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Chapter 1

Introduction

The objective of this work is to examine statistical behaviour of daily tem-

peratures. Temperature is one of the fundamental quantities used in clima-

tology and a statistical analysis of a large sample is often used. Unfortu-

nately, statistical methods usually rely on premises that might not be valid

for climatological data. The most obvious example is presumed normality

in temperatures. While the temperatures follow the common pattern of rare

extreme values, the distribution is often skewed or multimodal. As the most

common and easily accessible statistical methods often require normally dis-

tributed data and many are far from robust, the non-normal input can cause

huge errors in results, leading to ill-advised conclusions. It is therefore useful

to examine if there are any circumstances where normality can be assumed.

It would be foolish to expect obtaining a T-shirt formula to cover tem-

perature distribution accross the globe and time of the year. In fact, this

sounds even less likely than confirming that assuming normality for any time

and place is adequate. This work has two realistic goals.

• Find out if normality can be safely assumed at certain regions and/or

situations (based on temperature type and season).

• Identify patterns that could be relevant for temperature behaviour.1 It

is unlikely to get firm results just based on statistical analysis but such

1Such as well-known skewness in minimum temperatures in cold areas.
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CHAPTER 1. INTRODUCTION 5

patterns should be a precious food for thought for an expert climatol-

ogist who could be able to explain the issue based on climatological

reasoning.

Several studies adressed the issue of normality in temperatures. Most

notably, Harmel et al. [6] compared actual data from 15 U.S. sites over 30

years with simulations by weather generators. Actual data were found to

be skewed in a way that was not reproduced by the simulation. Number of

cold events (especially in winter) tends to be underestimated by generated

values and the generated maximum temperatures were significantly higher

than observed records. Similar study oriented at higher order statistical

moments was perfomed by Huth et al. [7] on 6 stations in central Europe

giving comparisons between different methods of modelling temperatures.

Gong and Ho [5] conducted a study on 155 Chinese and Korean stations

over the winter months to see that the recent warming trend does not only

change mean numbers but also influences several other factors and leads to

a notable decrease in intra-seasonal variability of temperatures, leading to a

more stable weather over East Asia. From a theoretical standpoint, Toth and

Szentimrey [12] developed so-called binormal distribution2 and suggested to

use it instead of normal distribution when asymmetry needs to be considered.

2Binormal distribution is NOT the same as two-component normal mixture distribution

that is discussed later in this paper.



Chapter 2

Data Sets

2.1 Origin of Data

This project uses temperature measurements from 98 European stations

that cover all the European mainland (the only notable exception is a rela-

tively narrow stripe starting in Poland and going east through Belarus and

Ukraine), Iceland, Ireland and three stations located in the ocean or on small

islands [8]. There are three values measured at each station - minimum tem-

perature, mean temperature and maximum temperature. Maximum time

frame is between January 1, 1901 and December 31, 1999 but most series

start and/or end on different days and there are also missing values.

Table 2.1 shows the list of stations together with their geographical loca-

tion and sample sizes for different seasons and temperature type. Summer

seasons tend to have slightly more observations as the season is longer. Max-

imum and minimum temperatures usually have about the same number of

observations, although there are exceptions.1

All computation was performed by R software [9]. fields, nortest and

mclust packages were used.

It needs to be noted that mean temperature is fundamentally different to

minimum and maximum tepmerature. The latter two are a single measure-

ment at a given time of the day. On the other hand, mean temperature is

1Baia-Mare and VF-Omul in Romania and Kursk, Russia
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CHAPTER 2. DATA SETS 7

CNTRY LOCATION LAT LON HEIGHT min-f min-w min-lw mean-f mean-w mean-lw

AT KREMS 48.05 14.13 383 35770 8820 14798 35770 8820 14798

BE UCCLE 50.8 4.35 100 36134 8909 14948 0 0 0

CR ZAGRE 45.82 15.98 157 35405 8730 14647 35405 8730 14647

CZ PRAHA 50.09 14.42 191 36135 8910 14949 36135 8910 14949

DK VESTE 56.77 8.32 18 35769 8820 14797 0 0 0

DK NORDB 55.45 8.4 4 35638 8756 14703 0 0 0

DK KODAN 55.68 12.53 9 35219 8699 14586 0 0 0

FI HELSI 60.17 24.95 4 17885 4410 7399 17867 4404 7391

FI JYVAS 62.4 25.68 137 17885 4410 7399 17885 4410 7399

FI SODAN 67.37 26.65 179 33345 8204 13761 0 0 0

FR MARSE 43.31 5.4 75 36129 8907 14944 0 0 0

FR BOURG 47.07 2.37 161 31755 7830 13137 0 0 0

FR TOULO 43.62 1.38 152 33074 8188 13733 0 0 0

FR BORDE 44.83 -0.7 49 29951 7379 12405 0 0 0

FR CHATE 46.87 1.72 160 36134 8910 14948 0 0 0

FR PERPI 42.73 2.87 43 35328 8653 14570 0 0 0

FR LYON 45.73 4.94 172 28949 7141 11990 0 0 0

FR PARIS 48.82 2.33 75 36135 8910 14949 0 0 0

DE HAMBU 53.55 9.97 26 36135 8910 14949 0 0 0

DE BREME 53.05 8.78 4 35829 8879 14857 35798 8848 14826

DE TRIER 49.75 6.65 144 29049 7141 11990 29049 7141 11990

DE KARLS 49.02 8.38 114 35801 8820 14798 35801 8820 14798

DE STUTT 48.72 9.22 401 36074 8879 14918 36074 8879 14918

DE SCHWE 53.65 11.38 59 34219 8460 14194 34219 8460 14194

DE DRESD 51.12 13.68 246 30295 7470 12533 30295 7470 12533

DE BERLI 52.45 13.3 55 35945 8910 14949 35940 8910 14944

DE POTSD 52.38 13.07 81 36135 8910 14949 36135 8910 14949

DE BAMBE 49.88 10.88 282 36135 8910 14949 36135 8910 14949

DE ZUGSP 47.42 10.98 2960 36029 8910 14949 36029 8910 14949

DE HOHEN 47.8 11.02 977 36135 8910 14949 36124 8910 14949

DE MUNCH 48.17 11.5 515 34949 8640 14466 34980 8640 14466

DE JENA 50.93 11.58 155 36042 8879 14918 36040 8878 14917

GR LARIS 39.65 22.45 74 16054 3955 6638 15690 3866 6488

GR HELLI 37.9 23.75 15 16056 3959 6641 16057 3959 6641

GR HERAK 35.33 25.18 39 16060 3960 6644 15938 3929 6583

IS REYKJ 64.13 -21.9 52 17763 4379 7338 17763 4379 7338

IS STYKK 65.08 -22.73 8 17729 4378 7336 17725 4379 7338

IS DALAT 65.27 -13.58 9 17336 4279 7176 17671 4379 7338

IS VESTM 63.4 -20.28 118 17701 4379 7338 17701 4379 7338

IE VALEN 51.94 -10.24 9 21992 5431 9121 21992 5431 9121

IE BIRR 53.09 -7.89 70 16516 4081 6856 16516 4081 6856

IE MALIN 55.37 -7.34 20 16305 3991 6705 16305 3991 6705

IT VERON 45.38 10.87 68 17490 4304 7232 0 0 0

IT ROMA 41.78 12.58 105 17507 4320 7248 0 0 0

LT KLAIP 55.73 21.07 6 24441 6042 10127 24344 6039 10122

LT KAUNA 54.88 23.83 75 28913 7105 11919 29026 7157 12003

LT VILNI 54.63 25.28 189 33320 8340 13917 33852 8494 14157

LU LUXEM 49.62 6.22 376 19342 4768 8000 19334 4766 7993

Table 2.1: There are 98 stations examined. Last six columns show number

of observations for minimum and mean temperatues in different seasons.

Figures for maximum temperatures and summer seasons are similar to those

for minimum temperatures and winter.
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CNTRY LOCATION LAT LON HEIGHT min-f min-w min-lw mean-f mean-w mean-lw

NL DEKOO 52.92 4.78 0 34037 8370 14043 34037 8370 14043

NL DEBIL 52.1 5.18 2 36135 8910 14949 36135 8910 14949

NL EELDE 53.13 6.58 4 34251 8401 14135 34251 8401 14135

NL VLISS 51.45 3.6 8 34005 8370 14043 29260 7200 12080

NL MAAST 50.92 5.78 114 34308 8460 14194 34310 8460 14194

NO OSLO 59.95 10.72 94 22630 5580 9362 22630 5580 9362

NO OKSOY 58.07 8.05 9 17885 4410 7399 17885 4410 7399

NO UTSIR 59.3 4.88 55 17885 4410 7399 17885 4410 7399

NO GLOMF 66.82 13.98 39 15695 3870 6493 15695 3870 6493

NO KARAS 69.47 25.52 129 15695 3870 6493 15695 3870 6493

NO VARDO 70.37 31.08 14 17885 4410 7399 17885 4410 7399

NO BJORN 74.52 19.02 16 20986 5189 8697 20986 5189 8697

NO JMAYE 70.93 -8.67 10 16059 3959 6643 16059 3959 6643

PT LISBO 38.72 -9.15 77 36133 8910 14949 0 0 0

PT PORTO 41.13 -8.6 93 21368 5273 8849 0 0 0

PT BEJA 38.02 -7.87 246 15323 3780 6341 0 0 0

PT BRAGA 41.8 -6.73 690 21389 5307 8902 0 0 0

RO BAIAM 47.67 23.5 216 29567 7231 12202 0 0 0

RO CLUJ 46.78 23.57 410 23270 5670 9573 0 0 0

RO ARAD 46.13 21.35 117 28042 6837 11564 0 0 0

RO VFOMU 45.45 25.45 2504 23603 5729 9663 0 0 0

RO TGJIU 45.03 23.27 203 32819 8038 13529 0 0 0

RO BUZAU 45.13 26.85 97 27643 6775 11412 0 0 0

RO DROBE 44.63 22.63 77 33012 8069 13559 0 0 0

RO BUCUR 44.52 26.08 90 23664 5819 9754 0 0 0

RO CALAR 44.2 27.33 19 33306 8159 13741 0 0 0

RU SORTA 61.72 30.72 19 19928 4911 8232 19928 4911 8232

RU LENIN 59.97 30.3 6 35898 8770 14776 36009 8877 14885

RU PSKOV 57.82 28.42 45 22076 5457 9147 22077 5458 9148

RU KALIN 54.72 20.55 21 19175 4735 7922 19198 4732 7934

RU SMOLE 54.75 32.07 239 20074 4946 8281 20286 5005 8390

RU KURSK 51.77 36.17 247 35037 8438 14281 35341 8605 14492

SK HURBA 47.88 18.2 115 18980 4680 7852 18980 4680 7852

ES SSEBA 43.31 -2.04 259 25896 6387 10716 0 0 0

ES NAVAC 40.78 -4.01 1890 16058 3960 6643 0 0 0

ES SALAM 40.95 -5.49 790 17882 4410 7397 0 0 0

ES BADAJ 38.88 -6.83 185 16425 4050 6795 0 0 0

ES VALEN 39.48 -0.38 11 23020 5611 9444 0 0 0

ES TORTO 40.82 0.49 48 22953 5698 9571 0 0 0

SE VAXJO 56.87 14.8 166 29835 7349 12321 0 0 0

SE LINKO 58.4 15.53 93 25043 6179 10358 0 0 0

SE KARLS 59.35 13.47 46 29838 7348 12320 0 0 0

SE OSTER 63.18 14.48 376 29808 7318 12290 0 0 0

SE STENS 65.07 17.15 325 29828 7349 12321 0 0 0

CH BASEL 47.55 7.58 316 36135 8910 14949 36135 8910 14949

CH SANTI 47.25 9.35 2490 36135 8910 14949 36135 8910 14949

CH ZURIC 47.38 8.57 556 36135 8910 14949 36135 8910 14949

CH LUGAN 46 8.97 273 36135 8910 14949 36135 8910 14949

YU BEOGR 44.8 20.47 132 15330 3780 6342 15317 3769 6329

YU NIS 43.33 21.9 202 15330 3780 6342 15330 3780 6342

Table 2.1: Continued
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an artifical number calculated from a couple of observations. Unfortunately,

a weak spot is present—inhomogenity in methodology. It is universally ac-

cepted that mean temperture is a weighted average of several measurements

at given times but the times themselves and the weighting varies across Eu-

rope and the world. Therefore, any conclusions driven from mean tempera-

tures have to be considered with this inhomogenity in mind. Even without

this issue, the principal distinction between mean and minimum/maximum

temperatures is still noteworthy.

2.2 Data Preparation

As the raw values may not suitable for testing, data had to be examined first.

There are two basic issues to be taken care of:

• Temperatures are subject to trend and seasonal influences. Tempera-

tures of adjacent days are also correlated.

• Data can be polluted by a human error, usually a typo.

Firstly, all measurements from February 29 were discarded to avoid prob-

lems with different length of the years and significantly smaller sample size

for this particular date.

The data was then checked by simple conditions of min ≤ mean ≤ max.

It was however noted, that the methodology does not guarantee that above-

mentioned inequalities are fulfilled2, so suspect dates were reviewed manually.

Close mismatches were considered regular, the larger differences were exam-

ined to see whether the value is reasonable or a mistake. The other clue was

a comparison of first-order differences, suspect values over 20 degrees Celsius

were also reviewed and judged in the context of neighbouring values. Several

2Min/Max temperature is in fact a temperature measured at a set time, rather than

min/max reached in a day-long interval. Likewise, the mean temperature is a weighted

mean of a relatively small number of measurements made throughout the day - usually

three but the methods vary as noted in the previous chapter.
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suspect values were discarded and considered a missing value. Dataset from

Vilnius, Lithuania was extraordinarily rich in such suspect values.

As for trend, it is universally accepted in climatology, that a linear trend

is assumed in temperatures. Time series (of absolute temperatures) for each

day of the year was fitted into a linear trend model. Surprisingly, the data

does not support such a premise. Trend coefficient was not significantly

different from zero at most stations — with datasets from all stations pooled

together, around 90 % were not significant at the 95% significance level. The

trend coefficient was also frequently negative (nearly 40 % of datasets) as

could be seen from the table on the enclosed CD. Therefore, no adjustment

for trend was made.

To remove seasonal influences, the data from each station were grouped

by date. Every measurement was then converted from absolute value into

relative value compared to the mean temperature on the given day. As the

variance of the temperatures also differs by season, differences are given in

standard deviations, rather than degrees Celsius.

xnorm
i =

xi − x

s

where x and s are the sample mean and sample variance on the given day.

Plotting the transformed data shows that there is no obvious periodical

pattern (unlike the obvious sinuosity in non-trasformed values).

For better understanding of the difference in temperature behaviour be-

tween seasons, data are also examined in smaller seasonal batches. Summer

(June, July, August) and winter (December, January, February) are exam-

ined separately. Two artificial seasons called “longsummer” (May through

September) and “longwinter” (November through March) serve both to over-

come possible sample size issues, as well as a security check that the results

do not go crazy following small change in the input.

Correlation is another issue. There is a strong correlation between the

temperatures of the consecutive days. Previous studies show that higher-

order autocorrelation is weak and an AR(1) model is satisfactory. This sug-

gests studying the first-order differences as they can be considered indepen-
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dent, which is an important premise of the normality tests. To verify this,

AR model was fitted to both original data and first-order diferences. This

time, the original assumption holds as the first-order coefficient of the AR

model is at around 0.8 for original data (for mean temperatures, it is actually

very close to 1). For diferences, this is cut down to around 0.2, although the

higher-order partial autocorrelations go up, which is undesirable.

It needs to be noted that for transformed data, the first-order AR coef-

ficient goes down to around 0.6 (due to the removal of the seasonal effect).

Taking first-order differences of the transformed data yields similar results

as differences of the non-transformed data. There is no obvious improve-

ment in using diferences of the transformed data versus the differences of the

non-transformed data so there is no reason to use this more artifical setting.

Differences are therefore the most reliable entity to examine. However, some

attention still needs to be paid to the transformed data as these are easier

to interpret than the differences.

The histograms (using Scott method of determining the number of bins as

Sturges formula produces too wide bins) and kernel denstity estimates (using

the default “gaussian” method in R) of the transformed data show that the

temperature distribution is often either skewed or bimodal (sometimes even

multimodal). On the other hand, most stations visually conform to normal

distribution as long as the differences are examined—very few stations exer-

cise an obvious departure from normality. Maximum temperature differences

in Verona, Italy produced an extraordinary result that can be disregarded as

an obvious singularity.



Chapter 3

Normality Tests

3.1 Description of the Tests Used

Seven basic normality tests were selected from the tests described in [11].

D’Agostino tests are based on the third and fourth moments. There are

three different tests that are sensitive to different departures from normal-

ity - one sensitive to skewness, one sensitive to kurtosis and the omnibus

test that combines both criteria. Four goodness-of-fit tests were also used.

Lilliefors test is based on empirical distribution function—it is an exten-

sion of Kolmogorov–Smirnov test for the composite hypothesis of normality.

Pearson’s chi-squared test is used mainly for completeness, although it is

less powerful than other tests when testing normality and it is generally

not recommended for use to test this specific situation. The last two tests,

Anderson–Darling test and Cramer–von Mises test, are also based on em-

pirical distribution function but use a more complicated test statistic than

Kolmogorov–Smirnov test. Comparative power study of goodness-of-fit tests

was performed in [10].

3.1.1 D’Agostino Skewness Test

The skewness test is based on test statistic

12
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a3 =
m3

m
3/2
2

where mk =
n
∑

i=1

(xi − x)k

n
is k-th sample moment.

D’Agostino transformation Z3 is distributed N(0,1) under the null hy-

pothesis. Let

U3 = a3/var(a3) = a3

(

(n + 1)(n + 3)

6(n − 2)

)1/2

B2 =
3(n2 + 27n − 70)(n + 1)(n + 3)

(n − 2)(n + 5)(n + 7)(n + 9)

W 2 =
√

2(B2 − 1) − 1

δ = 1/
√

log(W )

α =
√

2/(W 2 − 1)

Then

Z3 = δ log





U3

α
+

√

(

U3

α

)2

+ 1





For the values that |Z3| > u(α
2
), the hypothesis of normality is rejected

by the D’Agostino skewness test.

3.1.2 D’Agostino Kurtosis Test

The kurtosis test is based on test statistic

a4 =
m4

m2
2

Let

U4 =
a4 − Ea4

var(a4)

B =

√

216

n

{

(n + 3)(n + 5)

(n − 3)(n − 2)

}1/2
n2 − 5n + 2

(n + 7)(n + 9)
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A = 6 +
8

B

(

2

B
+
√

1 + 4/B2

)

Then

Z4 = (2/9A)−
1

2







1 − 2

9A
−
(

1 − 2/A

1 + x
√

2/(A − 4)

)1/3






is once again N(0,1) distributed under the null hypothesis. D’Agostino kur-

tosis test rejects normality for the values so that |Z4| > u(α
2
).

3.1.3 D’Agostino Omnibus Test

Omnibus test combines the two above-mentioned tests in one. Under the

null hypothesis, the test statistic

Z = Z2
3 + Z2

4

is χ2
2 distributed. Normality is rejected for the values so that Z > χ2

2(α).

3.1.4 Lilliefors Test

The Kolmogorov-Smirnov test statistic is the maximum distance between

empirical distributional function (EDF) and distribution function under the

null hypothesis. Let

p(i) = Φ([x(i) − x]/s)

Then, Lilliefors test statistic is defined as

D = max(D+, D−)

D+ = maxi=1,...,n[i/n − p(i)],

D− = maxi=1,...,n[p(i) − (i − 1)/n]

The Lilliefors test rejects the hypothesis of normality for D > Dα.

3.1.5 Anderson–Darling Test

Anderson–Darling test is also based on EDF, the test statistic being

A2 = −n − 1

n

n
∑

i=1

[2i − 1][log(p(i)) + log(1 − p(n−i+1))]

The p-value is computed from the Stephens’ modified statistic
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A2
∗

= (1 + 0.75/n + 2.25/n2)A2

The Anderson–Darling test rejects the hypothesis of normality for A∗ >

A∗(α).

3.1.6 Cramer–von Mises Test

Cramer–von Mises test is a close relative to the Anderson–Darling test, with

a test statistic

W 2 =
1

12n
+

n
∑

i=1

(

p(i) −
2i − 1

2n

)

The p-value is again computed from the Stephens’ modified statistic

W 2
∗

= (1 + 0.5/n)W 2

The Cramer–von Mises test rejects the hypothesis of normality for W∗ >

W∗(α).

3.2 Single Normality Tests

The following maps show p-values of a test performed on data from a single

given station. Generally, it is obvious that it is insufficient to model temper-

ature by normal distribution as at most stations the hypothesis of normality

is rejected even at the 99% confidence level. However, several noteworthy

patterns are recognized. Because of obvious space limitation, not all maps

mentioned could be shown here. All maps are available on the enclosed CD.

Normality tests presume an independent data. Two sets of data are

examined. “Standardized data” refers to temperatures transformed by the

method explained in the previous chapter. Due to rather strong correlation in

the time series, these results are very unprecise and can only give a very rough

guide. “Differences” refer to first-order differences of the non-transformed

data and are the main focus of this chapter as the correlation does not have

such a strong effect.

The resulting p-values are colour-coded—black dots denote stations that

reject the test at the 99% confidence level. Coloured stations do not reject

the test at the 99% level—p-values under 0.05 are red (the test is rejected at
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the 95% level), p-values under 0.1 are green, (dark) blue denotes a p-value

of 0.1–0.5 and finally cyan1 denotes a p-value greater than 0.5.

Despite the fact that the maps that are shown in the text are black-and-

white (with a full-color version avaiable on the CD), any station that do not

reject normality at the 99% level can be referred to as a “coloured” station

as opposed to a black station.

There was an issue with Cramer–von Mises test that often returned p-

values greater than one. Simulations showed that for sufficiently large sam-

ples (n > 1800) coming from uniform distribution, large values of the test

statistic (corresponding to p-values very close to zero) were converted to p-

values much greater than one. This seems to be a technical error in the

way R software computes p-values, rather than malfunction of the test itself.

Therefore all p-values greater than one are treated as small numbers very

close to zero.

3.2.1 Mean Temperature

Mean temperatures generally show lesser fit to normality than minimum and

maximum temperatures. D’Agostino omnibus test is the prime example as

normality is not rejected at the 99% level only at few stations across all sea-

sons. However, both skewness and kurtosis tests produce more stations that

pass the test, compared to omnibus, indicating different types of departures.

For skewness, there are only a few stations that do not reject the test for full

year data (most are located on the North/Batlic Sea coast, see Figure 3.1).

Seasonal data show some logical patterns—in summer the non-rejecting sta-

tions are in the Scandinavia and Iceland, for winter, such stations are found

in central Europe. In the light of this, the full year results might indicate

a boundary between the two regions with different behaviour where the two

influences even out (see Figure 3.2). Sample skewness values were examined

with regard to the sign and the result supports this reasoning. The sample

skewness is generally negative in summer and positive in winter, ie. it is

more common to see a large drop in temperature than a large rise in summer

1Light blue
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Figure 3.1: D’Agostino skewness, mean temperature, full year: Stations that

pass the test are located around the border visible in Figure 3.2. Legend:

p-value is (dot) below 1%, (circle) below 5%, (square) below 10%, (diamond) below 50%,

(triangle) above 50%

and the other way around in winter. At the first sight, this might sound

natural, as warming would be expected in winter, but the seasons have the

warmest/coldest point in the middle. To verify this, seasonal densities were

examined as well as seasonal sample means and no systematic flaw was found.

In fact, the sample means were frequently positive in summer and negative

in winter, which is a direct opposite of the abovementioned reasoning.

The other trend in sample skewness values is that positive values are

found in the north and west, while negative values are concentrated in the

south and east. Full year values are pretty balanced in terms of number

of positive/negative stations but the regional grouping is obvious and the

stations passing the test (close enough to zero) are located at the border.

This region happens to be the one where the winter and summer behaviour
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Figure 3.2: Sample skewness, mean temperature, full year: Positive and

negative sample skewness is clearly tied to latitude. Legend: Full dot: negative;

empty circle: positive; Headline numbers: negative–positive count

evens out.

Situation is much clearer with kurtosis, as almost all stations produced

higher kurtosis (lighter tails) than a normal distribution,2 regardless of the

season.

Other tests do not show such interesting results, there are few stations

that do not reject hypothesis of normality.

Looking at the standardized data, the sample skewness behaves similarly

as for differences, but this time summer produces positive values, winter

negative values, and full year is a mixture of both with positive values located

northwards, although the two regions are not separated as sharply as for

differences. Kurtosis seems to be influenced by sea distance rather than

latitude, with all the positve stations located at the coast for full year. The

2For convenience, negative/positive will refer to lower/greater than three.
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Figure 3.3: Sample skewness, minimum temperature, summer: Stations are

split southeast vs. northwest. Legend: Full dot: negative; empty circle: positive;

Headline numbers: negative–positive count

size of the two groups is more balanced but the sign changes between winter

and summer at majority of the stations—summer is similar to the full year

but in winter, the positive stations are in the middle of the map and the

negative stations are all around them.

3.2.2 Minimum Temperature

The most notable feature of skewness is a prevalence of positively-skewed

stations in winter (this corresponds well with the mean temperatures). There

are scattered stations that do not reject normality but no pattern seems to be

present apart from the fact that they tend to be in the south. For summer,

positive stations are still more common (unlike with mean temperatures)

with the divison being southeast (negative) vs. northwest (positive). A
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tie between the boundary and the non-rejecting stations is not particularly

strong in this case. Obviously, most stations have positive sample skewness

for full year results. Romania is the only region with common negative

stations, the same region that had at least some negative stations in winter.

The few stations that happen to pass the normality test seem to be random

occurences.

Kurtosis is again larger than 3, ocassionaly even as large as 11-12 (sum-

mer in Romania), although there are several stations where normality is not

rejected in summer (and to lesser extent in longsummer).

Omnibus test has only a few scattered stations that pass the test in

summer. This is in accordance with the large winter kurtosis and the presence

of several non-rejections in summer for both moments. The goodness-of-fit

tests give no useful results. Hardly any station passes the test for any season.

Similar to mean temperatures, sample skewness and kurtosis of the stan-

dardized data is usually of the opposite sign than for differences. Negative

skewness is prevalent in winter (this also transfers to full year), summer is

more balanced with positive skewness in the northwestern half of Europe (al-

though Iceland and Ireland are negative, see Figure 3.3). Summer kurtosis is

(likewise mean temperatures) positive in coastal stations. In winter, positive

kurtosis is found in the central part of Europe, with negative results around

it—once again the same pattern as for mean temperatures.

3.2.3 Maximum Temperature

Nothing new with kurtosis—sample values are unanimously positive for max-

imum temperatures in all seasons. Winter skewness is divided regionally, with

positive values in the north and negative in the south—a trend that corre-

sponds with summer minimum temperatures, although southwest is now the

base of the negative region (while it was southeast for summer minimum

temperatures). In summer, most stations produce negative skewness but the

northern stations are positive and the normality test is not rejected at a

couple of Scandinavian stations, suggesting a continuous rise in the sample

skewness on the way north (see Figure 3.4). Likewise, many stations that do
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Figure 3.4: D’Agostino skewness, maximum temperature: In summer, several

Scandinavian stations do not reject normality. Legend: p-value is (dot) below 1%,

(circle) below 5%, (square) below 10%, (diamond) below 50%, (triangle) above 50%

not reject normality in winter are located in the area where the positive and

negative regions meet. The goodness-of-fit tests are unanimously rejected.

Looking at the standardized data, sample skewness sign stays negative

and the northwest–southeast division still applies like it did for minimum

temperatures. In summer, sample kurtosis remains different in coastal and

landlocked areas (see Figure 3.5). In winter, numbers are pretty balanced

with positive and negative stations mixed together. Also, D’Agostino kurto-

sis test is quite often not rejected, so the values are often close to the normal

distribution kurtosis.
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Figure 3.5: Standardized data, sample kurtosis, maximum temperature, sum-

mer: The sign seems to be related to the sea distance. Legend: Full dot: negative;

empty circle: positive; Headline numbers: negative–positive count

3.3 Multiple Test Comparison

It is quite important for interpretation of the results whether the same sta-

tions keep passing all the different tests. Every single test result could be

just a random fluke and a few such occasions in one region could appear as

a pattern to human observer. In the following figures, number of tests that

did not reject normality at the 99% level are shown. These results are diss-

cussed unless mentioned otherwise. Results obtained at the 95% level were

also examined, but the non-rejecting stations are already quite rare for the

99% level.

With mean temperatures, only winter and longwinter has two stations

that do not reject multiple tests—Malin, Ireland and Sodankylä, Finland.

Sodankyla is also the only such station in summer seasons but the for the
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full year data, all tests are rejected.

For minimum temperatures, summer is the season with the most non-

rejections and there are two regions—France and Germany—with several

such stations in one place. However, German stations often pass two tests

only (D’Agostino kurtosis and Engelmann-Hartigan). Jyväskylä, Finland

and Smolensk, Russia are the two stations that have no such neighbours.

Other seasons are not interesting, even the longsummer season does not

replicate the summer results and only Germany is somewhat notable.

For maximum temperatures, only Zugspitze, Germany passed all three

D’Agostino tests in summer, other results are not interesting.



Chapter 4

Finite Normal Mixtures

As the normal distribution is not sufficient to model temperature, a family

of finite normal mixture distributions, that is discussed in Thode [11], will

be examined. A k-component univariate normal density is defined as

h(x) =
k
∑

i=1

πiφ(x; µi, σ
2
i )

where φ(x) denotes a normal density and
k
∑

i=1

πi = 1.

This distribution family has a nice feature—it includes a wide range of

shapes, asymmetric as well as symmetric. Although one could expect the

mixtures to be multimodal, unimodal distrubutions are obviously present as

well. Skewed distrubutions are also covered. All in all, finite normal mixtures

seem to be a good candidate for improving the temperature modelling.

Finite normal mixtures will be examined in two ways. The Engelman–

Hartigan test [2] is a normality test against an alternative of a two-component

normal mixture with equal variances. The other approach utilises the EM

algorithm to find the best finite normal mixture model available.1

1Normal distribution could be viewed as single-component normal mixture and there-

fore normal distributions are also considered.

24
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4.1 Engelman–Hartigan Test

4.1.1 Description of the Test

The Engelman–Hartigan test is a test of normality against a two-component

normal mixture with equal variances. The observations x1, x2, . . . , xn are

divided into two groups of size n1 and n2 (n1 + n2 = n) and the ratio of

between to within sum of squares is calculated as

SSB/SSW =
n1n2(x1 − x2)

2

(n1 + n2)[
∑

(xi − x1)2 +
∑

(xi − x2)2]

where xj is the mean of group j and the sums are over the respective groups.

Engelman–Hartigan test statistic is

EH = max(SSB/SSW )

The maximum is computed over all possible divisions. The maximum can

only occur for one of the n− 1 divisions of ordered data, so only these actu-

ally need to be calculated. Although an argument could be made that low

values of EH (that suggest lack of randomness in the data) speak against the

hypothesis too, usually the one-sided version of the test is used. The hypoth-

esis of normality is therefore rejected for EH > cα, where cα is the critical

value at the α level of significance. For cα, the following approximation was

found empirically.

log(cα + 1) = − log(1 − 2/π) + (n − 2)−1/2z1−α + 2.4(n − 2)−1

where z1−α is the percentile of the standard normal distribution. In other

words, the following transformation of EH

U =
√

n − 2 [log(EH + 1) + log(1 − 2/π) − 2.4/(n − 2)]

is N(0,1) distributed.

It is important to note that the Engelman–Hartigan test has a specific

alternative so the results are not reliable if the true distribution is different

from the postulated distribution. Non-rejections tend to show a presence
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Figure 4.1: Engelman–Hartigan, minimum temperatures, summer: Germany

and the surroundings form a region where the test is not rejected. Legend:

p-value is (dot) below 1%, (circle) below 5%, (square) below 10%, (diamond) below 50%,

(triangle) above 50%

of a single phenomenon rather than a solid proof of normality.2 On the

other hand, the results of this test should match the results given by the EM

algorithm.

4.1.2 Test Results

Firstly, the Engelman–Hartigan test results are plotted in the same style as

the normality tests in the previous chapter. Starting with the mean tem-

peratures, hardly any stations do not reject the test, a few exceptions are

usually in the summer. This is also the only season where a region with

frequent non-rejections is found in the south of central Europe (longsummer

2D’Agostino skewness and kurtosis test behave in a similar way.
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Figure 4.2: Standardized data: Engelman–Hartigan, minimum, longwinter:

Non-rejecting stations are located between the Benelux and the Balkans.

Legend: p-value is (dot) below 1%, (circle) below 5%, (square) below 10%, (diamond)

below 50%, (triangle) above 50%

season copies the region to some extent but the area is visibly smaller). For

minimum temperatures, such a region is found in Germany and its western

and southern neighbourhood (see Figure 4.1). For maximum temperatures,

this region moves to the east to central Europe and the Balkans and retains

about the same size. In the winter seasons and the full year, there are just

rejections with a single exception.

Standardized data give more colourful results. For mean temperature,

winter has a number of coloured stations in the central Europe and the

Balkans. For summer, such stations are less frequent and located at the sea,

usually in the north. On the other hand, the full year results are rather

non-descript and no pattern is present. For minimum temperatures, many

northern stations do not reject the test in summer but almost all do in
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winter. In the rest of Europe, more stations are rejected in summer but no

real patterns stand out. Curiously enough, the longwinter map resembles the

mean temperature situation (see Figure 4.2),but the winter season itself does

not. Maximum temperatures seem to give the least useful result—in summer,

a few scattered stations do not reject the test; in winter, such stations tend

to be in the southeast but many rejecting stations are spread among them.

4.2 EM Algorithm

4.2.1 Description of the Method

EM algorithm3 is a two-step iterative procedure that finds the best model

for a given number of components and variance model [3]. For the uni-

variate data, there are just two models—“E” for equal variance throughout

all components and “V” for each component having a different variance.4

Bayesian Information Criterion (BIC) is computed as an indicator of quality

of the model. The BIC value corresponds to the model type and number of

components as well, so it is comparable across all models. The model with

maximum BIC value is then selected as the best finite normal mixture model.

A disadvantage of this method is a great computational intensity. The

iterative process is quite slow and larger datasets are difficult to handle. To

overcome this limitation, the data for each station were split into several

parts, the EM algorithm was applied at each part separately, and the results

were compared. In this study, three groups are formed. The maximum pos-

sible subsample size is 4200 observations. If the sample size allows to create

three distinct subsets of size 4200, the first 4200 and last 4200 observations

form two groups, with the third one comprised of the 4200 observations

around the middle mark. Otherwise, the sample is split in thirds of equal

size. As the sample size of short seasons is lower, another set of computations

was made for groups of size 2000 so that the comparisons across the seasons

3EM stands for “Expectation and Maximization” steps of the algorithm
4In the single-component case, this distinction does not exist and the model is labeled

as “X”.
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could be made with similar sample sizes too. This number was chosen on the

basis of short seasons’ sample size but it is also considered adequate size for

the EM algorithm, as further increasing of the sample size does not improve

the results much [4].

Both standardized data and differences were examined with this method—

the former are more practical, the comparison of the results with the previous

chapter will be interesting for the latter.

During the first computations, it become apparent that it is not necessary

to compute models of five or more components, as 4-component models were

selected as best very exceptionally, and higher numbers never showed up.

Therefore, maximum number of components for the algorithm was set to

four, saving a lot of resources for what should be a negligible price.

4.2.2 Result Presentation

Three subsets of data were examined for each station, selecting the best

model for each subset. The three models are compared and the result is

presented in the map. For the purpose of this presentation, the following

convention is used:

• Large gray dot denotes a station where three different models were

selected.

• If at least two results match, an empty circle shows that the best model

has equal variances, while small full dot denotes a model with different

variances. For single component, an empty square is plotted.

• Colour displays the number of components. Black/Cyan stands for

single component, Red/Magenta for two, Green/Yellow for three and

Blue/Gray for four components.

• First colour (RGB + Black) denotes that all three subsets agreed, while

the other (CMY + Gray) indicates that one subset arrived at different
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model than the other two subsets.5

As an auxiliary criterion, the same map is also produced exclusively on

the basis of number of components to help in deciding how serious a partial

mismatch is. If the odd subset produces model with the same number of

components as the other two, credibility of the model is somewhat increased.

4.2.3 Standardized Data

For the mean temperatures, a two-component mixture with equal variances

is the most common result, particularly in summer. Unequal variance mod-

els can be found in colder climate (Scandinavia, Northern/Baltic Sea coast).

A 3-component mixture with equal variances is present in a small area in

Germany. The most common alternative is the normal model that is com-

mon in the south (and somewhat suprisingly in Iceland) in the summer. For

full year data, this model is widespread in central Europe but some normal

modelled stations are found everywhere across the map. The situation is

different in winter, as this is the season where three-component mixtures are

rather common—mostly in the cold regions (Finland, Russia). Unlike sum-

mer, 3-component mixtures rarely have equal variances in winter. Otherwise,

all different models can be found—normal models are found in the south but

the two-component mixtures with equal variances are mixed among them.

This model is also the most common in the central Europe and as the cli-

mate gets colder, the model first changes to unequal variances and then to

the three-component mixture.

Minimum temperatures for the full year data are again a combination of

the normal and 2-component (equal variances) model. The normal model

tends to be more frequent in the south, but the two models are mixed up

next to each other. There is also a rather large disagreement between the

results from the different sample sizes as the larger samples produce a rather

compact region of the 2-component mixture with unequal variance in north-

east (Scandinavia and Russia), while this model is only occasionally selected

5The best model is judged only on the basis of number of components and the variance

type. The value of parameters is not considered here.
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with the smaller samples. Still, this result supports the general trend of the

gradual increase of the model complexity on the way from mild to harsh

climate.

Summer minimum temperatures are a mix of the normal and 2-component

model with equal variance and this time the normal model appears routinely

in the north too as the two models are intervowen. Normal models seem

to be more frequent in the coastal areas but it is not a strict rule. Winter

is again the most colourful season with all models present—normal in the

Mediterranean, 2-component-equal around it, 2-component-unequal in the

central Europe and 3-component in Scandinavia. Some unusual patterns are

found too, such as the 3-component stations in France.

Maximum temperature full year results are basically split between normal

and 2-component-equal-variance models with little regard to latitude as the

normal model is present at all regions. For summer, the usual northeast-to-

southwest division is modified to the northwest-southeast direction. Two-

component models with unequal variance are dominant in the northeast but

some three-component stations are present there too. Winter is the usual mix

of 3-component models in Scandinavia with 2-component-unequal models

surrounding (although these are uncharacteristically found in France) and

the rest is split between 2-component-equal and normal models.

4.2.4 Differences

For mean temperatures, a 2-component mixture is by far the most common

model for all seasons. Stations with different results are only singularities—

normal models are found in the north, as well as 3-component mixtures

(one such result is also found in winter at an Alpine station but the smaller

sample result disagreed). Of the 2-component models, equal variances are

quite rare, with one exception being the landlocked stations in central Europe

in summer, where this model clearly prevails.

The two-component mixture with unequal variances is the prevalent model

in minimum temperatures too. Usual alternatives are found in winter—

three-component mixtures in the north and normal models in the south.
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In summer, the normal model is the most common and the two-component

mixtures are spread all across Europe. For full year, the two sample sizes

produce different results. Small samples show a couple of regions with a

different model than the widespread 2-component-unequal—normal model

in France and surroundings, equal variances in central Europe and a couple

of 3-component stations. For the larger samples, 3-component stations are

more common, but the other alternatives are almost non-existant.

Maximum temperatures produced the most stable results. Vast majority

of stations follows a 2-component model with unequal variances in all sea-

sons. Scandinavia is the only notable exception. Three-component model is

present in winter (and also for the full year). There are two surprises there,

however. The longwinter season has more 3-component stations than winter.

In summer (and longsummer to lesser extent) the normal model is present,

rather than the 3-component.

4.3 Comparison of Results

In order to compare the results of the Engelman–Hartigan test and EM

algorithm, the results of the two approaches are compared, observing whether

the test returns the same result on a given station. All results are then

summarized in a 2 × 2 contingency table. Fisher test for independence is

then applied to see if there is a connection. This test is described e.g. in

Anděl [1]. The one-sided alternative of δ > 0 is used as we a priori expect

the results to match. In the maps presented, “F.test” states the p-value of

the (one-sided) Fisher test and “OR” is the point estimate of the odds ratio.

Before drawing any conclusions from the p-values, an important feature of

Fisher test needs to be noted. The discrete nature of the situation implies

that the possible resulting p-values are also discrete and especially with low-

count cells of the table, the p-values are unstable in a sense that a small

change of data earns a big leap in the p-value.

The results of the Engelman–Hartigan test are divided into two groups

based on the p-values—one group rejects the test at the given level, the
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winter−min @ eh vs. em(2000 obs.), 99% level − F.test:0.1315, OR:2.6489

Figure 4.3: Standardized data, minimum temperature (one-sided): Winter

produces the worst fit of the two tests which might be blamed upon the higher

ratio of the 3-component stations. Legend: (dot) Both tests “rejected” normality,

(circle) E.–H. test rejected, (square) EM algorithm “rejects” normality, (diamond) both

tests imply normality.

other does not. The decision point was once again set at the 95% and 99%

level.6 As for the EM algorithm, stations that return normal model are

treated as non-rejections, stations with a 2-component model are treated

as rejections. Gray dots (complete mismatches) and 3-component stations

need to be accomodated as well. The most obvious solution is to leave out

mismatches and treat 3-component stations as rejections, i.e. the same way

as 2-component stations. Other possibilities7 were briefly examined as well.

Leaving out the 3-component stations tends to increase the p-values in winter

6The 95% level is more common but because of small observed p-values, the 99% level

is useful for the decent-sized samples in this study.
7Treating both issues the same way—either rejecting or leaving out.
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full year−max @ eh vs. em(2000 obs.), 99% level − F.test:0.3199, OR:1.4604

Figure 4.4: Standardized data, maximum temperature, full year (one-sided):

Smaller sample often selected normality in Scandinavia. Legend: (dot) Both

tests “rejected” normality, (circle) E.–H. test rejected, (square) EM algorithm “rejects”

normality, (diamond) both tests imply normality.

(a seson with the highest frequency of such stations). However, the difference

is not dramatic, so only the default method is discussed.

For the standardized data, the results of the comparison are quite satis-

factory, especially using the 95% level of the Engelmann–Hartigan test. The

odds ratio estimate was always larger than one. All p-values are summed up

in Table 4.1. Minimum/maximum temperature results match very well as the

independence of the two tests is often rejected even at the 99% significance

level. Winter (and longwinter) minimum temperatures are not rejecting the

independence test (see Figure 4.3) but this is not a major problem, as this is

the situation with the highest frequency of a three-component model, so the

Engelmann–Hartigan test could be expected to be the least accurate of all

conditions examined. The full year maximum temperature p-value is a big-
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min mean max 99% vs. 95% min mean max

0.0015 0.1323 0.3199 full 0.0013 0.1166 0.5368

0.0003 0.0856 0.0039 summer 0.0026 0.0406 0.0654

0.1315 0.1626 0.0859 winter 0.0576 0.2420 0.3778

0.0050 0.0894 0.0044 longsummer 0.1424 0.3300 0.0684

0.2037 0.0882 0.0004 longwinter 0.3728 0.6646 0.0069

Table 4.1: Fisher test p-values for standardized data. The left-hand table

corresponds to the Engelman–Hartigan test at the 99% level. The right-hand

part is for the 95% level.

ger surprise (see Figure 4.4). It is a consequence of the high frequency of the

normal models in the EM-algorithm. Mean temperature results might some-

what suffer from a smaller number of stations and therefore a smaller sample

size for the Fisher test because of the discrete nature of the test. It is however

safe to claim that the mean temperatures do not fit the assumption of the

finite normal mixture distribution as well as the minimum/maximum tem-

peratures. Using the EM-algorithm results obtained with the larger samples

does not dramatically change the results—at least for the seasonal data. The

p-values tend to be somewhat lower, on the other hand the low values often

go up a little. Full year p-values go significantly down for mean temperatures

(below 5 % in both cases) and for the full year results (to approximately half

of the tabulated value). The latter is the effect of the difference spotted in

EM-algorithm results, but such an obvious explanation is not avaiable for

the former.

Diferences are not very useful to examine because the Engelman-Hartigan

test rejected most of the stations. For summer and longsummer, the number

of non-rejections was acceptable but no strong connection between the two

methods could be estabilished.

On the whole, the results of this comparison support the finite normal

mixture model for the temperature data, so the results of the EM-algorithm

can be used with confidence.
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Conclusion

It is clearly demonstrated that the presumption of normality in tempera-

tures does not hold universally and serious attention has to be paid to the

circumstances if a statistical method is based on such a presumption. The

temperature distribution depends heavily on the time of the year and lo-

cation, as well as the temperature type. The mean temperature behaves

differently than the minimum and maximum temeprature. The latter two

also exhibit major differences between warm and cold periods of the year.

Daily first-order temperature differences were examined and although the

goodness-of-fit tests do not show normality, some useful results were obtained

at least for the higher order moments. Using finite normal mixtures offers

a possible improvement over normality. Cross-checking comparing normal

model and the 2-component normal mixture showed a significant correspon-

dence between the normality test against this specific alternative and the

results of the EM-algorithm that validates using finite normal mixtures as

an alternative model. A two-component normal mixture is usually enough

to improve the model, unless the climate conditions are unusual. A three-

component normal mixture handles the severe skewness of winter tempera-

tures in the north Europe as it manages to accomodate increased number of

very cold days. The normal models are often adequate in the south Europe—

in the sense that finite normal mixtures do not improve the model as the

distribution is close to normal, although the EDF goodness-of-fit tests do
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not recommend treating the distribution as such for the purpose of methods

sensitive to the normality of data.

Apart from a full collection of maps, the enclosed CD also contains full

results of the tests, i.e. p-values of normality tests and the details of the

models selected by the EM algorithm (especially all the parameters), that

could be helpful for an analysis tied to a certain location.
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