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Chapter 1

Introduction

Financial mathematics is today going through a time of intensive develop-
ment, especially in the stochastic analysis area. The methods of the general
theory of random processes have turned out to be the most adequate for a
suitable description of the evolution of basic and derivative securities. In this
work we would like to present the methods and results of the contemporary
theory of financial computations and its representation of basic techniques
in stochastic analysis: martingales, Ito’s formula, Girsanov’s theorem and
others. We will cover the main interest rate modeling techniques, most used
models and the basic theory behind the formulas. We will then focus mainly
on the derivative securities (forwards and futures contracts) and try to ex-
amine how much different they are from each other. Afterwards we will have
a closer look on the arbitrage existence between interest rates and currency
exchange rates.

In the first chapter the fundamental ideas and concepts of interest rate
modeling are examined. We will discuss and define basic ideas of interest
rates markets. Later we introduce interest rates, basic interest rate instru-
ments and general modeling features. Some simple interest rate models are
presented and compared. We will introduce the key ideas of martingale mea-
sure, numeraire, changes of measure and some basic modeling tools.

The second chapter brings in concrete interest rate models, presents the
main model categories and frameworks. We focus specially on the Heath-
Jarrow-Morton framework and the Vasicek and Cox, Ingersoll (CIR), Ross
models. To illustrate some of the many issues in modeling, we give a detailed



comparison of the characteristics of the Vasicek and CIR models. We will
also describe very important no-arbitrage models such as Ho-Lee and Hull-
White, which are designed to reflect perfectly the today’s term structure.

In the third chapter we introduce two of the most common derivative
securities- forwards and futures contracts. We will look at the amount how
different they are- the convexity adjustment, and investigate its value for se-
lected models. We briefly mention the empirical research in other papers. At
the end of the chapter we provide our study for real Euribor and Eurodollar
rates from 2007, together with appropriate parameter estimates.

The last, fourth chapter, looks at the eventual arbitrage existence be-
tween the Euribor and Eurodollar futures quotes and appropriate currency
forwards. We will use the basic Ho-Lee model to calculate the theoretical
quotes in case of no-arbitrage and compare them with the real ones. We will
discuss the results and possibilities of bringing the computed arbitrage into
reality.

1.1 Introduction to Interest Rates

In this section we will look at some basic concepts of interest rate. We begin
with an introduction of interest rate behaviour and then briefly discuss the
application of interest rate models, interest rate markets and modelling.
An interest rate can represent, from one point of view, a price of substitution;
given the choice between getting z units (dollars) now or 1 unit in let’s
say one year’s time for sure, what would z have to be for the agent to
be indifferent between the alternatives? Our x is the present value of one
dollar received in one year’s time. The today’s cost of receiving one dollar
at time ¢ is the discount factor, denoted here by J;. At time to maturity ¢
the continuously compounded spot interest rate r; satisfies

t
e i _ 5,

The discount function is the set of discount factors for all future maturities.
For positive interest rates the discount factor is less than 1.



Yield Curve

The term structure of interest rates, the yield curve, is the set of interest
rates for different investment maturities, or periods. A yield curve typically
slopes upwards, with longer terms being higher, although there are examples
of inverted term structure where long rates are smaller than short one.

Interest Rate Market

Interest rate market is an institution where the price of money (interest
rate) is set. It takes into account two main factors; length of the term and
instantaneous fluctuation of the interest rate market. Bonds, bond options,
interest rate swaps, exotic contracts and some others are the most common
derivatives of interest rate market.

Well established organizations for selling and buying all kinds of deriva-
tives or commodities are exchanges. Many exchanges use a clearing house,
which facilitates the settlement of contracts and can reduce a counterparty’s
exposure to credit risk. All derivative exchange contracts are marked to mar-
ket (their value is benchmarked to current market prices). For example, a
futures contract is an agreement to make a future purchase at a price agreed
today. The contract is closed out at the end of each trading day and it is
replaced by a new contract at the day’s future settlement price. The owner’s
margin account is then credited/debited by the difference in the prices of
two contracts. Instead of taking physical delivery of the underlying at the
settlement day, the exchange settles by paying cash to the margin account,
equal to the difference between the agreed price and the actual price on the
delivery date.

The market is efficient if prices on traded assets already reflect all known
information and therefore are unbiased in the sense that they reflect the col-
lective beliefs of all investors about future prospects. This is also called as
efficient market hypothesis. It states that it is not possible to consistently
outperform the market by using any information already known on the mar-
ket. Every interest model used in real market assumes that the market is
efficient. (There are more precise definitions of efficiency, but the definitions
here catches the intuition behind the concept so far.) When not considering
an efficient market, an interest model will fail to explain prices.



Historical and Current Data

In deeper analysis we usually deal with ”historical” data set, what is a set of
rates/ prices covering some considered past period (for instance a set of in-
terest rates of different maturities for the last few years). On the other hand,
what means ”current” , depends on trader’s situation. In a fast moving mar-
ket, rates five minutes old might be no longer ”current”. However, for some
daily valuation purposes, the closing rates on the day may be considered as
"current” for couple of hours.

Applications

Interest rate models are needed to provide a quantitative framework for
describing interest rate movements and valuing interest rate products. We
would like to discover the dynamics of interest rates and the way that interest
rates and derivative prices relate together by fitting a model to available
interest rate data. Most of the models developed so far cannot be used to
precisely predict daily ups and downs, but we can already create models
describing distributional properties of interest rate movements. Interest rate
models do not attempt to give accurate forecast, but describe statistical
properties like distribution width and shape, or the likelihood of reaching
certain levels. Then, under certain conditions, by knowing the distributional
properties of interest rate movements, we can find the values of interest rate
derivatives as expected discounted values. It is very difficult to compare the
performance of different models, as well as to determine which model is the
best one in any particular circumstances. Reasons are that most of available
data are sparse and of poor quality and that through time there is a huge
variability in market conditions.

Features of a Good Model

When testing and using interest rate models, the priority is pricing and
hedging, where the model is fitted to available current market data. The
process of calibration adjusts the model’s parameters until the model prices
match those seen in the market. In the market, models are often being
improved and tested for their goodness of fit to current prices. However,
even if it is difficult to determine which model is the best one, it is still
possible to say what features a good model should have in general.



Precise valuation of market instruments: model should provide accurate
prices for liquid market instruments.

Fase of calibration: In a fast moving market the speed of calibration is
critical. The market instruments to which the model is calibrated should be
liquid and easily observed.

Robustness: Some models are not recommended for some interest rate
regimes. A good model should perform well in all markets.

Extensibility to new instruments: Possibility to value and hedge new in-
struments gives the institution a huge advantage in the market. Some exotic
instruments cannot be valued by too simple models.

One of the main purpose, where interest rate models are needed, is ob-
taining prices and hedges. The traders are focused upon accurate current
valuation of different financial instruments, less concerned about historical
prices. Risk managers use interest rate models to simulate market behaviour,
what may enable them to put limits on the range of future values that a
deal may have. Another main purpose of interest rate models is explaining
interest rate movements in terms of an underlying model. It is of critical
importance when interest rate control is a key part of economic policy.

Modeling interest rates is a very complex problem; we will need tech-
niques for describing interest rate movements, obtaining prices from model
and estimating parameters. Interest rate behaviour does not have any defini-
tive model, it is still not totally understood, but on the other hand, for
practical uses, like valuating and hedging, there are already well-founded
techniques developed.

1.2 Introduction to Interest Rate Modeling

In this section we will look in more detail at money market instruments,
describing how quoted market rates convert into cashflows. We introduce
the notation of stochastic process and the concept of probability space with
filtration. We will present basic interest rate models and compare them using
an appropriate set of criteria.

Bonds

A bond is a securitized form of loan. The buyer of a bond lends the issuer
(national and regional governments, banks, corporations and companies) an
initial price P in return for a predetermined sequence of payments. These



payments can be fixed in nominal terms (a fixed-interest bonds) or they can
be linked to some index (an index-linked bond), e.g. the consumer prices
index. They are often named differently, dependent on particular country;
in USA- treasury bills or treasury notes, in GB- gilts, etc. Bonds that have
identical characteristics but are sold by different issuer may not have the
same price; for example the bond issued by company might be traded at
lower price than the government bond because the market makers will take
into account the possibility of default on the coupon payments.

1.2.1 Yield Curves

We will start here with idealized definitions on continuously compounded
spot and forward rate and we will define corresponding instruments on the
market, as Libor and forward rate agreements. As a yield it is usually re-
ferred the average interest rate offered by a bond, r;(T'), which denotes the
continuously compounded interest rate for a zero-coupon bond (bond with
coupon rate zero and nominal value 1) sold at ¢ with maturity 7'

Discount Factors, Spot and Forward Rates

The concept of present or discounted value is used in pricing most of financial
instruments. Let us denote P(t,7T) the value at time ¢t of EUR 1 received
for sure at time 7', what means that P(t,7) is the pure discount bond
(without coupons) value with maturity at time T and maturing value 1.
Then, {P(¢t,T)[t < T} is the discount curve at time ¢. Suppose now a bond
or bond portfolio with riskless cashflows C; at times tq,...,t,. The present
value P of the cashflow stream {C;},—1 . , or the value of the portfolio of
cashflows is then simple given by a sum of discounted cashflows

i=1

Continuolsly-compounded spot interest rate: The term structure
of interest rates is the set of yields to maturity R(t,T)<,

R(t,T)=———WPtT), t<T (1.1)

T—t
where {P(t,T)}+<r is a given set of pure discount bond prices. We often use
expression time to maturity, T =T — t. From above, it follows that

DT Pt T) = 1, (1.2)

9



which means that the continuously compounded spot interest rate is a con-
stant rate that is consistent with the zero-coupon-bond prices. From the
last equation we can express the bond price in terms of the continuously
compounded rate r

P(t,T) = e RO, (1.3)

The rate of instantaneous lending or borrowing is the short rate R(t,t) =
r(t), which we will use in order to calculate the value of money market
account- a sum of 1 unit (USD) invested in the short rate at time zero and
continuously rolled over. Its value, denoted by B; at time t, is then

t
B; = exp (/ rsds) )
0

Even if not exactly the same, as a surrogate for the short rate is very often
a short Libor rate (e.g. three-month rate) or overnight rate used. Forward
rate is rate that is possible to lock into today for borrowing or lending in
the future. More concretely, continuously compounding forward rate
f(t,T1,Ty) at time ¢t which applies between times T} and Ty (t < T7 < Ty,
where we borrow at time 77 and repay at time 73) is defined as

Ft, Ty, Ty) = T i T In igg (1.4)
Ty, 1) = T i T [R(t, T5)(Ts — t) — R(t, T7) (T} —t)]. (1.5)

The forward rate is arising within the terms of forward contract, under which
we agree at time ¢ that we will invest e.g. 1 USD at time T} in return for
e(Te=T)fTLT2) ot time Th.
The property from the definition of the forward rate must be fulfilled,
otherwise an arbitrage would be possible: For example if we suppose
1 P(t,TY)

t, 11, 1T5) > 1
ST ) > g gy

we can consider that a portfolio of one forward contract (with value 0 at

time t), +1 units of the T}-bond and —ig%; units of the 75-bond. If we will

hold this portfolio (with total cost 0 at time ¢) to maturity of the respective

contracts, it will produce a pure cashflow of zero at time 77 and cashflow of

el T (T T2) % units at time Th, what is (as assumed) larger than

10



0. That means, we have started with zero-valued portfolio and we have sure
positive profit at time T5. Analogously, by constructing a reverse portfolio we
will deny the possibility of f(t,T7,Ts) < T;Tl In ggi%g in non-arbitrage case.
Summarized, if we assume a non-arbitrage case, the forward rate f(t,77,75)
must satisfy the equation 1.4 or 1.5 respectively.

The instantaneous forward rate at time ¢ of maturity 7' is, for ¢t < T',

F(t,T) = f(t,T,T) = lim f(t,T,T») (1.6)

To—T

and it can be read off the discount curve (yield curve)

FLT) = Jm f(TT) = (0 P(1,T)) = —%( 7)
= A7)+ (0 - pPHED

from what we get

P(t.T) = exp {— /t e u)du} | (1.8)

Arbitrage consideration indicate that f(¢,7") must me positive for all
T >t,so P(t,T) must be a decreasing function of 7'

It is important to realize that:

e We assume here that all rates are riskless, so that there is no default
risk.

e Forward rates defined above correspond to FRA’s, described below.

e Spot rates are in fact forward rates for immediate delivery, R(t,7T) =

ft,t,7)=Nimp ., f(t,11,T), and r, = f(t,t) = f(t,t,1).

e Rolling over at instantaneous forward rates is equivalent to investing
at an appropriate spot rate,

SRETNT—t) _ eftT f(t.s)ds

11



Future rates are in no way the same as forward rates; to convert fu-
ture prices into equivalent forward rates we will need an adjustment, called
convexity adjustment, which we cover in detail in the third chapter.

There are many different ways of quoting rates at the market. From the
most conventional algorithms to convert quoted rates into actual cashflows
we mention here Libor and then describe FRAs in more detail.

The Libor rate (London InterBank Offered Rate) may be introduced
as the most important interbank rate usually considered as a reference for
contracts. However, there are also analogous interbank rates fixing in other
markets (e.g. the EURIBOR rate, fixing in Brussels), and when referring to
Libor, we actually refer to any of these interbank rates.

As derived in James, Webber [13], p. 41-42, to avoid an arbitrage we
must have

Pitt+7)= 1+L(t7i)aL(t,7')’ (1.9)

for every maturity period 7!, where L(7,t) denotes the Libor rate at time ¢
with maturity 7 and ay (¢, 7) is the proportion of L paid out at time ¢ + 7
and is calculated as a fraction of a year.

FRAs- Forward Rate Agreements are market equivalents of the the-
oretical forward rates defined earlier. For the FRA rate agreed at time 0 for
time ¢ and tenor 7 we will write Fy(t,7) = F, where the rate F' is fixed.
More generally, the simply-compounded forward interest rate prevailing at
time ¢ for the expiry 7" and maturity 7, where 7 > T > t, we denote by
F,(T,7) and it is given by

Fi(T, ) = % (];%Z)) _ 1) | (1.10)

At time t the holder of FRA is receiving a quantity

_ L(t,m)ag(t,7) — Fag(t,7)
‘= 1+ L(t, m)ag(t,7) (1.11)

I'The maturity 7 of the Libor rate is considered as the period from the point of invest-
ment to the time that interest is paid. This maturity is in literature often called as the
tenor of an interest rate.

12



which is the present value (at time ¢) of the difference between borrowing at
Libor of tenor 7 at time ¢ and borrowing at the FRA fixed rate F (premium
at time 0 is 0). This quantity can be negative or positive, and one can sell or
buy FRAs, analogously to future borrowing or lending at the FRA rate. To
avoid an arbitrage the F rate must be related to market Libor rates, what
implies

14 L(0, t+7)ar (0, £ +7) = (14 L0, )ar (0, £)) (1 + Fo(t, T)ar (¢, 7)), (1.12)

what is more in detail discussed e.g. in James, Webber [13], p.41-42. Not
considering the transaction costs, if the equation 1.12 is not fulfilled, an ar-
bitrage is possible; we could lend at the more expensive rates, hedging by
borrowing at the cheaper rates.

Day count conventions: Unfortunately, different markets and coun-
tries have different conventions for calculating cashflows and timings from
quoted rates. The differences can amount to significant sums when large
principals are involved even though they are generally small in percentage
terms. Exceptional situations are handled differently in different markets,
and details and possible circumstances are sometimes confusing. The usual
way of calculating the size of interest cashflows to particular instrument is
cashflow = annual coupon X the year fraction the cashflow relates to. We
denote by d; and ds the start and end dates of some calendar period. Here
we will list just some conventions used in a number of major markets.

Euribor use count convention 30/360 what count the whole number of
calendar months in between d; and dy and then adds on the fractions of
each month at the start and end of the period. The method assumes that
a year has 12 months of 30 days each. The year fraction «(d;,ds) is here

broadly calculated as a(d;, dy) = - (mrdl +(n—3)+ w), where m;

12 " 30 30
are month end dates?, and m; < d; < mg < ... < Mp_g < dy < m,,. As a
start day Euribor and most others use same day +2. As the end day many
currencies use the 'modified following business day’ convention. The end day
is on the following business day, unless it is in a different month, in which
case it is on the previous business day.

2Markets vary in how they treat situations, for example, d» = m,, and m,, = 31 or
m, = 29. Further description can be found e.g. in Carmona, Tehranchi [5], p.17-18 , or
in Reuters [24] p.161-163.

13



1.2.2 Interest Rate Processes

In this part we provide basic ideas for modeling financial time series, stan-
dard specification of appropriate stochastic processes and probabilistic frame-
work that allows us to introduce important concepts such as conditional
expectations, and the way they change through time. Ideas introduced here
are used in the entire field of interest rate modeling. Most of them are ex-
tensively used in theoretical pricing framework, but this will not be goal of
this text.

All stock prices and interest rate processes are stochastic processes. They are
changing randomly over time, but the manner in which they change can be
modeled. We will divide the changes in their values into two parts; the first
will be a deterministic component, called the drift process, and the second
will be a noise’ term, which we call the volatility component of the process.
More precisely, the process can be under certain assumptions decomposed
into a finite or bounded component (drift) and a component of infinite vari-
ation (volatility). For more decomposition details we refer to Protter [18],
p.88-94.

The Deterministic Component

Consider now that the deterministic drift for a stock price might by geo-
metric growth. The stock price S; with no noise and the exponential growth
rate p would satisfy then the differential equation

dS;
R 1.13
dt /"L t? ( )
of which the solution is

Equation 1.13 can be rewritten as dS; = p.S;dt. We might expect the interest
rate processes to have a tendency to return to a mean value or some area of
values, what we can model as

dr
d—tt:a(,u—rt), a >0, (1.15)
or equivalently
dry = a(p — ry)dt. (1.16)
The solution to 1.15 is
re =+ (ro — p)e . (1.17)

14



From 1.15 we see, that if r, < p, then dry/dt is positive and r; tends to
increase. For r; > 1 the rate r; will tend to decrease. So far we can conclude
that the rate r; trends towards the level p, the mean reversion level, and «,
the mean reversion rate, is the speed the r; goes to p at.

The Volatility Component

For a financial time series without jumps, the volatility component is as-
sumed to be a function of a Wiener process, also called Brownian mo-
tion, denoted here by W = (W, ¢ > 0) that is defined as centered Gaussian
process with cov(W,, W) = s At for all s,t > 0. The existence is provided
by

Theorem 1.2.1 A process W is a Brownian motion iff Wy = 0, it has
independent increments, and L(W; — W) = N(0, |t — s|) holds fort,s € RT.
Brownian motion exists and each Brownian motion can be modified to a
continuous process.

The proof and further details are presented in Shreve [22] p.94-97, or [9],
p.238-240. Here we present some most important properties of Wiener pro-
cess:

e Wy =0and L(W;) = N(0,1).

the paths of W; are continuous, but differentiable almost nowhere

for arbitrary time instants 0 < s < t the distribution of increments
(W, — W) is N(0,0%(t — 5)),0 >0

the increments (W, — W) are independent, stationary and orthogonal

e Bownian motion hits every real value, infinitely often

To introduce noise to a stock price process S; or an interest rate r; we add
here dW;, which is scaled by ¢.S;, so that returns to S; have a constant
standard deviation o,

dSt = ,UStdt + O'Stth. (118)

This process is called geometric Brownian motion. The interest rate process
will then look like
dry = a(p — ry)dt + odWy, (1.19)

called also an Ornstein-Uhlenbeck process.

15



The Principal Definitions of Stochastic Calculus

Prices of financial instruments are dependent upon the probabilities of events
occurring in the market. Here we present some necessary concepts.

Definition 1.2.1 Continuous-time stochastic process X is a family
of random variables, {X;,t € R}, defined on probability space (Q, F, P) with
values in some measurable space.

Definition 1.2.2 Considering a measurable space (2, F) we call its filtra-
tion the set (Fy,t > 0), if any Fy C F is a o-algebra and Fy; C F; for s < t.
We will denote Foo := 0 (Ut>0 .7-}) Assume E to be a metric space and X
to be an E-valued process on the space (Q,F), then we denote

FXi=0(X(s),s <t),FX :=0(X(s),t >0). (1.20)

Definition 1.2.3 Having a filtration (F;) of the space (2, F) we call an
E-valued process X on (Q,F) an F;-adapted process is FX C F; for all
t > 0. In other words, X is an Fi-adapted process if and only if for allt > 0
the variable X; is an Fi-measurable E-valued random variable.

Definition 1.2.4 Let (2, F, P) be a probability space and let F;,0 <t <T
be a filtration of sub-o-algebras of F. For an adapted process My, 0 <t <T
we say that this process is

e a martingale, if E[M;|F] = M, for all0 < s <t <T,
e a submartingale, if E[M;|Fs] > M, for all0 < s <t <T,

e a supermartingale, if E[M;|F,| < M, for all0 <s<t<T.

Martingales are extremely important type of stochastic processes. For exam-
ple, a Wiener process W, is a martingale by definition. A stock of share price
processes dS; = puSydt + 0.5;dW; is a martingale just for p = 0, otherwise it
has a drift and its expected value will move farther from its value today as
time goes on.
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1.3 Theoretical Background

This section will provide summary of basic modeling tools, main results of
no-arbitrage, the existence of an equivalent martingale measure and concept
of changes of numeraire. (We will not provide all the proves here, since most
of them would take large space and they are not the main point of this paper.
All of them can be found with varying depth e.g. in Shreve [22], Protter [18],
or Steele [23].)

1.3.1 1Ito’s Integral

Ito ’s integral is used to model the value of a portfolio that results from

trading assets in continuous time. The manipulation with these integrals is

based on the It6-Doeblin formula. The difference from ordinary calculus is

based on the fact that Brownian motion has a nonzero quadratic variation.
For a simple adapted process A(t) on [0,7] , i.e. for

Alt,w) = Tiyisn) - Alty,w) (1.21)
k=1

we will define the 1t6’s Integral as
t k-1
I(t) = / A(w)dW, = A(t)[W,,, =Wy [+ AG) [W=W,, ], te <t <t
0 —

7=0

(1.22)
where 0 = tg < t; < ... <t, =T is a partition of [0,7]. In general, it is
possible to choose a sequence A, (t) of simple processes, such that for n — oo

the processes converge to the continuously varying process A(t) in the sense
of

T
lim E/ An(t) — A()2dt = 0
0

n—oo

Then we define the It0’s Integral of the general adapted process by

t
1) :/ A(w)dW, == lim A, (w)dW,, 0<t<T. (1.23)
0

The Ito’s Integral has following properties:

e Continuity: the paths of I(t) are continuous (they are function of the
upper limit of integration t)
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e Adaptivity: I(t) is F;-measurable for each ¢
(

o Linearity: If I(t) = [} A(u)dW, and J(t) = [; ['(u)dW,,, then cI(t)£d.J (t) =

I3 (cA(u) + dT(u)) dW, for every ¢, d € ]R
e Martingale: /() is a martingale
e Itd isometry: EI%(t Efo A%(u
e Quadratic Variation: [I, I](t) = fo A?(u)du

Definition 1.3.1 Let Wy, t > 0, be a Brownian motion and let F;,t > 0,
be an associated filtration. We will define an Ité process as a stochastic
process of the form

X(t) = X(0)+ /tA(u)qu + /t®(u)du, (1.24)

where A(u) and O(u) are adapted stochastic processes, X (0) is nonrandom
and we assume that both fo A*(u)du and fo |O(u)|du are finite for all t > 0.

Definition 1.3.2 Let X (t),t > 0, be an It6 process from the definition above
and let T'(t),t > 0, be an adapted process. We define the integral with
respect to an Ité process as

t t t
/ I(w)dX (u) = / T(w) A(u)dW, + / I'(w)0 () du. (1.25)

0 0 0
Theorem 1.3.1 (Ito Doeblz’n Formula) Let X( ),t >0, be an Ito pro-

cess of the form X (t +f0 qu+fo w)du, such that Efo A% (u

and fo |O(u)|du are both ﬁmte, and let f(t,x) be afunctwn with defined and
continuous partial derivatives fi(t,x), f.(t,x) and fo.(t,z). Then, for every
T >0,

T T
fT.X(T) = F(0,X(0) + / fult, X (8))dt + / fo(t, X (£))dX (1)
, . 0 0
43 | el X)X X](0)
T T
= F(0.X(0) + / fult, X (£))dt + / Fo(t, X (£) AW,
0 0
+/Tf (t X(t))@(t)dt+1/Tf (1, X(1)A2(0)dt, (1.26)
0 T ) 2 0 T bl ) .
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or, in differential notation,

GXW) = St XE)de+ Lt XWX+ 3 faalt, X(0)AX ()X (1)
=il X(O)dt+ Lo, XA)AWAW (0) + £u(t, X(0)O(0)dr
1

+§fm(t, X(t)A%(t)dt (1.27)

X
X

The left-hand side of 1.26, f(7, X (7)), is reduced to a sum of a nonran-
dom quantity f(0, X (0)), three Lebesgue integrals with respect to time and
one Ito integral.

An important example of 1.27 use is e.g. modeling the value of a portfolio.
We suppose here that f is the value of a portfolio denoted by S;, so we can

write f = f(t,S;) and stock is modeled by the geometric Brownian motion,
dS; = pSidt + 0S;dW;. Then f follows the process

2
o + a%th + ug—gdt + L20°f (1.28)

Y5 = 5+ 755 27 o7

For simplicity, we will try to keep the notation as simple as possible
and we will present here the It6-Doeblin formula for two processes driven
by a two-dimensional Brownian motion W; = (W3, Wy,). Analogously, the
formula generalizes to any number of processes driven by Brownian motion.

Theorem 1.3.2 (Two-dimensional It6-Doeblin Formula) Let f(t,z,y)
be a function with defined and continuous partial derivatives fi, fa, fy, fez, fay, fya
and fy,. Let X(t) and Y (t) be Ito processes of the form

X(t) = X(O) + /Ot el(u)du + /Ot all(u)dWm + /Ot UlQ(U)dWQu
Y(t) = Y(O) + /Ot @Q(U)du + /Ot 021(u)dW1u + /Ot UQQ(U)dWQu

The two-dimensional Ito-Doeblin formula in differential form is

df(t, X(t),Y (1)) = filt,X(1),Y(t)dt + fu(t, X (1), Y (t))dX(t) + f,(t, X (1), Y ())dY (¢)
—i—%fm(t, X(t),Y(t)dX (t)dX (t) + fay(t, X (2),Y (£))dX (t)dY (t)

% Lo, X (8), Y (£))dY (£)dY(2). (1.29)
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We often use theorem 1.3.2 in more compact form, leaving out ¢, as
1 1
Af (6, X.Y) = fidt + fodX + fydY + 3 fundXdX + fr,dXdY + 2 fyydYdY. (130)

The right-hand side of 1.30 is based on the Taylor expansion of f out to
the second order. The full expansion would have more second-order terms
(fudtdt,...), but dtdt, dtdX and dtdY are zero. This and other remarks are
discussed more precisely in Shreve [22], p.164-168 or in Steele [23], p.123-128.
An important feature of It6 integral is its normal distribution for determin-
istic integrand.

Theorem 1.3.3 Let W, s > 0, be a Brownian motion, and let A(s) be
a nonrandom function of time. Define I(t) = f(f A(s)dWs. Then I(t) ~

N <0, IN A2(s)ds> for each t > 0.

1.3.2 Risk-Neutral Measure

Theorem 1.3.4 Let (2, F, P) be a probability space and let Z be an a.s.
nonnegative random variable satisfying EZ = 1. We define for any A € F

PA) = / Z(w)dP(w). (131)
A

Then P is a probability measure. If we denote the expectation under P as

E, then for nonnegative random variable X is

E(X)=FE[XZ]. (1.32)

If Z 1s strictly positive a.s., then P and P agree which sets have probability
0 (we say they are equivalent) and
~ Y
EY =F|—= 1.33
7 (133

for every nonnegative random variable Y .

Proof. Shreve [22], p.210-211.

Theorem 1.3.5 (Radon-Nikodym). Let P and P be equivalent probabil-
ity measures on (Q, F). Then there ezists an a.s. positive random variable
Z satisfying EZ =1 such that

P(A) = /AZ(w)dP(w) forall Ae F. (1.34)
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Definition 1.3.3 Random wvariable Z from the previous theorem is called
the Radon-Nikodym derivative of P with respect to P. We write Z = %.
Further, we define the Radon-Nikodym derivative process by Z; =
E[Z|F], for0<t<T.

We can remark, that the Radon-Nykodym derivative process is a mar-
tingale, and EY = E[YZ| = E[E[Y Z|F]] = E[Y Z,.

The original martingale measure P is not the most convenient for pricing
contingent claims when interest rate are stochastic. An appropriate choice
of numeraire can lead to an elegant solution of the pricing problem.

Lemma 1.3.1 LetY be an Fi-measurable random variable, 0 < s <t <T.
Then

~ 1
ElY|F] = 7E[YZ,:|]—"5]. (1.35)
We will try to show how stochastic processes change under changes in
measure. The first presented, Girsanov theorem tells us, how to make drift
change or disappear, how to find a probability measure that makes the
present value of the stock price into a martingale.

Theorem 1.3.6 (Girsanov, one dimension). Let W;,0 <t < T, be a
Brownian motion on a probability space (0, F,P), and let 7,0 <t < T
be a filtration for this Brownian motion. Let ©,,0 < t < T be an adapted
process. We define

t 1 t
Z, = exp {—/ 0,dW, — —/ @3du} , (1.36)

0 2 Jo

__ t
0
and assume that .
E/ 02 Z2du < . (1.38)
0

Set Z = Z(T). Then EZ = 1 and under probability measure P given by
(1.84), the process Wy,0 <t < T, is a Brownian motion.

W, is here a Brownian motion with drift (—©;) at time ¢. Important use
of Girsanov theorem is the application to stochastic differential. Suppose X
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is stochastic process with increments dX; = p;dt + o,dW; where u; and oy
are adapted processes. We would like to change the drift process from g
into 7, and appropriate new measure. The differential can be rewritten as
dX; = rdt + oy (dW; + (u)dt) where we denote ©; = ’”J—_t” We now use

the Girsanov theorem with ©; and corresponding measure P with which
Wt Wi+ fo Ods is a Brownian motion under P (assuming that appropri-
ate conditions from the theorem are fulfilled). The differential of X under
P is then dX, = rdt + o,dW,.

Similarly, we can use Girsanov theorem for the stock price process, con-
sidering the standard model

dSt = OétStdt + O'tStth,

discount process D; = e~ I rsds where 7, is an adapted process and we would
like to have the discounted price process to be a martingale. Using Girsanov
theorem (Shreve, [22] p. 214-217), we get

d(D(t)S(t)) = UtDtStdf/I\//ta

where

AW, = " gt 4 dW, = ©,dt + AW,

Ot
We call ﬁ, the measure defined in Girsanov theorem, the risk-neutral mea-
sure because it is equivalent to the original measure P and it renders the
discounted stock price D;S; into a martingale. The value ©(t) = *=* is
called as market price of risk. It determines how much the drift of S; must
be scaled in units of volatility of S;. For more comments we refer to James,

Webber [13], p.84-87.

Pricing under the Risk-Neutral Measure

Let the payoff of a derivative security at time 7', V, be an Fpr-measurable
random variable. Assuming the completeness of the market, we would like
to know what initial capital X, and portfolio process A(¢),0 <t < T | an
agent will need in order to get X = Vi almost surely ( he wants to hedge
a short position in this derivative security). Since the discounted capital
process D, X, is a martingale under ﬁ, we get

DX, = E[DTXTU:t]— [DTVT|E]
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and

Xo = E[Dr X7]
in particular.

The value X; of the portfolio is needed in order to hedge a short position
at time ¢ with the final payoff V7. Consequently, we call X; the price V; of
the derivative security at time ¢ and D,V; = E[DyVy|F]. Dividing this by
Dy, which is F;-measurable, we arrived at the risk-neutral pricing formula

Vi=E

D ~ .
FTVT|E:| =K [e_‘]tTruduVT|f't] . (139)
t

1.3.3 Martingale Representation

The risk-neutral pricing formula was derived under the assumption that if an
agent begins with the correct initial capital, there is a portfolio process with
which the security can be hedged. Under this assumption, we determined
the value of the hedging portfolio at every time t,0 < ¢t < T, to be V()
given by 1.39. In this section, we will verify the assumption on which the
risk-neutral pricing formula is based in the model with one stock driven by
one Brownian motion.

Theorem 1.3.7 (Martingale representation, one dimension.) Let
W, 0 <t <T, be a Brownian motion on a probability space (2, F, P), and
let F¢,0 <t < T, be the filtration generated by this Brownian motion. Let
M;,0 <t <T, be a martingale with respect to this filtration. Then there is
an adapted process I',,0 < u < T, such that

t
M, = MO+/ T, dW, 0<t<T. (1.40)
0

The theorem says that, when the filtration is generated by Brownian mo-
tion, every martingale with respect to this filtration consists from an initial
condition and an It6 integral with respect to the Brownian motion. Only
source of uncertainty is then the Brownian motion itself and it is the only
source of uncertainty to be removed by hedging. 1t6 integrals are continuous,
thus our assumption implies that martingales cannot have jumps. In case we
need martingales with jumps, we would need different source of uncertainty
than just a Brownian motion.

Another form of the martingale representation theorem is, that consid-
ering two processes M;, N;,0 < t < T, as a martingales with respect to

23



the same filtration, with non-zero volatilities, there exist an F;—measurable
process ¢, that P(fOT Pioidt < oo) =1 and

t
Nt:N0+/ bdM,, 0<t<T,
0

where oy is the volatility of M;, ¢, is unique, equal to the ratio of volatilities
of M, and N;.

The theorem proves the existence of the hedge, but does not provide any
particular method of finding A,;, what is not possible in general. Girsanov
and martingale representation theorem can be stated analogously in multiple
dimensions.
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Chapter 2

Interest Rate Models

The first chapter described concepts underlying interest rate modeling, in
this second chapter we will examine the models themselves, covering most
of the main categories of models used today.

2.1 Categories of Interest Rate Model

This section introduces some elementary interest rate models. Any appli-
cable interest model needs to have two main ingredients; it must provide a
statistical description of how the state variables in the model change through
time, and it should provide a procedure to price interest rate derivatives from
the statistical description. With these models there are also procedures to
extract prices from the model; ideally, the model will have explicit solu-
tion/formulae for the values of simple instruments such as bonds or bond
options. Nevertheless, numerical methods for finding prices of any instru-
ment other than the most simple are in most cases needed.

There are two main types of models; equilibrium models and no-arbitrage
models. In an equilibrium model the initial term structure is an output from
the model; in a no-arbitrage model it is an input to the model.

Equilibrium Models

Equilibrium models are built on assumptions about how the economy works.
We take in account the aim to achieve a balance between the supply of bonds
and other securities and the demand for these by investors. We are interested
in how the economy affects the term structure of interest rates. In a one-
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factor model, presented later, this means constructing stochastic model for
the evolution of the risk-free rate. We invoke the fundamental theorem of
asset pricing to derive a theoretical set of bond prices. Under such a model
the theoretical prices evolve in an free-arbitrage way, but it may happen
that the initial set of prices is different from observed market prices, giving
rise to possible arbitrage opportunities. This will be the topic of the last
chapter.

No-Arbitrage Models

These models are considered for pricing of short-term derivatives. They use
the observed term structure at the current time as the starting point. Future
price evolves in a way which is consistent with this initial price structure and
which is arbitrage free. The main advantage of the no-arbitrage models is
that they are designed to be exactly consistent with today’s term structure.
We assume that the term structure depends on only one factor and indicate
how the results can be extended to several factors.

There are many other ways how to divide interest rate models into par-
ticular groups, considering different characteristics and qualities. Here we
will mention some of the most known categories, described more in detaail
e.g. in James, Webber [13]:

1. Affine yield models ( e.g. Vasicek, Ho-Lee or Cox-Ingersoll-Ross)
2. Whole yield curve models ( e.g. Heath-Jarrow-Morton)

3. Market models (recover market pricing formulae by the direct mod-
elling of market quoted rates, instantaneous rates are not needed and
need not to be modelled )

4. Price kernel models ( a rigorous no-arbitrage framework, specifies the
market price of risk, e.g. Flesaker and Hughston)

5. Positive models and log-r models (guarantee the rates they generate are
always positive, not very tractable though. In a log-r model the short
rate is the exponential of a state variable; e.g. Black and Karasinski.)

6. Consol models (the Consol rate- time to maturity of a perpetual coupon
bond, is taken as a surrogate for the long rate which is included into
and interest rate model)
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Of course many other types of model exist, that do not fit precisely into
the categories mentioned above; random field models, models with jump
components or particular nonlinear models. However, these models are not
widely used in practice.

2.2 Simple Model

In the previous chapter we have defined the term structure of interest rate
R(t,T) and forward rate curve f(t,7), we have shown that both of them
are characterizing the situation at interest rate market and from one we can
calculate another. Before we approach more difficult models, we first deal
with simple model, where the forward rate process is assumed to follow

d,f(t,T) = a(t, T)dt + odWV, (2.1)

where the subscript denotes differentiation with respect to ¢, o is constant
volatility and drift « is bounded deterministic function of ¢ and maturity 7.
Integrating (2.1) we obtain

f,T)=f(0,T)+ /Otoz(s,T)ds + oW;. (2.2)

From (2.2) is obvious that the forward interest rate is normally distributed
(this fact will be used later, in the Ho-Lee model parameters estimation, see
Chapter 3). Moreover, we can notice that the difference f(¢t,7) — f(t,.S) is
deterministic, i.e. when we know the rate curve f(t,t) = r;, we know how
the entire forward curve looks like, since the only source of uncertainty is
the Brownian motion W;.

2.2.1 Simple Model under the Risk Neutral Measure

Now let us derive the explicit formula for the model drift «(t,T"), which
we use later in order to calculate the bond B; and discounted bond P(¢,T)
values in the risk-neutral world.

Drift

Since the short rate is r, = f(t,t), we can thanks to (2.2) write

re = f(0,t) + /Otoz(s, t)ds + oW;. (2.3)
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Plugging (2.3) into the relationship for bond price B, = fg r.du we obtain

B, = exp (/Ot f(0,u)du + /Ot /Ou a(s,u)dsdu + J/Ot Wudu>
= exp (/Ot £(0,u)du + /Ot /Stoz(s,u)duds + cr/ot Wudu> . (2.4)

Using P(t,T) = e~ JE ftndu e easily get

( [ 0w [ /Ota(s,mdsduH(Tt)Wt)
exp — (/tT £(0,u)du + /Ot /tTa(s,u)duds +o(T — t)Wt> (2.5)

Consider now the process Z; as a value of discount bond discounted by
bond price. We will try to find a risk-neutral measure under which Z; is a
martingale. This will imply that all relative derivative values with respect
to bond price are martingales.

Z, = B'P(t,T)

= exp— </ fOudu+// sududs+0/Wdu+a —t)W>

(2.6)

Increment of a martingale must have a zero drift and we will need to calculate
the increment dZ;. In order to obtain the differential equation for Z; we
denote et = Z;;

d <— /OT (0, w)du — /Ot /ST as, w)duds — a/ot Wodu — o(T — t)Wt>

= d(—o(T =)W, — o(T — t)dW, — od (/Ot Wudu>

—d (/()T f(07u)du> —d (/{)t /ST a(s,u)duds)

T
= oWidt — o(T — t)dW, — oW,dt — (/ alt, u)du> dt
t

= —o(T —t)dW; — (/T a(t,u)du) dt.

Using the Ito-Deoblin formula we obtain

dz, = d(e™)

P(t,T)

dA,
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1

= eATdAp + 56’4'502(T —t)%dt
1

= ZydA; + §Zt02(T —t)%dt

= Z (dAt + %UQ(T - t)zdt>

1
= Zt<

502(T —1)? — /tT alt, u)du} dt —o(T — t)th> . (2.7)

Changing the measure to the risk-neutral one, using the Girsanov theo-
rem with Wt Wi + fo ©,ds as Brownian motion, we can continue calcu-

lating dZ, by using relationship dW, = dW, — ©,dt;

- 1 T
dz, = 7, (O’(T —t)dWi + o(T — t)Odt + (202(T —1)? - / alt, u)du) dt)

In order to have from Z; a martingale under risk-neutral measure we set the
part of time-increment dt equal to zero;

T
0, - ﬁ ( / oft, u)du — 2o*(T - t>2> (28)

or
(T — )0, = %GZ(T _i2y /tT ot u)du (2.9)

respectively.
Differentiating the last relationship with respect to time T we will get
explicit formula for the drift a(t,T") and the process ©y;

00; = —o*(T —t) +a(t,T). (2.10)

Bond and Discounted Bond Values

We plug the drift relationship a(t,T) = o*(T — t) + 0O, into (2.1) and
rewrite the forward-rate curve as

dift,T) = (c*(T —1t)+006y)dt+odW,
= 0T —t)dt + odW, (2.11)

The forward interest rate under the risk-neutral measure will be, integrating
(2.11),

f(t,T) = £(0,T) + o> (T— ;t) t+ oW, (2.12)
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and the short rate r, = f(t,1),
re = f(0,1) + %U%Q + oW, (2.13)

Now we can finally calculate both the value of bond B; and value of dis-
counted bond P(t,T) at time ¢ in the risk-neutral world,

t t 1 t
B; =exp </ rudu> = exp </ £@0,¢t) + 602t2 + a/ Wudu> , (2.14)
0 0 0

exp (- /t ! f(t,u)du)
. (/tT 0 - /tT .2 (u _ ;t) tdu+o(T — t)Vﬁ)

exp — (/tT £(0, u)du + w +a(T—t)V7t>. (2.15)

P(t,T)

Risk Neutral Measure in Interest Rate Models

The most common way of introducing the risk-adjusted measure is to define
it straight away into the model and not bother with the objective probabil-
ities at all. We have shown this for the above simple model and we will do
so once again for Vasicek model. Same as in previous model, Vasicek also
specifies the form of E and then calculates prices consistent with it. Given
the process under objective measure

dry = a(b — ry)dt + odW,,

for constant a,b, o, we can rewrite it, similarly as in prevoius model using
Girsanov theorem, as a risk-adjusted process

dry = (a(b— 1) — Ao)dt + odW,,
for some constant A (which is equal to ©; from Girsanov theorem). We
denote b =0 — ’%’, so that the risk-adjusted process is

dr, = a(g— re)dt + Udﬁv/},

where W/t is a Brownian motion under P with which ﬁv/t = W; + At. (The
value A, market price of risk, determines the return in excess of the risk-free
rate that the market implies as a compensation for taking the risk.)

Analogous change of measure can be done also in other models; in the
next pages we will use notation without tildes, introducing the risk-adjusted
measure straight forward.
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2.3 Heath-Jarrow-Morton Framework (HJM)

There are several ways to represent the yield curve. The one chosen in the
HJM model is in terms of the forward rates that can be locked in at one time
for borrowing at a later time. In the following two subchapters we introduce
the one-factor and multifactor Heath-Jarrow-Morton frameworks.

One-factor HIM

We have already presented the simple model with the forward rate curve
given as d,f(t,T) = a(t,T)dt + odW;, with constant volatility o. In the
Heath-Jarrow-Morton framework we will generalize the above presented
stochastic differential equation to

d,f(t,T) = a(t,T)dt + o(t, T)dW,, (2.16)

where both a(t,T) and o(t,T) are F}¥ —adapted processes, i.e. the forward
rate curve is modeled by an Ito process without any concrete description of
volatility o(t,T"). The drift component «(t,T) is from the pricing viewpoint
not the most important one, since after change of measure it elapses into
the standard form. For constant volatility, o(t,T) = o, we get the above
discussed basic model. Integrating the (2.16) and with given initial value
f£(0,T) we obtain for 0 <t < T,

f@&1) =f(O,T)+/O a(u,T)du+/o o(u, T)dW,, (2.17)

The difference f(t,7)— f(t, S) is not deterministic anymore, since it contains
the term fg(a(u, T)—o(u, S))dW,, which is non-zero here, unlike in the basic
model. We denote

S(t,T)=— /T o(t,u)du, (2.18)

and similarly as in the basic model, it can be shown (see [15], p.203-206),
that under no-arbitrage assumptions we get

a(t,T) = o(t, T)(O, — S(t,T)), (2.19)

with F}¥ —adapted market price of risk ©;. In In the risk-neutral world, i.e.
if ©®, = 0 the drift is then

a(t,T) = —o(t, T)S(t, T), (2.20)
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and the forward rate is given by

dft,T) = —o(t, T)S(t,T)+ o(t,T)dW,, (2.21)

AW, = dW, + Odt.
Integrating (2.21) we can calculate relationships for the forward rate curve
f(t,T), short-term interest rate r;, and for the bond value P(t,T'), where all

this values are functions of initial forward-rate curve, volatility o(¢,7") and

S(t,T).

ftT) = f(O,T)f/O a(u,T)z<u,T)du+/O o (u, T)dW,
re = f(t,t) = f(0,t) —/O'a(u,t)Z(u,t)dquA/a(u,t)dﬁ (2.22)
P(t,T) = exp <—/t f(t,u)du)

= exp— (/tTf(O,u)du—/ot /tTo(s,u)Eduds—k/ot /tTa(s,u)des>

Multifactor HJIM

In the multifactor HJM model is the stochastic evolution of the forward-rate

curve modeled with n—dimensional Brownian motion W = (W}, ... W),
dif(t,T) = a(t,T)dt + Y oy(t,T)dW}, (2.23)
i=1

where a(t, T') and all o;(t, T) are F}V —adapted, i.e. they depend on to history
of Brownian motion up to time ¢. Very similarly as in one-factor HJM model
it can be derived how the forward rate curve, short-term interest rate and
the bond value depend on volatilities o;(¢,T) and ;(¢,T) = — ftT oi(t,u)du
in the risk-neutral world.

Short Rate Models and HIM

In the following text we will show that the short-rate model is nothing
but one-factor HJM model, because we can find particular transformation

leading from one to another.
Assume that the short-rate process r; in the risk-neutral world follows
dry = pydt + wydWy, with ﬂW—adapted processes j; and w;. We know that
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every one-factor HJM model can be written as a model for short-rate,

t t
re = £(0,¢) 7/ a(u,t)E(u,t)dqu/ U(u,t)dﬁ[fz7
0 0
and differential equation for the forward rate is
df(t,T) = —o(t, T)S(t, T) + o(t, T)dW,.

On the other hand, every short-rate model can be written as one-factor HJM
model as well, which is not that obvious. We need to find such a volatility
o(t,T), that the short-rate process from HJM model is equal to the original
one, r;. This is possible for every process r;, but it is easier in special case,
where r; is Markov.

Let us assume that r, is Markov process with both deterministic drift
p(re, t) and volatility w(ry, t), i.e.

drr = ,urt,tdt -+ wrt’tth

The bond price P(t,T) is then just a function of ri¢ and T, P(t,T) =
exp (— ftT f(t,u)du) . Let us denote, as in [15], p.213-214,

g(ri, t,T) == —In P(t,T) = /T f(t,u)du, (2.24)

where g(z,t,T) is a deterministic function:

g2, t.T) = —In B [exp (— /tT rsds) Iry = x] , (2.25)

which does nor depend on history up to time ¢, but just value r,. Applying
the It6-Doeblin formula on the relationship f(¢,7) = g—qg,(rt, t,T) we get
0?g 0%g 1 9¢®
t)dt + w?(ry, t)dW, dt + =
g (e Dt AW+ Geadt & BT
Volatility of this process has to match to o(¢,T),

2

0
o(t,T) = w(r, t)ﬁ(ru t,T),

dif(t,T) = (1, t)dt.

from what we get

T ag
(1, T) = —/ ot u)d = —w(re, )22 (r 1, T).
¢ Ox
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Moreover, the initial forward rate curve f(0,7") follows from f(t,T) =
g—é’,(rt,t, T) as
dg

f(0,T) = a—T(ro,O,T). (2.26)

2.4 Equilibrium Models

Equilibrium models assume particular properties of economic variables and
derive a process for the short-term risk-free rate r (sometimes referred as
instantaneous short rate), and explore what the process implies for the prices
of the particular derivatives. As already derived in (1.39), the value of an
interest-rate derivative with payoff Vi at time T is

Vi = Ble "0V |, (2.27)

where E denotes expected value in a risk-neutral world and 7 is the ”average”
value of 7 between time ¢ and T', or more precisely, 7(T' — t) = ftT rydu. For
simplicity we will not write conditioning on F; anymore, if not necessarily
needed.

We define P(t,T') as the price at time ¢ of discount bond that pays off 1
unit (USD, EUR, ...) at time 7. From (2.27) with Vr = 1, we get

P(t,T) = E[e7T], (2.28)
If R(t,T) is the continuously compounded interest rate at time ¢, P(t,T) =
e~ BEDT=Y or R(t,T) = — 7= In P(¢, T) analogously, from (2.28) we obtain

R(t,T) = — In E[e 7T], (2.29)

T—t
This equation shows that once we have fully defined the process for r, we
have also fully defined the initial term structure and how it behaves at future
times. In other words, we can obtain the term structure of interest rates at
any given time from the value r at that time and from the risk-neutral
process for r.

2.4.1 One-Factor Models

The process for the short-term risk-free rate r involves only one source of
uncertainty. It is usually described by an [to process of the form

dr = m(r)dt + s(r)dWy, (2.30)
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where W;,0 <t < T is the standard Brownian motion under the real world
measure P, processes m (instantaneous drift) and s (instantaneous standard
deviation) are assumed to be adapted functions of r, independent of time
itself (in sense that m(r) = m(ry),s(r) = s(r¢)). It implies that all rates
move in the same direction over any short time interval, but not all move
by the same amount.

Several one-factor equilibrium models:

Model m(r) s(r)

Merton 7 o

Rendleman and Bartter (Dothan) ur  or
Vasicek a(b—r) o
Cox-Ingersoll-Ross alb—r) o\r

2.4.2 Vasicek Model

Vasicek assumed that the instantaneous spot rate evolves as an Ornstein-
Uhlenbeck process with constant coefficients,

dry = a(b — ry)dt + odW,, (2.31)

where a,b, 0 are positive constants. In this model, b represents the risk-
neutral long-term mean risk-free rate; a represents the rate at which r,
reverts back to this long-term mean; and o represents the local volatility of
short-term interests rate. The key feature is that the interest rates appear to
be pulled back to some long-run average level over time. This, so called mean
reversion structure, implies that for high r the model tends to have a negative
drift, for low r it tends to have a positive drift. (When rates are high, the
economy is slowing down and there are less borrowers, consequently, rates
decline.) More exactly, for r, = b, the drift term (the dt term) is zero;
for r, > b, the drift term is negative what pushes r, back downward b.
Analogously, for r; < b the drift term will be positive what pushes 7, back
upward b. Considering this as expectation, if 7o # b, then lim; .., Er; = b;
and if ro = b, then Er, = b for all t > 0.

Now we will try to determine the short-term interest rate process, using
the [to-Doeblin formula. We will denote

t
h(t,z) = e %rg +b(1 —e ™) + ge ™z, X(t)= / e dWy
0
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and we calculate all partial derivatives needed for applying It6 lemma on
h(t7 Xt)7

hi(t,x) = —ae “rg+ abe™™ — cae™ "z = ab — ah(t, ),

he(t,z) = oe ™, hax(t,s) =0,

and dX (t) = e*dW;. Since hy,(t,z) = 0, we will not need dX;dX; = e**.
Hence
1
dh(t, Xt) — ht(t, Xt)dt + h/m(t, Xt>dXt —|— §hxx(t, Xt)dXtht
= a (b — h(t, Xt)) dt + O'th
This shows that here defined h(t, X;) satisfies (2.31), that defines r; and
moreover, has the same initial condition, h(0, Xo) = ro, what implies that

h(t, X:) = r; for all ¢ > 0. Thus, the short-term interest rate in Vasicek
model is of the form

t
r=e"ro+b(1l—e")+ ae_“t/ e dWs, (2.32)
0

re=e "rg+b(1 —e ") +oe 7, (2.33)
where
t e2at -1
Z ::/ e”dWs, ~ N (O, ) (2.34)
0 2a

We have used here the normal-distribution property of an Ito integral with
deterministic integrand (theorem 1.3.3). From (2.34) it follows that

2

ry ~ N (e_atro +b(1 — e ), ;—a

(1- e_2"“t)) : (2.35)

In Vasicek model both bond value B, and discount bond with price
P(t,T) are lognormal distributed ([15]. p.220-221).

For large value of time ¢ the distribution of r; converges to N (b, 0%/2a).
In particular, there is positive probability that r; is negative; an undesirable
property of Vasicek interest rate model.

36



Cairns shows in [4], p.249-253, that using the HIM Framework we can express the
price at time t of a zero-coupon bond that pays 1 unit at T as

P(t,T) = AT =BEDe (2.36)

where (for a # 0)
1— e—a(T—t)
B(t,T) = Y

B(t,T) — (T —t))(a?b — 0?/2 2B(t,T)?

Ay = BT~ (- 0)@ /) o*B.T)
a 4a

For a = 0 we have B(t,T) = (T—t) and A(t,T) = exp[o?(T—t)?/6]. Using the relationship

R(t,T) = _ﬁ In P(t,T), we obtain the Vasicek continuously compounded interest rate

at time ¢ as

1
R(t7 T) = ﬁ [B(t7 T)Tt - A(t7 T)} ) (237)
which shows us that once the parameters a, b, o have been chosen, the entire term structure
is determined as a function of r;. Equation (2.37) also shows, that R(t,T) is linearly
dependent on 74, i.e. that the value 7; exactly determines the level of the term structure
at time ¢. The general shape of the term structure at time ¢ does depend on time ¢ itself,

but is independent of ;.

Generalized Vasicek Model

The Vasicek model is sometimes generalized as
d?"t = (Qt — OétTt)dt + O'tth, (238)

where all 6;,a; and o; are deterministic functions of time. The bond B;
and discount bond with price P(¢,7T) are still lognormal distributed (see
[15],p.221).

2.4.3 Cox-Ingersoll, and Ross Model (CIR)

As we noticed before, the short-term interest rate r, in Vasicek model can
become negative, which implies that all spot rates and forward rates for
finite maturity can become negative. An additional minus of the Vasicek
model is that many empirical evidences suggest that the volatility of r; is
not constant, but increasing function of r,. Cox, Ingersoll and Ross have
proposed an alternative one-factor model for the risk-free rate of interest
where rates are always nonnegative. The risk-neutral process in their model
is

dry = a(b — ry)dt + o\/redW4, (2.39)
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where a,b,0 are positive constants. In the Vasicek model r, could reach
negative values, in case of CIR model this is not possible. If r, reaches zero,
the term multiplying dW, vanishes and the positive drift term adt pushes the
interest rate back into positive territory. Like the Vasicek model, CIR has
the same mean-reverting drift, but on the other hand, the stochastic term
has a standard deviation proportional to /¢, i.e. with increasing 