the notation as simple as possible
and we will present here the Itô-Doeblin formula for two processes driven
by a two-dimensional Brownian motion Wt = (W1t,W2t). Analogously, the
formula generalizes to any number of processes driven by Brownian motion.

Theorem 1.3.2 (Two-dimensional Itô-Doeblin Formula) Let f(t, x, y)
be a function with defined and continuous partial derivatives ft, fx, fy, fxx, fxy, fyx

and fyy. Let X(t) and Y (t) be Itô processes of the form

X(t) = X(0) +
∫ t

0
Θ1(u)du +

∫ t

0
σ11(u)dW1u +

∫ t

0
σ12(u)dW2u

Y (t) = Y (0) +
∫ t

0
Θ2(u)du +

∫ t

0
σ21(u)dW1u +

∫ t

0
σ22(u)dW2u

The two-dimensional Itô-Doeblin formula in differential form is

df(t,X(t), Y (t)) = ft(t,X(t), Y (t))dt + fx(t,X(t), Y (t))dX(t) + fy(t,X(t), Y (t))dY (t)

+
1
2
fxx(t,X(t), Y (t))dX(t)dX(t) + fxy(t,X(t), Y (t))dX(t)dY (t)

+
1
2
fyy(t,X(t), Y (t))dY (t)dY (t). (1.29)
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We often use theorem 1.3.2 in more compact form, leaving out t, as

df(t,X, Y ) = ftdt+fxdX +fydY +
1
2
fxxdXdX +fxydXdY +

1
2
fyydY dY. (1.30)

The right-hand side of 1.30 is based on the Taylor expansion of f out to
the second order. The full expansion would have more second-order terms
(fttdtdt, . . .), but dtdt, dtdX and dtdY are zero. This and other remarks are
discussed more precisely in Shreve [22], p.164-168 or in Steele [23], p.123-128.
An important feature of Itô integral is its normal distribution for determin-
istic integrand.

Theorem 1.3.3 Let Ws, s ≥ 0, be a Brownian motion, and let ∆(s) be
a nonrandom function of time. Define I(t) =

∫ t

0
∆(s)dWs. Then I(t) ∼

N
(
0,

∫ t

0
∆2(s)ds

)
for each t ≥ 0.

1.3.2 Risk-Neutral Measure

Theorem 1.3.4 Let (Ω,F , P ) be a probability space and let Z be an a.s.
nonnegative random variable satisfying EZ = 1. We define for any A ∈ F

P̃ (A) =

∫

A

Z(ω)dP (ω). (1.31)

Then P̃ is a probability measure. If we denote the expectation under P̃ as
Ẽ, then for nonnegative random variable X is

Ẽ(X) = E [XZ] . (1.32)

If Z is strictly positive a.s., then P and P̃ agree which sets have probability
0 (we say they are equivalent) and

EY = Ẽ

[
Y

Z

]
(1.33)

for every nonnegative random variable Y .

Proof. Shreve [22], p.210-211.

Theorem 1.3.5 (Radon-Nikodým). Let P and P̃ be equivalent probabil-
ity measures on (Ω,F). Then there exists an a.s. positive random variable
Z satisfying EZ = 1 such that

P̃ (A) =

∫

A

Z(ω)dP (ω) for all A ∈ F . (1.34)

20



Definition 1.3.3 Random variable Z from the previous theorem is called

the Radon-Nikodým derivative of P̃ with respect to P . We write Z = dP̃
dP

.
Further, we define the Radon-Nikodým derivative process by Zt =
E [Z|Ft], for 0 ≤ t ≤ T .

We can remark, that the Radon-Nykodým derivative process is a mar-
tingale, and ẼY = E[Y Z] = E[E[Y Z|Ft]] = E[Y Zt].

The original martingale measure P is not the most convenient for pricing
contingent claims when interest rate are stochastic. An appropriate choice
of numeraire can lead to an elegant solution of the pricing problem.

Lemma 1.3.1 Let Y be an Ft-measurable random variable, 0 ≤ s ≤ t ≤ T .
Then

Ẽ[Y |Fs] =
1

Zs

E[Y Zt|Fs]. (1.35)

We will try to show how stochastic processes change under changes in
measure. The first presented, Girsanov theorem tells us, how to make drift
change or disappear, how to find a probability measure that makes the
present value of the stock price into a martingale.

Theorem 1.3.6 (Girsanov, one dimension). Let Wt, 0 ≤ t ≤ T , be a
Brownian motion on a probability space (Ω,F , P ), and let Ft, 0 ≤ t ≤ T
be a filtration for this Brownian motion. Let Θt, 0 ≤ t ≤ T be an adapted
process. We define

Zt = exp

[
−

∫ t

0

ΘudWu − 1

2

∫ t

0

Θ2
udu

]
, (1.36)

W̃t = Wt +

∫ t

0

Θudu (1.37)

and assume that

E

∫ T

0

Θ2
uZ

2
udu < ∞. (1.38)

Set Z = Z(T ). Then EZ = 1 and under probability measure P̃ given by

(1.34), the process W̃t, 0 ≤ t ≤ T, is a Brownian motion.

Wt is here a Brownian motion with drift (−Θt) at time t. Important use
of Girsanov theorem is the application to stochastic differential. Suppose X
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is stochastic process with increments dXt = µtdt + σtdWt where µt and σt

are adapted processes. We would like to change the drift process from µt

into rt and appropriate new measure. The differential can be rewritten as
dXt = rtdt + σt(dWt + (µt−rt

σt
)dt), where we denote Θt = µt−rt

σt
. We now use

the Girsanov theorem with Θt and corresponding measure P̃ with which
W̃t = Wt +

∫ t

0
Θsds is a Brownian motion under P̃ (assuming that appropri-

ate conditions from the theorem are fulfilled). The differential of X under

P̃ is then dXt = rtdt + σtdW̃t.

Similarly, we can use Girsanov theorem for the stock price process, con-
sidering the standard model

dSt = αtStdt + σtStdWt,

discount process Dt = e−
∫ t
0 rsds, where rt is an adapted process and we would

like to have the discounted price process to be a martingale. Using Girsanov
theorem (Shreve, [22] p. 214-217), we get

d(D(t)S(t)) = σtDtStdW̃t,

where

dW̃t =
αt − rt

σt

dt + dWt = Θtdt + dWt.

We call P̃ , the measure defined in Girsanov theorem, the risk-neutral mea-
sure because it is equivalent to the original measure P and it renders the
discounted stock price DtSt into a martingale. The value Θ(t) = αt−rt

σt
is

called as market price of risk. It determines how much the drift of St must
be scaled in units of volatility of St. For more comments we refer to James,
Webber [13], p.84-87.

Pricing under the Risk-Neutral Measure

Let the payoff of a derivative security at time T , VT , be an FT -measurable
random variable. Assuming the completeness of the market, we would like
to know what initial capital X0 and portfolio process ∆(t), 0 ≤ t ≤ T , an
agent will need in order to get XT = VT almost surely ( he wants to hedge
a short position in this derivative security). Since the discounted capital

process DtXt is a martingale under P̃ , we get

DtXt = Ẽ[DT XT |Ft] = Ẽ[DT VT |Ft].
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and
X0 = Ẽ[DT XT ]

in particular.
The value Xt of the portfolio is needed in order to hedge a short position

at time t with the final payoff VT . Consequently, we call Xt the price Vt of
the derivative security at time t and DtVt = Ẽ[DT VT |Ft]. Dividing this by
Dt, which is Ft-measurable, we arrived at the risk-neutral pricing formula

Vt = Ẽ

[
DT

Dt

VT |Ft

]
= Ẽ

[
e−

∫ T
t ruduVT |Ft

]
. (1.39)

1.3.3 Martingale Representation

The risk-neutral pricing formula was derived under the assumption that if an
agent begins with the correct initial capital, there is a portfolio process with
which the security can be hedged. Under this assumption, we determined
the value of the hedging portfolio at every time t, 0 ≤ t ≤ T , to be V (t)
given by 1.39. In this section, we will verify the assumption on which the
risk-neutral pricing formula is based in the model with one stock driven by
one Brownian motion.

Theorem 1.3.7 (Martingale representation, one dimension.) Let
Wt, 0 ≤ t ≤ T, be a Brownian motion on a probability space (Ω,F , P ), and
let Ft, 0 ≤ t ≤ T, be the filtration generated by this Brownian motion. Let
Mt, 0 ≤ t ≤ T, be a martingale with respect to this filtration. Then there is
an adapted process Γu, 0 ≤ u ≤ T, such that

Mt = M0 +

∫ t

0

ΓudWu, 0 ≤ t ≤ T. (1.40)

The theorem says that, when the filtration is generated by Brownian mo-
tion, every martingale with respect to this filtration consists from an initial
condition and an Itô integral with respect to the Brownian motion. Only
source of uncertainty is then the Brownian motion itself and it is the only
source of uncertainty to be removed by hedging. Itô integrals are continuous,
thus our assumption implies that martingales cannot have jumps. In case we
need martingales with jumps, we would need different source of uncertainty
than just a Brownian motion.

Another form of the martingale representation theorem is, that consid-
ering two processes Mt, Nt, 0 ≤ t ≤ T, as a martingales with respect to
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the same filtration, with non-zero volatilities, there exist an Ft−measurable
process φt, that P (

∫ T

0
φ2

t σ
2
t dt < ∞) = 1 and

Nt = N0 +

∫ t

0

φsdMs, 0 ≤ t ≤ T,

where σt is the volatility of Mt, φt is unique, equal to the ratio of volatilities
of Mt and Nt.

The theorem proves the existence of the hedge, but does not provide any
particular method of finding ∆t, what is not possible in general. Girsanov
and martingale representation theorem can be stated analogously in multiple
dimensions.
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Chapter 2

Interest Rate Models

The first chapter described concepts underlying interest rate modeling, in
this second chapter we will examine the models themselves, covering most
of the main categories of models used today.

2.1 Categories of Interest Rate Model

This section introduces some elementary interest rate models. Any appli-
cable interest model needs to have two main ingredients; it must provide a
statistical description of how the state variables in the model change through
time, and it should provide a procedure to price interest rate derivatives from
the statistical description. With these models there are also procedures to
extract prices from the model; ideally, the model will have explicit solu-
tion/formulae for the values of simple instruments such as bonds or bond
options. Nevertheless, numerical methods for finding prices of any instru-
ment other than the most simple are in most cases needed.

There are two main types of models; equilibrium models and no-arbitrage
models. In an equilibrium model the initial term structure is an output from
the model; in a no-arbitrage model it is an input to the model.

Equilibrium Models

Equilibrium models are built on assumptions about how the economy works.
We take in account the aim to achieve a balance between the supply of bonds
and other securities and the demand for these by investors. We are interested
in how the economy affects the term structure of interest rates. In a one-

25



factor model, presented later, this means constructing stochastic model for
the evolution of the risk-free rate. We invoke the fundamental theorem of
asset pricing to derive a theoretical set of bond prices. Under such a model
the theoretical prices evolve in an free-arbitrage way, but it may happen
that the initial set of prices is different from observed market prices, giving
rise to possible arbitrage opportunities. This will be the topic of the last
chapter.

No-Arbitrage Models

These models are considered for pricing of short-term derivatives. They use
the observed term structure at the current time as the starting point. Future
price evolves in a way which is consistent with this initial price structure and
which is arbitrage free. The main advantage of the no-arbitrage models is
that they are designed to be exactly consistent with today’s term structure.
We assume that the term structure depends on only one factor and indicate
how the results can be extended to several factors.

There are many other ways how to divide interest rate models into par-
ticular groups, considering different characteristics and qualities. Here we
will mention some of the most known categories, described more in detaail
e.g. in James, Webber [13]:

1. Affine yield models ( e.g. Vaš́ıček, Ho-Lee or Cox-Ingersoll-Ross)

2. Whole yield curve models ( e.g. Heath-Jarrow-Morton)

3. Market models (recover market pricing formulae by the direct mod-
elling of market quoted rates, instantaneous rates are not needed and
need not to be modelled )

4. Price kernel models ( a rigorous no-arbitrage framework, specifies the
market price of risk, e.g. Flesaker and Hughston)

5. Positive models and log-r models (guarantee the rates they generate are
always positive, not very tractable though. In a log-r model the short
rate is the exponential of a state variable; e.g. Black and Karasinski.)

6. Consol models (the Consol rate- time to maturity of a perpetual coupon
bond, is taken as a surrogate for the long rate which is included into
and interest rate model)
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Of course many other types of model exist, that do not fit precisely into
the categories mentioned above; random field models, models with jump
components or particular nonlinear models. However, these models are not
widely used in practice.

2.2 Simple Model

In the previous chapter we have defined the term structure of interest rate
R(t, T ) and forward rate curve f(t, T ), we have shown that both of them
are characterizing the situation at interest rate market and from one we can
calculate another. Before we approach more difficult models, we first deal
with simple model, where the forward rate process is assumed to follow

dtf(t, T ) = α(t, T )dt + σdWt (2.1)

where the subscript denotes differentiation with respect to t, σ is constant
volatility and drift α is bounded deterministic function of t and maturity T .
Integrating (2.1) we obtain

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds + σWt. (2.2)

From (2.2) is obvious that the forward interest rate is normally distributed
(this fact will be used later, in the Ho-Lee model parameters estimation, see
Chapter 3). Moreover, we can notice that the difference f(t, T ) − f(t, S) is
deterministic, i.e. when we know the rate curve f(t, t) = rt, we know how
the entire forward curve looks like, since the only source of uncertainty is
the Brownian motion Wt.

2.2.1 Simple Model under the Risk Neutral Measure

Now let us derive the explicit formula for the model drift α(t, T ), which
we use later in order to calculate the bond Bt and discounted bond P (t, T )
values in the risk-neutral world.

Drift

Since the short rate is rt = f(t, t), we can thanks to (2.2) write

rt = f(0, t) +

∫ t

0

α(s, t)ds + σWt. (2.3)
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Plugging (2.3) into the relationship for bond price Bt =
∫ t

0
rudu we obtain

Bt = exp
(∫ t

0

f(0, u)du +
∫ t

0

∫ u

0

α(s, u)dsdu + σ

∫ t

0

Wudu

)

= exp
(∫ t

0

f(0, u)du +
∫ t

0

∫ t

s

α(s, u)duds + σ

∫ t

0

Wudu

)
. (2.4)

Using P (t, T ) = e−
∫ T

t f(t,u)du, we easily get

P (t, T ) = exp−
(∫ T

t

f(0, u)du +
∫ T

t

∫ t

0

α(s, u)dsdu + σ(T − t)Wt

)

= exp−
(∫ T

t

f(0, u)du +
∫ t

0

∫ T

t

α(s, u)duds + σ(T − t)Wt

)
(2.5)

Consider now the process Zt as a value of discount bond discounted by
bond price. We will try to find a risk-neutral measure under which Zt is a
martingale. This will imply that all relative derivative values with respect
to bond price are martingales.

Zt = B−1
t P (t, T )

= exp−
(∫ T

0

f(0, u)du +

∫ t

0

∫ T

s

α(s, u)duds + σ

∫ t

0

Wudu + σ(T − t)Wt

)

(2.6)

Increment of a martingale must have a zero drift and we will need to calculate
the increment dZt. In order to obtain the differential equation for Zt we
denote eAt = Zt;

dAt = d

(
−

∫ T

0

f(0, u)du−
∫ t

0

∫ T

s

α(s, u)duds− σ

∫ t

0

Wudu− σ(T − t)Wt

)

= d (−σ(T − t)) Wt − σ(T − t)dWt − σd

(∫ t

0

Wudu

)

−d

(∫ T

0

f(0, u)du

)
− d

(∫ t

0

∫ T

s

α(s, u)duds

)

= σWtdt− σ(T − t)dWt − σWtdt−
(∫ T

t

α(t, u)du

)
dt

= −σ(T − t)dWt −
(∫ T

t

α(t, u)du

)
dt.

Using the Itô-Deoblin formula we obtain

dZt = d
(
eAt

)
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= eAT dAT +
1
2
eAtσ2(T − t)2dt

= ZtdAt +
1
2
Ztσ

2(T − t)2dt

= Zt

(
dAt +

1
2
σ2(T − t)2dt

)

= Zt

([
1
2
σ2(T − t)2 −

∫ T

t

α(t, u)du

]
dt− σ(T − t)dWt

)
. (2.7)

Changing the measure to the risk-neutral one, using the Girsanov theo-
rem with W̃t = Wt +

∫ t

0
Θsds as Brownian motion, we can continue calcu-

lating dZt by using relationship dWt = dW̃t −Θtdt;

dZt = Zt

(
−σ(T − t)dW̃t + σ(T − t)Θtdt +

(
1
2
σ2(T − t)2 −

∫ T

t

α(t, u)du

)
dt

)

In order to have from Zt a martingale under risk-neutral measure we set the
part of time-increment dt equal to zero;

Θt =
1

σ(T − t)

(∫ T

t

α(t, u)du− 1
2
σ2(T − t)2

)
(2.8)

or

σ(T − t)Θt =
1
2
σ2(T − t)2 +

∫ T

t

α(t, u)du (2.9)

respectively.
Differentiating the last relationship with respect to time T we will get

explicit formula for the drift α(t, T ) and the process Θt;

σΘt = −σ2(T − t) + α(t, T ). (2.10)

Bond and Discounted Bond Values

We plug the drift relationship α(t, T ) = σ2(T − t) + σΘt into (2.1) and
rewrite the forward-rate curve as

dtf(t, T ) =
(
σ2(T − t) + σΘt

)
dt + σdWt

= σ2(T − t)dt + σdW̃t (2.11)

The forward interest rate under the risk-neutral measure will be, integrating
(2.11),

f(t, T ) = f(0, T ) + σ2

(
T − 1

2
t

)
t + σW̃t, (2.12)
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and the short rate rt = f(t, t),

rt = f(0, t) +
1
2
σ2t2 + σW̃t. (2.13)

Now we can finally calculate both the value of bond Bt and value of dis-
counted bond P (t, T ) at time t in the risk-neutral world,

Bt = exp
(∫ t

0

rudu

)
= exp

(∫ t

0

f(0, t) +
1
6
σ2t2 + σ

∫ t

0

W̃udu

)
, (2.14)

P (t, T ) = exp

(
−

∫ T

t

f(t, u)du

)

= exp−
(∫ T

t

f(0, u)du +
∫ T

t

σ2

(
u− 1

2
t

)
tdu + σ(T − t)W̃t

)

= exp−
(∫ T

t

f(0, u)du +
σ2tT (T − t)

2
+ σ(T − t)W̃t

)
. (2.15)

Risk Neutral Measure in Interest Rate Models

The most common way of introducing the risk-adjusted measure is to define
it straight away into the model and not bother with the objective probabil-
ities at all. We have shown this for the above simple model and we will do
so once again for Vasicek model. Same as in previous model, Vasicek also
specifies the form of Ẽ and then calculates prices consistent with it. Given
the process under objective measure

drt = a(b− rt)dt + σdWt,

for constant a, b, σ, we can rewrite it, similarly as in prevoius model using
Girsanov theorem, as a risk-adjusted process

drt = (a(b− rt)− λσ)dt + σdW̃t,

for some constant λ (which is equal to Θt from Girsanov theorem). We

denote b̃ = b− λσ
a

, so that the risk-adjusted process is

drt = a(̃b− rt)dt + σdW̃t,

where W̃t is a Brownian motion under P̃ with which W̃t = Wt + λt. (The
value λ, market price of risk, determines the return in excess of the risk-free
rate that the market implies as a compensation for taking the risk.)

Analogous change of measure can be done also in other models; in the
next pages we will use notation without tildes, introducing the risk-adjusted
measure straight forward.
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2.3 Heath-Jarrow-Morton Framework (HJM)

There are several ways to represent the yield curve. The one chosen in the
HJM model is in terms of the forward rates that can be locked in at one time
for borrowing at a later time. In the following two subchapters we introduce
the one-factor and multifactor Heath-Jarrow-Morton frameworks.

One-factor HJM

We have already presented the simple model with the forward rate curve
given as dtf(t, T ) = α(t, T )dt + σdWt, with constant volatility σ. In the
Heath-Jarrow-Morton framework we will generalize the above presented
stochastic differential equation to

dtf(t, T ) = α(t, T )dt + σ(t, T )dWt, (2.16)

where both α(t, T ) and σ(t, T ) are FW
t −adapted processes, i.e. the forward

rate curve is modeled by an Itô process without any concrete description of
volatility σ(t, T ). The drift component α(t, T ) is from the pricing viewpoint
not the most important one, since after change of measure it elapses into
the standard form. For constant volatility, σ(t, T ) = σ, we get the above
discussed basic model. Integrating the (2.16) and with given initial value
f(0, T ) we obtain for 0 ≤ t ≤ T,

f(t, T ) = f(0, T ) +
∫ t

0

α(u, T )du +
∫ t

0

σ(u, T )dWu, (2.17)

The difference f(t, T )−f(t, S) is not deterministic anymore, since it contains
the term

∫ t

0
(σ(u, T )−σ(u, S))dWu, which is non-zero here, unlike in the basic

model. We denote

Σ(t, T ) = −
∫ T

t

σ(t, u)du, (2.18)

and similarly as in the basic model, it can be shown (see [15], p.203-206),
that under no-arbitrage assumptions we get

α(t, T ) = σ(t, T )(Θt − Σ(t, T )), (2.19)

with FW
t −adapted market price of risk Θt. In In the risk-neutral world, i.e.

if Θt = 0 the drift is then

α(t, T ) = −σ(t, T )Σ(t, T ), (2.20)
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and the forward rate is given by

dtf(t, T ) = −σ(t, T )Σ(t, T ) + σ(t, T )dW̃t, (2.21)

dW̃t = dWt + Θtdt.

Integrating (2.21) we can calculate relationships for the forward rate curve
f(t, T ), short-term interest rate rt, and for the bond value P (t, T ), where all
this values are functions of initial forward-rate curve, volatility σ(t, T ) and
Σ(t, T ).

f(t, T ) = f(0, T )−
∫ t

0

σ(u, T )Σ(u, T )du +
∫ t

0

σ(u, T )dW̃u

rt = f(t, t) = f(0, t)−
∫ t

0

σ(u, t)Σ(u, t)du +
∫ t

0

σ(u, t)dW̃u (2.22)

P (t, T ) = exp

(
−

∫ T

t

f(t, u)du

)

= exp−
(∫ T

t

f(0, u)du−
∫ t

0

∫ T

t

σ(s, u)Σduds +
∫ t

0

∫ T

t

σ(s, u)dW̃s

)

Multifactor HJM

In the multifactor HJM model is the stochastic evolution of the forward-rate
curve modeled with n−dimensional Brownian motion W = (W 1

t , . . . , W n
t ),

dtf(t, T ) = α(t, T )dt +
n∑

i=1

σi(t, T )dW i
t , (2.23)

where α(t, T ) and all σi(t, T ) are FW
t −adapted, i.e. they depend on to history

of Brownian motion up to time t. Very similarly as in one-factor HJM model
it can be derived how the forward rate curve, short-term interest rate and
the bond value depend on volatilities σi(t, T ) and Σi(t, T ) = − ∫ T

t
σi(t, u)du

in the risk-neutral world.

Short Rate Models and HJM

In the following text we will show that the short-rate model is nothing
but one-factor HJM model, because we can find particular transformation
leading from one to another.

Assume that the short-rate process rt in the risk-neutral world follows
drt = µtdt + ωtdWt, with FW

t −adapted processes µt and ωt. We know that
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every one-factor HJM model can be written as a model for short-rate,

rt = f(0, t)−
∫ t

0

σ(u, t)Σ(u, t)du +
∫ t

0

σ(u, t)dW̃u,

and differential equation for the forward rate is

dtf(t, T ) = −σ(t, T )Σ(t, T ) + σ(t, T )dW̃t.

On the other hand, every short-rate model can be written as one-factor HJM
model as well, which is not that obvious. We need to find such a volatility
σ(t, T ), that the short-rate process from HJM model is equal to the original
one, rt. This is possible for every process rt, but it is easier in special case,
where rt is Markov.

Let us assume that rt is Markov process with both deterministic drift
µ(rt, t) and volatility ω(rt, t), i.e.

drr = µrt,tdt + ωrt,tdWt

The bond price P (t, T ) is then just a function of rtt and T , P (t, T ) =

exp
(
− ∫ T

t
f(t, u)du

)
. Let us denote, as in [15], p.213-214,

g(rt, t, T ) := − ln P (t, T ) =

∫ T

t

f(t, u)du, (2.24)

where g(x, t, T ) is a deterministic function:

g(x, t, T ) = − ln Ẽ

[
exp

(
−

∫ T

t

rsds

)
|rt = x

]
, (2.25)

which does nor depend on history up to time t, but just value rt. Applying
the Itô-Doeblin formula on the relationship f(t, T ) = ∂g

∂T
(rt, t, T ) we get

dtf(t, T ) =
∂2g

∂x∂T
[µ(rt, t)dt + ω2(rt, t)dWt] +

∂2g

∂t∂T
dt +

1

2

∂g3

∂x2∂T
ω2(rt, t)dt.

Volatility of this process has to match to σ(t, T ),

σ(t, T ) = ω(rt, t)
∂2g

∂x∂T
(rt, t, T ),

from what we get

Σ(t, T ) = −
∫ T

t

σ(t, u)du = −ω(rt, t)
∂g

∂x
(rt, t, T ).
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Moreover, the initial forward rate curve f(0, T ) follows from f(t, T ) =
∂g
∂T

(rt, t, T ) as

f(0, T ) =
∂g

∂T
(r0, 0, T ). (2.26)

2.4 Equilibrium Models

Equilibrium models assume particular properties of economic variables and
derive a process for the short-term risk-free rate r (sometimes referred as
instantaneous short rate), and explore what the process implies for the prices
of the particular derivatives. As already derived in (1.39), the value of an
interest-rate derivative with payoff VT at time T is

Vt = Ẽ[e−r(T−t)VT |Ft], (2.27)

where Ẽ denotes expected value in a risk-neutral world and r is the ”average”
value of r between time t and T , or more precisely, r(T − t) =

∫ T

t
rudu. For

simplicity we will not write conditioning on Ft anymore, if not necessarily
needed.

We define P (t, T ) as the price at time t of discount bond that pays off 1
unit (USD, EUR, ...) at time T . From (2.27) with VT = 1, we get

P (t, T ) = Ẽ[e−r(T−t)]. (2.28)

If R(t, T ) is the continuously compounded interest rate at time t, P (t, T ) =
e−R(t,T )(T−t), or R(t, T ) = − 1

T−t
ln P (t, T ) analogously, from (2.28) we obtain

R(t, T ) = − 1

T − t
ln Ẽ[e−r(T−t)]. (2.29)

This equation shows that once we have fully defined the process for r, we
have also fully defined the initial term structure and how it behaves at future
times. In other words, we can obtain the term structure of interest rates at
any given time from the value r at that time and from the risk-neutral
process for r.

2.4.1 One-Factor Models

The process for the short-term risk-free rate r involves only one source of
uncertainty. It is usually described by an Itô process of the form

dr = m(r)dt + s(r)dWt, (2.30)
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where Wt, 0 ≤ t ≤ T is the standard Brownian motion under the real world
measure P , processes m (instantaneous drift) and s (instantaneous standard
deviation) are assumed to be adapted functions of r, independent of time
itself (in sense that m(r) = m(rt), s(r) = s(rt)). It implies that all rates
move in the same direction over any short time interval, but not all move
by the same amount.

Several one-factor equilibrium models:

Model m(r) s(r)
Merton µ σ

Rendleman and Bartter (Dothan) µr σr
Vasicek a(b− r) σ

Cox-Ingersoll-Ross a(b− r) σ
√

r

2.4.2 Vasicek Model

Vasicek assumed that the instantaneous spot rate evolves as an Ornstein-
Uhlenbeck process with constant coefficients,

drt = a(b− rt)dt + σdWt, (2.31)

where a, b, σ are positive constants. In this model, b represents the risk-
neutral long-term mean risk-free rate; a represents the rate at which rr

reverts back to this long-term mean; and σ represents the local volatility of
short-term interests rate. The key feature is that the interest rates appear to
be pulled back to some long-run average level over time. This, so called mean
reversion structure, implies that for high r the model tends to have a negative
drift, for low r it tends to have a positive drift. (When rates are high, the
economy is slowing down and there are less borrowers, consequently, rates
decline.) More exactly, for rt = b, the drift term (the dt term) is zero;
for rt > b, the drift term is negative what pushes rt back downward b.
Analogously, for rt < b the drift term will be positive what pushes rt back
upward b. Considering this as expectation, if r0 6= b, then limt→∞ Ert = b;
and if r0 = b, then Ert = b for all t ≥ 0.

Now we will try to determine the short-term interest rate process, using
the Itô-Doeblin formula. We will denote

h(t, x) = e−atr0 + b(1− e−at) + σe−atx, X(t) =

∫ t

0

easdWs
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and we calculate all partial derivatives needed for applying Itô lemma on
h(t,Xt);

ht(t, x) = −ae−atr0 + abe−at − σae−atx = ab− ah(t, x),

hx(t, x) = σe−at, hxx(t, s) = 0,

and dX(t) = eatdWt. Since hxx(t, x) = 0, we will not need dXtdXt = e2at.
Hence

dh(t,Xt) = ht(t,Xt)dt + hx(t,Xt)dXt +
1

2
hxx(t,Xt)dXtdXt

= a (b− h(t,Xt)) dt + σdWt

This shows that here defined h(t,Xt) satisfies (2.31), that defines rt and
moreover, has the same initial condition, h(0, X0) = r0, what implies that
h(t,Xt) = rt for all t ≥ 0. Thus, the short-term interest rate in Vasicek
model is of the form

rt = e−atr0 + b(1− e−at) + σe−at

∫ t

0

easdWs, (2.32)

which we can rewrite as

rt = e−atr0 + b(1− e−at) + σe−atZ, (2.33)

where

Z :=

∫ t

0

easdWs ∼ N

(
0,

e2at − 1

2a

)
(2.34)

We have used here the normal-distribution property of an Itô integral with
deterministic integrand (theorem 1.3.3). From (2.34) it follows that

rt ∼ N

(
e−atr0 + b(1− e−at),

σ2

2a

(
1− e−2at

))
. (2.35)

In Vasicek model both bond value Bt and discount bond with price
P (t, T ) are lognormal distributed ([15]. p.220-221).

For large value of time t the distribution of rt converges to N (b, σ2/2α) .
In particular, there is positive probability that rt is negative; an undesirable
property of Vasicek interest rate model.
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Cairns shows in [4], p.249-253, that using the HJM Framework we can express the
price at time t of a zero-coupon bond that pays 1 unit at T as

P (t, T ) = eA(t,T )−B(t,T )rt , (2.36)

where (for a 6= 0)

B(t, T ) =
1− e−a(T−t)

a
,

A(t, T ) =
(B(t, T )− (T − t))(a2b− σ2/2)

a2
− σ2B(t, T )2

4a
.

For a = 0 we have B(t, T ) = (T−t) and A(t, T ) = exp[σ2(T−t)3/6]. Using the relationship
R(t, T ) = − 1

T−t ln P (t, T ), we obtain the Vasicek continuously compounded interest rate
at time t as

R(t, T ) =
1

T − t
[B(t, T )rt −A(t, T )] , (2.37)

which shows us that once the parameters a, b, σ have been chosen, the entire term structure
is determined as a function of rt. Equation (2.37) also shows, that R(t, T ) is linearly
dependent on rt, i.e. that the value rt exactly determines the level of the term structure
at time t. The general shape of the term structure at time t does depend on time t itself,
but is independent of rt.

Generalized Vasicek Model

The Vasicek model is sometimes generalized as

drt = (θt − αtrt)dt + σtdWt, (2.38)

where all θt, αt and σt are deterministic functions of time. The bond Bt

and discount bond with price P (t, T ) are still lognormal distributed (see
[15],p.221).

2.4.3 Cox-Ingersoll, and Ross Model (CIR)

As we noticed before, the short-term interest rate rt in Vasicek model can
become negative, which implies that all spot rates and forward rates for
finite maturity can become negative. An additional minus of the Vasicek
model is that many empirical evidences suggest that the volatility of rt is
not constant, but increasing function of rt. Cox, Ingersoll and Ross have
proposed an alternative one-factor model for the risk-free rate of interest
where rates are always nonnegative. The risk-neutral process in their model
is

drt = a(b− rt)dt + σ
√

rtdWt, (2.39)
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where a, b, σ are positive constants. In the Vasicek model rt could reach
negative values, in case of CIR model this is not possible. If rt reaches zero,
the term multiplying dWt vanishes and the positive drift term αdt pushes the
interest rate back into positive territory. Like the Vasicek model, CIR has
the same mean-reverting drift, but on the other hand, the stochastic term
has a standard deviation proportional to

√
rt, i.e. with increasing short-term

interest rate its standard deviation increases as well.
To find an explicit solution for rt or its distribution is not easy, and it

would take us too far afield. Instead we can derive the expected value and
variance of rt. For this, we will apply the Itô-Doeblin formula on the function
h(t, x) = eatx;

d(eatrt) = dh(t, rt)

= ht(t, rt)dt + hx(t, rt)drt +
1

2
hxx(t, rt)drtdrt

= aeatrtdt + eat(ab− art)dt + eatσ
√

rtdWt

= abeatdt + σeat√rtdWt. (2.40)

Integrating (2.40) we get

eatrt = r0 + ab

∫ t

0

eaudu + σ

∫ t

0

eau√rudWu

= r0 + b(eat − 1) + σ

∫ t

0

eau√rudWu,

from what we can calculate the expectation,

eatErt = r0 + b(eat − 1)

or
Ert = e−atr0 + b(1− e−at), (2.41)

where we used the fact, that the expectation of an Itô integral is zero. We can
notice, that this is the same expectation as in Vasicek model. For calculating
the variance of rt, we set Xt = eatrt, of which expectation and dXt we have
already calculated. According to the Itô-Doeblin formula,

d(X2
t ) = 2XtdXt + dXtdXt

= 2abeatXtdt + 2σeat/2X
3/2
t dWt + σ2eatXtdt. (2.42)
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Integrating (2.42), taking its expectation and using the zero expectation of
an Itô integral we obtain

EX2
t = X2

0 + (2ab + σ2)
∫ t

0

eauEXudu

= r2
0 +

2ab + σ2

a
(r0 − b) (eat − 1) +

2ab + σ2

2a
b(e2at − 1).

The variance of rt is then

Var(rt) = Er2
t − (Ert)2 = e−2atEX2

t − (Ert)2

=
σ2

a
r0(e−at − e−2at) +

bσ2

2a
(1− 2e−at + e−2at). (2.43)

For large values of t,

lim
t→∞

Var(rt) =
bσ2

2a
.

Similarly as in Vasicek model, the bond prices have in the CIR model the general
form

P (t, T ) = eA(t,T )−B(t,T )rt ,

(derived e.g. in Cairns [4], p.253-263), but with different functions A(t, T ) and B(t, T ),
where

B(t, T ) =
2(eγ(T−t) − 1)

(γ + a)(eγ(T−t) − 1) + 2γ
,

A(t, T ) = (2ab/σ2) ln
[

2γe(a+γ)(T−t)/2

(a + γ)(eγ(T−t) − 1) + 2γ

]
,

with γ =
√

a2 + 2σ2. The long rate R(t, T ) is again, similarly as in Vasicek model, linearly
dependent on rt, with analogous consequences.

Generalized CIR Model

The CIR model is sometimes considered with time-dependent coefficients,
where the short rate dynamics are given by

drt = (θt − atrt)dt + σt

√
rtdWt, (2.44)

where at, θt and σt are deterministic functions of time. Such extension how-
ever is not analytically tractable. So far, no analytical expression for θt in
terms of the observed yield curve is available in the literature. and there is
no guarantee that a numerical approximation of θt would keep the rate rt

positive. Consequently, this extension has been less successful than original
no-extended form.
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2.5 No-Arbitrage Models

The main disadvantage of the equilibrium models presented in previous sec-
tion is that they do not automatically fit today’s term structure. In this sec-
tion we present some general theoretical background on no-arbitrage models,
which are designed to be exact-reflecting today’s term structure. One way of
introducing such models is specifying Markov model for the short rate where
the drift is a function of time. As we will see in next few pages, many mod-
els developed in this way are natural extensions of the equilibrium models
described earlier.

2.5.1 Ho and Lee Model

Ho and Lee considered the following model for the risk-free rate

drt = θtdt + σdWt, (2.45)

where the instantaneous standard deviation of the short rate, σ, is constant
and θt is time dependent function chosen to ensure that the model fits the
initial term structure. The simple model from the section 2.1 was its HJM
formulation and it is a more general version of the random-walk model under
which is θt constant. Using the HJM framework, with parameters σ(s, t) = σ
and Σ(s, t) = −(t− s)σ, it can be shown (e.g. in Cairns[4], p.96-97) that

dtf(t, T ) = σ2(T − t)dt + σdWt, (2.46)

where

f(0, T ) = r0 − 1

2
σ2T 2 +

∫ T

0

θudu. (2.47)

Deriving (2.47), we can find θT ,

∂

∂T
f(0, T ) = θT − σ2T, (2.48)

and solution for rt,

rt = r0 +

∫ t

0

θsds + σWt

= r0 + f(0, t)− r0 +
1

2
σ2t2 + σWt

= f(0, t) +
1

2
σ2t2 + σWt. (2.49)
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The value of rt can be also easily found using the HJM formula (2.22).
The Ho and Lee model has the advantage that it is a Markov tractable

model, it is easy to apply and it provides an exact fit to the current term
structure of interest rates. The main disadvantage is the little flexibility in
choosing the volatility structure, since all spot and forward rates have the
same standard deviation σ.

The model can be generalized quite easily to have σt deterministic but
time dependent. The equation (2.45) will then look like

drt = θtdt + σtdWt, (2.50)

and the formulation of HJM model will be

dtf(t, T ) = σ2
t (T − t)dt + σtdWt,

with the initial forward rate curve given as

f(0, T ) = r0 +
∫ T

0

θsds−
∫ T

0

σ2
s(T − s)ds.

2.5.2 Hull and White Model

Hull and White proposed a simple generalization of the Vasicek model, with
time-dependent reversion level, in which

drt = α(µt − rt)dt + σdWt, (2.51)

where µt is a deterministic function of time. It is often expressed in the form

drt = (θt − αrt)dt + σdWt,

but the first notation (2.51) has straightforward interpretation of a local
mean-reversion level. The θt ≡ αµt function can be calculated as in Hull
[11], p.433-434, from

µt =
1

α

∂

∂t
f(0, t) + f(0, t) +

σ2

2α2
(1− e−2αt). (2.52)

The drift of the process is then

αµt − αrt =
∂

∂t
f(0, t) + αf(0, t) +

σ2

2α
(1− e−2αt)− αrt

≈ ∂

∂t
f(0, t) + α(f(0, t)− rt), (2.53)
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since the term σ2

2α
(1− e−2αt) is usually fairly small.

The HJM parameters are σ(s, t) = σe−α(t−s) and Σ(s, t) = −σ
α
(1 −

e−α(t−s)) from what, using (2.22), we can express rt as

rt = f(0, t) +
σ2

2α2
(1− e−αt)2 + σ

∫ t

0

e−α(t−s)dWs. (2.54)

The model can be generalized to have αt and σt deterministic but time
dependent.

2.5.3 Black and Karasinski Model

To ensure to have positive values of short-term interest rates rt, we will use
exponential function. We will denote here rt = exp Xt and assume that the
process Xt is generalized Ornstein-Uhlenbeck process from Vasicek model,

dXt = αt(µt −Xt)dt + σtdWt, (2.55)

where αt, µt and σt are deterministic functions of time. Applying Itô-Doeblin
formula to (2.55) we get the stochastic differential equation for rt,

drt = αtrt

[
µt +

σ2
t

2αt

− log rt

]
dt + σtrrdWt. (2.56)

Functions at and σt are often considered to be constant. A drawback of the
Black-Karanski model is that the expected accumulation of cash over any
positive time interval (t, T ), i.e. Ẽ[B(T )/B(t)|Ft], is infinite (Sandmann and
Sondermann [20]) and it cannot be used to price Eurodollar- and many other
futures contracts.
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Chapter 3

Convexity Adjustment

Money market instruments are often constructed from relatively few instru-
ments. This means that it may indeed be possible to find a curve with as
many parameters as there are prices that can exactly reconstruct market
prices. Instruments include Libor, futures, FRAs and swaps. The idea is to
build up the yield curve form shorter maturities to longer maturities. There
are many methods developed so far, the main ideas and concrete examples
are presented e.g. in [13], [4] or in [3].

Constructing the yield curves, we should calculate discount factors. In
many practical applications, an approximation is used when we treat futures
as if they were FRAs. In reality futures rates are greater than correspond-
ing FRA rates and an adjustment is required to convert futures prices to
equivalent FRAs. The arbitrage is to short the future; if rates rise, then
margin payments on the future contract are received immediately whereas
the loss on the FRA is not crystallized until later. If rates fall, the converse
will happen. The amount by which the futures rate needs to be decreased
is called the convexity adjustment (CA). It is determined by the market’s
expectations of future changes in rates, so that different interest rate model
imply different convexity adjustment.

Assumptions

For simplicity, all bonds considered here have a nominal of one unit of cur-
rency. Moreover in all text below, we assume that:

• There are no market frictions (zero-coupon bonds of all maturities can
be traded).
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• There is no credit risk.

• Markets are competitive and market participants act as price takers.

• The market is arbitrage-free and complete.

3.1 Forward and Future Contracts

3.1.1 Forwards

Assume Dt to be a discount process, given at time t by Dt = e−
∫ t
0 rudu. The

price of a zero-coupon bond paying 1 at time T is then given (as in 1.39) by

BT
t =

1

Dt

Ẽ[DT |Ft], 0 ≤ t ≤ T. (3.1)

A forward contract is an agreement to pay a predetermined delivery price
K at a predetermined delivery date T for the asset whose price at time t is
St. The forward price ForS(t, T ) of this asset at time t is the value of K
that makes the forward contract have no-arbitrage price zero at time t.

Theorem 3.1.1 The forward price ForS(t, T ) defined above, denoted for
simplicity as ForT

t , satisfies

ForT
t =

St

BT
t

, 0 ≤ t ≤ T. (3.2)

Proof. Suppose that the forward price K is higher than St/B
T
t . We could

borrow then at time t money in the amount of St (by selling short St/B
T
t >

St) and buy one asset. At time T we obtain the payoff K − ST , sell the one
asset for ST and pay off our debt, St/B

T
t . Consequently, the remaining cash

is K − ST + St − St/B
T
t = K − St/B

T
t > 0, an arbitrage. We could do the

opposite analogy for K lower than St/B
T
t . The forward price can be derived

also from the standard pricing formula with risk-neutral measure,

Vt =
1

Dt

Ẽ[DT (ST −K)|Ft] = St −KBT
t = 0.

¤
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3.1.2 Futures

Consider now partition of our interval (0, T ) given by 0 = t0 ≤ t1 ≤ . . . ≤
tn = T and suppose that the discount process is predictable, i.e. that Dtk+1

is Ftk−measurable for every k = 0, . . . , n − 1. We could consider the daily
rolling of the forward contract described above; and at day (k + 1) generate
the cashflow

Vk,k+1 =
1

Dtk+1

Ẽ

[
DT ST − Stk

BT
tk

|Ftk+1

]
= Stk+1

− Stk ·
BT

tk+1

BT
tk

,

what is in reality not very practical. This serves as motivation for introduc-
ing the future contracts (with future prices FutTt ), which we want to satisfy
three natural requirements:

• FutTt is Ft−measurable

• FutTT = ST

• We can change position in our futures at no cost, or more general, the
value of holding the future contract is zero.

The last condition implies that receiving a payment FutTtk+1
− FutTtk as a

holder of a long futures between tk and tk+1, it must be satisfied

0 =
1

Dtk

EQ[Dtk+1
(FutTtk+1

− FutTtk)|Ftk ] =
Dtk+1

Dtk

(EQ[FutTtk+1
|Ftk ]− FutTtk)

or
FutTtk = EQ[FutTtk+1

|Ftk ]

from which follows that FutTtk is a discrete-time martingale. By adding the
second condition (FutTT = ST ) we get

FutTt = EQ[ST |Ftk ], k = 0, 1, . . . , n.

Using predictability of Dtj for every j ≥ k + 1 and iterated conditioning we
can see that the value of the payment at time tk to be received at time tj is
zero. This leads to the following definition of futures price.
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Definition 3.1.1 The futures price is given by formula

FutTt = EQ[ST |Ft]

A long position in the futures contract on the interval [s, t] is an agreement
to receive the changes in the future price, i.e. FutTt − FutTs , as a cash flow.

Theorem 3.1.2 The futures price is a martingale under Q, satisfying FutTT =
ST , and the value of any strategy (futures position) is zero.

Proof. The agent is assumed to hold ∆t futures contracts. His profit is then
given by

dXt = ∆tdFutTt + rtXtdt

or by

Xt = X0 +

∫ t

0

∆udFutTu +

∫ t

0

ruXudu

respectively. The discounted value of portfolio is then

dDtXt = Dt∆tdFutTt ,

so if we set X0 = 0, at any time t ≥ s is the agent’s profit given by

DtXt =

∫ t

s

Du∆udFutTu .

Using the properties of stochastic integrals with respect to a general mar-
tingale process we obtain

EQ[DtXt|Fs] = EQ

[∫ t

0

Du∆udFutTu −
∫ s

0

Du∆udFutTu |Fs

]
=

= EQ

[∫ t

0

Du∆udFutTu |Fs

]
−

∫ s

0

Du∆udFutTu =

= 0, (3.3)

since the term
∫ t

0
Du∆udFutTu is martingale. From above we can see that

FutTt = EQ [ST |Ft] is the correct futures price. ¤
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3.1.3 Forward-Futures Spread

First, we will assume non-stochastic interest rate. Then BT
t = exp

(
− ∫ T

t
rudu

)

so the forward price is

ForT
t =

St

BT
t

= exp

(∫ T

t

rudu.

)
St

The futures price in a nonrandom interest rate case is

FutTt = EQ [ST |Ft]

= exp

(∫ T

0

rudu

)
.EQ

[
exp

(
−

∫ T

0

rudu

)
ST |Ft

]

= exp

(∫ T

0

rudu

)
.DtSt

= exp

(∫ T

t

rudu

)
.St, (3.4)

so the forward and futures prices agree.

In general, stochastic interest rate case, the forward and futures prices
differ from each other. For simplicity, we begin at time zero, the spread is
then given by

ForT
0 − FutT0 =

S0

Bt
0

− EQST

=
1

BT
0

[
S0 −BT

0 .EQST

]

=
1

BT
0

[
EQ[DT ST ]− EQDT .EQST

]

=
1

BT
0

.cov(DT , ST ) (3.5)

This spread is often called convexity adjustment .
With stochastic interest rates, we demonstrated that the difference be-

tween forward and futures price is given by the ”local” covariance between
the rate of return on the futures contract and the rate of return on a risk-
free pure discount bond. We can interpret this result by considering the case
when the price of asset S is strongly positive correlated with interest rates
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(as a consequence is then ForT
0 > FutT0 ). With increasing S, an investor in

long futures position makes an immediate gain because of the daily settle-
ment procedure. This gain will tend to be invested in higher rate of interest,
since increases in the asset price S occur at the same time as increases in
interest rate. The converse happens when S decreases; the investor will make
an immediate loss, which tend to be financed at a lower interest rate. To be
not affected in this way by interest rate movements requires to hold a for-
ward contract rather than a futures contract. It follows that a long futures
contract will be more attractive in this sense than a long forward contract.
Consequently, for S strongly positively correlated with interest rates, futures
prices tend to be higher than forward prices. Analogous arguments show that
futures prices tend to be lower than forward prices when S is strongly neg-
atively correlated with interest rates.

The no-arbitrage model is most often used in empirically testing the pric-
ing of share price index futures contracts. In fact, it is actually a forward, not
a futures, pricing model. To apply the model to share price index futures,
we assume the equality of forward and futures prices, which is not obviously
appropriate assumption. (In particular, if deeper analysis will provide a sup-
port for non-zero local covariance (implying a non-zero forward-futures price
differential), the use of the no-arbitrage model may be questioned.) This pa-
per will try to analyze the in/appropriateness of assuming the equality of
forward and futures prices.

3.1.4 Empirical Research Done So Far

We will mention some empirical research that has been carried out studying
the forward-futures spread.

Spread in Metal- and Treasury Bill Markets

French [10] studied copper and silver during 1968-1980. Significant difference
between the futures price and forward price (at 5% confidence level) was
confirmed for silver; the results for copper were less clear. Park and Chen
[16] studied gold, silver, platinum, copper and plywood between 1977 and
1981; the spread was here confirmed with the futures price above the forward
price. Rendeleman [19] studied the Treasury bill market between 1976 and
1978, they also found statistically significant spread here.
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Spread in Currency Market

Cornell and Reinganum [8] studied the difference between futures and for-
ward prices on the British pound, German mark, Canadian dollar, Japanese
yen, and Swiss franc between 1974 and 1979. Here, in contract to ”metal-
studies”, they found very few statistically significant spread. These results
were also confirmed by Park and Chen [16], who also looked at the British
pound, German mark, Japanese yen and Swiss franc between 1977 and 1981.

Hull [11] summarized their results observing that the theoretical spread
for contracts that last only a few months are in most circumstances suffi-
ciently small to be ignored. In reality, there are many factors (such as trans-
action costs, taxes and the treatment of margins), not included in theoretical
models, that may cause the spread. As the life of a futures contract increases,
the spread is becoming more significant and it is then not appropriate to
assume that forward and futures price are perfect substitutes for each other.
This point is particularly relevant to Eurodollar futures contracts sice they
have maturities up to 10 years. Eurodollar futures are regularly used to cal-
culate zero-coupon LIBOR rates. For contracts lasting one or two years it is
reasonable to assume the zero-spread, or equivalently, that the rate calcu-
lated from the futures price is a forward interest rate. We will look at this
important point later in the paper.

3.2 General Framework

The difference between futures and forward rates is determined by the mar-
ket’s expectations of future changes in rates, so that different interest rate
model will lead to different convexity adjustment. Theoretical forward rates
are computed from bond prices whereas futures are expected future spot
rates computed under risk-neutral measure Q.
In the following parts we will have closer look at a convexity adjustment
(CA) in particular models.

3.3 CA in Hull-White Model

In this part we will use the results of Hull [11], derived for Hull-White model
defined here in (2.51). The notation in Hull is slightly different than notation
presented in our paper, with a ≡ α and µt ≡ θt, the model itself has then
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form

drt = a

[
θt

a
− rt

]
dt + σdWt. (3.6)

The θt function can be calculated as

θt =
∂

∂t
f(0, t) + af(0, t) +

σ2

2a

(
1− e−2at

)
(3.7)

and the bond prices are given by

P (t, T ) = A(t, T )e−B(t,T )rt (3.8)

where

B(t, T ) =
1− e−a(T−t)

a
(3.9)

and

ln A(t, T ) = ln
P (0, T )

P (0, t)
−B(t, T )

∂ ln P (0, t)

∂t
− 1

4a3
σ2(e−aT − e−at)2(e2at − 1)

= −(T − t)f(0, t, T ) + B(t, T )f(0, t)− 1

4a
σ2B(t, T )2(1− e2at)

(3.10)

From (2.54) we can derive the exact formula for the risk-neutral expec-
tation of rt ;

EQ[rt] = f(0, t) +
σ2

2a2

(
1− e−at

)2
(3.11)

or, using (3.9),

EQ[rt] = f(0, t) +
σ2B(0, t)2

2
. (3.12)

From the relationship R(t, T ) = − 1
T−t

ln P (t, T ) and (3.8),

R(t1, t2) = − 1

t2 − t1
ln[A(t1, t2)] +

1

t2 − t1
B(t1, t2)rt (3.13)

which yields, using (3.12) and (3.10), to

EQ [R(t1, t2)] = − 1

t2 − t1
ln[A(t1, t2)] +

1

t2 − t1
B(t1, t2)

[
f(0, t1) +

σ2B(0, t1)
2

2

]

= f(0, t1, t2) +
B(t1, t2)

(t2 − t1)

[
B(t1, t2)(1− e−2at1) + 2aB(0, t1)

2
] σ2

4a
.

(3.14)
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In the risk-neutral world, the expected future price equals to the futures
price, which means that the EQ [R(t1, t2)] value is the futures rate between
t1 and t2. As a consequence, we can observe that the relationship (3.14)
shows how much the future rate should be reduces in order to obtain the
forward rate ;

B(t1, t2)

(t2 − t1)

[
B(t1, t2)(1− e−2at1) + 2aB(0, t1)

2
] σ2

4a
, (3.15)

which is the Hull-White convexity adjustment.

If we consider a = 0, or very close to zero respectively, it will become
simple Ho-Lee convexity adjustment σ2t1t2/2, which we will derive more in
detail in the following section. The Hull-White model is a version of Ho-Lee
model with mean reversion. Therefore, it describes better the volatility en-
vironment. Lognormal one-factor models’ main advantage is that they avoid
possibilities of negative interest rates, but unfortunately (unlike the Ho-Lee
model) they have no analytic tractability.

In the following example we will see can be quite significant for long-
maturity futures contracts.

Example 3.3.1 Consider the Hull-White model with estimated parameters σ = 0.015,
a = 0.05. Let us calculate the forward rate when 8-year Eurodollar futures prices 95.
In this case the futures rate per annum with quarterly compounding is 0.05 or 5%. Futures
rate with continuous compounding is therefore ln(0.25×0.05+1)

0.25 = 0.04969 or 4.969%.
We have t1 = 8, t2 = 8.25,

B(8, 8.25) = 1−e−0.05×0.25

0.05 = 0.2484,

B(0, 8) = 1−e−0.05×8

0.05 = 6, 5936
and the convexity adjustment:

0.2484
8.25− 8

[
0.2484

(
1− e−2×0.05×8

)
+ 2× 0.05× 6.59362

] 0.0152

4× 0.05
= 0.005013,

or 0.5013%. Since the futures rate with continuous compounding is 4.969%, we will cal-
culate the forward rate with continuous compounding simply as 4.696-0.5013=4.1946%.

Figure Fig. (3.1) plots the Hull-White convexity adjustment for futures
contracts on the 3-month Libor for different maturity dates, with σ = 0.02
and a = 0.2. James and Webber in [13] have shown that the convexity ad-
justment is approximately five basis point at two years while it is staggering
40 basis points at 10 years. However, at longer maturities the yield curve
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Figure 3.1: The convexity adjustment calculated by James and Webber in
[13]

may be constructed only as a spread over Treasury yields. In reality, the
yield curve may only use Eurodollar futures of short maturities. Therefore,
the usefulness of convexity adjustment is moot- small at short maturities
and not used at long maturities. However, it can be used in calculations to
obtain the forward rates or discussing the arbitrage possibilities, as we will
do later.

3.4 CA in Ho-Lee Model

In the simple Ho-Lee model the risk-neutral process for the short rate rr is
given by

drt = θtdt + σdWt,

the bond price P (t, T ) has the form P (t, T ) = A(t, T )e−r(T−t), for some
deterministic function A(t, T ), further described e.g. in Hull [11]. From the
Itô’s lemma the process followed by the bond price in a risk-neutral world is

dP (t, T ) = rtP (t, T )dt− (T − t)σP (t, T )dWt.
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Recalling now f(t, t1, t2) = 1
t2−t1

ln P (t,t1)
P (t,t2)

, we can obtain, using again the

Itô’s lemma, the process for f(t, t1, t2),

df(t, t1, t2) =
σ2(t2 − t)2 − σ2(t1 − t)2

2(t2 − t1)
dt + σdWt. (3.16)

The forward rate equals the spot rate at time t1. Therefore, the expected
value of the forward rate at t1 is the expected value of the spot rate at
t1. Since we consider our model in the traditional risk-neutral world, the
expected value of the spot rate is the same as the futures rate. As a con-
sequence, the futures rate is greater than the forward rate by the expected
change in the forward rate between times 0 and t1. This change can be com-
puted easily from (3.16), it is determined by integrating the coefficient of dt
between 0 and t1. It is:

∫ t1

0

σ2(t2 − t)2 − σ2(t1 − t)2

2(t2 − t1)
dt =

σ2

2

∫ t1

0

(t2 − 2t + t1) dt

=
σ2t1t2

2
. (3.17)

As Hull in [11] explains, this convexity adjustment is composed actually
from two components:

• The difference between a futures contract that is settled daily and a
similar contract that is settled entirely at time t1.

• The difference between the contract that is settled at time t1 and a
similar contract that is settled at time t2.

The Ho-Lee model is the simplest interest rate model. This has the advan-
tage that it is analytically tractable, on the other hand, its main disadvantage
is that it implies that all rates are equally variable at all times. Other, more
complicated models introduced in this work, have various descriptive advan-
tages, such as precious description and avoiding the possibility of negative
interest rates, but, unfortunately, they have no analytic tractability. For this
reason, we will further focus on the simple Ho-Lee model and we will use it
in our calculations.

Example 3.4.1 Again, it is possible to show that the difference between forward and
futures rates is not small in case of long-maturity contracts. If we go back to our example
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from previous section, we will not need the estimate of a anymore, and calculate the
convexity adjustment as

1
2
× 0.0152 × 8× 8.25 = 0.007425

or 0.7425%. The forward rate with continuous compounding will be 4.696-0.7425=3.9535%.

.

3.5 CA in Other Models

There are several papers studying the convexity adjustment in detail for
more complicated models or trying to describe the calculations in model-
independent way.
Hunt and Kennedy in [12] used the approach derived here in (3.5), that the
convexity adjustment is given by ForT

0 − FutT0 = 1
BT

0
.cov(DT , ST ), where

the covariance is taken under the risk neutral measure. No model-specific
calculations were given.
Vaillant in [25] defined the convexity adjustment as a quotient between the
forward rate and futures rate. He derived it is given by:

CAt =
ForT

t

FutTt
= exp

(
−r∞

∫ T

t

(T − s)σr(s)σFut(s)σ(s)dt

)
,

where σ2
r and σ2

Fut are the variances of the spot zero rate and futures rate, σ
is from the model relationship d〈W1(t),W2(t)〉 = σ(t)dt, where W1 and W2

are two Brownian motions used in model for spot zero rate and futures rate
modeling. Parameter r∞ is some asymptotic value that zero rate reaches.
(For deeper model description please see [25].) From the assumptions it is
not clear whether the model is arbitrage free, furthermore, no provision for
the critical input σ(t) is given.
Piterbarg and Renedo in [17] have applied an expansion technique to derive a
model-independent relationship for calculating convexity adjustment. They
divided the variance terms into parameters that are easily observed and
change often (volatility parameters), and those that require calibration to
be estimated but do not fluctuate often (correlations parameters). However,
even this deep analysis still leaves us the problem of solving the derived
equations to obtain forward rates from market-observed futures.
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3.6 Our Data Set

In our further analysis we will focus on our data set from year 2007 (provided
by Bloomberg L.P.), measured between time 08/01/07 and 09/03/07. We dis-
pose of intraday 3-month futures prices quotes on EUR currency (Euribor)
as well as on USD currency (Eurodollar- U.S. dollars deposited in commer-
cial banks outside the United States), in 7 different maturities: 19/03/07,
18/06/07, 17/09/07, 17/12/07, 17/03/08, 16/06/08 and 15/09/08. The fu-
ture prices quotes are stated in terms of a maturity value of 100, so a typical
price would be e.g 94.98. Rates are measured during the trading hours every
minute and in case that an observation in particular minute is missing, we
use the rate from previous minute. (The problem is that bid and ask quotes
are not both available throughout the entire sample period in the forward
market. The problem is not that data for specific moments are missing, but
rather that the market did not report the quotes during entire time.)

As a fair price for the forward quote we set the observed bid price plus
one-half the bid-ask spread. (Although this calculation is very rough, for
more precise fair price calculations we would need complete traded-volume
data set for entire time period and all maturities, which is not available.)
This is often referred as a MID Price in financial markets. (The main dis-
advantage of quoting the MID price is that the bid or offer price may be
unrealistic and distort the MID price.)

Let us denote the quotes as FutQuoteei
and FutQuoteuj

for i, j = 1, ..., 7,
where e, u are the currency indexes (EUR and USD), and i, j the maturity
indexes.

For simplicity we will now skip the currency index e, u and the maturity
index i, j, since the calculations will be the same for all of them. (These
coefficients will be used below only if specially needed and they will be
noted in the same form as above.) Analogously as in the example 3.3.1 we
will compute the futures discrete rates FutD as

FutD = 1− FutQuote

100

and the futures rates with continuous compounding FutC as

FutC =
ln (0.25FutD + 1)

0.25
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Figure 3.2: Euribor quotes
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Figure 3.3: Eurodollar quotes

for both currencies in all seven maturities. In figures Fig.(3.2) and Fig.(3.3)
we plot the Euribor and Eurodollar quotes, as reposted from the market.
(We plot here the MID price and, because of the extremely large data set,
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only the hour averages. In calculations, of course, we use the full intraday
data set and not the hour averages anymore.)

3.6.1 Ho-Lee Model Parameters Estimation

For computing the forward rates we need the convexity adjustment applied
on the simplest Ho-Lee model. We denote FutCd

m as a futures rate in the
time moment determined by the day d and its minute m. In our case we
have observations for D = 45 whole days (d = 1, ..., D) and within each day
observations for all its M minutes (m = 1, ...,M). We remove the nontrading
days and minutes from our consideration so the resulting time series can be
considered as regular (with minute time intervals).

We want to estimate the standard deviation of daily changes of the fu-
tures rate and possibly recompute it to annual basis. A model behind our
formulas is that the minute sequence of the futures rates is assumed here to
form a random walk. (I.e. we assume the changes to have zero expected value,
are uncorrelated and homoscedastic. These assumptions are partly based on
the results in section 2.2, where we noticed that the forward interest rate in
Ho-Lee model is normally distributed.)

Specially FutCd
m − FutCd−1

m , d = 2, ..., D, m = 1, ..., M is a collection of
identically distributed random variables with zero mean and finite variance
σ2

day. Although these variables are correlated (and so do not form a random
sample), the expression

σ̂2
day =

∑D
d=2

∑M
m=1

(
FutCd

m − FutCd−1
m

)2

(D − 1) ·M (3.18)

(sample variance) is an unbiased estimator of σ2
day. The estimate of a stan-

dard deviation σday =
√

σ2
day will be obviously σ̂day =

√
σ̂2

day.

Since the annual change of FutC is a sum of individual daily changes
through the year, its variance is simply

σ2
year = Dyear · σ2

day, (3.19)

where Dyear is the number of (trading) days in one year (in our case is
Dyear = 260). Our annual estimators then will obviously be

σ̂2
year = Dyear · σ̂2

day and σ̂year =
√

σ̂2
year. (3.20)
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Estimated standard deviation of daily changes of the futures rates

Maturity EUR USD
19/03/07 0.97 E-02 1.47 E-02

18/06/07 1.03 E-02 1.31 E-02

17/09/07 1.15 E-02 1.60 E-02

17/12/07 0.85 E-02 1.53 E-02

17/03/08 1.17 E-02 1.61 E-02

16/06/08 1.21 E-02 1.59 E-02

15/09/08 1.13 E-02 1.51 E-02

As we can notice from the table, the estimated parameters for the Euribor
are slightly below the Eurodollar rates. This can also lead us to conclusion
that the forward interest rate market is more stable -in the daily changes
point of view- for the EUR currency. (Analyzing this in more detail is not
the aim of our paper though.)

The standard deviation of the short rate changes is in financial markets also often
briefly estimated as a current value of ATR (Average True Value). ATR is defined as a
moving exponential average of the TR (True Ranges), where TR indicator is the maximum
of yesterday’s range to today’s range. It is the greatest of the following:

• current high less the current low

• the absolute value of the current high less the previous close

• the absolute value of the current low less the previous close.

It tells us the maximum distance that this market traveled over a 24-hour period. However,
for our purpose we will use the more precise estimate computed from the sample variance.

3.6.2 CA for Our Data Set

After the estimating the futures rates’ standard deviation of daily changes
- the only parameter in the Ho-Lee model, we can compute straightforward
the exact amount of Ho-Lee Convexity adjustment, as in (3.17):

CA =
1

2
σ2t1t2.
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As σ we use now the just estimated daily changes standard deviation, the
first time variable t1 is remaining time to appropriate maturity of the con-
tract and the second time variable t2 will be here simply set as t1 + 0.25,
since we work with 3-month futures prices.

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0 200 400 600 800 1000 1200

CA usd1

CA usd2

CA usd3

CA usd4

CA usd5

CA usd6

CA usd7

Figure 3.4: Convexity Adjustment for the Eurodollar Futures
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Figure 3.5: Convexity Adjustment for the Euribor Futures
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In figures Fig.(3.4) and Fig.(3.5) we plot the calculated convexity ad-
justment for all 7 maturities. As already expected from the model, the exact
amount of the adjustment increases with longer maturity. For a fixed matu-
rity, convexity adjustment in Ho-Lee model is decreasing. (Follows directly
from the formula (3.17), since closer we are to the moment of expiration,
time to maturity t1 approaches zero.)

Smallest convexity adjustment varies around 0.00001 (0.001%) for the
Euribor and 0.00004 (0.004%) for the Eurodollar. Largest adjustment occurs
in case of the last maturity and it is 0.000175 (0.0175%) for the Euribor and
0.0004 (0.004%) for the Eurodollar. Even in this largest case, it is not of a
big impact for the forward rate consideration. (More significant difference
would appear for longer maturities, but usefulness of these calculations for
long maturities is questionable.)

However, most of calculations on the real market simply assumes that
the forward and futures prices are equal, or use the same parameters in
calculations for all maturities. For example, Hull in [11] recommends to use
σ = 0.015, which is very close to our deviation estimates for USD futures
prices model.

3.6.3 Forward rates

Eurodollar futures reflect market expectations of forward 3-month rates.
An implied forward rate indicates approximately where short-term rates
may be expected to be sometime in the future. The forward rates for both
currencies and all seven maturities can be now easily obtained from futures
rates reduced by the convexity adjustment calculated above:

Forei
= FutCei

− CAei
, i = 1, ..., 7, (3.21)

Foruj
= FutCuj

− CAuj
, j = 1, ..., 7. (3.22)

We will use these in the following chapter in order to arrive to possible
arbitrage. (However, in reality it is often assumed that both forward and
futures are the same and appropriate convexity adjustment is not included
in the calculations.)
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Chapter 4

Arbitrage Analysis

In previous chapter we have used the currency futures prices to calculate
the appropriate currency forward prices. All calculations were done for seven
different maturities, for both USD and EUR currencies, during entire trad-
ing time between 08/01/07 and 09/03/07. In this chapter, we will look at
the eventual arbitrage existence between interest rates (the Euribor and
Eurodollar futures quotes) and currency exchange rates (corresponding cur-
rency forwards).

4.1 Currency Forwards

Considering now the most common definition of arbitrage -as a process with
positive probability of gain and zero probability of lose- we will try construct
the arbitrage possibilities using our Euribor and Eurodollar rates and ap-
propriate currency forward rates.

A currency forward contract is defined on the market as forward contract
in the forex market that locks in the price at which an entity can buy or sell a
currency on a future date. Also often referred as “outright forward currency
transaction”, “forward outright” or “FX forward”. In our further calcula-
tions we will denote it as ForFX, which will mean the Euro FX futures.
This rate assesses the relative value of the U.S. dollar compared to the euro,
provides a way to manage risks associated with currency rate fluctuations
in the FX markets and to take advantage of profit opportunities stemming
from changes in those rates.
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Since we are analyzing the futures interest rates measured between the
days 08/01/07 and 09/03/07 with maturities from 19/03/07 until 15/09/08,
for the arbitrage construction we will use the corresponding forward ex-
changes rates: the spot rate, 1 week, 1-, 2-, 3-, 4-, 5-, 6-, 9-, 12-, 15-, 18- month
and 2- year rate. These are often labeled on market as EUR Curncy (spot
rate), EUR1W Curncy (one week rate), ..., EUR2Y Curncy or EUR24M
Curncy (two year rate).

Currency forward rate for 21 months is not quoted and we will have to
roughly approximate it using the 15M, 18M, 21M and 24M Curncy rates.
Let x be the forward change between 18 and 21, and y the change between
21 and 24. Then

x + y = EUR24MCurncy − EUR18MCurncy.

Furthermore, we assume that the trend of the currency forward will keep
the same trend across the time and so that

x/y = (EUR18MCurncy − EUR15MCurncy) /x.

Putting both equations together we get the quadratic equation (here with
short notation), of which solution gives us approximated EUR21M Curncy
rate:

x2 + x (18M − 15M)− (18M − 15M) (24M − 18M) = 0

Now, after obtaining the EUR21M Curncy, we can do the full linear
interpolation between these currency forwards (according to the relevant
maturity) in order to obtain the approximate forward rate for every trading
day considered in our analysis. Nevertheless, the currency forward compu-
tation presented here might be in some cases very vague and not explaining
the real market behaviour. In general though, it should be sufficient for our
further calculations, as it takes into consideration the main estimative cur-
rency forward trend.

4.2 Construction of the Arbitrage

The main idea of our arbitrage consideration is comparing the two possi-
bilities: having one EUR unit we can first exchange it to the USD using
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forward exchanges rates and then deposit it with the forward dollar interest
rate. Or, as a second case, we can start with deposition using the forward
euro interest rate and then exchange it to USD currency using the matching
forward exchanges rates. At the end of both of these we should arrive to the
same amount of USD.

Since we already have done all calculations needed to obtain the appro-
priate forward dollar/euro interest rates and the forward exchanges rates are
derived directly from the data, the 2-step-arbitrage considered above can be
now easily computed.

Let us assume now we start with one EUR unit at time 0. We move to
time t within the first step (exchange or deposit as first) and arrive to the sec-
ond step (deposition after exchange or exchange after deposition) at time T .
We denote here the corresponding exchange rates as ForFX(t), ForFX(t).
In case of no arbitrage appearance we have:

ForFX(t) · eForu(t).(T−t) = eFore(t).(T−t) · ForFX(T ), (4.1)

or

Fore(t) = Foru(t) +
1

0.25
ln

(
ForFX(t)

ForFX(T )

)
, (4.2)

since we work with 3-month futures prices and so T − t = 0.25.

4.3 Futures Quotes vs. Implied Quotes

Using the results just derived in previous section, we will present the arbi-
trage as a difference between the real market Euribor quotes and Euribor
quotes calculated using the exchange rates from above. More precisely, after
computing the implied forward rate for EUR as in (4.2) we can next obtain
the implied EUR futures interest rate (by addition of a convexity adjust-
ment, already calculated in previous chapter). Finally, we will compare the
implied Euribor quotes with the real ones, observed from the market.

In Fig. (4.1) we plot the difference between calculated EUR currency
futures quotes and those observed from the market. It is plotted here in
the common price fluctuation units - basis points (bps), which means we
multiplied the computed difference by 100.
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Figure 4.1: The difference between the real market Euribor quotes and im-
plied Euribor quotes (in bps)

Price Fluctuation Measurements

One basis points in the Eurodollar contracts reflects the dollar value of a 1/100 of one
percent change in a $1 million, 90-day deposit. It is determined by: $1, 000, 000×0.0001×
90
360 = $25. The smaller fluctuation measurements on a Eurodollar futures contract is of-
ten 0.005 or half of a basis point and even smaller units. (The minimum price fluctuation
for a contract is called minimum tick, which is the smallest increment a given futures
market can move). However, many different definitions for these fluctuations are recently
provided and we will use only the basis points plots in our paper.

Statistical Analysis

The exact results are presented in the table below. The most striking fact is
the small sample mean of the arbitrage. For two maturities the sample mean
is negative, which indicate that the market quotes are below the implied,
calculated ones. In the rest of the cases, sample mean is positive, but still
very close to zero. However, on the second contract we can notice, how
misleading this might be. Sample mean of arbitrage is in this case negative
(and larger than for other contract), but the median value is positive.
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Futures Quotes vs. Implied Quotes

Maturity Sample Mean Mean Standard Error Median
19/03/07 0.00654 0.00368 -0.01669

18/06/07 -0.10107 0.01053 0.05179

17/09/07 -0.03733 0.00528 -0.06815

17/12/07 0.03386 0.00545 0.03529

17/03/08 0.03067 0.00690 0.00897

16/06/08 0.06887 0.00719 0.05593

15/09/08 0.01909 0.00279 0.02755

Sample Variance Max Min
0.01466 0.32335 -0.25452

0.11989 0.64867 -0.94135

0.03013 0.36850 -0.49857

0.03216 0.52581 -1.04880

0.05145 1.30983 -0.82011

0.05589 0.94792 -0.80177

0.00839 0.16775 -0.19173

Trying to test the data for the zero-hypothesis makes no moderate statis-
tical sense, since most of considerable hypotheses would be strongly rejected
according to the high number of observation. Therefore, simple look at the
pictures plotting the arbitrage will make more sense this time.

Figure (4.2) plots the calculated arbitrage possibilities for the contract in
different maturities. (Denoted here on this figure as arb1, ..., arb7.) In some
moments, the amount of the arbitrage exceeds 1 basis point in both negative
and positive sense. Most of the time they oscillate in a narrow range around
the zero value.

However, for some certain moments of time, the trend for some maturities
seems to be strongly biased in negative or positive direction. This may be
caused by imperfect estimation of the appropriate currency forwards in our
previous calculations.

Furthermore, not all rates which we used here, were recorded at a same
time instant. We had to achieve the appropriate data by assuming the rates
not to change dramatically at the specific moment. This might have also
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Figure 4.2: The difference between the real market Euribor quotes and im-
plied Euribor quotes (in bps)
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caused some bias though. (Since all the rates are not recorded at the same
time instants, some random variation between them can be observed. This
random error, though, will not bias the results.)

Moreover, the question whether this kind of arbitrage is tradable in re-
ality remains as major. First reason is that we have used the MID prices
for our calculations. This might occur as a problem in case that the bid-
ask spread is too large. (If e.g. the ask quote is too high, the arbitrageur
would find it impossible to make a profit, even if here appears existence of
an arbitrage in our analysis.)

Secondly, and maybe even more important, is the transaction costs ap-
pearance. For the futures rates the costs are relatively small, but in case of
the currency forwards they are sometimes significantly higher. Specially, in
cases of large bid-ask spread, the transaction costs are increasing and make
the arbitrage opportunity not tradable anymore. (There are analytical stud-
ies and papers about the transaction costs- and making the profit taking
them into consideration- done so far, but this was not the aim of our work.)

4.4 Overview

In this chapter we had a closer look to the possible arbitrage existence be-
tween interest rates and currency exchange rates. More concretely, we have
analyzed the Euribor and Eurodollar futures quotes and corresponding cur-
rency forwards.

We first had to compute the convexity adjustment- difference between
the futures and forward rates. For all considered seven maturities it has
appeared in a very small amount, anyway, we used it in order to calculate
the corresponding futures interest rate. We have compared the computed
(implied) Euribor futures quotes with the data reported from the market.

The difference has shown up in all cases fairly small, oscillating around
zero. In couple of moments we have observed stronger deviation from zero
or even biased trend as well. However, this does not indicate the significant
arbitrage appearance. The two main reasons for the resulting bias are usage
of MID prices and transactions costs for the currency forwards and futures
interest rates.

All the calculations were done using the software programs Excel 2003
and Matlab 7.1.
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