
Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Barbora Benešová
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Mathematical Institute of Charles University

Branch of study: Physics, Mathematical and Computer Modelling
in Physics and Technology

2008





It is a pleasant duty to thank prof. Roub́ıček for supervising my thesis and always
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Autor: Bc. Barbora Benešová
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Nomenclature

C(Ω) the space of continuous functions on Ω equipped with the norm
‖u‖ = maxx∈Ω̄ |u(x)|

Ck(Ω) the space of functions that have continuous derivatives up to
the order k on Ω

C(Ω̄, V ) the space of continuous functions on Ω with values in
some Banach space V equipped with the norm ‖u‖ =
maxx∈Ω̄ ‖u(x)‖V

C([0, T ], V ) the space of continuous functions on [0, T ] with values in
some Banach space V equipped with the the norm ‖u‖ =
maxt∈[0,T ] ‖u(t)‖V

I the identity matrix
Lp(Ω̄,Rn) the space of p-integrable (vectorial for n >1) functions on Ω

equipped with the norm ‖u‖ =
(∫

Ω
|u(x)|pdx

)1/p

Lp(Ω,Rn×m) the space of p-integrable matrix functions on Ω
Lp(Ω, V ) the space of p-integrable functions on Ω with values in

some Banach space V equipped with the norm ‖u‖ =
(∫

Ω
‖u(x)‖pV dx

)1/p

Lp([0, T ], V ) the space of p-integrable matrix functions on [0, T ] with values
in some Banach space V equipped with the norm ‖u‖ =
(

∫ T

0
‖u(t)‖pV dx

)1/p

M the number of martensitic variants
M(Rn×m) the space of Radon measures on R

n×m

p′ the conjugate exponent to some p ∈ [1,∞], namely p′ = p
p−1

p∗ the exponent in the embedding W 1,p(Ω) →֒ Lp
∗
(Ω), namely

p∗ = np
n−p

if Ω ⊂ R
n and p < n, p∗ is anything in [1,∞) if

p = n and p∗ = ∞ if p > n
p♯ the exponent in the trace operator u → u|Γ : W 1,p(Ω) →

Lp
♯

(Γ), namely p♯ = np−p
n−p

if Ω ⊂ R
n and p < n, p♯ is anything

in [1,∞) if p = n and p♯ = ∞ if p > n
W 1,p(Ω,Rn) the Sobolev space of p-integrable (vectorial for n >1) functions

on Ω whose distributional derivatives are also p-integrable

equipped with the norm ‖u‖ =
(∫

Ω
|u(x)|p + |∇u(x)|pdx

)1/p

W 1,p(Ω,Rn×m) the Sobolev space of p-integrable matrix functions on Ω whose
distributional derivatives are also p-integrable
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W 1,p(Ω, V ) the Sobolev space of p-integrable functions on Ω whose
distributional derivatives are also p-integrable with values
in a Banach space V equipped with the norm ‖u‖ =
(∫

Ω
‖u(x)‖pV + ‖∇u(x)‖pV dx

)1/p

W 1,p([0, T ], V ) the Sobolev space of p-integrable functions on [0, T ] whose
distributional derivatives are also p-integrable with values
in a Banach space V equipped with the norm ‖u‖ =
(

∫ T

0
‖u(t)‖pV + ‖∇u(t)‖pV dt

)1/p

W α,p(Ω,Rn) the Sobolev space of p-integrable (vectorial for n >1) functions
on Ω having fractional derivatives

Γ the boundary of the domain Ω
ΓD the part of the boundary of the domain Ω where Dirichlet

boundary conditions are prescribed
ΓN the part of the boundary of the domain Ω where Neumann

boundary conditions are prescribed
Ω a bounded, connected Lipschitz domain
Ω̄ the closure of Ω
⊂ subset
→֒ the continuous embedding
→֒→֒ the compact embedding
→ strong convergence or mapping of elements into other ones
⇀ weak convergence
∗
⇀ weak* convergence
⊗ the tensorial product of two vectors
‖ · ‖ the norm on a Banach space
(·, ·) the open interval
[·, ·] the closed interval



Preface

Shape memory alloys are so called smart materials exhibiting effect that distinguish
them from other materials. Namely, the two most important ones are the shape
memory effect which gave these materials their name and pseudoelasticity. Roughly
speaking, the shape memory effects describes the ability of these materials to
recover the shape they had prior to a mechanical deformation by heat supply.
Pseudoelasticity on the hand refers to the ability to recover strains in the order of
percent; or may also refer to the phenomenon of exhibit constant stress in a large
area of strains.

It is these effects thanks to whom shape memory alloys have gained a lot of
interest in engineering and development. New possibilities of applications such as
dampers, actuators or applications in medicine just to mention some branches,
were discovered in the past years. In addition to areas where these materials are
used heavily, like peripheral vascular stents or dental braces, new application fields
are under investigation.

But not only are shape memory alloys interesting for engineers, they are also
attractive from the viewpoint of basic research and modelling as the applicability
of the developed models is quite wide. Also in this work we are concerned with
modelling of shape memory alloys within the framework of continuum mechanics
following works [34], [35] or [60]. The model presented in the mentioned papers
will be subject of this theses in the sense that it is analysed from the point of view
of physics mathematics and numerics and extended as described in the next few
paragraphs.

First of all the physical consistency of the model is investigated and it is shown
in Chapter 1 that it may be derived from basic balances and the second law of
thermodynamics if, of course, suitable constitutive relations are used. Also the
causes of the special effects of shape-memory alloys are outlined.

The main cause is the existence of microstructure like the one shown e.g. in
Figure 5.3. Although the existence of microstructure does not cause any physical
difficulties from the point of view of mathematics it demands for an effective
mathematical description. Such a description is given in Chapter 2 by means of so
called Young measures. Moreover the existence of microstructure is mathematically
connected to a broad area of non-convex minimization, some strategies will also
be presented in Chapter 2.

From the point of view of mathematical research it is of course important to
study the solvability of the system of equations that form a model of the behaviour
of shape memory alloys. The concept of rate-independent processes introduced by
Mielke ([43] or [44] to mention some source) is exploited and the existence of

9
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solutions to the problem considering quasi-static evolution is shown in Chapter 3.
Contrary to previous works where Dirichlet loads were omitted for simplicity here
also time-dependent loads are taken into account. This of course demanded for
a small albeit important change of strategy in defining and hence also proving
existence of solutions. More is shown in great detail in Chapter 3.

Of course, if applicability of the model is at least a future goal the continuous
model needs to be discretized and more preferably also implemented to allow for
simulations that could be compared to experimental data to verify the strength
of the model. Here we followed algorithms presented already in [33] or [35] but
consider hard loading by a time-dependent Dirichlet boundary condition contrary
to soft loading by applied forces. Also, a necessary condition for global optimization,
the two-sided energy inequality (3.34), has been implemented - for the first time in
the framework of shape memory alloys. Simulations suggest that it offers a helpful
tool in global optimization as far as rate-independent processes are concerned.
More can be read in Chapter 4 or Chapter 6.

In this work the alloy we shall perform simulations with was chosen to be
NiTi as it is being used far mostly in practice for instance the medical devices
mentioned above are produced out of NiTi. Yet not enough is known to give a
satisfactory description of representative parameters of NiTi. Simulated results
obtained should be compared with experiments as soon as a bulk specimen of
mono-crystalline NiTi shall be produced. In more detail the simulations presented
here consider the R-phase, the existence of which is a kind of speciality of NiTi.
Namely, most shape memory alloys exhibit two phase the martensitic and austenitic
(more information shall be given Chapter 1) but NiTi can be found in martensite,
austenite or R-phase. Though NiTi is used in industry not much attention is
paid to this third phase by engineers. The reason might be the small range of
temperatures in which R-phase exists, but it also might be due to lack of knowledge
if R-phase is considered. Still, the R-phase is interesting in the sense that after a
phase transition into this phase a phase transition of the second order seems to be
going on. However due to the limitations of the model presented this effect could
not be studied in more detail and remains as a challenge for future work.



Chapter 1

Physical Background

Shape memory alloys are materials exhibiting special properties like the ability
to recover their original form, after being deformed, only by heating. Due to
their special character shape memory alloys have been object of study for several
decades by now and the reader may find results known in e.g. the monographs [9],
[53] or the lecture notes [49]. The most common effects of shape memory alloys
are the following ones.

• Shape memory effect : The material is deformed at a temperature that is
lower than θc being a critical temperature the meaning of which will become
evident later. Then after being heated to a temperature higher than θc it
recovers the original shape.

• Pseudoelasticity : If the material is exposed to loading at a temperature
higher than θc it is deformed. Yet after removing the loads the material
returns to its original shape which corresponds to an elastic response.

• Quasiplasticity : If the temperature is lower than the θc the material cannot
recover its original shape after loading, even not for small loads.

These effects are dominantly caused by the fact that for the materials considered
different crystalline structures are stable for different temperatures or loading
conditions. To explain these effects in more detail first the crystalline structure
shape memory alloys is described.

1.1 Crystalline structure

Shape memory alloys, as other crystals, consist of atoms that are arranged in
crystal lattices described by a set of three linearly independent vectors {ea}. A
lattice is then called (cf. [53, pages 61-62])

L(ea) = {x ∈ R
3, x = nea, n ∈ Z}. (1.1)

The lattice type is usually identified by the group of symmetry of the lattice G(ea)
which is defined as follows

G(ea) = {H ∈ Aut, L(Hea) = L(ea)}, (1.2)

11



12 CHAPTER 1. PHYSICAL BACKGROUND

where Aut denotes the set of all tensors the determinant of which is positive.

In shape memory alloys two or more crystalline structures can be observed, or
to be more specific at different temperatures (or loading conditions) the crystalline
structure of the alloy is different. If the shape memory alloy exhibits only two
crystalline structures then the more symmetric structure (i.e. the one for which
G(ea) is bigger) is called the austenitic phase and the less symmetric one is referred
to as the martensitic phase. If more than two crystalline structures are observed,
as it is the case on for example NiTi, the least symmetric phase or all but the most
symmetric phase might be called martensitic, depending on the current context.

If no loads are applied the austenitic phase is stable for temperatures higher
than the critical temperature θc whereas the martensitic phase is stable for lower
temperatures and at the critical temperature a phase transition between these
two phases occurs. The phase transition however can also be induced by loading.

Although several models can be used to study the behaviour of shape memory
alloys (cf. [57]) here we shall focus only on the so-called mesoscopic model which
(among others) relies on continuum mechanics.

1.2 Framework of continuum mechanics

Continuum mechanics assumes1 that the investigated body is exposed to an action
of forces or displacements on the boundary which cause a mechanical response
characterized by a vectorial function called displacement. The key ideas and
notations shall be briefly repeated at this point for later use.

Assume having a body occupying the domain Ω ⊂ R
3 in the reference configura-

tion2. Any smooth injective function y(t) : Ω → R
3 such that det∇y(x, t) > 0

is called a deformation of the body and F (x, t) ≡ ∇y(x, t) is called the defor-
mation gradient of this deformation. In continuum mechanics describing solids
however, the notion of displacement u(x, t) = y(x, t) − x and displacement gradi-
ent ∇u(x, t) = F − I is rather used.

Having established this notation we may concentrate on the question how the
deformations described above are related to forces acting on the body. To do so
denote Ωy(t) the domain the material is occupying after the deformation y(t) has
been applied. Let f y(xy, t) : Ωy(t) → R

3 and gy(xy, t) : ∂Ωy(t) → R
3 denote the

density of the body force and surface force acting on the body, respectively. The
superscript ”y” was written here to indicate that xy ∈ Ωy(t) and the forces are
defined in the deformed configuration.

It can be proved (see for example [20], originally proved by Cauchy) that there
exists a tensor T y(t) : Ωy → R

3×3
sym, called stress tensor, such that Newton’s Second

1For an introduction to continuum mechanics we refer to e.g. [20].
2Although more complicated definitions of a reference configuration could be possibly consid-

ered, here we shall agree to understand by reference configuration the stress-free configuration.
In more clarity this is the configuration in which no loads are applied to the investigated body.
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law can be rewritten as

div(T y(xy, t)) + f y(xy, t) = ρv̇(xy, t), ∀xy ∈ Ωy (1.3)

T y(xy, t)n = gy(xy, t). ∀xy ∈ ΓyN (1.4)

y(x, t) = y0(x, t), ∀x ∈ ΓD (1.5)

where v̇ is the material derivative of the velocity of the deformation. The symbols
ΓN and ΓD denote in accord with the nomenclature used throughout this thesis
the Neumann and Dirichlet part of the boundary of the domain Ω, respectively.
In addition, we assume that ∂Ω = ΓN ∪ ΓD ∪ N where the measure in the sense
of Lebesgue of N is zero and ΓD ∩ ΓN = ∅.

Since in this work we are interested in quasi-static processes only, the velocity
term shall be omitted.

1.2.1 Energy balance in the special case of non-dissipative
processes

Let us now formulate the balance of the mechanical energy. To do so, we shall
multiply the above equation (1.3) (with the velocity term already omitted) by the
term ∂y

∂t
− ∂ỹ0

∂t
and integrate by parts over Ωy. Here ỹ0 is a suitable extension of the

function y0, defined on the Dirichlet boundary only, into the domain Ωy. Under
the assumption that all functions are sufficiently smooth this calculation yields

∫

Ωy

T y(xy, t).∇∂y

∂t
(x, t)dxy =

∫

Ωy

f y(xy, t)
∂y

∂t
(x, t)dxy

+

∫

Γy
N

gy(xy, t)
∂y

∂t
(x, t)dSy + 〈σ, y0(x, t)〉y , (1.6)

where the symbol 〈σ, y0(x, t)〉y denotes

〈σ, y0(x, t)〉y =

∫

Ωy

T y(xy, t).∇∂ỹ0

∂t
(x, t)dxy −

∫

Ωy

f y(xy, t)
∂ỹ0

∂t
(x, t)dxy

−
∫

Γy
N

gy(xy, t)
∂ỹ0

∂t
(x, t)dSy. (1.7)

In the energy balance, we may interpret the meaning of 〈σ, y0(x, t)〉y as the effect
of the hard load due to the Dirichlet boundary condition.

For further investigations we shall need also the balance of the total energy in
the following form (cf. [39, pages 120-121])

1

2

∫

Ω̄

v̇2dxy +

∫

Ωy

ėdxy =

∫

Ωy

T y(xy, t).∇∂y

∂t
(x, t)dxy, (1.8)

where e is the density of the internal energy. Similarly as before the time derivative
of the velocity shall be omitted since we are interested in quasi-static processes
only.
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Another, more useful, balance of the total internal is got by substituting the
two previous equations into each other
∫

Ωy

ėdxy =

∫

Ωy

f y(xy, t)
∂y

∂t
(x, t)dxy +

∫

Γy
N

gy(xy, t)
∂y

∂t
(x, t)dSy + 〈σ, y0(x, t)〉y .

(1.9)
Introducing furthermore the Helmholtz free energy ψ as

ψ = e− θη, (1.10)

where θ is the temperature and η the entropy density, we get for the entropy
production in the isothermal case (already rewritten into reference configuration
using according transformation laws)

χ ≡
∫

Ω

θη̇dx =

∫

Ω

f
∂y

∂t
(x, t)dx+

∫

Γ

g
∂y

∂t
(x, t)dS + 〈σ, y0(x, t)〉 −

∫

Ω

ψ̇dx. (1.11)

Due to the second law of thermodynamics χ, being the total entropy production
multiplied by temperature, has to be non-negative. In the special case of non-dissipa-
tive processes treated in this subsection we may even assume that the entropy
production is equal to zero. When integrating the above equation in time from t1
to t2 setting the entropy production to zero and defining the Gibbs free energy as

G(t, y(t)) =

∫

Ω

ψdx−
∫

Ω

y(t, x)fdx−
∫

ΓN

y(t, x)gdS, (1.12)

we may rewrite eq. (1.11) as

G(t2, y(t2)) −G(t1, y(t1)) = −
∫ t2

t1

(∫

Ω

y(x)
∂f

∂t
dx+

∫

ΓN

y(x)
∂g

∂t
dS

)

dt

+

∫ t2

t1

〈σ, y0(x, t)〉 dt. (1.13)

This equation essentially means that the change of the Gibbs free energy during
the loading process is balanced by the work of external forces.

We shall now exploit the concept of quasi-static processes once again to see
which states, represented by the deformation y(t), might be defined as stable.
Recall, that we call a process quasi-static if at fixed times differing by a time
increment ∆t the system can be supposed to be in equilibrium. In each step the
system is deviated (a little bit) from equilibrium and within this (small) time
increment it returns to another equilibrial state again (see e.g. [13, pages 95-98]).
This corresponds to the view that the process happens infinitely slowly. In total
abstraction this time increments tend to zero so that we may assume that the
system is in equilibrium at any time t.

Furthermore let us use the the so called postulate of realizability, which states
that as soon as a process can occur from the view of thermodynamics, it will
occur (formulated in [37]). In our case a process can occur from the view of
thermodynamics if the entropy production during this process is non-negative.
We will then say that a state is stable for the time increment ∆t if no other
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deformation can be reached during this time interval such that the entropy is not
decreased. A condition for a state, represented by y(t), to be stable is then

G(t, y(t)) ≤ G(t, ȳ(t)), (1.14)

To see this suppose that the state represented by y(t) is stable but (1.14) does
not hold. Then as y(t) is stable it has to hold

−(G(t+ τ, y(t+ τ)) −G(t, y(t))) −
∫ t+τ

t

(∫

Ω

y(x)
∂f

∂t
dx+

∫

ΓN

y(x)
∂g

∂t
dS

)

dt

+

∫ t+τ

t

〈σ, y0(x, t)〉 dt < 0, (1.15)

for any τ smaller than ∆t. We already mentioned that in total abstraction the
time increment may tend to zero. When setting y(t + τ) = ȳ for which (1.14) is
not satisfied and choosing τ sufficiently small this yields that

G(t+ τ, y(t+ τ)) < G(t, y(t)), (1.16)

a contradiction.
This result of stability can also be reached by a different method. Assume

that the studied material is hyper-elastic i.e. there exist a function W (t, θ) :
Ω × R

3×3
sym → R such that T̂ = ∂W

∂F
(x, F, t, θ) (cf. e.g. [51, page 206]) for all

times, all temperatures θ and all tensors F , where T̂ denotes the Piola-Kirchhoff
transformation of T y. The function W is in such a case referred to as the stored
energy density. Moreover assume that the stored energy density and temperature
do not depend explicitly on time. Then the energy balance (1.6) may be rewritten
in the reference configuration as

d

dt

∫

Ω

W (x, F, θ)dx =

∫

Ω

f(x, t)
∂y

∂t
(x, t)dx

+

∫

ΓN

g(x, t)
∂y

∂t
(x, t)dS + 〈σ, y0(x, t)〉 , (1.17)

where

〈σ, y0(x, t)〉 =

∫

Ω

∂W

∂F
(x, F, θ).∇∂ỹ0

∂t
(x, t)dx−

∫

Ω

f(x, t)
∂ỹ0

∂t
(x, t)dx

−
∫

ΓN

g(x, t)
∂ỹ0

∂t
(x, t)dS. (1.18)

Comparing this result (1.17) with equation (1.11) where the entropy production
is set to zero leads us to the fact that for the cases in which the Helmholtz free
energy ψ does not depend on time it may be identified with the stored energy of a
hyper-elastic material. Moreover the weak formulation of eq.(1.3) for quasi-static
processes and hyper-elastic materials is, provided all functions are sufficiently
smooth, equivalent to the minimization of the functional

∫

Ω

W (x, F, θ)dx−
∫

Ω

f(x, t)y(x, t) −
∫

ΓN

g(x, t)y(x, t)dx, (1.19)
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in almost all times on the set of all admissible deformations. We see that the
minimized functional is exactly the Gibbs free energy and therefore for hyper-elastic
materials and quasi-static, non-dissipative processes every deformation satisfying
Newton’s second law is a stable state and vice versa.

1.3 Microstructure

Having established the framework of continuum mechanics needed for modelling
let us investigate the link between crystalline structures described in the previous
section and continuum mechanics. Assume that in the reference configuration the
atoms of the body are organized in a lattice L(e0

a). If these atoms are rearranged to
a lattice L(ea) either by loading or by change of temperature we may assume that
the effect is the same as if a homogeneous deformation, the deformation gradient
of which satisfies Fe0a = ea, had been applied. This assumption is backed by the
so-called Cauchy-Born hypothesis (cf. [9, pages 34-37]).

This allows for an identification of crystalline structures with deformation
gradients. A natural way is to identify the austenitic phase with the identity matrix
and martensitic crystalline structures with deformation gradients of deformations
that allow forming the martensitic structure out of austenite. However, depending
on symmetry of both austenite and martensite there might be more independent
ways to form the martensite. To see why more deformations may lead to the
martensitic lattice let us consider the following example of a shape memory alloy
having a cubic crystalline structure in austenite and tetragonal in martensite.
For simplicity suppose the coordinate system of the problem to be such that
each axis is identical with one edge of the cube. Then we can form a cuboid
by stretching the cube along one arbitrary axis of the coordinate system. The
deformations describing these stretches are naturally different, but all of them
realize the transformation to a tetragonal lattice and all of them are admissible.

Deformation gradients of possible deformations forming martensite from auste-
nite are called variants of martensite and moreover deformation gradient F1,F2

such that there exists a Q ∈ SO(3) and F1 = QF2 form the same variant.
The existence of multiple variants is important to give rise to the so called
microstructure described in this section.

In the end of Section 1.2 we saw that at least for hyper-elastic materials and
non-dissipative processes it is enough to give the stored energy density to be able
to compute the behaviour of the material. Therefore we shall give a typical stored
energy density (see for example [53, page 184]) for a shape memory alloy in the
following way

∀ θ ≥ θc

{

W (QI, θ) = 0 ∀Q ∈ SO(3),

W (F, θ) > 0 ∀F 6= QI, ∀Q ∈ SO(3),
(1.20)

∀ θ ≤ θc

{

W (QUi, θ) + δ(θ) = 0 ∀i = 1 . . .M , ∀Q ∈ SO(3),

W (F, θ) > 0 ∀F 6= QUi ∀i = 1 . . .M , ∀Q ∈ SO(3),

(1.21)

where I denotes the distortion matrix of the austenite, i.e. the identity matrix
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and U1 . . . UM denote the distortion matrices of the M variants of martensite. In
addition, θc is the transformation temperature and δ is some offset.

We see that at temperatures lower than θc the energy in eq. (1.19) with zero
forces is minimized not only by a constant distortion Ui for any i = 1 . . .M , but
also by a combination of these distortion, e.g.

F =

{

Ui if x ∈ Ω1,

Uj if x ∈ Ω2,

such that Ω1 ∪ Ω2 ∪N = Ω where N is a set with zero measure and Ω1 ∩ Ω2 = ∅
is also a minimizer of (1.19) disregarding the boundary condition.

However the situation is different if boundary conditions are also taken into
account. We may for example demand the distortion to be identity on some part
of the boundary. Yet, if no variant of the martensite has a distortion matrix equal
to identity (which is the most common case) then the energy cannot be zero - we
still assume having no forces acting on the material - and the boundary condition
satisfied at the same time. To minimize the energy and to satisfy the boundary
condition at the same time the material has to develop a fine mixture of variants,
which is called microstructure. To study the situation in more detail we shall
investigate the following example:

Example 1.1. Let the crystalline structure of martensite be tetragonal and let
variants 1 and 2 have the distortion matrices U1 and U2 respectively. Assume that
these distortion matrices are rank-1 connected, meaning that there exist vectors
a and n and a rotation Q such that

U1 −QU2 = a ⊗ n. (1.22)

Moreover assume that the material forms a cube which is fixed i.e. u(x) = 0
for any x lying on the boundary of the cube. For the sake of simplicity let n
in eq. (1.22) be (0, 0, 1)T and Q = I. In addition let U1 and U2 be such that
1/2U1 + 1/2U2 = I, which together with (1.22) implies neither U1 nor U2 can
be identity matrices; hence none variant satisfies the boundary condition (we
assume that U3 6= I). However if U1 and U2 are arranged in narrow stripes like in
Figure 1.1 the boundary condition is satisfied and the energy is positive only on
the grey triangles. By making the stripes finer the energy is even lowered, thus a
sequence of these stripes is an infimizing sequence, but a minimum does not exist.

When taking into account this stripe arrangement we see why we need to
impose condition (1.22). This is because only in this case the tangential component
of the deformation is continuous at the interfacial planes, which is a natural
physical requirement.

The stripes in Figure 1.1 always have in reality finite length-scales. This
however is not handled within the mesoscopic model, since it disregards the
interfacial energy between the stripes and also continuum mechanics is not appli-
cable for small length-scales (cf. [9, pages 102-103]).

The microstructure showed in Figure 1.1 is called a laminate of the first order
and even more complicated microstructures can be observed. Some of them will
be part of these thesis for others we refer to e.g. [9], [53].
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Figure 1.1: Twinning of two variants characterized by U1, U2 in martensite. In the
grey triangles the deformation gradient tends continuously to identity to satisfy
the boundary condition.

Having the knowledge about the microstructure of martensite we can explain
the special effects of shape memory alloys that were mentioned in the beginning
of this chapter.

To explain the shape memory effect suppose that the material is in martensite
having initially, in stress-free configuration, the same shape as in austenite. When
being deformed by a small enough loading the deformation can be compensated by
rearrangement of variants and a change in microstructure (cf. [9, pages 143-150]).
On heating a phase transition to austenite occurs, but since there is only one
variant of austenite there is only one possible shape it can have in a stress free
configuration. Therefore the material will recover exactly this shape.

Pseudoelasticity is explained as follows. The material is deformed while being
in austenite and because of the applied loads it transits to martensite and creates a
microstructure. Loads that are bigger than those that induce the phase transition
lead to a change in microstructure as described in the case of the shape memory
effect. After removing all loads the only stable stress free configuration at the
given temperature is the austenitic one and therefore the material recovers its
original shape, which reminds of an elastic response. (see also [25])

Quasiplasticity is an effect that occurs if the material is in martensite and is
deformed. Similarly to the previous cases the deformation leads to a rearrangement
of variants. When all loads are released the new microstructure is stable as well,
so the shape of the material is unchanged. So, the behaviour of the material seems
to be plastic.
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1.4 Dissipation and process stability

It was observed that the transformation from austenite to martensite is a dissipative
process, which does not start unless a threshold in loading has been overcome (see
e.g. the papers [1], [36], [55] and references therein). This behaviour, however, is
not taken into account if we would rely in our modelling only on eq. (1.13).

In what follows the term ”phase” will be used not only for the martensitic or
austenitic phase, but also all martensitic variants will be referred to as phases.
Therefore a material which is tetragonal in martensite (having three variants) is
from now said to have four different phases in each of which as well as in a mixture
of these it can be observed. This nomenclature is very typical of mathematical
literature.

An integration of dissipation into the current model can be done only in the
framework of thermodynamics, which was already introduced in Section 1.2 and
will here be used once again. We shall partly follow the work [45], but this work
contains mostly only information on the case of pure phases whereas here we take
into account also mixtures of phases.

In the following we shall assume that each material point can be in a mixture
of phases. This is an abstraction of the laminates mentioned before, as we assume
that the lamination is so narrow that more that one phase are defined at each
point. Let us therefore introduce a phase distribution function defined at each
point as cx =

∑

All Phases λi(x)ei, where ei indicates the i-th phase, λi(x) ∈ [0, 1]
are called volume fractions. The vector of all volume fractions will be denoted λ.
We shall furthermore introduce the overall phase distribution function c = {cx}x∈Ω

which is a collection of the phase distribution functions in any point of the
domain Ω, but itself does not explicitly depend on x.

We suppose that the material dissipates an energy D(c1, c2) if the overall phase
distribution changes from c1 to c2. Furthermore let us assume (as in [55], [58],
[43] or [44]) that there exists a non-negative function d such that D(c1, c2) =
∫

Ω
d(λ2(x) − λ1(x))dx, where λ1(x), λ2(x) are the volume fractions vectors of

the phases c1, c2 respectively. Physically this means that the dissipated energy
is dependent only on the change of the fractions of each phase and but on the
initial or final phase distribution.

From above it follows that the energy dissipated during the time interval [t1, t2]
is equal to

Diss[t1,t2] =

∫

Ω

Var[t1,t2]d(λ(t)). (1.23)

Here the variation3 of the function d(·) is evaluated because we assume that during
each bounded time interval only a finite number of phase transitions can occur.
Furthermore assuming that the Gibbs free energy as defined in (1.12) depends

3Recall that by a variation of a function d : [t1, t2] → R we understand

Var[t1,t2]d(λ(t)) = sup

{

∑

i

d(λ(ti) − λ(ti−1)); of all partitions t1 ≤ t1 ≤ t2 . . . ≤ tn ≤ t2

}

.
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also on the phase distribution c, we may rewrite eq. (1.11) as

G(t2, c(t2)) −G(t1, c(t1)) + Diss[t1,t2] = −
∫ t2

t1

(∫

Ω

y(x)ḟdx+

∫

Γ

y(x)ġdS

)

dt

+

∫ t2

t1

〈σ, y0(x, t)〉 dt, (1.24)

where we used the postulate (cf. [45]) that the dissipated energy has to equal to
the entropy production multiplied by temperature. The derived law (1.24) gives
us the conservation of energy during the process, but is itself not sufficient to
describe the process.

We shall use the postulate of realizability similarly as in Section 1.2 to derive
conditions of stability for a process. Namely we shall see that a state characterized
by (y(t), c(t)), a deformation and a phase distribution function, is stable if and
only if

G(t, y, c) −G(t, ỹ, c̃) ≤ D(c, c̃), (1.25)

for any other state characterized by (ỹ, c̃). To prove this condition suppose that
(y, c) is a stable state within the small time increment ∆t but (1.25) does not
hold. Choose (y(t+ τ), c(t+ τ)) = (ỹ, c̃) for which (1.25) is not satisfied. Then as
(y, c) is a stable state this state cannot be reachable by a physically admissible
process and so

−(G(t+ τ, c(t+ τ)) −G(t, c(t))) −
∫ t+τ

t

(∫

Ω

y(x)ḟdx+

∫

Γ

y(x)ġdS

)

dt

+

∫ t+τ

t

〈σ, y0(x, t)〉 dt < Diss[t,t+τ ], (1.26)

has to hold for any τ smaller than the time increment ∆t. This condition is a clear
corollary of the postulate of realizability, since if a process from (y, c) to (ỹ, c̃) was
admissible it would happen immediately and c(x) could not characterize a stable
state. As eq. (1.26) holds for any τ this gives a contradiction.

The conservation of energy and the definition of the stable states will be the
key ingredients to define solutions of the problem when loading a shape memory
alloy specimen as we shall see in Chapter 3.



Chapter 2

Mathematical Background

Let us recall Example 1.1 on lamination given in previous chapter. Essentially the
problem posed there was

Minimize I(y) =

∫

Ω

W (∇y, θ)dx on V = {y ∈W 1,p(Ω,Rm); y = y0 on ΓD ⊂ ∂Ω},
(2.1)

if the deformation is placed into appropriate function spaces and the boundary
condition is formulated in a more general way. In this particular example we
have seen that a minimizer may not exist for some kinds of boundary conditions.
Namely, if the material was required to satisfy that u(x) = 0 for almost all x lying
on the boundary than we observed that no minimizers exists. This was caused by
the fact that the gradient of the minimizer would be required to be U1 or U2 a.e.
in Ω and at the same time its trace on a part of the boundary had to be x (if we
imagined y0(x) = x), which is impossible for a function in W 1,p(Ω,Rm).

In this chapter we shall therefore give mathematical concepts that allow to
treat this problem basically by extending (relaxing) the studied functional in such
a way that a minimizer for this extended functional exists and its minimum has
the same value as the infimum of the original problem. Moreover we would like
to be able to keep some connection between infimizing sequences of the original
problem and the relaxed one. At this point recall that by an infimizing sequence
of the function I as in (2.1) we understand

{yk}∞k=0 ⊂ V such that I(yk) → inf ỹ∈V I(ỹ), (2.2)

and such a sequence has always to exist. On the other hand a minimizing sequence
we call

{yk}∞k=0 ⊂ V such that I(yk) → min
ỹ∈V

I(ỹ). (2.3)

We will see two possibilities: either the infimizing sequence of the original
problem will be also a minimizing sequence of the relaxed problem or will generate
its minimizer in the sense of what follows. Moreover we would like to choose the
relaxed problem somehow generally with respect to other variables and data the
functional may depend on to prevent the need to relax to a different functional
is these variables change. And of course, we should be able to find the relaxed
functional without previous knowledge if the infimum or infimizing sequences of
the original problem.

21
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Most of the theorems in this chapter will be given without proofs, for proofs
and more information we refer the reader to e.g. [54], [59] or [49].

2.1 Quasiconvexity

Let I : W 1,p(Ω,Rm) → R be a functional in the form

I(y) =

∫

Ω

φ(x,∇y(x))dx, (2.4)

where p ∈ (1,∞) and Ω ⊂ R
n is a regular domain. Furthermore suppose that φ :

Ω×R
m×n → R is a Carathéodory function1 such that I is a bounded, continuous

and coercive functional2.
The easiest method to prove that the functional I has a minimum is the so

called direct method which works as follows. Take {yk}∞k=0, an infimizing sequence
of the functional I. As the functional is bounded from below the infimum of
I has a finite value and since moreover the functional is coercive the sequence
{yk}∞k=0 is bounded in W 1,p(Ω,Rm). As W 1,p(Ω,Rm) is a reflexive space3 there is a
y ∈W 1,p(Ω,Rm) being the weak limit of the infimizing sequence. This limit is then
a minimizer of the functional I if it is (sequentially) weakly lower semi-continuous.

Clearly not for every functional of the studied type the weak limit of the
infimizing sequence needs to be a minimizer. To see this, return to Example 1.1,
where we already characterized one possible infimizing sequence {yk}∞k=0. The
weak limit of this sequence is y(x) = x but I(I, θ) > I(∇yk, θ) for any k greater
than a fixed constant, which clearly shows that the weak limit is not a minimizer.

First we shall give conditions we have to impose on the function φ to guarantee
the functional (2.4) to be weakly lower semi-continuous which allows for the
application of the direct method.

Definition 2.1. 4 We say that ϕ : R
m×n → R is quasiconvex if

ϕ(Y ) ≤ inf
ω∈W 1,∞

0 (Ω),Rm

1

|Ω|

∫

Ω

ϕ(Y + ∇ω)dx, (2.5)

for any Y ∈ R
m×n, and the integral in the above formula exists.

Proposition 2.2. 5 Let φ : R
n×R

m×n → R be a Carathéodory function satisfying

0 ≤ φ(x, F ) ≤ c2(1 + |F |p),
1We may also assume that φ is also dependent on y(x). However this case is not interesting

when modelling the behaviour of shape memory alloys. Moreover under continuity assumptions
for I this case is easily governed by the usage of compact embeddings.

2This can be guaranteed by e.g. by assuming that there exist constants c2 ≥ c1 > 0 such
that c1(|F |p − 1) ≤ φ(x, F ) ≤ c2(1 + |F |p) for a.e. x ∈ Ω and every F ∈ R

m×n.
3Note that we assume that p ∈ (0,∞).
4The notion of quasiconvexity was introduced by Morrey [47], a generalized concept of W 1,p-

quasiconvexity was later introduced by Ball and Murat [7].
5This proposition is essentially due to Morrey [47]. Actually under the growth assumed even

W 1,p-quasiconvexity would suffice as shown in [7] by Ball and Murat.
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for a constant c2 > 0, a.e. x ∈ Ω, every F ∈ R
m×n and p ∈ (1,∞). Then the

functional I(y) from eq. (2.4) is weakly lower semi-continuous if and only if φ is
quasiconvex for a.e. every x in Ω.

From this characterization we see that the stored energy density in Example 1.1
is not quasiconvex as the direct method fails. To bypass the problem we shall
search for the minimum of a different functional I∗(y) defined by

I∗(y) =

∫

Ω

Qφ(x,∇y)dx, (2.6)

where Qφ is the quasiconvex envelope of the function φ defined as the supremum
of quasiconvex functions lying underneath φ.6

Clearly, under appropriate growth and coercivity conditions on φ, a minimizer
of I∗ exists due to Proposition 2.2. A natural question is however whether this
minimum and the infimum of the original functional have the same value. The
following proposition answers the posed question positively.

Proposition 2.3. 7 Let φ : R
n×R

m×n → R be a Carathéodory function, let there
exist constants c2 ≥ c1 > 0 and p ∈ (1,∞) such that

c1(|F |p − 1) ≤ φ(x, F ) ≤ c2(1 + |F |p),

for a.e. x ∈ Ω and every F ∈ R
m×n. Then miny∈V I

∗(y) = infy∈V I(y), where I
and I∗ are defined through eq. (2.4) and (2.6) respectively.

Moreover from this proposition we see that the weak limit of any infimizing
sequence for the original functional is a minimizer for the new functional I∗.

Theoretically we are now at the position to find the infimum of the stored
energy describing, to some extent, the static behaviour of shape memory alloys
(disregarding dissipation) as the energy density can be chosen in such a way
to satisfy the appropriate growth and coercivity conditions. Yet the strategy of
quasi-convexification has two main drawbacks. First due to the non-local character
of quasiconvexity (cf. [31]) in only very few cases we are able to decide whether a
function is or is not quasiconvex. To bypass the problem of forming a quasiconvex
hull one could use only the so called rank-1 convex envelope as a lower bound or
a polyconvex envelope8 as an upper bound. We give more details on this later.

Second - and from the viewpoint of physics maybe more important - is the fact
that the minimizer of the quasiconvex envelope does not carry much information
about the infimizing sequences themselves. To study this effect more in detail recall
Example 1.1. Namely, we have already seen in this chapter that the minimizer of
the functional I∗, in this particular example, is the deformation y(x) = x, but this
deformation shows no connection with the laminate structure shown in Figure 1.1.
The reason is roughly speaking the fact that due to quasi-convexification the

6If φ is a locally bounded Carathéodory function the quasiconvex envelope can also be defined
as Qφ(Y ) = inf

ω∈W
1,p

0

1
|Ω|

∫

Ω
φ(Y + ∇ω)dx. (see e.g. [14, Section 5.1.1.2])

7This is originally due to Dacorogna [14, Section 1], here taken from [54].
8The notion of polyconvexity was introduced by Ball [4] where the reader may find more

details.
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multi-well structure of the stored energy to a great extend smear out. It is therefore
desirable to find a way to keep the information about microstructure (infimizing
sequence) even for the minimizer of I∗ by some finer extension if I. This characteri-
zation can be done by the means of Young measures which are subject of the next
section.

2.2 Young measures

As already anticipated we would like to find a finer way to extend the functional
at study to assure the existence of minimizers, but on the other hand also to
track the information about infimizing sequences. An effective way is to relax the
functional into so called Young measure introduced by Young in the connection
with optimal control [67].

For further information about the broad subject of Young measures the reader
is referred to e.g. [5], [27], [28],[29], [54], [59] and many others.

We shall first of all give the fundamental theorem introducing Young measures.

Theorem 2.4. 9 Let {uk}∞k=0 be a bounded sequence in Lp(Ω,Rm) for some p ∈
(1,∞). Then there exists a subsequence of {uk}∞k=0 (not relabelled) and a family
of probability measures ν = {νx} with the property that for any Carathéodory
function φ : Ω×R

m → R∪{+∞} such that {φ(x, uk(x))}∞k=0 is weakly convergent
in L1(Ω,R) it holds

lim
k→∞

∫

Ω

ξ(x)φ(x, uk(x))dx =

∫

Ω

ξ(x)

∫

Rm

φ(x,A)dνx(A)dx, (2.7)

for any ξ ∈ L∞(Ω,R).
Especially if |φ(x,A)| ≤ g(|A|) for some g ∈ L∞

loc(R,R) then the condition of weak
convergence of φ in L1(Ω,R) is satisfied for any bounded sequence in Lp(Ω) if

lim|A|→∞
g(|A|)
|A|p

= 0.

Definition 2.5. Let {uk}∞k=0 be a bounded sequence in Lp(Ω,Rm) for some
p ∈ (1,∞), such that there exists ν to satisfy eq. 2.7. Then ν is called the Young
measure associated to the sequence {uk}∞k=0 On the other hand {uk}∞k=0 is in such
case said to generate the Young measure ν.10

Definition 2.6. Let {uk}∞k=0 be a bounded sequence in W 1,p(Ω,Rm) for some
p ∈ (1,∞), Ω ∈ R

n. Then the probability measure satisfying

lim
k→∞

∫

Ω

ξ(x)φ(x,∇uk(x))dx =

∫

Ω

ξ(x)

∫

Rm×n

φ(x,A)dνx(A)dx, (2.8)

for any Carathéodory function φ : Ω×R
m×n → R∪{+∞} such that {φ(x,∇uk}∞k=0

is weakly convergent in L1(Ω,R) and for any ξ ∈ L∞(Ω,R) is called the gradient

9This was for the first time shown by Schonbeck [61] for p > 1; for a proof we may refer the
reader also to e.g. [3].

10Note that the existence of such a ν is guaranteed by the preceding theorem, but we may
need to choose a subsequence. If this is the case than of course ν is associated to the subsequence
chosen as different subsequences may generate different Young measures.
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Young measure associated to the sequence {uk}∞k=0.
We shall further denote

GpuD
={ν is a gradient Young measure;

∇u(x) =

∫

Rm×n

Adνx(A) for a.a x ∈ Ω and u|ΓD
= uD}

We shall see that defining instead of I from eq. (2.4) a new functional

Ī(ν) =

∫

Ω

∫

Rm×n

φ(x,A)dνx(A)dx, (2.9)

defined on the set of gradient Young measures is a good way to extend the
minimization problem in order to find a minimizer.

Proposition 2.7. 11 Assume there exist constants c2 ≥ c1 > 0 such that for a
Carathéodory function φ it holds that

c2(|F |p − 1) ≤ φ(x, F ) ≤ c2(1 + |F |p), (2.10)

for some p ∈ (1,∞), a.e. x ∈ Ω and every F ∈ R
m×n. Moreover let the boundary

condition uD in (2.1) be in W 1−1/p,p(ΓD,R
m). Then

inf
y∈V

I(y) = min
ν∈Gp

uD

Ī(ν). (2.11)

As this is a fundamental theorem in our discussion we shall give a proof
of it. First note however, that we cannot use directly the second part of the
Theorem 2.4 as the demanded growth condition does not assure that φ(x,∇zk)
is weakly convergent in L1(Ω) for any sequence {zk}∞k=1 bounded in W 1,p(Ω,Rm).
Thus we shall need the following two lemmas.

Lemma 2.8. 12 Let ϕ be an arbitrary non-negative Carathéodory function, {zk}∞k=1

a bounded sequence in W 1,p(Ω,Rm) and ν = {νx} the associated gradient Young
measure. Then it holds

lim inf
k→∞

∫

Ω

ϕ(x,∇zk)dx ≥
∫

Ω

∫

Rm×n

ϕ(x,A)dνx(A)dx. (2.12)

Note that there is no demand for weak convergence in L1(Ω,R) in this lemma,
hence it can be used even if no information about the weak convergence is at our
disposal.

Lemma 2.9. 13 Let {zk}∞k=1 be a bounded sequence in W 1,p(Ω,Rm) generat-
ing a gradient Young measure ν. Then there exists another bounded sequence
{wk}∞k=1 ⊂ W 1,p(Ω,Rm) such that {|∇wk|p}∞k=1 is weakly convergent in L1(Ω,R)

11This proposition is taken from [54]
12This lemma is taken from [54] and is a consequence of Chacon’s biting lemma originally

proved by Brooks and Chacon [11].
13This lemma was originally proved by Fonseca, Müller and Pedregal [16] and independently

also by Kristensen [32].
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and the gradient parametrized measures associated with these sequences are same
ones.
Moreover let z be the weak limit of the sequence {zk}∞k=1. Then the sequence
{wk}∞k=1 can be chosen in such a way that wk − z ∈ W 1,p

0 (Ω) for all integers
k.

Proof of Proposition 2.7. Let us choose {vk}∞k=1 ⊂ V , an infimizing sequence of
the functional I(y). This sequence is due to the growth conditions on φ and
because of the regularity of the boundary condition a bounded sequence in
W 1,p(Ω,Rm). If we knew that φ(x, zk(x)) was weakly convergent in L1(Ω,R) we
would get that limk→∞ I(vk) =

∫

Ω

∫

Rm×n φ(x,A)dνMx (A)dx for some νM and at
least would know that infy∈V I(y) ≤ minν∈Gp

uD
Ī(ν).

However we do not know whether the condition of weak convergence is satisfied
as the growth conditions do not assure this a-priori. Yet due to Lemma 2.9 we
can find a different sequence {wk}∞k=1 ⊂ V such that {|∇wk|p}∞k=1 is weakly
convergent in L1(Ω,R) generating the gradient Young measure νM . Due to the
growth conditions assumed (2.10), {φ(x,∇wk(x)}∞k=1 has to be weakly convergent
in L1(Ω,R), as well. Moreover, as {vk}∞k=1 is an infimizing sequence it has to hold

lim
k→∞

∫

Ω

φ(x,∇vk)dx ≤ lim
k→∞

∫

Ω

φ(x,∇wk)dx =

∫

Ω

∫

Rm×n

φ(x,A)dνMx (A)dx.

On the other hand, from Lemma 2.8, we have

lim
k→∞

∫

Ω

φ(x,∇zk)dx ≥
∫

Ω

∫

Rm×n

φ(x,A)dνMx (A)dx,

which implies that {wk}∞k=1 is an infimizing sequence as well and it holds that

lim
k→∞

∫

Ω

φ(x,∇vk)dx =

∫

Ω

∫

Rm×n

φ(x,A)dνMx (A)dx. (2.13)

Thus we can conclude that infy∈V I(y) ≤ minν∈Gp
uD
Ī(ν).

To show the equality suppose that by contradiction there exists ν̃ ∈ GpuD
such

that Ī(ν̃) < Ī(νM). Then there has to exist a sequence {zk}∞k=1 ⊂ V generating
ν̃. Moreover due to Lemma 2.9 this sequence can be chosen in such a way that
{φ(x,∇zk(x)}∞k=1 is weakly convergent in L1(Ω,R) and therefore

I(ν̃) < lim
k→∞

∫

Ω

φ(x,∇zk)dx,

which together with eq. (2.13) gives a contradiction with the fact that {vk} is an
infimizing sequence of the functional I.

Let us now again return to Example 1.1. For this particular example we
already gave a infimizing sequence {vk(x)}∞k=1 ⊂ W 1,p(Ω,Rm), if Ω is a cube. This
sequence converges weakly to v(x) = x but this v is not a minimizer for I. However
the Young measure associated to this infimizing sequence ν = 1/2δU1 + 1/2δU2 ,
where δ denotes the Dirac mass is according to Proposition 2.7 a minimizer for
the functional Ī. We see that in the concept of Young measures the minimizing
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measure gives us information on how the infimizing sequence behaves. Although
the concepts of searching the minimum if Ī or on I∗ are related, it is a good idea
to include the gradient measure treatment if we want the minimizer to still carry
some features of the minimizing sequence.

Let us furthermore state and prove a lemma about the convergence of Young
measures, which will be important for the analysis of problems treating shape
memory alloys.

Lemma 2.10. Let there exist a constant c2 > 0 such that for a Carathéodory
function φ it holds that

|φ(x, F )| ≤ c2(1 + |F |p−ǫ),

for some p ∈ (1,∞), a.e. x ∈ Ω and every F ∈ R
m×n and some small positive ǫ.

Moreover let {νk}∞k=1 be a weakly* converging sequence in L∞
w (Ω,M(Rm×n)),

where M(Rm×n) denotes the set of Radon measures on R
m×n, such that

∫

Ω

∫

Rm×n

|A|pdνkx(A)dx ≤ C, (2.14)

for some non-negative constant C independent of k. If ν denotes the weak* limit
of the sequence {νk}∞k=1 then, for at least a subsequence

lim
k→∞

∫

Ω

∫

Rm×n

φ(x,A)dνkx(A)dx =

∫

Ω

∫

Rm×n

φ(x,A)dνx(A)dx. (2.15)

Proof. We need to prove that for any small ε there exists k such that

∫

Ω

∣

∣

∣

∣

∫

Rm×n

φ(x,A)dνkx(A) −
∫

Rm×n

φ(x,A)dνx(A)

∣

∣

∣

∣

dx ≤ 2ε. (2.16)

First of all let us verify that

∫

Ω

∫

Rm×n

|A|pdνx(A)dx ≤ C. (2.17)

To see this define a cut-off function ψR :Rm×n → R such that ψR is continuous
and ψR(A) = 0 if |A| > R and ψR(A) = 1 if |A| ≤ R− 1. Then

lim inf
k→∞

∫

Ω

∫

Rm×n

|A|pdνkx(A)dx ≥ lim inf
k→∞

∫

Ω

∫

Rm×n

ψR|A|pdνkx(A)dx

=

∫

Ω

∫

Rm×n

ψR|A|pdνx(A)dx

Now note that the sequence of functions ψR|·|p is monotone-increasing as R → ∞.
By the usage of Fatou’s lemma we get that

C ≥ lim inf
k→∞

∫

Ω

∫

Rm×n

|A|pdνkx(A)dx ≥
∫

Ω

∫

Rm×n

|A|pdνx(A)dx. (2.18)

which concludes the proof of the first assertion.
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Then rewrite (2.16) as

∫

Ω

∣

∣

∣

∣

∫

Rm×n

φ(x,A)dνkx(A) −
∫

Rm×n

φ(x,A)dνx(A)

∣

∣

∣

∣

dx =

=

∫

Ω

∣

∣

∣

∣

∫

Rm×n

φ(x,A)

|A|p−ǫ |A|
p−ǫdνkx(A) −

∫

Rm×n

φ(x,A)

|A|p−ǫ |A|
p−ǫdνx(A)

∣

∣

∣

∣

dx.

By the usage of the Young inequality we get

∫

Ω

∣

∣

∣

∣

∫

Rm×n

φ(x,A)

|A|p−ǫ |A|
p−ǫdνkx(A) −

∫

Rm×n

φ(x,A)

|A|p−ǫ |A|
p−ǫdνx(A)

∣

∣

∣

∣

dx ≤

≤
∫

Ω

∣

∣

∣

∣

∣

∫

Rm×n

(

K(α)

(

φ(x,A)

|A|p−ǫ
)

p
ǫ

+ α|A|p
)

(dνkx(A) − dνx(A))

∣

∣

∣

∣

∣

dx,

where α may be, due to the Young’s inequality used, chosen as small as needed.
In our case we shall choose α such that 2Cα is smaller than ε. Naturally, K(α),
also following from the Young’s inequality, is due to such a choice very big, but
due to the convergence νk

∗
⇀ ν we may choose k to satisfy condition (2.16), which

gives the sought result.

In the preceding theorem also gives that the weak* limit of a sequence of
gradient Young measures satisfying (2.14) is again a gradient Young measure.
The assertion is formulated in the following proposition.

Proposition 2.11. Let {νk}∞k=0 be a sequence of gradient Young measures satis-

fying (2.14). Then ν such that νk
∗
⇀ ν in L∞

w (Ω,M(Rm×n)) is again a gradient
Young measure.

Proof. This follows already from the previous lemma. Namely, we are to show that
for ν = {νx}x∈Ω there exists a sequence {ul}∞l=1 such that for all ϕ Carathédory
with a growth strictly smaller than p

lim
l→∞

∫

Ω

ϕ(∇ul)dx =

∫

Ω

∫

Rm×n

ϕ(A)dνx(A)dx.

But any Young measure νk from the considered sequence is generated by a sequence
of gradients; moreover due to (2.14) all generating sequences are uniformly bounded
by C. A suitably chosen diagonal sequence then generates ν due to Lemma 2.10.

To end up this section let us now characterize the set of GpuD
.

Theorem 2.12. 14 Let p ∈ (1,∞) and let ν = {νx} be a family of probability
measures. Then ν = {νx} is associated to some bounded sequence {zk(x)}∞k=1 ⊂
W 1,p(Ω,Rm) if and only if

1. ∇z(x) =
∫

Rm×n Adνx(A) for a.e. x ∈ Ω and for some z ∈W 1,p(Ω,Rm) being
the weak limit of the sequence {zk(x)}∞k=1,

14This is a result of Kinderlehrer and Pedregal [29]; by the same authors a preceding result
was proved which states the same assertion but requires p = ∞ [27].
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2. ψ(∇z(x)) ≤
∫

Rm×n ψ(A)dνx(A) for a.e. x ∈ Ω and for all ψ quasiconvex,

continuous and bounded from below, such that lim|A|→∞
ψ(A)

1+|A|p
exists and is

finite,

3.
∫

Rm×n |A|pdνx(A) <∞ for a.a. x in Ω.

Obviously one of drawbacks we encountered when using I∗ namely the fact
that we are unable to characterize the set of quasiconvex functions still persists.
This can be seen from the above theorem as the decision whether a measure is or is
not a gradient Young measure requires the explicit characterization of quasiconvex
functions. To treat the problem somehow in numerical simulations we may restrict
our attention to so called laminates being special Young measures, which will be
treated in the next section.

2.3 Rank-1 convexity and laminates

We shall start by giving a definition of rank-1 convex functions:

Definition 2.13. 15 We say that ϕ : Ω × R
m×n → R is rank-1 convex if

ϕ(x, λF1 + (1 − λ)F2) ≤ λϕ(x, F1) + (1 − λ)ϕ(x, F2). (2.19)

for all λ ∈ [0, 1], a.e. x ∈ Ω and all F1, F2 such that rank(F1 − F2) ≤ 1

Clearly it is much easier to determine whether a function is or is not rank-1
convex than to verify whether it is quasiconvex. In general any function that
is quasiconvex is also rank-1 convex, but the opposite does not hold, as Šverák’s
counterexample shows (see [64]). Therefore if we denoted the rank-1 convex envelope
of any function φ, being the supremum of all rank-1 convex function lying underneath
φ, Rφ the following general identities hold

Qφ ≤ Rφ ≤ φ, (2.20)

min
v∈V

∫

Ω

Qφ(x, v)dx = inf
v∈V

∫

Ω

Rφ(x, v)dx = inf
v∈V

∫

Ω

φ(x, v)dx. (2.21)

The first identity is an easy corollary of the already mentioned fact that any
quasiconvex function is rank-1 convex. The second follows from the first one and
Proposition 2.3.

Note that as quasiconvexity is a necessary condition for weak lower continuity
we cannot assure the minimum of the rank-1 convex envelope to exist. It may
therefore seem useless to speak about rank-1 convexity since our main goal when
starting this chapter was to assure existence of minimizers. However the rank-1
convex envelope is related to a subset of gradient Young measures called laminates
and if we have some reason to assume that the underlying measure for the
minimizing sequence will be a laminate (and in modelling the behaviour of shape
memory alloys this is a reasonable assumption), the construction of a rank-1
convex envelope is quite natural. We shall now give the definition of a laminate.

15The notion of rank-1 convexity was introduced by Morrey [48].
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Definition 2.14. The set {λi, Fi}2l

i=1 for λi > 0 for all i and
∑2l

i=1 λi = 1 is said
to satisfy the lamination condition of the l-th order if

1. for l = 1 rank(F1 − F2) ≤ 1,

2. for l > 1 (after possibly rearranging indices) rank(F1 − F2) ≤ 1, rank(F3 −
F4) ≤ 1 . . . rank(F2l−1 − F2l) ≤ 1 and the set {λ̃i, F̃i}2l−1

i=1 where

λ̃1 = λ1 + λ2, F̃1 = λ1

λ̃1
F1 + λ2

λ̃1
F2

λ̃2 = λ3 + λ4, F̃4 = λ3

λ̃2
F3 + λ4

λ̃2
F4

...
...

λ̃2l−1 = λ2l−1 + λ2l , F̃2l−1 =
λ
2l−1

λ̃
2l−1

F2l−1 +
λ
2l

λ̃
2l−1

F2l

satisfies the lamination condition of order l − 1.

Definition 2.15. Let {λi, Fi}2l

i=1 be a set that satisfies the lamination condition

of the order l. Then the gradient parametrized measure ν l =
∑2l

i=1 λiδFi
where δ

is the Dirac mass is called a laminate of the l-th order. The weak* limit for l → ∞
in the sense of measures of laminates of the order l again a gradient parametrized
measure (cf. [54, page 164]) called simply laminate.

Clearly a laminate of any order is also a laminate. In Example 1.1, which we
should have in mind throughout this chapter, we already saw that the underlying
gradient measure for the infimizing sequence considered there is
ν = 1/2δU1 + 1/2δU2 . This is, as U1 and U2 are rank-1 connected, a laminate
of the first order. In this case therefore it is sufficient to restrict our attention to
laminates only.

However in more complicated cases, for example in the cases when forces act on
the investigated body we cannot be sure that the underlying Young measure will
be a laminate of finite order. Nevertheless, as already mentioned, the restriction
of our view to laminates of finite order is not only an acceptable restriction
for modelling but also necessary for numerical implementations. Especially if we
are interested in numerical treatment it is useful to have a recursive scheme to
construct the rank-1 convex envelope. How this can be done is shown in the next
proposition (see Kohn and Strang [30] or Dacorogna [14, Section 5.1]).

Proposition 2.16. Let ϕ : R
m×n → R be bounded from below. Then for any

Y ∈ R
m×n it holds that

Rϕ(F ) = lim
k→∞

Rkϕ(F ) where

R0ϕ = ϕ and

Rk+1ϕF = inf {λRkϕ(F1) + (1 − λ)Rkϕ(F2), where λ ∈ [0, 1]

such that F = λF1 + (1 − λ)F2 and rank(F1 − F2) ≤ 1}
or equivalently

Rϕ(F ) = inf

{∫

Rm×n

ϕ(A)dν(A) where ν is a laminate such that

F =

∫

Rm×n

Adν(A)

}
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Proof. First note that the sequence Rkϕ(F ) is non-increasing for any matrix F , as
Rk+1ϕ(F ) ≤ 1/2Rkϕ(F ) + 1/2Rkϕ(F ) = Rkϕ(F ). Since also ϕ is bounded from
below the limit limk→∞Rkϕ(F ) exists and is finite for every matrix F .

Second we shall show that limk→∞Rkϕ(F ) is a rank-1 convex function. It
follows directly from definition that

Rk+1ϕ(λF1 + (1 − λ)F2) ≤ λRkϕ(F1) + (1 − λ)Rkϕ(F2)

for any F1, F2 that are rank-1 connected and all λ between zero and one. As this
holds for any k taking the limit for k → ∞ already gives rank-1 convexity. We
thus know that φ ≥ Rϕ(F ) ≥ limk→∞Rkϕ(F ).

Third as Rϕ is by definition a rank-1 convex function it has to hold that
Rϕ(λF1 + (1 − λ)F2) ≤ λRϕ(F1) + (1 − λ)Rϕ(F2) ≤ λϕ(F1) + (1 − λ)ϕ(F2)
for all F1, F2 that are rank-1 connected and all λ ∈ [0, 1]. From this follows (by
taking the infimum on both sides) that Rϕ ≤ R1ϕ which proves the theorem by
recursion.

Note that a minimization on the partial envelopes Rk from the above theorem
corresponds to minimizing Ī on laminates of the order k. We are thus able to
find a numerical way to search for minima of functionals where the underlying
Young measure of the infimizing sequence is a laminate of any order. However,
as anticipated, not every homogeneous gradient Young measure is a laminate.
However most observed microstructure in shape memory alloys are laminates and
therefore the description by laminates is still useful.

Even if the minimizing gradient measure is not a laminate we still can use the
laminate description. The problem is then discretized on a finite element mesh and
a laminate is taken as an approximative minimizer on any element. The sequence
of such laminates converges with mesh refinement (weakly*) to the minimizing
measure even if this is not a laminate. We shall give more details on this in next
chapter.



Chapter 3

Analysis of quasi-static evolution
of a SMA specimen under loading

In this chapter we shall put results obtained in the Chapter 1 on physical back-
ground into a mathematically rigorous framework and define what we will under-
stand to be a quasi-static evolution problem of shape memory alloy specimen
subject to loads. In addition, we shall prove that a solution to such a problem
does exist.

We shall follow the works of Mielke and Theil [43], [44], Mielke and Roub́ıček
[41], Kruž́ık, Mielke and Roub́ıček [34] as well as Mielke and Francfort [17] and
paraphrase some of the arguments from the publications above to extend the
theory also to non-zero and time-dependent boundary conditions. Such an extension
is desirable as in this work (cf. Chapter 6) contrary to previous works [34] or [60]
we analyse in simulations the behaviour of a specimen subject to Dirichlet and
not Neumann loads. This new kind of loading allows to see effects that could not
be simulated before, but are observed in experiments (e.g. [50]).

Although we mostly follow the works cited above the foundation stone for the
mathematical treatment of the behaviour of shape memory alloys as presented
here was already laid by Ball and James [5], [6]

3.1 Definitions of solutions

We have seen that from fundamental physical laws, namely the balance of momen-
tum, the conservation of energy and the second law of thermodynamics the energy
conservation (1.24) and the stability of the process (1.25) follow. It seems therefore
natural to use these two concepts to define what a solution of the process when
loading a specimen of a shape memory alloy has to satisfy.

In Chapter 2 we saw however that an energy minimizer needs not to exist, even
for time-independent problems. So, it proved useful to relax the problem. As we
cannot assume that in the time dependent case, which is even more complicated,
a solution to the unrelaxed problem will exist, we shall therefore introduce the
relaxed Helmholtz free energy as

ψOr
R (x, uOr, νOr) =

∫

R3×3

ψ(x, uOr(x) + x, I + A)dν(A). (3.1)

32
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Here we introduced a new notation, namely the superscript ”Or” which is an
abbreviation for original and was introduced here to indicate that the Young
measure, the displacement and the Helmholtz free energy were not shifted by the
Dirichlet boundary condition. This shift will be introduced later and we shall see
that it will be useful for the analysis.

After relaxation the Young measure ν must also be taken in account as a
variable describing the process. Moreover the phase distribution function, represen-
ted by the vector of volume fractions, is another important description parameter
which is needed to calculate the dissipation during the process and needs therefore
to be considered as a variable describing the process. As already mentioned the
Young measure ν, at least if it has the form of a laminate, can be interpreted
as an indicator of the phase distribution. Therefore it is not surprising that we
shall define the following general relation between the Young measure and the
phase distribution function, represented by the vector of volume fractions (see for
example [34])

λOr(x) =

∫

R3×3

LOr(A)dνOr(A). (3.2)

Here LOr : R
3×3 → R

M+1 is a phase indicator function and M is the number of
martensitic variants.

Let us now define the space QOr in which we shall search for solution of the
loading problem:

QOr = {(uOr, νOr, λOr) ∈W 1,p(Ω,R3) × GpuD
×W α,r(Ω,RM+1) such that

uOr
|ΓD

= uD; ∇uOr(x) =

∫

R3×3

AdνOr
x (A), and λOr

i (x) ≥ 0 for

i = 1 . . .M + 1,
M+1
∑

i=1

λOr
i = 1 for a.a. x ∈ Ω} (3.3)

Note that we did not include condition (3.2) in the definition of the set of all
admissible solutions, which allowed for the variables λOr and νOr to be independent.
This is because it shall be enough to require that condition (3.2) is satisfied
approximately by means of penalization.

In this definition of all admissible processes we require them to satisfy the
Dirichlet boundary condition. As this condition is time dependent handling, it by
requiring it through a space definition as above is rather difficult. Therefore, as
anticipated, we shall apply a useful trick and shift the original problem. Take a
triple qOr = (uOr, νOr, λOr) be in QOr and suppose that the Dirichlet boundary
condition uD(x, t) admits for any time t ∈ [0, T ] an extension ũD(x, t) into the
domain Ω satisfying ũD ∈ W 1,p(Ω,R3) and ũD|ΓD

= uD. Then we shall denote

q = (u, ν, λ) a triple from the space

Q = {(u, ν, λ) ∈ W 1,p(Ω,R3) × Gp0 ×W α,r(Ω,RM+1) such that

u|ΓD
= 0; ∇u(x) =

∫

R3×3

Adνx(A), and λi(x) ≥ 0 for (3.4)

i = 1 . . .M + 1,
M+1
∑

i=1

λi = 1 for a.a. x ∈ Ω}. (3.5)
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Note that the connections between the original triple qOr and the triple from the
new space is u(x) = u

Or
(x) − ũD(x) and λ(x) = λ

Or
(x) for a.a. x in Ω.

According to this definition we shall shift also the Helmholtz free energy and
the function LOr from (3.2). Then the functions ψR and L are defined through the
following relations

ψR(t, x, q) = ψOr(x, qOr), (3.6)

λOr(x) = λ(x) =

∫

R3×3

L(t, A)dνx, (3.7)

which have to hold for almost all x in Ω. Note that since the Dirichlet boundary
condition depends on time the new shifted function depend explicitly on time even
though the unshifted functions did not.

As we have already defined the relaxed shifted Helmholtz free energy, we may
also define the relaxed Gibbs free energy for any q ∈ Q

G0
R(t, q(t)) =

∫

Ω

ψR(t, x, q)dx−
∫

Ω

(x+ u(t, x) + ũD(x, t))f(t, x)dx

−
∫

ΓN

(x+ u(t, x) + ũD(x, t))g(t, x)dS + ǫ ‖λ‖rα,r

+K

∫

Ω

Pen

(

λ−
∫

R3×3

L(t, A)dνx

)

dx, (3.8)

where

‖λ‖α,r =

(

1

4

∫

Ω

∫

Ω

|λx− λx̃|r
|x− x̃|3+rαdxdx̃

)1/r

(3.9)

is a regularization term, and Pen(λ −
∫

R3×3 L(t, A)dνx) is a penalty that assures
that condition (3.2) will be satisfied approximately.

Moreover let us extend the definition of the Gibbs free energy to all
q̃ ∈ W 1,p(Ω,R3) × Gp0 × L1(Ω,RM+1) in the following way

GR(t, q̃(t)) =

{

GR(t, q̃(t)) if q̃(t) ∈ Q,

+∞ otherwise.
(3.10)

First of all we clarify how we may characterize the loading problem of a shape
memory alloy specimen.

Definition 3.1. Assume having a quasi-static process in which we consider loading
of a shape memory alloy specimen, characterized by a Gibbs free energy GR and
a dissipation D (as in (1.23)), subject to loads, characterized by the Dirichlet
boundary condition uD, the Neumann boundary condition g and a volume force
f . Moreover let the process be started from an initial state q0 then we shall denote
the quasi-static evolution problem characterized by the preceding quantities briefly
as the (GR, D, uD, g, f)-problem.

Definition 3.2. 1 The process q : [0, T ] → Q will be called an energetic solution
to the (GR, D, uD, g, f)-problem, if it satisfies

1The concept of energetic solutions for rate-independent processes (as the one considered
here) was introduced by Mielke; from the rich bibliography published by him and collaborators
considering this topic we may refer the reader to e.g. [44].
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1. the stability condition:

GR(t, q(t)) −GR(t, q̃(t)) ≤ D(q(t), q̃(t)) (3.11)

for all t ∈ [0, T ] and all q̃ ∈ Q,

2. the energetic equality : whenever q(t) ∈ Q then ∂tGR(t, q(t)) exists and is
continuous and moreover

GR(t2, q(t2)) −GR(t1, q(t1)) + Diss[t1,t2] =

∫ t2

t1

∂tGR(t, q(t))dt, (3.12)

It may not be obvious at first sight how the energy equality formulated here
relates to the balance of energy (1.24) derived from physical first principles. To
see the relation between these two equations suppose that the Helmholtz free
energy depends on the position and the deformation gradient only i.e. ψOr =
ψOr(x,∇u). Moreover suppose that it is continuously differentiable with respect
to its second argument and satisfies an appropriate growth condition (A1) from
the next section. In addition, assume that the external forces f and g and the
extension of the boundary condition ũD are continuously differentiable in time.
Then by using Lebesgue’s dominated convergence theorem we get

∂tGR(t, q(t)) = −
∫

Ω

∂f

∂t
(x, t)uOr(x, t)dx−

∫

ΓN

∂g

∂t
(x, t)uOr(x, t)dS+

+

∫

Ω

∫

R3×3

∂ψ

∂A
(x,A)

∂

∂t
∇ũD(x, t)dνx(A)dx−

−
∫

Ω

f(x, t)
∂ũD
∂t

(x, t)dx−
∫

ΓN

g(x, t)
∂ũD
∂t

(x, t)dS+

+ ∂t

∫

Ω

Pen

(

λ−
∫

R3×3

L(t, A)dνxdx

)

(3.13)

Plugging this relation into (3.12) we see the correspondence with the energy
balance (1.24) except for the last term coming from the penalty. Naturally we
cannot see any correspondence to this ”penalization force” as we did not include
it in the physical formulation.

3.2 Data qualifications and time discretization

In this section we shall formalize the assumptions on the Helmholtz free energy the
Dirichlet boundary condition and the outer forces. To do so let us first establish
the notion of convergence on the space Q.

Definition 3.3. We say that qk = (uk, νk, λk) ∈ W 1,p(Ω,R3)×Gp0×W α,r(Ω,RM+1)
converges weak* to a q = (u, ν, λ) ∈ W 1,p(Ω,R3)×L∞

w (Ω,M(R3×3))×W α,r(Ω,RM+1)

and denote it as qk
∗
⇀ q if uk ⇀ u ∈ W 1,p((Ω,R3), νk

∗
⇀ ν ∈ L∞

w (Ω,M(R3×3))
and λk ⇀ λ ∈ W α,r(Ω,RM+1)
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Remark 3.4. Note that, unless we can assure that {νk} above satisfy (2.14) we
cannot know that the limiting ν indeed is a gradient Young measure. However,
since in what follows we will always be able to assure this condition we shall
sometimes shortly write that qk

∗
⇀ q in Q if the above convergences are satisfied.

Further we shall list data qualifications that will be of need throughout the
whole chapter.

(A1) Helmholtz free energy : Let ψOr be Carathéodory function and let moreover
ψOr(x, ·) ∈ C1(R3×3) for a.a. x ∈ Ω. Further assume that there exist non-nega-
tive constants c0, c1, c3 such that

c0|A|p − c1 ≤ ψOr(x,A) ≤ c1(1 + |A|p), (3.14)
∣

∣

∣

∣

∂ψOr

∂A
(x,A)

∣

∣

∣

∣

≤ c3(1 + |A|p−1), (3.15)

are satisfied for a.a. x in Ω and p corresponds to the definition of the state
space Q in (3.4).

(A2) Dissipation: We assume that the dissipation is a (not necessarily symmetric)
pseudo-metric on the space Q, i.e. it holds

D(q1, q2) ≥ 0 ∀q ∈ Q, λ1 = λ2 ⇔ D(q1, q2) = 0, (3.16)

D(q1, q3) ≤ D(q1, q2) +D(q2, q3) ∀q ∈ Q. (3.17)

In addition we require the dissipation to be weakly* continuous, meaning
that whenever qk1

∗
⇀ q1 and qk2

∗
⇀ q2 in Q then D(qk1 , q

k
2) → D(q1, q2), and

the following bound

CD1 ‖λ1 − λ2‖L1(Ω,RM+1) ≤ D(q1, q2) ≤ CD2 ‖λ1 − λ2‖L1(Ω,RM+1) , (3.18)

for some non-negative constants CD1 and CD2 to be satisfied.

(A3) Volume force: Let

f ∈ C1([0, T ], Lp
∗′

(Ω,R3)), (3.19)

where p corresponds to (3.4) and [0, T ] is the time interval on which the
time dependent problem is solved.

(A4) Surface force: Let

g ∈ C1([0, T ], Lp
♯′

(ΓN ,R
3)), (3.20)

(A5) Boundary Condition: Let

uD ∈ C1([0, T ],W 1− 1
p
,p(ΓD,R

3)), (3.21)

which assures that there exists an extension of this boundary condition ũD
such that ũD|ΓD

= uD and ũD ∈ C1([0, T ],W 1,p(Ω,R3)).
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(A6) Phase Distribution Function: Let the function L(t) : R
3×3 → R

M+1 satisfy
the growth condition |L(t, A)| ≤ C(1 + |A|p−ǫ) for all t, a non-negative
constant C and some small positive ǫ.

Moreover we require that L(t, A) is continuously differentiable in time and
that |∂tL(t, A)| ≤ C(1 + |A|p−ǫ).

(A7) Penalization function: Let Pen : RM+1 → [0,∞] be an increasing2 continuously
differentiable function, such that

∣

∣

∣

∣

dPen

dr

∣

∣

∣

∣

≤ C1(1 + Pen(r)), (3.22)

for some constant C1. Moreover we require the following growth conditions
to be satisfied

Pen(r) ≤ C2(1 + |r|q), (3.23)

where q is chosen to satisfy both q ≤ r̃ − δ and q(p − ǫ) < p. Here ǫ refers
to the growth of the phase distribution function, r̃ refers to the embedding
W α,r(Ω,RM+1) →֒ Lr̃(Ω,RM+1) and δ is some small positive number. Note
that at least for q=1 this condition can be satisfied.

If these assumptions are satisfied it holds that whenever we have a q in Q there
exists a continuous derivative of the Gibbs free energy with respect to time as is
demanded in Definition 3.2.

Let us at this point prove a lemma that shall be of use at several points later.

Lemma 3.5. Let (λk, νk)
∗
⇀ (λ, ν) in W α,r(Ω,RM+1) × L∞

w (Ω,M(R3×3)) such
that (2.14)3 holds true. Moreover assume (A6)-(A7) above to be satisfied. Then
∫

Ω

Pen

(

λk −
∫

R3×3

L(t, A)dνkx(A)

)

dx→
∫

Ω

Pen

(

λ−
∫

R3×3

L(t, A)dνx(A)

)

dx.

(3.24)

Proof. In view of assumption (A7), namely the growth condition (3.23), it suffices
to show that both λk → λ and

∫

R3×3 L(t, A)dνkx →
∫

R3×3 L(t, A)dνkx in Lq(Ω,RM+1)4.
AsW α,r(Ω,RM+1) is compactly embedded into Lq(Ω,RM+1) for the sequence {λk}∞k=1

this will surely hold.
Let us therefore turn our attention to the convergence of

∫

R3×3 L(t, A)dνkx and
estimate

∫

Ω

∣

∣

∣

∣

∫

R3×3

L(t, A)dνkx

∣

∣

∣

∣

q

dx ≤ C

∫

Ω

∫

R3×3

|L(t, A)|qdνkxdx. (3.25)

As |L(t, A)|q has still a growth that is strictly less than p we may use Lemma 2.10
to show the desired convergence.

2Here we mean increasing in the sense that if |r1| > |r2| for some r1, r2 in R
M+1 then

Pen(r1) > Pen(r1).
3Recall that (2.14) demanded that

∫

Ω

∫

Rm×n

|A|pdνk
x(A)dx ≤ C,

is satisfied for some positive constant C.
4Here we think of the map x→

∫

R3×3 L(t, A)dνk
x as to be in Lq(Ω,RM+1).
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When searching for an energetic solution we shall use Rothe’s method of
time discretization and divide the interval [0, T ] into N time-steps and for the
sake simplicity of notation assume that the partitions we choose are equi-distant.
However we shall not need this assumption at any point of the proof below5.
First we shall search for solutions of the following time-incremental minimization
problem

Definition 3.6. Let q0 be the initial condition of the energetic process. Then
when denoting q0

N = q0 we shall call qkN the solution of

Minimize GR(tk, q̃) +D(qk−1
N , q̃)

s.t. q̃ ∈ Q. (3.26)

where 0 = t0 ≤ t1 ≤ t2 . . . ≤ tN−1 ≤ tN = T is some partition of the interval [0, T ]
such that mink=1...N tk − tk−1 = τ .

We shall first show the existence of solutions for this minimization problem
and the way this solution can be found.

Proposition 3.7. 6 Let the assumptions (A1)-(A7) be satisfied. Then there exists
a solution qkτ to the problem (3.26).

Proof. Let us take a sequence ql such that

GR(tk, q
l) +D(qk−1

τ , ql) → inf
q̃∈Q

GR(tk, q̃) +D(qk−1
N , q̃).

As the space Q is non-empty we know that GR(tk, q
l) +D(qk−1

N , ql) ≤ C for some
positive constant C. Because moreover D(qk−1

N , ql) as well as the penalization
function are non-negative due to assumption (3.16) and (A7) we may estimate

GR(tk, q
l) ≥ c0

∫

Ω

∫

R3×3

|A+ ∇uD(tk, x)|pdνkx(A)dx− c1|Ω| −
〈

l(tk), u
l
〉

+
∥

∥λl
∥

∥

α,r

≥ C

∫

Ω

∫

R3×3

|A|pdνkx(A)dx− c∗
∫

Ω

|∇uD|pdx− c1|Ω| − C∗ ‖l(t)‖p′(W 1,p(Ω))∗

− ǫ
∥

∥ul
∥

∥

p

W 1,p(Ω)
+
∥

∥λl
∥

∥

α,r

≥ c̃
∥

∥ul
∥

∥

W 1,p − c∗
∫

Ω

|∇uD|pdx− c1|Ω| +
∥

∥λl
∥

∥

α,r
− C∗ ‖l(t)‖p′(W 1,p(Ω))∗ ,

where we used (3.14), Theorem 2.12, the Friedrichs’ inequality and denoted

〈l(t), u〉 =

∫

Ω

f(x, t)(x+ uD(x, t) + u)dx+

∫

ΓN

g(x, t)(x+ uD(x, t) + u)dS,

(3.27)

‖l(t)‖W 1,p(Ω,R3)∗ = ‖f‖
Lp∗

′
(Ω,R3)

+ ‖g‖
Lp♯′

(ΓN ,R3)
. (3.28)

5Quite on the contrary we will assume that the partition can be chosen arbitrarily.
6Note that this is, in principle, a corollary of Proposition 2.7, as it is this Proposition that

assures minimizers for the Young measure part. The proof given here however is different.
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We conclude that ql
∗
⇀ q for some q inW 1,p(Ω,R3)×L∞

w (Ω,M(R3×3))×W α,r(Ω,RM+1).
Finally, from the properties of the convergence of Young measures and the weak
lower semi-continuity of norms, the weak continuity of the dissipation and Lemma 3.5
above, we conclude that

GR(tk, q)+D(qk−1
N , q) ≤ lim inf

l→∞
GR(tk, q

l)+D(qk−1
N , ql) = inf

q̃∈Q
GR(tk, q̃)+D(qk−1

N , q̃N).

Moreover from Proposition 2.11 ν is a gradient Young measure and by exploiting
also Lemma 2.10 we get that truly q ∈ Q. Therefore q is the searched minimizer
of the problem (3.26).

Of course, when recalling previous chapter, this result is not satisfactory as we
are not able to describe the minimizer qkN which applies especially to the Young
measure part. In the following proposition however we shall give a method how
the solution of the problem (3.26) can be found numerically.

Proposition 3.8. 7 Let Ω be a tetrahedral domain and let τh be a regular trian-
gulation of the domain such that τm for m < h is a refinement of the mesh τh.
Let

Qh = {q ∈ Q;u ∈ C(Ω,R3), u|K ∈ P1 ∀K ∈ τh,

λ ∈ L∞(Ω,R3), λ|K ∈ P0 ∀K ∈ τh, ν = δ∇u}. (3.29)

Then there exists a minimizer to the problem inf q̃∈Qh
GR(tk, q̃)+D(qk−1

N , q̃) denoted

qh,kN . Moreover as h tends to zero this sequence converges weakly* to qkN which is
a solution to the problem (3.26).

Proof. As the spaceQh is finite-dimensional andGR(tk, q̃)+D(qk−1
N , q̃N) is continuous

and coercive there exists a minimizer to this problem qh,kN . Moreover as we can
choose the mesh τm for m < h to be a refinement of the mesh τh it holds that

GR(tk, q
m,k
N ) +D(qk−1

N , qm,kN ) ≤ GR(tk, q
h,k
N ) +D(qk−1

N , qh,kN ),

and the bound GR(tk, q
h,k
N ) + D(qk−1

N , qh,kN ) ≤ C holds uniformly in h. From the
coercivity assumptions (see also the proof of Proposition 3.7) we therefore conclude

that qm,kN
∗
⇀ q̃kN in W 1,p(Ω,R3) × L∞

w (Ω,M(R3×3)) ×W α,r(Ω,RM+1).

As the triangulation is regular we know that for any λ ∈ W α,r(Ω,RM+1) there
exists a sequence {λh}h>0 such that λh is in W α,r(Ω,RM+1) piecewise constant
and λh → λ strongly. Similarly for any u ∈ W 1,p(Ω,R3) there exists a sequence
{uh}h>0 such that uh is in C(Ω,RM+1) piecewise linear such that uh → u.

We now have to show that q̃kN is a solution to (3.26). Due to Proposition 3.7 we
may choose qkN a minimizer of the time incremental problem. Moreover let choose
{um}∞m=0 the underlying sequence for the Young measure νkN . Using the above said

7Note that this is, as can be seen from the proof, a corollary of Theorem 2.4 and the well
known fact that functions from Sobolev spaces may be approximated continuous piecewise linear
function (see e.g. [23]).
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let us choose sequences {uhm}h>0 converging to um and {λh}h>0 converging to λkN .
Then the triple qm,h = (uhm, δ∇uh

m
, λh) is in Qh and therefore

GR(tk, q̃
k
N) +D(qk−1

N , q̃kN) ≤ lim inf
h→0

GR(tk, q
h,k
N ) +D(qk−1

N , qh,kN )

≤ lim inf
h→0

GR(tk, q
m,h
N ) +D(qk−1

N , qm,hN )

= GR(tk, q
k
N) +D(qk−1

N , qkN)+

+

(∫

Ω

ψ(t,∇um)dx−
∫

Ω

∫

R3×3

ψ(t, A)dνkx(A)dx

)

+

∫

Ω

Pen(λ− L(t,∇um)) − Pen

(

λ−
∫

R3×3

L(t, A)dνkx

)

dx

which follows from the growth condition (3.14) and continuity properties. Moreover
taking the limit for m tending to infinity makes the last two terms (in brackets)
vanish and gives the sought result.

3.3 A-priori estimates

According to previous section a solution to the minimization problem (3.26)
denoted qkN exists. Let us introduce a function qN defined on [0, T ] as follows

qN(t) =

{

q0 for t = 0,

qkN for t ∈ (tk−1, tk].
(3.30)

Our goal throughout the next sections will be to show that asN tends to ∞ this qN
converges to an energetic solution. In this section however we shall concentrate on
a preliminary step - the a-priori estimates as formulated in the next proposition.

Proposition 3.9. 8 Let the assumptions (A1)-(A7) be satisfied. Then there exist
positive constants C1 and C2 such that the following bounds hold true

‖uN‖L∞([0,T ],W 1,p(Ω,R3)) ≤ C0, (3.31)

‖λN‖BV ([0,T ],L1(Ω,RM+1))∩L∞([0,T ],Wα,r(Ω,RM+1)∩L∞(Ω,RM+1)) ≤ C1. (3.32)

Moreover a discrete stability condition

GR(tk, qN(tk)) ≤ GR(tk, q̃) +D(qN(tk), q̃) ∀ q̃ ∈ Q, (3.33)

and the discrete two-sided energy inequality

∫ tk

tk−1

∂tGR(s, qN(tk))ds ≤ GR(tk, qN(tk)) + Diss[tk−1,tk] −GR(tk−1, qN(tk−1))

≤
∫ tk

tk−1

∂tGR(s, qN(tk−1))ds, (3.34)

are satisfied for all k = 0, 1 . . . N .

8This partly paraphrases the arguments of e.g. [34] or [17].
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Proof. Let us begin by proving the second part of the theorem. First of all as
qN(tk) solves (3.26) we know that for all q̃ in Q

GR(tk, qN(tk)) +D(qN(tk−1), qN(tk)) ≤ GR(tk, q̃) +D(qN(tk−1), q̃), (3.35)

which together with (3.17) gives

GR(tk, qN(tk)) ≤ GR(tk, q̃) +D(qN(tk−1), q̃) −D(qN(tk−1), qN(tk))

≤ GR(tk, q̃) +D(qN(tk), q̃),

being the desired stability condition.

We shall now turn to the discrete energy inequality. Choosing in (3.35) for
q̃ = qN(tk−1) we get

GR(tk, qN(tk)) +D(qN(tk−1), qN(tk)) ≤ GR(tk, qN(tk−1))

= GR(tk, qN(tk−1)) −GR(tk−1, qN(tk−1)) +GR(tk−1, qN(tk−1))

= GR(tk−1, qN(tk−1)) +

∫ tk−1

tk

∂tGR(s, qN(tk−1))ds.

Moreover as we already know that qN(tk−1) satisfies the discrete stability condition
(3.33)

GR(tk−1, qN(tk−1)) ≤ GR(tk−1, qN(tk)) +D(qN(tk−1), qN(tk))

= GR(tk−1, qN(tk)) +D(qN(tk−1), qN(tk)) +GR(tk, qN(tk)) −GR(tk, qN(tk))

= GR(tk, qN(tk)) +D(qN(tk−1), qN(tk)) −
∫ tk−1

tk

∂tGR(s, qN(tk)ds,

which gives exactly the first part of the discrete energy inequality.

Next turn our attention to the estimates on qN . Choosing q̃ = 0 in (3.35) leads
to

GR(tk, qN(tk)) +D(qN(tk−1), qN(tk)) ≤ GR(tk, 0) +D(qN(tk−1), 0) ≤
≤ c1|Ω| + ‖∇ũD‖pW 1,p(Ω,R3) + c2‖ḟ(x, tk)‖Lp∗′ (Ω,R3)+

+ c3 ‖ġ(x, tk)‖Lp♯′
(ΓN ,R3)

+ c4 ‖uD(x, t)‖W 1,p(Ω,R3) ≤ C,

where we used (3.18) and the fact that λN(tk) ∈ Q. Therefore

‖uN‖L∞([0,T ],W 1,p(Ω,R3)) ≤ C0,

‖λN‖L∞([0,T ],Wα,r(Ω,RM+1)∩L∞(Ω,RM+1)) ≤ C1,

and it only remains to prove that λN is of bounded variation. To see this note that
because of the growth condition (3.15) and (A7) and the uniform bounds already
established ∂tGR(t, qtk) ≤ C is bounded uniformly in time and k. From this and
the second part of the two-sided energy estimate and the growth condition (3.18)
estimate already follows.
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Note that during this proof we have shown even more than anticipated in the
proposition namely we established that the Gibbs free energy as well as its time
derivative are uniformly bounded which means that

GR(t, qN(t)) ≤ C1, (3.36)

|∂tGR(t, qN(t))| ≤ C2, (3.37)

where C1, C2 are some constants and t = tk, but independently of k and N .
Together with the coercivity conditions this also implies that

∫

Ω

∫

R3 |A|pdνN(A)dx
remains uniformly bounded with refinement of the division of the interval [0, T ].

3.4 Convergence

We are now at the point to prove our main theorem, namely to show that the
solutions of the time incremental minimization problem (3.26) converge in a weak
sense to an energetic solution of the loading problem of a shape memory alloy.

Theorem 3.10. Let qN be the solutions of the time incremental minimization
problem (3.26) and let q0 be a stable initial state. Then there exist a finer net

{qNξ
}ξ∈Ξ and q : [0, T ] → Q such that qNξ

(t)
∗
⇀ q(t) for all t in [0, T ]. Moreover

q(t) is an energetic solution satisfying the conditions required in Definition 3.2
and q(0) = q0.

Proof. 9 We shall divide the proof into several steps. In the first we shall choose
the subsequences of qN , or to be more rigorous finer nets, and by using the a-priori
estimates we will see that they do weakly converge to a q in Q. In the second step
we shall see that the limiting q is a stable state and in the third and fourth step
we will see that it even more satisfies the energetic equality.

Step 1: Choice of subsequences

First of all note that due to the bound of λN we may choose by an application
of the Helly’s selection principle in a generalized form (cf. [38]) a subsequence of λN
(not relabelled) such that λN(t) ⇀ λ(t) in W α,r(Ω,RM+1) and
λ ∈ BV ([0, T ], L1(Ω,RM+1)) ∩ L∞([0, T ],W α,r(Ω,RM+1) ∩ L∞(Ω,RM+1)).

Moreover, the set L∞
w (Ω,M(R3×3)) is metrizable and compact, henceforth the

set L∞
w (Ω,M(R3×3))[0,T ] is compact as well by exploiting the Tikhonov theorem

([65]; note that the German spelling for ”Tikhonov” is ”Tychonoff”). Therefore we
may choose a finer {qNξ

}ξ∈Ξ (such that the convergence above is not destroyed) to

assure that νNξ
converges weakly* to some ν = {ν(t)}t∈[0,T ] in L

∞
w (Ω,M(R3×3))[0,T ].

If we can moreover assure that the limit q(t) is in Q we will already establish
the convergence in the theorem.

Step 2: Stability of the limit function and it belonging to Q

Let us fix t arbitrary. As already noted, L∞
w (Ω,M(R3×3)) is metrizable hence

we may choose a sequence {qNl
} converging to q(t).

9In the proof we shall follow the structure suggested in [17], however some arguments are
modified for the situation investigated here.
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Due to the note after the proof of Proposition 3.9 the function

DGN(t) =

{

∂GR(tk, qN(tk)) if t ∈ (tk−1, tk]

∂GR(τ, q0) if t = 0

is bounded in L∞([0, T ]) and therefore there exists DG∞(t) such that at least

for a subsequence DGN
∗
⇀ DG∞. Moreover for the current time t we define

DGpt(t) = lim supN→∞DG(t). Clearly we may choose a subsequence of the indexes
Nl denoted again Nl

10 such that DGpt(t) = limNl(t)→∞ DG. When using Fatou’s
lemma we get that
∫ t

0

DG∞(s)ds = lim sup
N→∞

∫ t

0

DG(s)ds ≤
∫ t

0

lim sup
N→∞

DG(s)ds =

∫ t

0

DGpt(s)ds.

We now want to show that the above defined q(t) is stable. Let us denote tNl

the points of the respective partitions Nl (as chosen above) such that tNl
→

t11. Then we shall first examine the convergence of the penalization function.
Surely λNl

(t) → λ(t) in Lq(Ω,RM+1) where q correspond to (A7). As far as the
penalization function is concerned we have that
∫

R3×3

L(tNl
, A)dνNl

(t)(A) =

(∫

R3×3

L(tNl
, A)dνNl

(t)(A) −
∫

R3×3

L(t, A)dνNl
(t)(A)

)

+

∫

R3×3

L(t, A)dνNl
(t)(A).

Now note that due to Lemma 3.5 and also due to the continuity of L in time
∫

R3×3 L(tNl
, A)dνNl

(t)(A) →
∫

R3×3 L(t, A)dν(t)(A) in Lq(Ω,RM+1). Therefore
∫

Ω

Pen

(

λNl
(t) −

∫

R3×3

L(tNl
, A)dνNl

(t)(A)

)

dx→

→
∫

Ω

Pen

(

λ(t) −
∫

R3×3

L(t, A)dν(t)(A)

)

dx. (3.38)

By similar arguments we establish that12

∂t

∫

Ω

∫

R3×3

ψ(tNl
, A)dνNl(t)

(t)(A)dx→ ∂t

∫

Ω

∫

R3×3

ψ(t, A)dν(x)(A)dx, (3.39)

∂t

∫

Ω

Pen

(

λNl
(t) −

∫

R3×3

L(tNl
, A)dνNl

(t)(A)

)

dx→

→ ∂t

∫

Ω

Pen

(

λ(t) −
∫

R3×3

L(t, A)dν(t)(A)

)

. (3.40)

As the Helmholtz free energy ψ has a p-growth we are not entitled to use Lemma 2.10
directly. However we may establish that

lim inf
Nl→∞

∫

Ω

∫

R3×3

ψ(tNl
, A)dνNl(t)

(t)(A)dx ≤
∫

Ω

∫

R3×3

ψ(t, A)dν(x)(A)dx, (3.41)

10But note that this further subsequence may depend on the choice on the fixed time t.
11Of course the points have to exist as Nl → ∞
12Realize that ∂tψ has due to (3.14) a growth that is strictly lower than p and also due to the

continuity assumed in (A5) ∂t∇ũD(tNl
) → ∂t∇ũD(t) in Lp(Ω,R3×3).
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which follows similarly as above by using the continuity of ψ with respect to time;
in addition as ψ is bounded from below (guaranteed by (3.14)) we can establish
that

lim inf
Nl→∞

∫

Ω

∫

R3×3

ψ(t, A)dνNl(t)
(t)(A)dx ≤

∫

Ω

∫

R3×3

ψ(t, A)dν(x)(A)dx. (3.42)

Using the above results and the discrete stability condition we get that

GR(t, q(t)) ≤ lim inf
Nl(t)→∞

G(tNl
, qNl

(t))

≤ lim inf
Nl→∞

G(tNl
, q̃) +D(qNl

(t), q̃) = G(t, q̃) +D(q(t), q̃),

for any q̃ ∈ Q. This in particular implies that ν is a gradient Young measure (by
the usage of Proposition 2.11) and by using also Proposition 2.10 q ∈ Q. Therefore
we may set q̃ = q and obtain

lim
Nl→∞

∫

Ω

∫

R3×3

ψ(tNl
, A)dνNl(t)

(t)(A)dx =

∫

Ω

∫

R3×3

ψ(t, A)dν(x)(A)dx. (3.43)

Step 3: Upper energy estimate From the above said and condition (A7) we
may deduce that

∂tGR(tNl
, qNl

(t) → ∂tGR(t, q(t))

as Nl → ∞ and therefore DGpt(t) = ∂tGR(t, q(t)) for all t in [0, T ]. When using
the two sided energy inequality (3.34) and calculating the limit we get that

GR(t, q(t)) + Diss[0,t] −G(0, q0) ≤ lim inf
Nl→∞

GR(tNl
, qNl

) + Diss[0,t] −G(0, q0)

≤ lim inf
Nl→∞

(

∫ t

0

∂tGR(tNl+1, qNl
(s))ds−

∫ t

tNl

∂tGR(tNl+1, qNl
(s)d

)

≤
∫ t

0

∂sGR(s, q(s))ds,

where we used the fact that that under restriction (A2) the total variation is
weakly lower semi-continuous. This already gives the upper energy estimate.

Step 4: Lower energy estimate Let us use the already established discrete lower
energy inequality in the form

GR(tk+1, qN(tk+1))−GR(tk, qN(tk))+D(qN(tk, qN(tk+1)) ≥
∫ tk+1

tk

∂tGR(s, qN(tk))ds,

where 0 = t1 ≤ t2 . . . tK−1 ≤ tN = t is some division of the interval [0, T ]13 and
t ∈ [0, T ]. When summing the above relation we get that

GR(t, qN(t)) −GR(0, q0) + Diss[0,T ] ≥
N
∑

k=0

∫ tk+1

tk

∂tGR(s, qN(tk))ds,

13Here we exploit that the arguments above were nowhere dependent of the partition of the
interval [0, T ].
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when t = tk for some k in [0, N ]. Then we shall rewrite the sum in the upper
relation as

N
∑

k=0

∫ tk+1

tk

∂tGR(s, qN(tk))ds =
N
∑

k=0

(tk+1 − tk)∂tGR(tk, qN(tk))ds

+
N
∑

k=0

∫ tk+1

tk

∂tGR(s, qN(tk)) − ∂tGR(tk, qN(tk))ds.

However when recalling that

∂tGR(s, q(tk)) = −
∫

Ω

∂f

∂t
(x, s)uOr(x, tk)dx−

∫

ΓN

∂g

∂s
(x, t)uOr(x, tk)dS+

+

∫

Ω

∫

R3×3

∂ψ

∂A
(x,A)

∂

∂t
∇ũD(x, s)dνx(A)dx−

−
∫

Ω

f(x, s)
∂ũD
∂t

(x, s)dx−
∫

ΓN

g(x, s)
∂ũD
∂t

(x, s)dS

+ ∂t

∫

Ω

Pen

(

λ−
∫

R3×3

L(s, A)dνx

)

dx

and using the assumption on continuous differentiability in time (A3)-(A7) and
by using furthermore integral mean value theorem we get that

∣

∣

∣

∣

∫ tk+1

tk

∂tGR(s, qN) − ∂tGR(tk, qN)ds

∣

∣

∣

∣

≤ (tk+1 − tk) |∂tGR(sk, qτ ) − ∂tGR(tk, qτ )|

≤ (tk+1 − tk)ǫ

when ǫ tends to zero with the refinement of the division of the time interval. We
therefore conclude that the term |∑N

k=0

∫ tk+1

tk
∂tGR(s, qτ (tk))−∂tGR(tk, qτ (tk))ds| ≤

Tǫ and therefore converges to zero if the division of the time interval is further
refined. The proof of the proposition is finalized by using the Theorem 3.11 below
and choosing the partition of the interval in a special way.

Theorem 3.11. 14 Let X be a Banach space and f ∈ L1((0, t), X). Then there
exists a sequence of partitions of the interval (0, t) 0 = tn0 ≤ tn1 ≤ . . . ≤ tnN(n)) = t
satisfying that maxk=1...N(n) t

n
k − tnk−1 tends to zero with n going to infinity

lim
n→∞

N(n)
∑

k=1

∥

∥

∥

∥

∥

(tnk − tnk−1)f(tnk−1) −
∫ tnk

tn
k−1

f(s)ds

∥

∥

∥

∥

∥

= 0. (3.44)

14This theorem is due to Dal Maso, Francfort and Toader, see [15, Lemma 4.12] following an
idea of Hahn [21].



Chapter 4

Numerical Implementation

In Chapter 3 we gave a proof of existence of energetic solution for quasi-static
evolution of a shape memory alloy specimen. The proof given is not only useful
from the viewpoint of analysis, but also suggests a kind of recipe how to design an
algorithm that would compute the behaviour of a shape memory alloy specimen
subject to loads in the quasi-static approximation. Therefore we shall build-up this
section similarly as the last one, here however emphasizing the implementational
point of view.

A great effort has been undertaken in the past decades to design algorithm
that would be capable of computing the quasi-static behaviour of a shape memory
alloy specimen. We should mention the pioneer works of Ball and James [5], [6]
that came up with the idea to model shape memory alloys in the way presented
here and after them a rich number of papers considering this subject can be found
e.g. [33], [2], [1], [35], [34], [60].

First of all let us recall that in simulations we may choose the concrete form
of the Gibbs free energy, dissipation distance and boundary conditions for the
displacement as well as forces acting on the body. The choice of the first two is a
constitutive choice we always have to make in modelling to give a description of
the material in question. The choice of the latter two reflects the loads we want
the material to be exposed to. The choice of these quantities is restricted only
by the the fact that assumptions (A1)-(A7) from previous chapter ought to be
satisfied.

Let us moreover recall that we are solving the problem on the time interval
[0, T ] and the domain Ω. Haven chosen the necessary quantities we have to
discretize the problem to allow for numerical solutions.

The discretization in time follows exactly the ideas from previous chapter
meaning that we choose a division {tk}Nk=0 of the interval [0, T ]. For each time-step
k we choose a triangulation of the domain Ω which denotes the domain that is
occupied by the material in reference configuration. Note that - as is usual in
modelling of solids - although the body may be deformed, the domain Ω remains
unchanged as we perform the calculations in reference configuration. Though it
is possible to choose a different triangulation for different time-steps in the code
developed by the author, mostly the same triangulation for all time-steps is used.

As soon as the loads and the Gibbs free energy as well as the dissipation
distance are chosen, the computing variables for the code in a specific time-step k

46
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are the values of the displacement in each vertex as well as the values of the Young
measure on each element. However the discretization of the Young measure may
not be obvious at first sight and we shall come back to the question how to
approximate it in what follows.

4.1 Discretization of displacements

Let us denote τk,h the triangulation of the domain in the k-th time-step and let
{Ki}Li=1 be the collection of tetrahedra forming the triangulation. In the specific
time-step k we then search for the numerical approximation of the displacement
denoted uk,h in the space

Uk,h =
{

u ∈ C(Ω̄,R3), s.t. u|Ki
is affine, ∀k = 1 . . .M

}

. (4.1)

Moreover we require that uk,h(xB) = uD(tk, xB) where xB are all such vertices of
the triangulation τk,h that ΓD ∩ xB 6= ∅.

In this definition we see that the discretized displacement enjoys a greater
regularity, namely the spatial continuity, than the continuous one. It is therefore
not surprising that we have to suppose that the Dirichlet boundary condition is
continuous not only in time (which is already assured by assumption (A5) stated
in previous chapter) but also in space. This is necessary to allow us to speak about
values of the boundary condition in vertices and to satisfy that they are equal to
values of the discretized displacement.1

Note that the shift of the whole problem with respect to the Dirichlet boundary
condition, that was very helpful for mathematical analysis, brings no benefits for
numerical solving or implementation. Hence we shall abandon this shift and work
with the original problem, as already the definition of the space in which we search
for solutions (4.1) suggests.

Note that as the displacement is piecewise affine the displacement gradient,
which is the crucial quantity we are interested in, is piecewise constant.

4.2 Discretization of Young measures

The approximation of the Young measure is more complicated and relies on its
approximation by a finite-order laminate (cf. e.g [2], [35]) given in Definition 2.14.
On every tetrahedron of the triangulation we approximate

νk,h =
2l
∑

k=1

λkδFk
, (4.2)

such that
∑2l

k=1 λk = 1 and the matrices Fk satisfy the the lamination condition

(2.19) of the l-th order and moreover
∑2l

k=1 λkFk = F = I+∇u. The last condition
assures that the average of the Young measure νk,h is exactly the deformation

1Note that no such requirement has to be put on the Neumann data, as those occur in the
definition of the numerical Gibbs free energy (see (4.6) below) only in integrals.
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Figure 4.1: The scheme of the rank-1-partition of the deformation in case of a
second order laminate.

gradient F . Theoretically any lamination order may be used in the code developed
by the author, in practise however second order laminates are used at most.2 The
concrete form of the Young measure as soon as the order of the laminates is fixed
can be read from the diagram given in Figure 4.1. Note that the matrices F1 and
F2 forming the rank-1-partition of the deformation gradient of the first order are
fully determined by the deformation gradient itself, a weight λ and two vectors
for which it holds

F1 = F + (1 − λ)a ⊗ n,

F2 = F − λa ⊗ n.

These relations are a direct consequence of the fact that F1 and F2 are rank-1

connected and moreover
∑2l

k=1 λkFk = F . Similar relations hold also for the
matrices F12 . . . F22 following Figure 4.1.

In the algorithm these vectors and weights are taken as degrees of freedom
which assure all compatibility conditions to be satisfied. Geometrically the vector
n represents the normal of the lamination as is shown in Figure 4.2 whereas the
vector a has no obvious geometrical interpretation.

Obviously the approximation of the Young measure by a laminate of a finite
order is not exact as we have already seen that not every Young measure is of the
form of a laminate. However Proposition 3.8 guarantees that with mesh refinement
this approximation will converge weakly* to an energetic solution (of course also
the division of the time interval has to be further refined).

4.3 Definition of volume fractions

In the continuous setting presented as above we had to give up our wish to
satisfy condition (3.2) exactly and had to be satisfied with a penalization function
that guaranteed that this condition shall be satisfied at least approximately. This

2This is due to the fact that laminates observed in nature are mostly of the second order
(see e.g. [9] or [52]); some new observations suggest that special forms of a laminate of the third
order might also be possible [62].
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Figure 4.2: First order laminate with a weight λ and a normal n

compromise had to be made due to technical reasons as we would not be able to
prove existence of solution in case we insisted on requiring (3.2). These technical
difficulties arose mainly due to the shift by the time-dependent Dirichlet boundary
conditions, however this shift was necessary too.

In the discrete setting we return to the original problem in the sense, that
we do not shift the problem. Therefore there is no necessity for a penalization
function to be added to the Gibbs free energy. Hence in every time-step volume
fractions are directly calculated by

λk,h =

∫

R3×3

L̃(A)dνk,h, (4.3)

where the function L̃ is independent of time3 and is chosen in the specific form
(following e.g. [60])

L̃(A) =

{

d(|FFT − UlU
T
l |)

∑M+1
k=1 d(|FFT − UkUT

k |)

}M+1

l=1

, (4.4)

where we used the notation from Chapter 1. For the readers convenience let
us shortly repeat that we denote U1 . . . UM deformation matrices, each of which
corresponds to one variant of martensite. As UM+1 we denoted the deformation
matrix corresponding to the austenite phase, a natural choice is to consider
UM+1 = I.

3Realize that the only reason why the function L in previous chapter is time dependent is
the shift due to the time dependent Dirichlet boundary condition.



50 CHAPTER 4. NUMERICAL IMPLEMENTATION

The function d, which was not defined yet, is a continuous function R → R

such that outside an sufficiently small interval [−ǫ, ǫ] it is equal some very small
number. The norm | · | is the Frobenius norm4 defined on matrices.

Such a definition of the function L̃ ensures roughly speaking that as soon as
the deformation gradient - or only the matrices forming its rank-1 decomposition
in the sense of the laminate chosen - are near to the well of a variant, volume
fractions are assigned to this well. However such a definition cannot handle cases
when the material has to stay in one phase during a possibly large deformation
as no other variant would be more advantageous for the material.

To end up with let us note that determining volume fractions (although they
are not degrees of freedom for the code) is not only important for the program
output, but also for the computation of the energy dissipated. This can be easily
seen in the context of what was said previously in Chapter 1, namely the dissipation
is connected to a change of the phase distribution function which may be represented
by the vector of volume fractions.

4.4 Discrete problem

First of all denote Qk,h the space of the pairs (uk,h, νk,h) which satisfy the require-
ments stated in previous sections. To be more specific

Qk,h = {(uk,h, νk,h) ∈ C(Ω̄,R3) × GpuD
s.t. νk,h is a laminate of finite order and

u|Ki
is affine, ∀k = 1 . . .M and uk,h(xB) = uD(tk, xB), xB are vertices s.t.

ΓD ∩ xB 6= ∅}, (4.5)

where τk,h is a regular triangulation of the domain Ω. Let us moreover have an
initial condition (u0

k,h, ν
0
k,h) that is stable.

In previous section we stated that the penalization term in the Gibbs free
energy introduced for the reasons of mathematical analysis is not necessary in the
discrete case. Similarly we may drop the regularization term for volume fractions
and so return to the original physical Gibbs free energy, however relaxed to Young
measures. We therefore define the Gibbs free energy for numerical reasons as

GN(t, q(t)) =

∫

Ω

ψOr
R (t, x, q)dx−

∫

Ω

(x+u(t, x))f(t, x)dx−
∫

ΓN

(x+u(t, x))g(t, x)dS,

(4.6)
where q = (u, ν) is from the space Qk,h, which turns the integrals to summations
over the the particular tetrahedra of the triangulation:

GN(tk, qk,h) =
∑

Ki∈τh

|Ki|ψR(tk, νk,h(Ki),∇uk,h(Ki))−

−
∑

Ki∈τh

|Ki|
4

4
∑

j=1

(xjKi
+ u(tk, x

j
Ki

))f(tk, x
j
Ki

) −
∑

Γi

|Γi|
3

3
∑

j=1

(xjΓi
+ u(tk, x

j
Γi

))g(tk, x
j
Γi

)

(4.7)

4Recall that for a matrix A ∈ R
3×3 the Frobenius norm is |A| =

√

∑3
i,j=1 a

2
ij where {aij}3

i,j=1

are the elements of the matrix A.
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Here tk denotes the time in k-th time-step, Ki the tetrahedra of the triangulation,
xjKi

the vertices of the i-th tetrahedron, Γi the triangles that lie on the Neumann

boundary and xjΓi
the vertices of these triangles. Moreover by the notation νk,h(Ki)

we mean the Young measure on the i-th element, as Young measures are constant
on each element but have no good meaning in vertices as they might exhibit
jumps.

The integration over the boundary is the least advantageous part of this
calculation but it is possible to give an easier formula in case the domain of
the material is a prism or a cylinder and a constant surface force acts only the
the base side (i.e. the one which is perpendicular to all other sides). Let n be the
unit normal of this side. Then we may rewrite

g(x+ u(t, x)) = (g ⊗ n)n(x+ u(t, x)),

which gives by the usage of the divergence theorem
∫

ΓN

(x+ u(t, x))gdS =

∫

Ω

div(n⊗ g(x+ u(t, x)))dx =

∫

Ω

(n⊗ g).(I +∇u(t, x))dx.

In the discrete form then
∫

ΓN

(x+ u(t, x))gdS =
∑

Ki∈τk

|Ki|(n ⊗ g).(I + ∇u(tk, Ki)), (4.8)

where we denoted ∇u(tk, Ki) the value of the displacement gradient on the i-th
element as it constant element-wise. The implementation of such a formula is
much easier and although it may seem that the restriction we had to require are
quite strong it covers the most commonly used case of tension experiments.

The dissipation shall be chosen in the same way as it was in physical context
or in the framework of mathematical analysis.

Having a stable initial condition, compatible boundary conditions and a time
discretization {tk}Nk=1 we are solving the problem

Minimize Gn(tk, q̃) +D(qk−1
k,h , q̃)

s.t. q̃ ∈ Qk,h. (4.9)

This problem is solved by the means of a gradient method with respect to the
degrees of freedom.5 Taking into account that the problem is non-convex and
non-smooth as well as the number of degrees of freedom is in the order of thousands
for even tens of elements used in the mesh gives us an insight into how complicated
the minimization is.

4.5 Two-sided energy inequality

In previous section we noted that the minimization problem we have to calculate
in order to simulate the quasi-static behaviour of a shape memory alloy specimen

5Recall that these are the three components of the displacement vector in each vertex (besides
the vertices on the Dirichlet boundary) and the weights as well as vectors characterizing the
Young measure on each element.
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in some time-step is a difficult one. Difficult especially in the sense, that due to the
dimensions of the problem (thousands of degrees of freedom) and non-convexity
of the minimized function a great number of local minima exists. However the
algorithm is demanded to choose the global minimum, as only the global minimizer
corresponds to a physical state. Hence we have to develop a strategy for global
optimization as a gradient method algorithm itself is not capable to do so.

There exist several strategies to search for global optima (see e.g. [24]), but
clearly none of them can truly assure that the global minimum is found. In case of
problems where the concept of energetic solutions is applicable the verification of
the two-sided energy inequality (3.34) has proved to be useful tool for searching of
global optima (see [42]). Naturally, when recalling the proof of Proposition 3.9, the
two-sided energy inequality is only a necessary condition for the global optimum,
it has however the ability to intercept effects described below.

For the readers convenience let us here recall the two-sided energy inequality
(3.34) rewritten into the currently used notation

∫ tk

tk−1

∂tG
N(s, qkk,h)ds ≤ GN(tk, q

k
k,h) + Diss[tk−1,tk] −GN(tk−1, q

k−1
k,h )

≤
∫ tk

tk−1

∂tG
N(s, qk−1

k,h )ds. (4.10)

To analyse the selectivity of this two-sided energy inequality we shall treat the
upper and lower bound separately.

Let us start with the upper bound which, as we shall see, has nearly no
selectivity. Namely, recall that the upper bound of (4.10) verifies (when also
taking into account the proof of Proposition 3.9) whether the optimum found
by the algorithm in the current time-step has a lower energy than the optimum
found in the former step, with a change on the boundary if necessary. However
it is quite natural, and therefore implemented in the code presented here, to take
exactly the optimum from the previous step as an initial guess for optimization
for the current step. Therefore the upper sided inequality verifies only whether
the optimum found has a lower than the initial guess, which is naturally satisfied
for all good algorithms.

The lower energy inequality on the other hand has some selectivity, because it
verifies whether a state found as optimal in the k-th step of the algorithm would
not achieve a smaller energy in the (k − 1)-th step (of course after a change in
boundary conditions if necessary) than the optimum found there. To see when
the lower energy inequality helps in minimization let us consider the following
simplified example.

Example 4.1. Let us suppose that we have to minimize the energy (or more
generally the energy plus dissipation) in four steps, which follow after one each
other. Of course in every step the shape of the energy distribution changes; we
shall suppose that first it is a convex function with one global minimum. In the
next step a further local minimum evolves, however the original minimum is still
the global minimum. Then in step three and four their positions change in the
sense that the new minimum starts to be the global one. The situation is shown
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in Figure 4.3, where due to simplicity the energy function is shown only in one
dimension. The black dot in this figure denotes the state in which would typically
be selected to be optimal by a gradient method algorithm. We see that in step
one as well as step two the guess of the algorithm is right, however in step three it
stays in the original minimum. Only in step four the algorithm ”recognizes” that
a deeper local minimum has evolved. However this minimum would have been
optimal also in step three and this is exactly what the lower energy inequality
verifies. This means that in step four the lower energy inequality would not be
satisfied.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4.3: Example of an evolution of the energy when the two sided energy
inequality will not be satisfied. The black dot denotes the state evaluated as
optimal by the algorithm

If the two-sided energy inequality is not satisfied the following strategy will be
used. As we know that in the previous step there exists a lower local minimum
than the one found by the algorithm (namely the one found in the current step),
the algorithm returns to the previous time-step and the current state qkk,h is given

to the algorithm as an initial guess. Of course the current step qkk,h has to be
modified in boundary conditions if time varying Dirichlet boundary conditions
are used. Then, due to the change in initial guess the algorithm founds a different
optimizer and of course for this optimizer the two-sided energy inequality is again
verified, which may lead to a further return. The algorithm may return to some
time-step even repeatedly, however the number of returns should be finite.

Of course by the usage of this method we can never assure that there is no
other local minimum (not ”seen” by the algorithm) which might be even better
than the found ones.
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Nevertheless the practical implementation of this algorithm can give good
results as we shall see further in Chapter 6.

4.6 Notes on implementation

In this section we shall give only brief notes on the code, developed by the author,
implemented to simulate the behaviour of a specimen of a shape memory alloy
when being loaded.

The code has been written in C++ using the concept of object-oriented program-
ming. It is therefore satisfactory to describe the main classes used in the code,which
are the following ones, to give some insight into the function of the code.

• Mesh: The class Mesh uses smaller classes Vertex, Edge, Face and Element
the meaning of which is straightforward, namely they store and handle the
original positions and displacements. Moreover they have built-in functions
to return the displacement gradient on each element or to return their area
and volume. The class Mesh itself handles a mesh file given to the code. It
is able to read this file to save it to appropriate variables and pre-processes
the mesh in the sense that it calculates the volumes of all elements and also
pre-calculates some variables for later use.

The constructor for the class Mesh can be called either without attributes
to create an empty mesh or it can be given a mesh file to read in a mesh.
Unfortunately the code is not able to do any meshing by itself and needs to
be given a mesh file. However in every step a different mesh file may be used
although the code has no built-in procedure to select from several mesh files
- this selection needs to be done by the user.

• Material : The class Material stores all information about the current material,
namely the distortion matrices of each variant, elastic constants and offsets
due to temperature. It is able to read this information from a data file and
save it to appropriate variables. Moreover it pre-calculates some matrices
that will be useful in energy evaluation. The built-in functions of this class
are mostly only functions to return the matrices that might be of need.

• Model : The class Model is the main class in the code and it includes built-in
functions to calculate the energy as soon as it has rank-1 decomposed the
deformation gradient, as well as to minimize the energy. Therefore the two
classes mentioned before are variables of this class and it is exactly this
class that runs their constructors. Moreover the class Model is able to load
or use default initial conditions, boundary conditions as well as forces. After
calculation the class writes the results to appropriate files in VTK-format
so that they may be used for visualisation in open source programs such
as ParaView (more information www.paraview.org) or MayAvi (see also
mayavi.sourceforge.net). For verification of the results the class may
inform the main program whether the two-sided energy inequality was satis-
fied.
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It may be stressed that most of the built-in functions as well as variables
of the class Model are set to be private which disables the user to alter
them (for variables) or call them (for functions) in the main program. This
is done to allow inexperienced users for easier orientation as there is only
one function MinimizeEnergy() that needs to be called after running the
constructor to perform the computation. It moreover assures security as it
prevents users from changing accidentally some computing variables during
evaluation.

Besides these main classes the code uses also some helping classes such as
Polygon for creating files to visualize the microstructure or Vector or Matrix for
handling vectors or matrices.

As already said the key part of the program is the class Model which initializes
the model and calculates the discrete Gibbs free energy (4.6). The calculation
is quite straightforward, the only interesting part is the way how the laminate
of finite order is implemented. When recalling Figure 4.1 we already see that
the decomposition of the deformation gradient is in the form of a binary tree.
Therefore this algorithmic structure is used also implemented in the code. The
relaxed Gibbs free energy density is then evaluated recursively when using the
scheme from Lemma 2.16. This recursive implementation is very advantageous,
since it allows for usage of laminates of any order with only little change in the
code, namely the order of lamination is chosen during initialization of the binary
tree in question and may be (with a little change in the code not needed so far)
read from a file. Moreover for the program it does not matter whether the binary
tree used is symmetric or non-symmetric. The only restriction is that the order and
structure of the lamination binary tree needs to be chosen before calculation. At
the moment it is not possible to choose the lamination binary tree differently for
each step of the calculation, but if this change was desired it could be added with
little effort.6 After having calculated the relaxed discrete Gibbs free energy (4.6)
the program performs minimization (4.9). For minimization it uses the external
routine L-BFSG-B which is a gradient method minimization allowing for bounds
on variables subject to minimization (downloadable at
www.ece.northwestern.edu/~nocedal/lbfgsb.html; a reader interested in com-
putational methods is also referred to articles [12], [69]). As an input for the
gradient method the energy gradient with respect to the degrees of freedom must
be given. Due to the complexity of the problem the easiest way to evaluate this is to
use a library for automatic differentiation. In the code an external library ADOL-C
(see further http://www.math.tu-dresden.de/~adol-c/ or sources [18], [19])
which evaluates the derivatives by operator overloading in C++ is called.

As far as boundary conditions are concerned the program is able to take
Dirichlet and Neumann boundary condition into account, however with the restric-
tion that only homogeneous Neumann conditions are considered so far. For both
types of boundary conditions the program is able to calculate stress-strain diagrams
which are important for comparison with experiment. We may shortly note how

6Although it is possible to perform the minimization - thanks to the recursion used - with
a laminate of any order the same is not true for visualisation. So far only a non-symmetric
laminate of the second order can be visualized.
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these stress-strain diagrams are computed. In the case of Neumann conditions the
calculation is straightforward as these Neumann conditions themselves represent
the stress acting on the body. In the case of Dirichlet boundary conditions (and
zero forces acting on the body) ∂Fψ

Or
R (νk,h, F ) evaluated at the current deformation

gradient is in accord with (1.18) assumed to be the stress.
Simulations calculated with this program can be found in Chapter 6.



Chapter 5

R-phase of NiTi

The alloy NiTi is the shape memory alloy used mostly in industry as well as in
experiments. It may be observed in three phases: the cubic austenite phase, the
monoclinic martensite phase and the rhombohedric R-phase. While the austenitic
and martensitic phases are fairly well known and often used in industry, the
R-phase is not used that much. One reason might be that it exists only in a
small range of temperatures. On the other hand, not still enough is known about
the R-phase, but as it offers interesting features like small dissipation at phase
transition or small transformation strains a great effort has been undertaken in
the past few years to study it. The R-phase has been studied experimentally
explicitly in e.g. [26], [46], [63], [66], theoretically in e.g. [22] or as a part of the
overall behaviour of NiTi in e.g. [10], [56], [68] or the review article [52].

In this chapter we shall give properties of the R-phase in NiTi that shall be
of importance in numerical modelling as collected from the above sources by the
author in previous work [8].

5.1 Crystalline structure

As already pointed out the crystalline structure of NiTi in austenite is cubic
and we shall identify (following Section 1.3) it with the identity matrix. The
four rhombohedric variants of the R-phase may be identified with the following
matrices

U1 =





η1 η2 η2

η2 η1 η2

η2 η2 η1



 , U2 =





η1 −η2 η2

−η2 η1 −η2

η2 −η2 η1



 ,

U3 =





η1 η2 −η2

η2 η1 −η2

−η2 −η2 η1



 , U4 =





η1 −η2 −η2

−η2 η1 η2

−η2 η2 η1



 , (5.1)

where

η1 =
1

3

(√
1 + 2 cosα+ 2

√
1 − cosα

)

,

η2 =
1

3

(√
1 + 2 cosα−

√
1 − cosα

)

. (5.2)
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Table 5.1: Lattice parameters for the austenitic phase and the R-phase. Here
a0 denotes the length of one cubic side, b denotes the length of one side of the
rhombohedron.

Type Symmetry Temperatures Lattice parameters

Austenite cubic 300 K a0=3.0125 Å
R-phase rhombohedric 292 K b=3.0134 Å α=89.57◦

R-phase rhombohedric 285 K b=3.0115 Å α=89.44◦

R-phase rhombohedric 272 K b=3.0105 Å α=89.32◦

Here α denotes the angle formed by two attaching sides of the rhombohedron; for
clarity see also Figure 5.1.

α

b

α

b

b

α

Figure 5.1: One variant of the rhombohedric martensite in NiTi. Here the most
important parameter to describe the rhombohedron namely the angle α is shown.

A special property of R-phase of NiTi is the fact that the angle α does not
stay constant after the phase transition to the R-phase, but varies further. This
property can, to the authors knowledge, be found in no other shape memory alloy
and shows that after the phase transition to the R-phase another phase transition
of the second order is going on. This behaviour is very interesting, but could not
be implemented in the current model as this model does not reflect temperature
dependence. Experimental values (as found in [63]) for this angle are given in the
Table 5.1.

Each of the variants of martensite represents a stretch of the original austenitic
cube along one space diagonal. So, the variants of martensite are related to each
other by symmetry relations and rotations but there exists no rotation R such
that RUi = Uj for some i, j not equal to each other. To see the situation in more
detail the reader is referred to Figure 5.2

5.2 Energetics

Throughout this thesis we have seen that choosing the form of the (unrelaxed)
Helmholtz free energy, and hence also the Gibbs free energy, is one of the most
important modelling assumptions.
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Figure 5.2: All variants of the R-phase. The front side is depicted darker.

One requirement, the Helmholtz free energy is supposed to satisfy, was the
multi-well character already noted in (1.20). Namely this is the demand for the
free energy to have several local minima, each of which represents one variant of
martensite or the austenitic phase at stress free configuration.

The easiest way to achieve this multi-well character is to define a ”partial”
Helmholtz free energy for each variant of martensite (or the austenitic phase) ψl
and to define the overall Helmholtz free energy ψ as

ψ = min
l=1...M+1

ψl, (5.3)

whereM is the number of martensitic variants. Physically this modelling assumption
relies on the fact that the material will choose the lowest energy possible.

Still we have a lot of freedom in choosing the energetic behaviours for each
martensitic variant and the austenite. The only two conditions we have to satisfy
here that the partial energies have minima in the corresponding variants and that
they are frame indifferent1, which means that

Ψ(F, θ) = Ψ(QF, θ) ∀Q ∈ SO(3), (5.4)

where SO(3) denotes the group of all rotations in three dimensions. Also here we
are going to choose the simplest possible way, namely a quadratic approximation
as

Ψm(F, θ) =
1

2

∑

ijkl

ǫmijC
m
ijklǫ

m
kl + cmV θ0 ln

(

θ

θc

)

, (5.5)

ǫm =
U−T
m F TFU−1

m − I

2
. (5.6)

Here Cm
ijkl denote the respective elastic constants whereas cmV denote the specific

heat capacities. Recall also that θc is the transformation temperature. Note that

1Frame indifference means independence of observer in the sense that a observer in a rotated
system measures the same energy as the observer in the original system, cf. [39, pages 128-140].
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such a definition is in accord with assumption (A1) in Chapter 3 and represents
no conflict with the existence theory presented there.

Of course more complicated forms of these partial Helmholtz free energy
densities could be chosen, however as in our numerical experiments the transformation
strains are very small a quadratic approximation is well applicable.

The matrix of elastic constant simplifies rapidly for the cubic symmetry to (in
Voigt notation)

















C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

















. (5.7)

The constants C11, C12, C44 can be found in literature for the austenitic phase
(here taken from [56]) in the vicinity of the phase transition as

C11 = 160 GPa,

C12 = 145 GPa,

C44 = 35 GPa. (5.8)

Yet, for the R-phase there is no experimental literature giving elastic constants
and we shall therefore use the constants given for austenite also in the R-phase.
For the specific heat capacities we have that (got by a compilation of [40], [26];
for further details see [8])

caustenite
V = 0, 32 Jg−1K−1 = 2, 1 Jcm−3K−1, (5.9)

cR−phase
V = 0, 31 Jg−1K−1 = 2, 0 Jcm−3K−1. (5.10)

Another important modelling parameter is the dissipation distance. Here we
shall follow the idea (e.g. [55]) that the material dissipates energy if an phase
transition occurs, i.e. when austenite changes to R-phase. On the other hand we
assume that there is no dissipation if the variants of the R-phase transform to
each other. Therefore we set the dissipation distance from (1.23)

d(λ1, λ2) = ǫ|λaustenite
1 − λaustenite

2 |, (5.11)

where the constant ǫ should be chosen in accordance with some experimental
evidence. However, the information mostly found in literature is that the dissipation
is very small, but no concrete number is given. Therefore ǫ was chosen to be
0.5 MPa, which is ten times less than the dissipation reported for CuAlNi (for
dissipation in CuAlNi see e.g. [60]). Realize that such a choice of the dissipation
distance satisfies assumption (A2) on Chapter 3 and fits therefore also into the
concept needed for analysis.

5.3 Microstructure

Of course the most crucial cause for the effects distinguishing shape memory
alloys from other materials is their ability to form microstructure. Also, as we
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have already seen, which kind of microstructure will be formed is dominantly
determined by the geometry of crystal lattices of the given material. If the R-phase
of NiTi is concerned we shall ask ourselves between which variants of martensite
and austenite rank-1 connection can be established. This question has been exhaust-
ively treated in a general setting of the cubic to trigonal transformation e.g. in
[22] (see also references therein) and at this point we shall follow this work to give
the connections that are of most relevance here.

First of all note that in stress free configuration there is no possibility for
austenite and a single variant of martensite to form a rank-1 connection.2 Therefore
the material is forced to evaluate a laminative structure of at least two variants
of martensite to establish a rank-1 connection with austenite. In the interface
of R-phase and austenite a twinning system between any two variants of the
R-phase is possible to establish the rank-1 connection. In this work only interfaces
of austenite and R-phase via twin structures has been used since this is the
most common way to do so. In fact, for a long time it was even believed that
twin structures are the only way to connect austenite and martensite, but recent
experiments [62] in CuAlNi have shown that the interface might also be constituted
by a special kind of structure, namely the parallelogram microstructure, which can
also be formed by four variants of the R-phase (for parameters of the parallelogram
microstructure see e.g. [22], [8]). The possibility of existence of such interfaces is
very recent and therefore not included here, as it was even not investigated whether
the parallelogram microstructure could be bound to austenite.

As the rank-1 connection of austenite and twins of two variants of R-phase
is symmetric with respect to the choice of the two variants involved in twinning,
if the loads are changed respectively, here only the interface between martensite
and the variants U1 and U2 will be treated. To establish this connection we are to
find λm, Qm, Q, nm, am, n and a such that

U1 −QmU2 = am ⊗ nm

Q− (λmU1 + (1 − λm)QmU2) = a ⊗ n (5.12)

is satisfied. This problem of two equations can be solved by first solving the first
one and then the second one with the already obtained results. The procedure of
finding the unknown parameters is described in Theorem 5.1 in [9, page 69]3 and
analytical results found in [22] say that the first equation is solved by two normals
nm1=(0, 1, 0)T or nm2=1/

√
2(1, 0, 1)T. However only twins with the second normal

may be used to establish a rank-1 connection with austenite.

Although algebraic expressions for the parameters we are searching for can be
calculated explicitly, depending only on the lattice parameters, these expressions
are very complicated (see [22] for a slightly modified problem). Therefore we shall
give here only their numerical values that were really used in calculations (the
angle α that characterizes the crystalline structure of the R-phase was chosen to

2However the simulations done here indicate that it might be possible to form a connection
of deformed austenite and a deformed single variant, yet this was not confirmed by a theoretic
calculation.

3The theorem is originally due to Ball and James [5].
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be 89.44◦)

am = (−1.35 10−4, 276.4 10−4,−1.35 10−4)T,

nm = 1/
√

2 (1, 0, 1)T,

a = (−1.42 10−4,−4.67 10−4, 96.78 10−4)T,

n = (0.999988, 0,−0.00493514)T,

and the volume fraction of the variant U1 as well as U2 in the laminate λ has to be
1/2. The rotation matrices could be calculated with the data already available, but
they are not important for computations. For a better picture of the configuration
see Figure 5.3

Figure 5.3: Rank-1 connection between the austenite and laminated variants U1,
U2. Here the normals used do not correspond numerically to the calculated values



Chapter 6

Results

In this chapter the results from numerical simulations using the code described
above are shown. The first two sections contain examples that are rather academic
because of the complicated Dirichlet loading applied. These experiments could
hardly be realized in laboratories, however due to the specific loading they verify
the ability of the code to compute more difficult and more realistic experiments.

The simulations shown after these two section are far more realistic and could
easily be reconstructed in laboratories if a bulk specimen of mono-crystalline NiTi
was at disposal.

6.1 Homogeneous loading deforming austenite

martensite

This section shows simulated behaviour of a specimen of NiTi under homogeneous
Dirichlet loading. The simulation has been performed within the concept of the
discretized problem as presented in Chapter 4, namely the time-interval on which
we perform the simulation [0, T ]1 was divided into 100 time-steps. In each of these
time-steps then we impose different affine Dirichlet boundary conditions. Affine
in the sense, that we are able to represent the boundary condition imposed by a
matrix, say D, such that we require u(x) = Dx−x for all x lying on the boundary
of the domain Ω. Recall that, Ω denotes the domain the investigated specimen
occupies in reference configuration.

The simulation is designed in such a way that the the boundary condition in
the 100-th time-step, denoted D100 corresponds to the twinned laminate structure
of variants U1 and U2.

2 This is a test for the simulating algorithm since, if it works
well, the results is predictable and should be that the material choose to deform
inside the bulk in same way as on the boundary and undergo from austenite to
R-phase.

As far as other physical parameters are concerned, we suppose to have mono-

1Here we do not give any specific time in which the experiment is performed, as specific
values are not important within the concept of quasi-static evolution. We, of course, have to
suppose that the process is performed ”slowly”, but the slowness is expressed rather by a small
change in boundary conditions imposed in every time-step than by specific values of time.

2To be more specific D100 + I = 1/2U1 + 1/2QmU2, with notation from (5.12)
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crystalline NiTi in (1, 0, 0) orientation described by parameters given in Chapter 5.
Initially (i.e. in time-step 0) the specimen is considered to be in austenite phase
only and slightly rotated (as a whole) with respect to its reference position3 parallel
to the coordinate system axes. Therefore in time-step 0 a deformation y0 such that

∇y0 =





0.99 4.85 10−3 −4.85 10−3

−4.88 10−3 0.99 −4.88 10−3

4.83 10−3 4.90 10−3 0.99



 , (6.1)

is applied to the whole specimen.
Then, in every time-step a matrix A given as

A =





−1415.5 10−9 0 7.0 10−9

−467.2 10−9 0 2.3 10−9

96774.7 10−9 0 −477.6 10−9



 . (6.2)

is added to the Dirichlet boundary condition prescribed in the last step represented
by a matrix Dk−1. In more clarity we demand that uk = Dkx− x for all x on the
boundary and Dk = Dk−1 + A,D0 = ∇y0 − I. Of course (except for the initial
condition) the deformation inside the specimen is subject to deformation.

As already anticipated after 100 time-steps the specimen should be found solely
in R-phase and the microstructure should be formed by twins of variants U1 and U2

with volume fraction 1/2. In case we would like the specimen to transform further
to single phase variant (we choose U1) we need to continue deforming the specimen.
This further done by adding a different matrix, B, to the current boundary
condition, namely Dk = Dk−1 +B if k > 100. The concrete form of the matrix B
is

B =





4.76 10−7 0 4.76 10−7

−977.35 10−7 0 −977.35 10−7

4.76 10−7 0 4.76 10−7



 . (6.3)

The following Figure 6.3 shows the evolution of the microstructure and the
volume fraction of the austenite if the specimen is subject to the loading described
above at transformation temperature and not taking dissipation into account.

Further we shall consider the first part of the above calculation (i.e. only
the part that forces the specimen to get to the twinned martensite) and give
stress-strain diagrams calculated both with and without taking dissipation into
account. To do so, however we should perform the experiment above the transforma-
tion temperature. The reason is that otherwise the plateau4 that can be seen
in Figure 6.2 below would coincide with the strain-axis. In this situation the
dissipation would not be visible. Namely our experiment is performed at 293.1 K
which is 0.1 K5 above the transformation temperature. In Figure 6.1 we see

3Physically we would consider this slightly rotated position to be the reference configuration,
however numerically it is more advantageous to derive which position is taken as reference from
the mesh used by the algorithm. With respect to this mesh then the specimen is rotated simply
due to easier numerics.

4Note that the plateau corresponds to the fact that stress applied on the material can be
compensated by transition of austenite to R-phase.

5These numbers may seem strange at first sight as it is a well known fact that temperature
induced phase transition is not strict, but starts and finished at different temperatures. However
here we assume, for simplicity, that the transformation has only value and follow strictly formula
(5.6).
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a comparison of the stress strain diagrams for calculations with and without
dissipation. There the label ”Forward run” corresponds to loading the specimen
and therefore forcing it to transit from austenite to R-phase whereas the label
”Backward run” corresponds to unloading and a return of the specimen from
R-phase back to austenite.

We see that in both cases a hysteretic response occurs, however in the case
when the dissipation is taken into account the dissipation is bigger. Note that the
noise in the stress-strain diagram is also due to the application of the two-sided
energy inequality as every return yields a sink in stress when being in the upper
part of the hysteresis curve, in the lower part on the other hands it leads to a rise
in stress.

If we wanted to reduce the noise we could mollify the stress strain diagrams
as in Figure 6.2 by a moving average of five points. In this figure it can be seen in
more clearness that the dissipation curve is broader when dissipation calculation is
switched on; on average the height of the hysteresis when taking into account the
dissipation is 15.7 MPa. When dissipation is not taken into account the height
of the hysteresis is 11.9 MPa. This shows that when we want to have a small
dissipation (as already mentioned 10 times smaller than in CuAlNi) it is at the
level of the numerical dissipation. Therefore it is not a big mistake to drop the
dissipation in some calculations, where its usage would be difficult.
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(a) Dissipation free evolution

(b) Dissipative evolution

Figure 6.1: Stress-strain diagrams for the first part of the loading experiment. On
the top the case without dissipation is displayed, on the bottom the evolution
with dissipation. Recall also that the label ”Forward run” corresponds to loading
the specimen, whereas ”Backward run” to unloading.
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(a) Dissipation free evolution

(b) Dissipative evolution

Figure 6.2: Mollified stress-strain diagrams for the first part of the loading
experiment. On the top the case without dissipation is displayed, on the
bottom the evolution with dissipation. Recall also that the label ”Forward run”
corresponds to loading the specimen, whereas ”Backward run” to unloading.
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(a) Time-step 0 (b) Time-step 33

(c) Time-step 66 (d) Time-step 99

(e) Time-step 132 (f) Time-step 155

(g) Time-step 188 (h) Time-step 200

Figure 6.3: Evolution of the volume fraction of austenite as well as of
microstructure when loading the specimen homogeneously as described above.
Note that although the volume fraction of austenite does not change in the last
steps, the microstructure does.
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6.2 Non-homogeneous loading deforming austen-

ite to twinned martensite

In this section the first part of the loading experiment from previous section is
generalized in the sense that the deformation is applied only on those sides of the
cube, which do not have one coordinate equal to zero.

Unfortunately, it is possible to perform only first part of the experiment in
such a setting as it would be very difficult (and nearly impossible) to link a
next deformation to the first one. This is due to the fact that handling the
inhomogeneity is already difficult as the problem was posed. Adding more elements
to the mesh could be a way out of the situation, but it would tremendously increase
computation time.

The sense of this simulation is to test the algorithm in more difficult conditions,
but as already anticipated we can hardly expect that this simulation could be
repeated experimentally in laboratories. Again, similarly to previous section, we
are able to predict simulation results. In more detail, we expect the specimen to
transform fully to R-phase in one part whereas to stay totally in austenite in its
other part.

The simulation was performed at transformation temperature where austenite
as well as the R-phase are stable states in 100 time-steps with an (1, 0, 0)-oriented
crystal. In these 100 steps the load the the sides of the cube that are subject to
loading is linearly increased similarly as in the previous section.

The inhomogeneity in loading leads naturally to an inhomogeneous distribution
of volume fractions of austenite or martensite. Results for a simulation without
dissipation can be seen in in Figure 6.5 showing the microstructure and distribution
of austenite volume fractions. This simulation offers natural results namely the
fact that in element 0, i.e. the one which is totally surrounded by sides that are not
subject of deformation no change in the microstructure occurs whereas element
47 (surrounded completely by sided that are loaded) transforms fully to R-phase.
Other elements transform to R-phase only partly.

For this computation we do not give stress-strain diagrams, though they have
been computed for element 47. The reason is very simple, namely these diagrams
are very similar to those shown in previous section in Figure 6.1.

As in other computations the implementation of the two-sided inequality (4.10)
is useful in this computation as well. However the corrections due to this inequality
are not as important as in examples that shall follow. In Figure 6.4 evolution of
the energy in time is shown. The drastic falls of energy indicate that the algorithm
has found a better local minimum and the strategy of returning as described in
Chapter 4 under example 4.1 is put into action. For this reason also the deep falls
of energy are referred to as ”returning points” in this thesis. For the sake of clarity
only the first 40 time-steps and only the evolution of the energy and not of the
lower and upper bound for the energy are shown. To see that in the deep falls
the lower energy inequality is truly violated the reader is referred to Figure 6.4(b)
where one such a fall or returning point is chosen and depicted in more detail.
Moreover the lower and upper bound for the energy are shown and clearly, in the
returning point the energy is visibly lower than its lower bound.
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(a) Overall evolution

(b) Detail of one returning point including the bounds for energy.

Figure 6.4: Evolution of the energy including the returns due to violation of the
two-sided energy inequality. On the top the overall evolution is shown on the
bottom then a detail of one returning point.
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(a) Time-step 0 (b) Time-step 32

(c) Time-step 48 (d) Time-step 64

(e) Time-step 80 (f) Time-step 100

Figure 6.5: Evolution of the volume fraction of austenite as well as of
microstructure when loading the alloy inhomogeneously. Namely the specimen
is loaded only on those sides that do not have one coordinate equal to zero.
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6.3 Homogeneous loading transforming austen-

ite directly into variant U1 of R-phase

The simulation described in this section is much more a ”real life” experiment
that the previous two and could be performed in laboratory condition to give us
experimental data.

The evolution of the material is simulated to happen in 100 time-steps and
in each time-step the Dirichlet boundary loading is changed homogeneously. To
be more specific, in every time-step a Dirichlet load represented by the matrix
Dk = k/100U1 (using the same notation as in Section 6.1 above), where k is the
time-step in question, is applied to the material. The load is moreover homogeneous
in the sense that the same affine boundary condition is applied on the whole
boundary.

Let us recall how we may imagine the formation of variants of R-phase, to
see why this loading is indeed performable in laboratory conditions. Namely,
this formation can be imagined to be a homogeneous tension in the direction
of one space diagonal or roughly speaking by a holding the cube in two opposite
corners and pulling. As the experiment presented here represents the formation
of variant U1 from austenite it is evident that the load is simple enough for
experiments.

The experiment presented takes place above transformation temperature, to
be concrete at 293.1 K, which is 0.1 K above transformation temperature. The
results can be seen in Figure 6.7 where the evolution of the microstructure is
shown, as well as in Figure 6.6 which displays the stress-strain diagram. Again
two stress-strain diagrams are given, the first displaying directly computed data,
the second containing their mollification by a moving average of five points.

The most interesting point about the experiment is the ”turning” of microstru-
cture as clearly seen in Figure 6.7. Namely, due to the loads applied, it is more
advantageous for the material to change the normal of the plane between twinned
martensite and austenite and to create a new rank-1 connection of austenite with
twinned martensite, where the volume fraction of both variants of martensite
involved is no longer one half. Such a microstructure would not be possible in
stress free configuration. Connected with this ”turning of microstructure” is the
sinking stress in the stress-strain diagram shown in Figure 6.6.

Such behaviour, meaning the ”turning” of microstructure and sinking of stress,
can indeed be observed in laboratory experiments with shape memory alloys (see
[50] for observations in CuAlNi). Unfortunately, the turning of microstructure is a
numerically difficult and hence it was impossible to calculate this evolution with
dissipation taken into account. Nevertheless, following Section 6.1 this is not a
severe drawback.

Also in this experiment the implementation of the two-sided energy inequality
leads to better computational results as will be illustrated in more clarity in the
next section.
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(a) Non-mollified evolution

(b) Mollified evolution

Figure 6.6: Stress-strain diagrams for the loading experiment. On the top data
as resulting from computation are given, on the bottom mollified data. Recall
also that the label ”Forward run” corresponds to loading the specimen, whereas
”Backward run” to unloading.
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(a) Time-step 0 (b) Time-step 10

(c) Time-step 15 (d) Time-step 20

(e) Time-step 40 (f) Time-step 60

(g) Time-step 80 (h) Time-step 100

Figure 6.7: Evolution of the volume fraction of austenite as well as of
microstructure when homogeneously in (1,1,1) direction.
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6.4 Detail of homogeneous loading transforming

austenite directly into variant 1 of R-phase

In this section we present an example of the usefulness of implementation the
two-sided energy inequality. For the first time this energy inequality was used in
calculations in [42], however in a damage problem and included only one returning
point. By a returning point we understand in accord with Chapter 4 and the above
said a time-step in which the energy inequality has been violated and hence the
algorithm has return until this inequality will be satisfied again.

The situation presented here is much more difficult than in [42], in the sense
that many returning points occur during the calculation. In this specific example
we have 5 returning points, but in the experiments presented above we may have
as many as 20 returning points.

The simulation that we shall present in the next few paragraphs is the behaviour
of a specimen subject to the same kind of load as above, only the load is applied
”slower” in the sense that to reach the full deformation, represented by U1 of
the specimen 100 time-steps were needed in previous section, but 1000 time-steps
shall be needed in this section. The affine boundary condition can therefore be
represented by the matrixDk = k/1000 U1, where k denotes the current time-step.

We shall concentrate however only on approximately the first 100 time-steps,
one tenth of the whole process. In is namely in this 100 time-steps when the
turning of normals of the twins starts, and as the turning is difficult problem
the implementation of the two-sided energy inequality eases the search for local
minima.6

In Figure 6.8 we present a comparison of the energy evolution in the case the
the two-sided energy inequality has been applied with the case when it was not.
The final energy in approximately time-step 100 is 2.5 times less if the two-sided
inequality is verified than if it is not, which is a huge difference. One might think
that if we are interested only in evolution after time-step 100 it does not matter
whether the strategy of returning is implemented or not as this strategy might
change only the evolution before the two-sided energy inequality is violated. This
might be a good assumption in easier cases, but here it is not true. The reason
is that after the algorithm had returned it has a different initial guess and might
find even lower local minima. This can be see on the detail of returning point 3
in Figure 6.9(b) where we see that the final evolution lies lower than the energy
in returning point 3. This is thanks to returning pints 4 and 5 that would not be
discovered if the strategy of returning would not have been implemented.

In Figure 6.9, as anticipated, details of the energy evolution up to some
returning point are displayed. We clearly see that in the two specific returning
points the lower energy inequality is indeed violated whereas the upper bound
has no selectivity.

The fact that the algorithm chooses a false local minimum manifests itself

6To clarify that the problem is indeed difficult we may note that the same problem, if the
load is applied inhomogeneously, leads to results that are not physical in some time-steps even
though the energy inequality is included. The reason for the non-physicality is that the turning
of microstructure is not identified early enough.
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in this example not only in energy graphs, but also in visualization of volume
fractions of austenite and microstructure. Let us turn our attention to Figure 6.10
where volume fractions and microstructure are displayed. Left the evolution with
verifying the two-sided energy inequality and returning is shown, right without.
If the strategy of returning is used, the turning of microstructure start earlier
and the volume fraction of austenite are approximately 0.8 in all frames shown
(of course constantly sinking). On the other hand if returning is not implemented
the microstructure does not turn until time-step 97 but the volume fraction of
austenite changes rapidly. Namely it is approximately 0.5 in time-step 95; however
this value corresponds neither to the microstructure calculated nor the boundary
condition imposed. Simply this value is not physical and we may conclude that not
verifying the two-sided inequality might lead to non-physical results of simulations.
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(a) Verifying the two-sided energy inequality

(b) Not verifying the two-sided energy inequality

Figure 6.8: Comparison of energy evolutions if the strategy of returning in case
the two-sided energy inequality is violated is implemented and if it is not. On the
top the evolution with returning is shown, on the bottom without.
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(a) Returning point 1

(b) Returning point 2

Figure 6.9: Detail of energy evolution. On the top the evolution up to returning
point 1, on the bottom up to returning point 3 are shown. To see that lower bound
is indeed violated the bounds for the energy are also depicted.
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(a) Time-step 76, verifying the two-
sided energy inequality

(b) Time-step 76, not verifying the
two-sided energy inequality

(c) Time-step 83, verifying the two-
sided energy inequality

(d) Time-step 83, not verifying the
two-sided energy inequality

(e) Time-step 95, verifying the two-
sided energy inequality

(f) Time-step 95, not verifying the
two-sided energy inequality

(g) Time-step 97, verifying the two-
sided energy inequality

(h) Time-step 97, not verifying the
two-sided energy inequality

Figure 6.10: Comparison of evolution of the volume fraction of austenite as well
as of microstructure. On the left the two-sided energy has been verified and the
strategy of returning implemented, on the right not.



Conclusion

Throughout this thesis we have been concerned with modelling the behaviour of
a shape memory alloy specimen subject to Dirichlet loads. From the point of view
of physics we have described a continuum mechanics approach to modelling this
behaviour and we have seen that in such an approach the most important effects
observed in shape memory alloys can be explained.

Physical considerations also led us to suppose that a quasi-static process has
to fulfil the global stability condition and the energy equality to be a physically
admissible process. We then took these two to the requirements to define what
an energetic solution of the quasi-static evolution has to satisfy and proved the
existence of energetic solutions for time-dependent Dirichlet boundary conditions.
This is a small extension to the existing theory as so far only zero Dirichlet
boundary condition have been supposed for simplicity.

Once the existence of energetic solutions has been proved we may turn our
attention to implementation. In this work a simulation program has been developed,
inspired by preceding algorithms as e.g. [60]. Extending past works the code has
been written in C++ and object-oriented which is a modern form of programming
and very useful in the area of question. Moreover the verification of the two-sided
energy inequality as well as calculation of stresses due to Dirichlet boundary
condition has been added. Especially the verification of the double-sided energy
inequality brought good results and should be implemented in any future work.

The code has been tested on simulations concerning NiTi and its R-phase in
the hope that simulations could be compared with experiments. Unfortunately
no bulk specimen of mono-crystalline specimen has been available so far, however
NiTi wires that are poly-crystalline but with all grains oriented the same way ar
ate disposal. Yet due to lack of time, experiments on these wires could not be
implemented.

Nevertheless loading by Dirichlet boundary conditions has opened new possibi-
lities as e.g. the observation of sinking stress due to turning of microstructure. This
can be also observed in experiments (cf. [50] for CuAlNi).

There are however a lot of open problems for the future. Maybe the main one
is the absence of temperature in the model in the sense that the situations is
isotermic. This is an important drawback as e.g. the shape-memory effect can not
be handled theoretically nor numerically. It shall be important to add temperature
dependence.

From the viewpoint of simulations many interesting problems as the connection
of austenite to parallelogram structure have been observed [62] and could lead to
interesting simulation results. Unfortunately, due to lack of time, they are not
presented in this thesis, but remain open for future work.
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ties of NiTi , J. Phys.: Condens. Matter 3 (1991), pp. 9621-9627.

[11] Brooks J. K., Chacon R. V.: Continuity and compactness of measures, Adv.
in Math. 37 (1980), pp. 16-26.

[12] Byrd R. H. , Lu P., Nocedal J.: A Limited Memory Algorithm for Bound Con-
strained Optimization, SIAM Journal on Scientific and Statistical Computing,
16 (1995), pp. 1190-1208.

81



82 BIBLIOGRAPHY

[13] Callen H.B.: Thermodynamics and an introduction to thermostatistics, Wiley,
New York, 1985.

[14] Dacorogna, B.: Direct Methods in the Calculus of Variations, Springer, Berlin,
(1989).

[15] Dal Maso G., Francfort G.A., Toader R.: Quasistatic crack growth in nonlin-
ear elasticity, Arch. Ration. Mech. Anal. 176 (2005), pp. 165-225.

[16] Fonseca I., Müller S., Pedregal, P.: Analysis of concentration and oscillation
effects generated by gradients, SIAM J. Math. Anal., 29 (1998), pp. 736-756.

[17] Francfort G., Mielke A.: Existence results for a class of rate-independent
material models with nonconvex elastic energies, J. reine angew. Math., 595
(2006), pp. 55-91.

[18] Griewank A., Juedes D., Mitev H., Utke J., Vogel O., Walther A.: ADOL-
C: A Package for the Automatic Differentiation of Algorithms Written in
C/C++, ACM TOMS, 22 (1996), pp. 131-167, Algor. 755

[19] A. Griewank, Utke J., Walther A.: Evaluating higher derivative tensors by for-
ward propagation of univariate Taylor series, Mathematics of Computation,
69 (2000), pp. 1117 - 1130.

[20] Gurtin,M.E.: An Introduction to Continuum Mechanics, Academic Press, San
Diego, 1982.
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